WO2017098842A1 - Heater device and heater device production method - Google Patents

Heater device and heater device production method Download PDF

Info

Publication number
WO2017098842A1
WO2017098842A1 PCT/JP2016/082796 JP2016082796W WO2017098842A1 WO 2017098842 A1 WO2017098842 A1 WO 2017098842A1 JP 2016082796 W JP2016082796 W JP 2016082796W WO 2017098842 A1 WO2017098842 A1 WO 2017098842A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
electrode
sheet member
contact
dome
Prior art date
Application number
PCT/JP2016/082796
Other languages
French (fr)
Japanese (ja)
Inventor
公威 石川
英章 加古
裕康 生出
関 秀樹
田中 祐介
近藤 宏司
多田 和夫
正晃 井ノ口
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to JP2017554977A priority Critical patent/JP6432695B2/en
Publication of WO2017098842A1 publication Critical patent/WO2017098842A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/02Details
    • H01H13/12Movable parts; Contacts mounted thereon
    • H01H13/14Operating parts, e.g. push-button
    • H01H13/16Operating parts, e.g. push-button adapted for operation by a part of the human body other than the hand, e.g. by foot
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating

Definitions

  • the present disclosure relates to a heater device that radiates radiant heat by heat of a heat generating portion that generates heat when energized, and a method of manufacturing the heater device.
  • Patent Document 1 discloses a radiation heater device having an electrode embedded in a substrate portion and a plurality of heat generating portions.
  • the electrode and the heat generating portion are electrically connected inside the substrate, and each is formed in a film shape.
  • the electrode and the heat generating portion are formed in a film shape, when an object comes into contact with the heat generating portion, the temperature of the heat generating portion is quickly reduced to ensure safety.
  • Patent Document 1 The apparatus described in Patent Document 1 is such that the temperature of the heat generating part decreases rapidly when the object contacts the heat generating part, but if the object continues to contact the heat generating part, the temperature of the heat generating part Rises gradually, giving the user a thermal discomfort. Therefore, it is conceivable that a switch for detecting an object is provided, and when the object is detected by this switch, the energization amount to the heat generating portion is reduced.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2006-202732 (hereinafter referred to as Patent Document 2) as a device that detects the contact of such an object.
  • the switch includes an insulating layer as a first sheet, a fixed contact formed on one surface of the first sheet, and an insulating layer as a second sheet facing the one surface of the first sheet. Furthermore, the switch has a flexible movable contact. The flexible movable contact is formed on one surface of the second sheet and opposes the fixed contact through the space so as to be detachable. Further, the switch includes an insulator provided on the flexible movable contact and at a position excluding the pressing portion.
  • the switch described in Patent Document 2 is brought into close contact with the heater device described in Patent Document 1, the first sheet (that is, the insulating layer) is thermally deteriorated by the heat of the heater device. Then, the first sheet may sag and the first sheet may sag over the second sheet. In this case, although the object is not in contact, it may be erroneously detected that the fixed contact and the movable contact are in contact and the object is in contact.
  • the thickness of the first and second sheets is increased to improve heat resistance, or the spacer for maintaining the distance between the first sheet and the second sheet is increased to increase the fixed contact (that is, the fixed contact). It is necessary to take measures such as increasing the distance between the electrode) and the movable contact (that is, the movable electrode).
  • the thicknesses of the first and second sheets and spacers are increased, the heat capacities of the first and second sheets and spacers increase, and the amount of heat stored in the first and second sheets and spacers increases when the heater is activated. .
  • This disclosure is intended to provide a heater device that can secure a space between electrodes while suppressing an increase in heat capacity, and to provide a method for manufacturing the heater device.
  • the heater device includes a sheet-like heat generating portion (11) that generates heat by energization, a first insulating layer provided with the heat generating portion on one side, and a first insulating layer of the heat generating portion.
  • a first sheet member having a first electrode formed on a side opposite to the first side, a second insulating layer disposed opposite to one surface of the first insulating layer, and a first electrode of the second insulating layer
  • a second sheet member having a second electrode formed at a position.
  • At least one of the part in which the 1st electrode in the 1st sheet member was formed, and the part in which the 2nd electrode in the 2nd sheet member was formed is with respect to the surface where the 1st sheet member and the 2nd sheet member oppose It is comprised as a dome part which makes the dome shape which becomes convex toward the opposite surface side.
  • At least one of the portion of the first sheet member where the first electrode is formed and the portion of the second sheet member where the second electrode is formed is the first sheet member and the second sheet member. It is comprised as a dome part which makes the dome shape which becomes convex toward the opposite surface side with respect to the opposing surface. And the force which ensures the space
  • the method for manufacturing a heater device includes: applying a conductive paste having a larger linear expansion coefficient than the first insulating layer to the first insulating layer; and increasing the linear expansion coefficient than the second insulating layer. Performing at least one of applying a large conductive paste to the second insulating layer, and drying and curing the conductive paste applied to at least one of the first insulating layer and the second insulating layer at a high temperature, A dome part is comprised in at least one of the part in which the 1st electrode in the 1st insulating layer was formed, and the part in which the 2nd electrode in the 2nd insulating layer was formed.
  • the heater device of the present disclosure can be manufactured by such a manufacturing method.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. It is the figure which showed arrangement
  • FIG. 1 is a front view of the heater device 1 according to the first embodiment.
  • the first insulating layer 12 is omitted.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • the heater device 1 of the present embodiment is installed in a room of a road traveling vehicle.
  • the heater device 1 constitutes a part of a room heating device.
  • the heater device 1 is an electric heater that generates heat by being fed from a power source such as a battery or a generator mounted on a road vehicle.
  • the heater device 1 is formed in a thin sheet shape.
  • the heater device 1 radiates radiant heat mainly in a direction perpendicular to the surface in order to warm an object to be heated positioned in a direction perpendicular to the surface.
  • the heater device 1 is configured by integrating a first sheet member 10 and a second sheet member 20.
  • the thickness t of the heater device 1 is about 40 to 80 microns.
  • the first sheet member 10 includes a heat generating portion 11, a first insulating layer 12, and a first contact electrode 31.
  • the heat generating part 11 is formed on one surface side of the first insulating layer 12.
  • the heat generating part 11 generates heat when energized.
  • the first insulating layer 12 is made of a resin material having excellent electrical insulation and withstanding high temperatures.
  • the first insulating layer 12 has a film shape.
  • the first contact electrode 31 is formed on the surface of the heat generating portion 11 opposite to the first insulating layer 12 side.
  • the second sheet member 20 has a second insulating layer 21 and a second contact electrode 32.
  • the second insulating layer 21 is made of a resin material that has excellent electrical insulation and withstands high temperatures.
  • the second insulating layer 21 has a film shape.
  • the second contact electrode 32 is formed at a position facing the first contact electrode 31 formed on the first insulating layer 12 of the second insulating layer 21. That is, the second contact electrode 32 is formed on the surface of the second insulating layer 21 on the first contact electrode 31 side.
  • the heat generating part 11 has the same configuration as the heater device described in Patent Document 1 above. That is, the heat generating portion 11 extends along the XY plane defined by the axis X and the axis Y.
  • the heat generating part 11 is formed in a substantially rectangular thin surface.
  • the axes X and Y are orthogonal to each other and are also orthogonal to the axis Z.
  • the axis Z is parallel to the stacking direction of the first sheet member 10 and the second sheet member and is perpendicular to the surface of the heater device 1.
  • the axis X is parallel to the longitudinal direction of the heater device 1 and the heat generating part 11.
  • the axis Y is parallel to the short direction of the heater device 1 and the heat generating unit 11.
  • the heat generating part 11 has an electrode formed on one surface side of the first insulating layer 12 and a plurality of heat generating elements (none of which are shown).
  • the electrode of the heat generating portion 11 is formed of a material having a low specific resistance
  • the heating element is formed of a material having a high specific resistance in order to generate heat so as to generate radiant heat.
  • the electrode of the heat generating part 11 and the heating element are electrically connected.
  • the plurality of heating elements are arranged in parallel between the electrodes of the pair of heating portions 11.
  • the electrode and the heating element of the heat generating part 11 are formed in a film shape, and the thermal capacity is suppressed. As a result, the temperature of the heating element rises quickly in response to energization. Further, when the object comes into contact, the temperature of the heating element quickly decreases.
  • the first contact electrode 31 and the second contact electrode 32 constitute a contact detection unit that detects contact of an object with the heat generating unit 11. As shown in FIG. 1, each of the first contact electrode 31 and the second contact electrode 32 has a circular shape. As shown in FIG. 2, the first contact electrode 31 and the second contact electrode 32 are disposed to face each other with the space layer 33 interposed therebetween. The first contact electrode 31 and the second contact electrode 32 are arranged in a region covering almost the entire area of the heat generating portion 11.
  • the portion where the first contact electrode 31 is formed in the first sheet member 10 is a dome that is convex toward the opposite surface side with respect to the opposing surfaces of the first sheet member 10 and the second sheet member 20. It is configured as a part 10a.
  • This “opposing surface” is a virtual surface sandwiched between the first sheet member 10 and the second sheet member 20. This “opposing surface” may be a flat surface or a curved surface.
  • the portion of the first sheet member 10 where the first contact electrode 31 is formed is configured as a dome portion 10a having a dome shape that is convex toward the opposite side to the second sheet member 20 side. Yes.
  • the portion of the second sheet member 20 where the second contact electrode 32 is formed also has a dome shape that is convex toward the opposite surface side with respect to the opposing surfaces of the first sheet member 10 and the second sheet member 20.
  • the dome portion 20a is formed.
  • the portion of the second sheet member 20 where the second contact electrode 32 is formed is configured as a dome portion 20a having a dome shape that protrudes toward the side opposite to the first sheet member 10 side. Yes.
  • the dome portions 10a and 20a form a dome shape means that the dome portions 10a and 20a become convex so as to gradually move away from the facing surfaces as they go from the outer edge portions to the vertexes 10z and 20z. .
  • Outer edge portions of the dome portions 10a and 20a are located at positions closest to the facing surfaces of the dome portions 10a and 20a.
  • the outer edge part of the dome parts 10a and 20a is circular.
  • first contact electrode 31 and the second contact electrode 32 are directed toward opposite surfaces with respect to the opposing surfaces of the first contact electrode 31 and the second contact electrode 32 so that the center portions of the electrodes are kept at a distance from each other.
  • Convex shape that is convex.
  • the first sheet member 10 and the second sheet member 20 are fixed to each other by thermocompression bonding in a region around a portion where the first contact electrode 31 and the second contact electrode 32 arranged to face each other are formed.
  • the region fixed to the second sheet member 20 in this manner in the first sheet member 10 is a fixed portion 10x adjacent to the outer edge portion of the dome portion 10a.
  • the region fixed to the first sheet member 10 in this way in the second sheet member 20 is a fixed portion 20x adjacent to the outer edge portion of the dome portion 20a.
  • FIG. 3 is a view showing the arrangement of the first contact electrode 31 and the second contact electrode 32.
  • (A) is the figure which showed arrangement
  • (b) showed arrangement
  • a plurality of first contact electrodes 31 are arranged in a lattice shape and a matrix shape in the heat generating portion 11. Further, the first contact electrodes 31 are connected to each other via the intermediate electrode 34. Further, each first contact electrode 31 is connected to a power supply terminal via an intermediate electrode 34.
  • the first sheet member 10 has a plurality of dome portions 10a arranged in a grid and in a matrix. Among any one of the plurality of dome portions 10a, a certain relationship is established regardless of which pair of adjacent dome portions 10a is taken. The relationship means that the shortest distance between the pair of dome portions 10a is smaller than any of the maximum diameters of the pair of dome portions 10a.
  • the maximum diameter of a certain dome portion 10a refers to the longest distance among the linear distances from one point to the other one of the outer edge portions of the dome portion 10a. If the outer edge portion of the dome portion 10a is circular, the maximum diameter of the dome portion 10a is the diameter. With this configuration, the plurality of dome portions 10a can be densely arranged.
  • the second insulating layer 21 has a plurality of second contact electrodes 32 arranged in a lattice pattern.
  • each first contact electrode 31 and each second contact electrode 32 face each other and the second insulating layer 21 is superimposed on the first insulating layer 12, each second contact electrode 32 and each first contact electrode 31 are It is arranged at the overlapping position.
  • the second contact electrodes 32 are connected to each other via the intermediate electrode 35. Further, each second contact electrode 32 is connected to a ground terminal via an intermediate electrode 35.
  • the second sheet member 20 has a plurality of dome portions 20a arranged in a lattice pattern.
  • a certain relationship is established regardless of which pair of adjacent dome parts 20a is taken.
  • the relationship means that the shortest distance between the pair of dome portions 20a is smaller than any of the maximum diameters of the pair of dome portions 20a.
  • the maximum diameter of a certain dome portion 20a refers to the longest distance among linear distances from one point to the other one of the outer edge portions of the dome portion 20a. If the outer edge portion of the dome portion 20a is circular, the maximum diameter of the dome portion 20a is the diameter. With this configuration, the plurality of dome portions 20a can be densely arranged.
  • the arrangement of the plurality of first contact electrodes 31 will be described in more detail.
  • the combination of the positions in the column direction of all the first contact electrodes 31 in the row, and all the first contact electrodes 31 in the row adjacent to the row are different. More specifically, in each row, the combination of the positions in the column direction of all the first contact electrodes 31 in the row and the combination of the positions in the column direction of all the first contact electrodes 31 in the row adjacent to the row are:
  • the first predetermined length is shifted.
  • the first predetermined length is a distance between the centers of two first contact electrodes 31 adjacent in the column direction.
  • the row direction in the matrix arrangement of the plurality of first contact electrodes 31 coincides with the direction of the axis Y
  • the column direction coincides with the direction of the axis X.
  • the position of the first contact electrode 31 at one end in the column direction is alternately shifted in the column direction for each row. Further, the position of the first contact electrode 31 at the other end in the column direction is alternately shifted in the column direction for each row and opposite to the one end of the first contact electrode 31 in the column direction.
  • the length in the column direction of the entire first contact electrodes 31 belonging to the same row is alternately increased or decreased for each row.
  • the number of first contact electrodes 31 belonging to the same row is also increased or decreased alternately for each row.
  • each column the combination of the positions in the row direction of all the first contact electrodes 31 in the column and the combination of the positions in the row direction of all the first contact electrodes 31 in a column adjacent to the column are different. Yes. More specifically, in each column, combinations of positions in the row direction of all the first contact electrodes 31 in the column, and positions in the row direction of all the first contact electrodes 31 in a column adjacent to the column. Are shifted by a second predetermined length.
  • the second predetermined length is a distance between the centers of two first contact electrodes 31 adjacent in the row direction, and is longer than the first predetermined length.
  • a range of existing positions in the row direction of all the first contact electrodes 31 in the row and a range of existing positions in the row direction of all the first contact electrodes 31 in a row adjacent to the row are: Partly overlap.
  • the first contact electrodes 31 other than the first contact electrodes 31 at the end portions are surrounded by the six first contact electrodes 31 closest to each other.
  • the first contact electrode 31 other than the first contact electrode 31 at the end includes another first contact electrode 31 whose distance from the center of the first contact electrode 31 is equal to or less than the reference distance.
  • the reference distance is a distance having the same length as the maximum diameter of the first contact electrode 31.
  • each first contact electrode 31 and the other first contact electrode closest to the first contact electrode 31 are arranged in the column direction.
  • each first contact electrode 31 and the other first contact electrode closest to the first contact electrode 31 are arranged in a direction intersecting the column direction at an angle of 60 °.
  • the arrangement feature of the first contact electrode 31 is the same for the dome portion 10a, the second contact electrode 32, and the dome portion 10b.
  • FIG. 4 is a diagram for explaining the operation of the contact detection unit 53.
  • the contact detection unit 53 outputs a signal indicating that an object is in contact with the heater device 1 when the voltage between the terminals of the resistor 51 is equal to or higher than a predetermined voltage.
  • the contact detection part 53 outputs the signal which shows that there is no contact of the object to the heater apparatus 1, when the voltage between the terminals of the resistance 51 is less than predetermined voltage.
  • the signal output from the contact detection unit 53 is input to a control unit (not shown).
  • the contact detection unit 53 outputs a signal indicating that an object is in contact with the heater device 1 to the control unit.
  • the 1st contact electrode 31 of this embodiment is formed in the one surface side of the heat generating part 11, when the short circuit between the 1st contact electrode 31 and the 2nd contact electrode 32 is carried out, it is the 1st contact from the power supply 50. A current flows through the electrode 31, the second contact electrode 32, and the resistor 51 to the ground terminal.
  • the following molding method may be performed entirely by an operator using various apparatuses, or may be performed automatically by an automatic molding apparatus.
  • an operator may perform a part using various apparatuses and the automatic molding apparatus may automatically perform the remaining part.
  • the main body performing this molding method prepares the second insulating layer 21 and prints it on one side of the second insulating layer 21 by printing at room temperature (for example, 25 ° C.).
  • a contact electrode paste 100 is formed.
  • the contact electrode paste 100 having a larger linear expansion coefficient than the second insulating layer 21 is selected.
  • the main body dries the contact electrode paste 100 under a high temperature on the second insulating layer 21 on which the contact electrode paste 100 is formed. Specifically, the contact electrode paste 100 is dried at a temperature equal to or higher than the glass transition temperature of the contact electrode paste 100. Thereby, the contact electrode paste 100 is cured and the contact electrode paste 100 is fixed to the second insulating layer 21.
  • the contact electrode paste 100 since the contact electrode paste 100 has a larger linear expansion coefficient than the second insulating layer 21, the contact electrode paste 100 extends more in the XY plane direction than the second insulating layer 21. That is, the contact electrode paste 100 is cured and the contact electrode 32 is bonded to the second insulating layer 21 in a state where the contact electrode paste 100 extends more in the XY plane direction than the second insulating layer 21.
  • the main body cools the second insulating layer 21 on which the contact electrode 32 is formed and returns it to room temperature.
  • the contact electrode 32 and the second insulating layer 21 try to return to their original sizes.
  • the contact electrode 32 since the contact electrode 32 has a larger linear expansion coefficient than the second insulating layer 21, the contact electrode 32 tends to return larger than the second insulating layer 21. That is, since the contact electrode 32 contracts more than the second insulating layer 21, a difference in circumferential length occurs. As a result, a dome shape in which the contact electrode 32 is disposed on the inner surface side is formed.
  • the continuous dome shape as shown in FIG. 2 can be formed by printing the contact electrode paste 100 on the second insulating layer 21 at regular intervals.
  • the method for forming the second contact electrode 32 has been described above. The same operation can be performed when the first contact electrode 31 is formed on the first insulating layer 12. However, the heat generating portion 11 is provided between the first contact electrode 31 and the first insulating layer 12. However, when the ambient temperature of the first insulating layer 12 is changed, the heat generating portion 11 expands and contracts similarly to the first insulating layer 12.
  • the linear expansion coefficient of the contact electrode paste is made larger than that of the first insulating layer 12.
  • the contact electrode paste expands and contracts more greatly in response to temperature changes than the first insulating layer 12 and the heat generating portion 11, so that a dome shape similar to that for forming the second contact electrode 32 can be formed.
  • the first and second contact electrodes 31, 32 are arranged over the entire heat generating part 11 so that there is no gap of 4 millimeters or more. Specifically, the first and second contact electrodes 31 and 32 are arranged at intervals of 4 to 5 millimeters. For example, the center points of the first and second contact electrodes 31 and 32 are arranged at intervals of 4 to 5 millimeters. That is, such dome portions 10a and 20a are arranged at intervals of 4 to 5 millimeters. By arranging the dome portions 10a and 20a at intervals of 4 to 5 millimeters in this way, it is possible to reliably detect contact even when a child's finger contacts.
  • the dome portion 10 a is formed on the first sheet member 10 and the dome portion 20 a is formed on the second sheet member 20. Thereafter, when the first sheet member 10 and the second sheet member 20 are fixed to each other in a region around the portion where the first contact electrode 31 and the second contact electrode 32 arranged so as to face each other, the heater device is completed. To do.
  • the portion of the first sheet member 10 where the first contact electrode 31 is formed and the portion of the second sheet member 20 where the second contact electrode 32 is formed are the dome portions 10a and 20a, respectively. It is configured.
  • the dome portions 10 a and 20 a have a hollow dome shape that is convex toward the opposite surface side with respect to the opposing surfaces of the first sheet member 10 and the second sheet member 20. And the force which ensures the space
  • the dome portions 10a and 20a are configured in both the portion of the first sheet member 10 where the first contact electrode 31 is formed and the portion of the second sheet member 20 where the second contact electrode 32 is formed. Accordingly, the distance between the first contact electrode 31 and the second contact electrode 32 can be increased as compared with the case where the dome portion is formed on one of the first sheet member 10 and the second sheet member 20. it can.
  • the contact detection unit 53 detects contact or non-contact of an object with the first sheet member 10 based on whether or not the first contact electrode 31 and the second contact electrode 32 are in a conductive state. Therefore, it is possible to easily detect contact or non-contact of an object with the first sheet member 10.
  • first contact electrode 31 formed on the first sheet member 10 and the second contact electrode 32 formed on the second sheet member 20 are arranged over the entire heat generating portion 11 so that there is no gap of 4 millimeters or more. Yes. Therefore, for example, even when a child's finger contacts, it is possible to reliably detect contact.
  • first sheet member 10 and the second sheet member 20 are fixed portions 10x and 20x, which are regions around the portion where the first contact electrode 31 and the second contact electrode 32 arranged so as to face each other, They are fixed to each other.
  • the 1st sheet member 10 and the 2nd sheet member 20 can be fixed in the field around the part in which the 1st contact electrode 31 and the 2nd contact electrode 32 arranged so that it opposes were formed.
  • the portion of the first sheet member 10 where the first contact electrode 31 is formed is configured as a dome portion 10 a, and the first contact electrode 31 is a conductive paste having a larger linear expansion coefficient than the first insulating layer 12. Can be used.
  • the portion of the second sheet member 20 where the second contact electrode 32 is formed is configured as a dome portion 20a, and the second contact electrode 32 is a conductive paste having a larger linear expansion coefficient than the second insulating layer 21. Can be used.
  • the main body prints a conductive paste having a linear expansion coefficient larger than that of the first insulating layer 12 on the first insulating layer 12 and also performs a second insulation on the conductive paste having a linear expansion coefficient larger than that of the second insulating layer 21. Print on layer 21.
  • the main body formed the first contact electrode 31 in the first insulating layer 12 by drying and curing the conductive paste printed on the first insulating layer 12 and the second insulating layer 21 at a high temperature. Domes 10a and 20a are formed in the portion and the portion of the second insulating layer 21 where the second contact electrode 32 is formed.
  • the heater device 1 can be manufactured by such a manufacturing method. Moreover, a dome part is comprised in the part in which the electrode was formed, without performing separately the process of forming a contact in the 1st sheet member 10 or the 2nd sheet member 20, and the process of processing the dome parts 10a and 20a. Can do.
  • the conductive paste printed on the first insulating layer 12 and the second insulating layer 21 is dried and cured at a high temperature
  • the conductive paste printed on the first insulating layer 12 and the second insulating layer 21 is used. Is preferably dried and cured at a temperature equal to or higher than the glass transition temperature of the conductive paste.
  • FIG. 6 is a cross-sectional view of the heater device of the present embodiment.
  • both the portion where the first contact electrode 31 is formed in the first sheet member 10 and the portion where the second contact electrode 32 is formed in the second sheet member 20 are both dome portions. 10a and 20a.
  • the portion where the second contact electrode 32 is formed in the second sheet member 20 is configured as the dome portion 20a, but the first contact in the first sheet member 10 is configured.
  • the portion where the electrode 31 is formed is flat.
  • the second insulating layer 21 side forms a hollow dome shape
  • the first insulating layer 12 side is configured to be flat, but the first insulating layer 12 side forms a hollow dome shape, You may comprise so that the 2nd insulating layer 21 side may become flat.
  • the present embodiment it is possible to obtain the same effect as that of the first embodiment, which is the same as that obtained from the configuration common to the first embodiment. That is, even when the dome shape is formed only on one of the first sheet member 10 and the second sheet member 20, the same effect as that of the heater device of the first embodiment can be obtained.
  • FIG. 7 is a cross-sectional view of the heater device 1 of the present embodiment.
  • between the 1st sheet member 10 and the 2nd sheet member 20 was made to adhere by thermocompression bonding.
  • the adhesive 60 is bonded between the fixing portion 10x of the first sheet member 10 and the fixing portion 20x of the second sheet member 20.
  • the distance between the first contact electrode 31 and the second contact electrode 32 can be increased by bonding the first sheet member 10 and the second sheet member 20 with the adhesive 60.
  • thermocompression bonding and bonding with the adhesive 60 for example, by thermal wearing It can also be fixed.
  • FIG. 8 is a cross-sectional view of the heater device 1 of the present embodiment.
  • FIG. 9 is a diagram for explaining the operation of the contact detection unit of the heater device 1 of the present embodiment.
  • FIG. 10 is a view showing the arrangement of the first contact electrode and the second contact electrode of the heater device 1 according to the present embodiment.
  • the first contact electrode 31 has a circular shape.
  • the first contact electrode is divided into the first contact electrode 31a and the first contact electrode 31b. ing. Specifically, the first contact electrode 31a and the first contact electrode 31b each have a semicircular shape.
  • the first contact electrode 31a has a positive polarity, and the first contact electrode 31b has a negative polarity.
  • the first contact electrodes 31a are connected to each other via the intermediate electrode 34a.
  • Each first contact electrode 31a is connected to a power supply terminal via an intermediate electrode 34a.
  • the first contact electrodes 31b are connected to each other via the intermediate electrode 34b.
  • Each first contact electrode 31b is connected to a ground terminal via an intermediate electrode 34b.
  • the intermediate electrode 34a connected to the power supply terminal and the intermediate electrode 34b connected to the ground terminal are formed on the first sheet member 10 side.
  • each second contact electrode 32 of the heater device 1 of the present embodiment is electrically separated.
  • Each second contact electrode 32 is provided as a conductor that conducts between the first contact electrode 32a and the first contact electrode 32b.
  • FIG. 9 is a diagram for explaining the operation of the contact detection unit 53.
  • the first contact electrodes 31 a and 31 b are disposed so as to face the second contact electrode 32.
  • the first contact electrode 31a and the second contact electrode 32 and the first contact electrode 31b and the second contact electrode 32 are open as shown in FIG. 9A, the first contact electrode 31a.
  • the second contact electrode 32 and between the first contact electrode 31b and the second contact electrode 32 become non-conductive.
  • no current flows through the resistor 51.
  • the voltage between the terminals of the resistor 51 is less than a predetermined voltage. Therefore, the contact detection unit 53 outputs a signal indicating that there is no object contact to the heater device 1 to the control unit.
  • an object comes into contact with the heat generating portion 11, and the first contact electrode 31a and the second contact electrode 32 are short-circuited, and the first contact electrode 31b and the second contact are also short-circuited.
  • the electrode 32 is short-circuited, the first contact electrode 31 a and the first contact electrode 31 b are in a conductive state via the second contact electrode 32, and a current I flows through the resistor 51.
  • the voltage between the terminals of the resistor 51 is equal to or higher than a predetermined voltage. Therefore, the contact detection unit 53 outputs a signal indicating that an object is in contact with the heater device 1 to the control unit.
  • the first contact electrode 32a and the first contact electrode 32b are arranged on the first sheet member 10 side, respectively, and the intermediate electrode 34a connected to the power supply terminal and the intermediate connected to the ground terminal
  • the electrode 34b is disposed on the first sheet member 10 side. Therefore, the intermediate electrode 34a connected to the power supply terminal and the intermediate electrode 34b connected to the ground terminal can be formed on the sheet member on one side. Thereby, the structure of the external wiring connected to the power supply terminal and the ground terminal can be simplified.
  • FIG. 11 is a cross-sectional view of the heater device 1 of the present embodiment.
  • the first contact electrode 31 is formed on one surface side of the heat generating portion 11 in the first sheet member 10.
  • the insulating layer 13 is disposed between the heat generating portion 11 and the first contact electrode 31.
  • the insulating layer 13 may be disposed between the heat generating part 11 and the first contact electrode 31 to insulate the heat generating part 11 and the first contact electrode 31.
  • FIG. 12 is a front view of the heater device 1 of the present embodiment.
  • the first contact electrode 31 and the second contact electrode 32 are arranged in regions covering almost the entire area of the heat generating portion 11.
  • the first contact electrode 31 and the second contact electrode 32 are arranged in a partial region of the center with respect to the heat generating portion 11 spreading in a planar shape.
  • the contact of the object is detected, and in the region where the first contact electrode 31 and the second contact electrode 32 are not disposed, the contact of the object is detected. It is configured not to detect.
  • first contact electrode 31 and the second contact electrode 32 can be arranged in a partial region with respect to the heat generating portion 11 spreading in a planar shape.
  • the contact electrode paste 100 is applied by printing.
  • the contact electrode paste 100 may be applied manually.
  • the contact electrode paste 100 is dried at a temperature equal to or higher than the glass transition temperature of the contact electrode paste 100. If the contact electrode paste 100 does not have a glass transition point, the contact electrode paste 100 may be dried at a temperature equal to or higher than the softening temperature of the contact electrode paste 100. In addition, when the heat generation temperature of the heat generating portion 11 is equal to or higher than the glass transition temperature or the softening temperature, the dome-shaped dome portions 10a and 20a may be deformed. For this reason, the heater device is configured so that the heat generation temperature of the heat generating portion 11 is lower than the glass transition temperature or lower than the softening temperature of the contact electrode paste 100.
  • the contact electrode paste 100 having a larger linear expansion coefficient than the insulating layer is printed on the insulating layer, and the contact electrode paste 100 printed on the insulating layer is dried and cured at a high temperature
  • the dome portions 10a and 20a were configured by cooling the insulating layer and returning to normal temperature.
  • the outer edge portions of the dome portions 10a and 20a are circular.
  • the outer edge portions of the dome portions 10a and 20a are not limited to a circle but may be a polygon.
  • the arrangement of the plurality of first contact electrodes 31 may be as shown in FIG. In the example of FIG. 13, the point that the plurality of first contact electrodes 31 are arranged in a matrix is the same as in each of the above embodiments.
  • the combination of positions is the same. Therefore, in each row, the combination of the positions in the column direction of all the first contact electrodes 31 in the row and the combination of the positions in the column direction of all the first contact electrodes 31 in the row adjacent to the row are the same. .
  • the combination of is the same. Therefore, in each column, the combination of the positions in the row direction of all the first contact electrodes 31 in the column and the combination of the positions in the row direction of all the first contact electrodes 31 in the row adjacent to the column are the same. It is.
  • the range of the existing positions in the row direction of all the first contact electrodes 31 in that row, and the range of the existing positions in the row direction of all the first contact electrodes 31 in the row adjacent to that row. Does not overlap even partially.
  • the range of the position of all the first contact electrodes 31 in the column in the column direction, and the position of all the first contact electrodes 31 in the column adjacent to the column in the column direction does not overlap even partly.
  • the first contact electrodes 31 other than the first contact electrodes 31 at the end portions are surrounded by only the four first contact electrodes 31 closest to each other.
  • the first contact electrode 31 other than the first contact electrode 31 at the end includes another first contact electrode 31 whose distance from the center of the first contact electrode 31 is equal to or less than the reference distance.
  • the reference distance is a distance having the same length as the maximum diameter of the first contact electrode 31.
  • each first contact electrode 31 and the other first contact electrode closest to the first contact electrode 31 are arranged in the column direction. In this example, each first contact electrode 31 and the other first contact electrode closest to the first contact electrode 31 are arranged in the row direction.
  • the positions of the first contact electrodes 31 at both ends in the column direction are the same in any row.
  • the length of the entire first contact electrode 31 belonging to the same row in the column direction is the same in any row.
  • the number of first contact electrodes 31 belonging to the same row is the same in every row.
  • the arrangement feature of the first contact electrode 31 is the same for the dome portion 10a, the second contact electrode 32, and the dome portion 10b.
  • the heater device includes a portion where the first electrode in the first sheet member is formed and a second electrode in the second sheet member. At least one of these portions is configured as a dome portion having a dome shape that is convex toward the opposite surface side with respect to the opposing surfaces of the first sheet member and the second sheet member. And the force which ensures the space
  • the dome portion is configured in both the portion of the first sheet member where the first electrode is formed and the portion of the second sheet member where the second electrode is formed.
  • the distance of a 1st electrode and a 2nd electrode can be lengthened compared with the case where a dome part is comprised in either one of a 1st sheet member and a 2nd sheet member.
  • a contact detection unit that detects contact or non-contact of an object with the first sheet member based on whether or not the first electrode and the second electrode are in a conductive state is provided. Thereby, it is possible to easily detect contact or non-contact of an object with the first sheet member.
  • the 1st electrode formed in the 1st sheet member and the 2nd electrode formed in the 2nd sheet member are arranged over the whole exothermic part 11 so that there may be no gap of 4 millimeters or more. Yes. Thereby, even when a child's finger contacts, it is possible to reliably detect contact.
  • the first sheet member and the second sheet member are fixed to each other in a region around the portion where the first electrode and the second electrode arranged to face each other are formed. In this manner, the first sheet member and the second sheet member can be fixed in the region around the portion where the first electrode and the second electrode arranged to face each other are formed.
  • the portion of the first sheet member where the first electrode is formed is configured as a dome portion, and the first electrode is made of a conductive paste having a larger linear expansion coefficient than the first insulating layer. It is formed using.
  • the first electrode can be formed using a conductive paste having a larger linear expansion coefficient than the first insulating layer.
  • the portion of the second sheet member where the second electrode is formed is configured as a dome portion, and the second electrode is made of a conductive paste having a larger linear expansion coefficient than the second insulating layer. It is formed using.
  • the second electrode can be formed using a conductive paste having a larger linear expansion coefficient than the second insulating layer.
  • the heater device includes a first sheet member (10) and a second sheet member (20).
  • the first sheet member is formed on a sheet-like heat generating portion that generates heat when energized, a first insulating layer on which the heat generating portion is provided on one surface side, and a surface opposite to the first insulating layer side of the heat generating portion.
  • the second sheet member includes a second insulating layer (21) disposed to face the one surface of the first insulating layer, and the plurality of first electrodes formed on the first insulating layer of the second insulating layer.
  • a plurality of second electrodes (32) formed at opposing positions.
  • At least one of the portion of the first sheet member where the plurality of first electrodes are formed and the portion of the second sheet member where the plurality of second electrodes are formed are the first sheet member and the second sheet. It is configured as a plurality of dome portions (10a, 20a) that form a dome shape convex toward the opposite surface side with respect to the opposing surfaces of the members. The shortest distance between a pair of adjacent dome parts among the plurality of dome parts is smaller than any of the maximum diameters of the pair of dome parts.
  • a method for manufacturing a heater device wherein a conductive paste having a linear expansion coefficient larger than that of a first insulating layer is applied to the first insulating layer, and a wire is formed more than the second insulating layer. At least one of applying a conductive paste having a large expansion coefficient to the second insulating layer is performed. Thereafter, the conductive paste applied to at least one of the first insulating layer and the second insulating layer is dried and cured at a high temperature, so that the portion of the first insulating layer where the first electrode is formed and the second insulating layer A dome portion is formed on at least one of the portions where the second electrode is formed.
  • the heater device according to the present disclosure can be manufactured by such a manufacturing method. Further, the dome portion can be formed in the portion where the electrode is formed without separately performing the step of forming the contact point on the first sheet member or the second sheet member and the step of processing the dome portion.
  • the conductive paste applied to at least one of the first insulating layer and the second insulating layer is dried and cured at a temperature equal to or higher than the glass transition temperature of the conductive paste or equal to or higher than the softening temperature of the conductive paste. It is preferable to do so.

Abstract

This heater device comprises: a first sheet member (10) having a sheet-form heating unit (11) generating heat by being electrified, a first insulation layer (12) whereof one surface side is provided with the heating unit, and first electrodes (31, 31a, 31b) each formed on the surface side of the heating unit facing away from the first insulation layer side; and a second sheet member (20) having a second insulation layer (21) disposed to face the one surface of the first insulation layer, and second electrodes (32) formed at positions on the second insulation layer respectively facing the first electrodes formed on the first insulation layer. At least one among the portions in the first sheet member where the first electrodes are formed and the portions in the second sheet member where the second electrodes are formed is configured as dome portions (10a, 20a) yielding dome-shapes protruding toward the surface sides that face away from the surfaces of the first sheet member and the second sheet member which face each other.

Description

ヒータ装置、およびヒータ装置の製造方法Heater device and method for manufacturing heater device 関連出願への相互参照Cross-reference to related applications
 本出願は、2015年12月9日に出願された日本特許出願番号2015-240494号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2015-240494 filed on Dec. 9, 2015, the description of which is incorporated herein by reference.
 本開示は、通電により発熱する発熱部の熱によって輻射熱を放射するヒータ装置、およびヒータ装置の製造方法に関するものである。 The present disclosure relates to a heater device that radiates radiant heat by heat of a heat generating portion that generates heat when energized, and a method of manufacturing the heater device.
 従来、基板部に埋設された電極と複数の発熱部を有する輻射ヒータ装置が、例えば、特許文献1に記載されている。このヒータ装置では、電極と発熱部が基板の内部において電気的に接続され、かつ、それぞれ膜状に形成されている。このヒータ装置では、電極と発熱部とが膜状に形成されているので、物体が発熱部に接触すると発熱部の温度が迅速に低下して安全性が確保される。 Conventionally, for example, Patent Document 1 discloses a radiation heater device having an electrode embedded in a substrate portion and a plurality of heat generating portions. In this heater device, the electrode and the heat generating portion are electrically connected inside the substrate, and each is formed in a film shape. In this heater device, since the electrode and the heat generating portion are formed in a film shape, when an object comes into contact with the heat generating portion, the temperature of the heat generating portion is quickly reduced to ensure safety.
特開2014-189251号公報JP 2014-189251 A
 上記特許文献1に記載された装置は、物体が発熱部に接触すると発熱部の温度が迅速に低下するようになっているものの、物体が発熱部に接触し続けていると、発熱部の温度は徐々に上昇し、ユーザに熱的な不快感を与えてしまうといった問題がある。そこで、物体を検知するスイッチを備え、このスイッチにより物体が検知されたときに発熱部への通電量を低下させるといったことが考えられる。 The apparatus described in Patent Document 1 is such that the temperature of the heat generating part decreases rapidly when the object contacts the heat generating part, but if the object continues to contact the heat generating part, the temperature of the heat generating part Rises gradually, giving the user a thermal discomfort. Therefore, it is conceivable that a switch for detecting an object is provided, and when the object is detected by this switch, the energization amount to the heat generating portion is reduced.
 このような物体の接触を検知するものとして、例えば、特開2006-202732号公報(以下、特許文献2とういう)に記載されたスイッチがある。このスイッチは、第1シートである絶縁層と、この第1シートの一面に形成された固定接点と、第1シートの一面に対向する第2シートである絶縁層とを備えている。さらにこのスイッチは、可撓性可動接点を有する。可撓性可動接点は、第2シートの一面に形成され、空間を介して固定接点に離接可能に対向する。さらにこのスイッチは、可撓性可動接点上であって、その押圧部を除く位置に設けられた絶縁体を備えている。 For example, there is a switch described in Japanese Patent Application Laid-Open No. 2006-202732 (hereinafter referred to as Patent Document 2) as a device that detects the contact of such an object. The switch includes an insulating layer as a first sheet, a fixed contact formed on one surface of the first sheet, and an insulating layer as a second sheet facing the one surface of the first sheet. Furthermore, the switch has a flexible movable contact. The flexible movable contact is formed on one surface of the second sheet and opposes the fixed contact through the space so as to be detachable. Further, the switch includes an insulator provided on the flexible movable contact and at a position excluding the pressing portion.
 しかし、上記特許文献2に記載されたスイッチを上記特許文献1に記載されたヒータ装置に密着させた場合、ヒータ装置の熱により第1シート(すなわち絶縁層)が熱劣化する。すると、第1シートが弛んで第1シートが第2シートの上の垂れ落ちてしまう場合がある。この場合、物体が接触していないにも関わらず、固定接点と可動接点が接触して物体が接触していると誤検知してしまうことが考えられる。 However, when the switch described in Patent Document 2 is brought into close contact with the heater device described in Patent Document 1, the first sheet (that is, the insulating layer) is thermally deteriorated by the heat of the heater device. Then, the first sheet may sag and the first sheet may sag over the second sheet. In this case, although the object is not in contact, it may be erroneously detected that the fixed contact and the movable contact are in contact and the object is in contact.
 このため、第1、第2シートの厚さを厚くして耐熱性を向上したり、第1シートと第2シートの間隔を維持するためのスペーサの厚さを厚くして固定接点(すなわち固定電極)と可動接点(すなわち可動電極)の距離を長くしたりする等の対策が必要となる。 For this reason, the thickness of the first and second sheets is increased to improve heat resistance, or the spacer for maintaining the distance between the first sheet and the second sheet is increased to increase the fixed contact (that is, the fixed contact). It is necessary to take measures such as increasing the distance between the electrode) and the movable contact (that is, the movable electrode).
 しかし、第1、第2シートおよびスペーサの厚さを厚くすると、第1、第2シートおよびスペーサの熱容量が大きくなり、ヒータ作動時に第1、第2シートおよびスペーサに蓄熱される熱量が多くなる。 However, if the thicknesses of the first and second sheets and spacers are increased, the heat capacities of the first and second sheets and spacers increase, and the amount of heat stored in the first and second sheets and spacers increases when the heater is activated. .
 本発明者らは、このように第1、第2シートおよびスペーサに蓄熱される熱量が多くなると、例えば、人体の指が発熱部に触れた瞬間に指への熱の移動が多くなり、本来の触れた部分の温度が迅速に低下して安全性が確保されるという効果が損なわれるといった問題を見出した。 When the amount of heat stored in the first and second sheets and the spacers increases in this way, for example, the heat transfer to the fingers increases at the moment when the finger of the human body touches the heat generating part. The temperature of the part which touched fell rapidly, and the problem that the effect that safety was ensured was impaired was discovered.
 本開示は、熱容量の増加を抑えながら電極間の空間を確保できるヒータ装置を提供すること、およびそのヒータ装置の製造方法を提供することを、目的とする。 This disclosure is intended to provide a heater device that can secure a space between electrodes while suppressing an increase in heat capacity, and to provide a method for manufacturing the heater device.
 本開示の1つの観点によれば、ヒータ装置は、通電により発熱するシート状の発熱部(11)と、発熱部が一面側に設けられた第1絶縁層と、発熱部の第1絶縁層側と反対面側に形成された第1電極と、を有する第1シート部材と、第1絶縁層の一面と対向配置された第2絶縁層と、第2絶縁層の第1電極と対向する位置に形成された第2電極と、を有する第2シート部材と、を備えている。そして、第1シート部材における第1電極が形成された部分および第2シート部材における第2電極が形成された部分の少なくとも一方は、第1シート部材および第2シート部材の対向する面に対して反対面側に向かって凸となるドーム状をなすドーム部として構成されている。 According to one aspect of the present disclosure, the heater device includes a sheet-like heat generating portion (11) that generates heat by energization, a first insulating layer provided with the heat generating portion on one side, and a first insulating layer of the heat generating portion. A first sheet member having a first electrode formed on a side opposite to the first side, a second insulating layer disposed opposite to one surface of the first insulating layer, and a first electrode of the second insulating layer A second sheet member having a second electrode formed at a position. And at least one of the part in which the 1st electrode in the 1st sheet member was formed, and the part in which the 2nd electrode in the 2nd sheet member was formed is with respect to the surface where the 1st sheet member and the 2nd sheet member oppose It is comprised as a dome part which makes the dome shape which becomes convex toward the opposite surface side.
 このような構成によれば、第1シート部材における第1電極が形成された部分および第2シート部材における第2電極が形成された部分の少なくとも一方は、第1シート部材および第2シート部材の対向する面に対して反対面側に向かって凸となるドーム状をなすドーム部として構成されている。そして、このような形状により第1電極と第2電極の間隔を確保する力が生じる。したがって、熱容量を増加させることなく電極間の空間を確保することができる。 According to such a configuration, at least one of the portion of the first sheet member where the first electrode is formed and the portion of the second sheet member where the second electrode is formed is the first sheet member and the second sheet member. It is comprised as a dome part which makes the dome shape which becomes convex toward the opposite surface side with respect to the opposing surface. And the force which ensures the space | interval of a 1st electrode and a 2nd electrode arises with such a shape. Therefore, a space between the electrodes can be secured without increasing the heat capacity.
 また、別の観点によればヒータ装置の製造方法は、第1絶縁層よりも線膨張係数の大きい導電性ペーストを第1絶縁層に塗布すること、および、第2絶縁層よりも線膨張係数の大きい導電性ペーストを第2絶縁層に塗布することの少なくとも一方を行い、第1絶縁層および第2絶縁層の少なくとも一方に塗布された導電性ペーストを高温下で乾燥および硬化させることで、第1絶縁層における第1電極が形成された部分および第2絶縁層における第2電極が形成された部分の少なくとも一方に、ドーム部を構成する。 According to another aspect, the method for manufacturing a heater device includes: applying a conductive paste having a larger linear expansion coefficient than the first insulating layer to the first insulating layer; and increasing the linear expansion coefficient than the second insulating layer. Performing at least one of applying a large conductive paste to the second insulating layer, and drying and curing the conductive paste applied to at least one of the first insulating layer and the second insulating layer at a high temperature, A dome part is comprised in at least one of the part in which the 1st electrode in the 1st insulating layer was formed, and the part in which the 2nd electrode in the 2nd insulating layer was formed.
 このような製造方法により、本開示のヒータ装置を製造することができる。 The heater device of the present disclosure can be manufactured by such a manufacturing method.
第1実施形態に係るヒータ装置の正面図である。It is a front view of the heater device concerning a 1st embodiment. 図1中のII-II線に沿った断面図である。FIG. 2 is a cross-sectional view taken along line II-II in FIG. 第1実施形態に係るヒータ装置の第1接点電極および第2接点電極の配置を示した図である。It is the figure which showed arrangement | positioning of the 1st contact electrode and 2nd contact electrode of the heater apparatus which concerns on 1st Embodiment. 第1実施形態に係るヒータ装置の接触検知部の作動について説明するための図である。It is a figure for demonstrating the action | operation of the contact detection part of the heater apparatus which concerns on 1st Embodiment. 第2接点電極の成形方法について説明するための図である。It is a figure for demonstrating the shaping | molding method of a 2nd contact electrode. 第2実施形態に係るヒータ装置の断面図である。It is sectional drawing of the heater apparatus which concerns on 2nd Embodiment. 第3実施形態に係るヒータ装置の断面図である。It is sectional drawing of the heater apparatus which concerns on 3rd Embodiment. 第4実施形態に係るヒータ装置の断面図である。It is sectional drawing of the heater apparatus which concerns on 4th Embodiment. 第4実施形態に係るヒータ装置の接触検知部の作動について説明するための図である。It is a figure for demonstrating the action | operation of the contact detection part of the heater apparatus which concerns on 4th Embodiment. 第4実施形態に係るヒータ装置の第1接点電極および第2接点電極の配置を示した図である。It is the figure which showed arrangement | positioning of the 1st contact electrode and 2nd contact electrode of the heater apparatus which concerns on 4th Embodiment. 第5実施形態に係るヒータ装置の断面図である。It is sectional drawing of the heater apparatus which concerns on 5th Embodiment. 第6実施形態に係るヒータ装置の正面図である。It is a front view of the heater device concerning a 6th embodiment. 変形例に係るヒータ装置の正面図である。It is a front view of the heater apparatus which concerns on a modification.
 以下、実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Hereinafter, embodiments will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.
 (第1実施形態)
 第1実施形態に係るヒータ装置の構成について図1~図5を用いて説明する。図1は、第1実施形態に係るヒータ装置1の正面図である。なお、図1は、第1絶縁層12を省略して示してある。図2は、図1中のII-II線に沿った断面図である。
(First embodiment)
The configuration of the heater device according to the first embodiment will be described with reference to FIGS. FIG. 1 is a front view of the heater device 1 according to the first embodiment. In FIG. 1, the first insulating layer 12 is omitted. FIG. 2 is a cross-sectional view taken along line II-II in FIG.
 本実施形態のヒータ装置1は、道路走行車両の室内に設置される。ヒータ装置1は、室内のための暖房装置の一部を構成している。ヒータ装置1は、道路走行車両に搭載された電池、発電機などの電源から給電されて発熱する電気的なヒータである。ヒータ装置1は、薄いシート状に形成されている。ヒータ装置1は、その表面と垂直な方向に位置づけられた加熱対象物を暖めるために、主としてその表面と垂直な方向へ向けて輻射熱を放射する。 The heater device 1 of the present embodiment is installed in a room of a road traveling vehicle. The heater device 1 constitutes a part of a room heating device. The heater device 1 is an electric heater that generates heat by being fed from a power source such as a battery or a generator mounted on a road vehicle. The heater device 1 is formed in a thin sheet shape. The heater device 1 radiates radiant heat mainly in a direction perpendicular to the surface in order to warm an object to be heated positioned in a direction perpendicular to the surface.
 ヒータ装置1は、第1シート部材10および第2シート部材20を一体化して構成されている。ヒータ装置1の厚さtは、40~80ミクロン程度となっている。 The heater device 1 is configured by integrating a first sheet member 10 and a second sheet member 20. The thickness t of the heater device 1 is about 40 to 80 microns.
 第1シート部材10は、発熱部11、第1絶縁層12および第1接点電極31と、を有している。発熱部11は、第1絶縁層12の一面側に形成されている。発熱部11は、通電により発熱する。第1絶縁層12は、優れた電気絶縁性を有し、かつ、高温に耐える樹脂材料によって作られている。第1絶縁層12は、フィルム状をなしている。第1接点電極31は、発熱部11の第1絶縁層12側と反対面側に形成されている。 The first sheet member 10 includes a heat generating portion 11, a first insulating layer 12, and a first contact electrode 31. The heat generating part 11 is formed on one surface side of the first insulating layer 12. The heat generating part 11 generates heat when energized. The first insulating layer 12 is made of a resin material having excellent electrical insulation and withstanding high temperatures. The first insulating layer 12 has a film shape. The first contact electrode 31 is formed on the surface of the heat generating portion 11 opposite to the first insulating layer 12 side.
 第2シート部材20は、第2絶縁層21および第2接点電極32を有している。第2絶縁層21は、優れた電気絶縁性を有し、かつ、高温に耐える樹脂材料によって作られている。第2絶縁層21は、フィルム状をなしている。第2接点電極32は、第2絶縁層21の第1絶縁層12に形成された第1接点電極31と対向する位置に形成されている。つまり、第2接点電極32は、第2絶縁層21の第1接点電極31側の面に形成されている。 The second sheet member 20 has a second insulating layer 21 and a second contact electrode 32. The second insulating layer 21 is made of a resin material that has excellent electrical insulation and withstands high temperatures. The second insulating layer 21 has a film shape. The second contact electrode 32 is formed at a position facing the first contact electrode 31 formed on the first insulating layer 12 of the second insulating layer 21. That is, the second contact electrode 32 is formed on the surface of the second insulating layer 21 on the first contact electrode 31 side.
 発熱部11は、上記特許文献1に記載されたヒータ装置と同様の構成となっている。すなわち、発熱部11は、軸Xと軸Yによって規定されるX-Y平面に沿って広がっている。発熱部11は、ほぼ四角形の薄い面状に形成されている。軸X、軸Yは、互いに直交すると共に、軸Zにも直交する。軸Zは、第1シート部材10と第2シート部材の積層方向に平行であると共に、ヒータ装置1の表面に垂直である。また、軸Xは、ヒータ装置1および発熱部11の長手方向に平行である。また、軸Yは、ヒータ装置1および発熱部11の短手方向に平行である。 The heat generating part 11 has the same configuration as the heater device described in Patent Document 1 above. That is, the heat generating portion 11 extends along the XY plane defined by the axis X and the axis Y. The heat generating part 11 is formed in a substantially rectangular thin surface. The axes X and Y are orthogonal to each other and are also orthogonal to the axis Z. The axis Z is parallel to the stacking direction of the first sheet member 10 and the second sheet member and is perpendicular to the surface of the heater device 1. The axis X is parallel to the longitudinal direction of the heater device 1 and the heat generating part 11. Further, the axis Y is parallel to the short direction of the heater device 1 and the heat generating unit 11.
 発熱部11は、第1絶縁層12の一面側に形成された電極と、複数の発熱体(いずれも図示せず)とを有している。発熱部11の電極は、固有抵抗が低い材料によって形成され、発熱体は、輻射熱を生じるように発熱するために固有抵抗が高い材料によって形成されている。 The heat generating part 11 has an electrode formed on one surface side of the first insulating layer 12 and a plurality of heat generating elements (none of which are shown). The electrode of the heat generating portion 11 is formed of a material having a low specific resistance, and the heating element is formed of a material having a high specific resistance in order to generate heat so as to generate radiant heat.
 発熱部11の電極と発熱体とは、電気的に接続されている。複数の発熱体は、一対の発熱部11の電極の間に並列的に配置されている。発熱部11の電極と発熱体とは、膜状に形成されており、熱的な容量が抑制されている。この結果、通電に応答して発熱体の温度は迅速に上昇する。また、物体が接触すると発熱体の温度は迅速に低下する。 The electrode of the heat generating part 11 and the heating element are electrically connected. The plurality of heating elements are arranged in parallel between the electrodes of the pair of heating portions 11. The electrode and the heating element of the heat generating part 11 are formed in a film shape, and the thermal capacity is suppressed. As a result, the temperature of the heating element rises quickly in response to energization. Further, when the object comes into contact, the temperature of the heating element quickly decreases.
 第1接点電極31および第2接点電極32は、発熱部11に対する物体の接触を検知する接触検知部を構成している。図1に示したように、第1接点電極31および第2接点電極32の各々は、それぞれ円形状を成している。図2に示したように、第1接点電極31および第2接点電極32は、空間層33を挟んで対向配置されている。第1接点電極31および第2接点電極32は、発熱部11のほぼ全域を覆う領域に配置されている。 The first contact electrode 31 and the second contact electrode 32 constitute a contact detection unit that detects contact of an object with the heat generating unit 11. As shown in FIG. 1, each of the first contact electrode 31 and the second contact electrode 32 has a circular shape. As shown in FIG. 2, the first contact electrode 31 and the second contact electrode 32 are disposed to face each other with the space layer 33 interposed therebetween. The first contact electrode 31 and the second contact electrode 32 are arranged in a region covering almost the entire area of the heat generating portion 11.
 第1シート部材10における第1接点電極31が形成された部分は、第1シート部材10および第2シート部材20の対向する面に対して反対面側に向かって凸となるドーム状をなすドーム部10aとして構成されている。この「対向する面」は、第1シート部材10と第2シート部材20に挟まれた仮想的な面である。この「対向する面」は、平面であってもよいし、曲面であってもよい。別の観点では、第1シート部材10における第1接点電極31が形成された部分は、第2シート部材20側とは反対側に向かって凸となるドーム状をなすドーム部10aとして構成されている。 The portion where the first contact electrode 31 is formed in the first sheet member 10 is a dome that is convex toward the opposite surface side with respect to the opposing surfaces of the first sheet member 10 and the second sheet member 20. It is configured as a part 10a. This “opposing surface” is a virtual surface sandwiched between the first sheet member 10 and the second sheet member 20. This “opposing surface” may be a flat surface or a curved surface. In another aspect, the portion of the first sheet member 10 where the first contact electrode 31 is formed is configured as a dome portion 10a having a dome shape that is convex toward the opposite side to the second sheet member 20 side. Yes.
 さらに、第2シート部材20における第2接点電極32が形成された部分も、第1シート部材10および第2シート部材20の対向する面に対して反対面側に向かって凸となるドーム状をなすドーム部20aとして構成されている。別の観点では、第2シート部材20における第2接点電極32が形成された部分は、第1シート部材10側とは反対側に向かって凸となるドーム状をなすドーム部20aとして構成されている。 Furthermore, the portion of the second sheet member 20 where the second contact electrode 32 is formed also has a dome shape that is convex toward the opposite surface side with respect to the opposing surfaces of the first sheet member 10 and the second sheet member 20. The dome portion 20a is formed. In another aspect, the portion of the second sheet member 20 where the second contact electrode 32 is formed is configured as a dome portion 20a having a dome shape that protrudes toward the side opposite to the first sheet member 10 side. Yes.
 ドーム部10a、20aがドーム状を成すとは、ドーム部10a、20aが、その外縁部からその頂点10z、20zに向かうにつれて、徐々に上記対向する面から遠ざかるように、凸となることをいう。ドーム部10a、20aの外縁部は、ドーム部10a、20aのうち最も上記対向する面に近い位置にある。ドーム部10a、20aの外縁部は、円形である。 The dome portions 10a and 20a form a dome shape means that the dome portions 10a and 20a become convex so as to gradually move away from the facing surfaces as they go from the outer edge portions to the vertexes 10z and 20z. . Outer edge portions of the dome portions 10a and 20a are located at positions closest to the facing surfaces of the dome portions 10a and 20a. The outer edge part of the dome parts 10a and 20a is circular.
 また、第1接点電極31と第2接点電極32は、それぞれ電極中央部が相互に距離を保つよう第1接点電極31と第2接点電極32の対向する面に対して反対面側に向かって凸となる凸形状をなしている。 Further, the first contact electrode 31 and the second contact electrode 32 are directed toward opposite surfaces with respect to the opposing surfaces of the first contact electrode 31 and the second contact electrode 32 so that the center portions of the electrodes are kept at a distance from each other. Convex shape that is convex.
 第1シート部材10および第2シート部材20は、対向するよう配置された第1接点電極31および第2接点電極32が形成された部分の周囲の領域で互いに熱圧着により固着されている。第1シート部材10のうちこのように第2シート部材20に固着された領域は、上記ドーム部10aの外縁部に隣り合う固着部10xである。第2シート部材20のうちこのように第1シート部材10に固着された領域は、上記ドーム部20aの外縁部に隣り合う固着部20xである。 The first sheet member 10 and the second sheet member 20 are fixed to each other by thermocompression bonding in a region around a portion where the first contact electrode 31 and the second contact electrode 32 arranged to face each other are formed. The region fixed to the second sheet member 20 in this manner in the first sheet member 10 is a fixed portion 10x adjacent to the outer edge portion of the dome portion 10a. The region fixed to the first sheet member 10 in this way in the second sheet member 20 is a fixed portion 20x adjacent to the outer edge portion of the dome portion 20a.
 図3は、第1接点電極31および第2接点電極32の配置を示した図である。(a)は、発熱部11に形成された第1接点電極31の配置を示した図であり、(b)は、第2絶縁層21に形成された第2接点電極32の配置を示した図である。 FIG. 3 is a view showing the arrangement of the first contact electrode 31 and the second contact electrode 32. (A) is the figure which showed arrangement | positioning of the 1st contact electrode 31 formed in the heat generating part 11, (b) showed arrangement | positioning of the 2nd contact electrode 32 formed in the 2nd insulating layer 21. FIG.
 図3の(a)に示すように、発熱部11には、複数の第1接点電極31が格子状かつマトリクス状に配置されている。また、各第1接点電極31は、中間電極34を介して互いに接続されている。また、各第1接点電極31は、中間電極34を介して電源端子に接続されるようになっている。 As shown in FIG. 3A, a plurality of first contact electrodes 31 are arranged in a lattice shape and a matrix shape in the heat generating portion 11. Further, the first contact electrodes 31 are connected to each other via the intermediate electrode 34. Further, each first contact electrode 31 is connected to a power supply terminal via an intermediate electrode 34.
 したがって、第1シート部材10には、複数のドーム部10aが格子状かつマトリクスに配置されている。複数のドーム部10aのうち、隣り合うどの一対のドーム部10aをとっても、ある関係が成立する。その関係とは、当該一対のドーム部10a間の最短距離は、当該一対のドーム部10aの最大径のいずれよりも、小さい、ということである。ここで、あるドーム部10aの最大径とは、当該ドーム部10aの外縁部のうち1点から他の1点までの直線距離のうち、最も長い距離をいう。ドーム部10aの外縁部が円形ならば、ドーム部10aの最大径は直径である。このようになっていることで、複数のドーム部10aを密に配置することができる。 Therefore, the first sheet member 10 has a plurality of dome portions 10a arranged in a grid and in a matrix. Among any one of the plurality of dome portions 10a, a certain relationship is established regardless of which pair of adjacent dome portions 10a is taken. The relationship means that the shortest distance between the pair of dome portions 10a is smaller than any of the maximum diameters of the pair of dome portions 10a. Here, the maximum diameter of a certain dome portion 10a refers to the longest distance among the linear distances from one point to the other one of the outer edge portions of the dome portion 10a. If the outer edge portion of the dome portion 10a is circular, the maximum diameter of the dome portion 10a is the diameter. With this configuration, the plurality of dome portions 10a can be densely arranged.
 なお、上記の関係は、複数のドーム部10aのうち隣り合うどの一対をとっても成立するのではなく、複数のドーム部10aから隣り合う一対のドーム部10aとして選べるすべての組み合わせのうち、一部の組み合わせについて、成立するようになっていてもよい。この場合においても、当該一部の組み合わせを構成する複数のドーム部10aについては、密に配置することができるという効果が実現する。 Note that the above relationship does not hold for any pair of adjacent dome portions 10a, but a part of all combinations that can be selected as a pair of adjacent dome portions 10a from the plurality of dome portions 10a. The combination may be established. Even in this case, the effect that the plurality of dome portions 10a constituting the partial combination can be arranged densely is realized.
 また、図3の(b)に示すように、第2絶縁層21には、複数の第2接点電極32が格子状に配置されている。各第1接点電極31と各第2接点電極32を対向させて第2絶縁層21を第1絶縁層12に重ね合わせたときに、各第2接点電極32と各第1接点電極31とが重なる位置に配置されている。また、各第2接点電極32は、中間電極35を介して互いに接続されている。また、各第2接点電極32は、中間電極35を介して接地端子に接続されるようになっている。 Further, as shown in FIG. 3B, the second insulating layer 21 has a plurality of second contact electrodes 32 arranged in a lattice pattern. When each first contact electrode 31 and each second contact electrode 32 face each other and the second insulating layer 21 is superimposed on the first insulating layer 12, each second contact electrode 32 and each first contact electrode 31 are It is arranged at the overlapping position. The second contact electrodes 32 are connected to each other via the intermediate electrode 35. Further, each second contact electrode 32 is connected to a ground terminal via an intermediate electrode 35.
 したがって、第2シート部材20には、複数のドーム部20aが格子状に配置されている。複数のドーム部20aのうち、隣り合うどの一対のドーム部20aをとっても、ある関係が成立する。その関係とは、当該一対のドーム部20a間の最短距離は、当該一対のドーム部20aの最大径のいずれよりも、小さい、ということである。ここで、あるドーム部20aの最大径とは、当該ドーム部20aの外縁部のうち1点から他の1点までの直線距離のうち、最も長い距離をいう。ドーム部20aの外縁部が円形ならば、ドーム部20aの最大径は直径である。このようになっていることで、複数のドーム部20aを密に配置することができる。 Therefore, the second sheet member 20 has a plurality of dome portions 20a arranged in a lattice pattern. Among any one of the plurality of dome parts 20a, a certain relationship is established regardless of which pair of adjacent dome parts 20a is taken. The relationship means that the shortest distance between the pair of dome portions 20a is smaller than any of the maximum diameters of the pair of dome portions 20a. Here, the maximum diameter of a certain dome portion 20a refers to the longest distance among linear distances from one point to the other one of the outer edge portions of the dome portion 20a. If the outer edge portion of the dome portion 20a is circular, the maximum diameter of the dome portion 20a is the diameter. With this configuration, the plurality of dome portions 20a can be densely arranged.
 なお、上記の関係は、複数のドーム部20aのうち隣り合うどの一対をとっても成立するのではなく、複数のドーム部20aから隣り合う一対のドーム部20aとして選べるすべての組み合わせのうち、一部の組み合わせについて、成立するようになっていてもよい。この場合においても、当該一部の組み合わせを構成する複数のドーム部20aについては、密に配置することができるという効果が実現する。 Note that the above relationship does not hold for any pair of adjacent dome portions 20a, but a part of all combinations that can be selected as a pair of adjacent dome portions 20a from the plurality of dome portions 20a. The combination may be established. Even in this case, the effect that the plurality of dome portions 20a constituting the partial combination can be arranged densely is realized.
 ここで、複数の第1接点電極31の配置について更に詳しく説明する。複数の第1接点電極31のマトリクス状の配置における各行において、その行内におけるすべての第1接点電極31の列方向の位置の組み合わせと、その行と隣り合う行内におけるすべての第1接点電極31の列方向の位置の組み合わせは、異なっている。より具体的には、各行において、その行内におけるすべての第1接点電極31の列方向の位置の組み合わせと、その行と隣り合う行内におけるすべての第1接点電極31の列方向の位置の組み合わせは、第1所定長さだけずれている。この第1所定長さは、列方向に隣り合う2つの第1接点電極31の中心間の距離である。 Here, the arrangement of the plurality of first contact electrodes 31 will be described in more detail. In each row in the matrix arrangement of the plurality of first contact electrodes 31, the combination of the positions in the column direction of all the first contact electrodes 31 in the row, and all the first contact electrodes 31 in the row adjacent to the row. The combinations of positions in the column direction are different. More specifically, in each row, the combination of the positions in the column direction of all the first contact electrodes 31 in the row and the combination of the positions in the column direction of all the first contact electrodes 31 in the row adjacent to the row are: The first predetermined length is shifted. The first predetermined length is a distance between the centers of two first contact electrodes 31 adjacent in the column direction.
 なお、複数の第1接点電極31のマトリクス状の配置における行方向は軸Yの方向に一致し、列方向は軸Xの方向に一致する。 Note that the row direction in the matrix arrangement of the plurality of first contact electrodes 31 coincides with the direction of the axis Y, and the column direction coincides with the direction of the axis X.
 また、第1接点電極31の列方向の一端部における位置は、行毎に列方向に交互にずれている。また、第1接点電極31の列方向の他端部における位置は、行毎に列方向に、かつ、第1接点電極31の列方向の一端部とは逆に、交互にずれている。この結果、同じ行に属する第1接点電極31全体の列方向の長さは、行毎に交互に増減している。そして、同じ行に属する第1接点電極31の数も、行毎に交互に増減している。 Also, the position of the first contact electrode 31 at one end in the column direction is alternately shifted in the column direction for each row. Further, the position of the first contact electrode 31 at the other end in the column direction is alternately shifted in the column direction for each row and opposite to the one end of the first contact electrode 31 in the column direction. As a result, the length in the column direction of the entire first contact electrodes 31 belonging to the same row is alternately increased or decreased for each row. The number of first contact electrodes 31 belonging to the same row is also increased or decreased alternately for each row.
 各列において、その列内におけるすべての第1接点電極31の行方向の位置の組み合わせと、その列と隣り合う列内におけるすべての第1接点電極31の行方向の位置の組み合わせは、異なっている。より具体的には、各列において、その列内におけるすべての第1接点電極31の行方向の位置の組み合わせと、その列と隣り合う列内におけるすべての第1接点電極31の行方向の位置の組み合わせは、第2所定長さだけずれている。この第2所定長さは、行方向に隣り合う2つの第1接点電極31の中心間の距離であり、上述の第1所定長さよりも長い。 In each column, the combination of the positions in the row direction of all the first contact electrodes 31 in the column and the combination of the positions in the row direction of all the first contact electrodes 31 in a column adjacent to the column are different. Yes. More specifically, in each column, combinations of positions in the row direction of all the first contact electrodes 31 in the column, and positions in the row direction of all the first contact electrodes 31 in a column adjacent to the column. Are shifted by a second predetermined length. The second predetermined length is a distance between the centers of two first contact electrodes 31 adjacent in the row direction, and is longer than the first predetermined length.
 また、各行において、その行におけるすべての第1接点電極31の行方向の存在位置の範囲と、その行と隣り合う行内におけるすべての第1接点電極31の行方向の存在位置の範囲とが、部分的に重なる。 Further, in each row, a range of existing positions in the row direction of all the first contact electrodes 31 in the row and a range of existing positions in the row direction of all the first contact electrodes 31 in a row adjacent to the row are: Partly overlap.
 また、各列において、その列におけるすべての第1接点電極31の列方向の存在位置の範囲と、その列と隣り合う列内におけるすべての第1接点電極31の列方向の存在位置の範囲とが、部分的に重なる。 Further, in each column, the range of the position in the column direction of all the first contact electrodes 31 in the column, and the range of the position in the column direction of all the first contact electrodes 31 in the column adjacent to the column, But partially overlap.
 またこの例では、端部にある第1接点電極31以外の第1接点電極31は、6つの第1接点電極31のみに一番近くで囲まれる。 Further, in this example, the first contact electrodes 31 other than the first contact electrodes 31 at the end portions are surrounded by the six first contact electrodes 31 closest to each other.
 またこの例では、端部にある第1接点電極31以外の第1接点電極31には、その第1接点電極31の中心からの距離が基準距離以下となる他の第1接点電極31が、6個だけある。ここで、基準距離とは、第1接点電極31の最大径と同じ長さの距離である。 In this example, the first contact electrode 31 other than the first contact electrode 31 at the end includes another first contact electrode 31 whose distance from the center of the first contact electrode 31 is equal to or less than the reference distance. There are only six. Here, the reference distance is a distance having the same length as the maximum diameter of the first contact electrode 31.
 またこの例では、各第1接点電極31と、その第1接点電極31に最も近い他の第1接点電極とは、列方向に並ぶ。またこの例では、各第1接点電極31と、その第1接点電極31に最も近い他の第1接点電極とは、列方向に60°の角度で交差する方向に並ぶ。 In this example, each first contact electrode 31 and the other first contact electrode closest to the first contact electrode 31 are arranged in the column direction. In this example, each first contact electrode 31 and the other first contact electrode closest to the first contact electrode 31 are arranged in a direction intersecting the column direction at an angle of 60 °.
 なお、このような第1接点電極31の配置状の特徴は、ドーム部10a、第2接点電極32、ドーム部10bについても同じことが言える。 In addition, it can be said that the arrangement feature of the first contact electrode 31 is the same for the dome portion 10a, the second contact electrode 32, and the dome portion 10b.
 図4は、接触検知部53の作動について説明するための図である。なお、ここでは、発熱部11と第1接点電極31の間が絶縁されているものとして説明する。第1接点電極31および第2接点電極32は、電源50および抵抗51と直列に接続される。接触検知部53は、抵抗51の端子間電圧が所定電圧以上の場合にヒータ装置1への物体の接触があることを示す信号を出力する。また、接触検知部53は、抵抗51の端子間電圧が所定電圧未満の場合にヒータ装置1への物体の接触がないことを示す信号を出力する。接触検知部53より出力された信号は、不図示の制御部に入力される。 FIG. 4 is a diagram for explaining the operation of the contact detection unit 53. Here, description will be made assuming that the heat generating portion 11 and the first contact electrode 31 are insulated. The first contact electrode 31 and the second contact electrode 32 are connected in series with the power source 50 and the resistor 51. The contact detection unit 53 outputs a signal indicating that an object is in contact with the heater device 1 when the voltage between the terminals of the resistor 51 is equal to or higher than a predetermined voltage. Moreover, the contact detection part 53 outputs the signal which shows that there is no contact of the object to the heater apparatus 1, when the voltage between the terminals of the resistance 51 is less than predetermined voltage. The signal output from the contact detection unit 53 is input to a control unit (not shown).
 図4の(a)に示すように、発熱部11に対する物体の接触がなく、第1接点電極31と第2接点電極32の間が開放となっている場合、第1接点電極31と第2接点電極32は非導通となり抵抗51に電流は流れない。このとき、抵抗51の端子間電圧は所定電圧未満となる。したがって、接触検知部53は、ヒータ装置1への物体の接触がないことを示す信号を制御部へ出力する。 As shown to (a) of FIG. 4, when there is no contact of the object with the heat generating part 11, and between the 1st contact electrode 31 and the 2nd contact electrode 32 is open | released, the 1st contact electrode 31 and the 2nd The contact electrode 32 becomes non-conductive and no current flows through the resistor 51. At this time, the voltage between the terminals of the resistor 51 is less than a predetermined voltage. Therefore, the contact detection unit 53 outputs a signal indicating that there is no object contact to the heater device 1 to the control unit.
 また、図4の(b)に示すように、発熱部11に物体が接触して、第1接点電極31と第2接点電極32の間が短絡した場合、第1接点電極31と第2接点電極32は導通状態となり抵抗51に電流Iが流れる。このとき、抵抗51の端子間電圧は所定電圧以上となる。したがって、接触検知部53は、ヒータ装置1への物体の接触があることを示す信号を制御部へ出力する。 In addition, as shown in FIG. 4B, when an object comes into contact with the heat generating part 11 and the first contact electrode 31 and the second contact electrode 32 are short-circuited, the first contact electrode 31 and the second contact point. The electrode 32 becomes conductive and current I flows through the resistor 51. At this time, the voltage between the terminals of the resistor 51 is equal to or higher than a predetermined voltage. Therefore, the contact detection unit 53 outputs a signal indicating that an object is in contact with the heater device 1 to the control unit.
 なお、本実施形態の第1接点電極31は、発熱部11の一面側に形成されているため、第1接点電極31と第2接点電極32の間が短絡した場合、電源50から第1接点電極31、第2接点電極32および抵抗51を通って接地端子へ電流が流れることになる。 In addition, since the 1st contact electrode 31 of this embodiment is formed in the one surface side of the heat generating part 11, when the short circuit between the 1st contact electrode 31 and the 2nd contact electrode 32 is carried out, it is the 1st contact from the power supply 50. A current flows through the electrode 31, the second contact electrode 32, and the resistor 51 to the ground terminal.
 次に、第2接点電極32の成形方法について図5を参照して説明する。ここでは、接点電極ペースト100を第2絶縁層21に印刷して1つの第2接点電極32を成形する例を示す。以下の成型方法は、作業者が種々の装置を用いて全体を行ってもよいし、自動成形装置が全体を自動的に行ってもよい。また、以下の成型方法は、作業者が種々の装置を用いて一部を行うと共に自動成形装置が残りの部分を自動的に行ってもよい。 Next, a method for forming the second contact electrode 32 will be described with reference to FIG. Here, an example of forming one second contact electrode 32 by printing the contact electrode paste 100 on the second insulating layer 21 is shown. The following molding method may be performed entirely by an operator using various apparatuses, or may be performed automatically by an automatic molding apparatus. In addition, in the following molding method, an operator may perform a part using various apparatuses and the automatic molding apparatus may automatically perform the remaining part.
 まず、この成型方法を行う主体は、図5の(a)に示すように、第2絶縁層21を用意し、常温(例えば、25℃)で、印刷により第2絶縁層21の一面側に接点電極ペースト100を形成する。ここで、接点電極ペースト100は、第2絶縁層21よりも線膨張係数が大きいものを選定しておく。 First, as shown in FIG. 5A, the main body performing this molding method prepares the second insulating layer 21 and prints it on one side of the second insulating layer 21 by printing at room temperature (for example, 25 ° C.). A contact electrode paste 100 is formed. Here, the contact electrode paste 100 having a larger linear expansion coefficient than the second insulating layer 21 is selected.
 次に上記主体は、図5の(b)に示すように、接点電極ペースト100が形成された第2絶縁層21を高温下において、接点電極ペースト100を乾燥させる。具体的には、接点電極ペースト100を、この接点電極ペースト100のガラス転移点温度以上で接点電極ペースト100を乾燥させる。これにより、接点電極ペースト100が硬化して接点電極ペースト100が第2絶縁層21に定着する。 Next, as shown in FIG. 5B, the main body dries the contact electrode paste 100 under a high temperature on the second insulating layer 21 on which the contact electrode paste 100 is formed. Specifically, the contact electrode paste 100 is dried at a temperature equal to or higher than the glass transition temperature of the contact electrode paste 100. Thereby, the contact electrode paste 100 is cured and the contact electrode paste 100 is fixed to the second insulating layer 21.
 このとき、接点電極ペースト100は、第2絶縁層21よりも線膨張係数が大きくなっているので、接点電極ペースト100の方が第2絶縁層21よりもX-Y平面方向に大きく伸びる。すなわち、接点電極ペースト100の方が第2絶縁層21よりもX-Y平面方向に大きく伸びた状態で接点電極ペースト100が硬化して接点電極32が第2絶縁層21に接着される。 At this time, since the contact electrode paste 100 has a larger linear expansion coefficient than the second insulating layer 21, the contact electrode paste 100 extends more in the XY plane direction than the second insulating layer 21. That is, the contact electrode paste 100 is cured and the contact electrode 32 is bonded to the second insulating layer 21 in a state where the contact electrode paste 100 extends more in the XY plane direction than the second insulating layer 21.
 次に、上記主体が接点電極32が形成された第2絶縁層21を冷却して常温に戻す。すると、図5の(c)に示すように、接点電極32および第2絶縁層21が元の大きさに戻ろうとする。このとき、接点電極32の方が第2絶縁層21よりも線膨張係数が大きくなっているので、接点電極32の方が第2絶縁層21よりも大きく戻ろうとする。すなわち、接点電極32の方が第2絶縁層21よりも大きく収縮するため、周長差が発生する。その結果、接点電極32が内面側に配置されたドーム形状が形成される。 Next, the main body cools the second insulating layer 21 on which the contact electrode 32 is formed and returns it to room temperature. Then, as shown in FIG. 5C, the contact electrode 32 and the second insulating layer 21 try to return to their original sizes. At this time, since the contact electrode 32 has a larger linear expansion coefficient than the second insulating layer 21, the contact electrode 32 tends to return larger than the second insulating layer 21. That is, since the contact electrode 32 contracts more than the second insulating layer 21, a difference in circumferential length occurs. As a result, a dome shape in which the contact electrode 32 is disposed on the inner surface side is formed.
 なお、接点電極ペースト100を第2絶縁層21に一定間隔おきに印刷することで、図2に示したような連続したドーム形状を形成することができる。 In addition, the continuous dome shape as shown in FIG. 2 can be formed by printing the contact electrode paste 100 on the second insulating layer 21 at regular intervals.
 以上、第2接点電極32の成形方法について説明した。なお、第1接点電極31を第1絶縁層12に成形する際にも同様に行うことができる。ただし、第1接点電極31と第1絶縁層12の間には発熱部11が設けられている。しかし、第1絶縁層12の周囲温度を変化させたとき、発熱部11は、第1絶縁層12と同様に伸縮する。 The method for forming the second contact electrode 32 has been described above. The same operation can be performed when the first contact electrode 31 is formed on the first insulating layer 12. However, the heat generating portion 11 is provided between the first contact electrode 31 and the first insulating layer 12. However, when the ambient temperature of the first insulating layer 12 is changed, the heat generating portion 11 expands and contracts similarly to the first insulating layer 12.
 つまり、第1接点電極31と第1絶縁層12の間に発熱部11が設けられていても、接点電極ペーストの線膨張係数を第1絶縁層12よりも大きくしておく。これにより、接点電極ペーストの方が第1絶縁層12および発熱部11よりも温度変化に応じて大きく伸縮するため、第2接点電極32を成形する場合と同様のドーム形状を成形することができる。 That is, even if the heat generating portion 11 is provided between the first contact electrode 31 and the first insulating layer 12, the linear expansion coefficient of the contact electrode paste is made larger than that of the first insulating layer 12. As a result, the contact electrode paste expands and contracts more greatly in response to temperature changes than the first insulating layer 12 and the heat generating portion 11, so that a dome shape similar to that for forming the second contact electrode 32 can be formed. .
 第1、第2接点電極31、32は、4ミリメートル以上の隙間がないよう発熱部11の全体にわたって配置されている。具体的には、第1、第2接点電極31、32は、4~5ミリメートル間隔で配置されている。例えば、第1、第2接点電極31、32の中心点は、4~5ミリメートル間隔で配置されている。すなわち、このようなドーム部10a、20aが4~5ミリメートル間隔で配置されている。このようにドーム部10a、20aを4~5ミリメートル間隔で配置することで、子供の指が接触した場合でも、確実に接触を検知することが可能となっている。 The first and second contact electrodes 31, 32 are arranged over the entire heat generating part 11 so that there is no gap of 4 millimeters or more. Specifically, the first and second contact electrodes 31 and 32 are arranged at intervals of 4 to 5 millimeters. For example, the center points of the first and second contact electrodes 31 and 32 are arranged at intervals of 4 to 5 millimeters. That is, such dome portions 10a and 20a are arranged at intervals of 4 to 5 millimeters. By arranging the dome portions 10a and 20a at intervals of 4 to 5 millimeters in this way, it is possible to reliably detect contact even when a child's finger contacts.
 上記したように第1シート部材10にドーム部10aを形成するとともに第2シート部材20にドーム部20aを形成する。その後、対向するよう配置された第1接点電極31および第2接点電極32が形成された部分の周囲の領域で、第1シート部材10および第2シート部材20を互いに固着させるとヒータ装置が完成する。 As described above, the dome portion 10 a is formed on the first sheet member 10 and the dome portion 20 a is formed on the second sheet member 20. Thereafter, when the first sheet member 10 and the second sheet member 20 are fixed to each other in a region around the portion where the first contact electrode 31 and the second contact electrode 32 arranged so as to face each other, the heater device is completed. To do.
 上記した構成によれば、第1シート部材10における第1接点電極31が形成された部分および第2シート部材20における第2接点電極32が形成された部分は、それぞれ、ドーム部10a、20aとして構成されている。ドーム部10a、20aは、第1シート部材10および第2シート部材20の対向する面に対して反対面側に向かって凸となる中空のドーム状をなす。そして、このような形状により第1電極と第2電極の間隔を確保する力が生じる。したがって、熱容量を増加させることなく電極間の空間を確保することができる。 According to the configuration described above, the portion of the first sheet member 10 where the first contact electrode 31 is formed and the portion of the second sheet member 20 where the second contact electrode 32 is formed are the dome portions 10a and 20a, respectively. It is configured. The dome portions 10 a and 20 a have a hollow dome shape that is convex toward the opposite surface side with respect to the opposing surfaces of the first sheet member 10 and the second sheet member 20. And the force which ensures the space | interval of a 1st electrode and a 2nd electrode arises with such a shape. Therefore, a space between the electrodes can be secured without increasing the heat capacity.
 また、ドーム部10a、20aは、第1シート部材10における第1接点電極31が形成された部分および第2シート部材20における第2接点電極32が形成された部分の両方に構成されている。したがって、ドーム部が、第1シート部材10と第2シート部材20にいずれか一方に構成されている場合と比較して、第1接点電極31と第2接点電極32の距離を長くすることができる。 Further, the dome portions 10a and 20a are configured in both the portion of the first sheet member 10 where the first contact electrode 31 is formed and the portion of the second sheet member 20 where the second contact electrode 32 is formed. Accordingly, the distance between the first contact electrode 31 and the second contact electrode 32 can be increased as compared with the case where the dome portion is formed on one of the first sheet member 10 and the second sheet member 20. it can.
 また、接触検知部53は、第1接点電極31と第2接点電極32が導通状態であるか否かに基づいて第1シート部材10への物体の接触または非接触を検知する。したがって、第1シート部材10への物体の接触または非接触を容易に検知することができる。 Further, the contact detection unit 53 detects contact or non-contact of an object with the first sheet member 10 based on whether or not the first contact electrode 31 and the second contact electrode 32 are in a conductive state. Therefore, it is possible to easily detect contact or non-contact of an object with the first sheet member 10.
 また、第1シート部材10に形成された第1接点電極31および第2シート部材20に形成された第2接点電極32は、4ミリメートル以上の隙間がないよう発熱部11の全体にわたって配置されている。したがって、例えば、子供の指が接触した場合でも、確実に接触を検知することが可能となっている。 Further, the first contact electrode 31 formed on the first sheet member 10 and the second contact electrode 32 formed on the second sheet member 20 are arranged over the entire heat generating portion 11 so that there is no gap of 4 millimeters or more. Yes. Therefore, for example, even when a child's finger contacts, it is possible to reliably detect contact.
 また、第1シート部材10および第2シート部材20は、対向するよう配置された第1接点電極31および第2接点電極32が形成された部分の周囲の領域である固着部10x、20xで、互いに固着されている。このように、対向するよう配置された第1接点電極31および第2接点電極32が形成された部分の周囲の領域で、第1シート部材10および第2シート部材20を固着することができる。 Further, the first sheet member 10 and the second sheet member 20 are fixed portions 10x and 20x, which are regions around the portion where the first contact electrode 31 and the second contact electrode 32 arranged so as to face each other, They are fixed to each other. Thus, the 1st sheet member 10 and the 2nd sheet member 20 can be fixed in the field around the part in which the 1st contact electrode 31 and the 2nd contact electrode 32 arranged so that it opposes were formed.
 また、第1シート部材10における第1接点電極31が形成された部分は、ドーム部10aとして構成されており、第1接点電極31は、第1絶縁層12より線膨張係数の大きな導電性ペーストを用いて形成することができる。 Further, the portion of the first sheet member 10 where the first contact electrode 31 is formed is configured as a dome portion 10 a, and the first contact electrode 31 is a conductive paste having a larger linear expansion coefficient than the first insulating layer 12. Can be used.
 また、第2シート部材20における第2接点電極32が形成された部分は、ドーム部20aとして構成されており、第2接点電極32は、第2絶縁層21より線膨張係数の大きな導電性ペーストを用いて形成することができる。 The portion of the second sheet member 20 where the second contact electrode 32 is formed is configured as a dome portion 20a, and the second contact electrode 32 is a conductive paste having a larger linear expansion coefficient than the second insulating layer 21. Can be used.
 また、上記主体は、第1絶縁層12よりも線膨張係数の大きい導電性ペーストを第1絶縁層12に印刷するとともに第2絶縁層21よりも線膨張係数の大きい導電性ペーストを第2絶縁層21に印刷する。その後、上記主体は、第1絶縁層12および第2絶縁層21に印刷された導電性ペーストを高温下で乾燥および硬化させることで、第1絶縁層12における第1接点電極31が形成された部分および第2絶縁層21における第2接点電極32が形成された部分に、ドーム部10a、20aを構成する。 The main body prints a conductive paste having a linear expansion coefficient larger than that of the first insulating layer 12 on the first insulating layer 12 and also performs a second insulation on the conductive paste having a linear expansion coefficient larger than that of the second insulating layer 21. Print on layer 21. After that, the main body formed the first contact electrode 31 in the first insulating layer 12 by drying and curing the conductive paste printed on the first insulating layer 12 and the second insulating layer 21 at a high temperature. Domes 10a and 20a are formed in the portion and the portion of the second insulating layer 21 where the second contact electrode 32 is formed.
 このような製造方法により、本ヒータ装置1を製造することができる。また、第1シート部材10あるいは第2シート部材20に接点を形成する行程とドーム部10a、20aを加工する行程を別々に実施することなく、電極が形成された部分にドーム部を構成することができる。 The heater device 1 can be manufactured by such a manufacturing method. Moreover, a dome part is comprised in the part in which the electrode was formed, without performing separately the process of forming a contact in the 1st sheet member 10 or the 2nd sheet member 20, and the process of processing the dome parts 10a and 20a. Can do.
 なお、第1絶縁層12および第2絶縁層21に印刷された導電性ペーストを高温下で乾燥および硬化させる際には、第1絶縁層12および第2絶縁層21に印刷された導電性ペーストを、導電性ペーストのガラス転移点温度以上で乾燥および硬化させるのが好ましい。 When the conductive paste printed on the first insulating layer 12 and the second insulating layer 21 is dried and cured at a high temperature, the conductive paste printed on the first insulating layer 12 and the second insulating layer 21 is used. Is preferably dried and cured at a temperature equal to or higher than the glass transition temperature of the conductive paste.
 (第2実施形態)
 第2実施形態に係るヒータ装置1の構成について図6を用いて説明する。図6は、本実施形態のヒータ装置の断面図である。上記第1実施形態のヒータ装置1では、第1シート部材10における第1接点電極31が形成された部分および第2シート部材20における第2接点電極32が形成された部分の両方が、ドーム部10a、20aとして構成されている。これに対し、本実施形態のヒータ装置1では、第2シート部材20における第2接点電極32が形成された部分は、ドーム部20aとして構成されているが、第1シート部材10における第1接点電極31が形成された部分は、平坦となっている。
(Second Embodiment)
The configuration of the heater device 1 according to the second embodiment will be described with reference to FIG. FIG. 6 is a cross-sectional view of the heater device of the present embodiment. In the heater device 1 of the first embodiment, both the portion where the first contact electrode 31 is formed in the first sheet member 10 and the portion where the second contact electrode 32 is formed in the second sheet member 20 are both dome portions. 10a and 20a. On the other hand, in the heater device 1 of the present embodiment, the portion where the second contact electrode 32 is formed in the second sheet member 20 is configured as the dome portion 20a, but the first contact in the first sheet member 10 is configured. The portion where the electrode 31 is formed is flat.
 ここでは、第2絶縁層21側が中空のドーム状を成して、第1絶縁層12側は平坦となるよう構成されているが、第1絶縁層12側が中空のドーム状を成して、第2絶縁層21側が平坦となるよう構成してもよい。 Here, the second insulating layer 21 side forms a hollow dome shape, and the first insulating layer 12 side is configured to be flat, but the first insulating layer 12 side forms a hollow dome shape, You may comprise so that the 2nd insulating layer 21 side may become flat.
 本実施形態では、上記第1実施形態と共通の構成から奏される効果と同様の効果を上記第1実施形態と同様に得ることができる。すなわち、第1シート部材10と第2シート部材20の一方にのみドーム形状を形成する構成としても、上記第1実施形態のヒータ装置と同様の効果を得ることができる。 In the present embodiment, it is possible to obtain the same effect as that of the first embodiment, which is the same as that obtained from the configuration common to the first embodiment. That is, even when the dome shape is formed only on one of the first sheet member 10 and the second sheet member 20, the same effect as that of the heater device of the first embodiment can be obtained.
 (第3実施形態)
 第3実施形態に係るヒータ装置1の構成について図7を用いて説明する。図7は、本実施形態のヒータ装置1の断面図である。上記各実施形態では、第1シート部材10と第2シート部材20の間を、熱圧着により固着させるようにした。
(Third embodiment)
The configuration of the heater device 1 according to the third embodiment will be described with reference to FIG. FIG. 7 is a cross-sectional view of the heater device 1 of the present embodiment. In each said embodiment, between the 1st sheet member 10 and the 2nd sheet member 20 was made to adhere by thermocompression bonding.
 これに対し、本実施形態のヒータ装置1は、第1シート部材10の固着部10xと第2シート部材20の固着部20xの間を、接着剤60により接着している。第1シート部材10および第2シート部材20の間を、接着剤60により接着することにより、第1接点電極31と第2接点電極32の距離を長くすることが可能である。 In contrast, in the heater device 1 of the present embodiment, the adhesive 60 is bonded between the fixing portion 10x of the first sheet member 10 and the fixing portion 20x of the second sheet member 20. The distance between the first contact electrode 31 and the second contact electrode 32 can be increased by bonding the first sheet member 10 and the second sheet member 20 with the adhesive 60.
 本実施形態では、上記第1実施形態と共通の構成から奏される効果と同様の効果を上記第1実施形態と同様に得ることができる。 In the present embodiment, it is possible to obtain the same effect as that of the first embodiment, which is the same as that obtained from the configuration common to the first embodiment.
 なお、第1シート部材10の固着部10xと第2シート部材20の固着部20xの間を固着する方法としては、上記した熱圧着、接着剤60による接着の他に、例えば、熱用着により固着することもできる。 In addition, as a method of adhering between the adhering portion 10x of the first sheet member 10 and the adhering portion 20x of the second sheet member 20, in addition to the above-described thermocompression bonding and bonding with the adhesive 60, for example, by thermal wearing It can also be fixed.
 (第4実施形態)
 第4実施形態に係るヒータ装置1の構成について図8~図10を用いて説明する。図8は、本実施形態のヒータ装置1の断面図である。図9は、本実施形態のヒータ装置1の接触検知部の作動について説明するための図である。図10は、本実施形態に係るヒータ装置1の第1接点電極および第2接点電極の配置を示した図である。
(Fourth embodiment)
The configuration of the heater device 1 according to the fourth embodiment will be described with reference to FIGS. FIG. 8 is a cross-sectional view of the heater device 1 of the present embodiment. FIG. 9 is a diagram for explaining the operation of the contact detection unit of the heater device 1 of the present embodiment. FIG. 10 is a view showing the arrangement of the first contact electrode and the second contact electrode of the heater device 1 according to the present embodiment.
 上記第1実施形態のヒータ装置1では、第1接点電極31が円形状をなしている。これに対し、本実施形態のヒータ装置1では、図10の(a)、(b)に示すように、第1接点電極が、第1接点電極31aおよび第1接点電極31bに、二分割されている。具体的には、第1接点電極31aおよび第1接点電極31bが、それぞれ半円形状となっている。第1接点電極31aは、+側の極性を有し、第1接点電極31bは、-側の極性を有している。 In the heater device 1 of the first embodiment, the first contact electrode 31 has a circular shape. On the other hand, in the heater device 1 of the present embodiment, as shown in FIGS. 10A and 10B, the first contact electrode is divided into the first contact electrode 31a and the first contact electrode 31b. ing. Specifically, the first contact electrode 31a and the first contact electrode 31b each have a semicircular shape. The first contact electrode 31a has a positive polarity, and the first contact electrode 31b has a negative polarity.
 図10の(a)に示すように、各第1接点電極31aは、中間電極34aを介して互いに接続されている。各第1接点電極31aは、中間電極34aを介して電源端子に接続されるようになっている。 As shown in FIG. 10A, the first contact electrodes 31a are connected to each other via the intermediate electrode 34a. Each first contact electrode 31a is connected to a power supply terminal via an intermediate electrode 34a.
 また、各第1接点電極31bは、中間電極34bを介して互いに接続されている。各第1接点電極31bは、中間電極34bを介して接地端子に接続されるようになっている。 The first contact electrodes 31b are connected to each other via the intermediate electrode 34b. Each first contact electrode 31b is connected to a ground terminal via an intermediate electrode 34b.
 本実施形態のヒータ装置1は、電源端子に接続される中間電極34aおよび接地端子に接続される中間電極34bが、第1シート部材10側に形成されている。 In the heater device 1 of the present embodiment, the intermediate electrode 34a connected to the power supply terminal and the intermediate electrode 34b connected to the ground terminal are formed on the first sheet member 10 side.
 図10の(b)に示すように、本実施形態のヒータ装置1の各第2接点電極32は、電気的に分離されている。各第2接点電極32は、第1接点電極32aと第1接点電極32bとの間を導通させる導電体として設けられている。 As shown in FIG. 10B, the second contact electrodes 32 of the heater device 1 of the present embodiment are electrically separated. Each second contact electrode 32 is provided as a conductor that conducts between the first contact electrode 32a and the first contact electrode 32b.
 図9は、接触検知部53の作動について説明するための図である。第1接点電極31a、31bは、第2接点電極32と対向するよう配置されている。図9の(a)のように第1接点電極31aと第2接点電極32の間および第1接点電極31bと第2接点電極32の間がそれぞれ開放となっている場合、第1接点電極31aと第2接点電極32の間および第1接点電極31bと第2接点電極32の間は非導通となる。このとき、抵抗51に電流は流れない。このとき、抵抗51の端子間電圧は所定電圧未満となる。したがって、接触検知部53は、ヒータ装置1への物体の接触がないことを示す信号を制御部へ出力する。 FIG. 9 is a diagram for explaining the operation of the contact detection unit 53. The first contact electrodes 31 a and 31 b are disposed so as to face the second contact electrode 32. When the first contact electrode 31a and the second contact electrode 32 and the first contact electrode 31b and the second contact electrode 32 are open as shown in FIG. 9A, the first contact electrode 31a. And the second contact electrode 32 and between the first contact electrode 31b and the second contact electrode 32 become non-conductive. At this time, no current flows through the resistor 51. At this time, the voltage between the terminals of the resistor 51 is less than a predetermined voltage. Therefore, the contact detection unit 53 outputs a signal indicating that there is no object contact to the heater device 1 to the control unit.
 また、図9の(b)に示すように、発熱部11に物体が接触して、第1接点電極31aと第2接点電極32の間が短絡するとともに、第1接点電極31bと第2接点電極32の間が短絡した場合、第1接点電極31aと第1接点電極31bは、第2接点電極32を介して導通状態となり抵抗51に電流Iが流れる。このとき、抵抗51の端子間電圧は所定電圧以上となる。したがって、接触検知部53は、ヒータ装置1への物体の接触があることを示す信号を制御部へ出力する。 Further, as shown in FIG. 9B, an object comes into contact with the heat generating portion 11, and the first contact electrode 31a and the second contact electrode 32 are short-circuited, and the first contact electrode 31b and the second contact are also short-circuited. When the electrode 32 is short-circuited, the first contact electrode 31 a and the first contact electrode 31 b are in a conductive state via the second contact electrode 32, and a current I flows through the resistor 51. At this time, the voltage between the terminals of the resistor 51 is equal to or higher than a predetermined voltage. Therefore, the contact detection unit 53 outputs a signal indicating that an object is in contact with the heater device 1 to the control unit.
 本実施形態では、上記第1実施形態と共通の構成から奏される効果と同様の効果を上記第1実施形態と同様に得ることができる。 In the present embodiment, it is possible to obtain the same effect as that of the first embodiment, which is the same as that obtained from the configuration common to the first embodiment.
 上記した構成によれば、第1接点電極32aおよび第1接点電極32bが、それぞれ第1シート部材10側に配置されるとともに、電源端子に接続される中間電極34aおよび接地端子に接続される中間電極34bが第1シート部材10側に配置されている。したがって、電源端子に接続される中間電極34aおよび接地端子に接続される中間電極34bを片側のシート部材に形成することができる。これにより、電源端子および接地端子に接続される外部配線の構造を簡素化することが可能である。 According to the configuration described above, the first contact electrode 32a and the first contact electrode 32b are arranged on the first sheet member 10 side, respectively, and the intermediate electrode 34a connected to the power supply terminal and the intermediate connected to the ground terminal The electrode 34b is disposed on the first sheet member 10 side. Therefore, the intermediate electrode 34a connected to the power supply terminal and the intermediate electrode 34b connected to the ground terminal can be formed on the sheet member on one side. Thereby, the structure of the external wiring connected to the power supply terminal and the ground terminal can be simplified.
 (第5実施形態)
 第5実施形態に係るヒータ装置1の構成について図11を用いて説明する。図11は、本実施形態のヒータ装置1の断面図である。上記第1実施形態のヒータ装置1は、第1シート部材10における発熱部11の一面側に第1接点電極31が形成されている。これに対し、本実施形態のヒータ装置1は、発熱部11と第1接点電極31の間に、絶縁層13が配置されている。
(Fifth embodiment)
The configuration of the heater device 1 according to the fifth embodiment will be described with reference to FIG. FIG. 11 is a cross-sectional view of the heater device 1 of the present embodiment. In the heater device 1 of the first embodiment, the first contact electrode 31 is formed on one surface side of the heat generating portion 11 in the first sheet member 10. On the other hand, in the heater device 1 of this embodiment, the insulating layer 13 is disposed between the heat generating portion 11 and the first contact electrode 31.
 このように、発熱部11と第1接点電極31の間に絶縁層13を配置して、発熱部11と第1接点電極31の間を絶縁することもできる。 As described above, the insulating layer 13 may be disposed between the heat generating part 11 and the first contact electrode 31 to insulate the heat generating part 11 and the first contact electrode 31.
 本実施形態では、上記第1実施形態と共通の構成から奏される効果と同様の効果を上記第1実施形態と同様に得ることができる。 In the present embodiment, it is possible to obtain the same effect as that of the first embodiment, which is the same as that obtained from the configuration common to the first embodiment.
 (第6実施形態)
 第6実施形態に係るヒータ装置1の構成について図12を用いて説明する。図12は、本実施形態のヒータ装置1の正面図である。上記第1実施形態のヒータ装置1は、第1接点電極31および第2接点電極32が、それぞれ発熱部11のほぼ全域を覆う領域に配置されている。これに対し、本実施形態のヒータ装置1は、面状に広がる発熱部11に対し、第1接点電極31および第2接点電極32が、中央の一部の領域に配置されている。
(Sixth embodiment)
The configuration of the heater device 1 according to the sixth embodiment will be described with reference to FIG. FIG. 12 is a front view of the heater device 1 of the present embodiment. In the heater device 1 according to the first embodiment, the first contact electrode 31 and the second contact electrode 32 are arranged in regions covering almost the entire area of the heat generating portion 11. On the other hand, in the heater device 1 of the present embodiment, the first contact electrode 31 and the second contact electrode 32 are arranged in a partial region of the center with respect to the heat generating portion 11 spreading in a planar shape.
 つまり、第1接点電極31および第2接点電極32が配置された領域では、物体の接触を検知し、第1接点電極31および第2接点電極32が配置されていない領域では、物体の接触を検知しないよう構成されている。 That is, in the region where the first contact electrode 31 and the second contact electrode 32 are disposed, the contact of the object is detected, and in the region where the first contact electrode 31 and the second contact electrode 32 are not disposed, the contact of the object is detected. It is configured not to detect.
 本実施形態では、上記第1実施形態と共通の構成から奏される効果と同様の効果を上記第1実施形態と同様に得ることができる。 In the present embodiment, it is possible to obtain the same effect as that of the first embodiment, which is the same as that obtained from the configuration common to the first embodiment.
 また、面状に広がる発熱部11に対し、第1接点電極31および第2接点電極32を一部の領域に配置することもできる。 Further, the first contact electrode 31 and the second contact electrode 32 can be arranged in a partial region with respect to the heat generating portion 11 spreading in a planar shape.
 (他の実施形態)
 (1)上記各実施形態では、接点電極ペースト100を印刷により塗布したが、例えば、接点電極ペースト100を手作業により塗布してもよい。
(Other embodiments)
(1) In each of the above embodiments, the contact electrode paste 100 is applied by printing. However, for example, the contact electrode paste 100 may be applied manually.
 (2)上記各実施形態では、接点電極ペースト100を、この接点電極ペースト100のガラス転移点温度以上で接点電極ペースト100を乾燥させるようにした。なお、接点電極ペースト100がガラス転移点を有していない場合には、接点電極ペースト100を、この接点電極ペースト100の軟化温度以上で乾燥させるようにしてもよい。また、発熱部11の発熱温度がガラス転移点温度または軟化温度以上になると、ドーム状のドーム部10a、20aが変形する可能正がある。このため、本ヒータ装置は、発熱部11の発熱温度を、接点電極ペースト100のガラス転移点温度未満または軟化温度未満とするよう構成されている。 (2) In the above embodiments, the contact electrode paste 100 is dried at a temperature equal to or higher than the glass transition temperature of the contact electrode paste 100. If the contact electrode paste 100 does not have a glass transition point, the contact electrode paste 100 may be dried at a temperature equal to or higher than the softening temperature of the contact electrode paste 100. In addition, when the heat generation temperature of the heat generating portion 11 is equal to or higher than the glass transition temperature or the softening temperature, the dome-shaped dome portions 10a and 20a may be deformed. For this reason, the heater device is configured so that the heat generation temperature of the heat generating portion 11 is lower than the glass transition temperature or lower than the softening temperature of the contact electrode paste 100.
 (3)上記第1実施形態では、絶縁層よりも線膨張係数の大きな接点電極ペースト100を絶縁層に印刷し、絶縁層に印刷された接点電極ペースト100を高温下で乾燥および硬化させた後、絶縁層を冷却して常温に戻すことにより、ドーム部10a、20aを構成した。これに対し、成形型を用いて接点電極を形成した絶縁層にドーム部10a、20aを構成するようにしてもよい。また、凸型の接点電極をフィルム状の絶縁層に配置することで、絶縁層にドーム部10a、20aを構成するようにしてもよい。 (3) In the first embodiment, after the contact electrode paste 100 having a larger linear expansion coefficient than the insulating layer is printed on the insulating layer, and the contact electrode paste 100 printed on the insulating layer is dried and cured at a high temperature The dome portions 10a and 20a were configured by cooling the insulating layer and returning to normal temperature. On the other hand, you may make it comprise the dome parts 10a and 20a in the insulating layer which formed the contact electrode using the shaping | molding die. Moreover, you may make it comprise the dome parts 10a and 20a in an insulating layer by arrange | positioning a convex contact electrode in a film-like insulating layer.
 (4)上記各実施形態では、本ヒータ装置1を車両に搭載する例を示したが、車両に搭載するものに限定されるものではない。 (4) In each of the above embodiments, the example in which the heater device 1 is mounted on a vehicle has been described. However, the present invention is not limited to the one mounted on the vehicle.
 (5)上記各実施形態において、ドーム部10a、20aの外縁部は、円形である。しかし、ドーム部10a、20aの外縁部は、円形に限らず、多角形であってもよい。 (5) In the above embodiments, the outer edge portions of the dome portions 10a and 20a are circular. However, the outer edge portions of the dome portions 10a and 20a are not limited to a circle but may be a polygon.
 (6)上記各実施形態において、複数の第1接点電極31の配置は、図13に示すようになっていてもよい。図13の例では、複数の第1接点電極31がマトリクス状に配置されている点は、上記各実施形態と同じである。 (6) In each of the above embodiments, the arrangement of the plurality of first contact electrodes 31 may be as shown in FIG. In the example of FIG. 13, the point that the plurality of first contact electrodes 31 are arranged in a matrix is the same as in each of the above embodiments.
 しかし、図13の例では、どの2つの行をとっても、一方の行内におけるすべての第1接点電極31の列方向の位置の組み合わせと、他方の行内におけるすべての第1接点電極31の列方向の位置の組み合わせは、同じである。したがって、各行において、その行内におけるすべての第1接点電極31の列方向の位置の組み合わせと、その行と隣り合う行内におけるすべての第1接点電極31の列方向の位置の組み合わせは、同じである。 However, in the example of FIG. 13, in any two rows, the combination of the positions in the column direction of all the first contact electrodes 31 in one row and the column direction of all the first contact electrodes 31 in the other row. The combination of positions is the same. Therefore, in each row, the combination of the positions in the column direction of all the first contact electrodes 31 in the row and the combination of the positions in the column direction of all the first contact electrodes 31 in the row adjacent to the row are the same. .
 またこの例では、どの2つの列をとっても、一方の列内におけるすべての第1接点電極31の行方向の位置の組み合わせと、他方の列内におけるすべての第1接点電極31の行方向の位置の組み合わせは、同じである。したがって、各列において、その列内におけるすべての第1接点電極31の行方向の位置の組み合わせと、その列と隣り合う行内におけるすべての第1接点電極31の行方向の位置の組み合わせは、同じである。 Further, in this example, in any two columns, the combination of the positions in the row direction of all the first contact electrodes 31 in one column and the position in the row direction of all the first contact electrodes 31 in the other column. The combination of is the same. Therefore, in each column, the combination of the positions in the row direction of all the first contact electrodes 31 in the column and the combination of the positions in the row direction of all the first contact electrodes 31 in the row adjacent to the column are the same. It is.
 またこの例では、各行において、その行におけるすべての第1接点電極31の行方向の存在位置の範囲と、その行と隣り合う行内におけるすべての第1接点電極31の行方向の存在位置の範囲とは、部分的にも重ならない。 In this example, in each row, the range of the existing positions in the row direction of all the first contact electrodes 31 in that row, and the range of the existing positions in the row direction of all the first contact electrodes 31 in the row adjacent to that row. Does not overlap even partially.
 またこの例では、各列において、その列におけるすべての第1接点電極31の列方向の存在位置の範囲と、その列と隣り合う列内におけるすべての第1接点電極31の列方向の存在位置の範囲とは、部分的にも重ならない。 Further, in this example, in each column, the range of the position of all the first contact electrodes 31 in the column in the column direction, and the position of all the first contact electrodes 31 in the column adjacent to the column in the column direction. This range does not overlap even partly.
 またこの例では、端部にある第1接点電極31以外の第1接点電極31は、4つの第1接点電極31のみに一番近くで囲まれる。 Further, in this example, the first contact electrodes 31 other than the first contact electrodes 31 at the end portions are surrounded by only the four first contact electrodes 31 closest to each other.
 またこの例では、端部にある第1接点電極31以外の第1接点電極31には、その第1接点電極31の中心からの距離が基準距離以下となる他の第1接点電極31が、4個だけある。ここで、基準距離とは、第1接点電極31の最大径と同じ長さの距離である。 In this example, the first contact electrode 31 other than the first contact electrode 31 at the end includes another first contact electrode 31 whose distance from the center of the first contact electrode 31 is equal to or less than the reference distance. There are only four. Here, the reference distance is a distance having the same length as the maximum diameter of the first contact electrode 31.
 またこの例では、各第1接点電極31と、その第1接点電極31に最も近い他の第1接点電極とは、列方向に並ぶ。またこの例では、各第1接点電極31と、その第1接点電極31に最も近い他の第1接点電極とは、行方向に並ぶ。 In this example, each first contact electrode 31 and the other first contact electrode closest to the first contact electrode 31 are arranged in the column direction. In this example, each first contact electrode 31 and the other first contact electrode closest to the first contact electrode 31 are arranged in the row direction.
 また、第1接点電極31の列方向の両端部における位置は、どの行でも同じである。この結果、同じ行に属する第1接点電極31全体の列方向の長さは、どの行でも同じである。そして、同じ行に属する第1接点電極31の数も、どの行でも同じである。 Also, the positions of the first contact electrodes 31 at both ends in the column direction are the same in any row. As a result, the length of the entire first contact electrode 31 belonging to the same row in the column direction is the same in any row. The number of first contact electrodes 31 belonging to the same row is the same in every row.
 なお、このような第1接点電極31の配置状の特徴は、ドーム部10a、第2接点電極32、ドーム部10bについても同じことが言える。 In addition, it can be said that the arrangement feature of the first contact electrode 31 is the same for the dome portion 10a, the second contact electrode 32, and the dome portion 10b.
 なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。 Note that the present disclosure is not limited to the above-described embodiment, and can be changed as appropriate. In addition, the above embodiments are not irrelevant to each other, and can be appropriately combined unless the combination is clearly impossible. Further, in each of the above embodiments, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is clearly limited to a specific number when clearly indicated as essential and in principle. The number is not limited to the specific number except for the case.
 (まとめ)
 上記実施形態の一部または全部で示された第1の観点によれば、本ヒータ装置は、第1シート部材における第1電極が形成された部分および第2シート部材における第2電極が形成された部分の少なくとも一方は、第1シート部材および第2シート部材の対向する面に対して反対面側に向かって凸となるドーム状をなすドーム部として構成されている。そして、このような形状により第1電極と第2電極の間隔を確保する力が生じる。したがって、熱容量を増加させることなく電極間の空間を確保することができる。
(Summary)
According to the first aspect shown in part or all of the above embodiment, the heater device includes a portion where the first electrode in the first sheet member is formed and a second electrode in the second sheet member. At least one of these portions is configured as a dome portion having a dome shape that is convex toward the opposite surface side with respect to the opposing surfaces of the first sheet member and the second sheet member. And the force which ensures the space | interval of a 1st electrode and a 2nd electrode arises with such a shape. Therefore, a space between the electrodes can be secured without increasing the heat capacity.
 第2の観点によれば、ドーム部は、第1シート部材における第1電極が形成された部分および第2シート部材における第2電極が形成された部分の両方に構成されている。これにより、ドーム部が、第1シート部材と第2シート部材にいずれか一方に構成されている場合と比較して、第1電極と第2電極の距離を長くすることができる。 According to the second aspect, the dome portion is configured in both the portion of the first sheet member where the first electrode is formed and the portion of the second sheet member where the second electrode is formed. Thereby, the distance of a 1st electrode and a 2nd electrode can be lengthened compared with the case where a dome part is comprised in either one of a 1st sheet member and a 2nd sheet member.
 第3の観点によれば、第1電極と第2電極が導通状態であるか否かに基づいて第1シート部材への物体の接触または非接触を検知する接触検知部を備えている。これにより、第1シート部材への物体の接触または非接触を容易に検知することができる。 According to a third aspect, a contact detection unit that detects contact or non-contact of an object with the first sheet member based on whether or not the first electrode and the second electrode are in a conductive state is provided. Thereby, it is possible to easily detect contact or non-contact of an object with the first sheet member.
 第4の観点によれば、第1シート部材に形成された第1電極および第2シート部材に形成された第2電極は、4ミリメートル以上の隙間がないよう発熱部11の全体にわたって配置されている。これにより、子供の指が接触した場合でも、確実に接触を検知することが可能である。 According to the 4th viewpoint, the 1st electrode formed in the 1st sheet member and the 2nd electrode formed in the 2nd sheet member are arranged over the whole exothermic part 11 so that there may be no gap of 4 millimeters or more. Yes. Thereby, even when a child's finger contacts, it is possible to reliably detect contact.
 第5の観点によれば、第1シート部材および第2シート部材は、対向するよう配置された第1電極および第2電極が形成された部分の周囲の領域で互いに固着されている。このように、対向するよう配置された第1電極および第2電極が形成された部分の周囲の領域で、第1シート部材および第2シート部材を固着することができる。 According to the fifth aspect, the first sheet member and the second sheet member are fixed to each other in a region around the portion where the first electrode and the second electrode arranged to face each other are formed. In this manner, the first sheet member and the second sheet member can be fixed in the region around the portion where the first electrode and the second electrode arranged to face each other are formed.
 第6の観点によれば、第1シート部材における第1電極が形成された部分は、ドーム部として構成されており、第1電極は、第1絶縁層より線膨張係数の大きな導電性ペーストを用いて形成されている。このように、第1電極は、第1絶縁層より線膨張係数の大きな導電性ペーストを用いて形成することができる。 According to the sixth aspect, the portion of the first sheet member where the first electrode is formed is configured as a dome portion, and the first electrode is made of a conductive paste having a larger linear expansion coefficient than the first insulating layer. It is formed using. Thus, the first electrode can be formed using a conductive paste having a larger linear expansion coefficient than the first insulating layer.
 第7の観点によれば、第2シート部材における第2電極が形成された部分は、ドーム部として構成されており、第2電極は、第2絶縁層より線膨張係数の大きな導電性ペーストを用いて形成されている。このように、第2電極は、第2絶縁層より線膨張係数の大きな導電性ペーストを用いて形成することができる。 According to the seventh aspect, the portion of the second sheet member where the second electrode is formed is configured as a dome portion, and the second electrode is made of a conductive paste having a larger linear expansion coefficient than the second insulating layer. It is formed using. Thus, the second electrode can be formed using a conductive paste having a larger linear expansion coefficient than the second insulating layer.
 第8の観点によれば、ヒータ装置は、第1シート部材(10)と第2シート部材(20)徒を備える。第1シート部材は、通電により発熱するシート状の発熱部と、前記発熱部が一面側に設けられた第1絶縁層と、前記発熱部の前記第1絶縁層側と反対面側に形成された複数の第1電極と、を有する。第2シート部材は、前記第1絶縁層の前記一面と対向配置された第2絶縁層(21)と、前記第2絶縁層の前記第1絶縁層に形成された前記複数の第1電極と対向する位置に形成された複数の第2電極(32)と、を有する。前記第1シート部材における前記複数の第1電極が形成された部分および前記第2シート部材における前記複数の第2電極が形成された部分の少なくとも一方は、前記第1シート部材および前記第2シート部材の対向する面に対して反対面側に向かって凸となるドーム状をなす複数のドーム部(10a、20a)として構成されている。前記複数のドーム部のうち隣り合う一対のドーム部間の最短距離は、前記一対のドーム部の最大径のいずれよりも、小さい。 According to an eighth aspect, the heater device includes a first sheet member (10) and a second sheet member (20). The first sheet member is formed on a sheet-like heat generating portion that generates heat when energized, a first insulating layer on which the heat generating portion is provided on one surface side, and a surface opposite to the first insulating layer side of the heat generating portion. A plurality of first electrodes. The second sheet member includes a second insulating layer (21) disposed to face the one surface of the first insulating layer, and the plurality of first electrodes formed on the first insulating layer of the second insulating layer. A plurality of second electrodes (32) formed at opposing positions. At least one of the portion of the first sheet member where the plurality of first electrodes are formed and the portion of the second sheet member where the plurality of second electrodes are formed are the first sheet member and the second sheet. It is configured as a plurality of dome portions (10a, 20a) that form a dome shape convex toward the opposite surface side with respect to the opposing surfaces of the members. The shortest distance between a pair of adjacent dome parts among the plurality of dome parts is smaller than any of the maximum diameters of the pair of dome parts.
 第9の観点によれば、ヒータ装置の製造方法であって、第1絶縁層よりも線膨張係数の大きい導電性ペーストを第1絶縁層に塗布すること、および、第2絶縁層よりも線膨張係数の大きい導電性ペーストを第2絶縁層に塗布することの少なくとも一方を行う。その後、第1絶縁層および第2絶縁層の少なくとも一方に塗布された導電性ペーストを高温下で乾燥および硬化させることで、第1絶縁層における第1電極が形成された部分および第2絶縁層における第2電極が形成された部分の少なくとも一方に、ドーム部を構成する。 According to a ninth aspect, there is provided a method for manufacturing a heater device, wherein a conductive paste having a linear expansion coefficient larger than that of a first insulating layer is applied to the first insulating layer, and a wire is formed more than the second insulating layer. At least one of applying a conductive paste having a large expansion coefficient to the second insulating layer is performed. Thereafter, the conductive paste applied to at least one of the first insulating layer and the second insulating layer is dried and cured at a high temperature, so that the portion of the first insulating layer where the first electrode is formed and the second insulating layer A dome portion is formed on at least one of the portions where the second electrode is formed.
 このような製造方法により、本開示にかかるヒータ装置を製造することができる。また、第1シート部材あるいは第2シート部材に接点を形成する行程とドーム部を加工する行程を別々に実施することなく、電極が形成された部分にドーム部を構成することができる。 The heater device according to the present disclosure can be manufactured by such a manufacturing method. Further, the dome portion can be formed in the portion where the electrode is formed without separately performing the step of forming the contact point on the first sheet member or the second sheet member and the step of processing the dome portion.
 第10の観点によれば、第1絶縁層および第2絶縁層の少なくとも一方に塗布された導電性ペーストを、導電性ペーストのガラス転移点温度以上または導電性ペーストの軟化温度以上で乾燥および硬化させるのが好ましい。 According to the tenth aspect, the conductive paste applied to at least one of the first insulating layer and the second insulating layer is dried and cured at a temperature equal to or higher than the glass transition temperature of the conductive paste or equal to or higher than the softening temperature of the conductive paste. It is preferable to do so.

Claims (10)

  1.  通電により発熱するシート状の発熱部(11)と、前記発熱部が一面側に設けられた第1絶縁層(12)と、前記発熱部の前記第1絶縁層側と反対面側に形成された第1電極(31、31a、31b)と、を有する第1シート部材(10)と、
     前記第1絶縁層の前記一面と対向配置された第2絶縁層(21)と、前記第2絶縁層の前記第1電極と対向する位置に形成された第2電極(32)と、を有する第2シート部材(20)と、を備えたヒータ装置であって、
     前記第1シート部材における前記第1電極が形成された部分および前記第2シート部材における前記第2電極が形成された部分の少なくとも一方は、前記第1シート部材および前記第2シート部材の対向する面に対して反対面側に向かって凸となるドーム状をなすドーム部(10a、20a)として構成されているヒータ装置。
    A sheet-like heat generating portion (11) that generates heat when energized, a first insulating layer (12) provided with the heat generating portion on one side, and a surface opposite to the first insulating layer side of the heat generating portion. A first sheet member (10) having a first electrode (31, 31a, 31b);
    A second insulating layer (21) disposed opposite to the one surface of the first insulating layer; and a second electrode (32) formed at a position facing the first electrode of the second insulating layer. A heater device comprising a second sheet member (20),
    At least one of the portion of the first sheet member where the first electrode is formed and the portion of the second sheet member where the second electrode is formed opposes the first sheet member and the second sheet member. The heater apparatus comprised as a dome part (10a, 20a) which makes the dome shape which becomes convex toward the opposite surface side with respect to a surface.
  2.  前記ドーム部は、前記第1シート部材における前記第1電極が形成された部分および前記第2シート部材における前記第2電極が形成された部分の両方に構成されている請求項1に記載のヒータ装置。 2. The heater according to claim 1, wherein the dome portion is configured in both a portion of the first sheet member where the first electrode is formed and a portion of the second sheet member where the second electrode is formed. apparatus.
  3.  前記第1電極と前記第2電極が導通状態であるか否かに基づいて前記第1シート部材への物体の接触または非接触を検知する接触検知部(53)を備えた請求項1または2に記載のヒータ装置。 The contact detection part (53) provided with the contact detection part (53) which detects the contact or non-contact of the object to the said 1st sheet | seat member based on whether the said 1st electrode and the said 2nd electrode are a conduction | electrical_connection state. The heater apparatus as described in.
  4.  前記第1シート部材に形成された前記第1電極および前記第2シート部材に形成された前記第2電極は、4ミリメートル以上の隙間がないよう前記発熱部の全体にわたって配置されている請求項1ないし3のいずれか1つに記載のヒータ装置。 2. The first electrode formed on the first sheet member and the second electrode formed on the second sheet member are arranged over the entire heat generating portion so that there is no gap of 4 mm or more. The heater apparatus as described in any one of thru | or 3.
  5.  前記第1シート部材および前記第2シート部材は、対向するよう配置された前記第1電極および前記第2電極が形成された部分の周囲の領域で互いに固着されている請求項1ないし4のいずれか1つに記載のヒータ装置。 The said 1st sheet | seat member and the said 2nd sheet | seat member are mutually adhere | attached in the area | region around the part in which the said 1st electrode arrange | positioned so as to oppose and the said 2nd electrode were formed. The heater apparatus as described in any one.
  6.  前記第1シート部材における前記第1電極が形成された部分は、前記ドーム部として構成されており、
     前記第1電極は、前記第1絶縁層より線膨張係数の大きな導電性ペーストを用いて形成されている請求項1ないし5のいずれか1つに記載のヒータ装置。
    The portion of the first sheet member where the first electrode is formed is configured as the dome portion,
    The heater device according to any one of claims 1 to 5, wherein the first electrode is formed using a conductive paste having a larger linear expansion coefficient than the first insulating layer.
  7.  前記第2シート部材における前記第2電極が形成された部分は、前記ドーム部として構成されており、
     前記第2電極は、前記第2絶縁層より線膨張係数の大きな導電性ペーストを用いて形成されている請求項1ないし6のいずれか1つに記載のヒータ装置。
    The portion of the second sheet member where the second electrode is formed is configured as the dome portion,
    The heater device according to any one of claims 1 to 6, wherein the second electrode is formed using a conductive paste having a larger linear expansion coefficient than the second insulating layer.
  8.  通電により発熱するシート状の発熱部(11)と、前記発熱部が一面側に設けられた第1絶縁層(12)と、前記発熱部の前記第1絶縁層側と反対面側に形成された複数の第1電極(31、31a、31b)と、を有する第1シート部材(10)と、
     前記第1絶縁層の前記一面と対向配置された第2絶縁層(21)と、前記第2絶縁層の前記第1絶縁層に形成された前記複数の第1電極と対向する位置に形成された複数の第2電極(32)と、を有する第2シート部材(20)と、を備えたヒータ装置であって、
     前記第1シート部材における前記複数の第1電極が形成された部分および前記第2シート部材における前記複数の第2電極が形成された部分の少なくとも一方は、前記第1シート部材および前記第2シート部材の対向する面に対して反対面側に向かって凸となるドーム状をなす複数のドーム部(10a、20a)として構成されており、
     前記複数のドーム部のうち隣り合う一対のドーム部間の最短距離は、前記一対のドーム部の最大径のいずれよりも、小さいヒータ装置。
    A sheet-like heat generating portion (11) that generates heat when energized, a first insulating layer (12) provided with the heat generating portion on one side, and a surface opposite to the first insulating layer side of the heat generating portion. A first sheet member (10) having a plurality of first electrodes (31, 31a, 31b);
    The second insulating layer (21) disposed opposite to the one surface of the first insulating layer and the plurality of first electrodes formed on the first insulating layer of the second insulating layer. A second sheet member (20) having a plurality of second electrodes (32), and a heater device comprising:
    At least one of the portion of the first sheet member where the plurality of first electrodes are formed and the portion of the second sheet member where the plurality of second electrodes are formed are the first sheet member and the second sheet. It is configured as a plurality of dome parts (10a, 20a) that form a dome shape convex toward the opposite surface side with respect to the opposing surface of the member,
    The shortest distance between a pair of adjacent dome parts among the plurality of dome parts is a heater device smaller than any of the maximum diameters of the pair of dome parts.
  9.  通電により発熱するシート状の発熱部(11)と、前記発熱部が一面側に設けられた第1絶縁層(12)と、前記発熱部の前記第1絶縁層側と反対面側に形成された第1電極(31、31a、31b)と、を有する第1シート部材(10)と、前記第1絶縁層の前記一面と対向配置された第2絶縁層(21)と、前記第2絶縁層の前記第1絶縁層に形成された前記第1電極と対向する位置に形成された第2電極(32)と、を有する第2シート部材(20)と、を備え、前記第1シート部材における前記第1電極が形成された部分および前記第2シート部材における前記第2電極が形成された部分の少なくとも一方は、前記第1シート部材および前記第2シート部材の対向する面に対して反対面側に向かって凸となるドーム状をなすドーム部(10a、20a)として構成されているヒータ装置の製造方法であって、
     前記第1絶縁層よりも線膨張係数の大きい導電性ペーストを前記第1絶縁層に塗布すること、および、前記第2絶縁層よりも線膨張係数の大きい導電性ペーストを前記第2絶縁層に塗布することの少なくとも一方を行い、前記第1絶縁層および前記第2絶縁層の少なくとも一方に塗布された前記導電性ペーストを高温下で乾燥および硬化させることで、前記第1絶縁層における前記第1電極が形成された部分および前記第2絶縁層における前記第2電極が形成された部分の少なくとも一方に、前記ドーム部(10a、20a)を構成するヒータ装置の製造方法。
    A sheet-like heat generating portion (11) that generates heat when energized, a first insulating layer (12) provided with the heat generating portion on one side, and a surface opposite to the first insulating layer side of the heat generating portion. A first sheet member (10) having first electrodes (31, 31a, 31b), a second insulating layer (21) disposed opposite to the one surface of the first insulating layer, and the second insulating member. A second sheet member (20) having a second electrode (32) formed at a position facing the first electrode formed on the first insulating layer of the first sheet member, and the first sheet member At least one of the portion where the first electrode is formed and the portion where the second electrode is formed on the second sheet member is opposite to the opposing surfaces of the first sheet member and the second sheet member Dome with a dome shape that protrudes toward the surface 10a, a manufacturing method of a heater apparatus is configured as 20a),
    Applying a conductive paste having a linear expansion coefficient larger than that of the first insulating layer to the first insulating layer; and applying a conductive paste having a linear expansion coefficient larger than that of the second insulating layer to the second insulating layer. The conductive paste applied to at least one of the first insulating layer and the second insulating layer is dried and cured at a high temperature, so that the first insulating layer in the first insulating layer is dried. The manufacturing method of the heater apparatus which comprises the said dome part (10a, 20a) in at least one of the part in which the said 2nd electrode was formed in the part in which the 1 electrode was formed, and the said 2nd insulating layer.
  10.  前記第1絶縁層および前記第2絶縁層の少なくとも一方に塗布された前記導電性ペーストを、前記導電性ペーストのガラス転移点温度以上または前記導電性ペーストの軟化温度以上で乾燥および硬化させる請求項9に記載のヒータ装置の製造方法。 The conductive paste applied to at least one of the first insulating layer and the second insulating layer is dried and cured at a temperature equal to or higher than a glass transition temperature of the conductive paste or equal to or higher than a softening temperature of the conductive paste. A method for manufacturing the heater device according to claim 9.
PCT/JP2016/082796 2015-12-09 2016-11-04 Heater device and heater device production method WO2017098842A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017554977A JP6432695B2 (en) 2015-12-09 2016-11-04 Heater device and method for manufacturing heater device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015240494 2015-12-09
JP2015-240494 2015-12-09

Publications (1)

Publication Number Publication Date
WO2017098842A1 true WO2017098842A1 (en) 2017-06-15

Family

ID=59014095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082796 WO2017098842A1 (en) 2015-12-09 2016-11-04 Heater device and heater device production method

Country Status (2)

Country Link
JP (1) JP6432695B2 (en)
WO (1) WO2017098842A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3849277A1 (en) * 2020-01-08 2021-07-14 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Electric heating mat

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02234379A (en) * 1989-03-07 1990-09-17 Matsushita Electric Ind Co Ltd Floor heating device
JPH1097818A (en) * 1996-09-20 1998-04-14 Fujikura Ltd Membrane switch
JP2003533311A (en) * 2000-05-17 2003-11-11 アイ.イー.イー.インターナショナル エレクトロニクス アンド エンジニアリング エス.エイ アール.エル. Combination of sensor and heating element
JP2009146844A (en) * 2007-12-18 2009-07-02 Panasonic Corp Movable contact unit, and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02234379A (en) * 1989-03-07 1990-09-17 Matsushita Electric Ind Co Ltd Floor heating device
JPH1097818A (en) * 1996-09-20 1998-04-14 Fujikura Ltd Membrane switch
JP2003533311A (en) * 2000-05-17 2003-11-11 アイ.イー.イー.インターナショナル エレクトロニクス アンド エンジニアリング エス.エイ アール.エル. Combination of sensor and heating element
JP2009146844A (en) * 2007-12-18 2009-07-02 Panasonic Corp Movable contact unit, and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3849277A1 (en) * 2020-01-08 2021-07-14 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Electric heating mat

Also Published As

Publication number Publication date
JPWO2017098842A1 (en) 2018-03-29
JP6432695B2 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
JP6447245B2 (en) Radiation heater device
CN107926081B (en) Heater device
TW201937803A (en) Battery pack and method for obtaining temperature measurements within a battery pack
WO2016169481A1 (en) Electric heating film device and preparation method therefor, and electric heating apparatus
KR101484107B1 (en) Heating apparatus, manufacturing method thereof and heating system for electric blanket/carpet
CN111096067B (en) Heater device
JP6432695B2 (en) Heater device and method for manufacturing heater device
CN111301247A (en) Sheet-type heating element and armrest of vehicle door including the same
JP6296175B2 (en) Heater device
US20110233193A1 (en) Flexible, flat heating strip using carbon filaments as heating element
JP2017199565A5 (en)
US20200307992A1 (en) Electrostatic-type transducer and manufacturing method thereof
KR101428035B1 (en) Planar Heat Generator
WO2016013168A1 (en) Radiation heating device
CN113228823B (en) Heating element with fusing function and heating unit comprising same
KR101468637B1 (en) Method of manufacture for flexible carbon heater and carbon heater
KR101846650B1 (en) Flexible thermoelement and manufacturing method thereof
JP4647846B2 (en) Surface heating element and manufacturing method thereof
JP2020024063A (en) Heater device
JP2018206706A (en) Heater device
JP6669271B2 (en) Radiant heater device
KR20190016791A (en) Heating element and heater unit including the same
JP2012160297A (en) Heater and fixation device using this heater
KR20230059449A (en) Heating element for car interior material
JP2018206707A (en) Heater device and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872742

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017554977

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872742

Country of ref document: EP

Kind code of ref document: A1