WO2017097076A1 - 一种频分双工无线宽带通信方法、装置及基站 - Google Patents

一种频分双工无线宽带通信方法、装置及基站 Download PDF

Info

Publication number
WO2017097076A1
WO2017097076A1 PCT/CN2016/104697 CN2016104697W WO2017097076A1 WO 2017097076 A1 WO2017097076 A1 WO 2017097076A1 CN 2016104697 W CN2016104697 W CN 2016104697W WO 2017097076 A1 WO2017097076 A1 WO 2017097076A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
sub
band
transmission
reception
Prior art date
Application number
PCT/CN2016/104697
Other languages
English (en)
French (fr)
Inventor
林贵彬
文绍纯
徐俊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017097076A1 publication Critical patent/WO2017097076A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation

Definitions

  • the invention relates to, but is not limited to, a field of wireless broadband communication technologies, and in particular, to a frequency division duplex wireless broadband communication method, device and base station.
  • Massive MIMO Massive Multiple-Input Multiple-Output
  • related technologies such as multi-antenna transmission pre-processing and channel detection technology.
  • the use of the transmission pre-processing can significantly improve the system performance.
  • the uplink and downlink transmissions of the TD-LTE use the same frequency.
  • the fading of the uplink channel and the downlink channel can be considered to be basically the same.
  • the row channel has reciprocity.
  • the TD-LTE base station can estimate the channel fading to be experienced by the downlink transmission signal by detecting the uplink transmission signal (such as the uplink reference signal), and thereby determine the downlink transmission scheme and parameters, and ensure the downlink channel.
  • the estimation accuracy of the fading can save the feedback overhead of the terminal.
  • the uplink and downlink of the traditional frequency division duplex system work at different frequency points.
  • FIG. 1 the available bandwidth of the system is divided into two parts, and one part is used to set the uplink channel (the uplink channel is received relative to the base station).
  • the channel, the opposite terminal is the transmission channel, and the other part is used to set the downlink channel (the downlink channel is the transmission channel relative to the base station, and the opposite terminal is the reception channel), resulting in a large difference in the uplink and downlink channel frequencies, and the correlation is low, so that the upper and lower channels are The reciprocity of the line channel is poor.
  • the mobile station needs to use a special feedback channel to transmit the measured state information of the downlink channel to the base station, and the base station can determine the scheme and parameters of the downlink channel transmission, thereby consuming system resources and reducing the accuracy of channel detection. It also increases system complexity.
  • the embodiment of the invention provides a frequency division duplex wireless broadband communication method, device and base station, which can reduce the difference of the channel frequency of the frequency division duplex system and improve the reciprocity of the transceiver channel, without using a special feedback channel. Feedback does not consume system resources and reduces system complexity.
  • the embodiment of the invention provides a frequency division duplex wireless broadband communication method, including:
  • the state of the reception channel corresponding to the transmission channel is estimated according to the reception sub-band corresponding to the transmission sub-band.
  • the number of sending channels in the sending sub-band is equal to the number of receiving channels in the receiving sub-band.
  • the estimating, according to a status of the receiving channel corresponding to the sending channel, in the receiving sub-band corresponding to the transmitting sub-band includes:
  • the state of the receiving channel is used as the state of the transmitting channel
  • the state of any one of the reception channels is selected as the state of the transmission channel.
  • setting the sending channel and the receiving channel respectively in the sending sub-band and the receiving sub-band includes: setting a sending channel and a receiving channel respectively in the sending sub-band and the receiving sub-band.
  • the transmit channel is equal to a center frequency of the receive channel of the corresponding location.
  • setting the sending channel and the receiving channel respectively in the sending sub-band and the receiving sub-band includes: respectively setting a sending channel and a receiving channel in the adjacent transmitting sub-band and the receiving sub-band.
  • the sending channel and the receiving channel are communication channels between peer network elements or communication channels between upper and lower network elements.
  • the embodiment of the invention further provides a frequency division duplex wireless broadband communication device, comprising:
  • the processing module is configured to divide the available bandwidth into mutually interleaved transmission sub-bands and reception sub-bands, and respectively set a transmission channel and a reception channel in the transmission sub-band and the reception sub-band;
  • the evaluation module is configured to perform state estimation on one of the transmission sub-bands according to a state of the reception channel corresponding to the transmission channel in the reception sub-band corresponding to the transmission sub-band.
  • the number of sending channels in the sending sub-band is equal to the number of receiving channels in the receiving sub-band.
  • the evaluation module includes:
  • a first evaluation submodule configured to use, when the receiving channel of the receiving subband is one of the receiving channels corresponding to the sending channel, a state of the receiving channel as a state of the sending channel;
  • a second evaluation submodule configured to perform an average calculation of states of the two or more receiving channels when the receiving channels in the receiving subband are two or more receiving channels corresponding to the sending channel, Obtaining a state of the transmission channel; or selecting a state of any one of the reception channels as a state of the transmission channel.
  • the sending channel and the receiving channel are communication channels between peer network elements or communication channels between upper and lower network elements.
  • the embodiment of the invention further provides a base station, comprising the frequency division duplex wireless broadband communication device as described above.
  • Embodiments of the present invention also provide a computer readable storage medium storing computer executable instructions for performing any of the methods described above.
  • the frequency division duplex wireless broadband communication method, device and base station provided by the embodiments of the present invention divide the available bandwidth into interleaved transmission sub-bands and reception sub-bands, and then respectively set correspondingly in the transmission sub-band and the reception sub-band.
  • the transmit channel and receive channel are similar, resulting in similar channel states, strong correlation, and good reciprocity; therefore, when performing state estimation on one of the transmission sub-bands, according to the receiver corresponding to the transmission sub-band In the frequency band, the state of the receiving channel corresponding to the location of the transmitting channel is estimated, and the transmission pre-processing is performed, thereby effectively avoiding using a special feedback channel to feed back the state information of the transmitting channel to determine the transmission scheme and parameters of the transmitting channel. . Therefore, the solution provided by the embodiment of the present invention can detect the state of the channel without using a dedicated feedback channel, thereby improving the real-time and accuracy of the channel estimation of the system, saving system air interface resources and reducing system complexity.
  • 1 is a schematic diagram of conventional frequency division duplex channel division
  • FIG. 2 is a flowchart of a frequency division duplex wireless broadband communication method according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of frequency division duplex channel division according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of a frequency division duplex wireless bandwidth communication apparatus according to Embodiment 2 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 2 is a flowchart of a frequency division duplex wireless broadband communication method according to an embodiment.
  • the frequency division duplex wireless broadband communication method includes:
  • the available bandwidth is divided into a transmission sub-band and a reception sub-band that are interlaced, and a transmission channel and a reception channel are respectively set in the transmission sub-band and the reception sub-band.
  • the transmission sub-band and the reception sub-band are interleaved, and the transmission channel and the reception channel are respectively set in the transmission sub-band and the reception sub-band, so that the same communication is performed.
  • the frequency difference between the transmitting channel of the device and the receiving channel of the corresponding location is smaller than the frequency difference between the transmitting channel and the receiving channel in the traditional frequency division duplexing, which enhances the reciprocity of the transmitting and transmitting channels, thereby improving the real-time channel estimation of the system.
  • Sexuality reduces system complexity and saves system air interface resources.
  • the sending channel and the receiving channel are directly corresponding to the uplink and downlink channels with respect to devices of different levels.
  • the transmission channel refers to the downlink channel with respect to the base station
  • the reception channel refers to the uplink channel with respect to the base station; correspondingly, the reception channel refers to the downlink with respect to the terminal.
  • the channel, the transmission channel refers to the uplink channel with respect to the terminal.
  • the base station to the terminal belong to the downlink channel
  • the terminal to the base station belong to the uplink channel.
  • the transmission channel and the reception channel in this embodiment also include channels between devices of the same level.
  • the transceiver channel is an opposite term for both parties.
  • the wireless transmission channel such as from the communication device 1 to the communication device 2, is the transmission channel of the communication device 1, and is also the reception channel of the communication device 2. Therefore, the foregoing device is not limited to the terminal and the base station, and the relationship between the receiving and transmitting channels for other devices is also within the scope of protection of this embodiment.
  • a set of available bandwidth division rules are negotiated in advance between the peer network elements or different network elements, and the available bandwidth is divided according to the division rule, and then the channel is estimated according to the division result.
  • the interleaving in the step S101 refers to dividing the available bandwidth into at least one transmitting subband and at least two receiving subbands, or dividing into at least two transmitting subbands and at least one The sub-band is received, and the transmitting sub-band and the receiving sub-band are all staggered.
  • the transmitting sub-band and the receiving sub-band all include at least one channel, the transmitting sub-band includes a transmitting channel, and the receiving sub-band includes a receiving channel, wherein a frequency domain width of the transmitting channel is connected
  • the frequency domain width of the received channel is not limited, and the two may be the same or different.
  • the number of transmission channels in the transmission sub-band may be equal to or different from the number of reception channels in the receiving sub-band.
  • An optional solution is that only one channel is set in the transmitting sub-band and the receiving sub-band, and the transmitting channel is densely adjacent to the receiving channel, and the frequency is relatively close, so that the reciprocity between the corresponding transmitting channel and the receiving channel is also Better, so the real-time performance of the channel estimation is also better.
  • the number of channels set in the corresponding transmitting sub-band and the receiving sub-band in this embodiment may also be set according to specific requirements and the like, for example, the setting mode shown in FIG. 3 is corresponding. Two transmission channels are set in the transmission sub-band, and two reception channels are set in the corresponding reception sub-band (the arrow upwards in FIG. 3 indicates the transmission channel, and vice versa indicates the reception channel).
  • the transmit channel in the transmit sub-band is set corresponding to the receive channel in the receive sub-band, and the number of transmit channels in the transmit sub-band is equal to the number of receive channels in the receive sub-band, and the correspondence between the transmit channel and the receive channel exists.
  • the interval between the center frequency of the transmission channel and the center frequency of the receiving channel of the corresponding location is a fixed value, that is, the center frequency spacing of each pair of receiving and transmitting channels is equal, as long as the fixed value It is smaller than the minimum center frequency interval between the transmission channel and the reception channel in the related art.
  • the center frequency interval between the transmission channel and the reception channel may not be equal, as long as the maximum center frequency interval is smaller than the minimum center frequency interval in the related art, and the center frequency interval in the embodiment of the present invention.
  • the size can be configured by referring to the number of central frequency points in the related art.
  • the present invention can be applied to an LTE (Long Term Evolution) system, and OFDM (Orthogonal Frequency Division Multiplexing) is used as the wireless in the LTE system.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the OFDM technology can aggregate the channels in the available bandwidth of the distributed spectrum to form the total bandwidth of the system resources, so as to achieve the purpose of saving bandwidth resources. Therefore, the channels in this embodiment may partially overlap.
  • the manner in which the channels overlap is the overlap of any rules in the related art, and the aggregation mode or other scenarios in the LTE system adopt the existing methods.
  • the center frequency spacing between the uplink and downlink channels allocated by the base station is also different.
  • the center frequency interval of the adjacent channels can be adjusted according to actual needs, which is not limited herein, and optionally corresponding channel allocation within 15 kHz (KHZ).
  • KHZ 15 kHz
  • the state of the receive channel corresponding to the transmit channel is first recorded in a channel state table, or may be Other carriers are not limited here.
  • the channel state table includes states of multiple transmission channels or reception channels, and there are multiple channel state tables; then when it is necessary to estimate the state of the transmission channel, it is only necessary to search for correspondences from the channel state table.
  • the state of the receiving channel can be obtained by the state of the receiving channel of the location. It should be noted that the correspondence between the transmission channel and the reception channel in the channel state table is clear. For example, between a base station and a terminal, generally, one terminal occupies multiple transmission channels and multiple reception channels.
  • the base station allocates at least one transmission channel and one reception channel corresponding to the transmission channel for resource allocation of one terminal, and optionally, the plurality of transmission channels are interleaved with the reception channel.
  • the base station establishes a channel state table for each terminal of the subordinate. For example, in the channel state table update period, whenever the base station receives the uplink signal of the terminal, the state data of the corresponding uplink channel is recorded in the The channel status table corresponding to the terminal is used to estimate the state of the downlink channel of the corresponding location.
  • the estimation is based on the state of the reception channel corresponding to the location of the transmission channel, and the channel estimation has the following two cases:
  • the state of the receiving channel is directly used as the state of the current transmitting channel
  • the state of the two or more receiving channels is averaged, the state of the current transmitting channel is estimated, or the state of any one of the receiving channels is selected as The status of the current transmit channel.
  • Channel State Information is the channel attribute of a communication link. It describes the weakening factor of the signal on each transmission path, that is, the value of each element in the channel gain matrix H, such as Scattering, fading, multipath fading or shadowing fading, and power decay. Of distance) and other information. The mean value of the corresponding weakening factor values on the two transmission paths is calculated to obtain a new channel gain matrix.
  • the status of the send channel includes:
  • the channel gain matrix of two or more receiving channels is averaged to obtain a channel gain matrix of the transmitting channel.
  • each channel may be sequentially numbered in frequency order, the receiving channel uses an even number of subcarriers, and the transmitting channel uses an odd number. Subcarriers.
  • the channel has two adjacent reception channels (channels numbered 2 and 4, respectively), and the mean values of the states of the channels numbered 2 and 4 are taken as The state of the channel numbered 3; or the state of the channel numbered 3 is selected from the states of the channels numbered 2 and 4 according to a predetermined selection rule.
  • the system since the system has high requirements on real-time data, when the status information recorded in the channel status table exceeds a certain time, the corresponding status information needs to be cleared to avoid judging the status of the transmission channel after receiving the channel status change. Inaccurate.
  • the frequency domain width of one resource block is used as a basic unit.
  • the transceiver channel interleaving process is performed in a continuous available bandwidth unit, and for other available bandwidths, the bandwidth is also divided in the manner of the embodiment to estimate the channel.
  • this embodiment can also be applied to a 5G or other standard communication system. In other systems, as long as the solution proposed in the present embodiment is applied, it also falls within the scope of protection of the present invention.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 5 is a schematic diagram of a frequency division duplex wireless bandwidth communication apparatus according to an embodiment.
  • the frequency division duplex wireless broadband communication device includes:
  • the processing module 51 is configured to divide the available bandwidth into inter-interleaved transmit sub-bands and receive sub-bands, and respectively set the transmit channel and the receive channel in the transmit sub-band and the receive sub-band;
  • the evaluation module 52 is configured to perform state estimation on one of the transmission sub-bands, according to the corresponding sub-band corresponding to the transmission sub-band The state of the received channel is estimated.
  • the transmission channel and the reception channel are directly corresponding to the uplink and downlink channels with respect to devices of different levels.
  • the transmission channel refers to the downlink channel with respect to the base station
  • the reception channel refers to the uplink channel with respect to the base station
  • the reception channel refers to the downlink with respect to the terminal.
  • the channel, the transmission channel refers to the uplink channel with respect to the terminal.
  • the base station to the terminal belong to the downlink channel
  • the terminal to the base station belong to the uplink channel.
  • the transmission channel and the reception channel in this embodiment also include channels between devices of the same level.
  • the transceiver channel is an opposite term for both parties.
  • the wireless transmission channel such as from the communication device 1 to the communication device 2, is the transmission channel of the communication device 1, and is also the reception channel of the communication device 2. Therefore, the foregoing device is not limited to the terminal and the base station, and the relationship between the receiving and transmitting channels for other devices is also within the scope of protection of this embodiment.
  • a set of available bandwidth division rules is negotiated in advance between the peer network element or the upper-level network element, and the available bandwidth is divided according to the division rule, and then the channel is estimated under the division result.
  • inter-interleaving in the processing module 51 means that interleaving in the embodiment refers to dividing the available bandwidth into at least one transmitting sub-band and at least two receiving sub-bands, or dividing into at least two transmitting sub-bands. And at least one receiving sub-band, and the transmitting sub-band and the receiving sub-band are all staggered.
  • the transmitting sub-band and the receiving sub-band all include at least one channel, the transmitting sub-band includes a transmitting channel, and the receiving sub-band includes a receiving channel, wherein the frequency domain width of the transmitting channel and the frequency domain width of the receiving channel are not limited, They may or may not be the same.
  • the number of transmission channels in the transmission sub-band may or may not be equal to the number of reception channels in the reception sub-band.
  • An optional solution is that only one channel is set in the transmitting sub-band and the receiving sub-band, and the transmitting channel is densely adjacent to the receiving channel, and the frequency is relatively close, so that the reciprocity between the corresponding transmitting channel and the receiving channel is also Better, so the real-time performance of the channel estimation is also better. But it should be understood that this is The number of channels set in the corresponding transmitting sub-band and the receiving sub-band can also be set according to specific requirements and the like. For example, the setting mode shown in FIG. 3 is to set two in the corresponding transmitting sub-band.
  • the transmission channel sets two reception channels in the corresponding receiving sub-bands (the arrow in the figure 3 indicates the transmission channel, and the channel indicates the reception channel).
  • the transmit channel in the transmit sub-band is set corresponding to the receive channel in the receive sub-band, and the number of transmit channels in the transmit sub-band is equal to the number of receive channels in the receive sub-band, and the correspondence between the transmit channel and the receive channel exists.
  • the interval between the center frequency of the transmission channel and the center frequency of the receiving channel of the corresponding location is a fixed value, that is, the center frequency spacing of each pair of receiving and transmitting channels is equal, as long as the fixed value It is smaller than the minimum center frequency interval between the transmitting channel and the receiving channel in the related art.
  • the center frequency interval between the transmission channel and the reception channel may not be equal, as long as the maximum center frequency interval is smaller than the minimum center frequency interval in the related art, and the center frequency interval in the embodiment of the present invention.
  • the size can be configured by referring to the number of central frequency points in the related art.
  • the evaluation module 52 includes:
  • a first evaluation submodule configured to use, when the receiving channel corresponding to the sending channel is one, a state of the receiving channel as a state of the sending channel;
  • a second evaluation submodule configured to perform a mean calculation on the states of the two or more receiving channels when the receiving channels corresponding to the sending channel are two or more, to obtain the status of the sending channel Or, the state of any one of the reception channels is selected as the state of the transmission channel.
  • each channel may be sequentially numbered in frequency order, the receiving channel uses an even number of subcarriers, and the transmitting channel uses an odd number. Subcarriers.
  • the channel has two adjacent reception channels (channels numbered 2 and 4, respectively), and the mean values of the states of the channels numbered 2 and 4 are taken as The state of the channel numbered 3; or the state of the channel numbered 3 is selected from the states of the channels numbered 2 and 4 according to a predetermined selection rule.
  • the embodiment further provides a base station, where the base station includes the frequency division duplex wireless broadband communication device.
  • Embodiments of the present invention also provide a computer readable storage medium storing computer executable instructions for performing any of the methods described above.
  • each module/unit in the foregoing embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program in a storage and a memory by a processor. / instruction to achieve its corresponding function.
  • the invention is not limited to any specific form of combination of hardware and software.
  • each of the above-described modules or steps of the present invention can be implemented by a general-purpose computing device, which can be centralized on a single computing device or distributed across multiple computing devices.
  • they can be implemented by program code executable by the computing device, so that they can be stored in a storage medium (Read Only Memory (ROM) or Random Access Memory (RAM).
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the memory, the disk, the optical disk are executed by the computing device, and in some cases, the steps shown or described may be performed in an order different from that herein, or they may be separately fabricated into an integrated circuit module.
  • multiple modules or steps of them can be implemented as a single integrated circuit module. Therefore, embodiments of the invention are not limited to any particular combination of hardware and software.
  • the above technical solution improves the real-time and accuracy of the channel estimation of the system, and saves system air interface resources and reduces system complexity.

Abstract

一种频分双工无线宽带通信方法、装置及基站,首先将可用带宽划分成相互交错的发送子频段和接收子频段,然后在发送子频段和接收子频段中分别对应设置发送信道和接收信道;在对其中一发送子频段中的其中一发送信道进行状态估算时,根据与该发送子频段对应的接收子频段中,与所述发送信道对应位置的接收信道的状态进行估算。

Description

一种频分双工无线宽带通信方法、装置及基站 技术领域
本文涉及但不限于一种无线宽带通信技术领域,尤其涉及一种频分双工无线宽带通信方法、装置及基站。
背景技术
在无线宽带通信系统中,Massive MIMO(Massive Multiple-Input Multiple-Output,大规模多输入多输出系统)及其相关技术得到了广泛的研究,其中相关技术包括多天线发送预处理技术以及信道检测技术。在发送端获得信道状态信息的情况下,使用发送预处理可明显提升系统性能。
TD-LTE(Time Division Long Term Evolution,分时长期演进技术)的上下行传输使用同样的频率,当上下行的发送时间间隔足够短时,可认为上行信道与下行信道的衰落基本相同,即上下行信道具有互易性。基于这一特性,TD-LTE基站可以通过上行发送信号的检测(如上行的参考信号)来估计下行发送信号将要经历的信道衰落,并由此来确定下行传输的方案和参数,在保证下行信道衰落的估计精度的同时,可以节省终端的反馈开销。
但是,传统频分双工系统的上下行链路工作于不同频点,请参见图1,图1中将系统可用带宽划分成两部分,一部分用作设置上行信道(该上行信道相对基站为接收信道,相对终端则为发送信道),另一部分用作设置下行信道(该下行信道相对基站为发送信道,相对终端则为接收信道),导致上下行信道频率相差较大,相关性低,使得上下行信道的互易性较差。因此,移动台需要使用专门的反馈信道把测量到的下行信道的状态信息发送到基站,基站才可确定下行信道传输的方案和参数,从而消耗了系统资源,降低了信道检测的准确度,同时也增加了系统复杂度。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种频分双工无线宽带通信方法、装置及基站,能够减少频分双工系统收发行信道频率之差,提高收发信道的互易性,不需要使用专门的反馈信道进行反馈,不会消耗系统资源,降低了系统复杂度。
本发明实施例提供一种频分双工无线宽带通信方法,包括:
将可用带宽划分成相互交错的发送子频段和接收子频段,在所述发送子频段和接收子频段中分别对应设置发送信道和接收信道;
对其中一发送子频段中的其中一发送信道进行状态估算时,根据与该发送子频段对应的接收子频段中,与所述发送信道对应位置的接收信道的状态进行估算。
可选的,所述发送子频段中的发送信道数量与所述接收子频段中的接收信道数量相等。
可选的,所述根据与该发送子频段对应的接收子频段中,与所述发送信道对应位置的接收信道的状态进行估算包括:
当所述接收子频段中与所述发送信道对应位置的接收信道为一个时,将该接收信道的状态作为所述发送信道的状态;
当所述接收子频段中与所述发送信道对应位置的接收信道为两个或两个以上时,将这两个或两个以上接收信道的状态进行均值计算,得到所述发送信道的状态;或者,选择任意一个接收信道的状态作为所述发送信道的状态。
可选的,在所述发送子频段和接收子频段中分别对应设置发送信道和接收信道包括:在所述发送子频段和接收子频段分别对应设置一个发送信道和一个接收信道。
可选的,对所述发送信道进行状态估算时,根据与该发送信道相邻的接收信道的状态进行估算。
可选的,所述发送信道与对应位置的接收信道的中心频点间隔相等。
可选的,在所述发送子频段和接收子频段中分别对应设置发送信道和接收信道包括:在相邻的发送子频段和接收子频段中分别对应设置发送信道和接收信道。
可选的所述发送信道和接收信道均为同级网元之间的通信信道或者上下级网元之间的通信信道。
本发明实施例还提供了一种频分双工无线宽带通信装置,包括:
处理模块,设置为将可用带宽划分成相互交错的发送子频段和接收子频段,在所述发送子频段和接收子频段中分别对应设置发送信道和接收信道;
评估模块,设置为对其中一发送子频段中的其中一发送信道进行状态估算时,根据与该发送子频段对应的接收子频段中,与所述发送信道对应位置的接收信道的状态进行估算。
可选的,所述发送子频段中的发送信道数量与所述接收子频段中的接收信道数量相等。
可选的,所述评估模块包括:
第一评估子模块,设置为当所述接收子频段中与所述发送信道对应位置的接收信道为一个时,将该接收信道的状态作为所述发送信道的状态;
第二评估子模块,设置为当所述接收子频段中与所述发送信道对应位置的接收信道为两个或两个以上时,将这两个或两个以上接收信道的状态进行均值计算,得到所述发送信道的状态;或者,选择任意一个接收信道的状态作为所述发送信道的状态。
可选的,所述发送信道和接收信道均为同级网元之间的通信信道或者上下级网元之间的通信信道。
本发明实施例还提供了一种基站,包括如上所述的频分双工无线宽带通信装置。
本发明实施例还提出了一种计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令用于执行上述描述的任意一个方法。
本发明实施例的有益效果是:
本发明实施例提供的频分双工无线宽带通信方法、装置及基站,将可用带宽划分成相互交错的发送子频段和接收子频段,然后在所述发送子频段和接收子频段中分别对应设置发送信道和接收信道,使得发送信道与接收信道 频率相近,导致两者信道状态相似、相关性强且互易性较好;因此,当对其中一发送子频段中的其中一发送信道进行状态估算时,根据与该发送子频段对应的接收子频段中,与该发送信道对应位置的接收信道的状态进行估算,并进行发送预处理,从而有效地避免了使用专门的反馈信道将发送信道的状态信息进行反馈才能确定发送信道的传输方案和参数。因此,本发明实施例提供的方案无需采用专门的反馈信道就可对信道的状态进行检测,从而提升了系统的信道估计实时性以及准确度,同时节省了系统空口资源,降低了系统复杂度。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为传统频分双工信道划分示意图;
图2为本发明实施例一提供的频分双工无线宽带通信方法流程图;
图3为本发明实施例一提供的频分双工信道划分示意图;
图4为本发明实施例一提供的信道估算示意图;
图5为本发明实施例二提供的频分双工无线带宽通信装置示意图。
本发明的实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。
实施例一:
请参考图2,图2为本实施例提供的频分双工无线宽带通信方法流程图。
在本实施例中,频分双工无线宽带通信方法包括:
S101,将可用带宽划分成相互交错的发送子频段和接收子频段,发送子频段和接收子频段中分别对应设置发送信道和接收信道;
S102,对其中一发送子频段中的其中一发送信道进行状态估算时,根据与该发送子频段对应的接收子频段中,与所述发送信道对应位置的接收信道的状态进行估算。
通过上述步骤,在对发送信道的状态进行估算时,将发送子频段与接收子频段相互交错,并在所述发送子频段和接收子频段中分别对应设置发送信道和接收信道,使得同一部通讯设备的发送信道与其对应位置的接收信道之间的频率差距小于传统频分双工中发射信道与接收信道的频率差距,增强了收、发信道的互易性,从而提升了系统的信道估计实时性,降低了系统复杂度,同时也节省了系统空口资源。
应当理解的是,上述步骤中,发送信道和接收信道相对于不同级的设备直接则为对应的上、下行信道。例如,相对于基站和终端之间,发送信道相对于基站来说则是指下行信道,接收信道相对于基站来说则是指上行信道;相应的,接收信道相对于终端来说则是指下行信道,发送信道相对于终端来说则是指上行信道。基站到终端属于下行信道,终端到基站属于上行信道。在一个基站对多个终端的通信系统中,不同终端所处的地理位置不同,导致同个频点的下行信道以及同个频点的上行信道在用于传输不同终端的信息时,信道状态是有区别的。讨论信道估计时,应该限制在可接受的一定时间范围内,讨论同一台终端的上下行信道的互易性。
应当理解的是,本实施例中的发送信道和接收信道也包含同一级设备之间的信道。例如,在一对一的对等通信系统中不存在上下行信道,收发信道对于双方而言,是一个相反的称呼。如从通信设备1到通信设备2的无线传输信道,是通信设备1的发送信道,同时也是通信设备2的接收信道。所以,上述设备不限定于终端和基站,对于其他设备若满足收、发信道的关系同样属于本实施例保护的范围。
对于S101步骤,同级网元或者不同级网元之间会事先协商出一套可用带宽划分规则,根据划分规则将可用带宽进行划分,然后根据该划分结果,对信道进行估计。
可选的,在S101步骤中的相互交错,本实施例中相互交错是指将可用带宽划分成至少一个发送子频段和至少两个接收子频段,或者划分成至少两个发送子频段和至少一个接收子频段,并且发送子频段与接收子频段全部交错分布。发送子频段和接收子频段中都包括至少一个信道,发送子频段中包括发送信道,接收子频段中包括接收信道,其中,发送信道的频域宽度与接 收信道的频域宽度不做限定,二者可相同也可不相同,发送子频段中的发送信道数量与所述接收子频段中的接收信道数量可以相等,也可以不相等。可选的方案是,发送子频段和接收子频段中均仅设置一个信道,则发送信道与接收信道密集的相邻交错,频率较接近,使得对应发送信道和接收信道之间的互易性也更好,因此信道估计的实时性也较好。但应当理解的是,本实施例在对应的发送子频段和接收子频段中设置信道的个数还可根据具体需求等因素设置多个,例如图3所示的设置方式,则是在对应的发送子频段中设置两个发送信道,在对应的接收子频段中设置两个接收信道(图3中箭头向上的表示发送信道,反之表示接收信道)。
此外,发送子频段中的发送信道与接收子频段中的接收信道对应设置,并且发送子频段中发送信道的数量等于接收子频段中接收信道的数量,对于发送信道与接收信道的对应关系,存在以下两种情况:
一种情况是,发送信道的中心频点与对应位置的接收信道的中心频点之间的间隔为固定值,也就是说每对收、发信道的中心频点间隔都相等,只要该固定值小于相关技术中发送信道与接收信道的最小中心频点间隔即可。
另一种情况是,发送信道与接收信道之间的中心频点间隔可不等同,只要其最大中心频点间隔小于相关技术中最小中心频点间隔即可,本发明实施例中的中心频点间隔的大小可参照相关技术中中心频点的数量值进行配置。
对于上述中心频点间隔,由于本发明可应用于LTE(Long Term Evolution,长期演进技术)系统中,在LTE系统中下行采用OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用技术)作为其无线网络演进的标准之一,OFDM技术可将频谱上几段分散的可用带宽中的信道聚合形成系统资源总带宽,以达到节约带宽资源的目的,因此,本实施例信道之间可能会部分重叠,且信道重叠的方式是相关技术中任意规则的重叠,以及在LTE系统中聚合场景或其他场景都采用现有方式。对于同一台基站下不同终端而言,基站分配的上下行信道之间的中心频点间隔也会相应的不同。基站在信道分配时,对于同一台终端而言,相邻信道的中心频点间隔可根据实际需要进行相应调整,这里不做限定,可选地若干倍15千赫兹(KHZ)内的对应信道分配给同一台终端,以便于同台终端上下行频点更接近,拥有更好的互易性,更有 利于信道评估。
可选的,对于S102步骤,对其中一个发送子频段中的某一个发送信道进行状态估算时,首先会将与该发送信道对应位置的接收信道的状态记录在一个信道状态表中,也可以是其他载体,这里不做限定。应当理解的是,信道状态表中包括多个发送信道或者接收信道的状态,且信道状态表有多个;然后当需要对该发送信道的状态进行估算时,只需要从信道状态表中查找对应位置的接收信道的状态就可得到该发送信道的状态。应当注意的是,信道状态表中发送信道与接收信道的对应关系是明确的。例如,在基站与终端之间,一般而言,一个终端会占用多个发送信道和多个接收信道。基站对于一个终端的资源分配,至少分配一个发送信道和一个与发送信道对应的接收信道,可选地多个发送信道与接收信道进行交错。同时,基站对下属的每一个终端都建立一张信道状态表,例如,在信道状态表更新周期内,每当基站接收到终端的上行信号时,就会将对应的上行信道的状态数据记录在该终端对应的信道状态表上,以便对对应位置的下行信道的状态进行估算。
在收发信道交错的基础上,对发送信道的状态进行估算时,会根据与发送信道对应位置的接收信道的状态进行估算,信道估算存在以下两种情况:
若当前发送信道只有一个对应位置的接收信道,则直接将该接收信道的状态作为当前发送信道的状态;
若当前发送信道有两个或两个以上对应位置的接收信道,则对两个或两个以上接收信道的状态进行均值计算,估算出当前发送信道的状态,或者选择任意一个接收信道的状态作为当前发送信道的状态。
在无线通信领域,信道状态信息(CSI,Channel State Information),就是通信链路的信道属性。它描述了信号在每条传输路径上的衰弱因子,即信道增益矩阵H中每个元素的值,如信号散射(Scattering)、环境衰弱(fading,multipath fading or shadowing fading)、距离衰减(power decay of distance)等信息。对两个传输路径上对应的衰弱因子数值进行均值计算,得出新的信道增益矩阵。
因此,对两个或两个以上接收信道的状态进行均值计算,估算出当前发 送信道的状态包括:
对两个或两个以上接收信道的信道增益矩阵进行均值计算,得到发送信道的信道增益矩阵。
例如,请参见图4所示的划分示例,对于子频段中只包括一个信道的情况,可将每一个信道按频率顺序依次编号,接收信道使用编号为偶数的子载波,发送信道使用编号为奇数的子载波。当对编号为3的发送信道的状态进行估算时,该信道有两个相邻的接收信道(分别为编号为2和4的信道),则将编号为2和4的信道的状态的均值作为编号为3的信道的状态;或者根据预定的选择规则从编号为2和4的信道的状态中选择一个作为编号为3的信道的状态。类似的,当对编号为1的信道的状态进行估算时,只需将编号为2的信道的状态作为该信道的状态。
可选的,由于系统对数据实时性的要求较高,当信道状态表中记录的状态信息超过一定的时间,则需要将对应的状态信息清除,避免接收信道状态变化后对发送信道的状态判断不准确。
可选的,对信道进行估算时,可选地以一个资源块的频域宽度为基本单元。一个资源块频域中包括12个信道,即一个资源块的频域宽度为15KHZ×12=180KHZ。另外,本实施例中均是以一段连续的可用带宽为单元,进行收发信道交错处理,对于其他段可用带宽,也同样采用本实施例中的方式对带宽进行划分,对信道进行估算。本实施例除了可以应用在LTE系统,也可以应用在5G或其他制式的通讯系统上。在其他系统中,只要应用到本实施提出的方案,也同样属于本发明保护的范围。
实施例二:
请参考图5,图5为本实施例提供的频分双工无线带宽通信装置示意图。
在本实施例中,频分双工无线宽带通信装置包括:
处理模块51,设置为将可用带宽划分成相互交错的发送子频段和接收子频段,在所述发送子频段和接收子频段中分别对应设置发送信道和接收信道;
评估模块52,设置为对其中一发送子频段中的其中一发送信道进行状态估算时,根据与该发送子频段对应的接收子频段中,与所述发送信道对应位 置的接收信道的状态进行估算。
应当理解的是,发送信道和接收信道相对于不同级的设备直接则为对应的上、下行信道。例如,相对于基站和终端之间,发送信道相对于基站来说则是指下行信道,接收信道相对于基站来说则是指上行信道;相应的,接收信道相对于终端来说则是指下行信道,发送信道相对于终端来说则是指上行信道。基站到终端属于下行信道,终端到基站属于上行信道。在一个基站对多个终端的通信系统中,不同终端所处的地理位置不同,导致同个频点的下行信道以及同个频点的上行信道在用于传输不同终端的信息时,信道状态是有区别的。讨论信道估计时,应该限制在可接受的一定时间范围内,讨论同一台终端的上下行信道的互易性。
应当理解的是,本实施例中的发送信道和接收信道也包含同一级设备而之间的信道。例如,在一对一的对等通信系统中不存在上下行信道,收发信道对于双方而言,是一个相反的称呼。如从通信设备1到通信设备2的无线传输信道,是通信设备1的发送信道,同时也是通信设备2的接收信道。所以,上述设备不限定于终端和基站,对于其他设备若满足收、发信道的关系同样属于本实施例保护的范围。
对于处理模块51,同级网元或者上下级网元之间会事先协商出一套可用带宽划分规则,根据划分规则将可用带宽进行划分,然后在该划分结果下,对信道进行估计。
可选的,在处理模块51中的相互交错,是指本实施例中相互交错是指将可用带宽划分成至少一个发送子频段和至少两个接收子频段,或者划分成至少两个发送子频段和至少一个接收子频段,并且发送子频段与接收子频段全部交错分布。发送子频段和接收子频段中都包括至少一个信道,发送子频段中包括发送信道,接收子频段中包括接收信道,其中,发送信道的频域宽度与接收信道的频域宽度不做限定,二者可相同也可不相同。发送子频段中的发送信道数量与所述接收子频段中的接收信道数量可以相等,也可以不相等。可选的方案是,发送子频段和接收子频段中均仅设置一个信道,则发送信道与接收信道密集的相邻交错,频率较接近,使得对应发送信道和接收信道之间的互易性也更好,因此信道估计的实时性也较好。但应当理解的是,本实 施例在对应的发送子频段和接收子频段中设置信道的个数还可根据具体需求等因素设置多个,例如图3所示的设置方式,则是在对应的发送子频段中设置两个发送信道,在对应的接收子频段中设置两个接收信道(图3中箭头向上的表示发送信道,反之表示接收信道)。
此外,发送子频段中的发送信道与接收子频段中的接收信道对应设置,并且发送子频段中发送信道的数量等于接收子频段中接收信道的数量,对于发送信道与接收信道的对应关系,存在以下两种情况:
一种情况是,发送信道的中心频点与对应位置的接收信道的中心频点之间的间隔为固定值,也就是说每对收、发信道的中心频点间隔都相等,只要该固定值小于相关技术中发送信道与接收信道的最小中心频点间隔即可
另一种情况是,发送信道与接收信道之间的中心频点间隔可不等同,只要其最大中心频点间隔小于相关技术中最小中心频点间隔即可,本发明实施例中的中心频点间隔的大小可参照相关技术中中心频点的数量值进行配置。
可选的,在处理模块51的划分基础上,评估模块52包括:
第一评估子模块,设置为当与所述发送信道对应位置的接收信道为一个时,将该接收信道的状态作为所述发送信道的状态;
第二评估子模块,设置为当与所述发送信道对应位置的接收信道为两个或两个以上时,将两个或两个以上接收信道的状态进行均值计算,得到所述发送信道的状态;或者,选择任意一个接收信道的状态作为所述发送信道的状态。
例如,请参见图4所示的划分示例,对于子频段中只包括一个信道的情况,可将每一个信道按频率顺序依次编号,接收信道使用编号为偶数的子载波,发送信道使用编号为奇数的子载波。当对编号为3的发送信道的状态进行估算时,该信道有两个相邻的接收信道(分别为编号为2和4的信道),则将编号为2和4的信道的状态的均值作为编号为3的信道的状态;或者根据预定的选择规则从编号为2和4的信道的状态中选择一个作为编号为3的信道的状态。类似的,当对编号为1的信道的状态进行估算时,只需将编号为2的信道的状态作为该信道的状态。
此外,本实施例还提供了一种基站,该基站包括上述频分双工无线宽带通信装置。
本发明实施例还提出了一种计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令用于执行上述描述的任意一个方法。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储与存储器中的程序/指令来实现其相应功能。本发明不限于任何特定形式的硬件和软件的结合。
显然,本领域的技术人员应该明白,上述本发明的每一个模块或每一个步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储介质(只读存储器(ROM,Read Only Memory)或随机存取存储器(RAM,Random Access Memory)、磁碟、光盘)中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成一个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。所以,本发明实施例不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本发明实施例所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
工业实用性
上述技术方案提升了系统的信道估计实时性以及准确度,同时节省了系统空口资源,降低了系统复杂度。

Claims (13)

  1. 一种频分双工无线宽带通信方法,包括:
    将可用带宽划分成相互交错的发送子频段和接收子频段,在所述发送子频段和接收子频段中分别对应设置发送信道和接收信道;
    对其中一发送子频段中的其中一发送信道进行状态估算时,根据与该发送子频段对应的接收子频段中,与所述发送信道对应位置的接收信道的状态进行估算。
  2. 如权利要求1所述的频分双工无线宽带通信方法,其中,所述发送子频段中的发送信道数量与所述接收子频段中的接收信道数量相等。
  3. 如权利要求1或2述的频分双工无线宽带通信方法,其中,所述根据与该发送子频段对应的接收子频段中,与所述发送信道对应位置的接收信道的状态进行估算包括:
    当所述接收子频段中与所述发送信道对应位置的接收信道为一个时,将该接收信道的状态作为所述发送信道的状态;
    当所述接收子频段中与所述发送信道对应位置的接收信道为两个或两个以上时,将这两个或两个以上接收信道的状态进行均值计算,得到所述发送信道的状态;或者,选择任意一个接收信道的状态作为所述发送信道的状态。
  4. 如权利要求1或2所述的频分双工无线宽带通信方法,其中,在所述发送子频段和接收子频段中分别对应设置发送信道和接收信道包括:在所述发送子频段和接收子频段分别对应设置一个发送信道和一个接收信道。
  5. 如权利要求4所述的频分双工无线宽带通信方法,其中,对所述发送信道进行状态估算时,根据与该发送信道相邻的接收信道的状态进行估算。
  6. 如权利要求1或2所述的频分双工无线宽带通信方法,其中,所述发送信道与对应位置的接收信道的中心频点间隔相等。
  7. 如权利要求1或2所述的频分双工无线宽带通信方法,其中,在所述发送子频段和接收子频段中分别对应设置发送信道和接收信道包括:在相邻的发送子频段和接收子频段中分别对应设置发送信道和接收信道。
  8. 如权利要求1或2所述的频分双工无线宽带通信方法,其中,所述发送信道和接收信道均为同级网元之间的通信信道或者上下级网元之间的通信信道。
  9. 一种频分双工无线宽带通信装置,包括:
    处理模块,设置为将可用带宽划分成相互交错的发送子频段和接收子频段,在所述发送子频段和接收子频段中分别对应设置发送信道和接收信道;
    评估模块,设置为对其中一发送子频段中的其中一发送信道进行状态估算时,根据与该发送子频段对应的接收子频段中,与所述发送信道对应位置的接收信道的状态进行估算。
  10. 如权利要求9所述的频分双工无线宽带通信装置,其中,所述发送子频段中的发送信道数量与所述接收子频段中的接收信道数量相等。
  11. 如权利要求9或10所述的频分双工无线宽带通信装置,其中,所述评估模块包括:
    第一评估子模块,设置为当所述接收子频段中与所述发送信道对应位置的接收信道为一个时,将该接收信道的状态作为所述发送信道的状态;
    第二评估子模块,设置为当所述接收子频段中与所述发送信道对应位置的接收信道为两个或两个以上时,将这两个或两个以上接收信道的状态进行均值计算,得到所述发送信道的状态;或者,选择任意一个接收信道的状态作为所述发送信道的状态。
  12. 如权利要求9或10所述的频分双工无线宽带通信装置,其中,所述发送信道和接收信道均为同级网元之间的通信信道或者上下级网元之间的通信信道。
  13. 一种基站,包括如权利要求8-10任一项的频分双工无线宽带通信装置。
PCT/CN2016/104697 2015-12-08 2016-11-04 一种频分双工无线宽带通信方法、装置及基站 WO2017097076A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510897294.7A CN106856427A (zh) 2015-12-08 2015-12-08 一种频分双工无线宽带通信方法、装置及基站
CN201510897294.7 2015-12-08

Publications (1)

Publication Number Publication Date
WO2017097076A1 true WO2017097076A1 (zh) 2017-06-15

Family

ID=59013736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104697 WO2017097076A1 (zh) 2015-12-08 2016-11-04 一种频分双工无线宽带通信方法、装置及基站

Country Status (2)

Country Link
CN (1) CN106856427A (zh)
WO (1) WO2017097076A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109429340A (zh) * 2017-08-25 2019-03-05 阿里巴巴集团控股有限公司 一种无线通信方法和装置
CN110831022A (zh) * 2018-08-09 2020-02-21 北京三星通信技术研究有限公司 物理资源处理方法及用户设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114554564A (zh) * 2020-11-26 2022-05-27 华为技术有限公司 网络设备、用户终端、芯片、无线通信系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101099319A (zh) * 2005-01-14 2008-01-02 富士通株式会社 频分通信系统
CN101835174A (zh) * 2009-03-12 2010-09-15 中国移动通信集团公司 信号传送方法及其相关设备
WO2015095843A1 (en) * 2013-12-20 2015-06-25 Ping Liang Method for acquiring channel state information in fdd mimo wireless networks
CN105099632A (zh) * 2014-04-23 2015-11-25 北京三星通信技术研究有限公司 一种上行探测参考信号传输的方法和设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197655B (zh) * 2006-12-07 2010-09-22 大唐移动通信设备有限公司 时分双工结合频分双工的通信方法和通信设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101099319A (zh) * 2005-01-14 2008-01-02 富士通株式会社 频分通信系统
CN101835174A (zh) * 2009-03-12 2010-09-15 中国移动通信集团公司 信号传送方法及其相关设备
WO2015095843A1 (en) * 2013-12-20 2015-06-25 Ping Liang Method for acquiring channel state information in fdd mimo wireless networks
CN105099632A (zh) * 2014-04-23 2015-11-25 北京三星通信技术研究有限公司 一种上行探测参考信号传输的方法和设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109429340A (zh) * 2017-08-25 2019-03-05 阿里巴巴集团控股有限公司 一种无线通信方法和装置
CN109429340B (zh) * 2017-08-25 2023-05-05 阿里巴巴集团控股有限公司 一种无线通信方法和装置
CN110831022A (zh) * 2018-08-09 2020-02-21 北京三星通信技术研究有限公司 物理资源处理方法及用户设备
CN110831022B (zh) * 2018-08-09 2023-05-26 北京三星通信技术研究有限公司 物理资源处理方法及用户设备

Also Published As

Publication number Publication date
CN106856427A (zh) 2017-06-16

Similar Documents

Publication Publication Date Title
US11706718B2 (en) Uplink power control for advanced wireless communication systems
US11582734B2 (en) Method and apparatus for beam management for multi-stream transmission
US9379827B2 (en) Method, system, and apparatus for notifying and determining antenna port position relationship
CN103384161B (zh) Mimo无线通信系统、传输方法和装置
US20230077065A1 (en) Methods and devices for feeding back and configuring pilot parameters, user terminal and base station
CN103428777B (zh) 参考信号处理方法及装置
WO2016091008A1 (zh) 非正交用户设备间干扰处理及信令通知方法和装置、存储介质
CN104954297A (zh) 用于无线电信息的快速传递的技术
JP2012525022A (ja) 無線通信システムにおいて参照信号を設置する方法およびシステム
EP3297180B1 (en) Coordinated beamforming method and device
US20110223928A1 (en) Method and apparatus of scheduling in multi-cell cooperative wireless communication system
US8902874B2 (en) Sounding channel apparatus and method
CN105764151B (zh) 通信方法和装置
KR20130108193A (ko) 무선 통신 시스템에서 간섭 측정 방법 및 장치
US10382175B2 (en) Adaptive downlink coordinated multi-points transmission method and device
US10340986B2 (en) Frequency resource allocation in MU-MIMO systems
US10763956B2 (en) Mechanism to increase the transmission range of a cell edge station in a wireless network
US9615280B2 (en) Calculating and reporting channel characteristics
US9985816B2 (en) Dual carrier modulation with single carrier reception
WO2017097076A1 (zh) 一种频分双工无线宽带通信方法、装置及基站
US20110281591A1 (en) Method and device for determining antenna cooperation set, method and device for determining base station cooperation set
CN112312574A (zh) 一种通信传输的方法
EP3375156A1 (en) Channel estimation evaluation in mimo systems
CN109412711B (zh) 非对称带内全双工通信的配对方法及装置、终端
US20170317800A1 (en) Feedback method for supporting interference randomization and apparatus therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872268

Country of ref document: EP

Kind code of ref document: A1