WO2017099189A1 - イオン液体を用いた放射性廃棄物からの長寿命核分裂生成物の分離および回収方法 - Google Patents

イオン液体を用いた放射性廃棄物からの長寿命核分裂生成物の分離および回収方法 Download PDF

Info

Publication number
WO2017099189A1
WO2017099189A1 PCT/JP2016/086606 JP2016086606W WO2017099189A1 WO 2017099189 A1 WO2017099189 A1 WO 2017099189A1 JP 2016086606 W JP2016086606 W JP 2016086606W WO 2017099189 A1 WO2017099189 A1 WO 2017099189A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionic liquid
radioactive waste
separating
long
recovering
Prior art date
Application number
PCT/JP2016/086606
Other languages
English (en)
French (fr)
Inventor
片山 靖
一記 吉井
直樹 立川
Original Assignee
学校法人 慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 慶應義塾 filed Critical 学校法人 慶應義塾
Priority to JP2017555138A priority Critical patent/JPWO2017099189A1/ja
Publication of WO2017099189A1 publication Critical patent/WO2017099189A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/20Electrolytic production, recovery or refining of metals by electrolysis of solutions of noble metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/22Electrolytic production, recovery or refining of metals by electrolysis of solutions of metals not provided for in groups C25C1/02 - C25C1/20
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/42Reprocessing of irradiated fuel
    • G21C19/44Reprocessing of irradiated fuel of irradiated solid fuel
    • G21C19/46Aqueous processes, e.g. by using organic extraction means, including the regeneration of these means
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the present invention relates to the separation and recovery of long-lived fission products (LLFP) from radioactive waste using ionic liquids. Specifically, the present invention relates to long-lived fission products such as selenium (Se), palladium (Pd), zirconium (Zr), and cesium (Cs) contained in high-level radioactive waste by using an ionic liquid. The present invention relates to a technique for separating and recovering as a high purity metal by a chemical method.
  • the molten salt is solidified at room temperature, it is difficult to recover the product and residue, and there is a problem that a salt containing an undesirable element adheres to the separated and recovered metal. Further, the solidified molten salt itself becomes a radioactive waste.
  • the object of the present invention is to handle long-lived fission products contained in high-level radioactive waste at room temperature and in the middle temperature range of 100 to 200 ° C. by dissolving them in a liquid and having high electrochemical stability and medium temperature range. It is an object of the present invention to provide a method for separating and recovering a long-lived fission product from radioactive waste, which can achieve a high reaction rate at a low temperature.
  • an ionic liquid as a liquid not only at room temperature but also at an intermediate temperature of 100 to 200 ° C. Noting that it has both the characteristics of high characteristic electrochemical stability and fast reaction rate, Se, Pd, Zr, and Cs contained in high-level radioactive waste generated in the reprocessing process
  • the element of the long-lived fission product such as the above is dissolved in an ionic liquid having the above characteristics and electrochemically reduced at room temperature or in the middle temperature range. It came to do.
  • the present invention is as follows.
  • Item 1 A method for separating and recovering long-lived fission products from radioactive waste, wherein the long-lived fission products are at least one selected from Cs, Se, Pd and Zr, Dissolving at least one salt selected from Cs, Se, Pd and Zr contained in the radioactive waste in an ionic liquid; and ions containing at least one salt selected from the Cs, Se, Pd and Zr
  • a method comprising a step of separating and recovering at least one selected from Cs, Se, Pd and Zr as a metal or an alloy by electrolysis of a liquid.
  • Item 2. The method according to Item 1, wherein the salt is at least one chloride salt selected from Se, Pd and Zr.
  • Item 3 The method according to Item 1, wherein the salt is a salt of Cs bis (trifluoromethylsulfonyl) amide anion.
  • Item 4 A method for separating and recovering long-lived fission products from radioactive waste, wherein the long-lived fission products are at least one selected from Cs, Se, Pd and Zr, A step of evaporating H 2 O from an aqueous solution of radioactive waste after being treated by the PUREX method and solidifying with nitric acid; Adsorbing and separating Cs from the solidified radioactive waste obtained in the solidifying step, A step of denitrating and solidifying an aqueous solution of the radioactive waste after the adsorption separation step, Converting the solidified product containing at least one of Pd, Se and Zr obtained in the denitration and solidifying step into a chloride using a chlorinating agent; Dissolving at least one chloride of Pd, Se, and Zr obtained in the chlorination step in an ionic liquid; and electrolyzing the ionic liquid to obtain at least one of Pd, Se, and Zr A method comprising a step of separating and recovering in the
  • Item 5 A method for separating and recovering long-lived fission products from radioactive waste, wherein the long-lived fission products are at least one selected from Cs, Se, Pd and Zr, A step of evaporating H 2 O from an aqueous solution of radioactive waste after being treated by the PUREX method and solidifying with nitric acid; Adsorbing and separating Cs from the solidified radioactive waste obtained in the solidifying step, A step of denitrating and solidifying an aqueous solution of the radioactive waste after the adsorption separation step, A step of chlorinating a solidified product containing at least one of Pd, Se and Zr obtained in the denitration and solidification step using a chlorinating agent in an ionic liquid and simultaneously dissolving the ionic liquid in the ionic liquid; and A method comprising electrolyzing an ionic liquid and separating and recovering at least one of Pd, Se and Zr in the form of a metal or an alloy.
  • Item 6 A method for separating and recovering a long-lived fission product from radioactive waste, wherein the long-lived fission product is Cs, A step of evaporating H 2 O from an aqueous solution of radioactive waste after being treated by the PUREX method and solidifying with nitric acid; The step of adsorbing and separating Cs from the solidified radioactive waste obtained in the step of solidifying, the step of desorbing the adsorbed and separated Cs and dissolving it in an ionic liquid, and electrolyzing the ionic liquid to obtain Cs A method comprising a step of separating and recovering in the form of a metal or an alloy.
  • the cation component of the ionic liquid is at least one selected from an imidazolium ion, a pyrrolidinium ion, a piperidinium ion, and an alkylammonium ion, and the anion component of the ionic liquid is bis (trifluoromethylsulfonyl) amide (TFSA ⁇ 7.
  • TFSA ⁇ 7 bis (trifluoromethylsulfonyl) amide
  • Item 8 The method according to any one of Items 1 to 6, wherein the ionic liquid contains 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) amide.
  • the present invention it is easy to handle the radioactive waste to be treated, and the high-efficiency long-lived fission products such as Se, Pd, Zr and Cs are separated and recovered from the radioactive waste with high efficiency. It becomes possible to do.
  • the long-lived fission products separated and recovered can be safely stored in the form of metals or alloys.
  • Equipment Scanning electron microscope (Keyence, VE-9800) EDS spectrum of electrolytic deposit obtained on glassy carbon electrode at -1.3 V in BMPTFSA containing 50 mM SeCl 4 and 150 mM BMPCl.
  • Equipment Energy dispersive X-ray analyzer (Oxford, INCA-E250X3K) XRD pattern on the surface of tin electrode after holding potential at -3.5V in BMPTFSA containing 0.5M CsTFSA.
  • Equipment X-ray diffractometer (Rigaku, MiniFlex 600) UV-visible absorption spectrum when palladium oxide is added to ionic liquid and carbon tetrachloride is added or not.
  • FIG. 1 is a block diagram for explaining an embodiment of the method of the present invention.
  • PUREX method 10 plutonium and uranium are separated from spent nuclear fuel.
  • the PUREX method is a well-known solvent extraction method for plutonium and uranium used in the process of reprocessing spent nuclear fuel.
  • a denitrification step 11 of the aqueous solution of high-level radioactive waste after the treatment with the PUREX method 10 is performed to evaporate H 2 O from the aqueous solution of radioactive waste and solidify it as nitrate.
  • Denitrification processes are known, for example, many metals can be solidified as nitrates at a temperature of about 100 ° C., and these temperatures and reaction times will vary depending on the type of elements contained in the high-level radioactive waste. Can be set as appropriate.
  • the denitration step 11 is reported in, for example, Electric Power Central Research Institute report L07011 (June 2008).
  • the solidified product of high level radioactive waste (High (level (waste, HLW) obtained in the denitrification step 11 is redissolved in water, for example, using an inorganic ion exchanger such as zeolite. Cs is adsorbed and separated. The separation and recovery of Cs adsorbed on the inorganic ion exchanger in the form of a metal or alloy using an ionic liquid will be described later.
  • the adsorption separation / desorption of Cs is described in, for example, J. Chem. Technol. Biotechnol., 88, 1597 (2013).
  • a denitration / solidification step 13 of the aqueous solution of the high-level radioactive waste after adsorbing and separating Cs is performed to evaporate H 2 O from the aqueous solution of the radioactive waste and solidify the metal as nitrate or oxide.
  • This denitration and solidification process is known, and the denitration and solidification temperature is, for example, about 500 ° C. or higher. These temperatures and reaction times are appropriately set by those skilled in the art depending on the types of elements contained in the high-level radioactive waste. it can.
  • the solidified product of high-level radioactive waste that has become nitrate or oxide in the denitration / solidification step 13 is converted into chloride in the chlorination step 14 using a chlorinating agent such as carbon tetrachloride.
  • a chlorinating agent such as carbon tetrachloride.
  • Pd, Se, and Zr may be partially contained in the insoluble residue as oxides.
  • the chlorination step 14 makes them soluble in an ionic liquid. Can be converted to The chlorination of solidified metal nitrates or oxides is described in, for example, Metall. Mater.. Trans., 26B, 235 (1995).
  • the above-mentioned denitrification step 11, adsorption separation step 12, denitration / solidification step 13 and chlorination step 14 are pretreatment steps for radioactive waste containing long-lived fission products using existing techniques.
  • the Pd, Se and Zr salts converted into the chloride in the chlorination step 14 are brought into contact with the hydrophobic ionic liquid to which chloride ions have been added.
  • Elements with strong Lewis acidity (Pd, Se, and Zr) that easily complex with ions are dissolved in the ionic liquid as chloride complex ions.
  • the chlorination step 14 and the ionic liquid dissolution step 16 described above may be performed in separate steps or in a single step.
  • the metal nitrate or metal oxide is converted to a solid metal chloride by reaction of solidified metal nitrate or metal oxide with carbon tetrachloride (liquid or gas), and then the metal chloride.
  • the product is dissolved in an ionic liquid containing chloride ions.
  • a metal nitrate or metal oxide and carbon tetrachloride are added to an ionic liquid containing chloride ions, heated and stirred, thereby chlorinating the metal nitrate or oxide and dissolving it in the ionic liquid. And simultaneously.
  • palladium oxide (PdO), selenium dioxide (SeO 2 ) or zirconium oxide (ZrO 2 ) is added to an ionic liquid to which chloride ions are added, carbon tetrachloride is added to the ionic liquid, and heated for a certain period of time. React and dissolve in the ionic liquid.
  • the heating temperature and time are not particularly limited, but are preferably 100 to 200 ° C. and 1 to 24 hours, respectively.
  • An ionic liquid is also referred to as a room temperature molten salt or simply a molten salt, and is a salt composed of a cation and an anion and existing in liquid form at room temperature.
  • Various known ionic liquids can be used in the dissolution step 16 in the ionic liquid, but the liquid state is exhibited at a temperature below 100 ° C. close to normal temperature (room temperature) and / or at a medium temperature range of 100 to 200 ° C. A stable one is preferred.
  • the dissolution step 16 by increasing the temperature of the ionic liquid, the dissolution of the target metal ion can be promoted.
  • the temperature of the ionic liquid in the dissolving step 16 is not particularly limited, and is, for example, 200 ° C. or lower, and in one embodiment, 20 ° C. or higher and 100 ° C. or lower.
  • cation component constituting the ionic liquid a wide variety of organic cations including aliphatic cations can be used in addition to aromatic cations.
  • the cation component is preferably at least one selected from the group consisting of imidazolium ions, pyrrolidinium ions, piperidinium ions, and alkylammonium ions. These cationic components may be substituted or unsubstituted.
  • imidazolium ions include, for example, 1-ethyl-2,3-dimethylimidazolium ion, 1-butyl-2,3-dimethylimidazolium ion, 1-hexyl-2,3-dimethylimidazolium ion, 1 , 3-Dimethylimidazolium ion, 1-ethyl-3-methylimidazolium ion, 1,3-diethylimidazolium ion, 1-butyl-3-methylimidazolium ion, 1-hexyl-3-methylimidazolium ion, 1-octyl-3-methylimidazolium ion, 1-decyl-3-methylimidazolium ion, 1-tetradecyl-3-methylimidazolium ion, 1-hexadecyl-3-methylimidazolium ion, 1-octadecyl-3- Methyl imidazolium ion
  • pyrrolidinium ions include, for example, 1,1-dimethylpyrrolidinium ion, 1-ethyl-1-methylpyrrolidinium ion, 1-methyl-1-propylpyrrolidinium ion, 1-butyl-1-methylpyrrolidinium ion. Um ion etc. are mentioned.
  • piperidinium ions include, for example, 1,1-dimethylpiperidinium ion, 1-ethyl-1-methylpiperidinium ion, 1-methyl-1-propylpiperidinium ion, 1-butyl-1-methylpiperidinium ion Um ion etc. are mentioned.
  • alkylammonium ions include, for example, trimethylethylammonium ion, trimethylpropylammonium ion, trimethylhexylammonium ion, tetrapentylammonium ion, and the like.
  • the reduction stability of ionic liquids is considered to be determined by the organic cation, and aliphatic alkylammonium, alicyclic pyrrolidinium, and piperidinium have lower potentials than aromatic imidazolium. Is known to be stable. Therefore, the cation component is more preferably at least one selected from pyrrolidinium ions and piperidinium.
  • anions that make up an ionic liquid include halide ions such as chloride ions, bromide ions, and iodide ions, tetrafluoroborate ions (BF 4 ⁇ ), hexafluorophosphate ions (PF 6 ⁇ ), and AlCl.
  • TFSA ⁇ bis (trifluoromethylsulfonyl) amide
  • CF 3 SO 2 ) 2 N ⁇ bis (trifluoromethanesulfonyl) imide ion
  • TFSA - based ionic liquids can use aliphatic quaternary ammonium ions without unsaturated bonds as organic cations, and are expected to have higher radiation resistance than aromatic organic cations represented by imidazolium. The For this reason, when the high level radioactive waste containing the nuclide which has high radioactivity and an ionic liquid are made to contact, the increase in secondary waste can be suppressed by making the radiation tolerance of an ionic liquid high.
  • the metal ion species [PdCl 4 ] 2 ⁇ , [SeCl 6 ] 2 ⁇ or [ZrCl 6 ] 2 ⁇ ) dissolved in the ionic liquid are electrochemically reduced.
  • Pd, Se, or Zr is separated and recovered in the form of metal nanoparticles or precipitates (step 18).
  • the ionic conductivity of an ionic liquid at room temperature is lower than that of an organic electrolyte.
  • sufficient ionic conductivity can be secured at a temperature of 100 ° C. or higher.
  • the temperature of the electrolysis process 17 is not specifically limited, For example, it is 20 degreeC or more and 200 degrees C or less, and is 20 degreeC or more and 100 degrees C or less in one Embodiment.
  • electrolysis is performed at a high temperature of 400 ° C or higher.
  • electrolytic recovery can be performed at a low temperature, and there are options for components such as electrolytic cells and electrodes used in the process.
  • the metal after electrolysis can be easily recovered.
  • the electrolytic deposition of palladium in an ionic liquid see, for example, Electrochim. Acta, 53, 87 (2007), Trans. Inst. Metal Finish., 86 (4), 205 (2008), and Electrochem. Commun., 52 , 21 (2015), the electrolytic deposition of selenium in an ionic liquid is described, for example, in Electrochim. Acta, 52, 2746 (2007).
  • the solubility of metal species in the ionic liquid becomes a problem.
  • the target chemical species In order to recover with high efficiency, it is desirable that the target chemical species have high solubility.
  • the solubility of the metal species to be separated and recovered is desirably 100 mM or more. It is known that [PdCl 4 ] 2- has a low solubility of about several tens of mM at room temperature, but the higher the temperature, the higher the solubility. Conceivable.
  • step 17 and step 18 may be performed by a batch process in which metal is deposited on the electrode and collected, or metal nanoparticles are dispersed in an ionic liquid and collected in a liquid state. It may be performed in a continuous process.
  • the ionic liquid from which Pd, Se or Zr is separated and recovered is reused in the regeneration step 19.
  • SeCl 4 converted to chloride in chlorination step 14 in sublimation separation step 15 is used. And / or ZrCl 4 is heated, sublimated and separated in the form of SeCl 4 and / or ZrCl 4 , and then dissolved in the ionic liquid as a metal ion in the dissolution step 16 and the electrolysis step 17 And / or Zr may be recovered as metal. It will be appreciated that the temperature required to sublimate the metal chloride can be calculated by those skilled in the art for each metal chloride.
  • SeO 2 solid
  • ZrO 2 solid
  • ZrCl 4 gas
  • PdCl 2 does not sublime at 400 ° C.
  • PdO can be converted to PdCl 2 (solid), and further energy is required for sublimation to PdCl 2 (gas).
  • Cs adsorbed and separated in the adsorption separation step 12 is desorbed from the inorganic ion exchanger in the desorption step 20, and is converted into a chemical form soluble in an ionic liquid, for example, a Cs salt. Then, it is dissolved in an ionic liquid and subjected to an electrolysis step 22 using the ionic liquid as an electrolytic solution.
  • electrolytic deposition of cesium in an ionic liquid is described in, for example, Electrochim. Acta, 49, 5125 (2004).
  • one embodiment of the method of the present invention is a method for separating and recovering long-lived fission products from radioactive waste, wherein the long-lived fission products are selected from Cs, Se, Pd and Zr. Dissolving at least one salt selected from Cs, Se, Pd and Zr contained in radioactive waste in an ionic liquid, and at least selected from Cs, Se, Pd and Zr. It includes a step of separating and recovering at least one selected from Cs, Se, Pd and Zr as a metal or an alloy by electrolysis of an ionic liquid containing one salt.
  • At least one selected from Cs, Se, Pd, and Zr contained in radioactive waste may be any metal as long as such a metal is first included in the radioactive waste, that is, radioactive waste. It means that it is a metal derived from.
  • Se, Pd, Zr, and / or Cs separated and recovered by using an ionic liquid can be stored in the form of a metal or an alloy, so that it is excellent in safety.
  • the ionic liquid can be reused, a significant reduction in secondary waste is expected, and even if a relatively expensive ionic liquid is used, an economic advantage can be secured.
  • Another embodiment of the present invention is a method for separating and recovering a long-lived fission product from a radioactive waste, wherein the long-lived fission product is at least one selected from Cs, Se, Pd and Zr ,
  • At least one of Pd, Se, and Zr derived from radioactive waste can be separated and recovered with high efficiency and low cost in the form of metal or alloy using ionic liquid.
  • Yet another embodiment of the present invention is a method for separating and recovering a long-lived fission product from radioactive waste, wherein the long-lived fission product is at least one selected from Cs, Se, Pd and Zr.
  • Cs is adsorbed and separated from the solidified radioactive waste obtained in the solidifying step.
  • Cs derived from radioactive waste can be separated and recovered with high efficiency and low cost in the form of metal or alloy using ionic liquid.
  • Example 1 Dissolution and electrolytic deposition of SeCl 4 in an ionic liquid
  • BMPCl is added to ionic liquid 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) amide (BMPTFSA)
  • BMPTFSA 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) amide
  • SeCl 4 is added thereto, [SeCl 6 ] 2 - it was dissolved as.
  • FIG. 2 From a cyclic voltammogram of a glassy carbon (glassy carbon) electrode at room temperature, an electric current corresponding to the reduction of [SeCl 6 ] 2- to Se was observed near -1.3 V (FIG. 2).
  • the potential of the glassy carbon electrode was kept at -1.3 V in the same electrolyte, electrolytic deposits were obtained on the electrode surface (Fig. 3), and the deposits were obtained from EDS (Fig. 4) and XRD (Fig. 5
  • Example 2 Dissolution of CsTFSA in ionic liquid and CsSn alloy formation CsTFSA was easily dissolved in BMPTFSA. From the cyclic voltammogram of the tin electrode at room temperature, a current corresponding to CsSn formation was observed near -3.1 V (Fig. 6). When the potential of the tin electrode was kept at -3.5 V in the same electrolyte, the electrode surface changed (Fig. 7). It was confirmed that CsSn was generated from EDS (FIG. 8) and XRD (FIG. 9).
  • Example 3 Chlorination of long-lived fission products Test
  • Example 1 The chlorination of palladium oxide using carbon tetrachloride in ionic liquid was investigated.
  • Test example 2 The experiment was performed under the same conditions as in Test Example 1 except that CCl 4 was not added to the solvent.
  • Test example 3 The experiment was performed under the same conditions except that the amount of CCl 4 added was 2.5 mmol as compared with Test Example 1.
  • Test example 4 The experiment was performed under the same conditions except that BMPCl was not included as compared with Test Example 1.
  • Test Example 5 The experiment was performed under the same conditions except that the heating temperature was 150 ° C. as compared with Test Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

放射性廃棄物からの長寿命核分裂生成物の分離および回収方法は、放射性廃棄物中に含まれるCs、Se、PdおよびZrから選択される少なくとも一つの塩をイオン液体に溶解する工程(16,21)、および前記Cs、Se、PdおよびZrから選択される少なくとも一つの塩を含むイオン液体の電解によりCs、Se、PdおよびZrから選択される少なくとも一つを金属または合金として分離および回収する工程(17,22)を含む。

Description

イオン液体を用いた放射性廃棄物からの長寿命核分裂生成物の分離および回収方法
(関連出願の相互参照)
 本願は、2015年12月9日に出願した特願2015-239941号明細書の優先権の利益を主張するものであり、当該明細書はその全体が参照により本明細書中に援用される。
(技術分野)
 本発明は、イオン液体を用いた放射性廃棄物からの長寿命核分裂生成物(LLFP)の分離および回収に関する。詳細には、本発明は高レベル放射性廃棄物中に含まれるセレン(Se)、パラジウム(Pd)、ジルコニウム(Zr)、およびセシウム(Cs)等の長寿命核分裂生成物をイオン液体を用いた電気化学的手法によって高純度の金属として分離および回収する技術に関する。
 原子力施設から発生する高レベル放射性廃棄物中に含まれる長寿命核分裂生成物の元素の分離および回収プロセスとして、従来から高温溶融塩を用いた乾式プロセスが研究されている(例えば特許文献1,2)。高温溶融塩を用いた乾式プロセスは、アルカリ金属のハロゲン化物を用いることで放射線耐性に優れ、また溶融塩の高い電気化学的安定性と400℃以上の高温域での速い反応速度が特徴的であるが、ハロゲン化物を基本とした溶融塩は高温における腐食性が高いため、プロセスで使用する容器や配管の劣化が問題となる。また、常温では溶融塩が固化するため、生成物や残渣の回収が困難であり、分離回収された金属には望ましくない元素を含有する塩が付着するなどの問題がある。また、固化された溶融塩はそれ自体が放射性廃棄物となる。
特開平8-122487 特開2008-170252
 長寿命核分裂生成物を含有する放射性廃棄物の再処理プロセスを液体状態で行えると、取扱いが容易で有利である。
 本発明の目的は、常温および100~200℃の中温域で高レベル放射性廃棄物に含まれる長寿命核分裂生成物を液体に溶解させて取り扱うことができ、かつ高い電気化学的安定性と中温域での速い反応速度とを実現できる、放射性廃棄物からの長寿命核分裂生成物の分離および回収方法を提供することにある。
 上記の目的を達成すべく、本発明者は、イオン液体が常温だけでなく100~200℃の中温域でも液体として利用できるため、水溶液や有機溶媒のような取扱いの容易さと、高温溶融塩に特徴的な高い電気化学的安定性および速い反応速度との両方の特徴を兼ね備えていることに着目し、再処理プロセスで生じた高レベル放射性廃棄物に含有されるSe、Pd、Zr、およびCs等の長寿命核分裂生成物の元素を上記特徴を有するイオン液体中に溶解し、常温または中温域で電気化学的に還元すると、かかる元素を金属として高効率に回収できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の通りである。
 項1.放射性廃棄物からの長寿命核分裂生成物の分離および回収方法であって、前記長寿命核分裂生成物はCs、Se、PdおよびZrから選択される少なくとも一つであり、
 放射性廃棄物中に含まれるCs、Se、PdおよびZrから選択される少なくとも一つの塩をイオン液体に溶解する工程、および
  前記Cs、Se、PdおよびZrから選択される少なくとも一つの塩を含むイオン液体の電解によりCs、Se、PdおよびZrから選択される少なくとも一つを金属または合金として分離および回収する工程
を含む方法。
 項2.前記塩はSe、PdおよびZrから選択される少なくとも一つの塩化物塩である項1に記載の方法。
 項3.前記塩はCsのビス(トリフルオロメチルスルホニル)アミドアニオンの塩である項1に記載の方法。
 項4.放射性廃棄物からの長寿命核分裂生成物の分離および回収方法であって、前記長寿命核分裂生成物はCs、Se、PdおよびZrから選択される少なくとも一つであり、
 PUREX法で処理した後の放射性廃棄物の水溶液からH2Oを蒸発させ、硝酸にて固化させる工程、
 前記固化させる工程にて得られた放射性廃棄物の固化物からCsを吸着分離する工程、
  前記吸着分離した工程の後の放射性廃棄物の水溶液を脱硝および固化する工程、
 前記脱硝および固化する工程で得られたPd,SeおよびZrのうちの少なくとも一つを含む固化物を、塩素化剤を用いて塩化物に転換する工程、
 前記塩素化工程で得られたPd,SeおよびZrのうちの少なくとも一つの塩化物をイオン液体中に溶解させる工程、および
 イオン液体を電気分解し、Pd,SeおよびZrのうちの少なくとも一つを金属または合金の形で分離、回収する工程
を含む方法。
 項5.放射性廃棄物からの長寿命核分裂生成物の分離および回収方法であって、前記長寿命核分裂生成物はCs、Se、PdおよびZrから選択される少なくとも一つであり、
 PUREX法で処理した後の放射性廃棄物の水溶液からH2Oを蒸発させ、硝酸にて固化させる工程、
 前記固化させる工程にて得られた放射性廃棄物の固化物からCsを吸着分離する工程、
 前記吸着分離した工程の後の放射性廃棄物の水溶液を脱硝および固化する工程、
 前記脱硝および固化する工程で得られたPd,SeおよびZrのうちの少なくとも一つを含む固化物を、イオン液体中で塩素化剤を用いて塩素化すると同時にイオン液体中に溶解させる工程、および
 イオン液体を電気分解し、Pd,SeおよびZrのうちの少なくとも一つを金属または合金の形で分離および回収する工程
を含む方法。
 項6.放射性廃棄物からの長寿命核分裂生成物の分離および回収方法であって、前記長寿命核分裂生成物はCsであり、
 PUREX法で処理した後の放射性廃棄物の水溶液からH2Oを蒸発させ、硝酸にて固化させる工程、
 前記固化させる工程にて得られた放射性廃棄物の固化物からCsを吸着分離する工程、 前記吸着分離したCsを脱着し、イオン液体中に溶解させる工程、および
 イオン液体を電気分解し、Csを金属または合金の形で分離、回収する工程
を含む方法。
 項7.前記イオン液体のカチオン成分はイミダゾリウムイオン、ピロリジニウムイオン、ピペリジニウムイオンおよびアルキルアンモニウムイオンから選択される少なくとも一つであり、前記イオン液体のアニオン成分はビス(トリフルオロメチルスルホニル)アミド(TFSA-)である項1~6のいずれか一項に記載の方法。
 項8.前記イオン液体は1-ブチル-1-メチルピロリジニウムビス(トリフルオロメチルスルホニル)アミドを含む項1~6のいずれか一項に記載の方法。
 本発明によれば、処理される放射性廃棄物の取扱いが容易で、かつ高効率にSe、Pd、Zr、およびCs等の半減期が極めて長い長寿命核分裂生成物を放射性廃棄物から分離および回収することが可能となる。その上、分離および回収された長寿命核分裂生成物は、金属または合金の形で安全に貯蔵することができる。
本発明に係る放射性廃棄物からの長寿命核分裂生成物の分離および回収方法の一実施形態を説明するためのブロック図。 50 mM SeCl4および150 mM BMPClを含むBMPTFSA中におけるガラス状カーボン電極のサイクリックボルタモグラム。装置:ポテンショ・ガルバノスタット(北斗電工、HABF-5001、HSV-110)、温度:25°C、電位走査速度:50 mV s-1 50 mM SeCl4および150 mM BMPClを含むBMPTFSA中において-1.3 Vでガラス状カーボン電極上に得られた電解析出物の電子顕微鏡写真。装置:走査型電子顕微鏡(キーエンス、VE-9800) 50 mM SeCl4および150 mM BMPClを含むBMPTFSA中において-1.3 Vでガラス状カーボン電極上に得られた電解析出物のEDSスペクトル。装置:エネルギー分散型X線分析装置(Oxford、INCA-E250X3K) 50 mM SeCl4および150 mM BMPClを含むBMPTFSA中において-1.3 Vでガラス状カーボン電極上に得られた電解析出物のXRDパターン。装置:X線回折装置(リガク、MiniFlex 600) 0.5 M CsTFSAを含むBMPTFSA中におけるスズ電極のサイクリックボルタモグラム。装置:ポテンショ・ガルバノスタット(北斗電工、HABF-5001、HSV-110)、温度:25°C、電位走査速度:50 mV s-1 0.5 M CsTFSAを含むBMPTFSA中において-3.5 Vに電位を保持した後のスズ電極表面の電子顕微鏡写真。装置:走査型電子顕微鏡(キーエンス、VE-9800) 0.5 M CsTFSAを含むBMPTFSA中において-3.5 Vに電位を保持した後のスズ電極表面のEDSスペクトル。装置:エネルギー分散型X線分析装置(Oxford、INCA-E250X3K) 0.5 M CsTFSAを含むBMPTFSA中において-3.5 Vに電位を保持した後のスズ電極表面のXRDパターン。装置:X線回折装置(リガク、MiniFlex 600) イオン液体中に酸化パラジウムを添加し、四塩化炭素を添加した場合と添加しない場合の紫外可視吸光スペクトル。
 以下、本発明の方法を図面を参照しながら説明する。
 図1は本発明の方法の一実施形態を説明するためのブロック図である。まず、PUREX法10において、使用済核燃料からプルトニウムとウランを分離する。PUREX法は使用済核燃料の再処理工程で用いられるプルトニウムおよびウランの周知の溶媒抽出法である。
 次に、PUREX法10で処理した後の高レベル放射性廃棄物の水溶液の脱硝酸工程11を行い、放射性廃棄物の水溶液からH2Oを蒸発させ硝酸塩として固化させる。脱硝酸工程は公知であり、例えば約100℃の温度で多くの金属を硝酸塩として固化させることができ、これらの温度および反応時間は高レベル放射性廃棄物中に含まれる元素の種類により当業者には適宜設定できる。脱硝酸工程11については例えば電力中央研究所報告書L07011 (平成20年6月)に報告されている。
  次に、吸着分離工程12において、脱硝酸工程11により得られた高レベル放射性廃棄物(High level waste, HLW)の固化物を水に再溶解し、例えばゼオライト等の無機イオン交換体を用いてCsを吸着分離する。無機イオン交換体に吸着させたCsの、イオン液体を用いた金属または合金の形での分離および回収については後述する。Csの吸着分離・脱着については例えばJ. Chem. Technol. Biotechnol., 88, 1597 (2013)に記載されている。
  次に、Csを吸着分離した後の高レベル放射性廃棄物の水溶液の脱硝・固化工程13を行い、放射性廃棄物の水溶液からH2Oを蒸発、金属を硝酸塩または酸化物として固化させる。この脱硝および固化の工程は公知であり、脱硝および固化温度は例えば約500℃以上であり、これらの温度および反応時間は高レベル放射性廃棄物中に含まれる元素の種類により当業者には適宜設定できる。
  次に、脱硝・固化工程13で硝酸塩または酸化物となった高レベル放射性廃棄物の固化物を、塩素化工程14で、四塩化炭素などの塩素化剤を用いて塩化物に転換する。高レベル放射性廃棄物を含む水溶液においてPd,SeおよびZrは一部が酸化物として不溶性残渣に含まれている可能性があるが、塩素化工程14により、これらをイオン液体に可溶な化学形態に変換することができる。固化した金属硝酸塩または酸化物の塩素化については例えばMetall. Mater. Trans., 26B, 235 (1995)に記載されている。
  上記の脱硝酸工程11、吸着分離工程12、脱硝・固化工程13および塩素化工程14は、既存技術を利用した長寿命核分裂生成物を含有する放射性廃棄物の前処理工程である。
 次に、イオン液体への溶解工程16において、塩化物イオンを添加した疎水性イオン液体中に、塩素化工程14で塩化物に転換したPd,SeおよびZrの塩を接触させることで、塩化物イオンと錯形成しやすいルイス酸性の強い元素(Pd、SeおよびZr)を塩化物錯イオンとしてイオン液体中に溶解させる。この際,ルイス塩基性の強いアルカリ金属、アルカリ土類金属、希土類金属および比較的低価数の超ウラン元素の多くはイオン液体に溶解しないと考えられる。
 なお、上述の塩素化工程14とイオン液体への溶解工程16は、別の工程で行ってもよいし、一つの工程で行ってもよい。別の工程で行う場合、固化した金属硝酸塩または金属酸化物と四塩化炭素(液体または気体)との反応で該金属硝酸塩または金属酸化物を固体の金属塩化物に転換し、その後、該金属塩化物を塩化物イオンを含むイオン液体に溶解する。一つの工程で行う場合、塩化物イオンを含むイオン液体に金属硝酸塩または金属酸化物と四塩化炭素とを加え、加熱および撹拌し、それにより金属硝酸塩または酸化物の塩素化とイオン液体への溶解とを同時に行う。例えば、酸化パラジウム(PdO)、二酸化セレン(SeO2)または酸化ジルコニウム(ZrO2)などを塩化物イオンを加えたイオン液体に添加し、該イオン液体に四塩化炭素を加え、加熱して一定時間反応させ、該イオン液体に溶解する。加熱温度および時間は特に限定されないが、それぞれ100~200℃、1~24時間であることが好ましい。このようにイオン液体中で塩素化と溶解を行うことにより、固体の金属硝酸塩または金属酸化物の塩素化と比較して、より低温で塩素化を進めることができる。
 イオン液体(ionic liquid)とは、常温溶融塩または単に溶融塩などとも称されるものであり、カチオンとアニオンとからなり、常温において液体で存在する塩である。
 イオン液体への溶解工程16においては、各種公知のイオン液体を使用することができるが、常温(室温)に近い100℃未満の温度、および/または100~200℃の中温域において液体状態を呈する安定なものが好ましい。溶解工程16において、イオン液体の温度を高くすることで、目的とする金属イオンの溶解を促進させることができる。溶解工程16におけるイオン液体の温度は特に限定されないが、例えば200℃以下、一実施形態では20℃以上100℃以下である。
 イオン液体を構成するカチオン成分としては、芳香族系カチオンの他に、脂肪族系カチオンを含む幅広い有機カチオンを用いることができる。
 カチオン成分は、イミダゾリウムイオン、ピロリジニウムイオン、ピペリジニウムイオン、およびアルキルアンモニウムイオンからなる群より選択される少なくとも1種であることが好ましい。これらのカチオン成分は置換されていても、非置換であってもよい。
 イミダゾリウムイオンの例としては、例えば、1-エチル-2,3-ジメチルイミダゾリウムイオン、1-ブチル-2,3-ジメチルイミダゾリウムイオン、1-ヘキシル-2,3-ジメチルイミダゾリウムイオン、1,3-ジメチルイミダゾリウムイオン、1-エチル-3-メチルイミダゾリウムイオン、1,3-ジエチルイミダゾリウムイオン、1-ブチル-3-メチルイミダゾリウムイオン、1-ヘキシル-3-メチルイミダゾリウムイオン、1-オクチル-3-メチルイミダゾリウムイオン、1-デシル-3-メチルイミダゾリウムイオン、1-テトラデシル-3-メチルイミダゾリウムイオン、1-ヘキサデシル-3-メチルイミダゾリウムイオン、1-オクタデシル-3-メチルイミダゾリウムイオン、1,2,3-トリメチルイミダゾリウムイオン、1,2-ジメチル-3-エチルイミダゾリウムイオン、1,2-ジメチル-3-プロピルイミダゾリウムイオン、1-ブチル-2,3-ジメチルイミダゾリウムイオン等が挙げられる。
  ピロリジニウムイオンの例としては、例えば、1,1-ジメチルピロリジニウムイオン、1-エチル-1-メチルピロリジニウムイオン、1-メチル-1-プロピルピロリジニウムイオン、1-ブチル-1-メチルピロリジニウムイオン等が挙げられる。
  ピペリジニウムイオンの例としては、例えば、1,1-ジメチルピペリジニウムイオン、1-エチル-1-メチルピペリジニウムイオン、1-メチル-1-プロピルピペリジニウムイオン、1-ブチル-1-メチルピペリジニウムイオン等が挙げられる。
  アルキルアンモニウムイオンの例としては、例えば、トリメチルエチルアンモニウムイオン、トリメチルプロピルアンモニウムイオン、トリメチルヘキシルアンモニウムイオン、テトラペンチルアンモニウムイオン等が挙げられる。
 一般に、イオン液体の還元安定性は有機カチオンによって決まっていると考えられており,芳香族系のイミダゾリウムよりも,脂肪族系のアルキルアンモニウムや脂環族のピロリジニウムやピペリジニウムの方がより低い電位まで安定であることが知られている。よって、カチオン成分は、ピロリジニウムイオンおよびピペリジニウムから選択される少なくとも一つであることがより好ましい。
 イオン液体を構成するアニオンの例としては、塩化物イオン、臭化物イオン、ヨウ化物イオンなどのハロゲン化物イオン、テトラフルオロホウ酸イオン(BF4 -)、ヘキサフルオロリン酸イオン(PF6 -)、AlCl3 -、乳酸イオン、酢酸イオン(CH3COO-)、トリフルオロ酢酸イオン(CF3COO-)、メタンスルホン酸イオン(CH3SO3 -)、トリフルオロメタンスルホン酸イオン(CF3SO3 -)、ビス(トリフルオロメタンスルホニル)アミドイオン((CF3SO22N-)、ビス(ペンタフルオロエチルスルホニル)アミドイオン((C2F5SO22N-)、ビス(フルオロスルホニル)アミドイオン((FSO22N-)、BF3C2F5 -、トリス(トリフルオロメタンスルホニル)炭素酸イオン((CF3SO23C-)、ジシアノアミドイオン((CN)2N-)、有機硫酸イオン、有機スルホン酸イオン、R1COO -、HOOCR1COO--OOCR1COO-、NH2CHR1COO-(この際、R1は置換基であり、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、エーテル基、エステル基、またはアシル基である。また、前記置換基はフッ素原子を含んでもよい。)などが挙げられる。
 これらのうち、イオン液体におけるアニオンとしては、カチオンの選択肢が多いビス(トリフルオロメチルスルホニル)アミド(TFSA-)アニオン((CF3SO22N-,ビス(トリフルオロメタンスルホニル)イミドイオンとも称する)を有するイオン液体を用いることが好ましい。TFSA-は幅広い有機カチオンと比較的低融点のイオン液体をつくることから,要求される性能・機能をもつイオン液体を製造することができる。例えばTFSA-系イオン液体は有機カチオンとして不飽和結合をもたない脂肪族第四級アンモニウムイオンを用いることができ、イミダゾリウムに代表される芳香族系有機カチオンに比べて高い放射線耐性が期待される。このため、高い放射能を有する核種が含まれる高レベル放射性廃棄物とイオン液体とを接触させる場合、イオン液体の放射線耐性を高くすることで、二次廃棄物の増大を抑制できる。
 なお、カチオンおよび/またはアニオンを2種以上使用し、融点をさらに下げることも可能である。
  次に、イオン液体の電気分解工程17で、イオン液体中に溶解させた金属イオン種([PdCl42-,[SeCl62-または[ZrCl62-)を電気化学的に還元することにより、Pd,SeまたはZrを金属のナノ粒子または析出物の形で分離、回収する(工程18)。イオン液体の室温におけるイオン伝導率は有機電解液に比べて低い場合が多いが,本発明によれば100℃以上の温度では十分なイオン伝導率を確保することが可能である。電気分解工程17の温度は特に限定されないが、例えば20℃以上200℃以下であり、一実施形態では20℃以上100℃以下である。溶融塩を用いた従来技術では400℃以上の高温で電解が行われているが、イオン液体を用いることで、低温で電解回収が可能となり、プロセスで用いる電解槽や電極など構成部材の選択肢が広くなり、また、電解後の金属の回収が容易となる。なお、イオン液体中におけるパラジウムの電解析出については例えばElectrochim. Acta, 53, 87 (2007)、Trans. Inst. Metal Finish., 86(4), 205 (2008)、およびElectrochem. Commun., 52, 21 (2015)に、イオン液体中におけるセレンの電解析出については例えばElectrochim. Acta, 52, 2746 (2007)に記載されている。
 分離回収プロセスを構築する上で、イオン液体中における金属化学種の溶解度が問題となる。高効率で回収するためには、目的とする化学種の溶解度は高いことが望ましい。分離回収する金属化学種の溶解度は、100 mM以上であることが望ましい。[PdCl42-は室温での溶解度が数十mM程度と低いことがわかっているが、温度を高くすることで溶解度は高くなるため、200℃付近の中温域ではより高い溶解度を示すと考えられる。
 本願出願人は、Au, Pt, Ag等の貴金属の陰極還元では、還元によって生成した金属が電極表面に析出せず、イオン液体中に金属ナノ粒子として分散する現象を見出しており(データ非図示)、Pdについても同様にPdナノ粒子が生成することを確認している。
 そこで、本発明の方法において、工程17および工程18は、電極上に金属を析出させて回収するバッチプロセスで行ってもよいし、イオン液体中に金属ナノ粒子を分散させ、液体の状態で回収する連続プロセスで行ってもよい。
  Pd,SeまたはZrが分離、回収された後のイオン液体は、再生工程19にて再利用される。
  なお、工程14の後で工程16および17を続けて行って、Seおよび/またはZrを分離、回収する代わりに、昇華分離工程15にて、塩素化工程14で塩化物に転換されたSeCl4および/またはZrCl4を加熱し、SeCl4および/またはZrCl4の形で昇華、分離し、その後、溶解工程16および電気分解工程17にてイオン液体中に金属イオンとして溶解しているPd,Seおよび/またはZrを金属として回収してもよい。金属塩化物を昇華させるのに必要な温度は金属塩化物ごとに当業者に計算できることが理解される。例えば熱力学的には400℃でSeO2(固体)をSeCl4に転換でき、ZrO2(固体)をZrCl4(気体)に転換できる。また、400℃ではPdCl2は昇華しないが、PdOをPdCl2(固体)に転換でき、PdCl2 (気体)への昇華にはさらなるエネルギーが必要である。
  次に、吸着分離工程12にて吸着、分離したCsは、脱着工程20にて無機イオン交換体から脱着し、イオン液体に可溶な化学形態、例えばCs塩に転換し、これを溶解工程21にてイオン液体に溶解し、イオン液体を電解液として電気分解工程22を行うことにより、Cs元素の金属またはセシウムスズ(CsSn)として電気化学的に分離回収される。なお、イオン液体中におけるセシウムの電解析出については例えばElectrochim. Acta, 49, 5125 (2004)に記載されている。
 以上のように、本発明の方法の一実施形態は、放射性廃棄物からの長寿命核分裂生成物の分離および回収方法であって、長寿命核分裂生成物はCs、Se、PdおよびZrから選択される少なくとも一つであり、放射性廃棄物中に含まれるCs、Se、PdおよびZrから選択される少なくとも一つの塩をイオン液体に溶解する工程、およびCs、Se、PdおよびZrから選択される少なくとも一つの塩を含むイオン液体の電解によりCs、Se、PdおよびZrから選択される少なくとも一つを金属または合金として分離および回収する工程を含む。
 このような構成によれば、放射性廃棄物中に含まれるCs、Se、PdおよびZrから選択される少なくとも一つの塩をイオン液体に溶解する前に、脱硝工程、塩素化工程等の既存技術を前処理として活用した上で、イオン液体を用いた簡潔な分離回収プロセスにより、常温や中温域でも反応が起こるため、高効率かつ低コストにSe、Pd、Zr、およびCsから選択される少なくとも一つの長寿命核分裂生成物を分離、回収できる。なお、「放射性廃棄物中に含まれるCs、Se、PdおよびZrから選択される少なくとも一つ」とは、かかる金属が最初に放射性廃棄物中に含まれるものであればよく、つまり放射性廃棄物に由来する金属であることを意味する。
 また、イオン液体の使用により分離および回収されたSe、Pd、Zr、および/またはCsは金属または合金の形で貯蔵できるため、安全性にも優れている。
 さらに、イオン液体は再利用が可能であるため二次廃棄物の大幅な低減が期待され、比較的高価なイオン液体を用いても経済的優位性を確保できる。
 本発明の別の実施形態は、放射性廃棄物からの長寿命核分裂生成物の分離および回収方法であって、長寿命核分裂生成物はCs、Se、PdおよびZrから選択される少なくとも一つであり、PUREX法で処理した後の放射性廃棄物の水溶液からH2Oを蒸発させ、硝酸にて固化させる工程、固化させる工程にて得られた放射性廃棄物の固化物からCsを吸着分離する工程、吸着分離する工程の後の放射性廃棄物の水溶液を脱硝および固化する工程、脱硝および固化する工程で得られたPd,SeおよびZrのうちの少なくとも一つを含む固化物を、塩素化剤を用いて塩化物に転換する工程、塩素化工程で得られたPd,SeおよびZrのうちの少なくとも一つの塩化物をイオン液体中に溶解させる工程、およびイオン液体を電気分解し、Pd,SeおよびZrのうちの少なくとも一つを金属または合金の形で分離、回収する工程を含む方法である。
 このような構成によれば、放射性廃棄物に由来するPd,SeおよびZrのうちの少なくとも一つを、イオン液体を用いて金属または合金の形で高効率かつ低コストに分離、回収できる。
 本発明のさらに別の実施形態は、放射性廃棄物からの長寿命核分裂生成物の分離および回収方法であって、前記長寿命核分裂生成物はCs、Se、PdおよびZrから選択される少なくとも一つであり、PUREX法で処理した後の放射性廃棄物の水溶液からH2Oを蒸発させ、硝酸にて固化させる工程、前記固化させる工程にて得られた放射性廃棄物の固化物からCsを吸着分離する工程、前記吸着分離したCsを脱着し、イオン液体中に溶解させる工程、およびイオン液体を電気分解し、Csを金属または合金の形で分離、回収する工程を含む方法である。
 このような構成によれば、放射性廃棄物に由来するCsを、イオン液体を用いて金属または合金の形で高効率かつ低コストに分離、回収できる。
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されない。
実施例1 イオン液体へのSeCl4の溶解と電解析出
 イオン液体1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide(BMPTFSA)にBMPClを添加し、これにSeCl4を加えると[SeCl6]2-として溶解した。室温におけるガラス状カーボン(グラッシーカーボン)電極のサイクリックボルタモグラムから、-1.3 V付近に[SeCl6]2-からSeへの還元に対応する電流が観測された(図2)。同じ電解液中でガラス状カーボン電極の電位を-1.3 Vに保持したところ、電極表面に電解析出物が得られ(図3)、EDS(図4)およびXRD(図5)から析出物が金属Seであることが確認された。
 本実験において、イオン液体の使用により室温で金属Seが得られたことは、驚くべき結果である。 
実施例2 イオン液体へのCsTFSAの溶解とCsSn合金形成
 CsTFSAはBMPTFSAに容易に溶解した。室温におけるスズ電極のサイクリックボルタモグラムから、-3.1 V付近にCsSn生成に対応する電流が観測された(図6)。同じ電解液中でスズ電極の電位を-3.5 Vに保持したところ、電極表面が変化し(図7)。EDS(図8)およびXRD(図9)からCsSnが生成していることが確認された。
 本実験において、イオン液体の使用により室温でCsSn合金が得られたことは、驚くべき結果である。
実施例3 長寿命核分裂生成物の塩素化
 試験例1
 イオン液体中における四塩化炭素を用いた酸化パラジウムの塩素化について検討した。
 0.05 mmolの酸化Pd(PdO)と、mol比で5倍量の0.25 mmolのCCl4とを5 mLの溶媒0.5 M BMPCl / BMPTFSA(関東化学株式会社製)中に加え、この溶液を100℃で24時間加熱および攪拌し、分散した溶け残りの酸化Pdを遠心分離機によって沈殿させたのち、上澄み液を採取した。この上澄み液を、紫外可視吸光スペクトルにより評価し(図10)、PdOのPdCl2への変換効率を算出した(表1)。
 試験例2
 試験例1と比較してCCl4を溶媒に加えない以外は、同じ条件で実験を行った。
 試験例3
 試験例1と比較してCCl4の添加量を2.5 mmolとした以外は、同じ条件で実験を行った。
 試験例4
 試験例1と比較してBMPClを含まない以外は、同じ条件で実験を行った。
 試験例5
 試験例1と比較して加熱温度を150℃とした以外は、同じ条件で実験を行った。
 図10および表1において試験例1と試験例2を比較すると、CCl4の有無で明らかに[PdCl4]2-由来のピークに変化が出ており、このことからCCl4によって塩素化が進行していることがわかる。CCl4を添加しなくてもわずかに塩素化反応が進行した原因としてはPdOが溶液中の水分と反応したと考えられる。また試験例1と試験例3を比較すると、CCl4の量はPdOの5倍量である0.25 mmol (濃度換算で50 mM)で十分であることがわかった。試験例4ではほとんど塩素化が進行しなかったが、これは、ルイス酸として働く[PdCl4]2-に対し、ルイス塩基であるBMPClが含まれていないため、塩素化反応が進行しなかったと考えられる。試験例5では反応温度を100℃から150℃に昇温すると、明らかに溶液の色の変化が確認でき、紫外可視吸光スペクトルによると約93%の変換効率が認められた。 
Figure JPOXMLDOC01-appb-T000001

Claims (8)

  1.  放射性廃棄物からの長寿命核分裂生成物の分離および回収方法であって、前記長寿命核分裂生成物はCs、Se、PdおよびZrから選択される少なくとも一つであり、
     放射性廃棄物中に含まれるCs、Se、PdおよびZrから選択される少なくとも一つの塩をイオン液体に溶解する工程、および
      前記Cs、Se、PdおよびZrから選択される少なくとも一つの塩を含むイオン液体の電解によりCs、Se、PdおよびZrから選択される少なくとも一つを金属または合金として分離および回収する工程
    を含む方法。
  2.  前記塩はSe、PdおよびZrから選択される少なくとも一つの塩化物塩である請求項1に記載の方法。
  3.  前記塩はCsのビス(トリフルオロメチルスルホニル)アミドアニオンの塩である請求項1に記載の方法。
  4.  放射性廃棄物からの長寿命核分裂生成物の分離および回収方法であって、前記長寿命核分裂生成物はCs、Se、PdおよびZrから選択される少なくとも一つであり、
     PUREX法で処理した後の放射性廃棄物の水溶液からH2Oを蒸発させ、硝酸にて固化させる工程、
     前記固化させる工程にて得られた放射性廃棄物の固化物からCsを吸着分離する工程、
     前記吸着分離した工程の後の放射性廃棄物の水溶液を脱硝および固化する工程、
     前記脱硝および固化する工程で得られたPd,SeおよびZrのうちの少なくとも一つを含む固化物を、塩素化剤を用いて塩化物に転換する工程、
     前記塩素化工程で得られたPd,SeおよびZrのうちの少なくとも一つの塩化物をイオン液体中に溶解させる工程、および
     イオン液体を電気分解し、Pd,SeおよびZrのうちの少なくとも一つを金属または合金の形で分離および回収する工程
    を含む方法。
  5.  放射性廃棄物からの長寿命核分裂生成物の分離および回収方法であって、前記長寿命核分裂生成物はCs、Se、PdおよびZrから選択される少なくとも一つであり、
     PUREX法で処理した後の放射性廃棄物の水溶液からH2Oを蒸発させ、硝酸にて固化させる工程、
     前記固化させる工程にて得られた放射性廃棄物の固化物からCsを吸着分離する工程、
     前記吸着分離した工程の後の放射性廃棄物の水溶液を脱硝および固化する工程、
     前記脱硝および固化する工程で得られたPd,SeおよびZrのうちの少なくとも一つを含む固化物を、イオン液体中で塩素化剤を用いて塩素化すると同時にイオン液体に溶解させる工程、および
     イオン液体を電気分解し、Pd,SeおよびZrのうちの少なくとも一つを金属または合金の形で分離および回収する工程
    を含む方法。
  6.  放射性廃棄物からの長寿命核分裂生成物の分離および回収方法であって、前記長寿命核分裂生成物はCsであり、
     PUREX法で処理した後の放射性廃棄物の水溶液からH2Oを蒸発させ、硝酸にて固化させる工程、
     前記固化させる工程にて得られた放射性廃棄物の固化物からCsを吸着分離する工程、
     前記吸着分離したCsを脱着し、イオン液体中に溶解させる工程、および
     イオン液体を電気分解し、Csを金属または合金の形で分離および回収する工程
    を含む方法。
  7.  前記イオン液体のカチオン成分はイミダゾリウムイオン、ピロリジニウムイオン、ピペリジニウムイオンおよびアルキルアンモニウムイオンから選択される少なくとも一つであり、前記イオン液体のアニオン成分はビス(トリフルオロメチルスルホニル)アミド(TFSA-)である請求項1~6のいずれか一項に記載の方法。
  8.  前記イオン液体は1-ブチル-1-メチルピロリジニウムビス(トリフルオロメチルスルホニル)アミドを含む請求項1~6のいずれか一項に記載の方法。
PCT/JP2016/086606 2015-12-09 2016-12-08 イオン液体を用いた放射性廃棄物からの長寿命核分裂生成物の分離および回収方法 WO2017099189A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017555138A JPWO2017099189A1 (ja) 2015-12-09 2016-12-08 イオン液体を用いた放射性廃棄物からの長寿命核分裂生成物の分離および回収方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-239941 2015-12-09
JP2015239941 2015-12-09

Publications (1)

Publication Number Publication Date
WO2017099189A1 true WO2017099189A1 (ja) 2017-06-15

Family

ID=59013274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086606 WO2017099189A1 (ja) 2015-12-09 2016-12-08 イオン液体を用いた放射性廃棄物からの長寿命核分裂生成物の分離および回収方法

Country Status (2)

Country Link
JP (1) JPWO2017099189A1 (ja)
WO (1) WO2017099189A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150655A (ja) * 2006-12-15 2008-07-03 Kyoto Univ 金属の電析方法
JP2009510261A (ja) * 2005-09-30 2009-03-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング イオン性液体中でのセレンの電気化学沈着
JP2014224281A (ja) * 2013-05-15 2014-12-04 国立大学法人横浜国立大学 白金族金属及び希土類金属の回収方法及びその回収装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510261A (ja) * 2005-09-30 2009-03-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング イオン性液体中でのセレンの電気化学沈着
JP2008150655A (ja) * 2006-12-15 2008-07-03 Kyoto Univ 金属の電析方法
JP2014224281A (ja) * 2013-05-15 2014-12-04 国立大学法人横浜国立大学 白金族金属及び希土類金属の回収方法及びその回収装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PO-YU CHEN ET AL.: "Electrodeposition of cesium at mercury electrodes in the tri-1-butylmethylammonium bis((trifluoromethyl)sulfonyl)imide room- temperature ionic liquid,", ELECTROCHIMICA ACTA, vol. 49, no. 28, 2004, pages 5125 - 5138, XP004606594 *

Also Published As

Publication number Publication date
JPWO2017099189A1 (ja) 2018-10-04

Similar Documents

Publication Publication Date Title
US6911135B1 (en) Process for separating metals
Rao et al. Electrodeposition of metallic uranium at near ambient conditions from room temperature ionic liquid
Rao et al. Studies on applications of room temperature ionic liquids
KA et al. A review on the electrochemical applications of room temperature ionic liquids in nuclear fuel cycle
JP2016507008A (ja) イオン液体からのアクチニドの常温電着
Giridhar et al. Electrochemical behavior of uranium (VI) in 1-butyl-3-methylimidazolium chloride and in 0.05 M aliquat-336/chloroform
Mahanty et al. Direct dissolution of metal oxides in ionic liquids as a smart strategy for separations: Current status and prospective
JPWO2018147399A1 (ja) アルミニウムの製造方法
CN103820827A (zh) 一种从离子液体中电沉积钯的方法
Ikeda et al. Electrochemical studies on uranyl (VI) chloride complexes in ionic liquid, 1-butyl-3-methylimidazolium chloride
WO2017099189A1 (ja) イオン液体を用いた放射性廃棄物からの長寿命核分裂生成物の分離および回収方法
JP2002503820A (ja) 核燃料再処理
Hao et al. Electrochemical behavior of praseodymium and Pr-Al intermetallics in LiCl-KCl-AlCl3-PrCl3 melts
Ding et al. Electroextraction of neodymium from LiCl-KCl melt using binary liquid Ga–Al cathode
Wang et al. Electrochemical recycling of Pd and Ag from simulated high-level liquid waste
Giridhar et al. Recovery of fission palladium by electrodeposition using room temperature ionic liquids
Hirai et al. Electro-reductive stripping of vanadium in solvent extraction process for separation of vanadium and molybdenum using tri-n-octylmethylammonium chloride
US20130233716A1 (en) Room Temperature Electrodeposition of Actinides from Ionic Solutions
JP6730706B2 (ja) 白金族元素の回収方法
KR20020077352A (ko) 악티나이드 생성방법
Abbott et al. Ionometallurgy: processing of metals using ionic liquids
Ohashi et al. Studies on electrochemical behavior of uranium species in choline chloride-urea eutectic for developing electrolytically treating method of uranium-bearing wastes
Gese et al. Electrochemistry of LiCl-Li2O-H2O molten salt systems
Zuo et al. Evaluation of noble metals as reactive electrodes for separation of lanthanides from molten LiF-BeF 2
US11149356B2 (en) Methods of forming metals using ionic liquids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873082

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017555138

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16873082

Country of ref document: EP

Kind code of ref document: A1