WO2017101029A1 - 一种csi-rs的传输方法和基站 - Google Patents

一种csi-rs的传输方法和基站 Download PDF

Info

Publication number
WO2017101029A1
WO2017101029A1 PCT/CN2015/097510 CN2015097510W WO2017101029A1 WO 2017101029 A1 WO2017101029 A1 WO 2017101029A1 CN 2015097510 W CN2015097510 W CN 2015097510W WO 2017101029 A1 WO2017101029 A1 WO 2017101029A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration mode
csi
bit
ports
base station
Prior art date
Application number
PCT/CN2015/097510
Other languages
English (en)
French (fr)
Inventor
徐凯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15910502.2A priority Critical patent/EP3322116B1/en
Priority to US15/750,803 priority patent/US10819465B2/en
Priority to CN201580077667.4A priority patent/CN107409026B/zh
Priority to PCT/CN2015/097510 priority patent/WO2017101029A1/zh
Publication of WO2017101029A1 publication Critical patent/WO2017101029A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • the present invention relates to the field of communications, and in particular, to a channel state information reference signal (CSI-RS) transmission method and a base station.
  • CSI-RS channel state information reference signal
  • CSI-RS Channel State Information Reference Signal
  • 3GPP the 3rd Generation Partnership Project, 3rd Generation Partnership) Project
  • LTER10 Release 10, version 10
  • the prior art adopts a technical solution of adding a new port number in another subframe or a different physical resource block (PRB).
  • PRB physical resource block
  • the existing technical solution of adding a new number of ports in the time domain or the frequency domain and relying entirely on the orthogonality of the time domain or the frequency domain to achieve the purpose of increasing the number of ports, time selectivity or frequency selection of the channel The performance is more sensitive, which is not conducive to channel interpolation and other operations, and the system performance loss is large.
  • an embodiment of the present invention provides a CSI-RS transmission method and a base station, which solves the problem of increasing the number of ports by orthogonality in the time domain or the frequency domain, resulting in a large system performance loss. problem.
  • an embodiment of the present invention provides a method for transmitting a CSI-RS, including:
  • the base station aggregates K channel state information-first configuration mode of the reference signal CSI-RS to form a second configuration mode of the CSI-RS;
  • the K is an integer greater than or equal to 2
  • each of the first configuration modes is X a configuration mode of the port, where the X value is 2 or 4 or 8, the first configuration mode includes a location of a resource element corresponding to each of the X ports;
  • the second configuration mode is X*K a configuration mode of the port, where the second configuration mode includes a location of a resource element corresponding to each of the X*K ports;
  • the base station sends a CSI-RS to the user equipment UE by using the second configuration mode of the CSI-RS.
  • the UE may accurately perform channel state channel measurement according to the CSI-RS, and determine channel state information.
  • the base station feeds back the channel state information.
  • the method may further include:
  • the base station sends a radio resource control RRC signaling or a system information block SIB message to the UE; the RRC signaling or the SIB message includes: a bit block, the bit block includes a bit and a CSI included in the PRB pair.
  • the first configuration mode of the RS is in one-to-one correspondence, and the bit is used to: indicate an aggregation state of the first configuration mode of the CSI-RS corresponding to the bit.
  • the aggregation state of the first configuration mode may be indicated by bit 0 or 1.
  • bit If the bit is 1, the first configuration mode indicating that the CSI-RS corresponding to the bit is aggregated
  • the bit is 0, the first configuration mode indicating that the CSI-RS corresponding to the bit is not aggregated.
  • the aggregated The ports of the second configuration mode are numbered starting from 15, and the specific implementation is as follows:
  • the port number n of the second configuration mode of the CSI-RS may be:
  • the i ⁇ ⁇ 0, 1, ..., K-1 ⁇
  • the i represents a first configuration mode of the ith CSI-RS in the first configuration mode of the K CSI-RSs
  • N is the number of ports corresponding to the second configuration mode of the CSI-RS.
  • an embodiment of the present invention provides a base station, which may include:
  • An aggregation unit configured to aggregate a first configuration mode of the K channel state information-reference signal CSI-RS, to form a second configuration mode of the CSI-RS;
  • the K is an integer greater than or equal to 2
  • the configuration mode is a configuration mode of X ports, where the value of X is 2 or 4 or 8.
  • the first configuration mode includes a location of a resource element corresponding to each port of the X ports;
  • the second configuration mode a configuration mode of X*K ports, where the second configuration mode includes a location of a resource element corresponding to each of the X*K ports;
  • a sending unit configured to send, by using a second configuration mode of the CSI-RS aggregated by the aggregation unit, a CSI-RS to the user equipment UE.
  • the channel state information can be accurately measured according to the CSI-RS, the channel state information is determined, and the channel state information is fed back to the base station.
  • the sending unit is further configured to:
  • the sending unit Before the sending unit sends the CSI-RS to the user equipment UE by using the second configuration mode of the CSI-RS, sending a radio resource control RRC signaling or a system information block SIB message to the UE;
  • the RRC signaling or The SIB message includes: a bit block, the bit block includes a bit corresponding to a first configuration mode of a CSI-RS included in the PRB pair, the bit is used to: indicate a CSI corresponding to the bit The aggregation state of the first configuration mode of the RS.
  • the aggregation state of the first configuration mode may be indicated by bit 0 or 1.
  • bit If the bit is 1, the first configuration mode indicating that the CSI-RS corresponding to the bit is aggregated
  • the bit is 0, the first configuration mode indicating that the CSI-RS corresponding to the bit is not aggregated.
  • the aggregated The ports of the second configuration mode are numbered starting from 15, and the specific implementation is as follows:
  • the port number n of the second configuration mode of the CSI-RS is:
  • the i ⁇ ⁇ 0, 1, ..., K-1 ⁇
  • the i represents a first configuration mode of the ith CSI-RS in the first configuration mode of the K CSI-RSs
  • N is the number of ports corresponding to the second configuration mode of the CSI-RS.
  • an embodiment of the present invention further provides a base station, including:
  • the K is an integer greater than or equal to 2
  • each of the first configuration modes being a configuration mode of X ports, where the X value is 2 or 4 or 12:
  • the first configuration mode includes a location of a resource element corresponding to each port of the X ports;
  • the second configuration mode is a configuration mode of X*K ports, and the second configuration mode includes the X * The location of the resource element corresponding to each port of the K ports;
  • a communication unit configured to send, by using a second configuration mode of the CSI-RS aggregated by the processor, a CSI-RS to the user equipment UE.
  • the UE may accurately perform channel state channel measurement according to the CSI-RS, and determine channel state information.
  • the base station feeds back the channel state information.
  • the communications unit is further configured to:
  • the communication unit Before the communication unit sends the CSI-RS to the user equipment UE by using the second configuration mode of the CSI-RS, sending a radio resource control RRC signaling or a system information block SIB message to the UE;
  • the RRC signaling or The SIB message includes: a bit block, the bit block includes a bit corresponding to a first configuration mode of a CSI-RS included in the PRB pair, the bit is used to: indicate a CSI corresponding to the bit The aggregation state of the first configuration mode of the RS.
  • the aggregation state of the first configuration mode may be indicated by bit 0 or 1.
  • bit If the bit is 1, the first configuration mode indicating that the CSI-RS corresponding to the bit is aggregated
  • the bit is 0, the first configuration mode indicating that the CSI-RS corresponding to the bit is not aggregated.
  • the aggregated The ports of the second configuration mode are numbered starting from 15, and the specific implementation is as follows:
  • the port number n of the second configuration mode of the CSI-RS is:
  • the i ⁇ ⁇ 0, 1, ..., K-1 ⁇
  • the i represents a first configuration mode of the ith CSI-RS in the first configuration mode of the K CSI-RSs
  • N is the number of ports corresponding to the second configuration mode of the CSI-RS.
  • the embodiment of the present invention provides a CSI-RS transmission method, in which a base station first aggregates a first configuration mode of a K channel state information-reference signal CSI-RS to form a second configuration mode of the CSI-RS; K is an integer greater than or equal to 2, each of the first configuration modes is a configuration mode of X ports, and the X value is 2, 4, or 8, and the first configuration mode includes the X ports.
  • Each port corresponds to a location of a resource element;
  • the second configuration mode is a configuration mode of X*K ports, and the second configuration mode includes a location of a resource element corresponding to each of the X*K ports;
  • the base station sends the CSI-RS to the user equipment UE by using the second configuration mode of the CSI-RS.
  • the number of ports in the system is increased by the aggregation of the existing port configuration mode, which has less impact on the traditional network and the terminal, greatly improves the data throughput and performance of the entire system, and improves the data transmission performance of the control layer plane and the data plane. It plays a key role in solving the problem of increasing the number of ports through the orthogonality of the time domain or the frequency domain, resulting in a large loss of system performance.
  • FIG. 1 is a schematic diagram of a method for increasing the number of ports
  • FIG. 2 is a structural diagram of a base station 10 according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for designing a CSI-RI port according to an embodiment of the present invention
  • 4 is a reference signal of an existing 4CSI-RI port configuration mode
  • FIG. 5 is a schematic diagram of a method for aggregating a configuration mode of two ports into another port configuration mode according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a method for aggregating a configuration mode of four ports into another port configuration mode according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a method for aggregating a configuration mode of eight ports into another port configuration mode according to an embodiment of the present disclosure
  • FIG. 8 is a structural diagram of a base station 20 according to an embodiment of the present invention.
  • the main principle of the present invention is to aggregate 2, 4, and 8 ports of the CSI-RS reference signal included in the current LTE system, and design a configuration mode of 12 ports, 16 ports, and more ports, according to the design.
  • the outbound configuration mode sends a CSI-RS reference signal to the user equipment UE, and the number of ports of the system is increased by the aggregation of the existing port configuration mode, which has less impact on the traditional network and the terminal, and greatly improves the data throughput and performance of the entire system. It plays a key role in improving the data transmission performance of the control plane and the data plane.
  • FIG. 2 is a schematic structural diagram of a base station 10 according to an embodiment of the present invention.
  • the base station 10 is configured to perform a CSI-RS transmission method according to an embodiment of the present invention.
  • the base station may include: a communication unit 1001. a processor 1002, a memory 1003, and at least one communication bus 1004 for implementing connections and mutual communication between the devices;
  • the communication unit 1001 can be used for signal transmission with an external network element.
  • the processor 1002 may be a central processing unit (CPU) or a specific integrated circuit (Application Specific). Integrated Circuit (ASIC), or one or more integrated circuits configured to implement embodiments of the present invention, such as: one or more microprocessors (DSPs), or one or more field programmable Field Programmable Gate Array (FPGA).
  • CPU central processing unit
  • ASIC Application Specific
  • DSPs microprocessors
  • FPGA field programmable Field Programmable Gate Array
  • the memory 1003 may be a volatile memory such as a random-access memory (RAM) or a non-volatile memory such as a read-only memory. , ROM), flash memory, hard disk drive (HDD) or solid-state drive (SSD); or a combination of the above types of memory.
  • RAM random-access memory
  • non-volatile memory such as a read-only memory.
  • ROM read-only memory
  • flash memory flash memory
  • HDD hard disk drive
  • SSD solid-state drive
  • the communication bus 1004 can be divided into an address bus, a data bus, a control bus, etc., and can be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an extended industry standard architecture (Extended Industry Standard Architecture, EISA) bus, etc.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the processor 1002 is configured to aggregate a first configuration mode of the K channel state information-reference signal CSI-RS to form a second configuration mode of the CSI-RS;
  • the K is an integer greater than or equal to 2
  • each The first configuration mode is a configuration mode of X ports, where the X value is 2, 4, or 8, and the first configuration mode includes a location of a resource element corresponding to each of the X ports;
  • the second configuration mode is a configuration mode of X*K ports, and the second configuration mode includes a location of a resource element corresponding to each of the X*K ports.
  • the communication unit 1001 is configured to send a CSI-RS to the user equipment UE by using the second configuration mode of the CSI-RS.
  • the embodiment of the present invention improves the number of ports of the system by the aggregation of the existing port configuration mode, which has less impact on the traditional network and the terminal, and greatly improves the data throughput and performance of the entire system, and is the control layer.
  • the data transmission performance improvement of the plane and the data plane plays a key role, and the existing orthogonality through the time domain or the frequency domain is solved. Sexuality increases the number of ports, resulting in a large loss of system performance.
  • embodiment 1 shows and describes in detail the transmission method of the CSI-RS provided by the present invention, wherein the steps shown may also be in a group of executable instructions other than the base station 10.
  • the execution of the computer system in addition, although the logical order is shown in the figures, in some cases the steps shown or described may be performed in a different order than the ones described herein.
  • FIG. 3 is a flowchart of a CSI-RS port design channel measurement method according to an embodiment of the present invention.
  • the base station executed by FIG. 2 performs an execution subject of a UE, and is used for a CSI-RS port in one frame or one PRB pair. Designing, as shown in FIG. 3, the method includes the following steps:
  • the base station aggregates K channel state information-first configuration mode of the reference signal CSI-RS, forming a second configuration mode of the CSI-RS;
  • the K is an integer greater than or equal to 2
  • each of the first configuration modes For the configuration mode of the X ports, the X value is 2 or 4 or 8.
  • the first configuration mode includes a location of a resource element corresponding to each of the X ports;
  • the second configuration mode is X.
  • Configuration mode of K ports the second configuration mode including the location of resource elements corresponding to each of the X*K ports.
  • the first configuration mode may be a configuration mode of two or four or eight ports specified in the existing LTE system Release 12 (version 12), for example, FIG. 4 is two, four, and eight in the current LTE system Release 12. Design sample of the port, including the current system to occupy resource elements (Resource Element, RE) in a physical resource block (PRB) pair for different configurations of 2, 4, and 8 CSI-RS ports.
  • RE resource Element
  • PRB physical resource block
  • the pattern is embodied in a pair of physical resource blocks (PRBs), occupying one subframe in the time domain, each subframe having two slots: slot0 and slot1, respectively, for the case of a normal cyclic prefix Corresponding to the first 7 Orthogonal Frequency Division Multiplexing (OFDM) symbols and the last 7 OFDM symbols, occupying 12 subcarriers in the frequency domain, and filling the same pattern resources in each port configuration pattern.
  • the elements form a first configuration mode of a CSI-RS, for example, such as The pattern of the 2CSI-RS port shown in FIG.
  • the pattern shown in FIG. 4 may further include a cell-specific reference signal (CRS) and a demodulation reference signal (DMRS).
  • CRS cell-specific reference signal
  • DMRS demodulation reference signal
  • the base station may adopt a first frequency domain post-time domain aggregation manner, and aggregate the K channel state information-first configuration mode of the reference signal CSI-RS to form a second configuration of the second CSI-RS.
  • the mode of the pre-frequency domain and the time domain of the pre-frequency domain is: in a PRB pair of the configuration mode of the X ports, the location of the resource element corresponding to the CSI-RS in the PRB pair is obtained, and the acquisition time is the highest, and The resource element corresponding to the CSI-RS with the lowest frequency aggregates the configuration of the X ports including the resource element. If the CSI-RS does not exist on other frequencies during the time, the next time adjacent to the time is obtained.
  • the CSI-RS in one time is aggregated according to the frequency from small to large.
  • the configuration mode of the X ports of the CSI-RS may be 40/X, for example, there are 20 configuration modes of 2 ports, and 10 configuration modes of 4 ports, 8 There are five configuration modes of the ports. Therefore, in the embodiment of the present invention, the K must be less than or equal to 40/X. If equal to 40/X, the first configuration mode of all CSI-RSs in a PRB pair is determined. The aggregation, if less than 40/X, indicates that the first configuration mode of a part of the CSI-RS of a PRB pair is aggregated.
  • the first configuration mode of a part of the CSI-RS of a PRB is aggregated,
  • the first configuration mode in which any K CSI-RSs can be selected from 40/X is aggregated, and may be a continuous aggregation or an interval aggregation, which is not limited in this embodiment of the present invention.
  • the base station sends a CSI-RS to the user equipment UE by using the second configuration mode of the CSI-RS.
  • the channel state information may be accurately determined according to the CSI-RS, and the channel state information is determined, and the channel state information is fed back to the base station.
  • the method may further include:
  • the base station Transmitting, by the base station, a radio resource control RRC signaling or a system information block SIB message to the UE;
  • the RRC signaling or the SIB message includes: a bit block, where the bit block includes a bit and the PRB pair
  • the first configuration mode of the CSI-RS is in one-to-one correspondence, and the bit is used to: indicate an aggregation state of the first configuration mode of the CSI-RS corresponding to the bit.
  • the aggregation state of the first configuration mode may be represented by bit 0 or 1, for example, if the bit is 1, the first configuration mode of the CSI-RS corresponding to the bit is aggregated; if the bit is 0, then The first configuration mode of the CSI-RS corresponding to the bit is not aggregated; of course, the aggregation state of the first configuration mode of the CSI-RS may be used in other manners, which is not limited in this embodiment of the present invention.
  • port aggregation should be performed in the first configuration mode with a relatively large number of ports, for example, if 16 ports are to be configured.
  • the heat can be implemented by aggregating four 4-port configuration modes, or by aggregating two 8-port configuration modes.
  • two 8-ports should be used as far as possible.
  • the configuration mode is aggregated into a configuration mode of 16 ports.
  • the aggregated The ports of the second configuration mode are numbered starting from 15, and the specific implementation is as follows:
  • the port number n of the second configuration mode of the CSI-RS is:
  • the i ⁇ ⁇ 0, 1, ..., K-1 ⁇
  • the i represents a first configuration mode of the ith CSI-RS in the first configuration mode of the K CSI-RSs
  • N is the number of ports corresponding to the second configuration mode of the CSI-RS.
  • the aggregation port number is 15, 16, ... 30. If the second configuration mode is the configuration mode of 12 ports, the aggregation port number is 15,16. ,...26.
  • ports of the second configuration mode can be numbered not only from 15 but also from 16, or 17 or other numbers greater than 14.
  • the aggregation state of the configuration mode of the X ports is represented by bit 0 or 1.
  • the information bit coding is performed for the aggregation situation of the current LTE system ports 2, 4, and 8 shown in FIG. 4 (for example, the aggregation condition for port 2 can be adopted. 20 bits are mapped accordingly; for the case of port 4, 10 bits are used for corresponding mapping; for the case of port 8, the 5 bits can be mapped accordingly):
  • the first pair of REs of the symbols 5 and 6 on the subcarrier 9 are first used in the mapping manner of the pre-frequency domain and the time domain. That is, the two resource elements with the same filling pattern are mapped to the first bit (mapped to 1 when aggregated, 0 to when not aggregated), and then the symbols 5 and 6 on subcarrier 8 in the direction of the arrow.
  • the second pair of REs performs mapping of the second bit, the third pair of REs of the symbols 5 and 6 on the subcarrier 3 are mapped by the third bit, and the fourth pair of REs of the symbols 5 and 6 on the subcarrier 2 are performed.
  • mapping of the fourth bit is followed by the corresponding mapping of the RE pairs of the symbols 9, 10 on the subcarrier 11, and so on. If the configuration patterns of all the two ports in the PRB are aggregated, the resulting bit block is: 11111111111111111.
  • the mapping mode of the pre-frequency domain and the time domain is also adopted, and the first configuration RE of the symbols 5 and 6 (ie, the four resource elements with the same filling pattern, such as : 4 REs in the dashed box to map the first bit, and then the second configuration RE of the symbols 5, 6 along the arrow method (eg, on the subcarrier 8 and the subcarrier 3, the symbol is 5, 4 REs of 6) for the second bit mapping Shooting, then the third configuration RE of symbols 9, 10 performs the mapping of the third bit, the fourth to eighth configuration performs the mapping of the fourth bit to the eighth bit, and the ninth and tenth of the symbols 12 and The mapping between the ninth bit and the tenth bit is configured. If the configuration modes of all four ports in the PRB are aggregated, the obtained bit block is: 1111111111.
  • the mapping mode of the first frequency domain and the time domain is also adopted.
  • the first configuration RE of the symbols 5 and 6 the eight resource elements with the same filling pattern, such as:
  • the 8 bits in the dashed box are mapped to the first bit
  • the second, third and fourth configurations of symbols 9, 10 are mapped to the second, third and fourth bits, symbol 12
  • the fifth configuration in 13 performs mapping of the fifth bit; at this time, if the configuration patterns of all eight ports in the PRB are aggregated, the obtained bit block is: 11111.
  • the embodiment of the present invention provides a CSI-RS transmission method, in which a base station first aggregates a first configuration mode of a K channel state information-reference signal CSI-RS to form a second configuration mode of the CSI-RS; K is an integer greater than or equal to 2, each of the first configuration modes is a configuration mode of X ports, and the X value is 2, 4, or 8, and the first configuration mode includes the X ports.
  • Each port corresponds to a location of a resource element;
  • the second configuration mode is a configuration mode of X*K ports, and the second configuration mode includes a location of a resource element corresponding to each of the X*K ports;
  • the base station sends the CSI-RS to the user equipment UE by using the second configuration mode of the CSI-RS.
  • the number of ports in the system is increased by the aggregation of the existing port configuration mode, which has less impact on the traditional network and the terminal, greatly improves the data throughput and performance of the entire system, and improves the data transmission performance of the control layer plane and the data plane. It plays a key role in solving the problem of increasing the number of ports through the orthogonality of the time domain or the frequency domain, resulting in a large loss of system performance.
  • the following embodiments of the present invention further provide a base station 20, which is preferably used to perform the method described in Embodiment 1.
  • FIG. 8 is a structural diagram of a base station 20 according to an embodiment of the present invention. As shown in FIG. 8, the base station 20 may include:
  • the aggregation unit 201 is configured to aggregate a first configuration mode of the K channel state information-reference signal CSI-RS to form a second configuration mode of the CSI-RS; the K is an integer greater than or equal to 2, each of the foregoing A configuration mode is a configuration mode of X ports, where the X value is 2 or 4 or 8.
  • the first configuration mode includes a location of a resource element corresponding to each of the X ports; the second configuration The mode is a configuration mode of X*K ports, and the second configuration mode includes a location of a resource element corresponding to each of the X*K ports.
  • the sending unit 202 is configured to send the CSI-RS to the user equipment UE by using the second configuration mode of the CSI-RS that is aggregated by the aggregation unit.
  • the first configuration mode may be a configuration mode of two or four or eight ports specified in the existing LTE system Release 12 (version 12), for example, FIG. 4 is two, four, and eight in the current LTE system Release 12. Design sample of the port, including the current system to occupy resource elements (Resource Element, RE) in a physical resource block (PRB) pair for different configurations of 2, 4, and 8 CSI-RS ports.
  • RE resource Element
  • PRB physical resource block
  • the pattern is embodied in a pair of physical resource blocks (PRBs), occupying one subframe in the time domain, each subframe having two slots: slot0 and slot1, respectively, for the case of a normal cyclic prefix Corresponding to the first 7 Orthogonal Frequency Division Multiplexing (OFDM) symbols and the last 7 OFDM symbols, occupying 12 subcarriers in the frequency domain, and filling the same pattern resources in each port configuration pattern.
  • the elements form a first configuration mode of a CSI-RS.
  • the pattern of the 2CSI-RS port shown in FIG. 4 on the same subcarrier, the filling pattern of the resource elements corresponding to the symbol 5 and the symbol 6 is the same, then the carrier is on the carrier.
  • Meets 5 and symbol 6 Resource elements may be comprised of a 2-port configuration mode.
  • the aggregating unit 201 may be configured to generate a second configuration mode of the second CSI-RS by using the first mode of the K channel state information-reference signal CSI-RS.
  • the aggregation mode of the pre-frequency domain and the time domain is: in a PRB pair of the configuration mode of the X ports, the location of the resource element corresponding to the CSI-RS in the PRB pair is obtained, and the acquisition time is the highest and the frequency is the smallest.
  • the resource element corresponding to the CSI-RS aggregates the configuration of the X ports including the resource element. If there is no CSI-RS on other frequencies during this time, the CSI-RSs in the next time adjacent to the time are acquired, and the aggregation is performed according to the frequency from small to large.
  • the UE may accurately perform channel state channel measurement according to the CSI-RS to determine channel state information.
  • the channel state information is fed back to the base station, and the sending unit 202 is further configured to:
  • the RRC signaling or the SIB message includes: a bit block, the bit included in the bit block and a CSI-RS included in the PRB pair
  • the first configuration mode is in one-to-one correspondence, and the bit is used to: indicate an aggregation state of a first configuration mode of a CSI-RS corresponding to the bit.
  • the aggregation state of the first configuration mode may be represented by bit 0 or 1, for example, if the bit is 1, the first configuration mode of the CSI-RS corresponding to the bit is aggregated; if the bit is 0, then The first configuration mode of the CSI-RS corresponding to the bit is not aggregated; of course, the aggregation state of the first configuration mode of the CSI-RS may be used in other manners, which is not limited in this embodiment of the present invention.
  • port aggregation should be performed in the first configuration mode with a relatively large number of ports, for example, if 16 ports are to be configured.
  • the heat can be implemented by aggregating four 4-port configuration modes, or by aggregating two 8-port configuration modes.
  • two 8-ports should be used as far as possible.
  • the configuration mode is aggregated into a configuration mode of 16 ports.
  • the aggregated The ports of the second configuration mode are numbered starting from 15, and the specific implementation is as follows:
  • the port number n of the second configuration mode of the CSI-RS may be:
  • the i ⁇ ⁇ 0, 1, ..., K-1 ⁇
  • the i represents a first configuration mode of the ith CSI-RS in the first configuration mode of the K CSI-RSs
  • N is the number of ports corresponding to the second configuration mode of the CSI-RS
  • the N is the number of ports corresponding to the second configuration mode of the CSI-RS.
  • the aggregation port number is 15, 16, ... 30. If the second configuration mode is the configuration mode of 12 ports, the aggregation port number is 15,16. ,...26.
  • ports of the second configuration mode can be numbered not only from 15 but also from 16, or 17 or other numbers greater than 14.
  • the embodiment of the present invention provides a base station, which first aggregates K channel state information-reference signal CSI-RS first configuration mode to form a second configuration mode of CSI-RS; the K is greater than or equal to 2 An integer, each of the first configuration modes being a configuration mode of X ports, where the X value is 2, 4, or 8, and the first configuration mode includes a resource element corresponding to each of the X ports.
  • the second configuration mode is a configuration mode of X*K ports, where the second configuration mode includes a location of a resource element corresponding to each of the X*K ports; then, the base station adopts The second configuration mode of the CSI-RS sends a CSI-RS to the user equipment UE.
  • the number of ports in the system is increased by the aggregation of the existing port configuration mode, which has less impact on the traditional network and the terminal, greatly improves the data throughput and performance of the entire system, and improves the data transmission performance of the control layer plane and the data plane. It plays a key role in solving the problem of increasing the number of ports through the orthogonality of the time domain or the frequency domain, resulting in a large loss of system performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种CSI-RS的传输方法和基站,涉及通信技术领域,解决了现有通过时域或者频域的正交性来增加端口数目,导致的系统性能损失较大的问题。所述方法包括:基站聚合K个信道状态信息-参考信号CSI-RS的第一配置模式,形成CSI-RS的第二配置模式;所述K为大于或等于2的整数,每个所述第一配置模式为X个端口的配置模式,所述X取值为2或4或8,所述第一配置模式包含所述X个端口中每个端口对应资源元素的位置;所述第二配置模式为X*K个端口的配置模式,所述第二配置模式包含所述X*K个端口中每个端口对应的资源元素的位置;所述基站采用所述CSI-RS的第二配置模式向用户设备UE发送CSI-RS。

Description

一种CSI-RS的传输方法和基站 技术领域
本发明涉及通信领域,尤其涉及一种信道状态信息-参考信号(Channel State Information Reference Signal,CSI-RS)的传输方法和基站。
背景技术
随着移动通信的发展,第四代移动通信已经走向商用,业界正投入更多的努力到下一代第五代移动通信(5G)无线通信网络的发展。移动通信系统的演进带来带宽需求的不断加大,由于可用于移动通信的频率资源十分有限,因此,为了满足带宽需求,需要通过增加的用户数目和流数来提高长期演进(Long Term Evolution,LTE)系统的频谱效率和吞吐量,如:即将启动的LTE R13(Release 13,第13版本)标准开始考虑引入更多的天线端口配置,以增加用户数目和流数。
由于在实际通信过程中,通过天线端口向用户设备(User Equipment,UE)发送数据的同时,需要向UE发送不同种类的参考信号,以进行估计信道或信道状态或信道质量的测量,如:向UE发送信道状态信息-参考信号(Channel State Information Reference Signal,CSI-RS)以实现对信道状态的测量,从而实现对UE的调度,如:在3GPP(the 3rd Generation Partnership Project,第三代合作伙伴项目)LTER10(Release 10,第10版本)下行系统中,各类参考信号支持的天线端口数量各不相同,参考信号最多支持8个天线端口。此时,若引入更多的天线端口配置,以增加用户数目和流数;此时,若引入更多的天线端口配置,以增加用户数目和流数,则需要增加更多CSI-RS端口数目来支持系统增加的用户数目和流数。
为此,现有技术采用在另一个子帧或者不同的物理资源块(Physical Resource Block,PRB)中增加新的端口数目的技术方案, 来提供系统总的端口数目。例如,如图1所示,将子帧(Subframe)1内的8个端口和子帧2内的8个端口配置在一起,作为16端口来发送CSI-RS参考信号。但是,现有这种在时域或频域增加新的端口数目的技术方案,并且完全依靠时域或者频域的正交性来达到端口数目增加的目的,对信道的时间选择性或者频率选择性较为敏感,不利于信道插值等操作,系统性能损失较大。
发明内容
为解决上述技术问题,本发明的实施例提供一种CSI-RS的传输方法和基站,解决了现有通过时域或者频域的正交性来增加端口数目,导致的系统性能损失较大的问题。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,本发明实施例提供一种CSI-RS的传输方法,包括:
基站聚合K个信道状态信息-参考信号CSI-RS的第一配置模式,形成CSI-RS的第二配置模式;所述K为大于或等于2的整数,每个所述第一配置模式为X个端口的配置模式,所述X取值为2或4或8,所述第一配置模式包含所述X个端口中每个端口对应资源元素的位置;所述第二配置模式为X*K个端口的配置模式,所述第二配置模式包含所述X*K个端口中每个端口对应的资源元素的位置;
所述基站采用所述CSI-RS的第二配置模式向用户设备UE发送CSI-RS。
可选的,为了使UE在接收到基站采用所述CSI-RS的第二配置模式发送的CSI-RS后,可以准确地根据所述CSI-RS进行信状态道测量,确定信道状态信息,向基站反馈所述信道状态信息,在第一方面的第一种可实现方式中,所述方法还可以包括:
基站向所述UE发送无线资源控制RRC信令或者系统信息块SIB消息;所述RRC信令或所述SIB消息包含:比特块,所述比特块包含的比特与所述PRB对包含的CSI-RS的第一配置模式一一对应,所述比特用于:指示与所述比特对应的CSI-RS的第一配置模式的聚合状态。
具体的,可以用比特0或1指示第一配置模式的聚合状态;
若所述比特为1,则指示与所述比特对应的CSI-RS的第一配置模式被聚合;
若所述比特为0,则指示与所述比特对应的CSI-RS的第一配置模式未被聚合。
此外,由于在LTE系统中,每个PRB对中参考信号的可能存在0~14的编号,因此,为了避免与现有LTE系统已有编号的重复,在本发明实施例中,将聚合后的第二配置模式的端口从15开始进行编号,具体实现如下:
所述CSI-RS的第二配置模式的端口编号n可以为:
n=i*N+p,(p=15,…,14+N)
或者,
Figure PCTCN2015097510-appb-000001
其中,所述i∈{0,1,...,K-1},所述i表示所述K个CSI-RS的第一配置模式中第i个CSI-RS的第一配置模式,所述N为所述CSI-RS的第二配置模式对应的端口数目。
第二方面,本发明实施例提供一种基站,可以包括:
聚合单元,用于聚合K个信道状态信息-参考信号CSI-RS的第一配置模式,形成CSI-RS的第二配置模式;所述K为大于或等于2的整数,每个所述第一配置模式为X个端口的配置模式,所述X取值为2或4或8,所述第一配置模式包含所述X个端口中每个端口对应资源元素的位置;所述第二配置模式为X*K个端口的配置模式,所述第二配置模式包含所述X*K个端口中每个端口对应的资源元素的位置;
发送单元,用于采用所述聚合单元聚合的CSI-RS的第二配置模式向用户设备UE发送CSI-RS。
可选的,为了使UE在接收到基站采用所述CSI-RS的第二配置 模式发送的CSI-RS后,可以准确地根据所述CSI-RS进行信状态道测量,确定信道状态信息,向基站反馈所述信道状态信息,在第二方面的第一种可实现方式中,所述发送单元,还用于:
在所述发送单元采用所述CSI-RS的第二配置模式向用户设备UE发送CSI-RS之前,向所述UE发送无线资源控制RRC信令或者系统信息块SIB消息;所述RRC信令或所述SIB消息包含:比特块,所述比特块包含的比特与所述PRB对包含的CSI-RS的第一配置模式一一对应,所述比特用于:指示与所述比特对应的CSI-RS的第一配置模式的聚合状态。
具体的,可以用比特0或1指示第一配置模式的聚合状态;
若所述比特为1,则指示与所述比特对应的CSI-RS的第一配置模式被聚合;
若所述比特为0,则指示与所述比特对应的CSI-RS的第一配置模式未被聚合。
此外,由于在LTE系统中,每个PRB对中参考信号的可能存在0~14的编号,因此,为了避免与现有LTE系统已有编号的重复,在本发明实施例中,将聚合后的第二配置模式的端口从15开始进行编号,具体实现如下:
所述CSI-RS的第二配置模式的端口编号n为:
n=i*N+p,(p=15,…,14+N)
或者,
Figure PCTCN2015097510-appb-000002
其中,所述i∈{0,1,...,K-1},所述i表示所述K个CSI-RS的第一配置模式中第i个CSI-RS的第一配置模式,所述N为所述CSI-RS的第二配置模式对应的端口数目。
第三方面,本发明实施例还提供一种基站,包括:
处理器,用于聚合K个信道状态信息-参考信号CSI-RS的第一 配置模式,形成CSI-RS的第二配置模式;所述K为大于或等于2的整数,每个所述第一配置模式为X个端口的配置模式,所述X取值为2或4或12,所述第一配置模式包含所述X个端口中每个端口对应资源元素的位置;所述第二配置模式为X*K个端口的配置模式,所述第二配置模式包含所述X*K个端口中每个端口对应的资源元素的位置;
通信单元,用于采用所述处理器聚合的CSI-RS的第二配置模式向用户设备UE发送CSI-RS。
可选的,为了使UE在接收到基站采用所述CSI-RS的第二配置模式发送的CSI-RS后,可以准确地根据所述CSI-RS进行信状态道测量,确定信道状态信息,向基站反馈所述信道状态信息,在第三方面的第一种可实现方式中,所述通信单元,还用于:
在所述通信单元采用所述CSI-RS的第二配置模式向用户设备UE发送CSI-RS之前,向所述UE发送无线资源控制RRC信令或者系统信息块SIB消息;所述RRC信令或所述SIB消息包含:比特块,所述比特块包含的比特与所述PRB对包含的CSI-RS的第一配置模式一一对应,所述比特用于:指示与所述比特对应的CSI-RS的第一配置模式的聚合状态。
具体的,可以用比特0或1指示第一配置模式的聚合状态;
若所述比特为1,则指示与所述比特对应的CSI-RS的第一配置模式被聚合;
若所述比特为0,则指示与所述比特对应的CSI-RS的第一配置模式未被聚合。
此外,由于在LTE系统中,每个PRB对中参考信号的可能存在0~14的编号,因此,为了避免与现有LTE系统已有编号的重复,在本发明实施例中,将聚合后的第二配置模式的端口从15开始进行编号,具体实现如下:
所述CSI-RS的第二配置模式的端口编号n为:
n=i*N+p,(p=15,…,14+N)
或者,
Figure PCTCN2015097510-appb-000003
其中,所述i∈{0,1,...,K-1},所述i表示所述K个CSI-RS的第一配置模式中第i个CSI-RS的第一配置模式,所述N为所述CSI-RS的第二配置模式对应的端口数目。
由上可知,本发明实施例提供一种CSI-RS的传输方法,基站先聚合K个信道状态信息-参考信号CSI-RS的第一配置模式,形成CSI-RS的第二配置模式;所述K为大于或等于2的整数,每个所述第一配置模式为X个端口的配置模式,所述X取值为2、4或8,所述第一配置模式包含所述X个端口中每个端口对应资源元素的位置;所述第二配置模式为X*K个端口的配置模式,所述第二配置模式包含所述X*K个端口中每个端口对应的资源元素的位置;然后,所述基站采用所述CSI-RS的第二配置模式向用户设备UE发送CSI-RS。如此,通过现有端口配置模式的聚合来提高系统的端口数目,对传统网络和终端影响比较小,极大地提高了整个系统数据吞吐量和性能,为控制层平面和数据平面的数据发送性能提高起到关键作用,解决了现有通过时域或者频域的正交性来增加端口数目,导致的系统性能损失较大的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有提高端口数目的方法示意图;
图2为本发明实施例提供的基站10的结构图;
图3为本发明实施例提供的CSI-RI端口设计方法的流程图;
图4为现有4CSI-RI端口配置模式参考信;
图5为本发明实施例提供的将2个端口的配置模式聚合为其他端口配置模式的示意图;
图6为本发明实施例提供的将4个端口的配置模式聚合为其他端口配置模式的示意图;
图7为本发明实施例提供的将8个端口的配置模式聚合为其他端口配置模式的示意图;
图8为本发明实施例提供的基站20的结构图。
具体实施方式
本发明的主要原理是:将当前LTE系统包括的CSI-RS参考信号的2端口、4端口、8端口进行聚合,设计出12个端口、16个端口以及更多的端口的配置模式,根据设计出的配置模式向用户设备UE发送CSI-RS参考信号,通过现有端口配置模式的聚合来提高系统的端口数目,对传统网络和终端影响比较小,极大地提高了整个系统数据吞吐量和性能,为控制层平面和数据平面的数据发送性能提高起到关键作用。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图2为本发明实施例提供的基站10的结构示意图,所述基站10用于执行本发明实施例提供的CSI-RS的传输方法,如图2所示,所述基站可以包括:通信单元1001、处理器1002、存储器1003、以及至少一个通信总线1004,用于实现这些装置之间的连接和相互通信;
其中,通信单元1001,可用于与外部网元之间进行信号传输。
处理器1002可能是一个中央处理器(central processing unit,简称为CPU),也可以是特定集成电路(Application Specific  Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。
存储器1003,可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);或者非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);或者上述种类的存储器的组合。
通信总线1004可以分为地址总线、数据总线、控制总线等,可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。为便于表示,图2中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
具体的,处理器1002,用于聚合K个信道状态信息-参考信号CSI-RS的第一配置模式,形成CSI-RS的第二配置模式;所述K为大于或等于2的整数,每个所述第一配置模式为X个端口的配置模式,所述X取值为2、4或8,所述第一配置模式包含所述X个端口中每个端口对应资源元素的位置;所述第二配置模式为X*K个端口的配置模式,所述第二配置模式包含所述X*K个端口中每个端口对应的资源元素的位置。
通信单元1001,用于采用所述CSI-RS的第二配置模式向用户设备UE发送CSI-RS。
与现有技术相比,本发明实施例通过现有端口配置模式的聚合来提高系统的端口数目,对传统网络和终端影响比较小,极大地提高了整个系统数据吞吐量和性能,为控制层平面和数据平面的数据发送性能提高起到关键作用,解决了现有通过时域或者频域的正交 性来增加端口数目,导致的系统性能损失较大的问题。
为了便于描述,以下实施例一以步骤的形式示出并详细描述了本发明提供的CSI-RS的传输方法,其中,示出的步骤也可以在除基站10之外的诸如一组可执行指令的计算机系统中执行,此外,虽然在图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
实施例一
图3为本发明实施例提供一种CSI-RS端口设计信道测量方法的流程图,由图2所述的基站执行执行主题为UE,用于对一帧或一个PRB对中的CSI-RS端口进行设计,如图3所示,所述方法包括以下步骤:
101:基站聚合K个信道状态信息-参考信号CSI-RS的第一配置模式,形成CSI-RS的第二配置模式;所述K为大于或等于2的整数,每个所述第一配置模式为X个端口的配置模式,所述X取值为2或4或8,所述第一配置模式包含所述X个端口中每个端口对应资源元素的位置;所述第二配置模式为X*K个端口的配置模式,所述第二配置模式包含所述X*K个端口中每个端口对应的资源元素的位置。
其中,第一配置模式可以为现有LTE系统Release12(版本12)中规定的2个或4个或8个端口的配置模式,如:图4为当前LTE系统Release12中2个、4个、8个端口的设计样图,包含了当前系统针对2个、4个、8个CSI-RS端口的各种不同配置在一个物理资源块(PRB)对中占用资源元素(Resource Element,RE)的情况,其中的图样是在一个物理资源块(PRB)对中体现的,在时间域占用一个子帧,每个子帧有包含两个时隙(slot):slot0和slot1,针对普通循环前缀的情况分别对应前7个正交频分多址(Orthogonal Frequency Division Multiplexing,OFDM)符号和后7个OFDM符号,在频域占用12个子载波(Subcarrier),在每种端口配置图样中,填充图案相同的资源元素组成一个CSI-RS的第一配置模式,例如,如 图4所示的2CSI-RS端口的图样,同一子载波上,符号5和符号6对应的资源元素的填充图案相同,则该载波上符合5和符号6的资源元素可以组成一个2端口的配置模式;此外,在图4所示的图样中除了CSI-RS参考信号,还可以包括小区特定的参考信号(Cell-specific Reference Signal,CRS)以及解调参考信号(Demodulation Reference Signal,DMRS)等参考信号;可以理解的是,CRS以及DMRS等参考信号若需要支持多端口模式,也可以采用步骤101所述的方法,利用现有已有CRS以及DMRS等参考信号的配置模式聚合高端口数目的配置模式。
可选的,在一个PRB对中,基站可以采用先频域后时域的聚合方式,聚合K个信道状态信息-参考信号CSI-RS的第一配置模式形成第二CSI-RS的第二配置模式;所述先频域后时域的聚合方式是指:在一个采用X个端口的配置模式的PRB对中,查看PRB对中CSI-RS所对应的资源元素的位置,获取时间最前、且频率最小的CSI-RS所对应的资源元素,将包含该资源元素在内的X个端口的配置进行聚合,若该时间内在其他频率上不存在CSI-RS,则获取与该时间相邻的下一时间内的CSI-RS,按照频率从小到大进行聚合。
由图4可知,在一个PRB对中,CSI-RS的X个端口的配置模式可以有40/X个,如2个端口的配置模式有20个,4个端口的配置模式有10个,8个端口的配置模式有5个,所以,本发明实施例中,所述K必须小于等于40/X,若等于40/X,则表示一个PRB对中所有CSI-RS的第一配置模式均被聚合,若小于40/X,则表示一个PRB对中部分CSI-RS的第一配置模式均被聚合,可理解的是,当一个PRB对中部分CSI-RS的第一配置模式均被聚合,可以从40/X中选取任意K个CSI-RS的第一配置模式被聚合,可以是连续聚合,还可以是间隔聚合,本发明实施例对此不进行限定。
102:所述基站采用所述CSI-RS的第二配置模式向用户设备UE发送CSI-RS。
可选的,为了使UE在接收到基站采用所述CSI-RS的第二配置 模式发送的CSI-RS后,可以准确地根据所述CSI-RS进行信状态道测量,确定信道状态信息,向基站反馈所述信道状态信息,在步骤102之前,所述方法还可以包括:
所述基站向所述UE发送无线资源控制RRC信令或者系统信息块SIB消息;所述RRC信令或所述SIB消息包含:比特块,所述比特块包含的比特与所述PRB对包含的CSI-RS的第一配置模式一一对应,所述比特用于:指示与所述比特对应的CSI-RS的第一配置模式的聚合状态。
可选的,可以用比特0或1表示第一配置模式的聚合状态,如:若比特为1,则表明与该比特对应的CSI-RS的第一配置模式被聚合;若比特为0,则表明与该比特对应的CSI-RS的第一配置模式没有被聚合;当然,还可以采用其他方式来表示CSI-RS的第一配置模式的聚合状态,本发明实施例对此不进行限定。
需要说明的是,为了使系统兼容,在本发明的实现过程中,若条件允许,应尽量高端口数目比较大的第一配置模式进行端口聚合,如:若要实现16个端口的配置,虽热可以通过聚合4个4端口的配置模式来实现,也可以通过聚合2个8端口的配置模式来实现,但是,为了使系统兼容,在条件允许的情况下,应尽量采用2个8端口的配置模式聚合为16个端口的配置模式。
此外,由于在LTE系统中,每个PRB对中参考信号的可能存在0~14的编号,因此,为了避免与现有LTE系统已有编号的重复,在本发明实施例中,将聚合后的第二配置模式的端口从15开始进行编号,具体实现如下:
所述CSI-RS的第二配置模式的端口编号n为:
n=i*N+p,(p=15,…,14+N)
或者,
Figure PCTCN2015097510-appb-000004
其中,所述i∈{0,1,...,K-1},所述i表示所述K个CSI-RS的第一配置模式中第i个CSI-RS的第一配置模式,所述N为所述CSI-RS的第二配置模式对应的端口数目。
例如,若第二配置模式的为16个端口的配置模式,则聚合端口编号为15,16,…30,若第二配置模式的为12个端口的配置模式,则聚合端口编号为15,16,…26。
当然,可以理解的是,第二配置模式的端口不仅可以从15开始进行编号,还可以从16、或17或其他大于14的编号开始进行编号,本发明实施例对此不进行限定。
下面以比特0或1来表示X个端口的配置模式的聚合状态,针对图4所示的当前LTE系统端口2、4、8的聚合情况进行信息比特编码(比如针对端口2的聚合情况可以采用20比特进行相应的映射;针对端口为4的聚合情况采用10比特进行相应的映射;而对端口为8的聚合情况可以采用5个比特进行相应的映射):
如图5所示,针对2个端口的配置模式,采用先频域后时域的映射方式,先将处于子载波9上的符号5、6的第一对RE(虚线框内的资源元素,即填充图案相同的2个资源元素)进行第一个比特的映射(被聚合时映射为1,未被聚合时映射为0),然后,沿着箭头方向对子载波8上的符号5、6的第二对RE进行第二个比特的映射,子载波3上的符号5、6的第三对RE进行第三个比特的映射,子载波2上的符号5、6的第四对RE进行第四个比特的映射,然后是子载波11上的符号9、10的RE对进行相应的映射,以此类推,若PRB中全部2个端口的配置模式被聚合,则得到的比特块为:11111111111111111111。
如图6所示,针对4个端口的配置模式,同样采用先频域后时域的映射方式,先将符号5、6的第一种配置RE(即填充图案相同的4个资源元素,如:虚线框内的4个RE)进行第一个比特的映射,然后沿着箭头方法将符号5、6的第二种配置RE(如:处于子载波为8和子载波3上,符号为5、6的4个RE)进行第二个比特的映 射,然后是符号9、10的第三种配置RE进行第三个比特的映射,第四到八配置进行第四个比特~第八个比特的映射,符号12和13中的第九和十配置进行第九个比特和第十个比特的映射;若PRB中全部4个端口的配置模式被聚合,则得到的比特块为:1111111111。
如图7所示,针对8个端口的配置模式,同样采用先频域后时域的映射方式,先将符号5、6的第一种配置RE(填充图案相同的8个资源元素,如:虚线框内的8个RE)进行第一个比特的映射,然后是符号9、10的第二、三和四种配置进行第二个、第三个和第四个比特的映射,符号12和13中的第五配置进行第五个比特的映射;此时,若PRB中全部8个端口的配置模式被聚合,则得到的比特块为:11111。
由上可知,本发明实施例提供一种CSI-RS的传输方法,基站先聚合K个信道状态信息-参考信号CSI-RS的第一配置模式,形成CSI-RS的第二配置模式;所述K为大于或等于2的整数,每个所述第一配置模式为X个端口的配置模式,所述X取值为2、4或8,所述第一配置模式包含所述X个端口中每个端口对应资源元素的位置;所述第二配置模式为X*K个端口的配置模式,所述第二配置模式包含所述X*K个端口中每个端口对应的资源元素的位置;然后,所述基站采用所述CSI-RS的第二配置模式向用户设备UE发送CSI-RS。如此,通过现有端口配置模式的聚合来提高系统的端口数目,对传统网络和终端影响比较小,极大地提高了整个系统数据吞吐量和性能,为控制层平面和数据平面的数据发送性能提高起到关键作用,解决了现有通过时域或者频域的正交性来增加端口数目,导致的系统性能损失较大的问题。
根据本发明实施例,本发明下述实施例还提供了一种基站20,优选地用于执行实施例一所述的方法。
实施例二
图8为本发明实施例提供的一种基站20的结构图,如图8所述,所述基站20可以包括:
聚合单元201,用于聚合K个信道状态信息-参考信号CSI-RS的第一配置模式,形成CSI-RS的第二配置模式;所述K为大于或等于2的整数,每个所述第一配置模式为X个端口的配置模式,所述X取值为2或4或8,所述第一配置模式包含所述X个端口中每个端口对应资源元素的位置;所述第二配置模式为X*K个端口的配置模式,所述第二配置模式包含所述X*K个端口中每个端口对应的资源元素的位置。
发送单元202,用于采用所述聚合单元聚合的CSI-RS的第二配置模式向用户设备UE发送CSI-RS。
其中,第一配置模式可以为现有LTE系统Release12(版本12)中规定的2个或4个或8个端口的配置模式,如:图4为当前LTE系统Release12中2个、4个、8个端口的设计样图,包含了当前系统针对2个、4个、8个CSI-RS端口的各种不同配置在一个物理资源块(PRB)对中占用资源元素(Resource Element,RE)的情况,其中的图样是在一个物理资源块(PRB)对中体现的,在时间域占用一个子帧,每个子帧有包含两个时隙(slot):slot0和slot1,针对普通循环前缀的情况分别对应前7个正交频分多址(Orthogonal Frequency Division Multiplexing,OFDM)符号和后7个OFDM符号,在频域占用12个子载波(Subcarrier),在每种端口配置图样中,填充图案相同的资源元素组成一个CSI-RS的第一配置模式,例如,如图4所示的2CSI-RS端口的图样,同一子载波上,符号5和符号6对应的资源元素的填充图案相同,则该载波上符合5和符号6的资源元素可以组成一个2端口的配置模式。
可选的,所述聚合单元201可以采用先频域后时域的聚合方式,聚合K个信道状态信息-参考信号CSI-RS的第一配置模式形成第二CSI-RS的第二配置模式;所述先频域后时域的聚合方式是指:在一个采用X个端口的配置模式的PRB对中,查看PRB对中CSI-RS所对应的资源元素的位置,获取时间最前、且频率最小的CSI-RS所对应的资源元素,将包含该资源元素在内的X个端口的配置进行聚合, 若该时间内在其他频率上不存在CSI-RS,则获取与该时间相邻的下一时间内的CSI-RS,按照频率从小到大进行聚合。
可选的,为了使UE在接收到发送单元202采用所述CSI-RS的第二配置模式发送的CSI-RS后,可以准确地根据所述CSI-RS进行信状态道测量,确定信道状态信息,向基站反馈所述信道状态信息,所述发送单元202还可以用于:
向所述UE发送无线资源控制RRC信令或者系统信息块SIB消息;所述RRC信令或所述SIB消息包含:比特块,所述比特块包含的比特与所述PRB对包含的CSI-RS的第一配置模式一一对应,所述比特用于:指示与所述比特对应的CSI-RS的第一配置模式的聚合状态。
可选的,可以用比特0或1表示第一配置模式的聚合状态,如:若比特为1,则表明与该比特对应的CSI-RS的第一配置模式被聚合;若比特为0,则表明与该比特对应的CSI-RS的第一配置模式没有被聚合;当然,还可以采用其他方式来表示CSI-RS的第一配置模式的聚合状态,本发明实施例对此不进行限定。
需要说明的是,为了使系统兼容,在本发明的实现过程中,若条件允许,应尽量高端口数目比较大的第一配置模式进行端口聚合,如:若要实现16个端口的配置,虽热可以通过聚合4个4端口的配置模式来实现,也可以通过聚合2个8端口的配置模式来实现,但是,为了使系统兼容,在条件允许的情况下,应尽量采用2个8端口的配置模式聚合为16个端口的配置模式。
此外,由于在LTE系统中,每个PRB对中参考信号的可能存在0~14的编号,因此,为了避免与现有LTE系统已有编号的重复,在本发明实施例中,将聚合后的第二配置模式的端口从15开始进行编号,具体实现如下:
所述CSI-RS的第二配置模式的端口编号n可以为:
n=i*N+p,(p=15,…,14+N)
或者,
Figure PCTCN2015097510-appb-000005
其中,所述i∈{0,1,...,K-1},所述i表示所述K个CSI-RS的第一配置模式中第i个CSI-RS的第一配置模式,所述N为所述CSI-RS的第二配置模式对应的端口数目,所述N为所述CSI-RS的第二配置模式对应的端口数目。
例如,若第二配置模式的为16个端口的配置模式,则聚合端口编号为15,16,…30,若第二配置模式的为12个端口的配置模式,则聚合端口编号为15,16,…26。
当然,可以理解的是,第二配置模式的端口不仅可以从15开始进行编号,还可以从16、或17或其他大于14的编号开始进行编号,本发明实施例对此不进行限定。
由上可知,本发明实施例提供一种基站,先聚合K个信道状态信息-参考信号CSI-RS的第一配置模式,形成CSI-RS的第二配置模式;所述K为大于或等于2的整数,每个所述第一配置模式为X个端口的配置模式,所述X取值为2、4或8,所述第一配置模式包含所述X个端口中每个端口对应资源元素的位置;所述第二配置模式为X*K个端口的配置模式,所述第二配置模式包含所述X*K个端口中每个端口对应的资源元素的位置;然后,所述基站采用所述CSI-RS的第二配置模式向用户设备UE发送CSI-RS。如此,通过现有端口配置模式的聚合来提高系统的端口数目,对传统网络和终端影响比较小,极大地提高了整个系统数据吞吐量和性能,为控制层平面和数据平面的数据发送性能提高起到关键作用,解决了现有通过时域或者频域的正交性来增加端口数目,导致的系统性能损失较大的问题。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围 之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (12)

  1. 一种信道状态信息-参考信号CSI-RS的传输方法,其特征在于,包括:
    基站聚合K个信道状态信息-参考信号CSI-RS的第一配置模式,形成CSI-RS的第二配置模式;所述K为大于或等于2的整数,每个所述第一配置模式为X个端口的配置模式,所述X取值为2或4或8,所述第一配置模式包含所述X个端口中每个端口对应资源元素的位置;所述第二配置模式为X*K个端口的配置模式,所述第二配置模式包含所述X*K个端口中每个端口对应的资源元素的位置;
    所述基站采用所述CSI-RS的第二配置模式向用户设备UE发送CSI-RS。
  2. 根据权利要求1所述的方法,其特征在于,在所述基站采用所述CSI-RS的第二配置模式向用户设备UE发送CSI-RS之前,所述方法还包括:
    所述基站向所述UE发送无线资源控制RRC信令或者系统信息块SIB消息;所述RRC信令或所述SIB消息包含:比特块,所述比特块包含的比特与所述PRB对包含的CSI-RS的第一配置模式一一对应,所述比特用于:指示与所述比特对应的CSI-RS的第一配置模式的聚合状态。
  3. 根据权利要求2所述的方法,其特征在于,
    用比特0或1指示第一配置模式的聚合状态;
    若所述比特为1,则指示与所述比特对应的CSI-RS的第一配置模式被聚合;
    若所述比特为0,则指示与所述比特对应的CSI-RS的第一配置模式未被聚合。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述CSI-RS的第二配置模式的端口编号n为:
    n=i*N+p,(p=15,…,14+N)
    或者,
    Figure PCTCN2015097510-appb-100001
    其中,所述i∈{0,1,...,K-1},所述i表示所述K个CSI-RS的第一配置模式中第i个CSI-RS的第一配置模式,所述N为所述CSI-RS的第二配置模式对应的端口数目。
  5. 一种基站,其特征在于,包括:
    聚合单元,用于聚合K个信道状态信息-参考信号CSI-RS的第一配置模式,形成CSI-RS的第二配置模式;所述K为大于或等于2的整数,每个所述第一配置模式为X个端口的配置模式,所述X取值为2或4或8,所述第一配置模式包含所述X个端口中每个端口对应资源元素的位置;所述第二配置模式为X*K个端口的配置模式,所述第二配置模式包含所述X*K个端口中每个端口对应的资源元素的位置;
    发送单元,用于采用所述聚合单元聚合的CSI-RS的第二配置模式向用户设备UE发送CSI-RS。
  6. 根据权利要求5所述的基站,其特征在于,所述发送单元,还用于:
    在所述发送单元采用所述CSI-RS的第二配置模式向用户设备UE发送CSI-RS之前,向所述UE发送无线资源控制RRC信令或者系统信息块SIB消息;所述RRC信令或所述SIB消息包含:比特块,所述比特块包含的比特与所述PRB对包含的CSI-RS的第一配置模式一一对应,所述比特用于:指示与所述比特对应的CSI-RS的第一配置模式的聚合状态。
  7. 根据权利要求6所述的基站,其特征在于,
    用比特0或1指示第一配置模式的聚合状态;
    若所述比特为1,则指示与所述比特对应的CSI-RS的第一配置模式被聚合;
    若所述比特为0,则指示与所述比特对应的CSI-RS的第一配置 模式未被聚合。
  8. 根据权利要求5-7任一项所述的基站,其特征在于,所述CSI-RS的第二配置模式的端口编号n为:
    n=i*N+p,(p=15,…,14+N)
    或者,
    Figure PCTCN2015097510-appb-100002
    其中,所述i∈{0,1,...,K-1},所述i表示所述K个CSI-RS的第一配置模式中第i个CSI-RS的第一配置模式,所述N为所述CSI-RS的第二配置模式对应的端口数目。
  9. 一种基站,其特征在于,包括:
    处理器,用于聚合K个信道状态信息-参考信号CSI-RS的第一配置模式,形成CSI-RS的第二配置模式;所述K为大于或等于2的整数,每个所述第一配置模式为X个端口的配置模式,所述X取值为2或4或12,所述第一配置模式包含所述X个端口中每个端口对应资源元素的位置;所述第二配置模式为X*K个端口的配置模式,所述第二配置模式包含所述X*K个端口中每个端口对应的资源元素的位置;
    通信单元,用于采用所述处理器聚合的CSI-RS的第二配置模式向用户设备UE发送CSI-RS。
  10. 根据权利要求9所述的基站,其特征在于,所述通信单元,还用于:
    在所述通信单元采用所述CSI-RS的第二配置模式向用户设备UE发送CSI-RS之前,向所述UE发送无线资源控制RRC信令或者系统信息块SIB消息;所述RRC信令或所述SIB消息包含:比特块,所述比特块包含的比特与所述PRB对包含的CSI-RS的第一配置模式一一对应,所述比特用于:指示与所述比特对应的CSI-RS的第一配置模式的聚合状态。
  11. 根据权利要求10所述的基站,其特征在于,
    用比特0或1指示第一配置模式的聚合状态;
    若所述比特为1,则指示与所述比特对应的CSI-RS的第一配置模式被聚合;
    若所述比特为0,则指示与所述比特对应的CSI-RS的第一配置模式未被聚合。
  12. 根据权利要求9-11任一项所述的基站,其特征在于,所述CSI-RS的第二配置模式的端口编号n为:
    n=i*N+p,(p=15,…,14+N)
    或者,
    Figure PCTCN2015097510-appb-100003
    其中,所述i∈{0,1,...,K-1},所述i表示所述K个CSI-RS的第一配置模式中第i个CSI-RS的第一配置模式,所述N为所述CSI-RS的第二配置模式对应的端口数目。
PCT/CN2015/097510 2015-12-15 2015-12-15 一种csi-rs的传输方法和基站 WO2017101029A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15910502.2A EP3322116B1 (en) 2015-12-15 2015-12-15 Csi-rs transmission method and base station
US15/750,803 US10819465B2 (en) 2015-12-15 2015-12-15 Method for transmitting CSI-RS and base station
CN201580077667.4A CN107409026B (zh) 2015-12-15 2015-12-15 一种csi-rs的传输方法和基站
PCT/CN2015/097510 WO2017101029A1 (zh) 2015-12-15 2015-12-15 一种csi-rs的传输方法和基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/097510 WO2017101029A1 (zh) 2015-12-15 2015-12-15 一种csi-rs的传输方法和基站

Publications (1)

Publication Number Publication Date
WO2017101029A1 true WO2017101029A1 (zh) 2017-06-22

Family

ID=59055389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097510 WO2017101029A1 (zh) 2015-12-15 2015-12-15 一种csi-rs的传输方法和基站

Country Status (4)

Country Link
US (1) US10819465B2 (zh)
EP (1) EP3322116B1 (zh)
CN (1) CN107409026B (zh)
WO (1) WO2017101029A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048820A (zh) * 2018-01-16 2019-07-23 中国移动通信有限公司研究院 一种信道状态信息的配置方法、反馈方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190105227A (ko) * 2017-02-03 2019-09-16 주식회사 윌러스표준기술연구소 무선 통신 시스템에서 레퍼런스 신호 및 데이터 채널의 송수신 방법, 장치, 및 시스템
WO2018198342A1 (ja) * 2017-04-28 2018-11-01 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN108111269B (zh) * 2017-05-05 2023-01-10 中兴通讯股份有限公司 一种信道状态信息导频传输方法与装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130343300A1 (en) * 2012-06-21 2013-12-26 Lg Electronics Inc. Method and apparatus for transmitting and receiving data
CN103746779A (zh) * 2013-12-31 2014-04-23 上海华为技术有限公司 一种信道状态信息测量、参考信号的发送方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103002581B (zh) * 2011-09-16 2018-04-03 中兴通讯股份有限公司 基于解调参考信号的物理下行控制信道承载方法及系统
CN103179664B (zh) 2011-12-20 2016-09-07 中兴通讯股份有限公司 端口映射、预编码矩阵和调制编码方式选择方法及装置
US9419761B2 (en) 2012-05-15 2016-08-16 Lg Electronics Inc. Method for receiving downlink data, method for transmitting downlink data to user equipment, and base station
EP2899909B1 (en) * 2012-09-26 2021-04-14 Huawei Technologies Co., Ltd. Channel state information measurement method, device and system
TWI617148B (zh) * 2012-09-28 2018-03-01 內數位專利控股公司 用於報告回饋的無線發射/接收單元及方法
US9900198B2 (en) * 2015-02-20 2018-02-20 Samsung Electronics Co., Ltd. Channel-state-information reference signals for advanced wireless systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130343300A1 (en) * 2012-06-21 2013-12-26 Lg Electronics Inc. Method and apparatus for transmitting and receiving data
CN103746779A (zh) * 2013-12-31 2014-04-23 上海华为技术有限公司 一种信道状态信息测量、参考信号的发送方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048820A (zh) * 2018-01-16 2019-07-23 中国移动通信有限公司研究院 一种信道状态信息的配置方法、反馈方法及装置

Also Published As

Publication number Publication date
CN107409026A (zh) 2017-11-28
EP3322116A4 (en) 2018-09-26
EP3322116A1 (en) 2018-05-16
CN107409026B (zh) 2020-04-28
EP3322116B1 (en) 2020-10-28
US20200092036A1 (en) 2020-03-19
US10819465B2 (en) 2020-10-27

Similar Documents

Publication Publication Date Title
EP4075708B1 (en) Communication method and communication apparatus
WO2018126926A1 (zh) 信号传输方法和装置
EP3442136A1 (en) Method for transmitting data, user equipment unit, and network side device
RU2573643C2 (ru) Способ и устройство для предварительно закодированного опорного сигнала физического канала управления нисходящей линии связи и для слепого декодирования
JP6580694B2 (ja) 無線通信方法および無線通信装置
TW201218827A (en) Csi-rs signaling method and base station
CN107889251B (zh) 一种时域资源单元集合结构的确定方法、网络设备及终端
BR112019027793B1 (pt) Método de indicação de recurso, dispositivo terminal, dispositivo de rede, meio de armazenamento não-transitório legível por computador, chip e produto de instrução de computador
BR112021011583A2 (pt) Método de comunicação de enlace lateral e dispositivo terminal
WO2017101029A1 (zh) 一种csi-rs的传输方法和基站
WO2018108048A1 (zh) 通信方法、基站和终端设备
WO2017166224A1 (zh) 传输模式的信息的传输方法、网络设备、终端设备和系统
WO2017162216A1 (zh) 一种天线端口的指示方法和装置
US11381436B2 (en) Reference signal pattern transmission method and apparatus therefor
WO2013139307A1 (zh) 增强的物理下行控制信道的发送、接收方法和装置
WO2018028654A1 (zh) 参考信号映射方法及装置
TWI670958B (zh) 一種參考信號映射方法及裝置
JP7481437B2 (ja) 復調参照信号の構成情報取得方法、構成方法、および装置
WO2012034444A1 (zh) 一种小区间信道测量导频图样的通知方法和装置
JP2021508417A (ja) 信号伝送方法、ネットワーク装置と端末装置
WO2018018633A1 (zh) 一种csi-rs传输方法及网络设备
WO2017101632A1 (zh) 信号处理方法及装置
WO2017156770A1 (zh) 信道状态信息参考信号的传输装置、方法以及通信系统
WO2017075836A1 (zh) Csi-rs配置的方法及相关设备
WO2018059424A1 (zh) 一种参考信号映射方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910502

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015910502

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE