WO2017097154A1 - 有机电子传输材料 - Google Patents

有机电子传输材料 Download PDF

Info

Publication number
WO2017097154A1
WO2017097154A1 PCT/CN2016/107854 CN2016107854W WO2017097154A1 WO 2017097154 A1 WO2017097154 A1 WO 2017097154A1 CN 2016107854 W CN2016107854 W CN 2016107854W WO 2017097154 A1 WO2017097154 A1 WO 2017097154A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
compound
substituted
electron transport
electron
Prior art date
Application number
PCT/CN2016/107854
Other languages
English (en)
French (fr)
Inventor
鲁锦鸿
陈金鑫
李哲
戴雷
蔡丽菲
Original Assignee
广东阿格蕾雅光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东阿格蕾雅光电材料有限公司 filed Critical 广东阿格蕾雅光电材料有限公司
Priority to KR1020187014592A priority Critical patent/KR20180082466A/ko
Priority to US16/060,939 priority patent/US20180358561A1/en
Publication of WO2017097154A1 publication Critical patent/WO2017097154A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/62Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/62Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
    • C07C13/66Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings the condensed ring system contains only four rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers

Definitions

  • the present invention relates to a novel organic electron transporting material which can be applied to an electron-only organic semiconductor diode device by vacuum deposition into a thin film.
  • Electron-only organic semiconductor diode devices are one type of single-carrier devices that are used as power semiconductor devices for switches or rectifiers of smart digital power integrated circuits.
  • the electron transporting material of the present invention can also be applied to an organic electroluminescent device and a field effect transistor.
  • Electron-only organic semiconductor diode devices are devices prepared by spin coating or depositing one or more layers of organic materials between electrodes of two metals, inorganic or organic compounds.
  • a classic layer of electronically only organic semiconductor diode device comprises an anode, an electron transport layer and a cathode.
  • a hole blocking layer may be added between the anode and the electron transporting layer of the multilayer electronic-only semiconductor diode device, and an electron injecting layer may be added between the electron transporting layer and the cathode.
  • the hole blocking layer, the electron transport layer and the electron injecting layer are respectively composed of a hole blocking material, an electron transporting material, and an electron injecting material.
  • BPhen and BCP bathophenanthroline
  • BCP bathocuproine
  • BPhen and BCP materials have the disadvantage of being easily crystallized. Once the electron transport material is crystallized, the charge transition mechanism between the molecules is different from the normal operation of the amorphous film mechanism, resulting in a change in electron transport performance. Used in organic electroluminescent devices, the electrical conductivity of the entire device changes after time, which causes the electron and hole charge mobility to be unbalanced, resulting in a decrease in device performance, and may also cause local short circuits in the device, affecting device stability. Even the device is disabled. (References Journal of Applied Physics 80, 2883 (1996); doi: 10.1063/1.363140)
  • Non-heterocyclic fluoranthene compounds contain only hydrocarbon elements and can be used as electron transport materials and luminescent materials in OLED devices (reference WO 2013182046 A1), but their transmission efficiency and thermal stability still need to be further improved.
  • the present invention provides an organic electron transporting material which can be applied to a long-life electron-only semiconductor diode device and an organic electroluminescent device with high form stability, and the electron transporting material has good electron transport performance. High Brightness.
  • R1-R4 are independently represented by hydrogen, a C1-C8 substituted or unsubstituted alkyl group, or a C2-C8 substituted or unsubstituted olefinic group, or a C2-C8 substituted or unsubstituted alkynylalkyl group, wherein the substitution The group is a C1-C4 alkyl group or a halogen.
  • R1 to R4 are independently represented by hydrogen, a C1-C4 substituted or unsubstituted alkyl group, or a C2-C4 substituted or unsubstituted olefinic group, or a C2-C4 substituted or unsubstituted alkynylalkyl group.
  • R1 to R4 are independently represented by hydrogen, a C1-C4 alkyl group.
  • R1-R4 are the same.
  • R1 to R4 are preferably represented by hydrogen.
  • the compound of the formula (I) is the following structural compound
  • the organic layer is one or more layers of a hole blocking layer, an electron transport layer, and an electron injection layer. It is particularly noted that the above organic layers may be present in each of the layers as needed.
  • the hole transport layer, the electron transport layer and/or the electron injection layer contain the compound of the formula (I).
  • the compound of the formula (I) is an electron transporting material.
  • the organic layer of the electronic device of the present invention has a total thickness of from 1 to 1000 nm, preferably from 1 to 500 nm, more preferably from 5 to 300 nm.
  • the organic layer may be formed into a film by steaming or spin coating.
  • 10 represents a glass substrate
  • 20 represents an anode
  • 30 represents a hole blocking layer
  • 40 represents an electron transport layer
  • 50 represents an electron injecting layer
  • 60 represents a cathode.
  • Figure 5 is a voltage-current density diagram of the device 1 of the present invention.
  • Figure 6 is a voltage-current density diagram of the device 2 of the present invention.
  • Figure 7 is a voltage-current density diagram of the devices 3, 4 of the present invention.
  • Figure 8 is a current density-current efficiency of devices 3, 4 of the present invention
  • Figure 9 is a graph showing the luminance-color coordinates of the inventive devices 3, 4.
  • Figure 10 is an emission spectrum of the inventive devices 3, 4.
  • Figure 11 is a structural view of an organic electroluminescent device of the present invention.
  • 10 represents a glass substrate
  • 20 represents an anode
  • 30 represents a hole injection layer
  • 40 represents a hole transport layer
  • 50 represents a light-emitting layer
  • 60 represents an electron transport layer
  • 70 represents a cathode.
  • Compound A was synthesized according to the procedure ACS Macro Letter, 2014, 3, 10-15.
  • Compound B was synthesized according to the procedure of reference WO 2013182046 A1.
  • Post-reaction treatment heating was stopped, the temperature was lowered to 20 ° C, methanol (100 mL) was added, and the solid was separated by stirring for 2 h. The filter cake was washed with methanol and dried in vacuo to give a crude product. The crude product was triturated with ethyl acetate to give a yellow compound 1 (4.32 g, yield 46%, HPLC purity 93.58%). Vacuum sublimation (360 ° C, 2 x 10 -5 torr, 8 hours) gave a pale yellow solid powder with a purity of 99.5%. see picture 1.
  • the peak calculation chart is as follows:
  • Peak number Compound name keep time height area% 1 25.641 228 11458 0.386 2 Product Y15050703-01 27.393 50885 2955536 99.576 3 33.490 14 1124 0.038 total 51127 2968119 100.000
  • the TGA map is shown in Figure 3.
  • the transparent conductive ITO glass substrate 10 (with the anode 20 on the surface) was sequentially washed with a detergent solution and deionized water, ethanol, acetone, deionized water, and then treated with oxygen plasma for 30 seconds.
  • a compound 1 having a thickness of 100 nm was vapor-deposited on the hole blocking layer as the electron transport layer 40.
  • lithium fluoride of 1 nm thick was vapor-deposited on the electron transport layer as the electron injection layer 50.
  • SCLC space charge limited current
  • J is the current density (mA cm -2 )
  • is the relative dielectric constant (the organic material usually takes 3)
  • ⁇ 0 is the vacuum dielectric constant (8.85 ⁇ 10 -14 C V -1 cm -1 )
  • E is the electric field strength (V cm -1 )
  • L is the thickness (cm) of the sample in the device
  • ⁇ 0 is the charge mobility under the electric field (cm 2 V -1 s -1 )
  • is the Poole–Frenkel factor. Indicates how quickly the mobility changes with the strength of the electric field.
  • the method was the same as in Example 2 except that a commonly used commercially available compound TmPyPB was used as the electron transport layer 40, and an electron-only semiconductor diode device for comparison was fabricated.
  • Electron mobility of the prepared device (cm 2 V -1 s -1 )
  • the electron mobility of device 1 and device 2 under the working electric field of 1x 10 5 V/cm and 5x 10 5 V/cm is significantly better than the electron mobility of device 2;
  • the electron mobility of device 1 and device 2 is basically the same under a working electric field of 1 x 10 6 V/cm, indicating that the electron transport performance of compound 1 is good.
  • the transparent conductive ITO glass substrate 10 (with the anode 20 on the surface) was sequentially washed with a detergent solution and deionized water, ethanol, acetone, deionized water, and then treated with oxygen plasma for 30 seconds.
  • the compound D was evaporated to form a hole transport layer 40 having a thickness of 30 nm.
  • a compound E (2%) and a compound F (98%) having a thickness of 40 nm were vapor-deposited on the hole transporting layer as the light-emitting layer 50.
  • Compound 1 (50%) and LiQ (50%) having a thickness of 40 nm were vapor-deposited on the light-emitting layer as the electron transport layer 60.
  • the transparent conductive ITO glass substrate 10 (with the anode 20 on the surface) was sequentially washed with a detergent solution and deionized water, ethanol, acetone, deionized water, and then treated with oxygen plasma for 30 seconds.
  • the compound D was evaporated to form a hole transport layer 40 having a thickness of 30 nm.
  • a compound E (2%) and a compound F98%) having a thickness of 40 nm were vapor-deposited on the hole transporting layer as the light-emitting layer 50.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及有机电子传输材料,具有式(I)所述结构的化合物,其中,R1-R4独立地表示为氢、C1-C8取代或者未取代的烷基、或C2-C8取代或者未取代的烯烷基、或C2-C8取代或者未取代的炔烷基,其中取代基为C1-C4的烷基或卤素。器件实验表明,使用本发明的有机电子传输材料制备的仅电子有机半导体二极管器件及有机电致发光器件电子传输性能好,亮度高且稳定,器件寿命长。

Description

有机电子传输材料 技术领域
本发明涉及新型的有机电子传输材料,通过真空沉积成薄膜,可应用于仅电子有机半导体二极管器件。
背景技术
仅电子有机半导体二极管器件是单载流子器件的一种,作为功率半导体装置用于智能数字功率集成电路的开关或整流器。其中本发明的电子传输材料也可应用于有机电致发光器件及场效应晶体管。
仅电子有机半导体二极管器件为在两个金属、无机物或有机化合物的电极之间通过旋涂或沉积一层或多层有机材料而制备的器件。一个经典的一层仅电子有机半导体二极管器件包含阳极,电子传输层和阴极。在多层仅电子有机半导体二极管器件阳极和电子传输层之间可以加入空穴阻挡层,而电子传输层和阴极之间可以加入电子注入层。空穴阻挡层,电子传输层和电子注入层分别由空穴阻挡材料,电子传输材料和电子注入材料组成。连接到仅电子有机半导体二极管器件的电压到达开启电压后,由阴极产生的电子经电子传输层传输到阳极,相反地,空穴不能从阳极注入。仅电子有机半导体二极管器件中的电子传输材料可应用到其它半导体器件如有机电致发光器件。有机电致发光器件市场庞大,因而稳定、高效的有机电子传输材料对有机电致发光器件的应用和推广具有重要作用,同时也是有机电致发光大面积面板显示的应用推广的迫切需求。
市场上现有较多使用的电子传输材料向红菲咯啉(bathophenanthroline,BPhen)和浴铜灵(bathocuproine,BCP),基本上能符合有机电致发光面板的市场需求,但其效率和稳定性仍有待进一步提高。BPhen及BCP材料有着容易结晶的缺点。电子传输材料一旦结晶,分子间的电荷跃迁机制跟在正常运作的非晶态薄膜机制不相同,引致电子传输性能改变。在有机电致发光器件中使用,时间过后会使整个器件导电性能改变,令电子和空穴电荷迁移率失衡,引致到器件效能下降,也可能会在器件中产生局部短路,影响器件稳定性,甚至令器件失效。(参考文献Journal of Applied Physics 80,2883(1996);doi:10.1063/1.363140)
虽然BPhen的合成已经有相当成熟的工艺,(参考文献WO 2010127574 A1)但是其使用之原材料邻苯二胺(CAS 95-54-5)已被美国国家环境保护局列为对水生生物有很强毒性的化合物。考虑要保护我们的国家环境和水资源免受污染,新型电子传输材料的研发需求是非常 迫切。非杂环的荧蒽化合物只含碳氢元素,在OLED器件可以用作电子输送材料和发光材料,(参考文献WO 2013182046 A1)但其传输效率和热稳定性仍有待进一步提高。
发明内容
针对上述材料的缺陷,本发明提供一种可应用在长寿命仅电子有机半导体二极管器件和有机电致发光器件中的高形态稳定性的有机电子传输材料,该电子传输材料的电子传输性能好,亮度高。
有机电子传输材料,具有式(I)所述结构的化合物,
Figure PCTCN2016107854-appb-000001
其中,R1-R4独立地表示为氢、C1-C8取代或者未取代的烷基、或C2-C8取代或者未取代的烯烷基、或C2-C8取代或者未取代的炔烷基,其中取代基为C1-C4的烷基或卤素。
优选:其中,R1-R4独立地表示为氢、C1-C4取代或者未取代的烷基、或C2-C4取代或者未取代的烯烷基,或C2-C4取代或者未取代的炔烷基。
优选:其中R1-R4独立地表示为氢、C1-C4的烷基。
优选:R1-R4相同。
优选:其中,R1-R4优选表示为氢。
式(I)所述的化合物为下列结构化合物
Figure PCTCN2016107854-appb-000002
所述有机层为空穴阻挡层、电子传输层、电子注入层中的一层或多层。需要特别指出,上述有机层可以根据需要,这些有机层不必每层都存在。
所述空穴传挡层,电子传输层和/或电子注入层中含有式(I)所述的化合物。
所述式(I)所述的化合物为电子传输材料。
本发明的电子器件有机层的总厚度为1-1000nm,优选1-500nm,更优选5-300nm。
所述有机层可以通过蒸渡或旋涂形成薄膜。
如上面提到的,本发明的式(I)所述的化合物如下,但不限于所列举的结构:
Figure PCTCN2016107854-appb-000003
器件实验表明,使用本发明的有机电子传输材料制备的仅电子有机半导体二极管器件及有 机电致发光器件电子传输性能好,亮度高且稳定,器件寿命长。
附图说明
图1化合物1的HPLC图,
图2化合物1的氢谱图,
图3化合物1的热重+TGA图,
图4为本发明的仅电子有机半导体二极管器件结构图,
其中10代表为玻璃基板,20代表为阳极,30代表为空穴阻挡层,40代表为电子传输层,50代表电子注入层,60代表为阴极。
图5为本发明器件1的电压-电流密度图,
图6为本发明器件2的电压-电流密度图,
图7为本发明器件3、4的电压-电流密度图,
图8为本发明器件3、4的电流密度-电流效率
图9为发明器件3、4的亮度-色坐标y图,
图10为发明器件3、4的发射光谱图。
图11为本发明的有机电致发光器件结构图,
其中10代表为玻璃基板,20代表为阳极,30代表为空穴注入层,40代表为空穴传输层,50代表发光层,60代表为电子传输层,70代表为阴极。
具体实施方式
为了更详细叙述本发明,特举以下例子,但是不限于此。
实施例1
Figure PCTCN2016107854-appb-000004
化合物1的合成
化合物A按照参考文献ACS Macro Letter,2014,3,10-15过程合成。化合物B按照参考文献WO 2013182046A1过程合成。
反应投放:向250-mL反应烧瓶中加入化合物A(2.21g,11mmol),化合物B(7.80g,22mmol) 和二苯醚(100mL)。氮气排空3次,加热升温至260℃,保持此温度,反应8小时,TLC及HPLC检测化合物B反应完全。反应期间反应液的颜色变化由黑色变成黄色。
反应后处理:停止加热,降温至20℃,加入甲醇(100mL),搅拌2h析出固体,滤饼用甲醇洗涤,真空干燥得到粗品。粗品加入乙酸乙酯打浆得到黄色的化合物1(4.32g,产率46%,HPLC纯度93.58%)。真空升华(360℃,2x 10-5torr,8小时)得到浅黄色固体粉末,纯度99.5%。见图1。
液相的条件如下:
色谱柱:Inertsil ODS-SP 4.6*250mm,5μm,柱温:40℃
溶剂:DCM,流动相:ACN,检测波长:254nm
峰值计算图如下表:
<峰表>
检测器A254nm
峰号 化合物名 保留时间 高度 面积 面积%
1   25.641 228 11458 0.386
2 产品Y15050703-01 27.393 50885 2955536 99.576
3   33.490 14 1124 0.038
总计     51127 2968119 100.000
1H NMR(300MHz,CDCl3)δ7.78–7.66(m,8H),7.59–7.46(m,6H),7.43–7.33(m,116H),7.32–7.46(m,12H)。见图2。
TGA图见图3。
实施例2
仅电子有机半导体二极管器件1的制备
使用本发明的有机电子传输材料制备仅电子有机半导体二极管器件
首先,将透明导电ITO玻璃基板10(上面带有阳极20)依次经:洗涤剂溶液和去离子水,乙醇,丙酮,去离子水洗净,再用氧等离子处理30秒。
然后,在ITO上蒸渡5nm厚的BCP作为空穴阻挡层30。
然后,在空穴阻挡层上蒸渡100nm厚的化合物1作为电子传输层40。
然后,在电子传输层上蒸渡1nm厚的氟化锂作为电子注入层50。
最后,在电子注入层上蒸渡100nm厚的铝作为器件阴极60。
结构图见图4。
通过利用空间限制电流(space charge limited current,SCLC)电流密度与电场强度的关系如式(1):
Figure PCTCN2016107854-appb-000005
其中,J为电流密度(mA cm-2),ε为相对介电常数(有机材料通常取值为3),ε0为真空介电常数(8.85×10-14C V-1cm-1),E为电场强度(V cm-1),L为器件中样本的厚度(cm),μ0为零电场下的电荷迁移率(cm2V-1s-1),β为Poole–Frenkel因子,表示迁移率随电场强度变化的快慢程度。
器件中所述结构式
Figure PCTCN2016107854-appb-000006
比较例1
仅电子有机半导体二极管器件2的制备
方法同实施例2,但使用常用市售化合物TmPyPB作为电子传输层40,制作对比用仅电子有机半导体二极管器件。
器件中所述结构式
Figure PCTCN2016107854-appb-000007
所制备的器件电子迁移率(cm2V-1s-1)
Figure PCTCN2016107854-appb-000008
按式(1)式和图5、6数据计算器件1和器件2在1x 105V/cm和5x 105V/cm工作电场下的电子迁移率明显优于器件2的电子迁移率;在1x 106V/cm工作电场下器件1和器件2的电子迁移率基本相同,说明化合物1的电子传输性能较好。
实施例3
有机电致发光器件3的制备
使用本发明的有机电子材料制备OLED
首先,将透明导电ITO玻璃基板10(上面带有阳极20)依次经:洗涤剂溶液和去离子水,乙醇,丙酮,去离子水洗净,再用氧等离子处理30秒。
然后,在ITO上蒸渡90nm厚化合物C作为空穴注入层30。
然后,蒸渡化合物D,形成30nm厚的空穴传输层40。
然后,在空穴传输层上蒸渡40nm厚的化合物E(2%)与化合物F(98%)作为发光层50。
然后,在发光层上蒸渡40nm厚的化合物1(50%)与LiQ(50%)作为电子传输层60。
最后,100nm Al作为器件阴极70。
(结构图见图11)
实施例4
有机电致发光器件4的制备
使用市售材料制备OLED
首先,将透明导电ITO玻璃基板10(上面带有阳极20)依次经:洗涤剂溶液和去离子水,乙醇,丙酮,去离子水洗净,再用氧等离子处理30秒。
然后,在ITO上蒸渡90nm厚化合物C作为空穴注入层30。
然后,蒸渡化合物D,形成30nm厚的空穴传输层40。
然后,在空穴传输层上蒸渡40nm厚的化合物E(2%)与化合物F98%)作为发光层50。
然后,在发光层上蒸渡40nm厚的化合物G(50%)与LiQ(50%)作为电子传输层60。最后,100nm Al作为器件阴极70。
化合物C:
Figure PCTCN2016107854-appb-000009
化合物D:
Figure PCTCN2016107854-appb-000010
化合物E:
Figure PCTCN2016107854-appb-000011
化合物F:
Figure PCTCN2016107854-appb-000012
化合物G:
Figure PCTCN2016107854-appb-000013
从图7-8所示,器件3和器件4对比可以看出,化合物1的电子传输性能优于对比市售的化合物G。
从图9-图10可计算得出:
所制备的器件3在20mA/cm2的工作电流密度下,亮度7584cd/m2,电流效率达到37.9cd/A,14.3lm/W,EQE 11.1,发射绿光CIEx为0.3709,CIEy为0.5945。
所制备的器件4在20mA/cm2的工作电流密度下,亮度8555cd/m2,电流效率达到42.7cd/A,19.5lm/W,EQE 12.4,发射绿光CIEx为0.3578,CIEy为0.6061。

Claims (8)

  1. 有机电子传输材料,具有式(I)所述结构的化合物,
    Figure PCTCN2016107854-appb-100001
    其中,R1-R4独立地表示为氢、C1-C8取代或者未取代的烷基、或C2-C8取代或者未取代的烯烷基、或C2-C8取代或者未取代的炔烷基,其中取代基为C1-C4的烷基或卤素。
  2. 根据权利要求1所述的有机电子传输材料,其中,R1-R4独立地表示为氢、C1-C4取代或者未取代的烷基、或C2-C4取代或者未取代的烯烷基,或C2-C4取代或者未取代的炔烷基。
  3. 根据权利要求2所述的有机电子传输材料,其中R1-R4独立地表示为氢、C1-C4的烷基。
  4. 根据权利要求3所述的有机电子传输材料,R1-R4相同。
  5. 根据权利要求1所述的有机电子传输材料,其中,R1-R4优选表示为氢。
  6. 根据权利要求1所述的有机电子传输材料,为下列结构的化合物:
    Figure PCTCN2016107854-appb-100002
    Figure PCTCN2016107854-appb-100003
  7. 根据权利要求1所述的有机电子传输材料,为下列结构化合物:
    Figure PCTCN2016107854-appb-100004
  8. 权利要求1-7任一所述的有机电子传输材料在仅电子有机半导体二极管器件和有机电致发光器件中的应用。
PCT/CN2016/107854 2015-12-09 2016-11-30 有机电子传输材料 WO2017097154A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187014592A KR20180082466A (ko) 2015-12-09 2016-11-30 유기 전자 수송 재료
US16/060,939 US20180358561A1 (en) 2015-12-09 2016-11-30 Organic electron transport material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510902765 2015-12-09
CN201510902765.9 2015-12-09

Publications (1)

Publication Number Publication Date
WO2017097154A1 true WO2017097154A1 (zh) 2017-06-15

Family

ID=58395396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107854 WO2017097154A1 (zh) 2015-12-09 2016-11-30 有机电子传输材料

Country Status (5)

Country Link
US (1) US20180358561A1 (zh)
KR (1) KR20180082466A (zh)
CN (1) CN106542957B (zh)
TW (1) TWI612028B (zh)
WO (1) WO2017097154A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106356452B (zh) * 2015-12-09 2018-09-18 广东阿格蕾雅光电材料有限公司 仅电子有机半导体二极管器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102439746A (zh) * 2009-05-13 2012-05-02 全球有机发光半导体科技有限责任公司 用于有机电子器件的内部连接器
CN103468243A (zh) * 2012-06-06 2013-12-25 广东阿格蕾雅光电材料有限公司 有机电子材料和有机电致发光器件
CN104703969A (zh) * 2012-11-21 2015-06-10 株式会社Lg化学 荧蒽化合物及包含其的有机电子器件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4562884B2 (ja) * 2000-08-25 2010-10-13 出光興産株式会社 有機エレクトロルミネッセンス素子
DE10345583A1 (de) * 2003-09-29 2005-05-19 Basf Ag Synthese von phenylsubstituierten Fluoranthenen durch Diels-Alder-Reaktion und ihre Verwendung
US8283054B2 (en) * 2009-04-03 2012-10-09 Global Oled Technology Llc Tandem white OLED with efficient electron transfer
CN104342126B (zh) * 2013-11-11 2017-02-15 北京阿格蕾雅科技发展有限公司 有机电致发光材料和有机电致发光器件
US20150188055A1 (en) * 2013-12-31 2015-07-02 Research & Business Foundation Sungkyunkwan University Organic electroluminescent compound, organic electroluminescent diode, and method of production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102439746A (zh) * 2009-05-13 2012-05-02 全球有机发光半导体科技有限责任公司 用于有机电子器件的内部连接器
CN103468243A (zh) * 2012-06-06 2013-12-25 广东阿格蕾雅光电材料有限公司 有机电子材料和有机电致发光器件
CN104703969A (zh) * 2012-11-21 2015-06-10 株式会社Lg化学 荧蒽化合物及包含其的有机电子器件

Also Published As

Publication number Publication date
US20180358561A1 (en) 2018-12-13
TW201720785A (zh) 2017-06-16
CN106542957A (zh) 2017-03-29
KR20180082466A (ko) 2018-07-18
TWI612028B (zh) 2018-01-21
CN106542957B (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
JP5628830B2 (ja) フェナントロリン誘導体を含む電子素子
Seo et al. High-efficiency deep-blue organic light-emitting diodes using dual-emitting layer
KR101831270B1 (ko) 유기전계발광소자
JP5837611B2 (ja) 電気活性材料およびそのような材料を用いて製造されるデバイス
WO2020034805A1 (zh) 一种基于激基复合物和激基缔合物体系的有机电致发光器件
US20100244012A1 (en) Naphthyl-substituted anthracene derivatives and their use in organic light-emitting diodes
KR101781114B1 (ko) 유기전자재료
Fang et al. Improved efficiency by a fluorescent dye in red organic light-emitting devices based on a europium complex
Gu et al. Tetrasubstituted adamantane derivatives with arylamine groups: Solution-processable hole-transporting and host materials with high triplet energy and good thermal stability for organic light-emitting devices
Yuan et al. The locally twisted thiophene bridged phenanthroimidazole derivatives as dual-functional emitters for efficient non-doped electroluminescent devices
TWI623532B (zh) 有機空穴傳輸材料
JP2014234360A (ja) イリジウム錯体化合物、有機電界発光素子、表示装置および照明装置
JP7282291B2 (ja) 有機発光素子
TWI612028B (zh) 有機電子傳輸材料
WO2019114769A1 (zh) 一种含有吡啶并吲哚的化合物及其在有机电致发光器件上的应用
TWI612047B (zh) 有機電子傳輸材料
WO2017080446A1 (zh) 仅电子有机半导体二极管器件
WO2017097155A1 (zh) 仅电子有机半导体二极管器件
TWI624091B (zh) 僅空穴有機半導體二極體器件
Gao et al. A simple bipolar host material based on triphenylamine and pyridine featuring σ-linkage for efficient solution-processed phosphorescent organic light-emitting diodes
WO2019128343A1 (zh) 一种电致发光材料及其在光电器件中的应用
CN117479566A (zh) 组合物、包括其的发光器件、和包括所述发光器件的电子设备
CN116354941A (zh) 一种氨基化合物
CN115472756A (zh) 一种有机电致发光器件
CN117479565A (zh) 发光器件和包括所述发光器件的电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187014592

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872345

Country of ref document: EP

Kind code of ref document: A1