WO2017101459A1 - 一种多载波信号的生成方法和装置 - Google Patents

一种多载波信号的生成方法和装置 Download PDF

Info

Publication number
WO2017101459A1
WO2017101459A1 PCT/CN2016/093093 CN2016093093W WO2017101459A1 WO 2017101459 A1 WO2017101459 A1 WO 2017101459A1 CN 2016093093 W CN2016093093 W CN 2016093093W WO 2017101459 A1 WO2017101459 A1 WO 2017101459A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sub
transform domain
carrier
signals
Prior art date
Application number
PCT/CN2016/093093
Other languages
English (en)
French (fr)
Inventor
黄琛
胡留军
辛雨
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017101459A1 publication Critical patent/WO2017101459A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/264Pulse-shaped multi-carrier, i.e. not using rectangular window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators

Definitions

  • This document relates to, but is not limited to, the field of wireless communications, and in particular, to a method and apparatus for generating a multi-carrier signal.
  • OFDM Orthogonal Frequency Division Multiplexing
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • the basic technology however, the sideband leakage of the OFDM signal is large, especially when there is a time deviation and a frequency deviation, the sideband leakage of the OFDM signal is larger. This requires a large protection bandwidth between OFDM and other systems, and in order to reduce interference to other user equipment, signals of different user equipments of the OFDM system require strict time and frequency synchronization.
  • FBMC Fan-Bank Multi-Carrier
  • UFMC Universal Filtered Multi-Carrier
  • GFDM Generalized Frequency Division Multi-plex
  • f-OFDM filtered OFDM, filtered orthogonal frequency division multiplexing
  • the UFMC filters each subband on the basis of the OFDM signal, that is, the filters in the same subband (within the resources of the same user equipment) are the same. Since the UFMC technology filters the sub-bands, the sideband leakage is greatly reduced, and the interference power between the sub-bands can be greatly reduced, so that different sub-bands can flexibly configure different parameters to better adapt to the service and channel requirements. This feature of UFMC is especially applicable to scenarios where services of different requirements and characteristics in future wireless communication systems coexist.
  • the UFMC signal discussed by the industry generally has no CP (Cyclical Prefix).
  • ISI inter-symbol interference
  • the channel multipath delay is small, the interference caused by the channel is negligible. If the channel multipath delay is large, the interference is not available. Ignore, then you need to consider UFMC's technology to eliminate ISI. Commonly used techniques for eliminating ISI are to increase the CP. UFMC can also adopt the method of increasing the CP to resist the influence of channel multipath delay and propagation delay, and eliminate ISI.
  • the embodiment of the invention provides a method and a device for generating a multi-carrier signal, which can resist the influence of channel multipath delay and propagation delay, and eliminate ISI.
  • a method for generating a multi-carrier signal includes:
  • the multi-carrier modulation and the filtered sub-band signals are superimposed.
  • the lengths of the plurality of transform domain signal segments are the same or different;
  • the resources of the plurality of sub-bands are the same or different in size.
  • the method before adding zero to one or more single-carrier signals, the method further includes:
  • the adding zeros to one or more single carrier signals respectively includes:
  • the position where zero is added to a single carrier signal is any one of the following single carrier signals Or any number of positions: front, middle, and rear.
  • the number of zeros added to each single-carrier signal is the same or different; when zeros are added to multiple positions in a single-carrier signal, zeros are added at different positions.
  • the numbers are the same or different; the number of zeros added to the single carrier signal of different user equipments is the same or different.
  • mapping the one or more transform domain signal segments to the resource locations of the one or more subbands includes:
  • Each of the transform domain signal segments is mapped to a resource location of a corresponding one of the sub-bands in a one-to-one correspondence manner; each of the transform domain signal segments has the same or different size.
  • mapping the one or more transform domain signal segments to the resource locations of the one or more subbands includes:
  • each of the transform domain signal segments into one or more transform domain signals, and mapping each divided transform domain signal into a corresponding one subband resource position according to a one-to-one correspondence;
  • the size of each transform domain signal is the same or different.
  • mapping the one or more transform domain signal segments to the resource locations of the one or more subbands includes:
  • Each of the transform domain signal segments is first combined and then divided into one or more transform domain signals, and each divided transform domain signal is mapped to a corresponding one subband resource location according to a one-to-one correspondence manner.
  • the size of each transform domain signal that is first combined and subdivided is the same or different.
  • performing multi-carrier modulation and filtering on the one or more sub-band signals respectively includes:
  • the central processing includes any one or more of the following operations: multiplying by a predetermined complex vector, adding a cyclic prefix or a suffix;
  • Each sub-band signal after the middle processing is separately filtered.
  • the middle processing refers to a vector multiplied by [1, 1, ... 1].
  • the method before the superposing the multi-carrier modulation and the filtered sub-band signal, the method further includes:
  • the first backend processing includes any one or more of the following operations: multiplying by a predetermined complex vector, adding a cyclic prefix or a suffix.
  • the method further includes:
  • the second backend processing includes any one or more of the following operations: multiplying by a predetermined complex vector, adding a cyclic prefix or a suffix.
  • a device for generating a multi-carrier signal comprising:
  • the front-end processing module is configured to add zero to one or more single-carrier signals, and perform signal transformation to obtain one or more transform domain signal segments;
  • a resource mapping module configured to map the one or more transform domain signal segments to resource locations of one or more subbands to obtain one or more subband signals
  • a modulation filtering module configured to perform multi-carrier modulation and filtering on the one or more sub-band signals respectively;
  • the backend processing module is configured to superimpose the multicarrier modulation and the filtered subband signals.
  • the lengths of the plurality of transform domain signal segments are the same or different;
  • the resources of the plurality of sub-bands are the same or different in size.
  • the generating device of the multi-carrier signal further includes:
  • the signal segmentation module is configured to divide the single carrier signal into one or more segments; the size of each single carrier signal is the same or different;
  • the front end processing module adds zero to one or more single carrier signals, including:
  • the front end processing module adds zeros to each of the single carrier signals obtained by the segmentation.
  • the position where the front end processing module adds zero to a single carrier signal is any one or any of the following positions of the single carrier signal: front part, middle part, and rear part.
  • the front end processing module pairs the single carrier for each segment
  • the number of zeros added to the signal is the same or different; when zeros are added to multiple positions in a single carrier signal, the number of zeros added to different positions is the same or different; the zeros of the single carrier signals of different user equipments are added. The numbers are the same or different.
  • mapping, by the resource mapping module, the one or more transform domain signal segments to the resource locations of the one or more subbands includes:
  • the resource mapping module maps each of the transform domain signal segments to resource locations of the corresponding one of the sub-bands in a one-to-one correspondence manner; the size of each of the transform domain signal segments is the same or different.
  • mapping, by the resource mapping module, the one or more transform domain signal segments to the resource locations of the one or more subbands includes:
  • the resource mapping module further divides each of the transform domain signal segments into one or more transform domain signals, and respectively maps each divided transform domain signal into a corresponding one subband resource according to a one-to-one correspondence manner. Position; the size of each transform domain signal divided into the same or different.
  • mapping, by the resource mapping module, the one or more transform domain signal segments to the resource locations of the one or more subbands includes:
  • the resource mapping module combines each of the transform domain signal segments into one or more transform domain signals, and maps each divided transform domain signal into a corresponding one according to a one-to-one correspondence manner.
  • the resource location of the band; the size of each transform domain signal that is first combined and subdivided is the same or different.
  • the modulation filtering module includes:
  • the inverse transform unit is configured to perform inverse signal transformation on the one or more sub-band signals respectively;
  • the central processing unit is configured to perform central processing on the one or more sub-band signals obtained after the inverse transform respectively; the central processing includes any one or more of the following operations: multiplying by a predetermined complex vector, adding a cyclic prefix or a suffix ;
  • the filtering unit is configured to separately filter each sub-band signal processed in the middle.
  • the middle processing refers to a vector multiplied by [1, 1, ... 1].
  • the backend processing module is further configured to perform first backend processing on the multicarrier modulated and filtered subband signals before superimposing the multicarrier modulated and filtered subband signals;
  • the first backend processing includes any one or more of the following operations: multiplying by a predetermined complex vector, adding a cyclic prefix or a suffix.
  • the backend processing module is further configured to perform a second backend processing on the multicarrier modulated and filtered subband signals after superimposing the multicarrier modulated and filtered subband signals;
  • the second backend processing includes any one or more of the following operations: multiplying by a predetermined complex vector, adding a cyclic prefix or a suffix.
  • a computer readable storage medium storing computer executable instructions for performing the above method.
  • the embodiment of the invention provides a method and a device for generating a multi-carrier signal.
  • the method can not only resist the influence of channel multipath delay and propagation delay, but also eliminate ISI and can also target different users.
  • the channel environment of the device can be flexibly set to zero (for example, the number of added zeros is different, or the ratio of the length of the original data is different), so that the user equipment can be free from interference with each other and save system resources.
  • FIG. 1 is a schematic diagram of different user equipments using different lengths of CP in the related art
  • FIG. 2 is a schematic flowchart of a method for generating a multi-carrier signal according to Embodiment 1;
  • FIG. 3 is a schematic flow chart of multicarrier signal generation in an example of Embodiment 1;
  • FIG. 4 is a schematic diagram of a multicarrier signal generating apparatus of Embodiment 2;
  • Example 5 is a schematic flowchart of multi-carrier signal generation in Example 1.
  • Example 6 is a schematic diagram of an implementation manner 1 of a modulation filtering module in Example 1;
  • Example 7 is a schematic diagram of implementation 2 of a modulation filtering module in Example 1;
  • Example 8 is a schematic diagram of implementation 3 of a modulation filtering module in Example 1;
  • FIG. 9 is a schematic diagram of implementation 4 of a modulation filtering module in Example 1;
  • Example 10 is a schematic flowchart of multicarrier signal generation in Example 2.
  • 11 is a flow chart showing the generation of multi-carrier signals in the example 3.
  • Embodiment 1 A method for generating a multi-carrier signal, as shown in FIG. 2, includes S120-S150:
  • S120 Add zero to one or more single-carrier signals, perform signal transformation, and obtain one or more transform domain signal segments.
  • the lengths of the plurality of transform domain signal segments are the same or different.
  • the method may further include:
  • the single carrier signal is divided into one or more segments; the size of each single carrier signal may be different.
  • adding zeros to one or more segments of the single carrier signal may include adding zeros to each of the single carrier signals obtained by the segmentation.
  • step S110 is not performed, then in step S120, the original single carrier signal is directly added as a segment.
  • the single carrier signal segment may have multiple forms.
  • the length (ie, size) of each single-carrier signal obtained after segmentation may be the same or different.
  • a single carrier signal of any length for one user equipment may be divided into one or more single carrier signals.
  • the location of adding a zero to a single carrier signal may be any one or any of the following positions of the single carrier signal: the front part, the middle part, and the back part.
  • the position is the front part refers to adding zero before the first bit of the single carrier signal; the position is the rear part means adding zero after the last bit of the single carrier signal; the position is the middle part means Any one or any of the first to last bits of the segment single carrier signal is zeroed.
  • signal addition zero for the convenience of description, regardless of Where to add zeros is collectively referred to as signal addition zero.
  • the signal transformation in step S120 may be in various manners, including but not limited to discrete Fourier transform or fast Fourier transform.
  • the transform domain may be, but not limited to, a frequency domain.
  • step S120 when there are multiple single-carrier signals, the number of zeros added to each single-carrier signal (ie, adding a few zeros) may be the same or different; when in a single carrier When zeros are added to multiple positions in a signal, the number of zeros added to different positions may be the same or different; the number of zeros added to the single carrier signal of different user equipments may be the same or different. of.
  • the size of the obtained transform domain signal segments may be the same or different.
  • mapping the one or more transform domain signal segments to resource locations of one or more sub-bands in step S130 includes, but is not limited to, the following alternative implementations:
  • each transform domain signal segment obtained in step S120 is mapped to a resource position of a corresponding one of the sub-bands; the size of each transform domain signal segment is the same or different.
  • each transform domain signal segment obtained in step S120 is further divided into one or more transform domain signals, and each divided transform domain signal is respectively mapped to a corresponding one subband resource according to a one-to-one correspondence manner.
  • Position the size of each transform domain signal divided into the same or different.
  • each transform domain signal segment obtained in step S120 is first combined and then divided into one or more transform domain signals, and each divided transform domain signal is mapped to a corresponding one according to a one-to-one correspondence manner.
  • the resource location of the band; the size of each transform domain signal that is first combined and subdivided is the same or different.
  • S140 Perform multi-carrier modulation and filtering on the one or more sub-band signals respectively.
  • step S140 the purpose of multi-carrier modulation and filtering is to output a multi-carrier signal and include one or more sub-band signals subjected to sideband leakage suppression.
  • step S140 There are various alternative implementations in step S140.
  • the implementation of the four steps S140 is given in Example 1, as described in Example 1.
  • step S140 includes three sub-steps:
  • Sub-step S141 performing inverse signal transformation on each of the one or more sub-band signals.
  • the inverse signal transformation can be performed in a variety of ways including, but not limited to, inverse discrete Fourier transform or inverse fast Fourier transform.
  • Sub-step S142 performing one-stage processing on one or more sub-band signals obtained in sub-step S110.
  • the purpose of the central processing is to reduce the peak-to-average ratio of the final time domain signal, enhance the ability of the final time domain signal to resist inter-symbol interference or frequency deviation, and reduce the energy consumption of the final time domain signal for subsequent processes. Provide copy signals, etc.
  • the central processing may include, but is not limited to, any one or more of the following operations: multiplying by a predetermined complex vector, adding a cyclic prefix or a suffix, and the like.
  • sub-step S143 may be performed without sub-step S142, which is equivalent to not performing operation in sub-step S142, and equivalent to multi-stage multiplication by [1, 1, ... 1 ] vector.
  • each sub-band signal obtained in sub-step S142 is separately filtered.
  • the filtering may be performed in the time domain to filter the time domain signal; or the equivalent filtering may be performed in the transform domain.
  • the transform domain includes, but is not limited to, a frequency domain.
  • step S150 before the super-carrier modulation and the filtered sub-band signal are superimposed, the method further includes: performing first back-end processing on the multi-carrier modulation and the filtered sub-band signal;
  • the purpose of the first back-end processing is to reduce the peak-to-average ratio of the final time domain signal, enhance the ability of the final time domain signal to resist inter-symbol interference or frequency deviation, reduce the energy consumption of the final time domain signal, and the like.
  • the first backend processing may include, but is not limited to, any one or more of the following operations: multiplying by a predetermined complex vector, adding a cyclic prefix or a suffix, and the like.
  • step S150 may further perform superposition on the multi-carrier modulation and the filtered sub-band signal.
  • the method includes: performing second backend processing on the multicarrier modulation and the filtered subband signal.
  • the purpose of the second backend processing is to reduce the peak-to-average ratio of the final time domain signal, enhance the ability of the final time domain signal to resist intersymbol interference or frequency deviation, reduce the energy consumption of the final time domain signal, and the like.
  • the second backend processing may include, but is not limited to, any one or more of the following operations: multiplying by a predetermined complex vector, adding a cyclic prefix or suffix, and the like.
  • the superposition may be performed in the time domain or in the transform domain.
  • the transform domain includes, but is not limited to, a frequency domain.
  • step S150 the first and second backend processes may all be performed, or only one of them may be performed, or none of them may be performed.
  • the predetermined complex vector/cyclic prefix/cyclic suffix in the central processing, the first backend processing, and the second backend processing may be the same or different.
  • the flow of multicarrier signal generation is as shown in FIG. 3.
  • a single carrier signal S1 is obtained (S1 in FIG. 3 includes multiple sets of arrows), FIG.
  • the middle segment of the single carrier signal is represented as a set of arrows in the plurality of sets of arrows included in S1, wherein each arrow represents a signal of a sample point.
  • variable domain signal segment S2 (S2 in FIG. 3 includes multiple sets of arrows), and one change domain signal segment is represented as one of the multiple sets of arrows included in S2.
  • Arrow; the zero-add position in this example is the front and the back, that is, before the first sample point (ie, the first bit) in the single-carrier signal, and after the last sample point (ie, the last bit) Add zero.
  • the signal combination, segmentation and resource mapping are performed on the signal region S2 after the signal transformation; in this example, it is assumed that the M segment is divided into M segments, and the M segment variation domain signals are respectively mapped to M subbands according to the one-to-one correspondence relationship.
  • M subband signals S3 are obtained, including: subband signal S3-1, subband signals S3-2, ..., subband signals S3-M.
  • the sub-band signal S3 is multi-carrier modulated and filtered to obtain M modulated and filtered sub-band signals S4, including: a sub-band signal S4-1, a sub-band signal S4-2, ..., and a sub-band signal S4-M.
  • the back-end processing of the modulated filtered sub-band signal S4 results in a signal S5 to be transmitted.
  • Embodiment 2 A device for generating a multi-carrier signal, as shown in FIG. 4, includes:
  • the front end processing module 42 is configured to add zero to one or more segments of the single carrier signal, perform signal transformation, and obtain one or more transform domain signal segments;
  • the resource mapping module 43 is configured to map the one or more transform domain signal segments to resource locations of one or more subbands to obtain one or more subband signals;
  • the modulation filtering module 44 is configured to perform multi-carrier modulation and filtering on the one or more sub-band signals respectively;
  • the backend processing module 45 is arranged to superimpose the multicarrier modulated and filtered subband signals.
  • the lengths of the plurality of transform domain signal segments are the same or different;
  • the resources of the plurality of sub-bands are the same or different in size.
  • the device further includes:
  • the signal segmentation module is configured to divide the single carrier signal into one or more segments; the size of each single carrier signal is the same or different;
  • the front end processing module 42 adds zero to one or more single carrier signals, including:
  • the front end processing module 42 adds zeros to each of the single carrier signals obtained by the segmentation.
  • the front end processing module 42 directly adds the original single carrier signal as a segment.
  • the position where the front end processing module adds zero to a single carrier signal is any one or any of the following positions of the single carrier signal: front part, middle part, and rear part.
  • the number of zeros added to each of the single carrier signals by the front end processing module is the same or different; when multiple positions are added in a single carrier signal, The number of zeros added to different locations is the same or different; the number of zeros added to the single carrier signal of different user equipments is the same or different.
  • mapping, by the resource mapping module, the one or more transform domain signal segments to the resource locations of the one or more subbands includes:
  • the resource mapping module maps each of the transform domain signal segments to resource positions of a corresponding one of the sub-bands in a one-to-one correspondence manner; each of the transform domain signal segments has the same size Or different.
  • mapping, by the resource mapping module, the one or more transform domain signal segments to the resource locations of the one or more subbands includes:
  • the resource mapping module further divides each of the transform domain signal segments into one or more transform domain signals, and respectively maps each divided transform domain signal into a corresponding one subband resource according to a one-to-one correspondence manner. Position; the size of each transform domain signal divided into the same or different.
  • mapping, by the resource mapping module, the one or more transform domain signal segments to the resource locations of the one or more subbands includes:
  • the resource mapping module combines each of the transform domain signal segments into one or more transform domain signals, and maps each divided transform domain signal into a corresponding one according to a one-to-one correspondence manner.
  • the resource location of the band; the size of each transform domain signal that is first combined and subdivided is the same or different.
  • the modulation filtering module includes:
  • the inverse transform unit is configured to perform inverse signal transformation on the one or more sub-band signals respectively;
  • the central processing unit is configured to perform central processing on the one or more sub-band signals obtained after the inverse transform respectively; the central processing includes any one or more of the following operations: multiplying by a predetermined complex vector, adding a cyclic prefix or a suffix ;
  • the filtering unit is configured to separately filter each sub-band signal processed in the middle.
  • the middle processing may be, but is not limited to, a vector multiplied by [1, 1, ... 1].
  • the backend processing module is further configured to perform first backend processing on the multicarrier modulated and filtered subband signals before superimposing the multicarrier modulated and filtered subband signals;
  • the first backend processing includes any one or more of the following operations: multiplying by a predetermined complex vector, adding a cyclic prefix or a suffix.
  • the backend processing module is further configured to perform a second backend processing on the multicarrier modulated and filtered subband signals after superimposing the multicarrier modulated and filtered subband signals;
  • the second backend processing may include, but is not limited to, any one or more of the following operations: multiplying by a predetermined complex vector, adding a cyclic prefix or a suffix.
  • This example shows a signal generation method, which improves the UFMC technology, not only can resist the influence of channel multipath delay and propagation delay, eliminates ISI, and can also be flexibly adopted for the channel environment of different user equipments. Different parameters can also make different user equipments have no interference with each other, saving system resources.
  • the method of this example includes the following steps 101-105:
  • single carrier signal segmentation can take many forms
  • a single carrier signal of any length for one user equipment may be divided into one or more single carrier signals; the size of each single carrier signal is the same or different.
  • each transform domain signal segment has the same or different size.
  • a position where zero is added to each single-carrier signal may be any one or any of the following positions of each single-carrier signal: front part, middle part, and rear part.
  • the signal transformation in 102 can be in a variety of ways including, but not limited to, a discrete Fourier transform or a fast Fourier transform, and accordingly, the transform domain can be, but is not limited to, a frequency domain.
  • the number of zeros added to each single-carrier signal may be different; when zeros are added to multiple positions in a single-carrier signal, the number of zeros at different positions may also be different; different user equipments The number of zeros added to a single carrier signal can also be different.
  • each transform domain signal segment obtained by 102 is mapped to a resource position of a corresponding one of the subbands to form an input signal of the corresponding subband, that is, a subband signal is obtained; each subband
  • the resources are the same size or different.
  • the purpose of multi-carrier modulation and filtering is to output a multi-carrier signal and include a plurality of sub-band signals subjected to sideband leakage suppression.
  • Step 104 has a variety of alternative implementations. In this example, four implementations of step 104 are given, see below.
  • step 104 can also be applied to other examples, and details are not described herein again.
  • 104 can include three sub-steps:
  • Sub-step 1 Each sub-band signal is inversely transformed.
  • the inverse signal transformation can be performed in a variety of ways including, but not limited to, inverse discrete Fourier transform or inverse fast Fourier transform.
  • Sub-step 2 Performing the middle processing on the plurality of sub-band signals obtained in the sub-step one.
  • the purpose of the central processing is to reduce the peak-to-average ratio of the final time domain signal, enhance the ability of the final time domain signal to resist inter-symbol interference or frequency deviation, and reduce the energy consumption of the final time domain signal for subsequent processes. Provide copy signals, etc.
  • the central processing may include, but is not limited to, any one or more of the following operations: multiplying by a predetermined complex vector, adding a cyclic prefix or a suffix, and the like.
  • Sub-step 2 may also be omitted, which is equivalent to multiplying the vector of [1, 1, ... 1], and can be regarded as a special case of sub-step 2.
  • Sub-step 3 Filtering the plurality of sub-band signals obtained in the sub-step two separately.
  • the filtering may be performed in the time domain to filter the time domain signal; the equivalent filtering process may also be performed in the transform domain.
  • the transform domain includes, but is not limited to, a frequency domain.
  • the backend processing includes a first backend processing of the subband signals, the plurality of subband signal superpositions, and a second backend processing.
  • the purpose of the first backend processing is to reduce the peak-to-average ratio of the final time domain signal, enhance the ability of the final time domain signal to resist inter-symbol interference or frequency deviation, reduce the energy consumption of the final time domain signal, and the like.
  • the first backend processing may include, but is not limited to, operations of multiplying by a predetermined complex vector, adding a cyclic prefix or a suffix, and the like.
  • the purpose of the second backend processing is to reduce the peak-to-average ratio of the final time domain signal, enhance the ability of the final time domain signal to resist intersymbol interference or frequency deviation, and reduce the energy of the final time domain signal. Consumption.
  • the second backend processing may include, but is not limited to, operations of multiplying by a predetermined complex vector, adding a cyclic prefix or a suffix, and the like.
  • the superposition of the subband signals can be performed in the time domain or in the transform domain.
  • the transform domain includes, but is not limited to, a frequency domain.
  • This example can be implemented by the apparatus of the second embodiment.
  • FIG. 5 The flow of multi-carrier signal generation in this example is shown in FIG. 5.
  • a single-carrier signal S11 is obtained (S11 in FIG. 5 includes multiple sets of arrows), and a single-carrier signal in FIG. Represented as a set of arrows in a set of arrows included in S11, where each arrow represents a signal at a sample point.
  • variable-field signal segment S12 (S12 in FIG. 5 includes multiple sets of arrows), and one change-domain signal segment is represented as one of a plurality of sets of arrows included in S12.
  • Arrow; the zero-add position in this example is the front and the back, that is, before the first sample point (ie, the first bit) in the single-carrier signal, and after the last sample point (ie, the last bit) Add zero.
  • the signal-transformed plurality of change-domain signal segments S12 are respectively mapped to the resource positions of the M sub-bands according to the one-to-one correspondence, that is, the input of the sub-band 1, the sub-band 2, ..., and the sub-band M, respectively.
  • the signal is obtained as a subband signal S13 including a subband signal S13-1, a subband signal S13-2, ..., and a subband signal S13-M.
  • M modulated and filtered sub-band signals S14 including: modulated and filtered sub-band signal S14-1, modulated and filtered sub-band signal S14-2, ... And modulating the filtered sub-band signal S14-M.
  • the back-end processing of the modulated and filtered sub-band signal S14 is performed to obtain a signal S15 to be transmitted.
  • the multi-carrier modulation and filtering in 104 includes the following four optional implementation manners:
  • the inverse of the sub-step 1 in the first step 104 is performed by an inverse discrete Fourier transform, and the filtering in the third step is performed by a BPF (Band-Pass Filter).
  • the modulation filtering module of the execution 104 is as shown in FIG. 6, including inverse discrete Fourier transform units 5-1, 5-2, ..., 5-M; central processing units 6-1, 6-2 ,...,6-M; belt
  • the pass filter 7-1, 7-2, ..., 7-M; the inverse discrete Fourier transform unit and the central processing unit are connected one-to-one, and the central processing unit and the BPF are connected one-to-one.
  • Subband signals S13-1, S13-2, ..., S13-M are input to inverse discrete Fourier transform units 5-1, 5-2, ..., 5-M, respectively; band pass filters 7-1, 7 -2, ..., 7-M respectively output the modulated filtered subband signals S14-1, S14-2, ..., S14-M.
  • the difference between the implementation method 2 and the first embodiment is that the filtering in the sub-step 3 is implemented by using an LPF (Low Pass Filter) and a multiplier.
  • LPF Low Pass Filter
  • the modulation filtering module of the execution 104 is as shown in FIG. 7, including inverse discrete Fourier transform units 5-1, 5-2, ..., 5-M; central processing units 6-1, 6-2 , ..., 6-M; low-pass filters 8-1, 8-2, ..., 8-M and M multipliers; anti-discrete Fourier transform unit and central processing unit one-to-one correspondence, central processing
  • the unit and the LPF are connected one-to-one; the LPF is connected to the multiplier one by one, and is respectively multiplied by the connected multipliers with reference frequencies f 1-1 , f 1-2 , ..., f 1-M ;
  • the low pass filter and a multiplier form a filtering unit that performs sub-step three of 104.
  • the subband signals S13-1, S13-2, ..., S13-M are respectively input to the inverse discrete Fourier transform units 5-1, 5-2, ..., 5-M; the M multipliers respectively output the modulated filter Subband signals S14-1, S14-2, ..., S14-M.
  • the difference between the implementation method 3 and the implementation method 2 is that the sub-step one adopts the inverse fast Fourier transform, and all the sub-band signals use an IFFT unit to complete the inverse transformation, and a central processing unit is used to complete the middle processing; in the sub-step three, the first The result of the middle processing is multiplied by the reference frequency, and then sent to the LPF (Low Pass Filter) to upsample the output of the LPF and input it to the multiplier.
  • LPF Low Pass Filter
  • the modulation filtering module of the execution 104 is as shown in FIG. 8, including an inverse fast Fourier transform unit 10-0; a central processing unit 6-0; M first multipliers; and a low pass filter 8- 1, 8-2, ..., 8-M; upsampling units 9-1, 9-2, ..., 9-M, and M second multipliers; inverse fast Fourier transform unit and central processing unit Connected, the central processing unit is connected to the M first multipliers, respectively multiplied by the reference first frequency multipliers with the reference frequencies f 2-1 , f 2-2 , ..., f 2-M and then input into the LPF; LPF One-to-one correspondence with the upsampling unit; the upsampling unit and the second multiplier are connected one-to-one, respectively, through the connected second multiplier and the reference frequencies f 1-1 , f 1-2 , ..., f 1- M multiplication; a connected first multiplier, a low pass filter, an upsampling unit, and a second multiplier
  • the subband signals S13-1, S13-2, ..., S13-M are all input to the inverse fast Fourier transform unit 10-0; the M second multipliers respectively output the modulated filtered subband signals S14-1, S14 -2, ..., S14-M.
  • the difference between the implementation method 4 and the second embodiment is that the sub-step 1 uses an inverse fast Fourier transform, and in the third step, the output of the LPF (Low Pass Filter) is upsampled and input to the multiplier.
  • LPF Low Pass Filter
  • the modulation filtering module of the execution 104 is as shown in FIG. 9, including the inverse fast Fourier transform units 10-1, 10-2, ..., 10-M; the central processing units 6-1, 6-2 , ..., 6-M; low pass filters 8-1, 8-2, ..., 8-M; upsampling units 9-1, 9-2, ..., 9-M, and M multipliers
  • the inverse fast Fourier transform unit and the central processing unit are connected one-to-one, and the central processing unit and the LPF are connected one by one; the LPF and the upsampling unit are connected one by one; the upsampling unit and the multiplier are connected one by one, respectively
  • the connected multiplier is multiplied by a reference frequency f 1-1 , f 1-2 , ..., f 1-M ; a connected low pass filter, an upsampling unit and a multiplier form an execution 104 neutron
  • the subband signals S13-1, S13-2, ..., S13-M are respectively input to the inverse fast Fourier transform units 10-1, 10-2, ..., 10-M; the M multipliers respectively output the modulated filter Subband signals S14-1, S14-2, ..., S14-M.
  • This example shows a method for generating multi-carrier signals.
  • the UFMC technology is improved to not only resist the effects of channel multipath delay and propagation delay, but also eliminate ISI and also target the channel environment of different user equipments. Flexible use of different parameters and different user equipments without interference with each other, saving system resources.
  • the steps of this example include the following steps 201-205:
  • each segment of the single carrier signal has the same or different size.
  • single carrier signal segmentation can take many forms
  • a single carrier signal of any length for one user equipment can be divided into one or more Segment single carrier signal.
  • each transform domain signal segment has the same or different size.
  • a position where a single carrier signal is zero-added may be any one or any of the following positions of the single-carrier signal: front part, middle part, and rear part.
  • the signal transformation in 202 can be in a variety of ways including, but not limited to, a discrete Fourier transform or a fast Fourier transform, and accordingly, the transform domain can be, but is not limited to, a frequency domain.
  • the number of zeros added to each single-carrier signal may be different; when zeros are added to multiple positions in a single-carrier signal, the number of zeros at different positions may also be different; different user equipments The number of zeros added to a single carrier signal can also be different.
  • Each of the transform domain signal segments obtained in step 202 is further divided into one or more transform domain signals, and the size of each of the changed domain signals is the same or different; and each segment is divided according to a one-to-one correspondence manner.
  • the domain signals are respectively mapped to the resource locations of the corresponding one of the subbands to obtain subband signals; the resources of each subband are the same or different in size.
  • the purpose of multi-carrier modulation and filtering is to output a multi-carrier signal and include a plurality of sub-band signals subjected to sideband leakage suppression.
  • step 204 There are various implementations of step 204, and an alternative implementation of several steps 204 is given in Example 1.
  • 204 can include three sub-steps:
  • Sub-step 1 Each sub-band signal is inversely transformed.
  • the inverse signal transformation can be performed in a variety of ways including, but not limited to, inverse discrete Fourier transform or inverse fast Fourier transform.
  • Sub-step 2 Performing the middle processing on the plurality of sub-band signals obtained in the sub-step one.
  • the purpose of the central processing is to reduce the peak-to-average ratio of the final time domain signal, enhance the ability of the final time domain signal to resist inter-symbol interference or frequency deviation, and reduce the energy consumption of the final time domain signal for subsequent processes. Provide copy signals, etc.
  • the central processing may include, but is not limited to, any one or more of the following operations: Multiply by a predetermined complex vector, add a cyclic prefix or suffix, and so on.
  • Sub-step 2 may also be omitted, which is equivalent to multiplying the vector of [1, 1, ... 1], and can be regarded as a special case of sub-step 2.
  • Sub-step 3 Filtering the plurality of sub-band signals obtained in the sub-step two separately.
  • the filtering may be performed in the time domain to filter the time domain signal; the equivalent filtering process may also be performed in the transform domain.
  • the transform domain includes, but is not limited to, a frequency domain.
  • the backend processing includes a first backend processing of the subband signals, the plurality of subband signal superpositions, and a second backend processing.
  • the purpose of the first backend processing is to reduce the peak-to-average ratio of the final time domain signal, enhance the ability of the final time domain signal to resist inter-symbol interference or frequency deviation, reduce the energy consumption of the final time domain signal, and the like.
  • the first backend processing may include, but is not limited to, operations of multiplying by a predetermined complex vector, adding a cyclic prefix or a suffix, and the like.
  • the purpose of the second backend processing is to reduce the peak-to-average ratio of the final time domain signal, enhance the ability of the final time domain signal to resist inter-symbol interference or frequency deviation, reduce the energy consumption of the final time domain signal, and the like.
  • the second backend processing may include, but is not limited to, operations of multiplying by a predetermined complex vector, adding a cyclic prefix or a suffix, and the like.
  • the superposition of the subband signals may be performed in the time domain or in the transform domain.
  • the transform domain includes, but is not limited to, a frequency domain.
  • This example can be implemented by the apparatus of the second embodiment.
  • FIG. 10 shows a case where a single carrier signal is divided into multiple segments.
  • the processing flow of each single-carrier signal is the same as that of Figure 10.
  • a single carrier signal in Figure 10 is represented as a set of arrows contained in S21, with each arrow representing the signal of a sample point.
  • Zero-adding each of the single-carrier signals and performing signal transformation to obtain a variable-field signal segment S22 (S22 in FIG. 10 includes a plurality of sets of arrows), and one change-domain signal segment is represented as one of a plurality of sets of arrows included in S22.
  • Arrow; the zero-add position in this example is the front and the back, that is, before the first sample point (ie: the first bit) in the single-carrier signal, and the last sample point (ie: the last one) Bit) is followed by zero.
  • the signal-transformed plurality of change-domain signal segments S22 are respectively mapped to the resource positions of the M sub-bands according to the one-to-one correspondence, that is, the input of the sub-band 1, the sub-band 2, ..., the sub-band M, respectively.
  • the signal is obtained as a subband signal S23 including: a subband signal S23-1, a subband signal S23-2, ..., a subband signal S23-M.
  • M modulated and filtered sub-band signals S24 including: modulated and filtered sub-band signal S24-1, modulated and filtered sub-band signal S24-2, ... And modulating the filtered sub-band signal S24-M.
  • the back-end processing of the modulated filtered sub-band signal S24 is performed to obtain a signal S25 to be transmitted.
  • This example proposes a signal generation method, which improves the UFMC technology, not only can resist the influence of channel multipath delay and propagation delay, eliminates ISI, and can also flexibly adopt different channel environments for different user equipments.
  • the parameters can also make different user equipments have no interference with each other, saving system resources.
  • the steps of this example include the following steps 301-305:
  • single carrier signal segmentation can take many forms
  • a single carrier signal of any length for a user equipment can be divided into one or more single carrier signals.
  • each transform domain signal segment has the same or different size.
  • a position where a single carrier signal is zero-added may be any one or any of the following positions of the single-carrier signal: front part, middle part, and rear part.
  • the signal transformation in 302 can be in a variety of ways including, but not limited to, a discrete Fourier transform or a fast Fourier transform, and accordingly, the transform domain can be, but is not limited to, a frequency domain.
  • the number of zeros added to each single carrier signal may be different; when in a single carrier signal When zeros are added to multiple locations, the number of zeros added to different locations may be different; the number of zeros added to the single carrier signal of different user equipments may also be different.
  • each transform domain signal segment obtained in step 302 into one or more transform domain signals, and combine and then divide each of the transform domain signals to have the same or different sizes; according to the one-to-one correspondence manner, Each of the divided transform domain signals is respectively mapped to a resource position of the corresponding one of the subbands to obtain a subband signal; the resources of each subband are the same or different in size.
  • step 304 the purpose of multi-carrier modulation and filtering is to output a multi-carrier signal and include a plurality of sub-band signals subjected to sideband leakage suppression.
  • step 304 There are various implementations of step 304, and several implementations of step 204 are given in Example 1.
  • 304 can include three sub-steps:
  • Sub-step 1 Each sub-band signal is inversely transformed.
  • the inverse signal transformation can be performed in a variety of ways including, but not limited to, inverse discrete Fourier transform or inverse fast Fourier transform.
  • Sub-step 2 Performing the middle processing on the plurality of sub-band signals obtained in the sub-step one.
  • the purpose of the central processing is to reduce the peak-to-average ratio of the final time domain signal, enhance the ability of the final time domain signal to resist inter-symbol interference or frequency deviation, and reduce the energy consumption of the final time domain signal for subsequent processes. Provide copy signals, etc.
  • the central processing may include, but is not limited to, any one or more of the following operations: multiplying by a predetermined complex vector, adding a cyclic prefix or a suffix, and the like.
  • Sub-step 2 may also be omitted, which is equivalent to multiplying the vector of [1, 1, ... 1], and can be regarded as a special case of sub-step 2.
  • Sub-step 3 Filtering the plurality of sub-band signals obtained in the sub-step two separately.
  • the filtering may be performed in the time domain to filter the time domain signal; the equivalent filtering process may also be performed in the transform domain.
  • the transform domain includes, but is not limited to, a frequency domain.
  • the backend processing includes a first backend processing on the subband signal, and the plurality of Subband signal superposition, second backend processing.
  • the purpose of the first backend processing is to reduce the peak-to-average ratio of the final time domain signal, enhance the ability of the final time domain signal to resist inter-symbol interference or frequency deviation, reduce the energy consumption of the final time domain signal, and the like.
  • the first backend processing may include, but is not limited to, operations of multiplying by a predetermined complex vector, adding a cyclic prefix or a suffix, and the like.
  • the purpose of the second backend processing is to reduce the peak-to-average ratio of the final time domain signal, enhance the ability of the final time domain signal to resist inter-symbol interference or frequency deviation, reduce the energy consumption of the final time domain signal, and the like.
  • the second backend processing may include, but is not limited to, operations of multiplying by a predetermined complex vector, adding a cyclic prefix or a suffix, and the like.
  • the superposition of the subband signals can be performed in the time domain or in the transform domain.
  • the transform domain includes, but is not limited to, a frequency domain. This example can be implemented by the apparatus of the second embodiment.
  • FIG. 11 The flow of multicarrier signal generation in this example is shown in FIG. 11.
  • a single carrier signal S31 is obtained (S31 in FIG. 11 includes multiple sets of arrows), and a single carrier signal in FIG. Represented as a set of arrows in the set of arrows included in S31, where each arrow represents a signal at a sample point.
  • variable domain signal segment S32 (S32 in FIG. 11 includes multiple sets of arrows), and one change domain signal segment is represented as one of the plurality of sets of arrows included in S32.
  • Arrow; the zero-add position in this example is the front and the back, that is, before the first sample point (ie, the first bit) in the single-carrier signal, and after the last sample point (ie, the last bit) Add zero.
  • the plurality of change domain signal segments S32 after signal transformation are first combined and subdivided into M segments, respectively mapped to resource positions of M subbands, that is, input signals respectively forming subbands 1, ..., subbands M,
  • the subband signal S33 includes subband signals S33-1, ..., and subband signals S33-M.
  • each N N is a positive integer greater than 1
  • change domain signal segments S32 are combined and divided into one segment.
  • the implementation is not limited to this manner, and may be any combination and segmentation manner.
  • the back-end processing of the modulated filtered sub-band signal S34 is performed to obtain a signal S35 to be transmitted.
  • Embodiment 3 A computer readable storage medium storing computer executable instructions for performing the method of Embodiment 1 above.
  • the embodiment of the invention provides a method and a device for generating a multi-carrier signal.
  • the method can not only resist the influence of channel multipath delay and propagation delay, but also eliminate ISI and can also target different users.
  • the channel environment of the device can be flexibly set to zero (for example, the number of added zeros is different, or the ratio of the length of the original data is different), so that the user equipment can be free from interference with each other and save system resources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

一种多载波信号的生成方法及生成装置;所述生成方法包括:对一段或多段单载波信号添零,进行信号变换,得到一个或多个变换域信号段;将所述一个或多个变换域信号段映射到一个或多个子带的资源位置上,得到一个或多个子带信号;对所述一个或多个子带信号分别进行多载波调制和滤波;对多载波调制和滤波后的子带信号进行叠加。

Description

一种多载波信号的生成方法和装置 技术领域
本文涉及但不限于无线通讯领域,尤其涉及一种多载波信号的生成方法和装置。
背景技术
在LTE(Long Term Evolution,长期演进)系统及LTE-A(Long Term Evolution-Advanced,长期演进的后续演进)系统中,OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)是物理层信号发送的基础技术。不过,OFDM信号的边带泄露较大,尤其在存在时间偏差和频率偏差时,OFDM信号的边带泄露更大。这就使得OFDM与其他系统间需要较大的保护带宽,并且为了降低对其他用户设备的干扰,OFDM系统的不同用户设备的信号需要较严格的时间和频率同步。为了降低OFDM系统的边带泄露,有几项相关技术被提出来:FBMC(Filter-Bank Multi-Carrier,滤波库多载波)、UFMC(Universal Filtered Multi-Carrier,全滤波的多载波)和GFDM(Generalized Frequency Division Multi-plex,广义频分复用)等。其中,UFMC也被称为f-OFDM(filtered OFDM,滤波的正交频分复用)。
UFMC在OFDM信号基础上,对每个子带进行滤波,即同个子带内(相同用户设备的资源内)的滤波器是一样的。由于UFMC技术对子带进行滤波,大大降低旁带泄露,能够使子带间的干扰功率极大地降低,使得不同子带可以灵活的配置不同的参数,以更好的适应业务和信道要求。UFMC的这一特性,尤其适用于未来无线通信系统中不同要求和特性的业务共存的情景。
一般业界所讨论的UFMC信号,是没有CP(Cyclical Prefix,循环前缀)的。当存在信道多径时延时,会有ISI(inter-symbol interference,符号间干扰),如果信道多径时延较小,带来的干扰可忽略;如果信道多径时延较大,干扰不可忽略,那么需要考虑UFMC的消除ISI的技术。常用的消除ISI的技术为增加CP,UFMC也可采用增加CP的方法来抵抗信道多径时延和传播时延带来的影响,消除ISI。不过,当不同用户设备为了不同的信道多径时延和传播 时延,采用长度不同的CP时,会导致不同用户设备的符号不同步,如图1所示。当这些用户设备组成MU-MIMO(Multi-User Multiple-Input Multiple-Output,多用户多输入多输出)、或者是位于UFMC相同子带(可能在不同子载波上)时,会相互造成干扰。如果多个用户设备采用相同的CP长度,那么需要这多个用户设备都根据最大的信道多径时延和传播时延来设置CP长度,这样,浪费了系统资源,系统效率不能最大化。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种多载波信号的生成方法和装置,能够抵抗信道多径时延和传播时延带来的影响,消除ISI。
本发明实施例采用如下技术方案。
一种多载波信号的生成方法,包括:
对一段或多段单载波信号添零,进行信号变换,得到一个或多个变换域信号段;
将所述一个或多个变换域信号段映射到一个或多个子带的资源位置上,得到一个或多个子带信号;
对所述一个或多个子带信号分别进行多载波调制和滤波;
对多载波调制和滤波后的子带信号进行叠加。
可选地,所述多个变换域信号段的长度相同或不同;
所述多个子带的资源大小相同或不同。
可选地,所述对一段或多段单载波信号添零前还包括:
将单载波信号分为一段或多段;每段单载波信号的大小相同或不同;
所述对一段或多段单载波信号分别添零包括:
对分段得到的每段单载波信号分别添零。
可选地,对一段单载波信号添零的位置是该段单载波信号的以下任一个 或任几个位置:前部、中间部分、后部。
可选地,当有多段单载波信号时,每段所述单载波信号添零的个数相同或不同;当在一段单载波信号中多个位置进行添零时,不同位置的添零的个数相同或不同;不同用户设备的单载波信号添零的个数相同或不同。
可选地,所述将一个或多个变换域信号段映射到一个或多个子带的资源位置上包括:
按照一一对应的方式,将每个所述变换域信号段分别映射到所对应的一个子带的资源位置上;每个所述变换域信号段的大小相同或不同。
可选地,所述将一个或多个变换域信号段映射到一个或多个子带的资源位置上包括:
将每个所述变换域信号段再分别分成一段或多段变换域信号,按照一一对应的方式,将分成的每段变换域信号分别映射到所对应的一个子带的资源位置上;所分成的每段变换域信号的大小相同或不同。
可选地,所述将一个或多个变换域信号段映射到一个或多个子带的资源位置上包括:
将每个所述变换域信号段先进行组合后再分成一段或多段变换域信号,按照一一对应的方式,将分成的每段变换域信号分别映射到所对应的一个子带的资源位置上;先进行组合再分成的每段变换域信号的大小相同或不同。
可选地,所述对所述一个或多个子带信号分别进行多载波调制和滤波包括:
对所述一个或多个子带信号分别进行信号反变换;
对反变换后得到的一个或多个子带信号分别进行中部处理;所述中部处理包括以下任一项或任几项操作:乘以预定的复数矢量、增加循环前缀或后缀;
对中部处理后的每个子带信号分别进行滤波。
可选地,所述中部处理是指乘以[1,1,…1]的向量。
可选地,所述对多载波调制和滤波后的子带信号进行叠加前还包括:
对多载波调制和滤波后的子带信号进行第一后端处理;
所述第一后端处理包括以下任一项或任几项操作:乘以预定的复数矢量、增加循环前缀或后缀。
可选地,所述对多载波调制和滤波后的子带信号进行叠加后还包括:
对多载波调制和滤波后的子带信号进行第二后端处理;
所述第二后端处理包括以下任一项或任几项操作:乘以预定的复数矢量、增加循环前缀或后缀。
一种多载波信号的生成装置,包括:
前端处理模块,设置成对一段或多段单载波信号添零,进行信号变换,得到一个或多个变换域信号段;
资源映射模块,设置成将所述一个或多个变换域信号段映射到一个或多个子带的资源位置上,得到一个或多个子带信号;
调制滤波模块,设置成对所述一个或多个子带信号分别进行多载波调制和滤波;
后端处理模块,设置成对多载波调制和滤波后的子带信号进行叠加。
可选地,所述多个变换域信号段的长度相同或不同;
所述多个子带的资源大小相同或不同。
可选地,所述的多载波信号的生成装置还包括:
信号分段模块,设置成将单载波信号分为一段或多段;每段单载波信号的大小相同或不同;
所述前端处理模块对一段或多段单载波信号添零包括:
所述前端处理模块对分段得到的每段单载波信号分别添零。
可选地,所述前端处理模块对一段单载波信号进行添零的位置是该段单载波信号的以下任一个或任几个位置:前部、中间部分、后部。
可选地,当有多段单载波信号时,所述前端处理模块对每段所述单载波 信号添零的个数相同或不同;当在一段单载波信号中多个位置进行添零时,对不同位置的添零的个数相同或不同;对不同用户设备的单载波信号添零的个数相同或不同。
可选地,所述资源映射模块将一个或多个变换域信号段映射到一个或多个子带的资源位置上包括:
所述资源映射模块按照一一对应的方式,将每个所述变换域信号段分别映射到所对应的一个子带的资源位置上;每个所述变换域信号段的大小相同或不同。
可选地,所述资源映射模块将一个或多个变换域信号段映射到一个或多个子带的资源位置上包括:
所述资源映射模块将每个所述变换域信号段再分别分成一段或多段变换域信号,按照一一对应的方式,将分成的每段变换域信号分别映射到所对应的一个子带的资源位置上;所分成的每段变换域信号的大小相同或不同。
可选地,所述资源映射模块将一个或多个变换域信号段映射到一个或多个子带的资源位置上包括:
所述资源映射模块将每个所述变换域信号段先进行组合后再分成一段或多段变换域信号,按照一一对应的方式,将分成的每段变换域信号分别映射到所对应的一个子带的资源位置上;先进行组合再分成的每段变换域信号的大小相同或不同。
可选地,所述调制滤波模块包括:
反变换单元,设置成对所述一个或多个子带信号分别进行信号反变换;
中部处理单元,设置成对反变换后得到的一个或多个子带信号分别进行中部处理;所述中部处理包括以下任一项或任几项操作:乘以预定的复数矢量、增加循环前缀或后缀;
滤波单元,设置成对中部处理后的每个子带信号分别进行滤波。
可选地,所述中部处理是指乘以[1,1,…1]的向量。
可选地,所述后端处理模块还设置成在对多载波调制和滤波后的子带信号进行叠加前,对多载波调制和滤波后的子带信号进行第一后端处理;
所述第一后端处理包括以下任一项或任几项操作:乘以预定的复数矢量、增加循环前缀或后缀。
可选地,所述后端处理模块还设置成在对多载波调制和滤波后的子带信号进行叠加后,对多载波调制和滤波后的子带信号进行第二后端处理;
所述第二后端处理包括以下任一项或任几项操作:乘以预定的复数矢量、增加循环前缀或后缀。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述方法。
本发明实施例提出一种多载波信号的生成方法和装置,通过改进多载波信号的生成方案,不但可以抵抗信道多径时延和传播时延带来的影响,消除ISI,还可以针对不同用户设备的信道环境,灵活的设置添零的个数(比如添零的个数不同,或者与原数据的长度的比例不同等);可以使用户设备相互间没有干扰,节省系统资源。
在阅读并理解了附图和详细描述后,可以明白其它方面。
附图概述
图1为相关技术中不同用户设备采用不同长度CP的示意图;
图2为实施例一的多载波信号的生成方法的流程示意图;
图3为实施例一的例子中多载波信号生成的流程示意图;
图4为实施例二的多载波信号的生成装置的示意图;
图5为实例1中的多载波信号生成的流程示意图;
图6为实例1中调制滤波模块的实现方式一的示意图;
图7为实例1中调制滤波模块的实现方式二的示意图;
图8为实例1中调制滤波模块的实现方式三的示意图;
图9为实例1中调制滤波模块的实现方式四的示意图;
图10为实例2中的多载波信号生成的流程示意图;
图11为实例3中的多载波信号生成的流程示意图。
本发明的实施方式
需要说明的是,如果不冲突,本发明实施例以及实施例中的特征可以相互结合。另外,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
实施例一、一种多载波信号的生成方法,如图2所示,包括S120~S150:
S120、对一段或多段单载波信号添零,进行信号变换,得到一个或多个变换域信号段。
可选地,所述多个变换域信号段的长度相同或不同。
可选地,步骤S120前还可以包括:
S110、将单载波信号分为一段或多段;每段单载波信号的大小可以不同。
相应地,对一段或多段单载波信号添零可以包括:对分段得到的每段单载波信号分别添零。
如果不进行步骤S110,则步骤S120中是直接将原始的单载波信号作为一段进行添零。
本可选方式中,步骤S110中,单载波信号分段可以有多种形式。
本可选方式中,分段后所得到的每段单载波信号的长度(即大小)可以相同或不同。
本可选方式中,步骤S110中,对于一个用户设备的任意长度的单载波信号,可以分成一段或多段单载波信号。
可选地,步骤S120中,对一段单载波信号进行添零的位置,可以是该段单载波信号的以下任一个或任几个位置:前部、中间部分、后部。位置是前部是指在该段单载波信号的第一位之前进行添零;位置是后部是指在该段单载波信号的最后一位之后进行添零;位置是中间部分是指在该段单载波信号第一位~最后一位中的任一位或任几位进行添零。后文中,为描述方便,无论 在哪个位置进行添零,都统称为信号添零。
可选地,步骤S120中的信号变换可以有多种方式,包括但不限于离散傅里叶变换或快速傅里叶变换,相应地,所述变换域可以但不限于为频域。
可选地,步骤S120中,当有多段单载波信号时,每段单载波信号添零的个数(即:添加几个零)可以是相同的,也可以是不同的;当在一段单载波信号中多个位置进行添零时,不同位置的添零的个数可以是相同的,也可以是不同的;不同用户设备的单载波信号添零的个数可以是相同的,也可以是不同的。
本可选方案中,对于添零的个数的选择,可以使所得到的变换域信号段的大小相同或不同。
S130、将所述一个或多个变换域信号段映射到一个或多个子带的资源位置上,得到一个或多个子带信号。
可选地,所述多个子带的资源大小相同或不同。步骤S130中所述将所述一个或多个变换域信号段映射到一个或多个子带的资源位置上包括但不限于以下可选实现方式:
方式一:按照一一对应的方式,将步骤S120得到的每个变换域信号段分别映射到所对应的一个子带的资源位置上;每个变换域信号段的大小相同或不同。
方式二:将步骤S120得到的每个变换域信号段再分别分成一段或多段变换域信号,按照一一对应的方式,将分成的每段变换域信号分别映射到所对应的一个子带的资源位置上;所分成的每段变换域信号的大小相同或不同。
方式三:将步骤S120得到的每个变换域信号段先进行组合后再分成一段或多段变换域信号,按照一一对应的方式,将分成的每段变换域信号分别映射到所对应的一个子带的资源位置上;先组合再分成的每段变换域信号的大小相同或不同。
S140、对所述一个或多个子带信号分别进行多载波调制和滤波。
步骤S140中,多载波调制、滤波的目的是输出多载波信号,且含有一个或多个进行了边带泄露抑制的子带信号。
步骤S140有多种可选的实现方式,实例1中给出了四种步骤S140的实现方式,参见实例1中的描述。
可选地,步骤S140包括三个子步骤:
子步骤S141、对所述一个或多个子带信号分别进行信号反变换。
子步骤S141中,信号反变换可以有多种方式,包括但不限于反离散傅里叶变换或反快速傅里叶变换。
子步骤S142、对子步骤S110得到的一个或多个子带信号分别进行中部处理。
子步骤S142中,所述中部处理的目的是为了降低最终时域信号的峰均比、增强最终时域信号抗符号间干扰或频率偏差的能力、降低最终时域信号的能耗、为后续流程提供拷贝信号等。
子步骤S142中,所述中部处理可以包括但不限于以下任一项或任几项操作:乘以预定的复数矢量、增加循环前缀或后缀等。
在其它可选方案中,也可以不进行子步骤S142,直接进行子步骤S143,相当于在子步骤S142中不进行操作,也相当于所述中部处理是指乘以[1,1,…1]的向量。
子步骤S143、对子步骤S142得到的每个子带信号分别进行滤波。
子步骤S143中,滤波可以是在时域进行,对时域信号进行滤波;也可以在变换域域进行等效滤波的处理。所述变换域包括但不限于频域。
S150、对多载波调制和滤波后的子带信号进行叠加。
可选地,步骤S150中,对多载波调制和滤波后的子带信号进行叠加前还可以包括:对多载波调制和滤波后的子带信号进行第一后端处理;
所述第一后端处理的目的是为了降低最终时域信号的峰均比、增强最终时域信号抗符号间干扰或频率偏差的能力、降低最终时域信号的能耗等。
所述第一后端处理可以包括但不限于以下任一项或任几项操作:乘以预定的复数矢量、增加循环前缀或后缀等。
可选地,步骤S150对多载波调制和滤波后的子带信号进行叠加前还可以 包括:对多载波调制和滤波后的子带信号进行第二后端处理。
所述第二后端处理的目的是为了降低最终时域信号的峰均比、增强最终时域信号抗符号间干扰或频率偏差的能力、降低最终时域信号的能耗等。
所述第二后端处理可以包括但不限于以下任一项或任几项操作:乘以预定的复数矢量、增加循环前缀或后缀等。
步骤S150中,叠加可以在时域进行,也可以在变换域进行。所述变换域包括但不限于频域。
步骤S150中,第一、第二后端处理可以都进行,也可以只进行其中任一,或者都不进行。
步骤S140、S150中,所述中部处理、第一后端处理、第二后端处理中的预定的复数矢量/循环前缀/循环后缀可以相同或不同。
本实施例的一个例子中,多载波信号生成的流程如图3所示,输入的单载波信号S0进行分段后,得到单载波信号S1(图3中S1包含了多组箭头),图3中一段单载波信号表示为S1所包含的多组箭头中的一组箭头,其中每一个箭头表示一个采样点的信号。
对每段单载波信号分别进行添零、进行信号变换得到变化域信号段S2(图3中S2包含了多组箭头),一个变化域信号段表示为S2所包含的多组箭头中的一组箭头;本例子中的添零位置是前部和后部,即在一段单载波信号中第一个采样点(即:第一位)之前、及最后一个采样点(即:最后一位)之后添零。
对信号变换后的多个变化域信号段S2进行信号组合、分段及资源映射;本例子中假设分为M段,将M段变化域信号按照一一对应的关系,分别映射到M个子带的资源位置上,得到M个子带信号S3,包括:子带信号S3-1、子带信号S3-2、……、子带信号S3-M。
对子带信号S3进行多载波调制、滤波后得到M个调制滤波后的子带信号S4,包括:子带信号S4-1、子带信号S4-2、……、子带信号S4-M。
对调制滤波后的子带信号S4进行后端处理得到待发送信号S5。
实施例二、一种多载波信号的生成装置,如图4所示,包括:
前端处理模块42,设置成对一段或多段单载波信号添零,进行信号变换,得到一个或多个变换域信号段;
资源映射模块43,设置成将所述一个或多个变换域信号段映射到一个或多个子带的资源位置上,得到一个或多个子带信号;
调制滤波模块44,设置成对所述一个或多个子带信号分别进行多载波调制和滤波;
后端处理模块45,设置成对多载波调制和滤波后的子带信号进行叠加。
可选地,所述多个变换域信号段的长度相同或不同;
所述多个子带的资源大小相同或不同。
可选地,所述装置还包括:
信号分段模块,设置成将单载波信号分为一段或多段;每段单载波信号的大小相同或不同;
所述前端处理模块42对一段或多段单载波信号添零包括:
所述前端处理模块42对分段得到的每段单载波信号分别添零。
如果所述装置不包括信号分段模块,则所述前端处理模块42直接将原始的单载波信号作为一段进行添零。
可选地,所述前端处理模块对一段单载波信号进行添零的位置是该段单载波信号的以下任一个或任几个位置:前部、中间部分、后部。
可选地,当有多段单载波信号时,所述前端处理模块对每个所述单载波信号添零的个数相同或不同;当在一段单载波信号中多个位置进行添零时,对不同位置的添零的个数相同或不同;对不同用户设备的单载波信号添零的个数相同或不同。
可选地,所述资源映射模块将一个或多个变换域信号段映射到一个或多个子带的资源位置上包括:
所述资源映射模块按照一一对应的方式,将每个所述变换域信号段分别映射到所对应的一个子带的资源位置上;每个所述变换域信号段的大小相同 或不同。
可选地,所述资源映射模块将一个或多个变换域信号段映射到一个或多个子带的资源位置上包括:
所述资源映射模块将每个所述变换域信号段再分别分成一段或多段变换域信号,按照一一对应的方式,将分成的每段变换域信号分别映射到所对应的一个子带的资源位置上;所分成的每段变换域信号的大小相同或不同。
可选地,所述资源映射模块将一个或多个变换域信号段映射到一个或多个子带的资源位置上包括:
所述资源映射模块将每个所述变换域信号段先进行组合后再分成一段或多段变换域信号,按照一一对应的方式,将分成的每段变换域信号分别映射到所对应的一个子带的资源位置上;先进行组合再分成的每段变换域信号的大小相同或不同。
可选地,所述调制滤波模块包括:
反变换单元,设置成对所述一个或多个子带信号分别进行信号反变换;
中部处理单元,设置成对反变换后得到的一个或多个子带信号分别进行中部处理;所述中部处理包括以下任一项或任几项操作:乘以预定的复数矢量、增加循环前缀或后缀;
滤波单元,设置成对中部处理后的每个子带信号分别进行滤波。
其中,所述中部处理可以但不限于是指乘以[1,1,…1]的向量。
可选地,所述后端处理模块还设置成在对多载波调制和滤波后的子带信号进行叠加前,对多载波调制和滤波后的子带信号进行第一后端处理;
所述第一后端处理包括以下任一项或任几项操作:乘以预定的复数矢量、增加循环前缀或后缀。
可选地,所述后端处理模块还设置成在对多载波调制和滤波后的子带信号进行叠加后,对多载波调制和滤波后的子带信号进行第二后端处理;
所述第二后端处理可以包括但不限于以下任一项或任几项操作:乘以预定的复数矢量、增加循环前缀或后缀。
下面用3个实例说明上述实施例。
实例1
本实例给出一种信号产生方法,对UFMC技术进行了改进,不但可以抵抗信道多径时延和传播时延带来的影响,消除ISI,还可以针对不同用户设备的信道环境,灵活的采用不同的参数而且可以使不同用户设备相互间没有干扰,节省系统资源。
本实例的方法包括如下的步骤101~105:
101:单载波信号分段;
101中,单载波信号分段可以有多种形式;
101中,对于一个用户设备的任意长度的单载波信号可以分成一段或多段单载波信号;每段单载波信号的大小相同或不同。
102:对分段得到的每段单载波信号分别进行添零后,进行信号变换,得到多个变换域信号段;每个变换域信号段的大小相同或不同。
102中,对每段单载波信号进行添零的位置,可以是每段单载波信号的以下任一个或任几个位置:前部、中间部分、后部。
102中的信号变换可以有多种方式,包括但不限于离散傅里叶变换或快速傅里叶变换,相应地,所述变换域可以但不限于为频域。
102中,每段单载波信号添零的个数可以是不同的;当在一段单载波信号中多个位置进行添零时,不同位置的添零的个数也可以是不同的;不同用户设备的单载波信号添零的个数也可以是不同的。
103:按照一一对应的方式,将102得到的每个变换域信号段分别映射到所对应的一个子带的资源位置上,组成相应子带的输入信号,即得到子带信号;每个子带的资源的大小相同或不同。
104:对103得到的多个子带信号分别进行多载波调制、滤波。
104中,多载波调制、滤波的目的是输出多载波信号,且含有多个进行了边带泄露抑制的子带信号。
步骤104有多种可供选择的实现方式,本实例中给出了四种步骤104的实现方式,参见后文。
步骤104的上述实现方式也可以应用于其他实例上,后文不再赘述。
104可以包括三个子步骤:
子步骤一:每个子带信号分别进行信号反变换。
子步骤一中,信号反变换可以有多种方式,包括但不限于反离散傅里叶变换或反快速傅里叶变换。
子步骤二:对子步骤一得到的多个子带信号分别进行中部处理。
子步骤二中,所述中部处理的目的是为了降低最终时域信号的峰均比、增强最终时域信号抗符号间干扰或频率偏差的能力、降低最终时域信号的能耗、为后续流程提供拷贝信号等。
子步骤二中,所述中部处理可以包括但不限于以下任一项或任几项操作:乘以预定的复数矢量、增加循环前缀或后缀等。
子步骤二中也可以不进行操作,相当于乘以[1,1,…1]的向量,可看做子步骤二的特殊例。
子步骤三:对子步骤二得到的多个子带信号分别进行滤波。
子步骤三中,滤波可以是在时域进行,对时域信号进行滤波;也可以在变换域域进行等效滤波的处理。所述变换域包括但不限于频域。
105:对104得到的多载波调制和滤波后的多个子带信号进行后端处理。
105中,所述后端处理包括对所述子带信号的第一后端处理、所述多个子带信号叠加、第二后端处理。
105中,所述第一后端处理的目的是为了降低最终时域信号的峰均比、增强最终时域信号抗符号间干扰或频率偏差的能力、降低最终时域信号的能耗等。所述第一后端处理可以包括但不限于以下操作:乘以预定的复数矢量、增加循环前缀或后缀等。
105中,所述第二后端处理的目的是为了降低最终时域信号的峰均比、增强最终时域信号抗符号间干扰或频率偏差的能力、降低最终时域信号的能 耗等。所述第二后端处理可以包括但不限于以下操作:乘以预定的复数矢量、增加循环前缀或后缀等。
105中,子带信号的叠加可以在时域进行,也可以在变换域进行。所述变换域包括但不限于频域。
本实例可采用实施例二的装置实现。
本实例的多载波信号生成的流程如图5所示,输入的单载波信号S10进行分段后,得到单载波信号S11(图5中S11包含了多组箭头),图5中一段单载波信号表示为S11所包含的多组箭头中的一组箭头,其中每一个箭头表示一个采样点的信号。
对每段单载波信号分别进行添零、进行信号变换得到变化域信号段S12(图5中S12包含了多组箭头),一个变化域信号段表示为S12所包含的多组箭头中的一组箭头;本例子中的添零位置是前部和后部,即在一段单载波信号中第一个采样点(即:第一位)之前、及最后一个采样点(即:最后一位)之后添零。
对信号变换后的多个变化域信号段S12按照一一对应的关系,分别映射到M个子带的资源位置上,即:分别组成子带1、子带2、……、子带M的输入信号,得到子带信号S13,包括:子带信号S13-1、子带信号S13-2、……、子带信号S13-M。
对子带信号S13进行多载波调制、滤波后得到M个调制滤波后的子带信号S14,包括:调制滤波后的子带信号S14-1、调制滤波后的子带信号S14-2、……、调制滤波后的子带信号S14-M。
对调制滤波后的子带信号S14进行后端处理得到待发送信号S15。
其中,104中的多载波调制、滤波(即:对子带信号S13进行的多载波调制、滤波)包括如下四种可选的实现方式:
实现方式一,104中的子步骤一的反变换采用反离散傅里叶变换,子步骤三的滤波采用BPF(Band-Pass Filter,带通滤波器)进行。
该实现方式中,执行104的调制滤波模块如图6所示,包括反离散傅里叶变换单元5-1、5-2、……、5-M;中部处理单元6-1、6-2、……、6-M;带 通滤波器7-1、7-2、……、7-M;反离散傅里叶变换单元和中部处理单元一一对应连接,中部处理单元和BPF一一对应连接。
子带信号S13-1、S13-2、……、S13-M分别输入反离散傅里叶变换单元5-1、5-2、……、5-M;带通滤波器7-1、7-2、……、7-M分别输出调制滤波后的子带信号S14-1、S14-2、……、S14-M。
实现方式二、和实施方式一的区别在于子步骤三的滤波采用LPF(Low Pass Filter,低通滤波器)及乘法器实现。
该实现方式中,执行104的调制滤波模块如图7所示,包括反离散傅里叶变换单元5-1、5-2、……、5-M;中部处理单元6-1、6-2、……、6-M;低通滤波器8-1、8-2、……、8-M及M个乘法器;反离散傅里叶变换单元和中部处理单元一一对应连接,中部处理单元和LPF一一对应连接;LPF与乘法器一一对应连接,分别通过所连接的乘法器与参考频率f1-1、f1-2、……、f1-M相乘;相连的一个低通滤波器和一个乘法器组成一个执行104中子步骤三的滤波单元。
子带信号S13-1、S13-2、……、S13-M分别输入反离散傅里叶变换单元5-1、5-2、……、5-M;M个乘法器分别输出调制滤波后的子带信号S14-1、S14-2、……、S14-M。
实现方式三、和实施方式二的区别在于子步骤一采用反快速傅里叶变换,且全部子带信号采用一个IFFT单元完成反变换,采用一个中部处理单元完成中部处理;子步骤三中,先将中部处理的结果与参考频率相乘后,再送入LPF(Low Pass Filter,低通滤波器),对LPF的输出进行上采样后输入给乘法器。
该实现方式中,执行104的调制滤波模块如图8所示,包括一个反快速傅里叶变换单元10-0;中部处理单元6-0;M个第一乘法器;低通滤波器8-1、8-2、……、8-M;上采样单元9-1、9-2、……、9-M,及M个第二乘法器;反快速傅里叶变换单元和中部处理单元相连,中部处理单元和M个第一乘法器相连,分别通过所连接的第一乘法器与参考频率f2-1、f2-2、……、f2-M相乘后输入LPF;LPF与上采样单元一一对应连接;上采样单元与第二乘法器一一对应连接,分别通过所连接的第二乘法器与参考频率f1-1、f1-2、……、f1-M相乘;相连的一个第一乘法器、一个低通滤波器、一个上采样单元和一个第 二乘法器组成一个执行104中子步骤三的滤波单元。
子带信号S13-1、S13-2、……、S13-M全部输入反快速傅里叶变换单元10-0;M个第二乘法器分别输出调制滤波后的子带信号S14-1、S14-2、……、S14-M。
实现方式四、和实施方式二的区别在于子步骤一采用反快速傅里叶变换,子步骤三中,对LPF(Low Pass Filter,低通滤波器)的输出进行上采样后输入给乘法器。
该实现方式中,执行104的调制滤波模块如图9所示,包括反快速傅里叶变换单元10-1、10-2、……、10-M;中部处理单元6-1、6-2、……、6-M;低通滤波器8-1、8-2、……、8-M;上采样单元9-1、9-2、……、9-M,及M个乘法器;反快速傅里叶变换单元和中部处理单元一一对应连接,中部处理单元和LPF一一对应连接;LPF与上采样单元一一对应连接;上采样单元与乘法器一一对应连接,分别通过所连接的乘法器与参考频率f1-1、f1-2、……、f1-M相乘;相连的一个低通滤波器、一个上采样单元和一个乘法器组成一个执行104中子步骤三的滤波单元。
子带信号S13-1、S13-2、……、S13-M分别输入反快速傅里叶变换单元10-1、10-2、……、10-M;M个乘法器分别输出调制滤波后的子带信号S14-1、S14-2、……、S14-M。
实例2
本实例给出一种多载波信号的生成方法,对UFMC技术进行了改进,不但可以抵抗信道多径时延和传播时延带来的影响,消除ISI,还可以针对不同用户设备的信道环境,灵活的采用不同的参数而且可以使不同用户设备相互间没有干扰,节省系统资源。
本实例的步骤包括如下的步骤201~205:
201:单载波信号分段;每段单载波信号的大小相同或不同。
201中,单载波信号分段可以有多种形式;
201中,对于一个用户设备的任意长度的单载波信号可以分成一段或多 段单载波信号。
202:对分段得到的每段单载波信号分别进行添零后,进行信号变换,得到多个变换域信号段;每个变换域信号段的大小相同或不同。
202中,对一段单载波信号进行添零的位置,可以是该段单载波信号的以下任一个或任几个位置:前部、中间部分、后部。
202中的信号变换可以有多种方式,包括但不限于离散傅里叶变换或快速傅里叶变换,相应地,所述变换域可以但不限于为频域。
202中,每段单载波信号添零的个数可以是不同的;当在一段单载波信号中多个位置进行添零时,不同位置的添零的个数也可以是不同的;不同用户设备的单载波信号添零的个数也可以是不同的。
203:将步骤202得到的每个变换域信号段再分别分成一段或多段变换域信号,所分成的每段变化域信号的大小相同或不同;按照一一对应的方式,将分成的每段变换域信号分别映射到所对应的一个子带的资源位置上,得到子带信号;每个子带的资源的大小相同或不同。
204:对203得到的多个子带信号分别进行多载波调制、滤波。
204中,多载波调制、滤波的目的是输出多载波信号,且含有多个进行了边带泄露抑制的子带信号。步骤204有多种实现方式,实例1中给出了几种步骤204的可选实现方式。
204可以包括三个子步骤:
子步骤一:每个子带信号分别进行信号反变换。
子步骤一中,信号反变换可以有多种方式,包括但不限于反离散傅里叶变换或反快速傅里叶变换。
子步骤二:对子步骤一得到的多个子带信号分别进行中部处理。
子步骤二中,所述中部处理的目的是为了降低最终时域信号的峰均比、增强最终时域信号抗符号间干扰或频率偏差的能力、降低最终时域信号的能耗、为后续流程提供拷贝信号等。
子步骤二中,所述中部处理可以包括但不限于以下任一项或任几项操作: 乘以预定的复数矢量、增加循环前缀或后缀等。
子步骤二中也可以不进行操作,相当于乘以[1,1,…1]的向量,可看做子步骤二的特殊例。
子步骤三:对子步骤二得到的多个子带信号分别进行滤波。
子步骤三中,滤波可以是在时域进行,对时域信号进行滤波;也可以在变换域域进行等效滤波的处理。所述变换域包括但不限于频域。
205:对204得到的多载波调制和滤波后的多个子带信号进行后端处理。
205中,所述后端处理包括对所述子带信号的第一后端处理、所述多个子带信号叠加、第二后端处理。
205中,所述第一后端处理的目的是为了降低最终时域信号的峰均比、增强最终时域信号抗符号间干扰或频率偏差的能力、降低最终时域信号的能耗等。所述第一后端处理可以包括但不限于以下操作:乘以预定的复数矢量、增加循环前缀或后缀等。
205中,所述第二后端处理的目的是为了降低最终时域信号的峰均比、增强最终时域信号抗符号间干扰或频率偏差的能力、降低最终时域信号的能耗等。所述第二后端处理可以包括但不限于以下操作:乘以预定的复数矢量、增加循环前缀或后缀等。
205中,子带信号的叠加可以在时域进行,也可以在变换域进行。所述变换域包括但不限于频域。
本实例可采用实施例二的装置实现。
本实例的多载波信号生成的流程如图10所示,输入的单载波信号S20进行分段后,得到单载波信号S21,图10所示的是分成一段单载波信号的情况,分成多段时,每段单载波信号的处理流程同图10。图10中一段单载波信号表示为S21所包含的一组箭头,其中每一个箭头表示一个采样点的信号。
对每段单载波信号分别进行添零、进行信号变换得到变化域信号段S22(图10中S22包含了多组箭头),一个变化域信号段表示为S22所包含的多组箭头中的一组箭头;本例子中的添零位置是前部和后部,即在一段单载波信号中第一个采样点(即:第一位)之前、及最后一个采样点(即:最后一 位)之后添零。
对信号变换后的多个变化域信号段S22按照一一对应的关系,分别映射到M个子带的资源位置上,即:分别组成子带1、子带2、……、子带M的输入信号,得到子带信号S23,包括:子带信号S23-1、子带信号S23-2、……、子带信号S23-M。
对子带信号S23进行多载波调制、滤波后得到M个调制滤波后的子带信号S24,包括:调制滤波后的子带信号S24-1、调制滤波后的子带信号S24-2、……、调制滤波后的子带信号S24-M。
对调制滤波后的子带信号S24进行后端处理得到待发送信号S25。
实例3
本实例提出一种信号产生方法,对UFMC技术进行了改进,不但可以抵抗信道多径时延和传播时延带来的影响,消除ISI,还可以针对不同用户设备的信道环境,灵活的采用不同的参数而且可以使不同用户设备相互间没有干扰,节省系统资源。
本实例的步骤包括如下的步骤301~305:
301:单载波信号分段;每段单载波信号的大小相同或不同。
301中,单载波信号分段可以有多种形式;
301中,对于一个用户设备的任意长度的单载波信号可以分成一段或多段单载波信号。
302:对分段得到的每段单载波信号分别进行添零后,进行信号变换,得到多个变换域信号段;每个变换域信号段的大小相同或不同。
302中,对一段单载波信号进行添零的位置,可以是该段单载波信号的以下任一个或任几个位置:前部、中间部分、后部。
302中的信号变换可以有多种方式,包括但不限于离散傅里叶变换或快速傅里叶变换,相应地,所述变换域可以但不限于为频域。
302中,每段单载波信号添零的个数可以是不同的;当在一段单载波信 号中多个位置进行添零时,不同位置的添零的个数也可以是不同的;不同用户设备的单载波信号添零的个数也可以是不同的。
303:将步骤302得到的每个变换域信号段先进行组合后再分成一段或多段变换域信号,先组合再分成的每段变化域信号的大小相同或不同;按照一一对应的方式,将分成的每段变换域信号分别映射到所对应的一个子带的资源位置上,得到子带信号;每个子带的资源的大小相同或不同。
304:对303得到的多个子带信号分别进行多载波调制、滤波。
304中,多载波调制、滤波的目的是输出多载波信号,且含有多个进行了边带泄露抑制的子带信号。步骤304有多种实现方式,实例1中给出了几种步骤204的实现方式。
304可以包括三个子步骤:
子步骤一:每个子带信号分别进行信号反变换。
子步骤一中,信号反变换可以有多种方式,包括但不限于反离散傅里叶变换或反快速傅里叶变换。
子步骤二:对子步骤一得到的多个子带信号分别进行中部处理。
子步骤二中,所述中部处理的目的是为了降低最终时域信号的峰均比、增强最终时域信号抗符号间干扰或频率偏差的能力、降低最终时域信号的能耗、为后续流程提供拷贝信号等。
子步骤二中,所述中部处理可以包括但不限于以下任一项或任几项操作:乘以预定的复数矢量、增加循环前缀或后缀等。
子步骤二中也可以不进行操作,相当于乘以[1,1,…1]的向量,可看做子步骤二的特殊例。
子步骤三:对子步骤二得到的多个子带信号分别进行滤波。
子步骤三中,滤波可以是在时域进行,对时域信号进行滤波;也可以在变换域域进行等效滤波的处理。所述变换域包括但不限于频域。
305:对304得到的多载波调制和滤波后的多个子带信号进行后端处理。
305中,所述后端处理包括对所述子带信号的第一后端处理、所述多个 子带信号叠加、第二后端处理。
305中,所述第一后端处理的目的是为了降低最终时域信号的峰均比、增强最终时域信号抗符号间干扰或频率偏差的能力、降低最终时域信号的能耗等。所述第一后端处理可以包括但不限于以下操作:乘以预定的复数矢量、增加循环前缀或后缀等。
305中,所述第二后端处理的目的是为了降低最终时域信号的峰均比、增强最终时域信号抗符号间干扰或频率偏差的能力、降低最终时域信号的能耗等。所述第二后端处理可以包括但不限于以下操作:乘以预定的复数矢量、增加循环前缀或后缀等。
305中,子带信号的叠加可以在时域进行,也可以在变换域进行。所述变换域包括但不限于频域。本实例可采用实施例二的装置实现。
本实例的多载波信号生成的流程如图11所示,输入的单载波信号S30进行分段后,得到单载波信号S31(图11中S31包含了多组箭头),图11中一段单载波信号表示为S31所包含的多组箭头中的一组箭头,其中每一个箭头表示一个采样点的信号。
对每段单载波信号分别进行添零、进行信号变换得到变化域信号段S32(图11中S32包含了多组箭头),一个变化域信号段表示为S32所包含的多组箭头中的一组箭头;本例子中的添零位置是前部和后部,即在一段单载波信号中第一个采样点(即:第一位)之前、及最后一个采样点(即:最后一位)之后添零。
对信号变换后的多个变化域信号段S32先组合再分为M段,分别映射到M个子带的资源位置上,即:分别组成子带1、……、子带M的输入信号,得到子带信号S33,包括:子带信号S33-1、……、子带信号S33-M。本实例中是每N(N为大于1的正整数)个变化域信号段S32组合后分成一段,实现时不限于该方式,可以是任意的组合、分段方式。
对子带信号S33进行多载波调制、滤波后得到M个调制滤波后的子带信号S34,包括:调制滤波后的子带信号S34-1、……、调制滤波后的子带信号S34-M。
对调制滤波后的子带信号S34进行后端处理得到待发送信号S35。
实施例三、一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述实施例一的方法。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本发明实施例不限制于任何特定形式的硬件和软件的结合。
工业实用性
本发明实施例提出一种多载波信号的生成方法和装置,通过改进多载波信号的生成方案,不但可以抵抗信道多径时延和传播时延带来的影响,消除ISI,还可以针对不同用户设备的信道环境,灵活的设置添零的个数(比如添零的个数不同,或者与原数据的长度的比例不同等);可以使用户设备相互间没有干扰,节省系统资源。

Claims (24)

  1. 一种多载波信号的生成方法,包括:
    对一段或多段单载波信号添零,进行信号变换,得到一个或多个变换域信号段;
    将所述一个或多个变换域信号段映射到一个或多个子带的资源位置上,得到一个或多个子带信号;
    对所述一个或多个子带信号分别进行多载波调制和滤波;
    对多载波调制和滤波后的子带信号进行叠加。
  2. 如权利要求1所述的多载波信号的生成方法,其中:
    所述多个变换域信号段的长度相同或不同;
    所述多个子带的资源大小相同或不同。
  3. 如权利要求1所述的多载波信号的生成方法,其中,所述对一段或多段单载波信号添零前还包括:
    将单载波信号分为一段或多段;每段单载波信号的大小相同或不同;
    所述对一段或多段单载波信号分别添零包括:
    对分段得到的每段单载波信号分别添零。
  4. 如权利要求1所述的多载波信号的生成方法,其中:
    对一段单载波信号添零的位置是该段单载波信号的以下任一个或任几个位置:前部、中间部分、后部。
  5. 如权利要求1所述的多载波信号的生成方法,其中:
    当有多段单载波信号时,每段所述单载波信号添零的个数相同或不同;当在一段单载波信号中多个位置进行添零时,不同位置的添零的个数相同或不同;不同用户设备的单载波信号添零的个数相同或不同。
  6. 如权利要求1所述的多载波信号的生成方法,其中,所述将一个或多 个变换域信号段映射到一个或多个子带的资源位置上包括:
    按照一一对应的方式,将每个所述变换域信号段分别映射到所对应的一个子带的资源位置上;每个所述变换域信号段的大小相同或不同。
  7. 如权利要求1所述的多载波信号的生成方法,其中,所述将一个或多个变换域信号段映射到一个或多个子带的资源位置上包括:
    将每个所述变换域信号段再分别分成一段或多段变换域信号,按照一一对应的方式,将分成的每段变换域信号分别映射到所对应的一个子带的资源位置上;所分成的每段变换域信号的大小相同或不同。
  8. 如权利要求1所述的多载波信号的生成方法,其中,所述将一个或多个变换域信号段映射到一个或多个子带的资源位置上包括:
    将每个所述变换域信号段先进行组合后再分成一段或多段变换域信号,按照一一对应的方式,将分成的每段变换域信号分别映射到所对应的一个子带的资源位置上;先进行组合再分成的每段变换域信号的大小相同或不同。
  9. 如权利要求1所述的多载波信号的生成方法,其中,所述对所述一个或多个子带信号分别进行多载波调制和滤波包括:
    对所述一个或多个子带信号分别进行信号反变换;
    对反变换后得到的一个或多个子带信号分别进行中部处理;所述中部处理包括以下任一项或任几项操作:乘以预定的复数矢量、增加循环前缀或后缀;
    对中部处理后的每个子带信号分别进行滤波。
  10. 如权利要求9所述的多载波信号的生成方法,其中:
    所述中部处理是指乘以[1,1,…1]的向量。
  11. 如权利要求1所述的多载波信号的生成方法,其中,所述对多载波调制和滤波后的子带信号进行叠加前还包括:
    对多载波调制和滤波后的子带信号进行第一后端处理;
    所述第一后端处理包括以下任一项或任几项操作:乘以预定的复数矢量、增加循环前缀或后缀。
  12. 如权利要求1所述的多载波信号的生成方法,其中,所述对多载波调制和滤波后的子带信号进行叠加后还包括:
    对多载波调制和滤波后的子带信号进行第二后端处理;
    所述第二后端处理包括以下任一项或任几项操作:乘以预定的复数矢量、增加循环前缀或后缀。
  13. 一种多载波信号的生成装置,包括:
    前端处理模块,设置成对一段或多段单载波信号添零,进行信号变换,得到一个或多个变换域信号段;
    资源映射模块,设置成将所述一个或多个变换域信号段映射到一个或多个子带的资源位置上,得到一个或多个子带信号;
    调制滤波模块,设置成对所述一个或多个子带信号分别进行多载波调制和滤波;
    后端处理模块,设置成对多载波调制和滤波后的子带信号进行叠加。
  14. 如权利要求13所述的多载波信号的生成装置,其中:
    所述多个变换域信号段的长度相同或不同;
    所述多个子带的资源大小相同或不同。
  15. 如权利要求13所述的多载波信号的生成装置,还包括:
    信号分段模块,设置成将单载波信号分为一段或多段;每段单载波信号的大小相同或不同;
    所述前端处理模块对一段或多段单载波信号添零包括:
    所述前端处理模块对分段得到的每段单载波信号分别添零。
  16. 如权利要求13所述的多载波信号的生成装置,其中:
    所述前端处理模块对一段单载波信号进行添零的位置是该段单载波信号 的以下任一个或任几个位置:前部、中间部分、后部。
  17. 如权利要求13所述的多载波信号的生成装置,其中:
    当有多段单载波信号时,所述前端处理模块对每段所述单载波信号添零的个数相同或不同;当在一段单载波信号中多个位置进行添零时,对不同位置的添零的个数相同或不同;对不同用户设备的单载波信号添零的个数相同或不同。
  18. 如权利要求13所述的多载波信号的生成装置,其中,所述资源映射模块将一个或多个变换域信号段映射到一个或多个子带的资源位置上包括:
    所述资源映射模块按照一一对应的方式,将每个所述变换域信号段分别映射到所对应的一个子带的资源位置上;每个所述变换域信号段的大小相同或不同。
  19. 如权利要求13所述的多载波信号的生成装置,其中,所述资源映射模块将一个或多个变换域信号段映射到一个或多个子带的资源位置上包括:
    所述资源映射模块将每个所述变换域信号段再分别分成一段或多段变换域信号,按照一一对应的方式,将分成的每段变换域信号分别映射到所对应的一个子带的资源位置上;所分成的每段变换域信号的大小相同或不同。
  20. 如权利要求13所述的多载波信号的生成装置,其中,所述资源映射模块将一个或多个变换域信号段映射到一个或多个子带的资源位置上包括:
    所述资源映射模块将每个所述变换域信号段先进行组合后再分成一段或多段变换域信号,按照一一对应的方式,将分成的每段变换域信号分别映射到所对应的一个子带的资源位置上;先进行组合再分成的每段变换域信号的大小相同或不同。
  21. 如权利要求13所述的多载波信号的生成装置,其中,所述调制滤波模块包括:
    反变换单元,设置成对所述一个或多个子带信号分别进行信号反变换;
    中部处理单元,设置成对反变换后得到的一个或多个子带信号分别进行 中部处理;所述中部处理包括以下任一项或任几项操作:乘以预定的复数矢量、增加循环前缀或后缀;
    滤波单元,设置成对中部处理后的每个子带信号分别进行滤波。
  22. 如权利要求21所述的多载波信号的生成装置,其中:
    所述中部处理是指乘以[1,1,…1]的向量。
  23. 如权利要求13所述的多载波信号的生成装置,其中:
    所述后端处理模块还设置成在对多载波调制和滤波后的子带信号进行叠加前,对多载波调制和滤波后的子带信号进行第一后端处理;
    所述第一后端处理包括以下任一项或任几项操作:乘以预定的复数矢量、增加循环前缀或后缀。
  24. 如权利要求13所述的多载波信号的生成装置,其中:
    所述后端处理模块还设置成在对多载波调制和滤波后的子带信号进行叠加后,对多载波调制和滤波后的子带信号进行第二后端处理;
    所述第二后端处理包括以下任一项或任几项操作:乘以预定的复数矢量、增加循环前缀或后缀。
PCT/CN2016/093093 2015-12-14 2016-08-03 一种多载波信号的生成方法和装置 WO2017101459A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510925556.6 2015-12-14
CN201510925556.6A CN106878221B (zh) 2015-12-14 2015-12-14 一种多载波信号的生成方法和装置

Publications (1)

Publication Number Publication Date
WO2017101459A1 true WO2017101459A1 (zh) 2017-06-22

Family

ID=59055671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093093 WO2017101459A1 (zh) 2015-12-14 2016-08-03 一种多载波信号的生成方法和装置

Country Status (2)

Country Link
CN (1) CN106878221B (zh)
WO (1) WO2017101459A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116886135A (zh) * 2023-09-04 2023-10-13 思腾合力(天津)科技有限公司 基于方向调制的多载波信号生成方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101917252A (zh) * 2010-08-06 2010-12-15 电子科技大学 一种基于添零方式的ci-ofdm通信方法
CN101980494A (zh) * 2010-10-15 2011-02-23 北京星河亮点通信软件有限责任公司 Td-lte终端测试仪器的idft实现方法及其系统
US20110188563A1 (en) * 2010-01-28 2011-08-04 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement in a telecommunication system
CN105119857A (zh) * 2015-07-17 2015-12-02 电子科技大学 一种雷达站间低抖动、抗干扰信号通信链路技术

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1246983C (zh) * 2003-09-19 2006-03-22 清华大学 有效降低子载波间干扰(ici)的分段解调方法
US7787546B2 (en) * 2005-04-06 2010-08-31 Samsung Electronics Co., Ltd. Apparatus and method for FT pre-coding of data to reduce PAPR in a multi-carrier wireless network
CN100544339C (zh) * 2005-09-08 2009-09-23 华为技术有限公司 一种数字电视广播调制方法和装置
CN100452652C (zh) * 2006-02-21 2009-01-14 上海无线通信研究中心 一种双正交滤波器设计方法及其设计装置
US7974176B2 (en) * 2006-02-28 2011-07-05 Atc Technologies, Llc Systems, methods and transceivers for wireless communications over discontiguous spectrum segments
JP5089900B2 (ja) * 2006-03-24 2012-12-05 富士通株式会社 無線端末装置、無線基地局の制御方法、無線端末装置の制御方法
CN101123598A (zh) * 2006-08-11 2008-02-13 松下电器产业株式会社 基于dfdma和lfdma的通信设备及其方法
CN101212437B (zh) * 2006-12-31 2012-02-29 华为技术有限公司 基于ofdm的前缀信号收发方法及设备
JP5366494B2 (ja) * 2007-10-10 2013-12-11 パナソニック株式会社 マルチキャリア送信装置
WO2010015102A1 (en) * 2008-08-04 2010-02-11 Nxp B. V. An adaptive scheme to determine the sub-carrier spacing for multi-carrier systems
MX2011001710A (es) * 2008-08-12 2011-03-30 Lg Electronics Inc Metodo de transmision de datos en un sistema de portadores multiples y transmisor.
CN101437010B (zh) * 2008-12-03 2012-10-03 华为终端有限公司 一种正交频分复用系统信道估计方法和装置
CN101753491A (zh) * 2008-12-17 2010-06-23 中国科学院半导体研究所 一种多入多出正交频分复用系统的信道估计方法
CN101909034B (zh) * 2010-06-22 2013-08-07 北京大学 基于单载波频分多址的无源光网络发送、接收方法及系统
CN104243386B (zh) * 2014-08-15 2017-09-01 电子科技大学 多载波通信系统附加通道信息传输方法
CN104883238B (zh) * 2015-03-31 2018-05-01 重庆邮电大学 一种多载波时分复用调制/解调方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110188563A1 (en) * 2010-01-28 2011-08-04 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement in a telecommunication system
CN101917252A (zh) * 2010-08-06 2010-12-15 电子科技大学 一种基于添零方式的ci-ofdm通信方法
CN101980494A (zh) * 2010-10-15 2011-02-23 北京星河亮点通信软件有限责任公司 Td-lte终端测试仪器的idft实现方法及其系统
CN105119857A (zh) * 2015-07-17 2015-12-02 电子科技大学 一种雷达站间低抖动、抗干扰信号通信链路技术

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116886135A (zh) * 2023-09-04 2023-10-13 思腾合力(天津)科技有限公司 基于方向调制的多载波信号生成方法及装置
CN116886135B (zh) * 2023-09-04 2023-11-10 思腾合力(天津)科技有限公司 基于方向调制的多载波信号生成方法及装置

Also Published As

Publication number Publication date
CN106878221A (zh) 2017-06-20
CN106878221B (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
US9692629B2 (en) Resource block based multicarrier modulations for agile spectrum
KR102245479B1 (ko) 필터뱅크 기반 다중 반송파 통신 시스템에서 변조 신호 전송을 위한 송수신 방법 및 장치
CN111903102B (zh) 用于在fbmc发射机中插入伪保护间隔的方法和设备
US20180159712A1 (en) Transmission apparatus, reception apparatus, and communication system
CN106161316B (zh) 导频序列参考信号发送、接收方法及其装置
KR102116347B1 (ko) 필터뱅크 다중 반송파 기법을 위한 자원블록간 간섭 제거 방법 및 이를 이용한 장치
US20210051050A1 (en) Method and system for multi-carrier time division multiplexing modulation/demodulation
WO2016023194A1 (zh) Fbmc信号的发送方法、接收方法和发射机以及接收机
KR20170054821A (ko) 무선 통신 시스템에서 신호의 피크 대 평균 전력 비율을 제어하는 장치 및 동작 방법
TWI517640B (zh) 產生ofdm資料信號的方法
CN106936755B (zh) 一种信号处理方法及设备
CN106961405B (zh) 多载波系统的数据调制、解调方法、数据传输方法及节点
CN106961406B (zh) 多载波系统的数据调制、解调方法、帧生成方法及节点
Nadal et al. Flexible and efficient hardware platform and architectures for waveform design and proof-of-concept in the context of 5G
WO2017129001A1 (zh) 一种数据处理方法和装置
WO2017101462A1 (zh) 一种多载波信号的生成方法和装置
Nimr et al. Generalized frequency division multiplexing: Unified multicarrier framework
WO2017101459A1 (zh) 一种多载波信号的生成方法和装置
WO2015046907A1 (ko) 필터뱅크 기반 다중 반송파 통신 시스템에서 변조 신호 전송을 위한 송수신 방법 및 장치
WO2017114025A1 (zh) 一种通信处理方法、处理器和通信设备
EP4373042A1 (en) Data transmission method and apparatus, data modulation method and apparatus, electronic device, and storage medium
WO2017167386A1 (en) A transmitter for transmitting and a receiver for receiving a plurality of multicarrier modulation signals
KR20160022181A (ko) 필터뱅크 기반 다중 반송파 통신 시스템에서 qam 신호의 송수신 방법 및 그 장치
US20190349157A1 (en) Receiver, transmitter, communication system for subband communication and methods for subband communication
CN105024950B (zh) 一种数据检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16874519

Country of ref document: EP

Kind code of ref document: A1