WO2017101213A1 - 一种三相流体的逐级减压方法及其设计方法和用途 - Google Patents

一种三相流体的逐级减压方法及其设计方法和用途 Download PDF

Info

Publication number
WO2017101213A1
WO2017101213A1 PCT/CN2016/074091 CN2016074091W WO2017101213A1 WO 2017101213 A1 WO2017101213 A1 WO 2017101213A1 CN 2016074091 W CN2016074091 W CN 2016074091W WO 2017101213 A1 WO2017101213 A1 WO 2017101213A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
phase fluid
stage
pressure reduction
reducing valve
Prior art date
Application number
PCT/CN2016/074091
Other languages
English (en)
French (fr)
Inventor
李苏安
邓清宇
王靖宇
Original Assignee
北京中科诚毅科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京中科诚毅科技发展有限公司 filed Critical 北京中科诚毅科技发展有限公司
Publication of WO2017101213A1 publication Critical patent/WO2017101213A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues

Definitions

  • the invention relates to a step-by-step decompression method for a three-phase fluid, a design method thereof and a use thereof, and belongs to the fields of petrochemical industry and coal chemical industry.
  • the present invention provides a step-by-step pressure reduction method for a three-phase fluid, which can greatly extend the service life of the wear valve and reduce the economic loss and safety risk caused by the wear of the pump.
  • the invention also provides its design method and use.
  • a step-by-step pressure reduction method for a three-phase fluid characterized in that the three-phase fluid flows through at least two stages of a pressure reducing valve to complete a pressure reduction to separate light components, and the pressure of the three-phase fluid before the first pressure reduction Is ⁇ 15MPa, the three-phase fluid after the last decompression
  • the pressure is ⁇ 5Mpa, and the content of each phase of gas, liquid and solid in the three-phase fluid is ⁇ 1wt%.
  • the pressure reduction amplitude of each stage of the pressure reducing valve is ⁇ 10 MPa.
  • the pressure reduction range of each stage of the pressure reducing valve is 4 to 8 MPa.
  • the difference in the pressure reduction width of each of the pressure reducing valves does not exceed 2 MPa.
  • the decompression amplitude is controlled by a pressure difference before or after the three-phase fluid flows through each stage of the pressure reducing valve or a pressure value after flowing through each stage of the pressure reducing valve.
  • a pressure tapping point is provided after the pressure reducing valve of each stage, the pressure tapping point being disposed on the pipe immediately adjacent to the pressure reducing valve or the separator in front of the lower pressure reducing valve.
  • the use of the above-mentioned three-phase fluid step-by-step decompression method is characterized in that it is used for heavy oil hydrogenation process, coal direct liquefaction process and oil coal mixing process, and heavy oil hydrogenation process refers to crude oil, atmospheric residue, and reduction
  • Heavy oil hydrogenation process refers to crude oil, atmospheric residue, and reduction
  • One or more combinations of crushed oil, catalytic oil slurry, deoiled asphalt and coal tar are processed as raw materials
  • oil coal blending process refers to crude oil, atmospheric residue, vacuum residue, catalytic slurry, and off
  • One or more combinations of oil pitch and coal tar are processed in combination with one or more of lignite and bituminous coal, and the ratio of oil to coal ranges from 97 to 30:3:70.
  • the step-by-step step-down method for three-phase fluid of the present invention reduces the gas phase light component by gradually decompressing the fluid through at least two-stage pressure reducing valve, and the step-down stepping reduces each stage.
  • the magnitude of the pressure drop can directly reduce the degree of expansion wear and cavitation wear of the equipment and the valve.
  • the present invention further preferably designs a reasonable decompression amplitude, and the medium flow is further reduced when the pressure drop is small. Smooth, it can also greatly reduce the wear caused by solid-phase friction, thereby prolonging the service life of the pressure reducing valve and reducing the possibility of equipment shutdown and safety accidents.
  • FIG. 1 is a schematic diagram of an embodiment of a pressure reduction process for a three-phase fluid.
  • This example introduces a separation method for separation of gas, liquid and solid three-phase fluids in a separation system of oil-coal co-slurry bed hydrogenation process.
  • the main purpose is to reduce the three-phase mixed fluid from high pressure to low pressure.
  • the light components are separated in the form of a gas phase.
  • This embodiment only describes the high temperature decompression series in the separation system.
  • the specific method is to set four separation buffer tanks connected in sequence, and sequentially set a primary pressure reducing valve 7, a secondary pressure reducing valve 8 and a tertiary pressure reducing valve 9 on the pipeline between adjacent buffer tanks to achieve stepwise Buck.
  • the pressure point is set on the pipe next to the pressure reducing valve or the separator in front of the lower pressure reducing valve. During this period, the pressure loss is small, and the value is used. Control the spool opening of the pressure reducing valve to achieve accurate control of the pressure drop.
  • Feed 5 enters the feed buffer tank 1, wherein the gas phase, liquid phase, and solid phase contents are 2 wt%, 85 wt%, and 13 wt%, respectively, and the pressure is 20 MPa.
  • the three phases are unbalanced, a small amount of gas is separated from the gas phase discharge 6 come out.
  • the remaining mixture material flows through the first-stage pressure reducing valve 7, and is firstly depressurized to 15 MPa, and enters the first-stage separation tank 2, and part of the liquid phase is gasified and separated from the first-stage tank gas phase discharge 61, at this time, the gas phase and the liquid phase are separated.
  • the solid phase content accounts for 3 wt%, 75 wt% and 22 wt%, respectively.
  • the remaining material flows through the secondary pressure reducing valve 8, and is again depressurized to 8 MPa, enters the secondary separation tank 3, and some liquid phase gasification is separated from the secondary tank gas phase discharge 62, at this time gas phase, liquid The phase and solid phase contents accounted for 4 wt%, 67 wt% and 29 wt%, respectively.
  • the three-phase mixture flows through the three-stage pressure reducing valve 9, depressurizes to 2 MPa, enters the third-stage separation tank 4, and partially liquid-phase gasifies and separates from the third-stage tank gas phase discharge 63, at this time, the gas phase and the liquid phase
  • the solid phase content accounts for 8 wt%, 60 wt% and 32 wt%, respectively.
  • the step-by-step decompression method adopted in this embodiment greatly reduces the wear degree of the pressure reducing valve, and greatly improves the service life of the pressure reducing valve.
  • the service life of the first, second and third stage pressure reducing valves can reach 20 months, 28 months and 36 months respectively, and the service life of the pressure reducing valve in the one time decompression method is only 3 months.
  • the step-by-step decompression method of the three-phase fluid of the present invention has a good application effect in the high-pressure state three-phase medium depressurization condition, and the method is simple in operation and automatic. High, greatly extending the service life of the wear valve.
  • the pressure drop amplitude is basically the same, the actual amplitude is mainly determined by pressure, and the temperature is secondary.
  • the above effects can also be obtained by a stepwise decompression experiment under medium and low temperature conditions similar to the decompression range of the above embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种三相流体的逐级减压方法,所述三相流体流经至少两级的减压阀完成减压以分离轻组分,第一次减压前的三相流体的压力为≥15MPa,最后一次减压后的三相流体的压力≤5Mpa,所述三相流体中气、液、固每相的含量≥1wt%。所述的三相流体的逐级减压方法中,流体流经至少两级减压阀逐级减压以分离气相轻组分,这种逐级降压减少了每一级的压降幅度,能直接大幅降低对设备和阀门的膨胀式磨损和汽蚀式磨损程度。同时公开了上述的三相流体的逐级减压方法的用途以及其设计方法。

Description

一种三相流体的逐级减压方法及其设计方法和用途 技术领域
本发明涉及一种三相流体的逐级减压方法及其设计方法和用途,属于石油化工和煤化工领域。
背景技术
近年来,随着原油开采量的不断增加和常规原油储量的不断减少,原油劣质化趋势越来越严重,炼油企业将重心放到了重油二次加工工艺上,以获取更高的轻油收率,但是延迟焦化、催化裂化、溶剂脱沥青等传统工艺因为污染严重而饱受诟病,因此重油加氢、油煤共炼、煤直接液化等相对环保的加氢工艺应运而生。
上述三种加氢工艺在加氢不及时时就会有结焦物产生,因此在分离系统中就会存在三相流体并存的情况;另外,如果使用非均相催化剂,分离系统中三相流体并存的现象更是无法避免。现有技术中,处理三相流体以分离轻组分时,人们通常采用减压方法,即通过一次性将三相流体由高温高压降为高温低压或常压,使液相气化以分离出轻油。
但是通过这种较大幅度压降进行减压分离轻油时,三相流体会对减压阀会造成非常严重的磨损,这是因为较大幅度减压时气相急剧膨胀会对阀芯造成膨胀性磨损,部分液相气化会对阀芯造成汽蚀性磨损,固相物质则会对阀芯造成摩擦性磨损,大大缩短了减压阀的使用寿命,一旦磨穿不仅造成减压阀的损坏,产生巨大的经济损失,还可能造成装置停工,甚至酿成安全事故。而目前国内外重油加氢、油煤共炼和煤直接液化工艺还没有提出解决这一技术问题的有效方法。
发明内容
为了解决现有技术中存在的问题,本发明提供一种三相流体的逐级减压方法,能够大大延长耐磨阀的使用寿命,降低泵因磨损带来的经济损失和安全风险。本发明还提供了其设计方法和用途。
本发明的技术方案:
一种三相流体的逐级减压方法,其特征在于所述三相流体流经至少两级的减压阀完成减压以分离轻组分,第一次减压前的三相流体的压力为≥15MPa,最后一次减压后的三相流体的 压力≤5Mpa,所述三相流体中气、液、固每相的含量≥1wt%。
优选的每一级减压阀的减压幅度≤10MPa。
进一步优选的每一级减压阀的减压幅度为4~8MPa。
进一步优选的各减压阀的减压幅度之差不超过2MPa。
所述减压幅度用所述三相流体流经每一级减压阀前后的压差值或者流经每一级减压阀后的压力值来控制。
优选的在每一级的减压阀后设置取压点,所述取压点设置在紧邻减压阀的管道上或者下一级减压阀前的分离器上。
上述一种三相流体的逐级减压方法的用途,其特征在于用于重油加氢工艺、煤直接液化工艺和油煤混炼工艺,重油加氢工艺指以原油、常压渣油、减压渣油、催化油浆、脱油沥青、煤焦油的一种或者多种组合为原料进行加工;油煤混炼工艺指以原油、常压渣油、减压渣油、催化油浆、脱油沥青和煤焦油中的一种或者多种组合与褐煤、烟煤中的一种或者多种组合为原料进行加工,油与煤的比例范围为97-30:3:70。
还包括上述一种三相流体的逐级减压方法的设计方法。
本发明的技术效果:
本发明的一种三相流体的逐级降压方法,通过使所述流体流经至少两级减压阀逐级减压以分离气相轻组分,这种逐级降压减少了每一级的压降幅度,能直接大幅降低对设备和阀门的膨胀式磨损和汽蚀式磨损程度,尤其是,本发明进一步优选的设计了合理的减压幅度,在压降幅度小的同时介质流动更加平稳,也能大幅减轻固相摩擦带来的磨损,进而延长减压阀的使用寿命,降低装置停工和出现安全事故的可能性。
附图说明
图1为一种三相流体的减压过程实施例简图。
标号如下:
1-进料缓冲罐;2-一级分离罐;3-二级分离罐;4-三级分离罐;5-进料;6-气相出料;61-一级罐气相出料;62-二级罐气相出料;63-三级罐气相出料;7-一级减压阀;8-二级减压阀;9-三级减压阀;10-液固体出料。
具体实施方式
为进一步阐述本发明的具体特征,将结合图1加以说明。
本实例介绍的是油煤共炼浆态床加氢工艺的分离系统分离气、液、固三相流体的减压分离方法,其主要目的是将三相混合流体从高压降至低压,以在降压过程中将轻组分以气相的形式分离出来,本实施例只介绍分离系统中高温减压系列。
具体做法是设置依次相连的四个分离缓冲罐,并在相邻的缓冲罐之间的管路上依次设置一级减压阀7、二级减压阀8和三级减压阀9实现逐级降压。在每一级的减压阀后设置取压点,取压点设置在紧邻减压阀的管道上或者下一级减压阀前的分离器上,这期间的压损小,用此值来控制减压阀的阀芯开度进而达到准确控制压降幅度。
具体分离过程如下:
进料5进入进料缓冲罐1中,其中气相、液相、固相含量分别为2wt%,85wt%和13wt%,压力为20MPa,当三相不平衡时,少量气体自气相出料6分离出来。其余混合物料流经一级减压阀7,经初次降压至15MPa,进入一级分离罐2中,部分液相气化后自一级罐气相出料61分离出来,此时气相、液相、固相含量分别占3wt%,75wt%和22wt%。余下物料流经二级减压阀8,经再次降压至8MPa,进入二级分离罐3中,又有部分液相气化后自二级罐气相出料62分离出来,此时气相、液相、固相含量分别占4wt%,67wt%和29wt%。最后三相混合物流流经三级减压阀9,降压至2MPa,进入三级分离罐4中,部分液相气化后自三级罐气相出料63分离出来,此时气相、液相、固相含量分别占8wt%,60wt%和32wt%。
经过与一次减压到位方法的实验对比验证,本实施例采用的逐级减压方法对减压阀的磨损程度大大降低,大大提高了减压阀的使用寿命。本方法中一、二、三级减压阀的使用寿命分别能够达到20个月、28个月和36个月,而一次减压到位方法中减压阀的使用寿命仅为3个月。
结论:
从上述实施例可以看出,本发明的一种三相流体的逐级减压方法对高压状态的三相介质降压工况中起到了很好的应用效果,该方法操作简单,且自动化程度高,大大延长了耐磨阀的使用寿命。
此外,使用于中、低温减压系列时,压降幅度也基本相同,实际幅度主要有压力决定,温度是次要的。经过在类似上述实施例减压幅度的中、低温条件下的逐级减压实验,同样能达到上述效果。
以上所述仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (8)

  1. 一种三相流体的逐级减压方法,其特征在于所述三相流体流经至少两级的减压阀完成减压以分离轻组分,第一次减压前的三相流体的压力为≥15MPa,最后一次减压后的三相流体的压力≤5Mpa,所述三相流体中气、液、固每相的含量≥1wt%。
  2. 根据权利要求1所述的一种三相流体的逐级减压方法,其特征在于每一级减压阀的减压幅度≤10MPa。
  3. 根据权利要求2所述的一种三相流体的逐级减压方法,其特征在于每一级减压阀的减压幅度为4~8MPa。
  4. 根据权利要求2所述的一种三相流体的逐级减压方法,其特征在于各减压阀的减压幅度之差不超过2MPa。
  5. 根据权利要求2-4任一所述的一种三相流体的逐级减压方法,其特征在于所述减压幅度用所述三相流体流经每一级减压阀前后的压差值或者流经每一级减压阀后的压力值来控制。
  6. 根据权利要求5所述的一种三相流体的逐级减压方法,其特征在于在每一级的减压阀后设置取压点,所述取压点设置在紧邻减压阀的管道上或者下一级减压阀前的分离器上。
  7. 权利要求1-6任一所述的一种三相流体的逐级减压方法的用途,其特征在于用于重油加氢工艺、煤直接液化工艺和油煤混炼工艺,重油加氢工艺指以原油、常压渣油、减压渣油、催化油浆、脱油沥青、煤焦油的一种或者多种组合为原料进行加工;油煤混炼工艺指以原油、常压渣油、减压渣油、催化油浆、脱油沥青和煤焦油中的一种或者多种组合与褐煤、烟煤中的一种或者多种组合为原料进行加工,油与煤的比例范围为97-30:3:70。
  8. 一种三相流体的逐级减压设计方法,其特征在于设计所述三相流体流经至少两级的减压阀完成减压以分离轻组分,第一次减压前的三相流体的压力为≥15MPa,最后一次减压后的三相流体的压力≤5Mpa,所述三相流体中气、液、固每相的含量≥1wt%。
PCT/CN2016/074091 2015-12-15 2016-02-19 一种三相流体的逐级减压方法及其设计方法和用途 WO2017101213A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510934198.5A CN105542837A (zh) 2015-12-15 2015-12-15 一种三相流体的逐级减压方法及其设计方法和用途
CN201510934198.5 2015-12-15

Publications (1)

Publication Number Publication Date
WO2017101213A1 true WO2017101213A1 (zh) 2017-06-22

Family

ID=55822408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074091 WO2017101213A1 (zh) 2015-12-15 2016-02-19 一种三相流体的逐级减压方法及其设计方法和用途

Country Status (2)

Country Link
CN (1) CN105542837A (zh)
WO (1) WO2017101213A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109504429B (zh) * 2018-08-16 2024-02-09 北京航天石化技术装备工程有限公司 一种撬装减压系统的主工艺模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673485A (en) * 1984-04-06 1987-06-16 Exxon Research And Engineering Company Process for increasing deasphalted oil production from upgraded residua
CN1172146A (zh) * 1996-07-25 1998-02-04 刘世凯 一种加氢工艺
CN1888018A (zh) * 2006-07-21 2007-01-03 神华集团有限责任公司 高差压多相物流的输送方法
CN102212388A (zh) * 2010-04-08 2011-10-12 肇庆市顺鑫煤化工科技有限公司 褐煤热溶催化液化产物的分离方法和设备
CN104449824A (zh) * 2014-12-05 2015-03-25 北京石油化工工程有限公司 一种悬浮床加氢裂化反应产物分离减压组合系统
CN204752627U (zh) * 2015-07-06 2015-11-11 北京石油化工工程有限公司 一种悬浮床加氢热高分至热低分的减压系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673485A (en) * 1984-04-06 1987-06-16 Exxon Research And Engineering Company Process for increasing deasphalted oil production from upgraded residua
CN1172146A (zh) * 1996-07-25 1998-02-04 刘世凯 一种加氢工艺
CN1888018A (zh) * 2006-07-21 2007-01-03 神华集团有限责任公司 高差压多相物流的输送方法
CN102212388A (zh) * 2010-04-08 2011-10-12 肇庆市顺鑫煤化工科技有限公司 褐煤热溶催化液化产物的分离方法和设备
CN104449824A (zh) * 2014-12-05 2015-03-25 北京石油化工工程有限公司 一种悬浮床加氢裂化反应产物分离减压组合系统
CN204752627U (zh) * 2015-07-06 2015-11-11 北京石油化工工程有限公司 一种悬浮床加氢热高分至热低分的减压系统

Also Published As

Publication number Publication date
CN105542837A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
CN204752627U (zh) 一种悬浮床加氢热高分至热低分的减压系统
WO2016124148A1 (zh) 一种油煤混合加氢炼制技术及设备
CN106701178B (zh) 一种煤焦油悬浮床加氢裂化方法
CN101591563B (zh) 一种沸腾床加氢与固定床加氢的组合工艺
MX2007002668A (es) Proceso e instalacion para la conversion de fracciones de petroleo pesado en un lecho burbujeante con produccion integrada de destilados medios con un contenido muy bajo de azufre.
WO2017101213A1 (zh) 一种三相流体的逐级减压方法及其设计方法和用途
WO2016176976A1 (zh) 一种多重优化的加氢系列方法及其设计方法和用途
CN107805519B (zh) 一种悬浮床加氢泄放系统
WO2016179895A1 (zh) 一种多重优化的分离器组合系统与使用方法及设计方法
WO2016197537A1 (zh) 一种反冲洗方法及其设计方法和用途
WO2017067026A1 (zh) 一种浆态床加氢工艺的原料预处理的方法及其设计方法和用途
WO2018177401A1 (zh) 一种提高加氢反应体系氢分压的方法及其设计方法和用途
CN102051224B (zh) 一种用于催化重整的煤基高芳香烃潜含量石脑油的生产方法、产品及其应用
CN110229689B (zh) 含固原料油的蒸馏装置及方法
WO2016176983A1 (zh) 一种加氢工艺的控温方法及其设计方法和用途
CN101250435B (zh) 一种烃类加氢转化方法
CN106147841A (zh) 一种重油加氢方法
WO2016192306A1 (zh) 一种多重优化的高压分离器及其设计方法和用途
CN108504383A (zh) 降压器的节流区气液喷射流使用的减速分相导引系统
CN101724460A (zh) 一种含金属杂质烃类物料的加氢方法
CN110003950B (zh) 一种fdfcc工艺副分馏塔油浆流向的改进工艺流程
CN103289739A (zh) 一种fcc汽油加氢脱硫-液化气芳构化耦合改质的方法
CN204848771U (zh) 一种悬浮床加氢热高分至温低分的减压系统
CN109722266B (zh) 用强制循环热壁反应器与鼓泡床冷壁反应器的煤液化系统
WO2020034595A1 (zh) 一种撬装减压系统的主工艺模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16874279

Country of ref document: EP

Kind code of ref document: A1