WO2018108048A1 - 通信方法、基站和终端设备 - Google Patents

通信方法、基站和终端设备 Download PDF

Info

Publication number
WO2018108048A1
WO2018108048A1 PCT/CN2017/115429 CN2017115429W WO2018108048A1 WO 2018108048 A1 WO2018108048 A1 WO 2018108048A1 CN 2017115429 W CN2017115429 W CN 2017115429W WO 2018108048 A1 WO2018108048 A1 WO 2018108048A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource mapping
data
frequency domain
base station
terminal device
Prior art date
Application number
PCT/CN2017/115429
Other languages
English (en)
French (fr)
Inventor
刘一樊
雷鸣
张雷鸣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112019012332-6A priority Critical patent/BR112019012332A2/pt
Priority to EP17880695.6A priority patent/EP3544350B1/en
Priority to KR1020197019535A priority patent/KR20190090852A/ko
Publication of WO2018108048A1 publication Critical patent/WO2018108048A1/zh
Priority to US16/439,187 priority patent/US10938528B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present application relates to the field of communications, and in particular, to a communication method, a base station, and a terminal device.
  • the data in the Long Term Evolution (LTE) system adopts the resource mapping method of the pre-frequency domain and the time domain.
  • a data set on a Code Block (CB) is mapped onto a finite number of symbols (such as 1 or 2 symbols).
  • the neighbor reference signal is the dominant source of interference.
  • FIG. 1 shows a case where a user data CB block is distributed, and one cell on the horizontal axis represents an orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing). Frequency Division Multiplexing (OFDM) symbol, a cell on the vertical axis represents a subcarrier.
  • OFDM Frequency Division Multiplexing
  • the first and second symbols are control channels, and the third to fourth symbols are shared data channels. It can be seen from FIG. 1 that the interference source CSI-RS is concentrated on CB4 and CB5. When the channel coding rate is high, CB4 and CB5 are difficult to correct error by channel decoding. Although other CBs are not interfered, they can be decoded correctly, but whether a transport block (TB) is correctly decoded depends on whether all CBs included in the TB are decoded correctly. Therefore, when interference is concentrated in several CBs, these interfered CBs are difficult to decode correctly, which will result in TB decoding errors in which these CBs are located.
  • TB transport block
  • the embodiment of the present application provides a communication method, a base station, and a terminal device, which can improve a correct decoding rate.
  • a communication method comprising:
  • a resource mapping manner of the data to be sent to the terminal device Determining, by the base station, a resource mapping manner of the data to be sent to the terminal device, where the resource mapping manner is one or more of a pre-time domain post-frequency domain, a pre-frequency domain post-time domain, and a time-frequency domain interleaving;
  • the base station sends indication information to the terminal device, where the indication information is used to indicate the resource mapping manner.
  • the embodiment of the present application can flexibly configure the resource mapping manner of data, thereby dispersing interference and improving the correct decoding rate.
  • the base station determines a resource mapping manner of the data, including:
  • the resource mapping manner of the data is determined by at least one of a service type of data to be transmitted to the terminal device, a resource block size occupied by the data, and a distribution state of interference received by the data.
  • the determining, by the base station, the resource mapping manner of the data according to the service type of the data including:
  • the base station determines that the resource mapping mode is a pre-frequency domain post-time domain
  • the base station determines that the resource mapping manner is a pre-time domain post-frequency domain or a time-frequency domain interleaving
  • the base station determines that the resource mapping mode is a pre-frequency domain post-time domain, a first-time domain post-frequency domain, or a time-frequency domain interlace.
  • the resource mapping manner of the data is determined according to the service type of the data to be sent, and the QoS requirement of the service can be met.
  • the determining, by the base station, the resource mapping manner of the data according to the resource block size occupied by the data including:
  • the base station determines that the resource mapping mode is a pre-time domain post-frequency domain or a time-frequency domain interleaving
  • the base station determines that the resource mapping mode is the pre-frequency domain post-time domain.
  • the first threshold may be greater than or equal to the second threshold.
  • the resource mapping manner of the data is determined according to the size of the resource block occupied by the data to be sent, and the interference can be dispersed as much as possible to improve the correct decoding rate.
  • the determining, by the base station, the resource mapping manner of the data according to the distribution state of the interference received by the data including:
  • the base station determines that the resource mapping mode is a first time domain followed by a frequency domain or a time frequency domain interleaving
  • the base station determines that the resource mapping mode is the pre-frequency domain post-time domain.
  • the resource mapping manner of the data is determined according to the distribution state of the interference received by the data to be transmitted, and the interference can be dispersed as much as possible to improve the correct decoding rate.
  • the sending, by the base station, the indication information to the terminal device including:
  • the base station sends physical layer signaling to the terminal device, where the physical layer signaling includes the indication information.
  • the indication information may indicate the resource mapping manner explicitly or implicitly.
  • the indication information is identification information of the resource mapping manner; or the indication information is a service type of the data, a size of a resource block occupied by the data, and a distribution state of interference received by the data. At least one type of identification information.
  • the resource mapping manner has a correspondence relationship with a scrambling code used by physical layer signaling.
  • the sending, by the base station, the indication information to the terminal device including:
  • the base station sends the physical layer signaling to the terminal device, and the scrambling code used by the physical layer signaling indicates the resource mapping manner.
  • the resource mapping manner has a corresponding relationship with the time-frequency resources occupied by the data
  • the sending, by the base station, the indication information to the terminal device including:
  • the base station sends the indication information of the time-frequency resource to the terminal device, where the time-frequency resource indicates the resource mapping manner.
  • a communication method comprising:
  • the terminal device receives the indication information from the base station, where the indication information is used to indicate a resource mapping manner of the data to be sent by the base station, where the resource mapping manner is a pre-time domain post-frequency domain, a pre-frequency domain post-time domain, and a time-frequency domain.
  • the indication information is used to indicate a resource mapping manner of the data to be sent by the base station, where the resource mapping manner is a pre-time domain post-frequency domain, a pre-frequency domain post-time domain, and a time-frequency domain.
  • the terminal device receives the data according to the resource mapping manner.
  • the embodiment of the present application can flexibly configure the resource mapping manner of data, thereby dispersing interference and improving the correct decoding rate.
  • the resource mapping manner is determined according to at least one of a service type of the data, a resource block size occupied by the data, and a distribution state of interference received by the data.
  • the data is a low-latency and high-reliability communication URLLC type service
  • the terminal device determines the resource mapping manner according to the indication information, including: determining, by the terminal device, according to the indication information.
  • the resource mapping mode is a pre-frequency domain post-time domain; or
  • the data is an enhanced mobile bandwidth eMBB service, and the terminal device determines the resource mapping manner according to the indication information, where the terminal device determines, according to the indication information, that the resource mapping mode is a prior time domain. Interleaving in the frequency domain or time-frequency domain; or,
  • the data is a large-scale Internet of Things mMTC type service
  • the terminal device determines the resource mapping manner according to the indication information, including: determining, by the terminal device, that the resource mapping manner is a prior time domain according to the indication information. Frequency domain, pre-frequency domain post-time domain or time-frequency domain interleaving.
  • the resource mapping manner of the data is determined according to the service type of the data to be sent, and the QoS requirement of the service can be met.
  • the size of the resource block occupied by the data is greater than or equal to the set first threshold
  • the terminal device determines the resource mapping manner according to the indication information, including: the terminal according to the The indication information determines that the resource mapping manner is a pre-time domain post-frequency domain or a time-frequency domain interleaving; or
  • the time domain is the time domain.
  • the resource mapping manner of the data is determined according to the size of the resource block occupied by the data to be sent, and the interference can be dispersed as much as possible to improve the correct decoding rate.
  • the data received by the data along the frequency domain is greater than the density of the time domain
  • the terminal device determines the resource mapping manner according to the indication information, including: the terminal according to the Determining, by the indication information, that the resource mapping manner is a pre-time domain post-frequency domain or a time-frequency domain interleaving; or
  • the mapping mode is the first frequency domain and the time domain.
  • the resource mapping side of the data is determined according to the distribution state of the interference received by the data to be sent. It is possible to disperse interference as much as possible and improve the correct decoding rate.
  • the terminal device receives the indication information from the base station, including:
  • the terminal device receives physical layer signaling from the base station, and the physical layer signaling includes the indication information.
  • the indication information may indicate the resource mapping manner explicitly or implicitly.
  • the indication information is identification information of the resource mapping manner; or the indication information is a service type of the data, a size of a resource block occupied by the data, and a distribution state of interference received by the data. At least one type of identification information.
  • the resource mapping manner has a correspondence relationship with a scrambling code used by physical layer signaling.
  • the terminal device receives the physical layer signaling from the base station, and the scrambling code used by the physical layer signaling indicates the resource mapping manner.
  • the resource mapping manner has a corresponding relationship with the time-frequency resources occupied by the data
  • the terminal device receives the indication information of the time-frequency resource from the base station, where the time-frequency resource indicates the resource mapping manner.
  • a base station is provided, the base station being used to implement the method of any one of the foregoing possible implementations of the first aspect or the first aspect.
  • the base station may comprise means for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • the fourth aspect provides a terminal device, where the terminal device is used to implement the method according to any one of the foregoing possible implementation manners of the second aspect or the second aspect.
  • the terminal device may comprise means for performing the method of any of the possible implementations of the second aspect or the second aspect.
  • a base station including a processor, a transmitter, and a memory, wherein the processor, the transmitter, and the memory communicate with each other through an internal connection path, the memory is configured to store an instruction, the processing The instructions for executing the memory storage and the execution of the instructions stored in the memory cause the base station to perform the method of any of the first aspect or the first aspect of the first aspect.
  • a terminal device in a sixth aspect, includes a processor, a receiver, a memory, and a bus system, wherein the processor, the receiver, and the memory communicate with each other through an internal connection path, the memory for storing instructions
  • the processor is configured to execute the memory stored instructions, and the performing of the instructions stored in the memory causes the terminal device to perform the method of any one of the possible implementations of the second aspect or the second aspect .
  • a seventh aspect a computer readable storage medium storing a program for causing a base station to perform the method of any of the first aspect or the first aspect of the first aspect.
  • a computer readable storage medium storing a program, the program causing a terminal device to perform the method of any of the first aspect or the first aspect of the first aspect, .
  • 1 is a schematic diagram of a resource mapping manner in a time domain after a frequency domain
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a resource mapping manner in a frequency domain after a time domain
  • FIG. 4 is a schematic diagram of a resource mapping manner of time-frequency domain interleaving
  • FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a base station according to another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a terminal device according to another embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: wireless wifi, Worldwide Interoperability for Microwave Access (WiMAX), and Global System of Communications.
  • Mobile communication GSM system, Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced Long Term Evolution (LTE-A) system, Universal Mobile Telecommunication System (UMTS), and Third Generation Partnership Project (The 3rd)
  • GSM Global System of Communications
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • 3rd Third Generation Partnership Project
  • a wireless access network may include different network elements in different systems.
  • the network element of the radio access network in the 5G network includes the gNB, and the network elements of the radio access network in the Long Term Evolution (LTE) and LTE-A include the evolved base station (eNodeB, eNB), and the wideband code is divided.
  • the network elements of the radio access network in the Wideband Code Division Multiple Access (WCDMA) include a Radio Network Controller (RNC) and a NodeB.
  • RNC Radio Network Controller
  • WiMax Worldwide Interoperability for Microwave Access
  • the other embodiments may use different schemes in the embodiment of the present application, but the related modules in the base station system may be different.
  • the embodiments of the present application are not limited, but for convenience of description, the following embodiments will take a base station as an example. Be explained.
  • the terminal device may also be referred to as a user equipment (User Equipment, UE), a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), etc., and the terminal device may be wireless.
  • the access network (Radio Access Network, RAN) communicates with one or more core networks.
  • the terminal device may be a mobile phone (or "cellular" phone), a computer with communication function, etc., for example, the terminal device also It can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device.
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application. As shown in FIG. 2, method 200 includes the following.
  • the base station determines a resource mapping manner of the data to be sent to the terminal device, where the resource mapping manner is one or more of a pre-time domain post-frequency domain, a pre-frequency domain post-time domain, and a time-frequency domain interlace.
  • the resource mapping mode in the pre-frequency domain and the time domain can reduce the detection delay. Therefore, the resource mapping mode in the pre-frequency domain and the time domain is applicable to the low-latency service.
  • the resource mapping manner of the time domain in the first frequency domain can be referred to FIG. 3.
  • one cell on the horizontal axis represents one OFDM symbol
  • one cell on the vertical axis represents one subcarrier
  • one CB occupies one subcarrier, and needs to be performed. It is to be noted that, in FIG. 3, only one CB occupies one subcarrier, but the embodiment of the present application does not limit this.
  • the first and second symbols are control channels, and the third to fourth symbols are shared data channels.
  • the resource mapping method in the first-time domain and the rear-frequency domain is adopted.
  • the CSI-RS of the neighboring area falls on the four CBs of CB3, CB4, CB9 and CB10, while the CSI-RS of the neighboring area in FIG. 1 falls on the CB4 and CB5 CB. on.
  • the resource mapping manner in the post-frequency domain and the post-frequency domain can disperse the interference with respect to the resource mapping manner in the pre-frequency domain.
  • the resource mapping manner of the time-frequency domain interleaving can be referred to FIG. 4.
  • One of the cells on the horizontal axis of Fig. 4 represents one OFDM symbol
  • one cell on the vertical axis represents one subcarrier
  • one CB occupies one subcarrier.
  • the resource-interleaved resource is compared with the resource mapping manner of the pre-frequency domain post-time domain or the pre-time domain post-frequency domain.
  • the mapping method makes the distribution of data on time-frequency resources scattered. Therefore, the resource mapping method of time-frequency domain interleaving can also disperse interference.
  • the resource mapping manner of the time-frequency domain interleaving can refer to the interleaving manner shown in Table 5.1.3-3 of the protocol TS36.212.
  • the base station sends the indication information to the terminal device, where the indication information is used to indicate the resource mapping manner.
  • the terminal device After receiving the indication information from the base station, the terminal device determines the resource mapping manner according to the indication information.
  • the base station sends data to the terminal device according to the resource mapping manner, and the terminal device receives data from the base station according to the resource mapping manner.
  • the terminal device can detect the data according to the resource mapping manner until the data sent by the base station is received.
  • the embodiment of the present application can flexibly configure the resource mapping manner of data, so that interference can be dispersed as much as possible, and the correct decoding rate can be improved.
  • the base station may divide the data to be sent to the terminal device into multiple Group, each group of data corresponds to a resource mapping mode.
  • the base station may send the multiple sets of data to the terminal device according to the multiple resource mapping manner. It should be understood that the base station may also send the packet information of the data to be sent to the terminal device and the correspondence between the data packet and the resource mapping manner to the terminal device. Alternatively, the group information and the correspondence may be stored in advance in the terminal device.
  • the base station may also send according to the highest priority one. data. Accordingly, the terminal device can also select one of the received data with the highest priority. It should be understood that the terminal device and the base station may pre-approve the priority of the inter-time domain post-frequency domain, the pre-frequency domain post-time domain, and the time-frequency domain interleaving.
  • the base station determines a resource mapping manner of the data, where the base station includes, according to the service type of the data to be sent to the terminal device, the resource block size occupied by the data, and the distribution state of the interference received by the data. A way to determine the resource mapping of data.
  • a correspondence between at least one of a service type of the data, a resource block size occupied by the data, and a distribution state of the interference received by the data and the resource mapping manner may be pre-stored in the base station.
  • the base station may determine a resource mapping manner of the data according to at least one of a service type of the data, a resource block size occupied by the data, and a distribution state of the interference received by the data, and a pre-stored correspondence relationship.
  • the base station determines, according to the service type of the data to be sent to the terminal device.
  • the resource mapping method of data
  • step 210 if the data is an Ultra-Reliable and Low Latency Communication (URLLC) type service, the base station determines that the resource mapping mode is the pre-frequency domain post-time domain.
  • step 230 the terminal device determines, according to the indication information, that the resource mapping manner is the pre-frequency domain post-time domain. Due to the high latency requirements of the URLLC service, the resource mapping method in the pre-frequency domain and the time domain can reduce the detection delay of the data.
  • URLLC Ultra-Reliable and Low Latency Communication
  • the base station determines that the resource mapping mode is a pre-time domain post-frequency domain or a time-frequency domain interlace.
  • the terminal device determines, according to the indication information, that the resource mapping mode is a pre-time domain post-frequency domain or a time-frequency domain interlace. Since the data volume of the eMBB service is large and the delay requirement is low, the resource mapping method using the time domain or the frequency domain interleaving in the first time domain can disperse the interference to reduce the interference caused by the excessive concentration of data transmission. The influence can further improve the transmission efficiency.
  • eMBB enhanced mobile broadband
  • the base station determines that the resource mapping mode is a pre-frequency domain post-time domain, a pre-time domain post-frequency domain, or a time-frequency domain. Interwoven.
  • the terminal device determines, according to the indication information, that the resource mapping mode is a pre-frequency domain post-time domain, a pre-time domain post-frequency domain, or a time-frequency domain interleaving. Since the data volume of the mMTC service is not large and the delay requirement is low, any one of the resource mapping methods of the pre-frequency domain post-time domain, the first-time domain post-frequency domain, and the time-frequency domain interleaving may be adopted.
  • mMTC massive mobile type communication
  • the resource mapping manner of the data may be further determined according to an application scenario of the mMTC service. For example, if the application scenario of the mMTC service has a high latency requirement, the base station determines that the resource mapping mode is the pre-frequency domain post-time domain; if the mMTC service has a lower latency requirement, the base station determines that the resource mapping mode is first-time. Domain post-frequency domain or time-frequency domain interleaving.
  • resource mapping manner of the data may also be determined by other service types of the data.
  • the resource mapping manner of the data is determined according to the service type of the data to be sent, and the quality of service (QoS) requirement of the service can be met.
  • QoS quality of service
  • the base station determines a resource mapping manner of the data according to the resource block size occupied by the data to be sent to the terminal device.
  • the base station determines that the resource mapping mode is a pre-time domain post-frequency domain or a time-frequency domain interlace.
  • the terminal device determines, according to the indication information, that the resource mapping mode is a pre-time domain post-frequency domain or a time-frequency domain interlace.
  • the resource block occupied by the data is large, the number of CBs that can be included in the resource block is large. If the interference is concentrated on a limited number of CBs, the demodulation performance will be degraded. In this case, the time domain or the frequency domain is used.
  • the resource mapping method of time-frequency domain interleaving can disperse interference to reduce the impact of excessive interference on data transmission, thereby improving transmission efficiency.
  • the base station determines that the resource mapping mode is the pre-frequency domain post-time domain.
  • the terminal device determines, according to the indication information, that the resource mapping manner is the pre-frequency domain post-time domain.
  • the resource block occupied by the data is large, the number of CBs included in the resource block is small.
  • the resource block includes a CB, and the resource mapping manner of the data has little influence on the interference distribution, so the pre-frequency domain can be used.
  • the resource mapping mode of the post-time domain is the resource mapping mode of the post-time domain.
  • the first threshold may be greater than or equal to the second threshold.
  • the resource mapping manner of the data is determined according to the size of the resource block occupied by the data to be transmitted, and the interference can be dispersed as much as possible to improve the correct decoding rate.
  • the base station determines a resource mapping manner of the data according to a distribution state of interference received by the data to be transmitted to the terminal device.
  • step 210 if the density of the interference received by the data along the frequency domain is greater than the density of the distribution along the time domain, the base station determines that the resource mapping mode is the first time domain post-frequency domain or the time-frequency domain interleaving.
  • the terminal device determines, according to the indication information, that the resource mapping mode is a pre-time domain post-frequency domain or a time-frequency domain interlace. If the density of the data received by the data along the frequency domain is greater than the density of the time domain distribution, the resource mapping method of the first time domain post-frequency domain or the time-frequency domain interleaving can achieve the purpose of interference dispersion to reduce interference and concentrate on transmission. The impact is increased and the transmission efficiency is improved.
  • step 210 if the density of the interference received by the data along the frequency domain is less than the density of the distribution along the time domain, the base station determines that the resource mapping mode is the pre-frequency domain post-time domain.
  • the terminal device determines, according to the indication information, that the resource mapping manner is the pre-frequency domain post-time domain. If the density of the data received by the data along the frequency domain is less than the density of the distribution along the time domain, the resource mapping method of the time domain and the time domain can be used to achieve the purpose of interference dispersion, so as to reduce the impact of excessive interference on the transmission. Improve transmission efficiency.
  • the resource mapping manner of the data is determined according to the distribution state of the interference received by the data to be transmitted, and the interference can be dispersed as much as possible to improve the correct decoding rate.
  • the base station determines a resource mapping manner of the data according to the service type of the data to be sent to the terminal device and the resource block size occupied by the data.
  • Table 1 shows the correspondence between different service types of data and occupied resource block sizes and resource mapping modes.
  • the base station determines a resource mapping manner of the data according to the service type of the data to be transmitted to the terminal device and the distributed state of the received interference.
  • Table 2 below shows the correspondence between the different service types of the data and the distribution state of the interference received and the resource mapping mode.
  • the base station determines a resource mapping manner of the data according to the resource block size occupied by the data to be transmitted to the terminal device and the distributed state of the received interference.
  • Table 3 shows the correspondence between the resource block size occupied by the data and the distribution state of the received interference and the resource mapping manner.
  • the base station determines a resource mapping manner of the data according to the service type of the data to be transmitted to the terminal device, the occupied resource block size, and the distributed state of the received interference.
  • Table 4 below shows the correspondence between the service type of the data, the occupied resource block size, and the distribution state of the received interference and the resource mapping manner.
  • a large resource block refers to a resource block whose resource block size is greater than or equal to a first threshold
  • a small resource block refers to a resource block whose size is less than or equal to a second.
  • Threshold resource block Longitudinal distribution refers to the density of the data received by the data along the frequency domain is greater than the density along the time domain.
  • the horizontal distribution refers to the density of the data received by the interference along the frequency domain distribution is less than the density along the time domain.
  • the method for the base station to determine the resource mapping manner of the data is not limited to the embodiments described above, and other embodiments extended by the person skilled in the art based on the embodiments of the present application described above still fall into the present embodiment. The scope of protection for the application.
  • the base station may also determine the resource mapping manner of the data according to other characteristics of the data to be transmitted to the terminal device. For example, the base station may further determine a resource mapping manner of the data according to the requirement of the data for the delay.
  • the base station may explicitly or implicitly indicate the determined resource mapping manner to the terminal device.
  • the indication information sent by the base station to the terminal device in step 220 may explicitly indicate the resource mapping manner of the data, or may implicitly indicate the resource mapping manner of the data.
  • the base station sends physical layer signaling to the terminal device, where the physical layer signaling includes indication information.
  • the indication information explicitly indicates a resource mapping manner of the data, for example, the indication information may be an identifier or a serial number of the resource mapping manner. That is to say, the base station can explicitly indicate the resource mapping manner of the data through physical layer signaling.
  • the indication information in step 220 may also implicitly indicate a resource mapping manner of the data.
  • the indication information may be the service type of the data, the resource block size occupied by the data, and the distribution state of the interference to which the data is subjected.
  • the terminal device may pre-store a correspondence between at least one of a service type of the data, a resource block size occupied by the data, and a distribution state of the interference received by the data and the resource mapping manner. The correspondence may be pre-agreed by the base station and the terminal device, or may be specified by the protocol.
  • the terminal device may determine the resource mapping manner of the data according to at least one of a service type of the data, a resource block size occupied by the data, and a distribution state of the interference received by the data, and the pre-stored corresponding relationship.
  • the process of determining the resource mapping mode by the terminal device is similar to the process of determining the resource mapping mode by the base station, and reference may be made to the related description above. It should be understood that the order of execution of step 210 and step 220 is not limited in this embodiment. For example, steps 210 and 220 may be performed simultaneously, and step 210 may also be performed before or after step 220.
  • the resource mapping mode has a corresponding relationship with the scrambling code used by the physical layer signaling, and the corresponding relationship may be pre-agreed by the base station and the terminal device, or may be specified by a protocol.
  • the base station determines the resource mapping mode in step 210
  • the base station sends physical layer signaling to the terminal device in step 220, and the scrambling code used by the physical layer signaling indicates the resource mapping manner.
  • the terminal device determines the resource mapping manner according to the indication information, and the terminal device determines the resource mapping manner according to the scrambling code used by the physical layer signaling.
  • the base station can implicitly indicate the resource mapping manner of the data by using the scrambling code adopted by the physical layer signaling.
  • the terminal device can determine the resource mapping manner according to the scrambling code and the pre-stored corresponding relationship.
  • the base station may further determine a scrambling code corresponding to the resource mapping manner, and perform scrambling processing on the physical layer signaling by using the scrambling code.
  • the resource mapping manner has a corresponding relationship with the time-frequency resource used for transmitting data, and the corresponding relationship may be pre-agreed by the base station and the terminal device, or may be specified by a protocol.
  • the base station sends, to the terminal device, indication information for transmitting the time-frequency resource of the data, where the time-frequency resource indicates the resource mapping manner.
  • the terminal device determines the resource mapping manner according to the indication information, and the terminal device determines the time-frequency resource used for transmitting the data according to the indication information of the time-frequency resource, and determines the resource mapping manner according to the time-frequency resource.
  • the indication information sent by the base station to the terminal device in step 220 is the indication information of the time-frequency resource
  • the base station can implicitly indicate the resource mapping manner of the data by using the time-frequency resource for transmitting the data.
  • the terminal device can determine the resource mapping manner according to the time-frequency resource used for transmitting data and the pre-stored corresponding relationship.
  • the base station may further determine a time-frequency resource for transmitting data corresponding to the resource mapping manner, and generate indication information of the time-frequency resource.
  • the resource mapping manner of the data can be flexibly configured, so that the interference can be dispersed and the correct decoding rate can be improved.
  • a base station and a terminal device according to an embodiment of the present application are described below with reference to FIGS. 5 through 8.
  • FIG. 5 is a schematic structural diagram of a base station 500 according to an embodiment of the present application.
  • the base station 500 can include a processing unit 510 and a transmitting unit 520.
  • the processing unit 510 is configured to determine, by the base station, a resource mapping manner of data to be sent to the terminal device, where the resource mapping manner is one or more of a pre-time domain post-frequency domain, a pre-frequency domain post-time domain, and a time-frequency domain interlace.
  • the sending unit 520 is configured to send indication information to the terminal device, where the indication information is used to indicate a resource mapping manner.
  • the base station can flexibly configure the resource mapping manner of the data, thereby dispersing interference and improving the correct decoding rate.
  • the processing unit 510 is specifically configured to determine a resource mapping manner of the data according to at least one of a service type of the data, a resource block size occupied by the data, and a distribution state of the interference received by the data.
  • processing unit 510 is specifically configured to:
  • the resource mapping mode is a pre-time domain post-frequency domain or a time-frequency domain interleaving
  • the resource mapping mode is determined to be a pre-frequency domain post-time domain, a first-time domain post-frequency domain, or a time-frequency domain interleaving.
  • processing unit 510 is specifically configured to:
  • the resource mapping mode is the first time domain or the time frequency domain interleaving
  • the resource mapping mode is determined to be the pre-frequency domain post-time domain.
  • processing unit 510 is specifically configured to:
  • the resource mapping mode is determined to be the first time domain post-frequency domain or the time-frequency domain interleaving
  • the resource mapping mode is the first frequency domain and the time domain.
  • the sending unit 520 is specifically configured to send physical layer signaling to the terminal device, where the physical layer signaling includes indication information.
  • the resource mapping manner has a corresponding relationship with the scrambling code used by the physical layer signaling.
  • the sending unit 520 is specifically configured to send physical layer signaling to the terminal device, and the scrambling code used by the physical layer signaling indicates the resource mapping manner.
  • the resource mapping manner has a corresponding relationship with a time-frequency resource used for transmitting data.
  • the sending unit is specifically configured to send the indication information of the time-frequency resource to the terminal device, and the time-frequency resource indicates the resource mapping manner.
  • the base station 500 may correspond to a base station in a communication method according to an embodiment of the present application, and the above and other operations and/or functions of respective units in the base station 500 respectively implement the method shown in FIG. 200 corresponding processes, for the sake of brevity, will not be described here.
  • processing unit 510 can be implemented by a processor and the transmitting unit 520 can be implemented by a transmitter.
  • FIG. 6 is a schematic structural diagram of a base station 600 according to another embodiment of the present application.
  • base station 600 includes a processor 610, a transmitter 620, and a memory 630.
  • the processor 610, transmitter 620, and memory 630 communicate with one another via internal connection paths to communicate control signals and/or data signals.
  • the memory 620 is for storing instructions, and the processor 610 is configured to execute instructions stored by the memory 620.
  • the processor 610 is configured to implement the functions of the processing unit 510 in the base station 500 shown in FIG. 5, and the transmitter 620 is configured to implement the functions of the transmitting unit 520 in the base station 500 shown in FIG. 5.
  • the processor 610 is configured to implement the functions of the processing unit 510 in the base station 500 shown in FIG. 5
  • the transmitter 620 is configured to implement the functions of the transmitting unit 520 in the base station 500 shown in FIG. 5.
  • the base station 600 may correspond to the base station in the communication method according to the embodiment of the present application and the base station 500 according to the embodiment of the present application, and the foregoing and other operations of the respective units in the base station 600 and/or The functions are respectively implemented in order to implement the corresponding process of the method 200 shown in FIG. 2, and are not described herein for brevity.
  • FIG. 7 is a schematic structural diagram of a terminal device 700 according to an embodiment of the present application. As shown in FIG. 7, the terminal device 700 includes a receiving unit 710 and a processing unit 720.
  • the receiving unit 710 is configured to receive indication information from the base station, where the indication information is used to indicate a resource mapping manner of the data to be sent by the base station, where the resource mapping manner is in a pre-time domain post-frequency domain, a pre-frequency domain post-time domain, and a time-frequency domain interleaving. One or more.
  • the processing unit 720 is configured to determine a resource mapping manner according to the indication information received by the receiving unit.
  • the receiving unit 710 is further configured to receive data according to the resource mapping manner determined by the processing unit 720.
  • the embodiment of the present application can flexibly configure the resource mapping manner of data, thereby dispersing interference and improving the correct decoding rate.
  • the resource mapping manner is determined according to at least one of a service type of the data, a resource block size occupied by the data, and a distribution state of the interference received by the data.
  • the data is a low-latency and high-reliability communication URLLC type service
  • the processing unit 720 is specifically configured to determine, according to the indication information, that the resource mapping mode is a pre-frequency domain post-time domain; or
  • the data is an enhanced mobile bandwidth eMBB type service
  • the processing unit 720 is specifically configured to determine, according to the indication information, that the resource mapping manner is a pre-time domain post-frequency domain or a time-frequency domain interleaving; or
  • the data is a large-scale Internet of Things mMTC type service, and the processing unit 720 is specifically configured to determine, according to the indication information, that the resource mapping manner is a pre-time domain post-frequency domain, a pre-frequency domain post-time domain, or a time-frequency domain interleaving.
  • the size of the resource block occupied by the data is greater than or equal to the set first threshold, and the processing unit 710 is specifically configured to determine, according to the indication information, that the resource mapping mode is a pre-time domain or a time-frequency domain interleaving; or
  • the processing unit 720 is specifically configured to determine, according to the indication information, that the resource mapping manner is the pre-frequency domain post-time domain, according to the indication information.
  • the density of the data received by the data along the frequency domain is greater than the density of the time domain distribution
  • the processing unit 720 is configured to determine, according to the indication information, that the resource mapping mode is the first time domain or the time frequency domain interleaving; or
  • the density of the data received by the data is less than the density of the distribution along the time domain.
  • the processing unit 720 is specifically configured to determine, according to the indication information, that the resource mapping mode is the pre-frequency domain and the time domain.
  • the receiving unit 710 is specifically configured to receive physical layer signaling from the base station, where the physical layer signaling includes indication information.
  • the resource mapping manner has a corresponding relationship with the scrambling code used by the physical layer signaling.
  • the receiving unit 710 is specifically configured to receive physical layer signaling from the base station, and the scrambling code used in the physical layer signaling indicates a resource mapping manner.
  • the resource mapping manner has a corresponding relationship with a time-frequency resource used for transmitting data.
  • the receiving unit 710 is specifically configured to receive indication information of a time-frequency resource from the base station, where the time-frequency resource indicates a resource mapping manner.
  • terminal device 700 may correspond to the terminal device in the communication method according to the embodiment of the present application, and the above and other operations and/or functions of the respective units in the terminal device 700 respectively implement FIG. 2
  • the corresponding process of the method 200 is shown, and for brevity, it will not be repeated here.
  • receiving unit 710 can be implemented by a receiver
  • processing unit 720 can be implemented by a processor
  • FIG. 8 is a schematic structural diagram of a terminal device 800 according to another embodiment of the present application.
  • the terminal device 800 includes a processor 810, a receiver 820, and a memory 830.
  • the processor 810, the receiver 820, and the memory 830 communicate with each other through an internal connection path to transfer control signals and/or data signals.
  • the memory 830 is for storing instructions for executing the instructions stored by the memory 620.
  • the processor 810 is configured to implement the functions of the processing unit 720 in the terminal device 700 shown in FIG. 7, and the receiver 820 is configured to implement the functions of the receiving unit 710 in the terminal device 700 shown in FIG.
  • the processor 810 is configured to implement the functions of the processing unit 720 in the terminal device 700 shown in FIG. 7
  • the receiver 820 is configured to implement the functions of the receiving unit 710 in the terminal device 700 shown in FIG.
  • the terminal device 800 may correspond to the communication method according to the embodiment of the present application.
  • the terminal device 700 and the terminal device 700 according to the embodiment of the present application, and the above-mentioned and other operations and/or functions of the respective units in the terminal device 800 are respectively implemented in order to implement the corresponding process of the method 200 shown in FIG. 2, for the sake of brevity, no longer Narration.
  • the memory in each of the above embodiments may include a volatile memory, such as a random-access memory (RAM); the memory may also include a non-volatile memory, such as a fast A flash memory, a hard disk drive (HDD), or a solid-state drive (SSD); the memory may further include a combination of the above types of memories.
  • RAM random-access memory
  • non-volatile memory such as a fast A flash memory, a hard disk drive (HDD), or a solid-state drive (SSD)
  • the memory may further include a combination of the above types of memories.
  • the processor in each of the above embodiments may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种通信方法、基站和终端设备,该通信方法包括:基站确定待发送给终端设备的数据的资源映射方式,所述资源映射方式为先时域后频域、先频域后时域和时频域交织中的一种或多种;所述基站向所述终端设备发送指示信息,所述指示信息用于指示所述资源映射方式。本申请实施例能够灵活配置数据的资源映射方式,从而能够尽可能地分散干扰,提高正确解码率。

Description

通信方法、基站和终端设备
本申请要求于2016年12月15日提交中国专利局、申请号为201611157801.4、发明名称为“通信方法、基站和终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及通信方法、基站和终端设备。
背景技术
长期演进(Long Term Evolution,LTE)系统中的数据均采用先频域后时域的资源映射方式。一个码块(Code Block,CB)上的数据集中映射在有限数量的符号(比如1个或2个符号)上。在低负载场景下,邻区参考信号是主要的干扰源。以信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)为例,图1示出了一个用户数据CB块分布的情况,横轴上的一格表示一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,纵轴上的一格表示一个子载波。为了直观地说明问题,图1中一个CB正好占满一个OFDM符号,但实际情况可能不限于此。其中,第1、2个符号为控制信道,第3-14符号为共享数据信道。从图1中可以看出,干扰源CSI-RS集中在CB4和CB5上,当信道编码速率较高时,CB4和CB5很难通过信道解码纠错。虽然其他CB没有受到干扰,基本可以正确解码,但是一个传输块(Transport Block,TB)是否解码正确,取决于该TB内包括的所有CB是否解码正确。因此,当干扰集中在若干CB时,这些受到干扰的CB很难解码正确,这将导致这些CB所在的TB解码错误。
发明内容
本申请实施例提供了一种通信方法、基站和终端设备,能够提高正确解码率。
第一方面,提供了一种通信方法,该方法包括:
基站确定待发送给终端设备的数据的资源映射方式,所述资源映射方式为先时域后频域、先频域后时域和时频域交织中的一种或多种;
所述基站向终端设备发送指示信息,所述指示信息用于指示所述资源映射方式。
本申请实施例能够灵活配置数据的资源映射方式,从而能够分散干扰,提高正确解码率。
在一些可能的实现方式中,所述基站确定所述数据的资源映射方式,包括:
所述基站根据待发送给终端设备的数据的业务类型、所述数据占用的资源块大小和所述数据受到的干扰的分布状态中的至少一种,确定所述数据的资源映射方式。
通过根据待发送给终端设备的数据的业务类型、所述数据占用的资源块大小和所述数据受到的干扰的分布状态中的至少一种,确定所述数据的资源映射方式。
在一些可能的实现方式中,所述基站根据所述数据的业务类型,确定所述数据的资源映射方式,包括:
若所述数据为低时延高可靠通信URLLC类业务,则所述基站确定所述资源映射方式为先频域后时域;
若所述数据为增强型移动带宽eMBB类业务,则所述基站确定所述资源映射方式为先时域后频域或时频域交织;
若所述数据为大规模物联网mMTC类业务,则所述基站确定所述资源映射方式为先频域后时域、先时域后频域或时频域交织。
本申请实施例中根据待发送的数据的业务类型确定该数据的资源映射方式,能够满足业务的QoS要求。
在一些可能的实现方式中,所述基站根据所述数据占用的资源块大小,确定所述数据的资源映射方式,包括:
若所述数据占用的资源块的大小大于或等于设置的第一阈值,则所述基站确定所述资源映射方式为先时域后频域或时频域交织;
若所述数据占用的资源块的大小小于或等于设置的第二阈值,则所述基站确定所述资源映射方式为先频域后时域。
其中,所述第一阈值可以大于或等于所述第二阈值。
本申请实施例中根据待发送的数据占用的资源块的大小确定该数据的资源映射方式,能够尽可能地分散干扰,提高正确解码率。
在一些可能的实现方式中,所述基站根据所述数据受到的干扰的分布状态,确定所述数据的资源映射方式,包括:
若所述数据受到的干扰沿频域分布的密度大于沿时域分布的密度,则所述基站确定所述资源映射方式为先时域后频域或时频域交织;
若所述数据受到的干扰沿频域分布的密度小于沿时域分布的密度,则所述基站确定所述资源映射方式为先频域后时域。
本申请实施例中根据待发送的数据受到的干扰的分布状态确定该数据的资源映射方式,能够尽可能地分散干扰,提高正确解码率。
在一些可能的实现方式中,所述基站向终端设备发送指示信息,包括:
所述基站向所述终端设备发送物理层信令,所述物理层信令包括所述指示信息。
可选地,所述指示信息可以显性或隐性指示所述资源映射方式。例如,所述指示信息为所述资源映射方式的标识信息;或者,所述指示信息为所述数据的业务类型、所述数据占用的资源块的大小和所述数据受到的干扰的分布状态中的至少一种的标识信息。
在一些可能的实现方式中,所述资源映射方式与物理层信令采用的扰码具有对应关系,
所述基站向终端设备发送指示信息,包括:
所述基站向所述终端设备发送所述物理层信令,所述物理层信令采用的扰码指示所述资源映射方式。
在一些可能的实现方式中,所述资源映射方式与所述数据占用的时频资源具有对应关系,
所述基站向终端设备发送指示信息,包括:
所述基站向所述终端设备发送所述时频资源的指示信息,所述时频资源指示所述资源映射方式。
第二方面,提供了一种通信方法,该方法包括:
终端设备从基站接收指示信息,所述指示信息用于指示所述基站待发送的数据的资源映射方式,所述资源映射方式为先时域后频域、先频域后时域和时频域交织中的一种或多种;
所述终端设备根据所述指示信息确定所述资源映射方式;
所述终端设备根据所述资源映射方式接收所述数据。
本申请实施例能够灵活配置数据的资源映射方式,从而能够分散干扰,提高正确解码率。
在一些可能的实现方式中,所述资源映射方式根据所述数据的业务类型、所述数据占用的资源块大小和所述数据受到的干扰的分布状态中的至少一种确定。
在一些可能的实现方式中,所述数据为低时延高可靠通信URLLC类业务,所述终端设备根据所述指示信息确定所述资源映射方式,包括:所述终端设备根据所述指示信息确定所述资源映射方式为先频域后时域;或者,
所述数据为增强型移动带宽eMBB类业务,所述终端设备根据所述指示信息确定所述资源映射方式,包括:所述终端设备根据所述指示信息确定所述资源映射方式为先时域后频域或时频域交织;或者,
所述数据为大规模物联网mMTC类业务,所述终端设备根据所述指示信息确定所述资源映射方式,包括:所述终端设备根据所述指示信息确定所述资源映射方式为先时域后频域、先频域后时域或时频域交织。
本申请实施例中根据待发送的数据的业务类型确定该数据的资源映射方式,能够满足业务的QoS要求。
在一些可能的实现方式中,所述数据占用的资源块的大小大于或等于设置的第一阈值,所述终端设备根据所述指示信息确定所述资源映射方式,包括:所述终端根据所述指示信息确定所述资源映射方式为先时域后频域或时频域交织;或者,
所述数据占用的资源块的大小小于或等于设置的第二阈值,所述终端设备根据所述指示信息确定所述资源映射方式,包括:所述终端根据所述指示信息确定所述资源映射方式为先频域后时域。
本申请实施例中根据待发送的数据占用的资源块的大小确定该数据的资源映射方式,能够尽可能地分散干扰,提高正确解码率。
在一些可能的实现方式中,所述数据受到的干扰沿频域分布的密度大于沿时域分布的密度,所述终端设备根据所述指示信息确定所述资源映射方式,包括:所述终端根据所述指示信息确定所述资源映射方式为先时域后频域或时频域交织;或者,
所述数据受到的干扰沿频域分布的密度小于沿时域分布的密度,所述终端设备根据所述指示信息确定所述资源映射方式,包括:所述终端根据所述指示信息确定所述资源映射方式为先频域后时域。
本申请实施例中根据待发送的数据受到的干扰的分布状态确定该数据的资源映射方 式,能够尽可能地分散干扰,提高正确解码率。
在一些可能的实现方式中,所述终端设备从基站接收指示信息,包括:
所述终端设备从所述基站接收物理层信令,所述物理层信令包括所述指示信息。
可选地,所述指示信息可以显性或隐性指示所述资源映射方式。例如,所述指示信息为所述资源映射方式的标识信息;或者,所述指示信息为所述数据的业务类型、所述数据占用的资源块的大小和所述数据受到的干扰的分布状态中的至少一种的标识信息。
在一些可能的实现方式中,所述资源映射方式与物理层信令采用的扰码具有对应关系,
所述终端设备从所述基站接收指示信息,包括:
所述终端设备从所述基站接收所述物理层信令,所述物理层信令采用的扰码指示所述资源映射方式。
在一些可能的实现方式中,所述资源映射方式与所述数据占用的时频资源具有对应关系,
所述终端设备从基站接收指示信息,包括:
所述终端设备从所述基站接收所述时频资源的指示信息,所述时频资源指示所述资源映射方式。
第三方面,提供了一种基站,所述基站用于实现第一方面或第一方面的上述任一种可能的实现方式所述的方法。
具体地,所述基站可以包括用于执行第一方面或第一方面的任一种可能的实现方式所述的方法的单元。
第四方面,提供了一种终端设备,所述终端设备用于实现第二方面或第二方面的上述任一种可能的实现方式所述的方法。
具体地,所述终端设备可以包括用于执行第二方面或第二方面的任一种可能的实现方式所述的方法的单元。
第五方面,提供了一种基站,包括处理器、发送器和存储器,所述处理器、所述发送器和所述存储器通过内部连接通路互相通信,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得所述基站执行第一方面或第一方面的任一种可能的实现方式所述的方法。
第六方面,提供了一种终端设备,包括处理器、接收器、存储器和总线系统,所述处理器、所述接收器和所述存储器通过内部连接通路互相通信,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得所述终端设备执行第二方面或第二方面的任一种可能的实现方式所述的方法。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有程序,该程序使得基站执行上述第一方面或第一方面的任一种可能的实现方式所述的方法。
第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有程序,该程序使得终端设备执行上述第一方面或第一方面的任一种可能的实现方式所述的方法。
附图说明
图1是先频域后时域的资源映射方式的示意图;
图2是根据本申请实施例的通信方法的示意性流程图;
图3是先时域后频域的资源映射方式的示意图;
图4是时频域交织的资源映射方式的示意图;
图5是根据本申请实施例的基站的结构示意图;
图6是根据本申请另一实施例的基站的结构示意图;
图7是根据本申请实施例的终端设备的结构示意图;
图8是根据本申请另一实施例的终端设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
应理解,本申请实施例的的技术方案可以应用于各种通信系统,例如:无线保真(wifi)、全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMAX)、全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、以及第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)相关的蜂窝系统等,本申请实施例并不限定,但为描述方便,本申请实施例将以LTE网络为例进行说明。
本申请实施例可以用于不同的制式的无线网络。无线接入网络在不同的系统中可包括不同的网元。例如,5G网络中无线接入网络的网元包括gNB,长期演进(Long Term Evolution,LTE)和LTE-A中无线接入网络的网元包括演进型基站(eNodeB,eNB),宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中无线接入网络的网元包括无线网络控制器(Radio Network Controller,RNC)和NodeB,类似地,全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMax)等其它无线网络也可以使用与本申请实施例类似的方案,只是基站系统中的相关模块可能有所不同,本申请实施例并不限定,但为描述方便,下述实施例将以基站为例进行说明。
还应理解,在本申请实施例中,终端设备也可称之为用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal)等,该终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有通信功能的计算机等,例如,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
本申请实施例中的“第一”、“第二”只是用于区分,不代表先后或大小的含义。
图2是根据本申请实施例的通信方法的示意性流程图。如图2所示,方法200包括如下内容。
210、基站确定待发送给终端设备的数据的资源映射方式,该资源映射方式为先时域后频域、先频域后时域和时频域交织中的一种或多种。
先频域后时域的资源映射方式可以参考图1所示,一个CB占用一个OFDM符号。需要说明的是,图1中仅以一个CB占用一个OFDM符号为例,但本申请实施例对此并不限 定。采用先频域后时域的资源映射方式能够降低检测时延,因此先频域后时域的资源映射方式适用于低时延类的业务。
先频域后时域的资源映射方式可以参考图3所示,图3中横轴上的一格表示一个OFDM符号,纵轴上的一格表示一个子载波,一个CB占用一个子载波,需要说明的是,图3中仅以一个CB占用一个子载波为例,但本申请实施例对此并不限定。图3中,第1、2个符号为控制信道,第3-14符号为共享数据信道。采用先时域后频域的资源映射方式,邻区的CSI-RS落在CB3、CB4、CB9和CB10四个CB上,而图1中邻区的CSI-RS落在CB4和CB5两个CB上。显然,先时域后频域的资源映射方式相对于先频域后时域的资源映射方式能够分散干扰。
时频域交织的资源映射方式可以参考图4所示。图4中横轴上的一格表示一个OFDM符号,纵轴上的一格表示一个子载波,一个CB占用一个子载波。如图4所示,采用时频域交织的资源映射方式将数据映射到资源块上之后,相对于先频域后时域或先时域后频域的资源映射方式,时频域交织的资源映射方式使得数据在时频资源上的分布是分散的。因此,时频域交织的资源映射方式也能够分散干扰。例如,时频域交织的资源映射方式可以参考协议TS36.212中表5.1.3-3所示的交织方式。
220、基站向终端设备发送指示信息,该指示信息用于指示该资源映射方式。
230、终端设备从基站接收到该指示信息之后,根据该指示信息确定该资源映射方式。
240、基站根据该资源映射方式向终端设备发送数据,终端设备根据该资源映射方式从基站接收数据。
终端设备可以根据该资源映射方式对数据进行检测,直到接收到基站发送的数据。
因此,本申请实施例能够灵活配置数据的资源映射方式,从而能够尽可能地分散干扰,提高正确解码率。
在一些实施例中,若基站确定的资源映射方式为先时域后频域、先频域后时域和时频域交织中的多种,则基站可以将待发送给终端设备的数据分成多组,每组数据对应一种资源映射方式。步骤240中,基站可以根据该多种资源映射方式向终端设备发送该多组数据。应理解,基站还可以将待发送给终端设备的数据的分组信息以及数据分组与资源映射方式的对应关系发送给终端设备。或者,该分组信息和该对应关系可以预先存储在终端设备中。
在一些实施例中,若基站确定的资源映射方式为先时域后频域、先频域后时域和时频域交织中的多种,则基站还可以根据其中优先级最高的一种发送数据。相应地,终端设备也可以选择其中优先级最高的一种接收数据。应理解,终端设备和基站可以预先约定先时域后频域、先频域后时域和时频域交织的优先级。
可选地,步骤210中,基站确定数据的资源映射方式,包括:基站根据待发送给终端设备的数据的业务类型、该数据占用的资源块大小和该数据受到的干扰的分布状态中的至少一种确定数据的资源映射方式。
可选地,可以在基站中预先存储数据的业务类型、数据占用的资源块大小和数据受到的干扰的分布状态中的至少一种与资源映射方式的对应关系。具体地,基站根据数据的业务类型、数据占用的资源块大小和数据受到的干扰的分布状态中的至少一种和预先存储的对应关系,可以确定数据的资源映射方式。
在一些实施例中,步骤210中,基站根据待发送给终端设备的数据的业务类型,确定 数据的资源映射方式。
可选地,步骤210中,若数据为低时延高可靠通信(Ultra-Reliable and Low Latency Communication,URLLC)类业务,则基站确定资源映射方式为先频域后时域。相应地,步骤230中,终端设备根据指示信息确定该资源映射方式为先频域后时域。由于URLLC类业务的对时延的要求较高,采用先频域后时域的资源映射方式能够降低数据的检测时延。
可选地,步骤210中,若数据为增强型移动带宽(enhanced Mobile Broadband,eMBB)类业务,则基站确定资源映射方式为先时域后频域或时频域交织。相应地,步骤230中,终端设备根据指示信息确定该资源映射方式为先时域后频域或时频域交织。由于eMBB类业务的数据量较大,且对时延的要求较低,采用先时域后频域或时频域交织的资源映射方式能够分散干扰,以减少干扰过于集中对数据传输带来的影响,进而能够提高传输效率。
可选地,步骤210中,若数据为大规模物联网(massive Machine Type Communication,mMTC)类业务,则基站确定资源映射方式为先频域后时域、先时域后频域或时频域交织。相应地,步骤230中,终端设备根据指示信息确定该资源映射方式为先频域后时域、先时域后频域或时频域交织。由于mMTC类业务的数据量不大,且对时延的要求较低,可以采用先频域后时域、先时域后频域和时频域交织中的任一种资源映射方式。
具体地,还可以根据mMTC类业务的应用场景,进一步确定数据的资源映射方式。例如,如果mMTC类业务的应用场景对时延要求较高,则基站确定资源映射方式为先频域后时域;如果mMTC类业务对时延要求较低,则基站确定资源映射方式为先时域后频域或时频域交织。
需要说明的是,还可以数据的其他业务类型,确定该数据的资源映射方式。
因此,本申请实施例中根据待发送的数据的业务类型确定该数据的资源映射方式,能够满足业务的服务质量(Quality of Service,QoS)要求。
在一些实施例中,步骤210中,基站根据待发送给终端设备的数据占用的资源块大小,确定数据的资源映射方式。
可选地,步骤210中,若数据占用的资源块的大小大于或等于设置的第一阈值,则基站确定资源映射方式为先时域后频域或时频域交织。相应地,步骤230中,终端设备根据指示信息确定该资源映射方式为先时域后频域或时频域交织。当数据占用的资源块较大时,该资源块内可以包括的CB的数量较多,如果干扰集中在有限数量的CB上将会导致解调性能下降,此时采用先时域后频域或时频域交织的资源映射方式,能够分散干扰,以减少干扰过于集中对数据传输带来的影响,进而提高传输效率。
可选地,步骤210中,若数据占用的资源块的大小小于或等于设置的第二阈值,则基站确定资源映射方式为先频域后时域。相应地,步骤230中,终端设备根据指示信息确定该资源映射方式为先频域后时域。当数据占用的资源块较大时,该资源块内包括的CB的数量较少,例如该资源块内包括一个CB,数据的资源映射方式对干扰分布的影响较小,因此可以采用先频域后时域的资源映射方式。
应理解,第一阈值可以大于或者等于第二阈值。
因此,本申请实施例中根据待发送的数据占用的资源块的大小确定该数据的资源映射方式,能够尽可能地分散干扰,提高正确解码率。
在一些实施例中,步骤210中,基站根据待发送给终端设备的数据受到的干扰的分布状态,确定数据的资源映射方式。
可选地,步骤210中,若数据受到的干扰沿频域分布的密度大于沿时域分布的密度,则基站确定资源映射方式为先时域后频域或时频域交织。相应地,步骤230中,终端设备根据指示信息确定该资源映射方式为先时域后频域或时频域交织。若数据受到的干扰沿频域分布的密度大于沿时域分布的密度,采用先时域后频域或时频域交织的资源映射方式,能够达到干扰分散的目的,以减少干扰过于集中对传输带来的影响,提高传输效率。
可选地,步骤210中,若数据受到的干扰沿频域分布的密度小于沿时域分布的密度,则基站确定资源映射方式为先频域后时域。相应地,步骤230中,终端设备根据指示信息确定该资源映射方式为先频域后时域。若数据受到的干扰沿频域分布的密度小于沿时域分布的密度,采用先频域后时域的资源映射方式即可达到干扰分散的目的,以减少干扰过于集中对传输带来的影响,提高传输效率。
因此,本申请实施例中根据待发送的数据受到的干扰的分布状态确定该数据的资源映射方式,能够尽可能地分散干扰,提高正确解码率。
在一些实施例中,步骤210中,基站根据待发送给终端设备的数据的业务类型和该数据占用的资源块大小,确定该数据的资源映射方式。
下表1示出了数据的不同业务类型和占用的资源块大小与资源映射方式的对应关系。
表1
Figure PCTCN2017115429-appb-000001
在一些实施例中,步骤210中,基站根据待发送给终端设备的数据的业务类型和受到的干扰的分布状态,确定数据的资源映射方式。
下表2示出了数据的不同业务类型和受到的干扰的分布状态与资源映射方式的对应关系。
表2
Figure PCTCN2017115429-appb-000002
在一些实施例中,步骤210中,基站根据待发送给终端设备的数据占用的资源块大小和受到的干扰的分布状态,确定数据的资源映射方式。
下表3示出了数据占用的资源块大小和受到的干扰的分布状态与资源映射方式的对应关系。
表3
Figure PCTCN2017115429-appb-000003
在一些实施例中,步骤210中,基站根据待发送给终端设备的数据的业务类型、占用的资源块大小和受到的干扰的分布状态,确定数据的资源映射方式。
下表4示出了数据的业务类型、占用的资源块大小和受到的干扰的分布状态与资源映射方式的对应关系。
表4
Figure PCTCN2017115429-appb-000004
需要说明的是,以上所示表1至表4中,大资源块指的是资源块的大小大于或等于第一阈值的资源块,小资源块指的是资源块的大小小于或等于第二阈值的资源块。纵向分布指的是数据受到的干扰沿频域分布的密度大于沿时域分布的密度,横向分布指的是数据受到的干扰沿频域分布的密度小于沿时域分布的密度。
应理解,基站确定数据的资源映射方式的方法并不限于上文描述的各实施例,本领域技术人员在上文描述的本申请实施例的基础上所扩展的其他实施例,仍然落入本申请的保护范围。
还应理解,基站还可以根据待发送给终端设备的数据的其他特征确定该数据的资源映射方式。例如,基站还可以根据该数据对时延的要求确定该数据的资源映射方式。
本申请实施例中,基站可以将确定的资源映射方式显性或隐性地指示给终端设备。步骤220中基站向终端设备发送的指示信息可以显性指示数据的资源映射方式,也可以隐性指示数据的资源映射方式。
可选地,步骤220中,基站向终端设备发送物理层信令,该物理层信令包括指示信息。其中该指示信息显性指示数据的资源映射方式,例如该指示信息可以为该资源映射方式的标识或序号等。也就是说,基站可以通过物理层信令显性指示数据的资源映射方式。
可选地,步骤220中的指示信息还可以隐性指示数据的资源映射方式。例如,该指示信息可以为数据的业务类型、数据占用的资源块大小和数据受到的干扰的分布状态中的至 少一种的标识信息。终端设备中可以预先存储数据的业务类型、数据占用的资源块大小和数据受到的干扰的分布状态中的至少一种与资源映射方式之间的对应关系。该对应关系可以是基站和终端设备预先约定的,也可以是协议规定的。终端设备可以根据数据的业务类型、数据占用的资源块大小和数据受到的干扰的分布状态中的至少一种以及预存的该对应关系,确定该数据的资源映射方式。本申请实施例中,终端设备确定资源映射方式的过程与基站确定资源映射方式的过程类似,可以参考上文的相关描述。应理解,在该实施例中对步骤210和步骤220的执行顺序不做限定,例如步骤210与220可以同时执行,步骤210也可以在步骤220之前或之后执行。
可选地,资源映射方式与物理层信令采用的扰码具有对应关系,该对应关系可以是基站和终端设备预先约定的,也可以是协议规定的。相应地,步骤210中基站在确定了资源映射方式之后,步骤220中基站向终端设备发送物理层信令,该物理层信令采用的扰码指示资源映射方式。步骤230中,终端设备根据指示信息确定资源映射方式包括:终端设备根据该物理层信令采用的扰码确定该资源映射方式。也就是说,基站可以通过物理层信令采用的扰码隐性指示数据的资源映射方式。这样,终端设备根据该扰码和预存的该对应关系即可确定资源映射方式。应理解,基站在向终端设备发送该物理层信令之前,还可以确定资源映射方式对应的扰码,并采用该扰码对物理层信令进行加扰处理。
可选地,资源映射方式与用于传输数据的时频资源具有对应关系,该对应关系可以是基站和终端设备预先约定的,也可以是协议规定的。相应地,步骤210中基站在确定了资源映射方式之后,步骤220中基站向终端设备发送用于传输该数据的时频资源的指示信息,该时频资源指示资源映射方式。步骤230中,终端设备根据指示信息确定资源映射方式包括:终端设备根据该时频资源的指示信息确定用于传输数据的时频资源,并根据该时频资源确定该资源映射方式。也就是说,步骤220中基站向终端设备发送的指示信息为时频资源的指示信息,基站可以通过用于传输数据的时频资源隐性指示数据的资源映射方式。这样,终端设备根据该用于传输数据的时频资源和预存的该对应关系即可确定资源映射方式。应理解,基站在向终端设备发送该时频资源的指示信息之前,还可以确定资源映射方式对应的用于传输数据的时频资源,并生成该时频资源的指示信息。
本申请实施例中,能够灵活配置数据的资源映射方式,从而能够分散干扰,提高正确解码率。
应注意,本申请实施例中上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
下面结合图5至图8描述根据本申请实施例的基站和终端设备。
图5所示为根据本申请实施例的基站500的结构示意图。如图5所示,基站500可以包括处理单元510和发送单元520。
处理单元510用于基站确定待发送给终端设备的数据的资源映射方式,资源映射方式为先时域后频域、先频域后时域和时频域交织中的一种或多种。
发送单元520用于向终端设备发送指示信息,指示信息用于指示资源映射方式。
本申请实施例中,基站能够灵活配置数据的资源映射方式,从而能够分散干扰,提高正确解码率。
可选地,处理单元510具体用于,根据数据的业务类型、数据占用的资源块大小和数据受到的干扰的分布状态中的至少一种,确定数据的资源映射方式。
可选地,处理单元510具体用于:
若数据为低时延高可靠通信URLLC类业务,则确定资源映射方式为先频域后时域;
若数据为增强型移动带宽eMBB类业务,则确定资源映射方式为先时域后频域或时频域交织;
若数据为大规模物联网mMTC类业务,则确定资源映射方式为先频域后时域、先时域后频域或时频域交织。
可选地,处理单元510具体用于:
若数据占用的资源块的大小大于或等于设置的第一阈值,则确定资源映射方式为先时域后频域或时频域交织;
若数据占用的资源块的大小小于或等于设置的第二阈值,则确定资源映射方式为先频域后时域。
可选地,处理单元510具体用于:
若数据受到的干扰沿频域分布的密度大于沿时域分布的密度,则确定资源映射方式为先时域后频域或时频域交织;
若数据受到的干扰沿频域分布的密度小于沿时域分布的密度,则确定资源映射方式为先频域后时域。
可选地,发送单元520具体用于向终端设备发送物理层信令,物理层信令包括指示信息。
可选地,资源映射方式与物理层信令采用的扰码具有对应关系。相应地,发送单元520具体用于向终端设备发送物理层信令,物理层信令采用的扰码指示资源映射方式。
可选地,资源映射方式与用于传输数据的时频资源具有对应关系。相应地,发送单元具体用于向终端设备发送时频资源的指示信息,时频资源指示资源映射方式。
应理解,根据本申请实施例的基站500可对应于根据本申请实施例的通信方法中的基站,并且基站500中的各个单元的上述和其它操作和/或功能分别为了实现图2所示方法200相应流程,为了简洁,在此不再赘述。
应注意,处理单元510可以由处理器实现,发送单元520可以由发送器实现。
图6所示为根据本申请另一实施例的基站600的结构示意图。如图6所示,基站600包括处理器610、发送器620和存储器630,处理器610、发送器620和存储器630通过内部连接通路互相通信,传递控制信号和/或数据信号。该存储器620用于存储指令,该处理器610用于执行该存储器620存储的指令。
具体地,处理器610用于实现图5所示的基站500中的处理单元510的功能,发送器620用于实现图5所示的基站500中的发送单元520的功能。为简洁,在此不再赘述。
应理解,根据本申请实施例的基站600可对应于根据本申请实施例的通信方法中的基站和根据本申请实施例的基站500,并且基站600中的各个单元的上述和其它操作和/或功能分别为了实现图2所示方法200相应流程,为了简洁,在此不再赘述。
图7是根据本申请实施例的终端设备700的结构示意图。如图7所示,终端设备700包括接收单元710和处理单元720。
接收单元710用于从基站接收指示信息,指示信息用于指示基站待发送的数据的资源映射方式,资源映射方式为先时域后频域、先频域后时域和时频域交织中的一种或多种。
处理单元720用于根据接收单元接收到的指示信息确定资源映射方式。
接收单元710还用于根据处理单元720确定的资源映射方式接收数据。
本申请实施例能够灵活配置数据的资源映射方式,从而能够分散干扰,提高正确解码率。
可选地,资源映射方式根据数据的业务类型、数据占用的资源块大小和数据受到的干扰的分布状态中的至少一种确定。
可选地,数据为低时延高可靠通信URLLC类业务,处理单元720具体用于根据指示信息确定资源映射方式为先频域后时域;或者,
数据为增强型移动带宽eMBB类业务,处理单元720具体用于根据指示信息确定资源映射方式为先时域后频域或时频域交织;或者,
数据为大规模物联网mMTC类业务,处理单元720具体用于根据指示信息确定资源映射方式为先时域后频域、先频域后时域或时频域交织。
可选地,数据占用的资源块的大小大于或等于设置的第一阈值,处理单元710具体用于根据指示信息确定资源映射方式为先时域后频域或时频域交织;或者,
数据占用的资源块的大小小于或等于设置的第二阈值,处理单元720具体用于根据指示信息确定资源映射方式为先频域后时域。
可选地,数据受到的干扰沿频域分布的密度大于沿时域分布的密度,处理单元720具体用于根据指示信息确定资源映射方式为先时域后频域或时频域交织;或者,
数据受到的干扰沿频域分布的密度小于沿时域分布的密度,处理单元720具体用于根据指示信息确定资源映射方式为先频域后时域。
可选地,接收单元710具体用于从基站接收物理层信令,物理层信令包括指示信息。
可选地,资源映射方式与物理层信令采用的扰码具有对应关系。相应地,接收单元710具体用于从基站接收物理层信令,物理层信令采用的扰码指示资源映射方式。
可选地,资源映射方式与用于传输数据的时频资源具有对应关系。相应地,接收单元710具体用于从基站接收时频资源的指示信息,时频资源指示资源映射方式。
应理解,根据本申请实施例的终端设备700可对应于根据本申请实施例的通信方法中的终端设备,并且终端设备700中的各个单元的上述和其它操作和/或功能分别为了实现图2所示方法200相应流程,为了简洁,在此不再赘述。
应注意,接收单元710可以由接收器实现,处理单元720可以由处理器实现。
图8所示为根据本申请另一实施例的终端设备800的结构示意图。如图8所示,终端设备800包括处理器810、接收器820和存储器830,处理器810、接收器820和存储器830通过内部连接通路互相通信,传递控制信号和/或数据信号。该存储器830用于存储指令,该处理器810用于执行该存储器620存储的指令。
具体地,处理器810用于实现图7所示的终端设备700中的处理单元720的功能,接收器820用于实现图7所示的终端设备700中的接收单元710的功能。为简洁,在此不再赘述。
应理解,根据本申请实施例的终端设备800可对应于根据本申请实施例的通信方法中 的终端设备和根据本申请实施例的终端设备700,并且终端设备800中的各个单元的上述和其它操作和/或功能分别为了实现图2所示方法200相应流程,为了简洁,在此不再赘述。
以上各实施例中的存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory)、硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
以上各实施例中的处理器可以是中央处理器(central processing unit,CPU)、网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC)、可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD)、现场可编程逻辑门阵列(field-programmable gate array,FPGA)、通用阵列逻辑(generic array logic,GAL)或其任意组合。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的 介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种通信方法,其特征在于,包括:
    基站确定待发送给终端设备的数据的资源映射方式,所述资源映射方式为先时域后频域、先频域后时域和时频域交织中的一种或多种;
    所述基站向所述终端设备发送指示信息,所述指示信息用于指示所述资源映射方式。
  2. 根据权利要求1所述的方法,其特征在于,所述基站确定所述数据的资源映射方式,包括:
    所述基站根据所述数据的业务类型、所述数据占用的资源块大小和所述数据受到的干扰的分布状态中的至少一种,确定所述数据的资源映射方式。
  3. 根据权利要求2所述的方法,其特征在于,所述基站根据所述数据的业务类型,确定所述数据的资源映射方式,包括:
    若所述数据为低时延高可靠通信URLLC类业务,则所述基站确定所述资源映射方式为先频域后时域;
    若所述数据为增强型移动带宽eMBB类业务,则所述基站确定所述资源映射方式为先时域后频域或时频域交织;
    若所述数据为大规模物联网mMTC类业务,则所述基站确定所述资源映射方式为先频域后时域、先时域后频域或时频域交织。
  4. 根据权利要求2所述的方法,其特征在于,所述基站根据所述数据占用的资源块大小,确定所述数据的资源映射方式,包括:
    若所述数据占用的资源块的大小大于或等于设置的第一阈值,则所述基站确定所述资源映射方式为先时域后频域或时频域交织;
    若所述数据占用的资源块的大小小于或等于设置的第二阈值,则所述基站确定所述资源映射方式为先频域后时域。
  5. 根据权利要求2所述的方法,其特征在于,所述基站根据所述数据受到的干扰的分布状态,确定所述数据的资源映射方式,包括:
    若所述数据受到的干扰沿频域分布的密度大于沿时域分布的密度,则所述基站确定所述资源映射方式为先时域后频域或时频域交织;
    若所述数据受到的干扰沿频域分布的密度小于沿时域分布的密度,则所述基站确定所述资源映射方式为先频域后时域。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述基站向终端设备发送指示信息,包括:
    所述基站向所述终端设备发送物理层信令,所述物理层信令包括所述指示信息。
  7. 根据权利要求1至5中任一项所述的方法,其特征在于,所述资源映射方式与物理层信令采用的扰码具有对应关系,
    所述基站向终端设备发送指示信息,包括:
    所述基站向所述终端设备发送所述物理层信令,所述物理层信令采用的扰码指示所述资源映射方式。
  8. 根据权利要求1至5中任一项所述的方法,其特征在于,所述资源映射方式与用于传输所述数据的时频资源具有对应关系,
    所述基站向终端设备发送指示信息,包括:
    所述基站向所述终端设备发送所述时频资源的指示信息,所述时频资源指示所述资源映射方式。
  9. 一种通信方法,其特征在于,包括:
    终端设备从基站接收指示信息,所述指示信息用于指示所述基站待发送的数据的资源映射方式,所述资源映射方式为先时域后频域、先频域后时域和时频域交织中的一种或多种;
    所述终端设备根据所述指示信息确定所述资源映射方式;
    所述终端设备根据所述资源映射方式接收所述数据。
  10. 根据权利要求9所述的方法,其特征在于,所述资源映射方式根据所述数据的业务类型、所述数据占用的资源块大小和所述数据受到的干扰的分布状态中的至少一种确定。
  11. 根据权利要求10所述的方法,其特征在于,
    所述数据为低时延高可靠通信URLLC类业务,所述终端设备根据所述指示信息确定所述资源映射方式,包括:所述终端设备根据所述指示信息确定所述资源映射方式为先频域后时域;或者,
    所述数据为增强型移动带宽eMBB类业务,所述终端设备根据所述指示信息确定所述资源映射方式,包括:所述终端设备根据所述指示信息确定所述资源映射方式为先时域后频域或时频域交织;或者,
    所述数据为大规模物联网mMTC类业务,所述终端设备根据所述指示信息确定所述资源映射方式,包括:所述终端设备根据所述指示信息确定所述资源映射方式为先时域后频域、先频域后时域或时频域交织。
  12. 根据权利要求10所述的方法,其特征在于,
    所述数据占用的资源块的大小大于或等于设置的第一阈值,所述终端设备根据所述指示信息确定所述资源映射方式,包括:所述终端根据所述指示信息确定所述资源映射方式为先时域后频域或时频域交织;或者,
    所述数据占用的资源块的大小小于或等于设置的第二阈值,所述终端设备根据所述指示信息确定所述资源映射方式,包括:所述终端根据所述指示信息确定所述资源映射方式为先频域后时域。
  13. 根据权利要求10所述的方法,其特征在于,
    所述数据受到的干扰沿频域分布的密度大于沿时域分布的密度,所述终端设备根据所述指示信息确定所述资源映射方式,包括:所述终端设备根据所述指示信息确定所述资源映射方式为先时域后频域或时频域交织;或者,
    所述数据受到的干扰沿频域分布的密度小于沿时域分布的密度,所述终端设备根据所述指示信息确定所述资源映射方式,包括:所述终端设备根据所述指示信息确定所述资源映射方式为先频域后时域。
  14. 根据权利要求9至13中任一项所述的方法,其特征在于,所述终端设备从基站 接收指示信息,包括:
    所述终端设备从所述基站接收物理层信令,所述物理层信令包括所述指示信息。
  15. 根据权利要求9至13中任一项所述的方法,所述资源映射方式与物理层信令采用的扰码具有对应关系,
    所述终端设备从所述基站接收指示信息,包括:
    所述终端设备从所述基站接收所述物理层信令,所述物理层信令采用的扰码指示所述资源映射方式。
  16. 根据权利要求9至13中任一项所述的方法,其特征在于,所述资源映射方式与用于传输所述数据的时频资源具有对应关系,
    所述终端设备从基站接收指示信息,包括:
    所述终端设备从所述基站接收所述时频资源的指示信息,所述时频资源指示所述资源映射方式。
  17. 一种基站,其特征在于,包括:
    处理单元,用于基站确定待发送给终端设备的数据的资源映射方式,所述资源映射方式为先时域后频域、先频域后时域和时频域交织中的一种或多种;
    发送单元,用于向所述终端设备发送指示信息,所述指示信息用于指示所述资源映射方式。
  18. 根据权利要求17所述的基站,其特征在于,所述处理单元具体用于,根据所述数据的业务类型、所述数据占用的资源块大小和所述数据受到的干扰的分布状态中的至少一种,确定所述数据的资源映射方式。
  19. 根据权利要求18所述的基站,其特征在于,所述处理单元具体用于:
    若所述数据为低时延高可靠通信URLLC类业务,则确定所述资源映射方式为先频域后时域;
    若所述数据为增强型移动带宽eMBB类业务,则确定所述资源映射方式为先时域后频域或时频域交织;
    若所述数据为大规模物联网mMTC类业务,则确定所述资源映射方式为先频域后时域、先时域后频域或时频域交织。
  20. 根据权利要求18所述的基站,其特征在于,所述处理单元具体用于:
    若所述数据占用的资源块的大小大于或等于设置的第一阈值,则确定所述资源映射方式为先时域后频域或时频域交织;
    若所述数据占用的资源块的大小小于或等于设置的第二阈值,则确定所述资源映射方式为先频域后时域。
  21. 根据权利要求18所述的基站,其特征在于,所述处理单元具体用于:
    若所述数据受到的干扰沿频域分布的密度大于沿时域分布的密度,则确定所述资源映射方式为先时域后频域或时频域交织;
    若所述数据受到的干扰沿频域分布的密度小于沿时域分布的密度,则确定所述资源映射方式为先频域后时域。
  22. 根据权利要求17至21中任一项所述的基站,其特征在于,所述发送单元具体用于向所述终端设备发送物理层信令,所述物理层信令包括所述指示信息。
  23. 根据权利要求17至21中任一项所述的基站,其特征在于,所述资源映射方式与物理层信令采用的扰码具有对应关系,
    所述发送单元具体用于向所述终端设备发送所述物理层信令,所述物理层信令采用的扰码指示所述资源映射方式。
  24. 根据权利要求17至21中任一项所述的基站,其特征在于,所述资源映射方式与用于传输所述数据的时频资源具有对应关系,
    所述发送单元具体用于向所述终端设备发送所述时频资源的指示信息,所述时频资源指示所述资源映射方式。
  25. 一种终端设备,其特征在于,包括:
    接收单元,用于从基站接收指示信息,所述指示信息用于指示所述基站待发送的数据的资源映射方式,所述资源映射方式为先时域后频域、先频域后时域和时频域交织中的一种或多种;
    处理单元,用于根据所述接收单元接收到的所述指示信息确定所述资源映射方式;
    所述接收单元还用于根据所述处理单元确定的所述资源映射方式接收所述数据。
  26. 根据权利要求25所述的终端设备,其特征在于,所述资源映射方式根据所述数据的业务类型、所述数据占用的资源块大小和所述数据受到的干扰的分布状态中的至少一种确定。
  27. 根据权利要求26所述的终端设备,其特征在于,
    所述数据为低时延高可靠通信URLLC类业务,所述处理单元具体用于根据所述指示信息确定所述资源映射方式为先频域后时域;或者,
    所述数据为增强型移动带宽eMBB类业务,所述处理单元具体用于根据所述指示信息确定所述资源映射方式为先时域后频域或时频域交织;或者,
    所述数据为大规模物联网mMTC类业务,所述处理单元具体用于根据所述指示信息确定所述资源映射方式为先时域后频域、先频域后时域或时频域交织。
  28. 根据权利要求26所述的终端设备,其特征在于,
    所述数据占用的资源块的大小大于或等于设置的第一阈值,所述处理单元具体用于根据所述指示信息确定所述资源映射方式为先时域后频域或时频域交织;或者,
    所述数据占用的资源块的大小小于或等于设置的第二阈值,所述处理单元具体用于根据所述指示信息确定所述资源映射方式为先频域后时域。
  29. 根据权利要求26所述的终端设备,其特征在于,
    所述数据受到的干扰沿频域分布的密度大于沿时域分布的密度,所述处理单元具体用于根据所述指示信息确定所述资源映射方式为先时域后频域或时频域交织;或者,
    所述数据受到的干扰沿频域分布的密度小于沿时域分布的密度,所述处理单元具体用于根据所述指示信息确定所述资源映射方式为先频域后时域。
  30. 根据权利要求25至29中任一项所述的终端设备,其特征在于,所述接收单元具体用于从所述基站接收物理层信令,所述物理层信令包括所述指示信息。
  31. 根据权利要求25至29中任一项所述的终端设备,所述资源映射方式与物理层信令采用的扰码具有对应关系,
    所述接收单元具体用于从所述基站接收所述物理层信令,所述物理层信令采用的扰码 指示所述资源映射方式。
  32. 根据权利要求25至29中任一项所述的终端设备,其特征在于,所述资源映射方式与用于传输所述数据的时频资源具有对应关系,
    所述接收单元具体用于从所述基站接收所述时频资源的指示信息,所述时频资源指示所述资源映射方式。
PCT/CN2017/115429 2016-12-15 2017-12-11 通信方法、基站和终端设备 WO2018108048A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112019012332-6A BR112019012332A2 (pt) 2016-12-15 2017-12-11 Método de comunicação, aparelho de comunicação e meio de armazenamento legível por computador
EP17880695.6A EP3544350B1 (en) 2016-12-15 2017-12-11 Communication method, base station and terminal device
KR1020197019535A KR20190090852A (ko) 2016-12-15 2017-12-11 통신 방법, 기지국, 및 단말 디바이스
US16/439,187 US10938528B2 (en) 2016-12-15 2019-06-12 Communication method, base station, and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611157801.4 2016-12-15
CN201611157801.4A CN108235433B (zh) 2016-12-15 2016-12-15 通信方法、基站和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/439,187 Continuation US10938528B2 (en) 2016-12-15 2019-06-12 Communication method, base station, and terminal device

Publications (1)

Publication Number Publication Date
WO2018108048A1 true WO2018108048A1 (zh) 2018-06-21

Family

ID=62557928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115429 WO2018108048A1 (zh) 2016-12-15 2017-12-11 通信方法、基站和终端设备

Country Status (6)

Country Link
US (1) US10938528B2 (zh)
EP (1) EP3544350B1 (zh)
KR (1) KR20190090852A (zh)
CN (1) CN108235433B (zh)
BR (1) BR112019012332A2 (zh)
WO (1) WO2018108048A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10498491B2 (en) 2017-03-24 2019-12-03 Huawei Technologies Co., Ltd Data transmission method and apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018201336A1 (zh) * 2017-05-03 2018-11-08 北京小米移动软件有限公司 下行控制信道的接收、发送方法及装置
CN110719155B (zh) * 2018-07-13 2021-12-10 华为技术有限公司 一种通信方法及通信设备
US11943749B2 (en) 2018-08-01 2024-03-26 Lenovo (Beijing) Limited Method of transmitting data over indicated resource blocks
CN111417194A (zh) * 2019-01-07 2020-07-14 中国移动通信有限公司研究院 资源映射配置方法、网络侧设备、用户设备及通信设备
CN111757500B (zh) * 2019-03-28 2024-05-24 华为技术有限公司 通信方法和装置
CN116326094A (zh) * 2021-01-08 2023-06-23 Oppo广东移动通信有限公司 资源调度的确定方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299745A (zh) * 2008-06-23 2008-11-05 中兴通讯股份有限公司 控制信道的映射方法和装置
CN101384093A (zh) * 2008-09-28 2009-03-11 华为技术有限公司 业务数据映射方法和装置及复映射方法
WO2014015800A1 (zh) * 2012-07-24 2014-01-30 电信科学技术研究院 下行用户专用解调参考信号的传输方法和设备
CN105656596A (zh) * 2014-11-14 2016-06-08 电信科学技术研究院 一种进行数据传输的方法和设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104270230B (zh) * 2007-06-22 2018-01-02 Tcl通讯科技控股有限公司 通信方法及移动终端
KR101613893B1 (ko) * 2007-10-04 2016-04-20 삼성전자주식회사 이동통신 시스템에서 데이터 인터리빙 방법 및 장치
KR100925441B1 (ko) * 2008-01-07 2009-11-06 엘지전자 주식회사 분산형 가상자원블록 스케쥴링 방법
US9647741B2 (en) * 2009-07-31 2017-05-09 Qualcomm Incorporated Physical uplink control channel (PUCCH) resource mapping with transmit diversity
CN102082600A (zh) * 2009-12-01 2011-06-01 中兴通讯股份有限公司 中继链路下行控制信息配置方法及传输基站、中继站与方法
CN102869097B (zh) * 2011-07-07 2015-07-08 华为技术有限公司 一种上行控制信令的发送、接收方法和相关设备
WO2013058599A1 (ko) * 2011-10-19 2013-04-25 엘지전자 주식회사 무선 접속 시스템에서 하향링크 제어 정보 송수신 방법 및 이를 위한 장치
JP5906532B2 (ja) * 2012-03-15 2016-04-20 シャープ株式会社 基地局装置、端末装置、通信方法および集積回路
CN103391619B (zh) * 2012-05-09 2016-12-14 上海贝尔股份有限公司 在通信网络中进行ePDCCH资源元素映射的方法和装置
WO2016003229A1 (ko) * 2014-07-03 2016-01-07 엘지전자 주식회사 무선 통신 시스템에서 비면허 대역을 통한 신호 송수신 방법 및 이를 위한 장치
EP3410625B1 (en) * 2016-03-16 2020-08-26 LG Electronics Inc. Techniques for transmission and reception of control information in a wireless communication system
KR102695650B1 (ko) * 2016-07-28 2024-08-19 삼성전자 주식회사 이동 통신 시스템에서 harq 프로세스 관리 방법 및 장치
EP3476150A4 (en) * 2016-08-12 2020-03-18 Lenovo Innovations Limited (Hong Kong) NON-ORIGINAL COMMUNICATION

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299745A (zh) * 2008-06-23 2008-11-05 中兴通讯股份有限公司 控制信道的映射方法和装置
CN101384093A (zh) * 2008-09-28 2009-03-11 华为技术有限公司 业务数据映射方法和装置及复映射方法
WO2014015800A1 (zh) * 2012-07-24 2014-01-30 电信科学技术研究院 下行用户专用解调参考信号的传输方法和设备
CN105656596A (zh) * 2014-11-14 2016-06-08 电信科学技术研究院 一种进行数据传输的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3544350A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10498491B2 (en) 2017-03-24 2019-12-03 Huawei Technologies Co., Ltd Data transmission method and apparatus
US11057155B2 (en) 2017-03-24 2021-07-06 Huawei Technologies Co., Ltd. Data transmission method and apparatus
US11784753B2 (en) 2017-03-24 2023-10-10 Huawei Technologies Co., Ltd. Data transmission method and apparatus

Also Published As

Publication number Publication date
US20190363839A1 (en) 2019-11-28
CN108235433A (zh) 2018-06-29
US10938528B2 (en) 2021-03-02
KR20190090852A (ko) 2019-08-02
CN108235433B (zh) 2021-07-09
EP3544350B1 (en) 2021-11-24
BR112019012332A2 (pt) 2020-03-03
EP3544350A1 (en) 2019-09-25
EP3544350A4 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
WO2018108048A1 (zh) 通信方法、基站和终端设备
US11197149B2 (en) Downlink transmission method and apparatus
WO2018059210A1 (zh) 一种用于数据传输的方法和装置
CA3050339C (en) Method for transmitting downlink control information, terminal device and network device
CN115549856A (zh) 用于极性编码系统、过程及信令的子块式交织
TW201507497A (zh) 針對一個或多個載波類型的epdcch共用檢索空間設計
EP3667962B1 (en) Method and device for cyclic redundancy check
US20220158695A1 (en) Generation Node-B (GNB), User Equipment (UE) and Methods for Interleaving in Multiple-Input Multiple-Output (MIMO) Arrangements
US11722286B2 (en) Control channel resource configuration method, base station, and terminal device
TWI802668B (zh) 降低複雜度之極化編碼及解碼
WO2014190897A1 (zh) 用于传输下行控制信息dci的方法及其装置
US10912036B2 (en) Downlink transmission method, base station, and terminal device
CN107409026B (zh) 一种csi-rs的传输方法和基站
US11032042B2 (en) Candidate control channel resource determining method and apparatus
US20220295462A1 (en) Search space determining method and wireless apparatus
CN112889329A (zh) 一种dmrs样式指示信息的传输方法和通信装置
WO2019174054A1 (zh) 确定第一多天线发送模式的方法、终端设备和网络设备
CN112566068A (zh) 一种dmrs样式指示信息的传输方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017880695

Country of ref document: EP

Effective date: 20190617

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019012332

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197019535

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019012332

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190614