WO2017101078A1 - 一种盖板及其制备方法、终端设备 - Google Patents

一种盖板及其制备方法、终端设备 Download PDF

Info

Publication number
WO2017101078A1
WO2017101078A1 PCT/CN2015/097737 CN2015097737W WO2017101078A1 WO 2017101078 A1 WO2017101078 A1 WO 2017101078A1 CN 2015097737 W CN2015097737 W CN 2015097737W WO 2017101078 A1 WO2017101078 A1 WO 2017101078A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cover plate
cover
micro
touch surface
Prior art date
Application number
PCT/CN2015/097737
Other languages
English (en)
French (fr)
Inventor
盛秋春
黄义宏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/097737 priority Critical patent/WO2017101078A1/zh
Priority to CN201580071591.4A priority patent/CN107111751A/zh
Publication of WO2017101078A1 publication Critical patent/WO2017101078A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing

Definitions

  • the invention relates to the field of display product manufacturing, in particular to a cover plate, a preparation method thereof and a terminal device.
  • terminal devices such as mobile phones and computers have become a necessity for life.
  • terminal devices such as mobile phones and computers have become a necessity for life.
  • terminal devices there are many kinds of terminal devices on the market, and for consumers, they are constantly pursuing terminal devices with good performance, high security, and novel appearance.
  • the fingerprint recognition function Since each person's fingerprints are different, that is, the fingerprint is unique and does not change for life, it is used for security verification.
  • the fingerprint recognition function is realized by providing a device such as a capacitive fingerprint sensor under the home button 10.
  • the home button of the mobile phone is not only used to implement the fingerprint recognition function, but also used to implement other functions (for example, determining, returning, etc.). Therefore, after multiple presses, the home button is easily broken, which causes it to fail. It is then used for fingerprint recognition, which affects its security.
  • the embodiment of the invention provides a cover plate, a preparation method thereof and a terminal device, which can solve the problem that the fingerprint recognition function is set at the home key in the prior art, and the fingerprint recognition function cannot be realized when the home key is damaged.
  • a cover plate for use in a terminal device, the cover plate includes a cover body and a capacitive fingerprint recognition sensor; a predetermined area of the cover body is provided with a plurality of uniformly arranged micro through holes, a capacitive fingerprint recognition sensor disposed in the micro through hole in.
  • the present invention only needs to open a micro through hole in the cover plate and implant a capacitive fingerprint recognition sensor in the micro through hole, without separately providing a cover plate on the cover plate.
  • the home key can solve the problem that the fingerprint recognition function is set at the home key in the prior art, and the fingerprint recognition function cannot be realized when the home key is damaged.
  • the capacitive fingerprint sensor includes a conductor layer and a semiconductor layer. Wherein the semiconductor layer is close to a touch surface of the cover plate, and the conductor layer is away from a touch surface of the cover plate.
  • fingerprint recognition is performed, the finger forms a capacitance with the semiconductor layer, and the signal is transmitted to the corresponding IC through the conductor layer, and after the IC processing, the fingerprint can be recognized.
  • the cover further includes a first plastic layer located on the side of the touch surface of the cover plate in the predetermined area And super hard coating layer.
  • the first plastic sealing layer is disposed between the super hard coating layer and the cover body for encapsulating the micro through holes.
  • the cover further includes a second plastic cover disposed on a side of the cover body away from the touch surface of the cover a layer; the second plastic seal layer is disposed at a periphery of the predetermined area for isolating the predetermined area.
  • the microvias have a diameter of 20 ⁇ m to 100 ⁇ m.
  • a terminal device including the above cover is provided.
  • the terminal device further includes a motherboard, where the IC is provided with an IC for fingerprint recognition, and the conductive layer of the capacitive fingerprint sensor passes through the solder ball through the flexible A circuit board FPC is connected to the IC.
  • the ridge line or valley line of the fingerprint forms a capacitance with the semiconductor layer in the micro-via hole, and the capacitance formed by the conductor layer is transmitted to the IC for fingerprint identification on the main board via the FPC, and can be obtained by IC processing.
  • a method for preparing the above-mentioned cover plate comprising: forming a plurality of uniformly arranged micro-through holes in a predetermined area of the cover body by a drilling process; sequentially in the micro-through holes The conductor layer and the semiconductor layer are grown. Wherein the semiconductor layer is formed near a touch surface of the cover plate, and the conductor layer is formed away from a touch surface of the cover plate.
  • the identification of the fingerprint can be achieved by the semiconductor layer and the conductor layer in the micro via hole and the IC on the main board.
  • the conductor layer is grown in the micro via hole by a physical vapor deposition process; and the semiconductor layer is grown by a chemical vapor deposition process over the conductor layer .
  • the foregoing manufacturing method further includes: in the predetermined area, the touch surface of the cover body near the cover plate The first resin layer and the super hard coating layer are sequentially formed on one side.
  • the first resin adhesive layer is cured such that the first resin adhesive layer forms the first plastic seal layer.
  • the first plastic sealing layer can be molded to encapsulate the micro through hole, and the ultra-hardness film layer can be arranged to avoid deformation of the first plastic sealing layer and affect the accuracy of fingerprint recognition.
  • the foregoing manufacturing method further includes: at a periphery of the predetermined area, and the cover body is away from the cover Forming a second resin adhesive layer on one side of the touch surface; curing the second resin adhesive layer to form the second resin adhesive layer to form the second plastic seal layer.
  • FIG. 1 is a schematic structural diagram of a mobile phone with fingerprint recognition function provided by the prior art
  • FIG. 2 is a schematic structural view of a front cover according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a rear cover according to an embodiment of the present invention.
  • Figure 4 is a cross-sectional view of the AA' of Figure 2 or Figure 3;
  • FIG. 5 is a schematic top plan view of a side of a predetermined area of the cover plate away from the touch surface of the cover plate according to an embodiment of the present invention
  • Figure 6 is a cross-sectional view of the AA' of Figure 2 or Figure 3 when the cover is applied to the terminal;
  • FIG. 7 is a schematic flow chart of preparing a cover plate for implanting a fingerprint recognition function according to an embodiment of the present invention.
  • An embodiment of the present invention provides a cover plate including a cover body and a capacitive fingerprint recognition sensor. As shown in FIG. 2 to FIG. 3, a predetermined area 20 of the cover body 02 is provided with a plurality of uniformly arranged micro-passes. The hole 30 and the capacitive fingerprint recognition sensor (not identified in FIGS. 2-3) are disposed in the micro through hole 30.
  • the principle of the fingerprint recognition sensor for fingerprint recognition is that the semiconductor layer in the capacitive fingerprint recognition sensor acts as an electrode, and when the user places a finger on the touch surface of the cover, the finger acts as the other electrode, Capacitance can be generated between the two. According to the capacitance formula: It can be seen that the ridges (or valleys) of the fingerprint and the semiconductors in the microvias 30 corresponding to the ridges (or valleys) can generate capacitance.
  • C is the capacitance
  • is the dielectric constant
  • d is the distance between the ridgeline (or valley line) of the fingerprint to the semiconductor in the microvia 30 corresponding to the ridge line (or valley line)
  • S is the fingerprint The area of overlap between the ridge line (or valley line) and the semiconductor within the microvia 30 corresponding to the ridge line (or valley line).
  • the fingerprint Since the actual distance between the ridge line of the fingerprint to the semiconductor layer in the microvia 30 corresponding to the ridge line is different from the actual distance between the valley line and the semiconductor layer in the microvia 30 corresponding to the valley line, the fingerprint The ridge line and the capacitance formed by the semiconductor in the microvia 30 corresponding to the ridge line, the valley line, and the capacitance formed by the semiconductor in the microvia 30 corresponding to the valley line are also different, and are connected to the capacitive fingerprint sensor.
  • the IC Integrated Circuit integrates different capacitance values to obtain a fingerprint image with gray levels, thereby implementing fingerprint recognition.
  • the cover plate may be a front cover plate as shown in FIG. 2 or a rear cover plate as shown in FIG. 3.
  • the front cover and the rear cover are relative to the position in which the terminal device is applied. If it is applied to the front side of the terminal device, that is, the display surface, the cover is a front cover, if It is applied to the back of the terminal device, and the cover is a rear cover.
  • the front cover since the front cover is located on the front side of the terminal device, it must be ensured that the front cover is transparent in the display area of the terminal device, that is, as shown in FIG. 2, the area within the dotted frame needs to be transparent to avoid The display has an effect.
  • the non-display area of the terminal device is provided with a trace, a main board, etc., it is necessary to make the non-display area of the terminal device opaque for aesthetic reasons, and based on this, the front cover can correspond to the non-display area of the terminal device.
  • a region other than the dotted line frame is provided with a light shielding layer 80 (as shown in FIG. 4), wherein the material of the light shielding layer 80 may be, for example, an ink, a photoresist material or the like.
  • the light shielding layer 80 disposed in the predetermined area 20 may be different in color from the light shielding layer 80 of other areas.
  • the predetermined area 20 may be coated with white ink, and other areas may be coated with black ink.
  • the predetermined area may be coated with black ink, and others.
  • the area is painted with white ink, which makes it easy for the user to quickly find the fingerprint recognition area.
  • the micro vias 30 also penetrate the light shielding layer 80 .
  • the capacitive fingerprint recognition sensor as long as the fingerprint recognition function can be realized, it can be disposed in the micro through hole of the cover body 02.
  • the cover body 02 referred to in the embodiment of the present invention means that no film is disposed.
  • the original substrate used as the cover of the layer may be, for example, a glass substrate used as a front cover.
  • the shape and size of the predetermined area 20 are not limited, and may be determined according to the shape and size of the finger pad of an ordinary adult when it comes into contact with the cover.
  • the predetermined area 20 may be, for example, a circle having a diameter of a few ten millimeters, or a square having a side length of ten millimeters or the like.
  • the diameter of the micro through hole 30 should be smaller than a ridge line or a line.
  • the minimum width of the valley line, the spacing between the micro vias 30 should be less than the spacing between the ridge line and the ridge line or the minimum spacing between the valley line and the valley line.
  • the diameter of the micro vias 30 may be less than 100 ⁇ m and greater than 20 ⁇ m.
  • the diameter of the micro through hole 30 should be smaller than the width of one ridge line or one valley line. However, the diameter of the micro through hole 30 cannot be too small. On the one hand, the diameter of the micro through hole 30 is too small, which increases the difficulty in the process of fabricating the micro through hole 30. On the other hand, the diameter of the micro through hole 30 is too small, which may result in The diameter of the semiconductor layer 40 in the micro via 30 is also small.
  • the capacitance formed by the semiconductor layer 40 and the finger may be too small, and may not be resolved after being transmitted to the IC via the conductor layer 50, thereby affecting The accuracy of fingerprint recognition, therefore, the radius of the microvia 30 should be greater than 20 ⁇ m.
  • the number of microvias 30 is related to the size of the predetermined region 20, the diameter of the microvia 30, and the pitch between the microvias 30.
  • as many micro vias 30 as possible can be disposed in the predetermined area 20, and these micro vias 30 can be arranged in an array manner.
  • the embodiment of the present invention provides a cover plate, by placing a plurality of uniformly arranged micro through holes 30 in a predetermined area 20 of the cover body 02, and implanting a capacitive fingerprint recognition sensor in the micro through hole 30.
  • the identification of the fingerprint can be achieved based on the capacitance value between the ridge line and the valley line of the fingerprint and the semiconductor layer in the capacitive fingerprint recognition sensor.
  • the embodiment of the present invention only needs to open the micro through hole 30 in the cover plate and implant the capacitive fingerprint recognition sensor in the micro through hole 30 without setting on the cover plate.
  • the home button separated by the cover plate can solve the problem of setting the fingerprint recognition function in the prior art. At the home button, the fingerprint recognition function cannot be implemented when the home button is damaged.
  • the capacitive fingerprint sensor includes a conductor layer 50 and a semiconductor layer 40.
  • the semiconductor layer 40 is close to the touch surface of the cover plate, and the conductor layer 50 is away from the touch surface of the cover plate.
  • the material of the conductor layer 50 may be, for example, a metal such as copper, silver or aluminum. Since copper has good conductivity, it is preferable that the material of the conductor layer 50 is copper.
  • the material of the semiconductor layer 40 may be, for example, potassium nitride, single crystal silicon, or the like. Since single crystal silicon is a semiconductor having excellent performance and the process of using single crystal silicon as a semiconductor is very mature, preferably, the semiconductor layer is preferable. The material of 40 is selected from single crystal silicon.
  • the thickness of the semiconductor layer 40 should be set according to the material of the semiconductor layer 40 and the diameter of the microvia 30, which should ensure that the capacitance formed by the semiconductor layer 40 and the finger can be recognized when fingerprinting is performed, and Affect the accuracy of fingerprint recognition.
  • the thickness of the corresponding conductor layer 50 is also determined according to the thickness of the cover.
  • the side of the semiconductor layer 40 near the touch surface of the cover should be flush with the cover body 02.
  • the finger when fingerprint recognition is performed, the finger forms a capacitance with the semiconductor layer 40, and the signal is transmitted to the corresponding IC through the conductor layer 50. After the IC processing, the fingerprint can be recognized.
  • touch surface is the surface of the cover plate that is in contact with the finger when performing fingerprint recognition.
  • the finger when performing fingerprint recognition, the finger is not in direct contact with the semiconductor layer 40, but there is also an insulating layer between the finger and the semiconductor layer 40, and the insulating layer corresponds to the semiconductor layer 40 and finger formation.
  • the dielectric layer of the capacitor when performing fingerprint recognition, the finger is not in direct contact with the semiconductor layer 40, but there is also an insulating layer between the finger and the semiconductor layer 40, and the insulating layer corresponds to the semiconductor layer 40 and finger formation.
  • the dielectric layer of the capacitor when performing fingerprint recognition, the finger is not in direct contact with the semiconductor layer 40, but there is also an insulating layer between the finger and the semiconductor layer 40, and the insulating layer corresponds to the semiconductor layer 40 and finger formation.
  • the dielectric layer of the capacitor when performing fingerprint recognition, the finger is not in direct contact with the semiconductor layer 40, but there is also an insulating layer between the finger and the semiconductor layer 40, and the insulating layer corresponds to the semiconductor layer 40 and finger formation.
  • the dielectric layer of the capacitor when performing fingerprint recognition
  • the cover plate may further include a first plastic sealing layer 60 and an ultra hard coating layer 70 on the side of the predetermined area 20, near the touch surface of the cover.
  • the first plastic sealing layer 60 is disposed between the super hard coating layer 70 and the cover body 02 for encapsulating the micro through holes 30.
  • the thickness of the first plastic seal layer 60 is about 1 ⁇ m to 10 ⁇ m, and the thickness of the ultra-hardness film layer 70 is from 0 ⁇ m to 100 ⁇ m.
  • the first plastic seal layer 60 may be, for example, packaged with a resin material.
  • some pigment may be added to the material of the first plastic sealing layer 60 to perform with other areas of the cover. the difference.
  • the material for encapsulating the micro-via 30 can be, for example, a resin material, the hardness thereof is not very high, and after repeated touches, the resin may be deformed, which may affect the accuracy of fingerprint recognition.
  • the material of the ultra-hardness film layer 70 may be, for example, silicon nitride or silicon oxide.
  • the first plastic sealing layer 60 by providing the first plastic sealing layer 60, moisture or oxygen in the air can be prevented from entering the micro through hole 30 to corrode the semiconductor layer 50.
  • the ultra-hardness film layer 70 By providing the ultra-hardness film layer 70, the deformation of the first plastic sealing layer 60 can be avoided. The accuracy of fingerprint recognition.
  • the cover plate further includes a second plastic seal layer 100 disposed on a side of the cover body 02 away from the touch surface of the cover plate, and the second plastic seal layer 100 is disposed at a periphery of the predetermined area 20 for The predetermined area 20 is isolated.
  • FIG. 5 is a schematic plan view from the side of the touch surface away from the cover to the side of the touch surface of the cover.
  • the material of the second plastic sealing layer 100 may be silica gel or a resin.
  • a second plastic sealing layer 100 is disposed on the periphery of the predetermined region 20, and the second plastic sealing layer 100 can be used on the one hand to protect the conductor layer 50 in the predetermined region 20, and on the other hand, since the second plastic sealing layer 100 has a certain thickness,
  • the cover plate and the flexible printed circuit board (FPC) connected to the conductor layer 50 under the cover plate can generate a certain gap to facilitate the micro through hole of the cover plate.
  • the conductor layer 50 within 30 is electrically connected to the FPC.
  • the second plastic seal layer 100 should be disposed on the light shielding layer 80 away from the cover body.
  • the cover is the front cover
  • the light shielding layer 80 is disposed on the side of the cover body away from the touch surface of the cover
  • the second plastic seal layer 100 should be disposed on the light shielding layer 80 away from the cover body.
  • the embodiment of the invention provides a terminal device, which comprises the above-mentioned cover plate for implanting a fingerprint recognition function.
  • the cover plate for implanting the fingerprint recognition function in the embodiment of the present invention can be configured on various existing smart terminal devices.
  • the terminal device includes, but is not limited to, various smart phones, tablets, notebooks, and the like, and any electronic device that involves user interaction or input.
  • the terminal device further includes a main board on which an IC for fingerprint recognition is disposed; and the capacitive fingerprint recognition sensor is connected to the IC for fingerprint recognition through the FPC.
  • the capacitive fingerprint recognition sensor includes the conductor layer 50 and the semiconductor layer 40, the conductor layer 50 may be connected to the FPC (not shown) through the solder ball 90.
  • the position of the IC on the main board should be as close as possible to the cover plate.
  • the predetermined area 20 is close.
  • the ridge line or valley line of the fingerprint forms a capacitance with the semiconductor layer 40 in the micro via hole 30, and the capacitance formed by the conductor layer 50 is transmitted to the IC for fingerprint identification on the main board via the FPC, and processed by the IC.
  • a fingerprint image with gray scale is obtained.
  • the embodiment of the invention further provides a method for preparing the above-mentioned cover plate. As shown in FIG. 7, the preparation method comprises:
  • the light shielding layer 80 as shown in FIG. 4 may be formed in a region other than the broken line frame 21 as shown in FIG. 2 before drilling the cover.
  • the drilling process is not limited, and for example, laser drilling can be used.
  • the focusing lens femtosecond pulse laser can be directly used for direct drilling. Since the femtosecond laser pulse and the cover plate have a short acting time, the high energy of the laser beam cannot be diffused to the outside of the microvia 30 of the cover. Other areas can be oriented to remove material at the microvias 30.
  • the size and roundness of the microvia 30 depend on the size and roundness of the laser spot, and since the size of the laser spot is easy to control, the size of the micro via 30 is also easy to control.
  • the pore size of the pore obtained by the laser drilling process is generally between 0.005 and 0.3 mm.
  • the conductor layer 50 and the semiconductor layer 40 of a certain height can be grown in the microvia 30 of the cap plate.
  • the conductor layer 50 is grown in the microvia 30 by a physical vapor deposition process.
  • a physical vapor deposition process may be: under vacuum conditions, using a laser beam or an ion beam to bombard a metal block (which may be a metal having good conductivity such as copper, silver, aluminum, etc.), evaporate the metal, and then deposit it in the microvia 30, according to It is necessary to reasonably control the amount of deposited metal to obtain a suitable height of the conductor layer 50.
  • the semiconductor layer 40 is continuously grown in the microvias 30 by a chemical vapor deposition process over the upper layer 50 of the conductor layer.
  • the target of the single crystal silicon is bombarded by the ion beam, and the single crystal silicon atom is partially ionized into ions, and the ionized ions are deposited in the microvia 30 in the direction of the electric field or the magnetic field under the action of the electric field or the magnetic field.
  • Above layer 50 an appropriate amount of single crystal silicon can be bombarded according to the height of the conductor layer 50 required.
  • the conductor layer 50 deposited outside the micro via 30 may be cleaned by a plasma cleaner or Semiconductor layer 40 material.
  • the thickness of the semiconductor layer 40 should be set according to the material of the semiconductor layer 40 and the diameter of the microvia 30, which should ensure that the capacitance formed by the semiconductor layer 40 and the finger can be recognized when fingerprinting is performed, and Affect the accuracy of fingerprint recognition. After the thickness of the semiconductor layer 40 is determined, the thickness of the corresponding conductor layer 50 is also determined according to the thickness of the cover.
  • the preparation method further includes: forming a first resin adhesive layer and an ultra-hard coating layer 70 in the predetermined region 20 and the touch surface side of the cover body 02 near the cover; and the first resin adhesive layer Curing is performed to form the first resin layer to form the first molding layer 60.
  • the first resin adhesive layer of a suitable thickness may be applied on the surface of the cover body 02 near the touch surface side of the cover plate by the glue applicator.
  • the first resin layer may be cured by an ultraviolet curing device or may be cured by a heating furnace.
  • the first resin glue is applied to the predetermined area 20 by a glue applicator. Thereafter, the ultra-hardness film layer 70 is placed over the predetermined area 20, and when the first resin layer is cured, the first plastic layer 60 and the ultra-hardness film layer 70 can be fixed.
  • the method further includes: forming a second resin adhesive layer on a side of the predetermined region 20 and a touch surface of the cover body away from the cover; and curing the second resin adhesive layer
  • the second resin layer forms the second mold layer 100.
  • a second resin adhesive layer may be formed on the periphery of the predetermined region 20 by a dispenser.
  • the cover is the front cover
  • the light shielding layer 80 is formed on the side of the cover body away from the touch surface of the cover
  • the second plastic seal layer 100 should be formed on the light shielding layer 80 away from the cover body. One side.
  • the conductor layer 50 in the micro via 30 is connected to the IC for fingerprint recognition on the main board through the FPC through the solder ball 90.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

提供一种盖板及其制备方法、终端设备,涉及指纹识别技术领域,可解决现有技术中将指纹识别功能设置在home键(10)处,而当home键(10)损坏时指纹识别功能无法实现的问题。该盖板包括盖板本体(02)和电容式指纹识别传感器;所述盖板本体(02)的预定区域(20)设置多个均匀排布的微通孔(30),所述电容式指纹识别传感器设置在所述微通孔(30)中。用于具有指纹识别功能的终端设备。

Description

一种盖板及其制备方法、终端设备 技术领域
本发明涉及显示产品制造领域,尤其涉及一种盖板及其制备方法、终端设备。
背景技术
随着生活水平的不断提高,终端设备例如手机、电脑等成为生活的必需品。目前市场上的终端设备种类繁多,对于消费者来说,也在不断追求性能好、安全性高且外观新颖独特的终端设备。
其中,对于安全性而言,主要是通过指纹识别功能实现。由于每个人的指纹都不相同,即指纹具有唯一性,而且终身不变,因此被用于进行安全验证。
以目前的主流机型为例,如图1所示,其主要是通过在上盖板01上开十几毫米的通孔,并在通孔的位置处嵌入与上盖板01分离的home(主页)键10,然后通过在home键10的下方设置电容式指纹传感器等器件而实现指纹识别功能。
然而,手机的home键不仅用来实现指纹识别功能,还用来实现其它功能(例如,确定、返回等功能),因此,经多次按压后,home键很容易被按坏,而造成其不能再用于进行指纹识别,从而影响其安全性。
发明内容
本发明的实施例提供一种盖板及其制备方法、终端设备,可解决现有技术中将指纹识别功能设置在home键处,而当home键损坏时指纹识别功能无法实现的问题。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,提供一种盖板,应用于终端设备,该盖板包括盖板本体和电容式指纹识别传感器;所述盖板本体的预定区域设置多个均匀排布的微通孔,所述电容式指纹识别传感器设置在所述微通孔 中。本发明与目前的主流终端设备相比,只需在盖板上开微通孔并在微通孔内植入电容式指纹识别传感器即可,而不需要在盖板上设置与盖板分离的home键,因而可解决现有技术中将指纹识别功能设置在home键处,而当home键损坏时指纹识别功能无法实现的问题。
结合第一方面,在第一种可能的实现方式中,所述电容式指纹识别传感器包括导体层和半导体层。其中,所述半导体层靠近所述盖板的触摸面,所述导体层远离所述盖板的触摸面。当进行指纹识别时,手指与半导体层形成电容,并通过导体层将信号传递给相应的IC,经过IC处理后,便可实现对指纹的识别。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述盖板还包括位于所述预定区域、靠近所述盖板的触摸面一侧的第一塑封层和超硬镀膜层。所述第一塑封层设置于所述超硬镀膜层和所述盖板本体之间,用于封装所述微通孔。通过设置第一塑封层可以避免空气中的水分或氧气进入微通孔而腐蚀半导体层,通过设置超硬度膜层可避免第一塑封层形变而导致影响指纹识别的精确性。
结合第一方面的第一种可能的实现方式,在第三种可能的实现方式中,所述盖板还包括设置在所述盖板本体远离所述盖板的触摸面一侧的第二塑封层;所述第二塑封层设置在所述预定区域的周边,用于隔离所述预定区域。
结合第一方面或第一方面的任意一种可能的实现方式,在第四种可能的实现方式中,所述微通孔的直径为20μm-100μm。
第二方面,提供一种包括上述盖板的终端设备。
结合第二方面,在第一种可能的实现方式中,所述终端设备还包括主板,所述主板上设置有用于指纹识别的IC,所述电容式指纹识别传感器的导体层经锡球通过柔性电路板FPC与所述IC相连。当进行指纹识别时,指纹的脊线或谷线与微通孔内的半导体层形成电容,导体层将形成的电容经FPC传递给主板上用于指纹识别的IC,经IC处理后便可获得具有灰度级的指纹图像。
第三方面,提供了一种上述盖板的制备方法,该制备方法包括:通过钻孔工艺在盖板本体的预定区域形成多个均匀排布的微通孔;依次在所述微通孔中生长导体层和半导体层。其中,所述半导体层靠近所述盖板的触摸面形成,所述导体层远离所述盖板的触摸面形成。通过微通孔中的半导体层和导体层及主板上的IC便可实现对指纹的识别。
结合第三方面,在第一种可能的实现方式中,通过物理气相沉积工艺在所述微通孔中生长所述导体层;在所述导体层上方,通过化学气相沉积工艺生长所述半导体层。
结合第三方面的第一种可能的实现方式,在第二种可能的实现方式中,上述制备方法还包括:在所述预定区域、且所述盖板本体的靠近所述盖板的触摸面的一侧依次形成第一树脂胶层和超硬镀膜层。对所述第一树脂胶层进行固化,使所述第一树脂胶层形成所述第一塑封层。设置的第一塑封层可以塑封微通孔,设置超硬度膜层可避免第一塑封层形变而导致影响指纹识别的精确性。
结合第三方面的第一种可能的实现方式,在第三种可能的实现方式中,上述制备方法还包括:在所述预定区域的周边、且所述盖板本体的远离所述盖板的触摸面一侧形成第二树脂胶层;对所述第二树脂胶层进行固化,使所述第二树脂胶层形成所述第二塑封层。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术提供的一种具有指纹识别功能的手机的结构示意图;
图2为本发明实施提供的一种前盖板的结构示意图;
图3为本发明实施提供的一种后盖板的结构示意图;
图4为图2或图3中AA’向剖视示意图;
图5为本发明实施提供的一种盖板中预定区域的远离盖板的触摸面一侧的俯视示意图;
图6为当盖板应用于终端设置时图2或图3中AA’向剖视示意图;
图7为本发明实施提供的一种制备植入指纹识别功能的盖板的流程示意图。
附图标记:
01-盖板;02-盖板本体;10-home键;20-预定区域;21-虚线框;30-微通孔;40-半导体层;50-导体层;60-第一塑封层;70-超硬度膜层;80-遮光层;90-锡球;100-第二塑封层。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供一种盖板,该盖板包括盖板本体和电容式指纹识别传感器;如图2-图3所示,盖板本体02的预定区域20设置多个均匀排布的微通孔30,电容式指纹识别传感器(图2-3中均未标识出)设置在微通孔30中。
其中,电容式指纹识别传感器进行指纹识别的原理为:电容式指纹识别传感器中的半导体层充当一个电极,当用户将手指放在所述盖板的触摸面时,其手指充当另一个电极,二者之间可产生电容。根据电容公式:
Figure PCTCN2015097737-appb-000001
可知,指纹的脊线(或谷线)和与脊线(或谷线)对应的微通孔30内的半导体可以产生电容。其中,C为电容,ε为介电常数,d为指纹的脊线(或谷线)到与脊线(或谷线)对应的微通孔30内的半导体之间的距离,S为指纹的脊线(或谷线)和与脊线(或 谷线)对应的微通孔30内的半导体之间的重叠面积。由于指纹的脊线到与脊线对应的微通孔30内半导体层之间的实际距离与谷线到与谷线对应的微通孔30内的半导体层之间的实际距离不相同,因而指纹的脊线和与脊线对应的微通孔30内的半导体形成的电容、谷线和与谷线对应的微通孔30内的半导体形成的电容数值也不同,通过与电容式指纹识别传感器相连的IC(Integrated circuit,集成电路)将不同电容数值进行汇总便可获得具有灰度级的指纹图像,从而实现指纹识别功能。
需要说明的是,第一,盖板可以是如图2所示的前盖板,也可以是如图3所示的后盖板。
此处,前盖板,后盖板是相对将其应用在终端设备中的位置而言的,若将其应用在终端设备的正面,即显示面,则该盖板为前盖板,若将其应用在终端设备的背面,则该盖板为后盖板。
其中,由于前盖板位于终端设备的正面,因此,必须保证在终端设备的显示区,该前盖板为透明,即,参考图2所示,虚线框以内的区域需保证透明,以避免对显示产生影响。
在此基础上,由于终端设备的非显示区设置走线、主板等,因此为了美观,需要使终端设备的非显示区不透明,基于此,可在前盖板的与终端设备的非显示区对应的区域,即,参考图2所示,虚线框以外的区域,设置遮光层80(如图4所示),其中遮光层80的材料例如可以是油墨、光阻材料等。
此外,设置在预定区域20的遮光层80可以与其他区域的遮光层80颜色不同,例如,预定区域20可以涂白色油墨,其他区域涂黑色油墨,当然,也可以是预定区域涂黑色油墨,其他区域涂白色油墨,这样便于用户快速找到指纹识别区域。
其中,所述微通孔30也贯穿所述遮光层80。
第二,对于电容式指纹识别传感器的结构,只要能实现指纹识别功能,并能设置在盖板本体02的微通孔中均可。
其中,本发明实施例中所指的盖板本体02是指不设置有任何膜 层的用作盖板的原始基板,例如可以是用作前盖板的玻璃基板。
第三,不限定预定区域20的形状和大小,可根据普通成人的手指腹与盖板接触时的形状和大小而定。
本发明实施例中,所述预定区域20例如可以是直径为十几毫米的圆形,也可以是边长为十几毫米的方形等。
第四,由于一个微通孔30中电容式指纹传感器测量的是其与对应的指纹的一条脊线或一条谷线之间的电容,因此,微通孔30的直径应小于一条脊线或一条谷线的最小宽度,微通孔30之间的间距应小于脊线与脊线之间的间距或谷线与谷线之间的最小间距。
其中,微通孔30的直径可以小于100μm,且大于20μm。
由于微通孔30内的一个电容式指纹识别传感器对应测量指纹中一条脊线或一条谷线,因此微通孔30的直径应小于一条脊线或一条谷线的宽度。但是,微通孔30的直径不能太小,一方面,微通孔30的直径太小将会增加制作微通孔30工艺的难度,另一方面,微通孔30的直径太小,将会导致微通孔30内的半导体层40直径也较小,因而,当进行指纹识别时,半导体层40与手指形成的电容可能太小,经导体层50传递给IC后可能不能被分辨,从而影响了指纹识别的精确性,因此,微通孔30的半径应大于20μm。
第五,微通孔30的数目与预定区域20的大小、微通孔30的直径、微通孔30之间的间距有关。为了使指纹识别的准确性更高,可在预定区域20内设置尽可能多的微通孔30,且这些微通孔30可以阵列方式进行排布。
本发明实施例提供一种盖板,通过在盖板本体02的预定区域20内设置多个均匀排布的微通孔30,并将电容式指纹识别传感器植入在微通孔30中,便可根据指纹的脊线和谷线与电容式指纹识别传感器中的半导体层之间的电容值,而实现对指纹的识别。本发明实施例与目前的主流终端设备相比,只需在盖板上开微通孔30并在微通孔30内植入电容式指纹识别传感器即可,而不需要在盖板上设置与盖板分离的home键,因而可解决现有技术中将指纹识别功能设置 在home键处,而当home键损坏时指纹识别功能无法实现的问题。
优选的,如图4所示,电容式指纹识别传感器包括导体层50和半导体层40。其中,半导体层40靠近盖板的触摸面,导体层50远离盖板的触摸面。
其中,导体层50的材料例如可以是铜、银、铝等金属,由于铜的导电性较好,优选的,该导体层50的材料选用铜。半导体层40的材料例如可以是氮化钾、单晶硅等,由于单晶硅是一种性能优良的半导体且目前用单晶硅作为半导体的工艺已非常成熟,因此,优选的,该半导体层40的材料选用单晶硅。
在此基础上,半导体层40的厚度应根据半导体层40的材料和微通孔30的直径进行设置,其应确保当进行指纹识别时,半导体层40和手指形成的电容能被识别,且不影响指纹识别的精确度。当半导体层40的厚度确定后,根据盖板的厚度,相应的导体层50的厚度也是确定的。此处,需要说明的是,半导体层40靠近盖板的触摸面的一侧应与盖板本体02齐平。
本发明实施例中当进行指纹识别时,手指与上述半导体层40形成电容,并通过导体层50将信号传递给相应的IC,经过IC处理后,便可实现对指纹的识别。
需要说明的是,触摸面即进行指纹识别时,与手指接触的盖板的面。
此外,本领域技术人员应该知晓,在进行指纹识别时,手指并不是与半导体层40直接接触,而是在手指和半导体层40之间还有绝缘层,绝缘层相当于半导体层40和手指形成的电容的介电层。
基于此,如图4所示,盖板还可以包括位于预定区域20、靠近盖板的触摸面一侧的第一塑封层60和超硬镀膜层70。第一塑封层60设置于超硬镀膜层70和盖板本体02之间,用于封装微通孔30。
为了避免预定区域20高于盖板的其他区域太多而影响产品的美观,因此,优选的,第一塑封层60的厚度为1μm-10μm左右,超硬度膜层70的厚度为0μm-100μm。
第一塑封层60例如可以采用树脂材料对所述微通孔30进行封装。其中,为了使该预定区域20与其它区域有明显的区别以便于用户快速找到指纹识别区域,提高用户体验,可以在第一塑封层60的材料中加入一些颜料,以与盖板的其他区域进行区别。在此基础上,由于对所述微通孔30进行封装的材料例如可以是树脂材料,其硬度不是很高,经过多次触摸后,树脂可能会变形,从而会导致影响指纹识别的精确性,因此,当在第一塑封层60上形成超硬度膜层70时,由于超硬度膜层70的硬度较高,因而可避免第一塑封层60形变而导致影响指纹识别的精确性。其中,超硬度膜层70的材料例如可以是氮化硅或氧化硅。
本发明实施例中,通过设置第一塑封层60可以避免空气中的水分或氧气进入微通孔30而腐蚀半导体层50,通过设置超硬度膜层70可避免第一塑封层60形变而导致影响指纹识别的精确性。
进一步优选的,如图5所示,盖板还包括设置在盖板本体02远离盖板的触摸面一侧的第二塑封层100,第二塑封层100设置在预定区域20的周边,用于隔离所述预定区域20。图5为从远离盖板的触摸面一侧向盖板的触摸面一侧的俯视示意图。
其中,第二塑封层100的材料可以是硅胶,也可以是树脂等。
在预定区域20的周边设置第二塑封层100,该第二塑封层100一方面可以用于保护预定区域20内的导体层50,另一方面,由于第二塑封层100具有一定的厚度,因此,当盖板应用于终端设备时,可以使盖板和位于盖板下方的与导体层50连接的柔性电路板(Flexible Printed Circuit board,简称FPC)产生一定的间隙,便于盖板的微通孔30内的导体层50与FPC实现电连接。
需要说明的是,在盖板是前盖板时,且在盖板本体的远离盖板的触摸面一侧设置遮光层80时,第二塑封层100应设置在遮光层80远离盖板本体的一侧。
本发明实施例提供一种终端设备,包括上述的植入指纹识别功能的盖板。
其中,本发明实施例的植入指纹识别功能的盖板可以配置在现有的各种智能终端设备上。该终端设备包括但不限于:各种智能手机、平板电脑、笔记本,等任何涉及用户交互或输入的电子设备等。
优选的,上述终端设备还包括主板,主板上设置有用于指纹识别的IC;电容式指纹识别传感器通过FPC与用于指纹识别的IC相连。其中,如图6所示,当所述电容式指纹识别传感器包括导体层50和半导体层40时,导体层50可以通过锡球90与FPC(图中未标识出)相连。
其中,当导体层50通过锡球90与FPC相连后,为了减小连接导体层50与主板上用于指纹识别的IC的FPC的长度,所述IC在主板上的设置位置应尽量与盖板的预定区域20接近。
当进行指纹识别时,指纹的脊线或谷线与微通孔30内的半导体层40形成电容,导体层50将形成的电容经FPC传递给主板上用于指纹识别的IC,经IC处理后便可获得具有灰度级的指纹图像。
本发明实施例还提供了一种上述盖板的制备方法,如图7所示,该制备方法包括:
S101、通过钻孔工艺在盖板本体02的预定区域20形成多个均匀排布的微通孔30。
需要说明的是,若盖板是前盖板,则在盖板上钻孔之前,可在如图2所示的虚线框21以外的区域形成如图4所示的遮光层80。
其中,不对钻孔工艺进行限定,例如可以采用激光钻孔。当采用激光钻孔工艺时,具体可以利用聚焦透镜飞秒脉冲激光直接打孔,由于飞秒激光脉冲与盖板作用时间短,激光束的高能热量来不及扩散至盖板的微通孔30以外的其它区域便可对微通孔30处的材料定向去除。微通孔30的大小、圆度取决于激光光斑的大小和圆度,由于激光光斑的大小易于控制,因此微通孔30的大小也易于控制。通过激光钻孔工艺获得孔的孔径一般在0.005-0.3mm。
S102、依次在上述微通孔30中生长导体层50和半导体层40。其中,半导体层40靠近盖板的触摸面形成,导体层40远离盖板的 触摸面形成。
此处,只要能在盖板的微通孔30内生长一定高度的导体层50和半导体层40即可。
优选的,利用物理气相沉积工艺在微通孔30中生长导体层50。例如可以是:在真空条件下,利用激光束或离子束高能轰击金属块(可以是铜、银、铝等导电性较好的金属),使金属蒸发,然后沉积在微通孔30内,根据需要合理控制沉积的金属的量,从而获得适宜的导体层50的高度。
在导体层上方50的上方通过化学气相沉积工艺在微通孔30中继续生长半导体层40。例如可以是:利用离子束轰击单晶硅的靶材,使单晶硅原子部分电离成离子,在电场或磁场作用下,被电离的离子沿电场或磁场方向沉积在微通孔30内的导体层50上方。其中,可以根据需要的导体层50的高度轰击适量单晶硅。此处,当用物理气相沉积工艺和化学气相沉积工艺分别在微通孔30内生长完导体层50和半导体层40后,可以利用等离子清洗仪清洗沉积在微通孔30外的导体层50或半导体层40材料。
需要说明的是,半导体层40的厚度应根据半导体层40的材料和微通孔30的直径进行设置,其应确保当进行指纹识别时,半导体层40和手指形成的电容能被识别,且不影响指纹识别的精确度。当半导体层40的厚度确定后,根据盖板的厚度,相应的导体层50的厚度也是确定的。
基于上述,该制备方法还包括:在所述预定区域20、且盖板本体02的靠近盖板的触摸面一侧依次形成第一树脂胶层和超硬镀膜层70;对第一树脂胶层进行固化,使第一树脂胶层形成所述第一塑封层60。
其中,可以采用涂胶机在盖板本体02的靠近盖板的触摸面一侧的表面涂厚度适宜的第一树脂胶层。可以采用紫外固化设备对第一树脂胶层进行固化,也可以利用加热炉进行固化。
此处,需要说明的是,用涂胶机将第一树脂胶涂在预定区域20 后,在预定区域20上方放置超硬度膜层70,当对第一树脂胶层进行固化时,即可以使第一塑封层60和超硬度膜层70固定。
在此基础上,上述方法还包括:在所述预定区域20的周边、且盖板本体的远离盖板的触摸面一侧形成第二树脂胶层;对第二树脂胶层进行固化,使第二树脂胶层形成第二塑封层100。可以利用点胶机在预定区域20的周边形成一圈第二树脂胶层。
需要说明的是,在盖板是前盖板时,且在盖板本体的远离盖板的触摸面一侧形成遮光层80时,第二塑封层100应形成在遮光层80远离盖板本体的一侧。
基于此,当其应用在终端设备时,可在形成第二塑封层100后,通过锡球90将微通孔30内的导体层50通过FPC与主板上用于指纹识别的IC相连。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (11)

  1. 一种盖板,应用于终端设备,其特征在于,包括盖板本体和电容式指纹识别传感器;
    所述盖板本体的预定区域设置多个均匀排布的微通孔,所述电容式指纹识别传感器设置在所述微通孔中。
  2. 根据权利要求1所述的盖板,其特征在于,所述电容式指纹识别传感器包括导体层和半导体层;
    其中,所述半导体层靠近所述盖板的触摸面,所述导体层远离所述盖板的触摸面。
  3. 根据权利要求2所述的盖板,其特征在于,所述盖板还包括位于所述预定区域、靠近所述盖板的触摸面一侧的第一塑封层和超硬镀膜层;
    所述第一塑封层设置于所述超硬镀膜层和所述盖板本体之间,用于封装所述微通孔。
  4. 根据权利要求2所述的盖板,其特征在于,所述盖板还包括设置在所述盖板本体远离所述盖板的触摸面一侧的第二塑封层;
    所述第二塑封层设置在所述预定区域的周边,用于隔离所述预定区域。
  5. 根据权利要求1-4任一项所述的盖板,其特征在于,所述微通孔的直径为20μm-100μm。
  6. 一种终端设备,包括盖板,其特征在于,所述盖板为权利要求1-5任一项所述的盖板。
  7. 根据权利要求6所述的终端设备,其特征在于,所述终端设备还包括主板,所述主板上设置有用于指纹识别的集成电路IC;
    所述电容式指纹识别传感器的导体层经锡球通过柔性电路板FPC与所述IC相连。
  8. 一种盖板的制备方法,其特征在于,所述制备方法包括:
    通过钻孔工艺在盖板本体的预定区域形成多个均匀排布的微通孔;
    依次在所述微通孔中生长导体层和半导体层;其中,所述半导体层靠近所述盖板的触摸面形成,所述导体层远离所述盖板的触摸面形成。
  9. 根据权利要求8所述的制备方法,其特征在于,通过物理气相沉积工艺在所述微通孔中生长所述导体层;
    在所述导体层上方,通过化学气相沉积工艺生长所述半导体层。
  10. 根据权利要求8或9所述的制备方法,其特征在于,所述方法还包括:在所述预定区域、且所述盖板本体的靠近所述盖板的触摸面一侧依次形成第一树脂胶层和超硬镀膜层;
    对所述第一树脂胶层进行固化,使所述第一树脂胶层形成所述第一塑封层。
  11. 根据权利要求8或9所述的制备方法,其特征在于,所述方法还包括:在所述预定区域的周边、且所述盖板本体的远离所述盖板的触摸面一侧形成第二树脂胶层;
    对所述第二树脂胶层进行固化,使所述第二树脂胶层形成所述第二塑封层。
PCT/CN2015/097737 2015-12-17 2015-12-17 一种盖板及其制备方法、终端设备 WO2017101078A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/097737 WO2017101078A1 (zh) 2015-12-17 2015-12-17 一种盖板及其制备方法、终端设备
CN201580071591.4A CN107111751A (zh) 2015-12-17 2015-12-17 一种盖板及其制备方法、终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/097737 WO2017101078A1 (zh) 2015-12-17 2015-12-17 一种盖板及其制备方法、终端设备

Publications (1)

Publication Number Publication Date
WO2017101078A1 true WO2017101078A1 (zh) 2017-06-22

Family

ID=59055479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097737 WO2017101078A1 (zh) 2015-12-17 2015-12-17 一种盖板及其制备方法、终端设备

Country Status (2)

Country Link
CN (1) CN107111751A (zh)
WO (1) WO2017101078A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110717364B (zh) * 2018-07-13 2023-09-22 中兴通讯股份有限公司 玻璃盖板、终端、指纹识别方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004033610A (ja) * 2002-07-05 2004-02-05 Lightuning Technology Inc 温度差検出セル及びそれを応用した指紋サーモグラフ読み取り装置
US20100172552A1 (en) * 2009-01-07 2010-07-08 Jen-Chieh Wu Fingerprint indentifying system
CN103577811A (zh) * 2013-11-15 2014-02-12 信利半导体有限公司 一种具有指纹识别模块电子设备及其制作方法
CN104063696A (zh) * 2014-07-02 2014-09-24 南昌欧菲生物识别技术有限公司 指纹识别检测组件及包含其的终端设备
CN104657707A (zh) * 2015-01-30 2015-05-27 业成光电(深圳)有限公司 指纹识别装置及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004033610A (ja) * 2002-07-05 2004-02-05 Lightuning Technology Inc 温度差検出セル及びそれを応用した指紋サーモグラフ読み取り装置
US20100172552A1 (en) * 2009-01-07 2010-07-08 Jen-Chieh Wu Fingerprint indentifying system
CN103577811A (zh) * 2013-11-15 2014-02-12 信利半导体有限公司 一种具有指纹识别模块电子设备及其制作方法
CN104063696A (zh) * 2014-07-02 2014-09-24 南昌欧菲生物识别技术有限公司 指纹识别检测组件及包含其的终端设备
CN104657707A (zh) * 2015-01-30 2015-05-27 业成光电(深圳)有限公司 指纹识别装置及其制作方法

Also Published As

Publication number Publication date
CN107111751A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
JP5647726B2 (ja) 容量性レンズを含む指センサ及びこれに関連する方法
CN104766053B (zh) 指纹识别装置及其制造方法
TWI668618B (zh) 超音波指紋識別裝置及其製作方法以及應用其之電子裝置
KR101907603B1 (ko) 몰드를 포함한 이종코팅구조를 갖는 지문감지장치
US11301663B2 (en) Fingerprint sensor and method of manufacturing the same
TWI607542B (zh) 觸控視窗
US11455815B2 (en) Touch-fingerprint complex sensor and electronic apparatus including the same
US9342727B2 (en) Field shaping channels in a substrate above a biometric sensing device
TWI611352B (zh) 具有包括黏著劑的非均勻塗層結構的指紋感測裝置與製造其之方法
WO2017031634A1 (zh) 终端设备
US10572752B2 (en) Fingerprint identification panel and preparation method thereof, driving method and fingerprint identification device
US10928940B2 (en) Touch panel, method for manufacturing the same, and touch display device
US20160252997A1 (en) Ogs touch screen substrate and method of manufacturing the same, and related apparatus
TWI614693B (zh) 具曲面基板之生物辨識裝置
WO2017101078A1 (zh) 一种盖板及其制备方法、终端设备
TWM517863U (zh) 觸控裝置
CN108694364B (zh) 一种指纹采集装置及其制备方法
KR20160028805A (ko) 지문인식센서 모듈
CN106502468B (zh) 一种触控基板、触控显示装置及制作方法
TWI575437B (zh) Capacitive fingerprint induction module
TWI832485B (zh) 觸控感應器及其製作方法
KR20170071248A (ko) 지문 감지 장치 및 그 제조 방법
KR20150131822A (ko) 전기적 측정 방식 지문 인식 센서용 커버플레이트
US20180239945A1 (en) Fingerprint identification module and manufacturing method thereof
WO2022151364A1 (zh) 生物信息识别装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15910550

Country of ref document: EP

Kind code of ref document: A1