WO2017102431A1 - Schlagende handwerkzeugmaschine - Google Patents

Schlagende handwerkzeugmaschine Download PDF

Info

Publication number
WO2017102431A1
WO2017102431A1 PCT/EP2016/079871 EP2016079871W WO2017102431A1 WO 2017102431 A1 WO2017102431 A1 WO 2017102431A1 EP 2016079871 W EP2016079871 W EP 2016079871W WO 2017102431 A1 WO2017102431 A1 WO 2017102431A1
Authority
WO
WIPO (PCT)
Prior art keywords
striker
pneumatic chamber
valve
impact
racket
Prior art date
Application number
PCT/EP2016/079871
Other languages
English (en)
French (fr)
Inventor
Markus Hartmann
Rory Britz
Original Assignee
Hilti Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hilti Aktiengesellschaft filed Critical Hilti Aktiengesellschaft
Priority to EP16809719.4A priority Critical patent/EP3389933B1/de
Priority to US16/061,387 priority patent/US10821590B2/en
Publication of WO2017102431A1 publication Critical patent/WO2017102431A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D11/00Portable percussive tools with electromotor or other motor drive
    • B25D11/005Arrangements for adjusting the stroke of the impulse member or for stopping the impact action when the tool is lifted from the working surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D11/00Portable percussive tools with electromotor or other motor drive
    • B25D11/06Means for driving the impulse member
    • B25D11/12Means for driving the impulse member comprising a crank mechanism
    • B25D11/125Means for driving the impulse member comprising a crank mechanism with a fluid cushion between the crank drive and the striking body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D17/00Details of, or accessories for, portable power-driven percussive tools
    • B25D17/06Hammer pistons; Anvils ; Guide-sleeves for pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2217/00Details of, or accessories for, portable power-driven percussive tools
    • B25D2217/0011Details of anvils, guide-sleeves or pistons
    • B25D2217/0019Guide-sleeves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/035Bleeding holes, e.g. in piston guide-sleeves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/131Idling mode of tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/185Pressure equalising means between sealed chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/231Sleeve details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/345Use of o-rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/365Use of seals

Definitions

  • the present invention relates to a hitting machine tool, in particular a hand-held pneumatic hammer drill and a hand-held pneumatic electric chisel.
  • a hand-held pneumatic hammer drill has a pneumatic percussion driven by a motor.
  • a pneumatic chamber forms an air spring which couples a racket to an exciter moved by the motor.
  • the hammer mechanism is deactivated if the user does not apply pressure to the tool to protect the hammer from excessive loading. As soon as the user presses the hammer to the tool, the hammer mechanism starts to work again. In high-performance machines, the guiding of the hammer when re-pressing proves to be difficult to control.
  • the hand tool of the invention has a tool holder for holding a striking tool on a working axis, an electric motor, and a striking mechanism.
  • the percussion mechanism has a pathogen moved by the electric motor, a racket coupled to the exciter via a pneumatic chamber disposed between the exciter and the racket, and a striker located in front of the racket in the direction of impact.
  • the striker is in a working position against the direction of impact on a stop, in a starting position of the striker is offset in the direction of impact to the working position and in a rest position of the striker is offset in the direction of impact to the starting position.
  • a slide valve is formed by a first radial opening of the pneumatic chamber and the racket, wherein in the starting position of the racket adjacent to the striker closes the slide valve and opens in the rest position of the racket adjacent to the striker the slide valve.
  • a check valve is closed in the working position of the striker and opened automatically in the starting position.
  • a check valve is Input side is connected to the check valve and the output side connected to the second radial opening of the pneumatic chamber.
  • the exciter can increase the amount of air in the pneumatic chamber.
  • the larger amount of air reduces the impact and increases the stiffness of the air spring, which facilitates the attachment of the tool to the ground.
  • the striker disables the increase in the amount of air via the check valve upstream of the check valve.
  • the increased amount of air is selectively reduced in chiseling operation or reduced via loss channels, which increases the impact power to the setpoint.
  • the impact mechanism can be switched off completely via the slide valve.
  • the check valve and the slide valve are controlled by the striker, and thus indirectly by the user and the pressing of the tool to the ground.
  • One embodiment includes a slide valve formed by a radial opening of the pneumatic chamber and the racket.
  • the slide valve is closed by the racket adjacent to the lying in the working position striker the slide valve for the pneumatic chamber; and the gate valve is opened by the mallet adjacent to the striker in front of the operative position of the striker for the pneumatic chamber.
  • the slide valve is completely closed during a chiseling operation and is open only in a rest position of the power tool.
  • the check valve has an elastic locking body, which is spaced in an unstrained basic form of a valve seat of the check valve and elastically braced by the lying in the working position striker on the valve seat, fitting is deformed.
  • the check valve is actuated directly by the striker.
  • the striker brings a force deforming the locking body or the user brings the force by pressing the striker on the tool.
  • An embodiment provides, characterized in that the first channel opening is arranged at a rack-side reversal point of the exciter.
  • the exciter may preferably not close the first channel opening.
  • the exciter can suck in air via the check valve by means of its entire stroke. Increasing the amount of air above the chiseling normal level can thus be done very quickly.
  • the pneumatic chamber has a throttle opening for exchanging air between the pneumatic chamber and the surroundings of the portable power tool.
  • the throttle opening may be arranged at a hammer-side reversal point of the exciter.
  • a ratio of the cross-sectional area of the throttle opening to the cross-sectional area of the channel opening is less than one to twelve.
  • the throttle opening can be adjusted specifically the outflow of the increased amount of air.
  • the throttle opening is very small, whereby the outflow preferably takes up to one second.
  • An embodiment provides that the check valve is arranged stationarily at the first channel opening. The check valve is preferably very close to the channel opening to keep the dead volume in the channel section between the channel opening and the check valve very small relative to the mean volume of the pneumatic chamber.
  • FIG. 1 a hammer drill
  • FIG. 2 a hammer mechanism in a chiseling phase
  • FIG. 3 the hammer mechanism in a resting phase
  • FIG. 4 the hammer mechanism in a starting phase
  • FIG. 5 a check valve of the hammer mechanism
  • FIG. 6 a check valve of the percussion mechanism
  • FIG. 7 a striking mechanism in a starting phase
  • FIG. 8 a check valve of the impact mechanism in the closed position
  • Fig. 1 shows a hammer drill 1 as an example of a beating hand-held machine tool.
  • the hammer drill 1 has a tool holder 2 in which coaxial with a working axis 3, a drill, chisel or other beating tool 4 can be used and locked.
  • the hammer drill 1 has a pneumatic impact mechanism 5, which can exert periodic punches in a direction of impact 6 on the tool 4.
  • a rotary drive 7 can rotate the tool holder 2 continuously about the working axis 3.
  • the pneumatic hammer 5 and the rotary drive are driven by an electric motor 8, which is fed from a battery 9 or a power line with electric current.
  • the striking mechanism 5 and the rotary drive 7 are arranged in a machine housing 10.
  • a handle 11 is typically arranged on a side facing away from the tool holder 2 of the machine housing 10. The user can hold the hammer drill 1 by means of the handle 11 in operation and lead.
  • An additional auxiliary handle can be attached near the tool holder 2.
  • an operating button 12 is arranged, which the user can operate preferably with the holding hand.
  • the electric motor 8 is turned on by operating the operating button 12. Typically, the electric motor 8 rotates as long as the operation button 12 is kept depressed.
  • the tool 4 is movable in the tool holder 2 along the working axis 3.
  • the tool 4 has an elongated groove into which a ball or other locking body of the tool holder 2 engages.
  • the user holds the tool 4 in a working position by the user presses the tool 4 indirectly by the hammer drill 1 to a substrate (Fig. 2).
  • the pressing is associated with a chiseling phase.
  • the tool 4 is moved by the impact of the striking mechanism 5 in the direction of impact 6 from the working position.
  • the tool 4 may remain in the advanced position if the user does not further press the hammer drill 1 (FIG. 3).
  • the lack of pressing is associated with a rest phase and leads to an automatic shutdown of the striking mechanism 5.
  • the user can start the striking mechanism 5 by re-pressing, ie transfer from the resting phase in the chiseling phase (start phase, Fig. 4).
  • the pneumatic percussion 5 has along the direction of impact 6 a pathogen 13, a bat 14 and an anvil 15.
  • the exciter 13 is forced by means of the electric motor 8 to a periodic movement along the working axis 3.
  • the bat 14 is coupled via an air spring to the movement of the exciter 13.
  • the air spring is formed by a closed between the exciter 13 and the bat 14 pneumatic chamber 16.
  • the bat 14 moves in the direction of impact 6 until the bat 14 strikes the striker 15.
  • the striker 15 abuts the tool 4 in the direction of impact 6 and transmits the impact to the tool 4.
  • the exemplary impact mechanism 5 has a piston-shaped exciter 13 and a piston-shaped racket 14, which are guided by a guide tube 17 along the working axis 3.
  • the exciter 13 and the bat 14 abut with their lateral surfaces on the inner surface of the guide tube 17.
  • the pneumatic chamber 16 is closed by the exciter 13 and the bat 14 along the working axis 3 and by the guide tube 17 in the radial direction. Sealing rings in the outer surfaces of exciter 13 and bat 14 can improve the airtight completion of the pneumatic chamber 16.
  • the exciter 13 is connected via a gear component with the electric motor 8.
  • the transmission component transmits the rotational movement of the electric motor 8 in a periodic translational movement along the working axis 3.
  • An exemplary transmission component based on an eccentric 18, which is connected to the electric motor 8.
  • a connecting rod 19 connects a pin 20 of the Eccentric 18 with a pin in the exciter 13.
  • the exciter 13 moves in synchronism with the electric motor 8.
  • the electric motor 8 typically rotates in response to actuation of the operating button 12 and rotates as long as the user the operating button 12 is pressed holds.
  • the periodic forward and backward movement of the exciter 13 also begins and ends with the actuation or release of the operating button 12.
  • Another example of such a transmission component is a wobble drive.
  • the racket 14 is coupled via the air spring to the exciter 13.
  • the air spring is based on a pressure difference between the pressure in the pneumatic chamber 16 and the pressure in the environment.
  • the forced-motion exciter 13 increases or decreases the pressure in the pneumatic chamber 16 by means of its periodic axial movement.
  • the racket 14 is accelerated by the pressure difference in or against the direction of impact 6.
  • Fig. 2 shows in a split representation of the exciter 13 and racket 14 whose position in the compression point (upper half) and in the impact point (lower Screen). At the compression point, the pneumatic chamber 16 is maximally compressed, the pressure difference is therefore greatest.
  • the racket 14 has the smallest distance to the exciter 13.
  • the compression point coincides approximately with the reversal point of the oscillatory movement of the racket 14. In the point of impact of the bat 14 strikes the striker 15, while the tool 4 is in the working position. The bat 14 induces a shock wave in the striker 15, which passes through this and is transmitted to the voltage applied to the striker 15 tool 4.
  • the striker 15 is movably guided in a percussion tube 21 along the working axis 3.
  • the impact tube 21 may be formed by the exciter 13 and racket 14 leading guide tube 17 or a separate tube.
  • the striker 15 is movable in the impact tube 21 between a working position (FIG. 2), rest positions (FIG. 3) and a starting position (FIG. 4).
  • the striker 15 is in the working position against the direction of impact 6 on the stop 22.
  • the working position of the tool 4 is characterized in that the striker 15 is in its working position and the tool 4 rests against the striker 15.
  • the shock wave induced by the racket 14 can pass from the striker 15 to the tool 4.
  • the user lifts the hammer drill 1 from the ground in a resting phase.
  • the tool 4 and the striker 15 can leave the working position in the direction of impact 6 due to a shock or gravity in the rest position (Fig. 3).
  • the impact mechanism 5 is preferably deactivated when the striker 15 is in the rest position.
  • the striking mechanism 5 can have exactly one defined rest position, for example when the striker 15 abuts a stop 23 in the direction of impact 6.
  • the exemplary striking mechanism 5 has a plurality of rest position, all within a contiguous, adjacent to the stop 23 area.
  • the striking mechanism 5 can be deactivated by reducing the rotational speed of the electric motor 8.
  • the striking mechanism 5 is designed for an optimal number of beats, ie beats per second, at which a synchronous movement of the beater 14 and the exciter 13 occurs.
  • the optimum number of strokes is determined inter alia by the mass of the racket 14, the end face of the racket 14 and the distance from the compression point to the impact point. If the periodicity of the forced-motion exciter 13 is significantly different from the optimal stroke rate, the bat 14 can no longer follow the excitation by the exciter 13 and stops.
  • the speed can do this For example, be lowered by 20% or more compared to the speed for the optimal number of strokes.
  • a sensor may detect accelerations of the machine housing 10, impact sounds, or a position of the striker 14 or the striker 15 to detect the rest position. The speed is reduced in response to the sensor.
  • the striking mechanism 5 can be deactivated by decoupling the racket 14 from the exciter 13.
  • the pneumatic chamber 16 is vented to provide pressure equalization between the pneumatic chamber 16 and the environment.
  • the air exchange prevents the moving exciter 13 from building up a sufficient pressure difference to move the racquet 14.
  • the venting is effected by one or preferably a plurality of radial ventilation openings 24 of the pneumatic chamber 16, which connects the cavity of the pneumatic chamber 16 with the environment.
  • the radial vents 24 are, for example, holes or punched holes in the guide tube 17.
  • the environment is typically the interior of the machine housing 10, which in turn may be in continuous air exchange through openings with an environment outside the machine housing 10.
  • the volume of the environment is so great that the amount of air moved by the exciter 13 causes no appreciable pressure fluctuation.
  • the volume of the environment is at least ten times as large as the maximum volume of the pneumatic chamber 16.
  • the radial ventilation openings 24 can be closed and opened by a slide valve 25.
  • the slide valve 25 is composed of the radial ventilation openings 24 and the bat 14 together.
  • the slide valve 25 is closed relative to the pneumatic chamber 16, when the lateral surface of the racket 14, the ventilation openings 24 covers or the racket 14 in the direction of impact 6 in front of the ventilation openings 24 is (Fig. 2).
  • the slide valve 25 is opened relative to the pneumatic chamber 16 when the racket 14 is located in the direction of impact 6 behind the ventilation openings 24 (FIG. 3).
  • the position of the racket 14 in which the slide valve 25 changes from open to closed and vice versa is hereinafter referred to as the switching point of the slide valve 25 (FIG. 4, lower) screen).
  • the slide valve 25, ie the ventilation openings 24, is arranged along the working axis 3 such that the slide valve 25 is closed continuously during the chiselling phase (FIG. 2), ie in the working position, and only during the resting phase (FIG. 3), ergo at rest, can be open.
  • the ventilation openings 24 are along the Working axis 3 arranged in the direction of impact 6 behind the impact point.
  • the bat 14 is viewed in the direction of impact 6 in the point of impact before the switching point. During its movement between the compression point and the impact point, the beater 14 continuously covers the ventilation opening 24 with respect to the pneumatic chamber 16.
  • the beater 14 can slide beyond the impact point in the direction of impact 6 when the striker 15 moves sufficiently in the direction of impact 6 relative to the working position is.
  • the beater 14 no longer covers the vent opening 24, ie, the pneumatic chamber 16 overlaps with the vent opening 24.
  • a cross-section of the vent openings is selected so that an air flow between the pneumatic chamber 16 and the environment is the rate of change of the volume of the pneumatic chamber 16 of the moving exciter 13.
  • the pressure in the pneumatic chamber 16 differs only slightly from the environment, so no significant force is exerted on the racket 14.
  • the percussion mechanism 5 is deactivated despite the still moving exciter 13.
  • An accumulated cross-sectional area of the ventilation openings 24 is in the range between 2% and 6% of the cross-sectional area of the pneumatic chamber 16, ie the end face of the exciter 13.
  • the racket 14 and the striker 15 can complete an (intermediate) chamber 26 along the working axis 3.
  • the guide tube 17 and the impact tube 21 enclose the intermediate chamber 26.
  • a channel 27 connects the pneumatic chamber 16 and the intermediate chamber 26.
  • the channel 27 allows a controlled exchange of air between the pneumatic chamber 16 and the intermediate chamber 26.
  • the channel 27 is provided with a check valve 28 and a check valve 29.
  • the check valve 28 and the check valve 29 allow only an inflow of air into the pneumatic chamber 16 and the inflow only when the striker 15 is displaced from the working position. Otherwise locks at least one of the two valves.
  • the channel 27 preferably has a plurality of channel openings 30 extending into the pneumatic chamber 16.
  • the channel openings 30 are preferably radial openings in the pneumatic chamber 16, eg a bore or a punched hole in the guide tube 17.
  • the (first) channel opening 30 is preferably located or near the beater-side reversal point of the exciter 13.
  • the channel opening 30 is not covered by the exciter 13 or for a long time by the racket 14.
  • the channel opening 30 can be arranged at a different location along the guide tube 17, as long as the pneumatic chamber 16 in the chiseling phase at least temporarily with the channel opening 30 overlaps.
  • the other (second) channel opening 31 extends, for example, into the intermediate chamber 26.
  • the channel 27 or the channel openings 30 have a cross-sectional area of 0.5% to 4% of the cross-sectional area of the pneumatic chamber 16, ie the end face of the exciter 13.
  • the check valve 28 is actuated by the striker 15.
  • the check valve 28 is closed when the striker 15 is in the working position (FIG. 2).
  • the check valve 28 is opened when the striker 15 is displaced from the working position (FIG. 3).
  • the striker 15 is considered in the direction of impact 6 in the switching point behind the working position.
  • the switching point of the slide valve 25 and the switching point of the check valve 28 are preferably matched.
  • the striker 15 indicates by its position, whether the racket 14 can open the slide valve 25. If the striker 15 is in the switching point of the check valve 28, the slide valve 25 is closed (Fig. 4, upper half of the picture). The striker 15 protrudes in the switching point of the check valve 28 lying so far against the direction of impact 6 that the bat 14 is adjacent to the striker 15 in the direction of impact 6 before the switching point of the spool valve 25, i. the ventilation opening 24 covers.
  • the striking mechanism 5 has a starting position (FIG. 4, lower half of the picture), in which the racket 14 lies in the switching point of the slide valve 25 and the striker 15 contacts the racket 14.
  • the striker 15 is offset in the starting position relative to the switching point of the check valve 28 by a distance 32 in the direction of impact 6.
  • the check valve 29 is connected on the input side to the intermediate chamber 26 and the output side to the pneumatic chamber 16. Accordingly, the check valve 29 allows air flow from the intermediate chamber 26 into the pneumatic chamber 16 and blocks against air flow from the pneumatic chamber 16 into the intermediate chamber 26.
  • the amount of air (air mass) in the pneumatic chamber 16 increases when the striker 15 is in the starting area.
  • the increased amount of air leads to a higher average pressure in the pneumatic chamber 16.
  • the amount of air is reduced both when the striker 15 changes to the rest position or to the working position.
  • the Schlagtechnik 5 goes during a start phase continuously from the rest phase in the chiseling phase with full impact performance. The user feels when pressing the hammer drill 1 when the pressure in the pneumatic chamber 16 increases when the striker 15 reaches the starting area. The user must apply a minimum force to overcome the pressure. Otherwise, the racket 14 moves the striker 15 to above the starting position and switches off the percussion mechanism 5 by the slide valve 25.
  • the channel 27 with the check valve 28 and the check valve 29 leads to an overpressure in the pneumatic chamber 16 when the striker 15 is in the start region.
  • the check valve 29 allows only an inflow of air into the pneumatic chamber 16.
  • the exciter 13 sucks in its movement against the direction of impact 6 through the opening check valve 29 air.
  • the amount of air in the pneumatic chamber 16 increases because no air can escape. Leaks limit an increase in the amount of air.
  • the pressure in the pneumatic chamber 16 is greater than in the intermediate chamber 26, corresponding to a result in the direction of impact 6 force on the racket 14 and indirectly on the applied to the racket 14 striker 15. The user feels the counter to the direction of impact 6 acting Counterforce on the exciter 13 and the handle 11.
  • the throttle opening 33 is preferably arranged at or near the beater-side reversal point of the exciter 13.
  • a cross-sectional area of the throttle opening 33 is very small.
  • the cross section limits air exchange with the environment to less than 1/10 of the air volume of the pneumatic chamber 16 within a period of the exciter 13.
  • the cross sectional area of the throttle opening 33 is in the range of 0.05% to 0.20% of the end face of the exciter 13.
  • the amount of air in the pneumatic chamber 16 equalizes within ten to fifty cycles of the exciter 13 to the environment. Depending on size of the impact mechanism 5 pass, for example, 500 milliseconds (ms) to 800 ms.
  • the preferably single throttle opening 33 is in particular significantly smaller than the ventilation openings 24 and the channel opening 30.
  • the cross-sectional area of the throttle opening 33 is preferably less than 6% of the cross-sectional area of the ventilation opening 24 and preferably less than 8% of the cross-sectional area of the channel opening 30.
  • the channel 27, four first channel openings 30 with a cross-sectional area of 2 mm 2 each, and the cross-sectional area of the throttle opening 33 is 0.5 mm 2 .
  • the bat 14 may be inadvertent, e.g. by shaking, close the slide valve 25. If the striker 15 is not accidentally in the working position, the pumping effect causes an average force in the direction of impact 6 on the racket 14. The racket 14 is moved to the rest position, the slide valve 25 is opened and the striking mechanism 5 is turned off.
  • the exemplary check valve 28 has a stationary valve seat 34 and a resilient lock body 35 in a valve passage 36 (FIG. 5).
  • the valve channel 36 opens into the second channel opening 31.
  • the check valve 28 is closed when the blocking body 35 completely abuts against the valve seat 34 and thereby strangles the valve channel 36.
  • the locking body 35 is elastically braced when the locking body 35 completely rests against the valve seat 34.
  • the check valve 28 is self-opening. Without external force of the locking body 35 relaxes from the strained shape in a basic shape, which is not or only partially applied to the valve seat 34.
  • the check valve 28 is switched by means of the striker 15.
  • the striker 15 has an active surface 37 which actuates the blocking body 35.
  • the active surface 37 forces the locking body 35 against the valve seat 34 when the striker 15 is in the working position. If the striker 15 is located in the direction of impact 6 behind the switching point, the active surface 37 is force-free or non-contact with the blocking body 35.
  • the exemplary locking body 35 is an elastic ring, for example made of rubber.
  • the blocking body 35 is arranged inside the impact tube 21 coaxially with the working axis 3.
  • the exemplary valve seat 34 has in the radial direction to the working axis 3 and lies with the locking body 35 in a plane.
  • the distance of the valve seat 34 to the working axis 3 is slightly larger than the outer radius of the elastic ring.
  • the active surface 37 of the striker 15 is a section of the cylindrical lateral surface.
  • the radius of the lateral surface is greater by at least the gap than an inner radius of the ring.
  • the active surface 37 is within the plane when the striker 15 is in the working position.
  • the active surface 37 spreads the ring so far that the ring completely touches the valve seat 34. If the striker 15 is outside the Working position, the ring contracts in the radial direction in its basic form and releases from the valve seat 34th
  • the check valve 29 is stationarily arranged at or near the first passage opening 30.
  • the channel portion from the first channel opening 30 to the check valve 29 is as short as possible.
  • a dead volume formed by the channel portion is constant and less than 5% of the mean volume of the pneumatic chamber 16.
  • the exemplary check valve 29 is based on a movable lock body 38 and an inclined guide surface 39 (FIG. 6).
  • the check valve 29 has a passage 40 in which an air flow can flow through the check valve 29.
  • the check valve 29 locks automatically in an air flow against the passage 40.
  • Entrance side i. in the direction of passage 40 in front of the check valve 29, the check valve 28 is arranged
  • the output side i. in the direction of passage 40 after the check valve 29, the pneumatic chamber 16 is arranged.
  • the movable blocking body 35 lies in a bulge 41 of the channel 27.
  • the bulge 41 has a dimension along the passage direction 40, which allows a movement of the blocking body 38 along the passage 40.
  • the inclined guide surface 39 is provided on the input side of the bulge 41.
  • the guide surface 39 approaches the passage 27 counter to the passage direction 40, as a result of which the blocking body 35 pressed against the guide surface 39 by a flow of air flowing in the opposite direction to the passage direction 40 is pressed into the passage 27.
  • the movable blocking body 35 may be a ball or an elastic ring spanning the guide tube 17.
  • An embodiment of the check valve 42 is shown in FIGS. 7, 8 and 9.
  • the check valve 28 is actuated by the striker 15.
  • the striker 15 closes the check valve 28 when the striker 15 is in the operative position ( Figure 7 upper half of the picture, Figure 8).
  • the blocking valve 28 is opened when the striker 15 is displaced from the working position (Fig. 8 lower half of the figure, Fig. 9).
  • the check valve 42 has a valve seat 43 and an elastic lock body 44.
  • the valve seat 45 and the lock body 46 are formed of a monolithic elastic ring 46.
  • the ring 46 is arranged coaxially with the striker 15.
  • the ring 46 is placed on the guide tube 17.
  • the ring 46 may be disposed within the guide tube 17 between the beater 14 and the striker 15.
  • the ring 46 is clamped along the working axis 3 between the striker 15 and a seat 45.
  • the striker 15 presses in the working position against the direction of impact 6 on the Ring 46.
  • an actuating disk 47 transmits the force from the striker 15 to the ring 46.
  • the seat 45 is immovable with respect to the guide tube 17, whereby the contact force of the striker 15 can axially compress the ring 46.
  • the ring 46 has a circumferential notch 48 which divides the ring 46 along the axis into the valve seat 43 and the lock body 44.
  • the locking body 44 may be configured in the form of a thin lip.
  • the blocking body 44 can be swiveled into the notch 48 to such an extent that the blocking body 44 touches the valve seat 43 and closes the notch 48 (FIG. 8).
  • the ring 46, in particular the lip-shaped locking body 44 and the blocking body 35 with the valve seat 43 connecting web 49 are resiliently braced when the locking body 44 abuts against the valve seat 43. In the unstrained basic shape of the ring
  • the notch 48 is opened, i. the blocking body 44 is at a distance from the valve seat 43 (FIG. 9).
  • the ring 46 has one or more radial punctures 50 in the valve seat 43 and an axial puncture 51 in the locking body 44.
  • the air can from the intermediate chamber 26 through the radial puncture 50 on the side with the notch 48, in the notch 48 and through the axial puncture 51 from the check valve 42 flow into the channel 27.
  • the notch 48 is compressed, that is, the lip-shaped locking body 44 abuts against the valve seat 43, the air flow is interrupted.
  • the ring 46 lies with its radially inner surface airtight on the guide tube 17, the notch 48 is on the radial outer side.
  • the ring 46 may alternatively be arranged with the lip-shaped locking body in the direction of impact 6 and the valve seat against the seat.
  • the ring 46 is formed of, for example, rubber or a synthetic rubber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Percussive Tools And Related Accessories (AREA)

Abstract

Eine Handwerkzeugmaschine (1) hat einen Werkzeughalter (2) zum Haltern eines schlagenden Werkzeugs (4) auf einer Arbeitsachse (3), einen Elektromotor (8), und ein Schlagwerk (5). Das Schlagwerk (5) hat einen von dem Elektromotor (8) bewegten Erreger (13), einen Schläger (14), der über eine zwischen dem Erreger (13) und dem Schläger (14) angeordnete pneumatische Kammer (16) an den Erreger (13) angekoppelt ist, und einen in Schlagrichtung (6) vor dem Schläger (14) angeordnetem Döpper (15). Der Döpper (15) liegt in einer Arbeitsstellung entgegen der Schlagrichtung (6) an einem Anschlag (22) an, in einer Startstellung ist der Döpper (15) in Schlagrichtung (6) zu der Arbeitsstellung versetzt und in einer Ruhestellung ist der Döpper (15) in Schlagrichtung (6) zu der Startstellung versetzt. Ein Schieberventil (25) ist durch eine erste radiale Öffnung (24) der pneumatischen Kammer (16) und den Schläger (14) gebildet, wobei in der Startstellung der Schläger (14) anliegend an dem Döpper (15) das Schieberventil (25) verschließt und in der Ruhestellung der Schläger (14) anliegend an dem Döpper (15) das Schieberventil (25) öffnet. Ein Sperrventil (28) ist in der Arbeitsstellung von dem Döpper (15) betätigt geschlossen und in der Startstellung selbsttätig geöffnet. Ein Rückschlagventil (29) ist eingangsseitig mit dem Sperrventil (28) verbunden ist und ausgangsseitig mit der zweiten radialen Öffnung (30) der pneumatischen Kammer (16) verbunden.

Description

Schlagende Handwerkzeugmaschine
GEBIET DER ERFINDUNG
Die vorliegende Erfindung betrifft eine schlagende Werkzeugmaschine, insbesondere einen handgehaltenen pneumatischen Bohrhammer und einen handgehaltenen pneumatischen Elektromeißel. Ein handgehaltener pneumatischer Bohrhammer hat ein pneumatisches Schlagwerk, das von einem Motor angetrieben ist. Eine pneumatische Kammer bildet eine Luftfeder, die einen Schläger an einen von dem Motor bewegten Erreger ankoppelt. Das Schlagwerk wird deaktiviert, wenn der Anwender keinen Anpressdruck auf das Werkzeug ausübt, um das Schlagwerk vor übermäßiger Belastung zu schützen. Sobald der Anwender den Bohrhammer an das Werkzeug anpresst, beginnt das Schlagwerk wieder zu arbeiten. Bei leitungsstarken Maschinen erweist sich das Führen des Bohrhammers beim erneuten Anpressen als schwer beherrschbar.
OFFENBARUNG DER ERFINDUNG
Die erfindungsgemäße Handwerkzeugmaschine hat einen Werkzeughalter zum Haltern eines schlagenden Werkzeugs auf einer Arbeitsachse, einen Elektromotor, und ein Schlagwerk. Das Schlagwerk hat einen von dem Elektromotor bewegten Erreger, einen Schläger, der über eine zwischen dem Erreger und dem Schläger angeordnete pneumatische Kammer an den Erreger angekoppelt ist, und einen in Schlagrichtung vor dem Schläger angeordnetem Döpper. Der Döpper liegt in einer Arbeitsstellung entgegen der Schlagrichtung an einem Anschlag an, in einer Startstellung ist der Döpper in Schlagrichtung zu der Arbeitsstellung versetzt und in einer Ruhestellung ist der Döpper in Schlagrichtung zu der Startstellung versetzt.
Ein Schieberventil ist durch eine erste radiale Öffnung der pneumatischen Kammer und den Schläger gebildet, wobei in der Startstellung der Schläger anliegend an dem Döpper das Schieberventil verschließt und in der Ruhestellung der Schläger anliegend an dem Döpper das Schieberventil öffnet. Ein Sperrventil ist in der Arbeitsstellung von dem Döpper betätigt geschlossen und in der Startstellung selbsttätig geöffnet. Ein Rückschlagventil ist eingangsseitig mit dem Sperrventil verbunden ist und ausgangsseitig mit der zweiten radialen Öffnung der pneumatischen Kammer verbunden.
In Zusammenspiel mit dem Rückschlagventil kann der Erreger die Luftmenge in der pneumatischen Kammer erhöhen. Die größere Luftmenge reduziert die Schlagleistung und erhöht die Steifigkeit der Luftfeder, was das Ansetzen des Werkzeugs an den Untergrund erleichtert. Während des meißelnden Betriebs deaktiviert der Döpper über das dem Rückschlagventil vorgeschaltetem Sperrventil das Erhöhen der Luftmenge. Die erhöhte Luftmenge wird im meißelnden Betrieb gezielt reduziert oder reduziert sich über Verlustkanäle, wodurch sich die Schlagleistung auf den Sollwert erhöht. Das Schlagwerk kann vollständig über das Schieberventil abgeschaltet werden. Das Sperrventil und das Schieberventil werden durch den Döpper kontrolliert, und damit mittelbar durch den Anwender und das Anpressen des Werkzeugs an den Untergrund. Eine Ausgestaltung beinhaltet ein Schieberventil, das durch eine radiale Öffnung der pneumatischen Kammer und den Schläger gebildet ist. Das Schieberventil ist durch den Schläger anliegend an dem in der Arbeitsstellung liegendem Döpper das Schieberventil für die pneumatischen Kammer verschlossen ist; und das Schieberventil durch den Schläger anliegend an dem in Schlagrichtung vor der Arbeitsstellung liegenden Döpper für die pneumatischen Kammer geöffnet ist. Das Schieberventil ist während eines meißelnden Betriebes vollständig geschlossen und ist nur in einer Ruhestellung der Handwerkzeugmaschine geöffnet.
Eine Ausgestaltung sieht vor, dass das Sperrventil einen elastischen Sperrkörper, aufweist, der in einer unverspannten Grundform von einem Ventilsitz des Sperrventils beabstandet ist und der durch den in der Arbeitsstellung liegenden Döpper elastisch verspannt, an dem Ventilsitz, anliegend verformt ist. Das Sperrventil wird unmittelbar durch den Döpper betätigt. Der Döpper bringt eine den Sperrkörper verformende Kraft auf bzw. der Anwender bringt die Kraft durch Andrücken des Döppers auf das Werkzeug auf.
Eine Ausgestaltung sieht vor, dadurch gekennzeichnet, dass die erste Kanalöffnung an einem schlägerseitigen Umkehrpunkt des Erregers angeordnet ist. Der Erreger kann die erste Kanalöffnung vorzugsweise nicht verschließen. Der Erreger kann mittels seines gesamten Hubs Luft über das Rückschlagventil ansaugen. Das Erhöhen der Luftmenge über das im meißelnden Betrieb normale Niveau kann somit sehr rasch erfolgen. Eine Ausgestaltung sieht vor, dass die pneumatische Kammer eine Drosselöffnung zum Austauschen von Luft zwischen der pneumatischen Kammer und der Umgebung der Handwerkzeugmaschine aufweist. Die Drosselöffnung kann an einem schlägerseitigen Umkehrpunkt des Erregers angeordnet ist. Vorzugsweise ist ein Verhältnis der Querschnittsfläche der Drosselöffnung zu der Querschnittsfläche der Kanalöffnung geringer als eins zu zwölf. Über die Drosselöffnung kann gezielt das Abströmen der erhöhten Luftmenge eingestellt werden. Die Drosselöffnung ist sehr klein, wodurch das Abströmen vorzugsweise bis zu einer Sekunde dauert. Eine Ausgestaltung sieht vor, dass das Rückschlagventil stationär an der ersten Kanalöffnung angeordnet ist. Das Rückschlagventil ist vorzugsweise sehr nahe der Kanalöffnung, um das Totvolumen in dem Kanalabschnitt zwischen der Kanalöffnung und dem Rückschlagventil sehr klein gegenüber dem mittleren Volumen der pneumatischen Kammer zu halten.
KURZE BESCHREIBUNG DER FIGUREN
Die nachfolgende Beschreibung erläutert die Erfindung anhand von exemplarischen Ausführungsformen und Figuren. In den Figuren zeigen:
Fig. 1 einen Bohrhammer Fig. 2 ein Schlagwerk in einer meißelnder Phase Fig. 3 das Schlagwerk in einer Ruhephase Fig. 4 das Schlagwerk in einer Startphase Fig. 5 ein Sperrventil des Schlagwerks
Fig. 6 ein Rückschlagventil des Schlagwerks Fig. 7 ein Schlagwerk in einer Startphase Fig. 8 ein Sperrventil des Schlagwerks in geschlossener Stellung
Fig. 9 das Sperrventil in geöffneter Stellung Gleiche oder funktionsgleiche Elemente werden durch gleiche Bezugszeichen in den Figuren indiziert, soweit nicht anders angegeben.
AUSFÜHRUNGSFORMEN DER ERFINDUNG
Fig. 1 zeigt einen Bohrhammer 1 als Beispiel für eine schlagende handgehaltene Werkzeugmaschine. Der Bohrhammer 1 hat einen Werkzeughalter 2, in welchen koaxial zu einer Arbeitsachse 3 ein Bohrer, Meißel oder anderes schlagendes Werkzeug 4 eingesetzt und verriegelt werden kann. Der Bohrhammer 1 hat ein pneumatisches Schlagwerk 5, welches periodisch Schläge in einer Schlagrichtung 6 auf das Werkzeug 4 ausüben kann. Ein Drehantrieb 7 kann den Werkzeughalter 2 kontinuierlich um die Arbeitsachse 3 drehen. Das pneumatische Schlagwerk 5 und der Drehantrieb sind von einem Elektromotor 8 angetrieben, welcher aus einer Batterie 9 oder einer Netzleitung mit elektrischem Strom gespeist wird.
Das Schlagwerk 5 und der Drehantrieb 7 sind in einem Maschinengehäuse 10 angeordnet. Ein Handgriff 11 ist typischerweise an einer dem Werkzeughalter 2 abgewandten Seite des Maschinengehäuses 10 angeordnet. Der Anwender kann den Bohrhammer 1 mittels des Handgriffs 11 im Betrieb halten und führen. Ein zusätzlicher Hilfsgriff kann nahe dem Werkzeughalter 2 befestigt werden. An oder in der Nähe des Handgriffs 11 ist ein Betriebstaster 12 angeordnet, welchen der Anwender vorzugsweise mit der haltenden Hand betätigen kann. Der Elektromotor 8 wird durch Betätigen des Betriebstasters 12 eingeschaltet. Typischerweise dreht sich der Elektromotor 8 solange, wie der Betriebstaster 12 gedrückt gehalten ist.
Das Werkzeug 4 ist in dem Werkzeughalter 2 längs der Arbeitsachse 3 beweglich. Beispielsweise hat das Werkzeug 4 eine längliche Nut, in welche eine Kugel oder ein anderer Sperrkörper des Werkzeughalters 2 eingreift. Der Anwender hält das Werkzeug 4 in einer Arbeitsstellung, indem der Anwender das Werkzeug 4 mittelbar durch den Bohrhammer 1 an einen Untergrund anpresst (Fig. 2). Das Anpressen ist mit einer meißelnden Phase assoziiert. Das Werkzeug 4 wird durch den Schlag des Schlagwerks 5 in die Schlagrichtung 6 aus der Arbeitsstellung verschoben. Das Werkzeug 4 kann in der vorgerückten Stellung liegen bleiben, wenn der Anwender den Bohrhammer 1 nicht weiter anpresst (Fig. 3). Das fehlende Anpressen ist mit einer Ruhephase assoziiert und führt zu einem selbsttätigen Abschalten des Schlagwerks 5. Der Anwender kann das Schlagwerk 5 durch erneutes Anpressen starten, d.h. aus der Ruhephase in die meißelnde Phase überführen (Startphase; Fig. 4). Das pneumatische Schlagwerk 5 hat längs der Schlagrichtung 6 einen Erreger 13, einen Schläger 14 und einen Döpper 15. Der Erreger 13 wird mittels des Elektromotors 8 zu einer periodischen Bewegung längs der Arbeitsachse 3 gezwungen. Der Schläger 14 koppelt über eine Luftfeder an die Bewegung des Erregers 13 an. Die Luftfeder ist durch eine zwischen dem Erreger 13 und dem Schläger 14 abgeschlossene pneumatische Kammer 16 gebildet. Der Schläger 14 bewegt sich in die Schlagrichtung 6 bis der Schläger 14 auf den Döpper 15 aufschlägt. Der Döpper 15 liegt in der Schlagrichtung 6 an dem Werkzeug 4 an und überträgt den Schlag auf das Werkzeug 4.
Das beispielhafte Schlagwerk 5 hat einen kolbenförmigen Erreger 13 und einen kolbenförmigen Schläger 14, die durch ein Führungsrohr 17 längs der Arbeitsachse 3 geführt sind. Der Erreger 13 und der Schläger 14 liegen mit ihren Mantelflächen an der Innenfläche des Führungsrohrs 17 an. Die pneumatische Kammer 16 ist durch den Erreger 13 und den Schläger 14 längs der Arbeitsachse 3 und durch das Führungsrohr 17 in radialer Richtung abgeschlossen. Dichtungsringe in den Mantelflächen von Erreger 13 und Schläger 14 können den luftdichten Abschluss der pneumatischen Kammer 16 verbessern.
Der Erreger 13 ist über eine Getriebekomponente mit dem Elektromotor 8 verbunden. Die Getriebekomponente überträgt die Drehbewegung des Elektromotors 8 in eine periodische Translationsbewegung längs der Arbeitsachse 3. Eine beispielhafte Getriebekomponente basiert auf einem Exzenterrad 18, das mit dem Elektromotor 8 verbunden ist. Ein Pleuel 19 verbindet einen Zapfen 20 des Exzenterrads 18 mit einem Zapfen in dem Erreger 13. Der Erreger 13 bewegt sich synchron zu dem Elektromotor 8. Der Elektromotor 8 dreht sich typischerweise ansprechend auf ein Betätigen des Betriebstasters 12 und dreht sich solange, wie der Anwender den Betriebstasters 12 betätigt hält. Die periodische Vor- und Rückbewegung des Erregers 13 beginnt und endet ebenfalls mit dem Betätigen bzw. Lösen des Betriebstasters 12. Ein weiteres Beispiel für eine solche Getriebekomponente ist ein Taumelantrieb.
Der Schläger 14 ist über die Luftfeder an den Erreger 13 angekoppelt. Die Luftfeder basiert auf einem Druckunterschied zwischen dem Druck in der pneumatischen Kammer 16 und dem Druck in der Umgebung. Der zwangsbewegte Erreger 13 erhöht bzw. verringert den Druck in der pneumatischen Kammer 16 mittels seiner periodischen axialen Bewegung. Der Schläger 14 wird durch den Druckunterschied in bzw. entgegen der Schlagrichtung 6 beschleunigt. Fig. 2 zeigt in einer geteilten Darstellung des Erregers 13 und Schlägers 14 deren Stellung im Kompressionspunkt (obere Bildhälfte) und im Schlagpunkt (untere Bildhälfte). Im Kompressionspunkt ist die pneumatische Kammer 16 maximal komprimiert, der Druckunterschied daher am größten. Der Schläger 14 hat den geringsten Abstand zu dem Erreger 13. Der Kompressionspunkt fällt näherungsweise mit dem Umkehrpunkt der oszillatorischen Bewegung des Schlägers 14 zusammen. Im Schlagpunkt schlägt der Schläger 14 auf den Döpper 15 auf, wenn dabei das Werkzeug 4 in der Arbeitsstellung ist. Der Schläger 14 induziert eine Stoßwelle in dem Döpper 15, welche diesen durchläuft und in das an dem Döpper 15 anliegende Werkzeug 4 übertragen wird.
Der Döpper 15 ist in einem Schlagrohr 21 längs der Arbeitsachse 3 beweglich geführt. Das Schlagrohr 21 kann durch das den Erreger 13 und Schläger 14 führende Führungsrohr 17 oder ein separates Rohr gebildet sein. Der Döpper 15 ist in dem Schlagrohr 21 zwischen einer Arbeitsstellung (Fig. 2), Ruhestellungen (Fig. 3) und einer Startstellung (Fig. 4) beweglich. Der Döpper 15 liegt in der Arbeitsstellung entgegen der Schlagrichtung 6 an dem Anschlag 22 an. Der Anwender drückt in der meißelnden Phase den Bohrhammer 1 mit dem Schlagwerk 5 in die Schlagrichtung 6 gegen das Werkzeug 4, bis der Anschlag 22 an dem Döpper 15 aufliegt. Die Arbeitsstellung des Werkzeugs 4 zeichnet sich dadurch aus, dass der Döpper 15 in seiner Arbeitsstellung liegt und das Werkzeug 4 an dem Döpper 15 anliegt. Die von dem Schläger 14 induzierte Stoßwelle kann von dem Döpper 15 auf das Werkzeug 4 übergehen.
Der Anwender hebt in einer Ruhephase den Bohrhammer 1 vom Untergrund ab. Das Werkzeug 4 und der Döpper 15 können aufgrund eines Schlags oder der Schwerkraft die Arbeitsstellung in Schlagrichtung 6 in die Ruhestellung verlassen (Fig. 3). Das Schlagwerk 5 wird vorzugsweise deaktiviert, wenn der Döpper 15 in der Ruhestellung ist. Das Schlagwerk 5 kann genau eine definierte Ruhestellung aufweisen, beispielsweise wenn der Döpper 15 in Schlagrichtung 6 an einem Anschlag 23 anliegt. Das beispielhafte Schlagwerk 5 hat mehrere Ruhestellung, die alle innerhalb einem zusammenhängenden, an den Anschlag 23 angrenzenden Bereich sind. Das Schlagwerk 5 kann durch Reduzieren der Drehzahl des Elektromotors 8 deaktiviert werden. Das Schlagwerk 5 ist für eine optimale Schlagzahl, d.h. Schläge pro Sekunde, ausgelegt, bei welcher sich eine synchrone Bewegung des Schlägers 14 und des Erregers 13 einstellt. Die optimale Schlagzahl ist unter anderem durch die Masse des Schlägers 14, die Stirnfläche des Schlägers 14 und die Wegstrecke von dem Kompressionspunkt zu dem Schlagpunkt vorgeben. Falls sich die Periodizität des zwangsbewegten Erregers 13 signifikant von der optimalen Schlagzahl unterscheidet, kann der Schläger 14 der Anregung durch den Erreger 13 nicht mehr folgen und bleibt stehen. Die Drehzahl kann dazu beispielsweise um 20 % oder mehr gegenüber der Drehzahl für die optimale Schlagzahl abgesenkt werden. Ein Sensor kann beispielsweise Beschleunigungen des Maschinengehäuses 10, Schlaggeräusche oder eine Stellung des Schlägers 14 oder des Döppers 15 erfassen, um die Ruhestellung zu erkennen. Die Drehzahl wird ansprechend auf den Sensor verringert.
Das Schlagwerk 5 kann durch ein Entkoppeln des Schlägers 14 von dem Erreger 13 deaktiviert werden. Die pneumatische Kammer 16 wird belüftet, um einen Druckausgleich zwischen der pneumatischen Kammer 16 und der Umgebung zu erwirken. Der Luftaustausch unterbindet, dass der sich bewegende Erreger 13 einen ausreichenden Druckunterschied zum Bewegen des Schlägers 14 aufbauen kann. Das Belüften erfolgt durch eine oder vorzugsweise mehrere radiale Belüftungsöffnungen 24 der pneumatischen Kammer 16, welche den Hohlraum der pneumatischen Kammer 16 mit der Umgebung verbindet. Die radialen Belüftungsöffnungen 24 sind beispielsweise Bohrungen oder gestanzte Löcher in dem Führungsrohr 17. Die Umgebung ist typischerweise das Innere des Maschinengehäuses 10, welches selbst wiederum durch Öffnungen mit einer Umgebung außerhalb des Maschinengehäuse 10 in dauerndem Luftaustausch stehen kann. Das Volumen der Umgebung ist so groß, dass die von dem Erreger 13 bewegte Luftmenge keine nennenswerte Druckschwankung verursacht. Beispielsweise ist das Volumen der Umgebung wenigstens zehnmal so groß, wie das maximale Volumen der pneumatischen Kammer 16.
Die radialen Belüftungsöffnungen 24 können durch ein Schieberventil 25 verschlossen und geöffnet werden. Das Schieberventil 25 setzt sich aus den radialen Belüftungsöffnungen 24 und dem Schläger 14 zusammen. Das Schieberventil 25 ist gegenüber der pneumatischen Kammer 16 geschlossen, wenn die Mantelfläche des Schlägers 14 die Belüftungsöffnungen 24 abdeckt oder der Schläger 14 in Schlagrichtung 6 vor den Belüftungsöffnungen 24 liegt (Fig. 2). Das Schieberventil 25 ist gegenüber der pneumatischen Kammer 16 geöffnet, wenn der Schläger 14 in Schlagrichtung 6 hinter den Belüftungsöffnungen 24 liegt (Fig. 3). Die pneumatische Kammer 16 reicht dann längs der Arbeitsachse 3 bis zu den Belüftungsöffnungen 24. Die Stellung des Schlägers 14, in welchem das Schieberventil 25 von geöffnet auf geschlossen und vice versa wechselt, wird nachfolgend als Schaltpunkt des Schieberventils 25 bezeichnet (Fig. 4, untere Bildhälfte).
Das Schieberventil 25, d.h. die Belüftungsöffnungen 24, ist längs der Arbeitsachse 3 so angeordnet, dass das Schieberventil 25 während der meißelnden Phase (Fig. 2), ergo in der Arbeitsstellung, durchgehend verschlossen ist und nur während der Ruhephase (Fig. 3), ergo in der Ruhestellung, geöffnet sein kann. Die Belüftungsöffnungen 24 sind längs der Arbeitsachse 3 in Schlagrichtung 6 hinter dem Schlagpunkt angeordnet. Der Schläger 14 befindet sich in Schlagrichtung 6 betrachtet im Schlagpunkt vor dem Schaltpunkt. Der Schläger 14 verdeckt während seiner Bewegung zwischen dem Kompressionspunkt und dem Schlagpunkt durchgehend die Belüftungsöffnung 24 gegenüber der pneumatischen Kammer 16. In der Ruhephase kann der Schläger 14 in Schlagrichtung 6 über den Schlagpunkt hinausgleiten, wenn der Döpper 15 in Schlagrichtung 6 ausreichend gegenüber der Arbeitsstellung verschoben ist. Der Schläger 14 deckt die Belüftungsöffnung 24 nicht mehr ab, d.h. die pneumatische Kammer 16 überlappt mit der Belüftungsöffnung 24. Ein Querschnitt der Belüftungsöffnungen ist derart gewählt, dass ein Luftstrom zwischen der pneumatischen Kammer 16 und der Umgebung die Änderungsrate des Volumens der pneumatischen Kammer 16 aufgrund des bewegten Erregers 13 ausgleicht. Der Druck in der pneumatischen Kammer 16 unterscheidet sich nur wenig von der Umgebung, weshalb keine nennenswerte Kraft auf den Schläger 14 ausgeübt wird. Das Schlagwerk 5 ist deaktiviert trotz des sich weiterhin bewegenden Erregers 13. Eine aufsummierte Querschnittsfläche der Belüftungsöffnungen 24 liegt im Bereich zwischen 2 % und 6 % der Querschnittsfläche des pneumatischen Kammer 16, d.h. der Stirnfläche des Erregers 13.
Der Schläger 14 und der Döpper 15 können eine (Zwischen-) Kammer 26 längs der Arbeitsachse 3 abschließen. Das Führungsrohr 17 und das Schlagrohr 21 umschließen die Zwischenkammer 26.
Ein Kanal 27 verbindet die pneumatische Kammer 16 und die Zwischenkammer 26. Der Kanal 27 ermöglicht einen gesteuerten Luftaustausch zwischen der pneumatischen Kammer 16 und der Zwischenkammer 26. Der Kanal 27 ist mit einem Sperrventil 28 und einem Rückschlagventil 29 versehen. Das Sperrventil 28 und das Rückschlagventil 29 ermöglichen nur ein Einströmen von Luft in die pneumatische Kammer 16 und das Einströmen nur, wenn der Döpper 15 aus der Arbeitsstellung verschoben ist. Ansonsten sperrt wenigstens eines der beiden Ventile. Der Kanal 27 hat eine vorzugsweise mehrere in die pneumatische Kammer 16 reichende Kanalöffnungen 30. Die Kanalöffnungen 30 sind vorzugsweise radiale Öffnungen in der pneumatischen Kammer 16, z.B. eine Bohrung oder ein gestanztes Loch in dem Führungsrohr 17. Die (erste) Kanalöffnung 30 liegt vorzugsweise an oder nahe dem schlägerseitigen Umkehrpunkt des Erregers 13. Die Kanalöffnung 30 wird weder von dem Erreger 13 oder für längere Zeit von dem Schläger 14 abgedeckt. Alternativ kann die Kanalöffnung 30 an einer anderen Stelle längs des Führungsrohrs 17 angeordnet werden, solange die pneumatische Kammer 16 in der meißelnden Phase wenigstens zeitweise mit der Kanalöffnung 30 überlappt. Die andere (zweite) Kanalöffnung 31 reicht beispielsweise in die Zwischenkammer 26. Der Kanal 27 bzw. die Kanalöffnungen 30 haben eine durchströmbare Querschnittsfläche von 0,5 % bis 4 % der Querschnittsfläche der pneumatischen Kammer 16, d.h. der Stirnfläche des Erregers 13.
Das Sperrventil 28 ist durch den Döpper 15 betätigt. Das Sperrventil 28 ist geschlossen, wenn der Döpper 15 in der Arbeitsstellung ist (Fig. 2). Das Sperrventil 28 ist geöffnet, wenn der Döpper 15 aus der Arbeitsstellung verschoben ist (Fig. 3). Die Stellung des Döppers 15, in welcher das Sperrventil 28 von geöffnet auf geschlossen und vice versa wechselt, wird nachfolgend als Schaltpunkt des Sperrventils 28 bezeichnet (Fig. 4, obere Bildhälfte). Der Döpper 15 liegt in Schlagrichtung 6 betrachtet im Schaltpunkt hinter der Arbeitsstellung.
Der Schaltpunkt des Schieberventils 25 und der Schaltpunkt des Sperrventils 28 sind vorzugsweise aufeinander abgestimmt. Der Döpper 15 gibt durch seine Stellung vor, ob der Schläger 14 das Schieberventil 25 öffnen kann. Liegt der Döpper 15 im Schaltpunkt des Sperrventils 28, ist das Schieberventil 25 geschlossen (Fig. 4, obere Bildhälfte). Der Döpper 15 ragt im Schaltpunkt des Sperrventils 28 liegend soweit entgegen der Schlagrichtung 6 vor, dass der Schläger 14 an dem Döpper 15 anliegend in Schlagrichtung 6 vor dem Schaltpunkt des Schieberventils 25 ist, d.h. die Belüftungsöffnung 24 abdeckt. Das Schlagwerk 5 hat eine Startstellung (Fig. 4, untere Bildhälfte), in welcher der Schläger 14 in dem Schaltpunkt des Schieberventils 25 liegt und der Döpper 15 den Schläger 14 berührt. Der Döpper 15 ist in der Startstellung gegenüber dem Schaltpunkt des Sperrventils 28 um eine Distanz 32 in die Schlagrichtung 6 versetzt. Das Rückschlagventil 29 ist eingangsseitig mit der Zwischenkammer 26 und ausgangsseitig mit der pneumatischen Kammer 16 verbunden. Entsprechend ermöglicht das Rückschlagventil 29 einen Luftstrom von der Zwischenkammer 26 in die pneumatische Kammer 16 und sperrt gegen einen Luftstrom von der pneumatischen Kammer 16 in die Zwischenkammer 26.
Beim Ansetzen eines Bohrhammers 1 und des Werkzeugs 4 an einen Untergrund wird der Döpper 15 entgegen der Schlagrichtung 6 aus einer Ruhestellung, in die Startstellung und schließlich in die Arbeitsstellung geschoben. In der Ruhestellung sind das Schieberventil 25 und das Sperrventil 28 geöffnet. In der Startstellung schließt das Schieberventil 25 und das Sperrventil 28 ist geöffnet. In der Arbeitsstellung ist das Schieberventil 25 geschlossen und ist das Sperrventil 28 geschlossen. Zwischen der Startstellung und das Arbeitsstellung ist das Schieberventil 25 geschlossen und das Sperrventil 28 geöffnet. Der Bereich zwischen der Startstellung und der Arbeitsstellung wird nachfolgend als Startbereich bezeichnet.
Die Luftmenge (Luftmasse) in der pneumatischen Kammer 16 erhöht sich, wenn der Döpper 15 in dem Startbereich ist. Die erhöhte Luftmenge führt zu einem höherem mittleren Druck in der pneumatischen Kammer 16. Die Luftmenge reduziert sich sowohl wenn der Döpper 15 in die Ruhestellung oder in die Arbeitsstellung wechselt.
Das Schlagwerk 5 geht während einer Startphase kontinuierlich von der Ruhephase in die meißelnde Phase mit voller Schlagleistung über. Der Anwender spürt beim Anpressen des Bohrhammers 1 , wenn sich der Druck in der pneumatischen Kammer 16 erhöht sobald der Döpper 15 den Startbereich erreicht. Der Anwender muss eine Mindestkraft aufbringen, um den Druck zu überwinden. Andernfalls verschiebt der Schläger 14 den Döpper 15 bis über die Startstellung und schaltet das Schlagwerk 5 durch das Schieberventil 25 ab.
Der Kanal 27 mit dem Sperrventil 28 und dem Rückschlagventil 29 führt zu einem Überdruck in der pneumatischen Kammer 16, wenn der Döpper 15 in dem Startbereich ist. Das Rückschlagventil 29 erlaubt nur ein Einströmen von Luft in die pneumatische Kammer 16. Der Erreger 13 saugt bei seiner Bewegung entgegen der Schlagrichtung 6 durch das sich öffnende Rückschlagventil 29 Luft an. Die Luftmenge in der pneumatischen Kammer 16 erhöht sich, da keine Luft ausströmen kann. Leckagen begrenzen ein Anwachsen der Luftmenge. Der Druck in der pneumatischen Kammer 16 ist größer als in der Zwischenkammer 26, entsprechend ergibt sich eine in die Schlagrichtung 6 resultierende Kraft auf den Schläger 14 und mittelbar auf den an dem Schläger 14 anliegenden Döpper 15. Der Anwender spürt die entgegen der Schlagrichtung 6 wirkende Gegenkraft auf den Erreger 13 und den Handgriff 11.
Wenn der Döpper 15 in der Arbeitsstellung liegt, wird das Ansaugen von Luft durch das Schließen des Sperrventils 28 beendet. Die erhöhte Luftmenge in der pneumatischen Kammer 16 fließt über eine Drosselöffnung 33 der pneumatischen Kammer 16 langsam ab. Die Drosselöffnung 33 ist vorzugsweise an oder nahe dem schlägerseitigen Umkehrpunkt des Erregers 13 angeordnet. Eine Querschnittsfläche der Drosselöffnung 33 ist sehr gering. Vorzugsweise begrenzt der Querschnitt einen Luftaustausch mit der Umgebung auf weniger als 1/10 der Luftmenge der pneumatischen Kammer 16 innerhalb einer Periode des Erregers 13. Die Querschnittsfläche der Drosselöffnung 33 liegt im Bereich von 0,05 % bis 0,20 % der Stirnfläche des Erregers 13. Die Luftmenge in der pneumatischen Kammer 16 gleicht sich innerhalb von zehn bis fünfzig Zyklen des Erregers 13 an die Umgebung an. Je nach Größe des Schlagwerks 5 vergehen dabei beispielsweise 500 Millisekunden (ms) bis 800 ms. Die vorzugsweise einzige Drosselöffnung 33 ist insbesondere deutlich kleiner als die Belüftungsöffnungen 24 und die Kanalöffnung 30. Die Querschnittsfläche der Drosselöffnung 33 ist vorzugsweise geringer als 6 % der Querschnittsfläche der Belüftungsöffnung 24 und vorzugsweise geringer als 8 % der Querschnittsfläche der Kanalöffnung 30. Beispielsweise hat der Kanal 27 vier erste Kanalöffnungen 30 mit einer Querschnittsfläche von jeweils 2 mm2 und die Querschnittsfläche der Drosselöffnung 33 ist 0,5 mm2.
Der Schläger 14 kann nach dem Abschalten unbeabsichtigt, z.B. durch Erschütterungen, das Schieberventil 25 schließen. Sofern der Döpper 15 nicht zufällig in der Arbeitsstellung ist, bewirkt der Pumpeffekt eine mittlere Kraft in Schlagrichtung 6 auf den Schläger 14. Der Schläger 14 wird in die Ruhestellung verschoben, das Schieberventil 25 geöffnet und das Schlagwerk 5 abgeschaltet. Das beispielhafte Sperrventil 28 hat einen stationären Ventilsitz 34 und einen elastischen Sperrkörper 35 in einem Ventilkanal 36 (Fig. 5). Der Ventilkanal 36 mündet in die zweite Kanalöffnung 31. Das Sperrventil 28 ist geschlossen, wenn der Sperrkörper 35 vollständig an dem Ventilsitz 34 anliegt und dadurch den Ventilkanal 36 abschnürt. Der Sperrkörper 35 ist elastisch verspannt, wenn der Sperrkörper 35 vollständig an dem Ventilsitz 34 anliegt. Das Sperrventil 28 ist selbsttätig öffnend. Ohne äußere Kraft relaxiert der Sperrkörper 35 aus der verspannten Form in eine Grundform, welche nicht oder nur teilweise an dem Ventilsitz 34 anliegt. Das Sperrventil 28 wird mittels des Döppers 15 geschaltet. Der Döpper 15 hat eine Wirkfläche 37, welche den Sperrkörper 35 betätigt. Die Wirkfläche 37 zwingt den Sperrkörper 35 gegen den Ventilsitz 34, wenn der Döpper 15 in der Arbeitsstellung ist. Liegt der Döpper 15 in Schlagrichtung 6 hinter dem Schaltpunkt, ist die Wirkfläche 37 kraftfrei oder kontaktlos zu dem Sperrkörper 35.
Der beispielhafte Sperrkörper 35 ist ein elastischer Ring, z.B. aus Gummi. Der Sperrkörper 35 ist innerhalb des Schlagrohrs 21 koaxial zu der Arbeitsachse 3 angeordnet. Der beispielhafte Ventilsitz 34 weist in radialer Richtung zu der Arbeitsachse 3 und liegt mit dem Sperrkörper 35 in einer Ebene. Der Abstand des Ventilsitzes 34 zu der Arbeitsachse 3 ist etwas größer als der Außenradius des elastischen Rings. In der Grundform ist ein Spalt zwischen dem Ring und dem Ventilsitz 34. Die Wirkfläche 37 des Döppers 15 ist ein Abschnitt der zylindrischen Mantelfläche. Der Radius der Mantelfläche ist um wenigstens den Spalt größer als ein Innenradius des Rings. Die Wirkfläche 37 liegt innerhalb der Ebene, wenn der Döpper 15 in der Arbeitsstellung ist. Die Wirkfläche 37 spreizt den Ring soweit auf, dass der Ring den Ventilsitz 34 vollständig berührt. Liegt der Döpper 15 außerhalb der Arbeitsstellung, zieht sich der Ring in radialer Richtung in seine Grundform zusammen und löst sich von dem Ventilsitz 34.
Das Rückschlagventil 29 ist stationär an oder nahe der ersten Kanalöffnung 30 angeordnet. Der Kanalabschnitt von der ersten Kanalöffnung 30 bis zu dem Rückschlagventil 29 ist möglichst kurz. Vorzugsweise ist ein Totvolumen gebildet durch den Kanalabschnitt konstant und geringer als 5 % des mittleren Volumens der pneumatischen Kammer 16.
Das beispielhafte Rückschlagventil 29 basiert auf einem beweglichen Sperrkörper 38 und einer geneigten Führungsfläche 39 (Fig. 6). Das Rückschlagventil 29 hat eine Durchlassrichtung 40, in welcher ein Luftstrom das Rückschlagventil 29 durchströmen kann. Das Rückschlagventil 29 sperrt selbsttätig bei einem Luftstrom entgegen der Durchlassrichtung 40. Eingangsseitig, d.h. in Durchlassrichtung 40 vor dem Rückschlagventil 29, ist das Sperrventil 28 angeordnet, ausgangsseitig, d.h. in Durchlassrichtung 40 nach dem Rückschlagventil 29, ist die pneumatische Kammer 16 angeordnet. Der bewegliche Sperrkörper 35 liegt in einer Ausbuchtung 41 des Kanals 27. Die Ausbuchtung 41 hat eine Abmessung längs der Durchlassrichtung 40, die einer Bewegung des Sperrkörpers 38 längs der Durchlassrichtung 40 ermöglicht. Die geneigte Führungsfläche 39 ist eingangsseitig an der Ausbuchtung 41 vorgesehen. Die Führungsfläche 39 nähert sich entgegen der Durchlassrichtung 40 dem Kanal 27 an, wodurch der von einem entgegen der Durchlassrichtung 40 fließenden Luftstrom an die Führungsfläche 39 gedrückte Sperrkörper 35 in den Kanal 27 gedrückt wird. Der bewegliche Sperrkörper 35 kann eine Kugel oder ein das Führungsrohr 17 umspannender elastischer Ring sein. Eine Ausgestaltung des Sperrventils 42 ist in Fig. 7, Fig. 8 und Fig. 9 dargestellt. Das Sperrventil 28 ist durch den Döpper 15 betätigt. Der Döpper 15 schließt das Sperrventil 28, wenn der Döpper 15 in der Arbeitsstellung ist (Fig. 7 obere Bildhälfte; Fig. 8). Das Sperrventil 28 ist geöffnet, wenn der Döpper 15 aus der Arbeitsstellung verschoben ist (Fig. 8 untere Bildhälfte; Fig. 9).
Das Sperrventil 42 hat einen Ventilsitz 43 und einen elastischen Sperrkörper 44. Der Ventilsitz 45 und der Sperrkörper 46 sind aus einem monolithischen, elastischen Ring 46 gebildet. Der Ring 46 ist koaxial zu dem Döpper 15 angeordnet. Beispielsweise ist der Ring 46 auf das Führungsrohr 17 aufgesetzt. Alternativ kann der Ring 46 innerhalb des Führungsrohrs 17 zwischen dem Schläger 14 und dem Döpper 15 angeordnet sein. Der Ring 46 ist längs der Arbeitsachse 3 zwischen dem Döpper 15 und einem Sitz 45 eingespannt. Der Döpper 15 drückt in der Arbeitsstellung liegend entgegen der Schlagrichtung 6 auf den Ring 46. In der beispielhaften Ausführung übermittelt eine Betätigungsscheibe 47 die Kraft von dem Döpper 15 auf den Ring 46. Der Sitz 45 ist unbeweglich gegenüber Führungsrohr 17, wodurch die Anpresskraft des Döppers 15 den Ring 46 axial komprimieren kann. Der Sitz
45 bildet mit dem Ring 46 den Anschlag, an welchen der Döpper 15 entgegen der Schlagrichtung 6 für die Arbeitsstellung angedrückt ist.
Der Ring 46 hat eine umlaufende Kerbe 48, welche den Ring 46 längs der Achse in den Ventilsitz 43 und den Sperrkörper 44 unterteilt. Der Sperrkörper 44 kann in der Form einer dünnen Lippe ausgestaltet sein. Der Sperrkörper 44 ist in die Kerbe 48 soweit einschwenkbar, dass der Sperrkörper 44 den Ventilsitz 43 berührt und die Kerbe 48 verschließt (Fig. 8). Der Ring 46, insbesondere der lippenförmige Sperrkörper 44 und ein den Sperrkörper 35 mit dem Ventilsitz 43 verbindender Steg 49, sind elastisch verspannt, wenn der Sperrkörper 44 an dem Ventilsitz 43 anliegt. In der unverspannten Grundform des Rings
46 ist die Kerbe 48 geöffnet, d.h. der Sperrkörper 44 ist auf Abstand zu dem Ventilsitz 43 (Fig. 9).
Der Ring 46 hat einen oder mehrere radiale Durchstiche 50 in dem Ventilsitz 43 und einen axialen Durchstich 51 in dem Sperrkörper 44. Die Luft kann aus der Zwischenkammer 26 durch den radialen Durchstich 50 auf die Seite mit der Kerbe 48, in die Kerbe 48 und durch den axialen Durchstich 51 aus dem Sperrventil 42 in den Kanal 27 einströmen. Wenn die Kerbe 48 zusammengedrückt ist, sprich der lippenförmige Sperrkörper 44 an dem Ventilsitz 43 anliegt, ist der Luftstrom unterbrochen. Bei dem beispielhaften Sperrventil 42 liegt der Ring 46 mit seiner radialen Innenfläche luftdicht an dem Führungsrohr 17 an, die Kerbe 48 ist an der radialen Außenseite. Der Ring 46 kann alternativ mit dem lippenförmigen Sperrkörper in Schlagrichtung 6 und dem Ventilsitz an dem Sitz anliegend angeordnet sein. Der Ring 46 ist beispielsweise aus Gummi oder einem synthetischen Kautschuk gebildet.

Claims

PATENTANSPRÜCHE
1 . Schlagende Handwerkzeugmaschine (1 ) mit
einem Werkzeughalter (2) zum Haltern eines schlagenden Werkzeugs (4) auf einer Arbeitsachse (3),
einem Elektromotor (8),
einem Schlagwerk (5), das einen von dem Elektromotor (8) bewegten Erreger (13), einen Schläger (14), der über eine zwischen dem Erreger (13) und dem Schläger (14) angeordnete pneumatische Kammer (16) an den Erreger (13) angekoppelt ist, und einen in Schlagrichtung (6) vor dem Schläger (14) angeordnetem Döpper (15) aufweist, wobei in einer Arbeitsstellung der Döpper (15) entgegen der Schlagrichtung (6) an einem Anschlag (22) anliegt, in einer Startstellung der Döpper (15) in Schlagrichtung (6) zu der Arbeitsstellung versetzt ist und in einer Ruhestellung der Döpper (15) in Schlagrichtung (6) zu der Startstellung versetzt ist,
einem Schieberventil (25) gebildet durch eine erste radiale Öffnung (24) der pneumatischen Kammer (16) und den Schläger (14), wobei in der Startstellung der Schläger (14) anliegend an dem Döpper (15) das Schieberventil (25) verschließt und in der Ruhestellung der Schläger (14) anliegend an dem Döpper (15) das Schieberventil (25) öffnet,
einer zweiten radialen Öffnung (30) der pneumatischen Kammer (16),
einem Sperrventil (28), das in der Arbeitsstellung von dem Döpper (15) betätigt geschlossen und das in der Startstellung selbsttätig geöffnet ist,
einem Rückschlagventil (29), das eingangsseitig mit dem Sperrventil (28) verbunden ist und das ausgangsseitig mit der zweiten radialen Öffnung (30) der pneumatischen Kammer (16) verbunden ist.
2. Handwerkzeugmaschine (1 ) nach Anspruch 1 gekennzeichnet durch ein Schieberventil (25), das durch eine radiale Öffnung (24) der pneumatischen Kammer (16) und den Schläger (14) gebildet ist, wobei das Schieberventil (25) durch den Schläger (14) anliegend an dem in der Arbeitsstellung liegenden Döpper (15) das Schieberventil (25) für die pneumatischen Kammer (16) verschlossen ist und wobei das Schieberventil (25) durch den Schläger (14) anliegend an dem in Schlagrichtung (6) vor der Arbeitsstellung liegenden Döpper (15) für die pneumatischen Kammer (16) geöffnet ist.
3. Handwerkzeugmaschine (1 ) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Sperrventil (28) einen elastischen Sperrkörper (44) aufweist, der in einer unverspannten Grundform von einem Ventilsitz des Sperrventils beabstandet ist und der durch den in der Arbeitsstellung liegenden Döpper (15) elastisch verspannt, an dem Ventilsitz, anliegend verformt ist.
Handwerkzeugmaschine (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die pneumatische Kammer (16) eine Drosselöffnung (33) zum Austauschen von Luft zwischen der pneumatischen Kammer (16) und der Umgebung der Handwerkzeugmaschine (1 ) aufweist.
Handwerkzeugmaschine (1 ) nach Anspruch 4, dadurch gekennzeichnet, dass die Drosselöffnung (33) an einem schlägerseitigen Umkehrpunkt des Erregers (13) angeordnet ist.
Handwerkzeugmaschine (1 ) nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass ein Verhältnis der Querschnittsfläche der Drosselöffnung (33) zu der Querschnittsfläche der Kanalöffnung (30) geringer als eins zu zwölf ist.
PCT/EP2016/079871 2015-12-15 2016-12-06 Schlagende handwerkzeugmaschine WO2017102431A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16809719.4A EP3389933B1 (de) 2015-12-15 2016-12-06 Schlagende handwerkzeugmaschine
US16/061,387 US10821590B2 (en) 2015-12-15 2016-12-06 Striking hand-held machine tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15200149.1A EP3181301A1 (de) 2015-12-15 2015-12-15 Schlagende handwerkzeugmaschine
EP15200149.1 2015-12-15

Publications (1)

Publication Number Publication Date
WO2017102431A1 true WO2017102431A1 (de) 2017-06-22

Family

ID=54936816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/079871 WO2017102431A1 (de) 2015-12-15 2016-12-06 Schlagende handwerkzeugmaschine

Country Status (3)

Country Link
US (1) US10821590B2 (de)
EP (2) EP3181301A1 (de)
WO (1) WO2017102431A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3427899A1 (de) * 2017-07-13 2019-01-16 HILTI Aktiengesellschaft Handwerkzeugmaschine
US10675742B2 (en) 2015-12-15 2020-06-09 Hilti Aktiengesellschaft Striking hand-held machine tool
US10821589B2 (en) 2015-12-15 2020-11-03 Hilti Aktiengesellschaft Percussive power tool

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3181300A1 (de) * 2015-12-15 2017-06-21 HILTI Aktiengesellschaft Schlagende handwerkzeugmaschine
EP3335838A1 (de) * 2016-12-15 2018-06-20 HILTI Aktiengesellschaft Handwerkzeugmaschine
EP3788548A1 (de) * 2018-04-30 2021-03-10 Wilson Tool International Inc. Werkzeugverfolgungs- und datenerfassungsvorrichtung
EP3782766A1 (de) 2019-08-19 2021-02-24 Hilti Aktiengesellschaft Handwerkzeugmaschine
EP3789161A1 (de) 2019-09-06 2021-03-10 Hilti Aktiengesellschaft Handwerkzeugmaschine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7709910A (nl) * 1976-09-11 1978-03-14 Bosch Gmbh Robert Motorisch aangedreven slaghamer.
US6116352A (en) * 1998-03-10 2000-09-12 Robert Bosch Gmbh Drilling and/or percussion power tool
US20020108766A1 (en) * 2001-01-24 2002-08-15 Uto Plank Percussion mechanism for an electrical hand-held tool with a blank blow cut-off
EP1607187A1 (de) * 2004-06-18 2005-12-21 HILTI Aktiengesellschaft Verfahren und Einrichtung zur Verbesserung des Abschaltverhaltens eines elektropneumatischen Abbaugeräts
US20120024555A1 (en) * 2010-08-02 2012-02-02 Makita Corporation Impact tool
EP2653270A2 (de) * 2012-04-19 2013-10-23 HILTI Aktiengesellschaft Handwerkzeugmaschine und Steuerungsverfahren
WO2015067590A1 (de) * 2013-11-11 2015-05-14 Hilti Aktiengesellschaft Handwerkzeugmaschine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930607A (ja) 1982-08-12 1984-02-18 Hitachi Koki Co Ltd 電気ハンマドリル
DE3826213A1 (de) 1988-08-02 1990-02-15 Bosch Gmbh Robert Bohr- oder schlaghammer
EP3181299A1 (de) 2015-12-15 2017-06-21 HILTI Aktiengesellschaft Schlagende handwerkzeugmaschine
EP3181298A1 (de) 2015-12-15 2017-06-21 HILTI Aktiengesellschaft Schlagende werkzeugmaschine
EP3181300A1 (de) 2015-12-15 2017-06-21 HILTI Aktiengesellschaft Schlagende handwerkzeugmaschine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7709910A (nl) * 1976-09-11 1978-03-14 Bosch Gmbh Robert Motorisch aangedreven slaghamer.
US6116352A (en) * 1998-03-10 2000-09-12 Robert Bosch Gmbh Drilling and/or percussion power tool
US20020108766A1 (en) * 2001-01-24 2002-08-15 Uto Plank Percussion mechanism for an electrical hand-held tool with a blank blow cut-off
EP1607187A1 (de) * 2004-06-18 2005-12-21 HILTI Aktiengesellschaft Verfahren und Einrichtung zur Verbesserung des Abschaltverhaltens eines elektropneumatischen Abbaugeräts
US20120024555A1 (en) * 2010-08-02 2012-02-02 Makita Corporation Impact tool
EP2653270A2 (de) * 2012-04-19 2013-10-23 HILTI Aktiengesellschaft Handwerkzeugmaschine und Steuerungsverfahren
WO2015067590A1 (de) * 2013-11-11 2015-05-14 Hilti Aktiengesellschaft Handwerkzeugmaschine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10675742B2 (en) 2015-12-15 2020-06-09 Hilti Aktiengesellschaft Striking hand-held machine tool
US10821589B2 (en) 2015-12-15 2020-11-03 Hilti Aktiengesellschaft Percussive power tool
EP3427899A1 (de) * 2017-07-13 2019-01-16 HILTI Aktiengesellschaft Handwerkzeugmaschine

Also Published As

Publication number Publication date
EP3389933B1 (de) 2019-09-25
US20180361551A1 (en) 2018-12-20
EP3181301A1 (de) 2017-06-21
US10821590B2 (en) 2020-11-03
EP3389933A1 (de) 2018-10-24

Similar Documents

Publication Publication Date Title
EP3389933B1 (de) Schlagende handwerkzeugmaschine
EP2394793B1 (de) Handwerkzeugmaschine mit pneumatischem Schlagwerk und Steuerungsverfahren dafür
DE19713154B4 (de) Schlagwerkzeug mit verringertem Stoß zum Beginn des Schlagbetriebs
EP3389932B1 (de) Schlagende handwerkzeugmaschine
EP2394795B1 (de) Werkzeugmaschine
DE2165066C3 (de)
EP2394794B1 (de) Handwerkzeugmaschine mit pneumatischem Schlagwerk
EP1910038A1 (de) Bohr- und/oder schlaghammer mit linearantrieb und luftkühlung
EP1648663B1 (de) Hohlkolbenschlagwerk mit luftausgleichs- und leerlauföffnung
DE19843642A1 (de) Luftfederschlagwerk mit Rückholluftfeder
EP3068585B1 (de) Handwerkzeugmaschine
EP3389934B1 (de) Schlagende handwerkzeugmaschine
DE19728729C2 (de) Luftfeder-Schlagwerk mit Luftausgleich
WO2017102418A1 (de) Schlagende werkzeugmaschine
EP1697090B1 (de) Schlagwerk für eine repetierend schlagende handwerkzeugmaschine
WO2002060652A1 (de) Luftfederschlagwerk mit kurz bauendem antriebskolben
EP1578563B1 (de) Bohrhammer
WO2015049133A1 (de) Handwerkzeugmaschine
CH675847A5 (de)
DE2103016C3 (de) Druckluftschlagwerkzeug
DE2335731A1 (de) Gesteins- oder schlagbohrvorrichtung
DE102013221105A1 (de) Handwerkzeugmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16809719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016809719

Country of ref document: EP