WO2017096918A1 - 一种并行传输数据的方法及装置 - Google Patents

一种并行传输数据的方法及装置 Download PDF

Info

Publication number
WO2017096918A1
WO2017096918A1 PCT/CN2016/091784 CN2016091784W WO2017096918A1 WO 2017096918 A1 WO2017096918 A1 WO 2017096918A1 CN 2016091784 W CN2016091784 W CN 2016091784W WO 2017096918 A1 WO2017096918 A1 WO 2017096918A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
ppdu
duration
parallel
indication information
Prior art date
Application number
PCT/CN2016/091784
Other languages
English (en)
French (fr)
Inventor
于健
林梅露
杨讯
郭宇宸
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16872117.3A priority Critical patent/EP3376813B1/en
Publication of WO2017096918A1 publication Critical patent/WO2017096918A1/zh
Priority to US16/001,713 priority patent/US10645724B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and an apparatus for transmitting data in parallel.
  • a wireless network may include multiple Basic Service Sets (BSSs).
  • BSSs Basic Service Sets
  • CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
  • APs access points
  • STAs stations
  • AP 1 and STA 1 transmit a PPDU on link 1 in BSS 1, at this time,
  • the AP 2 in the BSS 2 can determine, according to the obtained spatial multiplexing parameter, for example, Transmit Power Control (TPC) information, etc., and then determine that it establishes the link 2 with the STA 2 in the BSS 2 to transmit data. Whether it will cause interference to link 1 between AP 1 and STA 1. If the AP 2 determines that the link 1 will not be interfered, the AP 2 may continue to transmit data after the AP 1 and the STA 1 finish transmitting the PPDU, that is, data transmission is performed across the boundary of the PPDU.
  • TPC Transmit Power Control
  • AP 1 and STA 1 finish transmitting the PPDU, they may also cooperate with other APs/STAs. Interacting, for example, when AP 1 subsequently interacts with STA 3 located in the Overlapped BSS (OBSS) to establish link 3, link 2 between AP 2 and STA 2 will be on link 3. The data transmission causes interference.
  • OBSS Overlapped BSS
  • Embodiments of the present invention provide a method and apparatus for transmitting data in parallel, which can reduce link interference caused by parallel transmission while implementing parallel transmission across the boundaries of PPDUs.
  • an embodiment of the present invention provides a method for transmitting data in parallel, including: a first node generates a PPDU, where the PPDU carries indication information, where the indication information is used to indicate whether to allow the second node to span the duration of the PPDU.
  • the parallel transmission of data, and the cross-border duration of parallel transmission of data the first node belongs to the first BSS, and the second node belongs to the second BSS; the first node transmits the PPDU.
  • the second node when the first node transmits the PPDU, it explicitly indicates to the second node whether to allow the second node to transmit data in parallel across the duration of the PPDU, and The cross-boundary duration of the parallel transmission of data, therefore, the second node can determine whether to perform parallel transmission across the boundary of the PPDU according to the indication information, and the cross-boundary duration of the parallel transmission, thereby avoiding the change of the primary link of the first node. And causing the parallel transmission on the secondary link of the second node to interfere with the data transmission on the changed primary link, that is, the parallel transmission can be realized while implementing parallel transmission across the boundary of the PPDU. Link interference.
  • the first node if the first node is an access point AP in the first BSS, the first node sends the PPDU, including: the AP direction
  • the PRS is sent by the station in the first BSS, and the indication information is carried in the high-efficiency signaling field or the MAC frame of the PPDU.
  • the indication information whether the second node is allowed to cross the duration of the PPDU is indicated by the 2-bit bit Transfer data and transfer data in parallel The cross-boundary duration; or, in the indication information, indicates whether the second node is allowed to transmit data in parallel across the duration of the PPDU by using 1 bit, and if the second node is allowed to transmit data in parallel across the duration of the PPDU,
  • the cross-border duration of parallel transmission of data is indicated by 2 bits in the indication information.
  • M times in the duration of the transmission opportunity TXOP are respectively indicated by M bits. Whether the second node is allowed to transmit data in parallel in the segment, M ⁇ 1; or, in the indication information, whether the second node is allowed to transmit data in parallel within the duration of the N PPDUs by N bits, respectively, N ⁇ 1.
  • the first node if the first node is a site in the first BSS, the first node generates a PPDU, including: the site receiving the first BSS
  • the indication information sent by the AP is used to indicate whether to allow the second node to transmit data in parallel across the duration of the PPDU, and the cross-border duration of the data to be transmitted in parallel; the station generates a PPDU, and the PPDU carries the indication information.
  • the first node if the first node is a site in the first BSS, the first node generates a PPDU, including: the site receiving the first BSS An indication parameter sent by the AP, the indication parameter is used to indicate whether the AP allows the second node to transmit data in parallel across the length of the PPDU, and the duration of the parallel transmission of data; the duration of the PPDU, the duration of the TXOP, And the indication parameter generation indication information, the indication information is used to indicate whether the site allows the second node to transmit data in parallel across the length of the PPDU, and the cross-border duration of the parallel transmission data; the site generates a PPDU, where the PPDU carries the Instructions.
  • an embodiment of the present invention provides a method for transmitting data in parallel, including: acquiring, by a second node, a PPDU sent by a first node, where the PPDU carries indication information, where the indication information is used to indicate whether the second is allowed.
  • the node transmits data in parallel across the duration of the PPDU, and the cross-boundary duration of the parallel transmission data, the first node belongs to the first basic service set BSS, and the second node belongs to the second BSS;
  • the duration of the PPDU transmits data in parallel, and the second node transmits data in parallel within the duration of the PPDU; if the first node indicates that the duration of the PPDU is allowed to be paralleled Transmitting data, the second node transmits data in parallel during the cross-border duration.
  • the first node is an AP or a station in the first BSS
  • the second node obtains the PPDU sent by the first node, including:
  • the second node acquires the PPDU sent by the AP, and the PPDU sent by the AP carries the first indication information, where the first indication information is used to indicate whether the AP allows the second node to transmit data in parallel across the duration of the PPDU, and in parallel.
  • the second node obtains the PPDU sent by the station, and the PPDU sent by the station carries the second indication information, where the second indication information is used to indicate whether the station allows the second node to cross the PPDU. Transmitting the data in parallel, and the cross-border duration of the parallel transmission data; the second node selects the first indication information or the second indication information as the indication information; or the second node uses the first indication information as the indication information.
  • the second information by the second node, the first indication information or the second indication information
  • the second node compares the cross-border time indicated by the first indication information with the cross-border time indicated by the second indication information; the second node may use the first indication information or the second indication that the transit time is shorter Information is used as the indication information.
  • the embodiment of the present invention provides a method for transmitting data in parallel, where a first node in a first BSS generates a PPDU, where the PPDU carries indication information, where the indication information is used to indicate whether to allow the second BSS.
  • the second node transmits data in parallel across the duration of the PPDU, and the cross-boundary duration of the parallel transmission data, the first node belongs to the first basic service set BSS, and the second node belongs to the second BSS; and, the first node sends the PPDU, so that the node
  • the second node may determine, according to the indication information, whether to perform parallel transmission across the boundary of the PPDU, and a cross-boundary duration of parallel transmission, thereby avoiding a change of the parallel link on the secondary link due to a change of the primary link.
  • the problem of interference caused by data transmission on the primary link is that it can achieve parallel transmission across the boundaries of PPDUs while reducing link interference caused by parallel transmission.
  • the second node may also perform channel contention based on the fallback mechanism to transmit data in parallel on the channel obtained from the competition.
  • an embodiment of the present invention provides a method for transmitting data in parallel, including: determining, by a second node, whether a condition for parallel transmission of data is satisfied; The second node determines the count value of the first backoff counter, the transmission duration required for the PPDU to be sent, and the remaining duration of the end of the cross-border duration; the second node waits according to the count value of the first backoff counter.
  • the transmission duration of the transmitted PPDU and the remaining duration of the distance crossing the duration of the time interval determine a channel contention scheme, so that the second node transmits the PPDU to be transmitted in parallel on the channel obtained by the competition.
  • the second node may determine different channel contention schemes in different application scenarios for the count value, the transmission duration, and the remaining duration, so that the second node transmits the PPDU to be transmitted in parallel on the channel obtained by the competition.
  • the second node determines, according to the count value of the first backoff counter, the transmission duration, and the remaining duration, the channel competition scheme, including: The second node uses the first backoff counter to perform rollback from the count value; when the first backoff counter falls back to 0, if the remaining duration is less than the transmission duration, the second node determines the channel
  • the competition scheme is: waiting for the cross-boundary duration to end the channel competition again; or, immediately re-competing the channel.
  • the channel competition scheme further includes: the second node resetting a size of the first back-off window; or Retaining the size of the first back-off window; or doubling the size of the first back-off window, so that the second node resets the count value of the first back-off count according to the size of the first back-off window.
  • the second node determines, according to the count value of the first backoff counter, the transmission duration, and the remaining duration, the channel competition scheme, including: The second node uses the first backoff counter to perform rollback from the count value: when the first backoff counter falls back to 0, if the remaining duration is not less than the transmission duration, the second node determines the The channel competition scheme is: The PPDU to be transmitted is transmitted in parallel immediately.
  • the channel competition scheme further includes: the second node waits for the cross-boundary duration to end and re-compete the channel; Alternatively, the second node immediately resumes channel contention.
  • the channel competition scheme further includes: the second node resetting a size of the first back-off window, so that The second node updates the count value of the first backoff count according to the size of the first backoff window.
  • the second node determines, according to the count value of the first back-off counter, the transmission duration, and the remaining duration, the channel competition scheme, including: The second node calculates, according to the count value, whether the first backoff counter can fall back to 0 within the remaining duration, and sends the PPDU to be sent; if it cannot fall back to 0 within the cross-border duration, and sends The PPDU to be sent, the second node determines that the channel competition scheme is: suspending the first backoff counter, and continues to use the first backoff counter for channel contention after the crossover duration ends.
  • the method further includes: if the condition for parallel transmission of data is met, the second node hangs a second back-off counter; wherein the channel contention scheme includes: after detecting the channel being in an idle state after the end of the cross-border duration, the second node recovers the second back-off counter, and uses the second back The counter is countered for channel contention.
  • an embodiment of the present invention provides a first node, including: a generating unit, configured to generate a PPDU, where the PPDU carries indication information, where the indication information is used to indicate whether to allow the second node to span the duration of the PPDU.
  • a generating unit configured to generate a PPDU, where the PPDU carries indication information, where the indication information is used to indicate whether to allow the second node to span the duration of the PPDU.
  • Parallel transmission of data, and cross-border duration of parallel transmission of data the first node belongs to a first basic service set BSS, the second The node belongs to the second BSS; the sending unit is configured to send the PPDU.
  • the sending unit is specifically configured to be in the first BSS.
  • the station sends the PPDU, and the indication information is carried in the high-efficiency signaling field or the medium access control MAC frame of the PPDU.
  • the indication information in the indication information, whether the second node is allowed to cross the duration of the PPDU is indicated by a 2-bit bit Transmitting data, and a cross-border duration of parallel transmission of data; or, in the indication information, indicating whether the second node is allowed to transmit data in parallel across the length of the PPDU by one bit, if the second node is allowed to cross the PPDU
  • the cross-border duration of the parallel transmission data is indicated by the 2-bit bit in the indication information.
  • M times in the duration of the transmission opportunity TXOP are respectively indicated by M bits Whether the second node is allowed to transmit data in parallel in the segment, M ⁇ 1; or, in the indication information, whether the second node is allowed to transmit data in parallel within the duration of the N PPDUs by N bits, respectively, N ⁇ 1.
  • the device further includes a receiving unit, where the receiving unit is configured to receive the first An indication information sent by an AP in a BSS, the indication information is used to indicate whether to allow the second node to transmit data in parallel across the duration of the PPDU, and the cross-boundary duration of the data to be transmitted in parallel; the generating unit is specifically configured to generate a PPDU, the PPDU The indication information is carried in the middle.
  • the device further includes a receiving unit, where the receiving unit is configured to receive the first An indication parameter sent by an AP in a BSS, the indication parameter is used to indicate whether the AP allows the second node to transmit data in parallel across the duration of the PPDU, and a cross-boundary duration of data to be transmitted in parallel; the generating unit is specifically configured to use the PPDU according to the PPDU.
  • the indication information is used And instructing the station whether to allow the second node to transmit data in parallel across the duration of the PPDU, and the cross-boundary duration of the data to be transmitted in parallel; and generating a PPDU, the PPDU carrying the indication information.
  • an embodiment of the present invention provides a second node, including: an acquiring unit, configured to acquire a PPDU sent by a first node, where the PPDU carries indication information, where the indication information is used to indicate whether the second is allowed.
  • the node transmits data in parallel across the duration of the PPDU, and the cross-boundary duration of the parallel transmission data, the first node belongs to the first basic service set BSS, the second node belongs to the second BSS, and the transmission unit is used for the first node
  • the indication does not allow data to be transmitted in parallel across the length of the PPDU, and data is transmitted in parallel within the duration of the PPDU; if the first node indicates that data is allowed to be transmitted in parallel across the length of the PPDU, data is transmitted in parallel within the duration of the cross-border.
  • the first node is an AP or a site in the first BSS
  • the second node further includes a selecting unit, the acquiring unit, and the specific
  • the PPDU sent by the AP carries the first indication information, where the first indication information is used to indicate whether the AP allows the second node to transmit data in parallel across the length of the PPDU, and transmit data in parallel.
  • the PPDU sent by the station carries a second indication information, where the second indication information is used to indicate whether the second node transmits data in parallel across the length of the PPDU, and The cross-boundary duration of the data to be transmitted in parallel; the selecting unit is configured to select the first indication information or the second indication information as the indication information; or the second node uses the first indication information as the indication information.
  • the selecting unit is configured to compare the cross-bound time indicated by the first indication information with the second Indicates the cross-border time indicated by the information; the first indication information or the second indication information with a short cross-over time is used as the indication information.
  • an embodiment of the present invention provides a second node, including: a determining unit, configured to determine whether a condition for parallel transmission of data is met; and, if a condition for parallel transmission of data is met, determining a first backoff counter Count value, the length of transmission required for the PPDU to be sent, and the remaining duration of the end of the cross-border duration; the competition unit, Determining a channel contention scheme according to the count value of the first backoff counter, the transmission duration required for the PPDU to be transmitted, and the remaining duration of the distance crossing time duration, so that the second node is parallel on the channel obtained by the competition. Transmit the PPDU to be transmitted.
  • the second node further includes a back-off unit, where the back-off unit is configured to start from the count value by using the first back-off counter
  • the contention unit is specifically configured to: when the first backoff counter falls back to 0, if the remaining duration is less than the transmission duration, determine that the channel competition scheme is: wait for the cross-boundary duration to end and then re-perform the channel Competition; or, immediately re-competition of the channel.
  • the contention unit is further configured to reset a size of the first back-off window; or, retain the first Rewinding the size of the window; or doubling the size of the first back-off window, so that the second node resets the count value of the first back-off count according to the size of the first back-off window.
  • the second node further includes a back-off unit, where the back-off unit is configured to start from the count value by using the first back-off counter
  • the contention unit is specifically configured to: when the first backoff counter falls back to 0, if the remaining duration is not less than the transmission duration, determine that the channel competition scheme is: immediately transmit the PPDU to be transmitted in parallel.
  • the second node further includes a calculating unit, where the calculating unit is configured to calculate, according to the count value, whether the first backoff counter is in the The remaining time is back to 0, and the PPDU to be sent is sent; the contention unit is specifically configured to determine the channel competition scheme if the PPDU to be sent is not returned within the cross-bound time period and the PPDU to be sent is sent. To: suspend the first backoff counter, and continue to use the first backoff counter for channel contention after the end of the crossover duration.
  • the second node further includes a second back-off counter, wherein the contention unit is specifically configured to: if the condition for parallel data transmission is met, Starting the second backoff counter; during the crossover period After the end, if it is detected that the channel is in an idle state, the second backoff counter is restored, and the second backoff counter is used for channel contention.
  • an embodiment of the present invention provides a first node, including: a processor, a memory, a bus, and a communication interface; the memory is configured to store a computer to execute an instruction, and the processor and the memory pass the bus Connecting, when the first node is running, the processor executing the computer-executed instructions stored by the memory to cause the first node to perform parallel transmission of data according to any one of the above first aspects method.
  • an embodiment of the present invention provides a second node, including: a processor, a memory, a bus, and a communication interface; the memory is configured to store a computer to execute an instruction, and the processor and the memory pass the bus Connecting, when the second node is running, the processor executing the computer-executed instructions stored by the memory to cause the second node to perform the method of any of the second aspect or the third aspect A method of transferring data in parallel.
  • the embodiment of the present invention provides a first node and a second node, where the first node in the first BSS generates a PPDU, where the PPDU carries indication information, where the indication information is used to indicate whether to allow the second BSS.
  • the second node transmits data in parallel across the duration of the PPDU, and the cross-boundary duration of the parallel transmission data, the first node belongs to the first basic service set BSS, and the second node belongs to the second BSS; and, the first node sends the PPDU, Having the second node determine whether to perform parallel transmission across the boundary of the PPDU and the cross-boundary duration of the parallel transmission according to the indication information, thereby avoiding a change of the parallel transmission pair on the secondary link due to a change of the primary link.
  • the problem of interference caused by data transmission on the subsequent main link is that the parallel transmission of parallel transmission can be reduced while implementing parallel transmission across the boundaries of the PPDU.
  • FIG. 1 is a schematic diagram of an application scenario of parallel transmission of data in the prior art
  • FIG. 2 is a schematic diagram of an application scenario of line transmission data according to an embodiment of the present invention.
  • FIG. 3 is a flowchart 1 of a method for transmitting data in parallel according to an embodiment of the present invention
  • FIG. 4 is an interaction diagram 1 of a method for transmitting data in parallel according to an embodiment of the present invention
  • FIG. 5 is an interaction diagram 2 of a method for transmitting data in parallel according to an embodiment of the present invention.
  • FIG. 6 is an interaction diagram 3 of a method for transmitting data in parallel according to an embodiment of the present invention.
  • FIG. 7 is a second flowchart of a method for transmitting data in parallel according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram 1 of a first node according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram 2 of a first node according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram 1 of a second node according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram 2 of a second node according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram 3 of a second node according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram 4 of a second node according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram 5 of a second node according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of hardware of a first node according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of hardware of a second node according to an embodiment of the present invention.
  • first and second are used for descriptive purposes only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first” and “second” may include one or more of the features either explicitly or implicitly. In the description of the present invention, "a plurality” means two or more unless otherwise stated.
  • the method for transmitting data in parallel according to an embodiment of the present invention can be applied to a standard The application scenario of spatial multiplexing proposed in 802.11ax.
  • the concept of parallel transmission under spatial multiplexing is first introduced.
  • a concept of spatial multiplexing when a node in BSS 1 or BSS2 needs to transmit data (for example, when transmitting a PPDU), a physical carrier is adopted.
  • the interception and the virtual carrier sense determine whether the channel is idle. If the channel is idle, the link transmission data is established in the BSS through the channel competition mechanism. If the channel is occupied, the channel is queried after waiting for the channel to be idle based on the backoff mechanism.
  • the mechanism establishes link transmission data within the BSS.
  • the concept of parallel transmission under spatial multiplexing is proposed in the standard 802.11ax.
  • AP1 in the BSS1 and the station 1 (STA1) establish a primary link to transmit PPDUs, if the data is transmitted in parallel
  • Condition for example, when AP2 receives the PPDU sent by AP1 and finds that the PPDU is from the OBSS, and the received signal strength is below a certain threshold value within a certain period of time, the physical carrier senses that the channel is considered. If the AP2 itself does not have a Network Alloction Vector (NAV) set by other stations in the BSS, the virtual carrier senses that the channel is idle, if the physical carrier is true and the virtual carrier is listening. If the channels are all idle, AP2 in BSS2 and Site 2 (STA2) can be allowed to establish a secondary link transmission PPDU, thereby achieving the purpose of parallel transmission and improving the transmission efficiency of the wireless network.
  • NAV Network Alloction Vector
  • the transmitting end of the secondary link for example, AP2 in BSS2, whether the primary link between AP 1 and STA1 is interfered when data is transmitted on the secondary link. If the AP 2 determines that the primary link will not be interfered, the AP 2 may continue to transmit data after the AP 1 and the STA 1 finish transmitting the PPDU, that is, data transmission is performed across the boundary of the current PPDU.
  • the problem caused by this is that once the transmitting end of the primary link, for example, AP1 in BSS1, continues to re-establish the primary link for data interaction with other nodes, such as STA 3, after ending the transmission of the current PPDU, Due to changes in the primary link, parallel transmissions on the secondary link may be caused to interfere with data transmission on the changed primary link.
  • a link that is being transmitted in a certain BSS is referred to as a primary link
  • a link that is subsequently transmitted in parallel is referred to as a secondary link.
  • an embodiment of the present invention provides a method for transmitting data in parallel, as shown in FIG. 3, including:
  • the first node generates a PPDU, where the PPDU carries indication information, where the indication information is used to indicate whether the second node is allowed to transmit data in parallel across the duration of the PPDU, and the cross-boundary duration of the parallel transmission data.
  • the first node belongs to the first BSS, and the second node belongs to the second BSS.
  • the indication information is carried in the PPDU, indicating whether the second node in the second BSS is allowed to transmit data in parallel across the duration of the PPDU, and the data is transmitted in parallel. Cross-border duration.
  • the cross-border duration is the length of time that the second node is allowed to perform parallel transmission. If the second node is not allowed to transmit data in parallel across the duration of the PPDU, the duration of the cross-border is the duration of the PPDU, that is, the second node can only perform parallel transmission within the length of time that the first node transmits the PPDU; The node can transmit data in parallel across the duration of the PPDU, and the duration of the cross-boundary time can be any value less than the duration of the TXOP (Transmission Opportunity).
  • the duration of the cross-border can be 2 PPDUs, or 1/2. The length of the TXOP.
  • the first node in the first BSS may be an AP or a site.
  • the method for parallel transmission of data provided by the embodiment of the present invention is described in detail by using the AP and the site as the first node respectively. No further details are mentioned, and the second node in the second BSS may also be an AP or a station.
  • the first node sends the PPDU.
  • the first node may send the PPDU carrying the indication information to the receiving end of the primary link.
  • the AP may broadcast to the primary node.
  • the receiving station at the receiving end of the link sends the PPDU.
  • the second node of the second BSS can obtain the PPDU by acquiring the PPDU. Instructing information, according to the indication information, determining whether the length of time for transmitting the PPDU over the first node on the primary link and the duration of cross-boundary transmission of data in parallel when the parallel transmission is performed on the secondary link, if not allowed
  • the data is transmitted in parallel across the duration of the PPDU, and the second node transmits data in parallel within the duration of the PPDU; if data is allowed to be transmitted in parallel across the duration of the PPDU, the second node transmits data in parallel during the span time.
  • the transmitting end of the primary link that is, the first node
  • the cross-border duration thereby avoiding the problem that the parallel transmission on the secondary link interferes with the data transmission on the changed primary link due to the change of the primary link, that is, parallelization can be implemented across the boundaries of the PPDU.
  • the link interference caused by parallel transmission is reduced.
  • the method for transmitting data in parallel according to the embodiment of the present invention is illustrated by using the first node as the AP in the first BSS as an example. As shown in FIG. 4, the method includes:
  • the AP generates a PPDU, where the PPDU carries indication information, where the indication information is used to indicate whether to allow the second node to transmit data in parallel across the duration of the PPDU, and the cross-boundary duration of the parallel transmission data.
  • the AP sends the PPDU to a site in the first BSS, where the indication information is carried in an effective signaling field or a MAC frame of the PPDU.
  • the second node acquires the indication information carried in the PPDU sent by the AP.
  • the second node transmits data in parallel within the duration of the PPDU.
  • the second node transmits data in parallel within the cross-border duration.
  • step 201 when the transmitting end of the primary link is an AP in the first BSS, the AP generates a PPDU, where the PPDU carries indication information, where the indication information is used to indicate whether the second node is allowed to cross the duration of the PPDU. Transfer data, as well as the number of parallel transfers According to the cross-border duration.
  • the method for generating a PPDU by the AP in the first BSS refer to the description of the PPDU generated by the first node in step 101, and therefore no further details are provided herein.
  • the AP sends the PPDU to a station in the first BSS, where the indication information is carried in an efficient signaling field (for example, HE-SIG-A) or a MAC frame of the PPDU.
  • an efficient signaling field for example, HE-SIG-A
  • L-STF Legacy Short Training Field
  • L-LTF Legacy Long Training Field
  • L-SIG traditional signaling field
  • the packet structure of the PPDU includes: Repeated L-SIG (R L-SIG) for automatic detection of 802.11ax and enhancement of L-SIG robustness; -SIG-A (High Efficient Signal Field A), which is used to carry bandwidth, AP identifier (AP ID, also called BSSColor, BSS color), etc., which is read by the BSS and the sites in the OBSS.
  • HE-SIG-B High Efficient Signal Field B
  • HE-STF High Efficient Short Training Field
  • HE-LTF High Efficient Long Training Field
  • MIMO Multiple Input Multiple Ou tput
  • AGC Automatic Gain Control
  • the indication information provided by the embodiment of the present invention may be carried in an efficient signaling field (for example).
  • an efficient signaling field for example, HE-SIG-A
  • a MAC frame for example, in a MAC frame header, or in a MAC frame body
  • the indication information is obtained in the PPDU.
  • whether the second node is allowed to transmit data in parallel across the duration of the PPDU and the cross-border duration of the parallel transmission of data may be indicated by two bits, for example:
  • the duration of the PPDU is not allowed to be exceeded.
  • the duration of the cross-border is the duration of the PPDU.
  • Allow spanning, and the duration of the cross-border is 2 times the duration of the PPDU;
  • Allow spanning, and the duration of the cross-border is 3 times the duration of the PPDU;
  • the duration of the TXOP since there is an indication of the duration of the TXOP in the HE-SIG-A or the MAC frame header, it may also be indicated in the indication information based on the duration of the TXOP, for example:
  • the duration of the PPDU is not allowed to be exceeded.
  • the duration of the cross-border is the duration of the PPDU.
  • Allow spanning, and the duration of the cross-border is 1/4TXOP duration
  • Allow spanning, and the duration of the cross-border is 1/2 TXOP duration
  • the parallel indication is indicated by 2 bits in the indication information.
  • the cross-border duration of the transmitted data for example:
  • the duration of the cross-border is 2 times the duration of the PPDU
  • the duration of the cross-border is 3 times the duration of the PPDU
  • the duration of the cross-border is 4 times the duration of the PPDU
  • ⁇ 11 The duration of the crossover is the duration of the entire TXOP.
  • the TXOP can be divided into M time segments in advance, so that the indication letter is In the information, the M bit can be respectively used to indicate whether the second node is allowed to transmit data in parallel in M time periods in the TXOP, M ⁇ 1, for example, the TXOP is divided into 4 time segments in advance (for example, TXOP1, TXOP2) TXOP3 and TXOP4), if the indication information is 1101, that is, the second node is allowed to transmit data in parallel in TXOP1, TXOP2, and TXOP4, and the second node is not allowed to transmit data in parallel in TXOP3.
  • the indication information whether the second node is allowed to transmit data in parallel during the duration of the N PPDUs, N ⁇ 1, for example, the indication information is 1101, that is, the second node is allowed. Data is transmitted in parallel within the duration of the first PPDU, the second PPDU, and the fourth PPDU, without allowing the second node to transmit data in parallel for the duration of the third PPDU.
  • the indication information may also be designed in other ways.
  • the number of bits is not as tense as HE-SIG-A, more bits may be used for more fine-grained indication of cross-border.
  • the embodiment of the present invention does not limit this.
  • the second node in the second BSS obtains the PPDU sent by the AP in the first BSS, and further obtains the indication information carried in the PPDU.
  • the second node performs step 204, that is, data is transmitted in parallel within the duration of the PPDU.
  • the second node performs step 205 to transmit data in parallel within the cross-border duration.
  • the secondary link where the second node is located is transmitted in parallel, it is required to ensure that the transmission between the transmitting end and the receiving end on the primary link does not cause interference, for example, before the primary link transmits the PPDU.
  • the secondary link is known to the primary link.
  • the duration of the two-way interaction can be used as the reference for the parallel transmission of the secondary link, that is, the duration of the PPDU + the response of the PPDU.
  • the duration of the response frame is used as the time unit for the parallel transmission of the secondary link.
  • the length of the response frame of the PPDU should be such that In order to use the extended duration to replace the cross-border duration in the above scheme, it is ensured that no interference is caused to the two-direction transmission between the transmitting end and the receiving end on the primary link.
  • the second node transmits data in parallel during the extended duration.
  • the second node may further perform channel competition based on the backoff mechanism, thereby transmitting data in parallel on the channel obtained by the competition.
  • the method for performing channel competition by the second node based on the backoff mechanism will be elaborated in the following embodiments, and therefore will not be described herein.
  • the station may also indicate to the second node in the second BSS whether to allow the second node to transmit data in parallel across the duration of the PPDU. And the cross-border duration of data transmitted in parallel.
  • the first implementation manner is: the station directly carries the indication information sent by the AP in the PPDU to be generated, and sends the indication to the second node by sending the PPDU.
  • the second implementation manner is: the station generates the indication information according to the indication parameter sent by the AP, and combines the duration of the PPDU with the duration of the TXOP, and then carries the indication information in the PPDU, and sends the PPDU to the second.
  • the node sends the indication information.
  • a possible implementation manner of the method for transmitting data in parallel according to the embodiment of the present invention is as follows. As shown in FIG. 5, the method includes:
  • the station in the first BSS receives the indication information sent by the AP in the first BSS, where the indication information is used to indicate whether to allow the second node to transmit data in parallel across the duration of the PPDU, and the cross-boundary duration of the parallel transmission data.
  • the site generates a PPDU, where the PPDU carries indication information.
  • the station sends the PPDU to an AP or other station in the first BSS, where the indication information is carried in an effective signaling field or a MAC frame of the PPDU.
  • the second node acquires the indication information carried in the PPDU sent by the station.
  • the second node transmits data in parallel within the duration of the PPDU.
  • the second node transmits data in parallel within the cross-border duration.
  • step 301 the AP in the first BSS sends the indication information directly to the station, for example, the indication information is carried in the PPDU and sent to the station.
  • the indication information is carried in the PPDU and sent to the station.
  • the station may directly carry the indication information in the PPDU to generate the PPDU.
  • the station may send the PPDU to the receiving end of the primary link, that is, the AP or other station in the first BSS, where the efficient signaling field of the PPDU Or the indication information is carried in the MAC frame.
  • the indication information may be obtained by acquiring the PPDU, so as to determine, according to the indication information, that the second transmission is performed on the secondary link. Whether it is possible to transmit the length of the PPDU across the station on the primary link and the duration of the cross-boundary transmission of data in parallel.
  • steps 305-306 refer to the description of the above steps 204-205, and therefore no further details are provided herein.
  • the method includes:
  • the station in the first BSS receives an indication parameter sent by the AP in the first BSS, where the indication parameter is used to indicate whether the AP allows the second node to transmit data in parallel across the duration of the PPDU, and the cross-boundary duration of the parallel transmission of data.
  • the station generates indication information according to the duration of the PPDU, the duration of the TXOP, and the indication parameter, where the indication information is used to indicate whether the station allows the second node to transmit data in parallel across the duration of the PPDU, and the duration of the cross-boundary transmission of the data in parallel.
  • the site generates a PPDU, where the indication information is carried in the PPDU.
  • the station sends the PPDU to an AP or other station in the first BSS, where the indication information is carried in an effective signaling field or a MAC frame of the PPDU.
  • the second node acquires the indication information carried in the PPDU sent by the station.
  • the second node transmits data in parallel within the duration of the PPDU.
  • the second node transmits data in parallel within the cross-border duration.
  • the station receives an indication parameter sent by the AP, where the indication parameter is used to indicate whether the AP allows the second node to transmit data in parallel across the duration of the PPDU, and the cross-boundary duration of the parallel transmission of data.
  • the station can determine, according to the duration of the PPDU, the duration of the TXOP, and the indication parameter in step 401, whether the station (ie, itself) allows the second node to transmit data in parallel across the duration of the PPDU, and
  • the indication information is generated by the cross-boundary duration of the parallel transmission of data.
  • the AP sends an indication parameter, which is used to indicate that the AP allows the second node to transmit in parallel across the length of the PPDU, and the duration of the cross-boundary is 3 PPDUs.
  • the station of the primary link is calculated to determine the distance indicated by the AP.
  • the duration of the three PPDUs is still twice the length of the PPDUs that you want to transmit.
  • the indication information may be generated to indicate that the station allows the second node to transmit in parallel across the length of the PPDU, and the duration of the cross-boundary is twice the duration of the PPDU.
  • the station of the primary link is calculated to determine that the remaining time of the three PPDUs indicated by the AP is the length of the PPDU to be transmitted, and the indication information may be generated to indicate that the site does not allow the second node to cross.
  • the duration of the PPDU is transmitted in parallel.
  • the site side can take a minimum value, and the indicated cross-boundary duration in the indication information generated by the site is smaller than the cross-boundary duration in the indication parameter sent by the AP.
  • the remaining TXOP duration may be compared with the cross-border duration in the indication parameter sent by the AP to determine whether the station allows the second node to transmit data in parallel across the duration of the PPDU, and the cross-border duration of the parallel transmission data.
  • step 403 the station generates a PPDU,
  • the indication information is carried in the PPDU.
  • step 404 the station sends the PPDU to an AP or other station in the first BSS, where the indication information is carried in an efficient signaling field or a MAC frame of the PPDU.
  • the second node in the second BSS may be An indication is obtained from the AP and the site respectively. That is, the second node acquires the PPDU sent by the AP, and the PPDU sent by the AP carries the first indication information, where the first indication information is used to indicate whether the AP allows the second node to transmit data in parallel across the length of the PPDU, and cross-border transmission of data in parallel.
  • the PPDU sent by the station carries the second indication information, and the second indication information is used to indicate whether the station allows the second node to transmit data in parallel across the duration of the PPDU, and cross-border transmission of data in parallel duration.
  • the second node selects the first indication information or the second indication information as the indication information; or the first indication information that is sent by the second node is used by the second node, and the first indication information is used as the indication information. .
  • the second node may further compare the cross-border time indicated by the first indication information with the cross-border time indicated by the second indication information;
  • the first indication information or the second indication information having a short cross-over time is used as the indication information.
  • the embodiment of the present invention provides a method for transmitting data in parallel, where a first node in a first BSS generates a PPDU, where the PPDU carries indication information, where the indication information is used to indicate whether to allow the second BSS.
  • the second node transmits data in parallel across the duration of the PPDU, and the cross-boundary duration of the parallel transmission data, the first node belongs to the first basic service set BSS, and the second node belongs to the second BSS; and, the first node sends the PPDU, so that the node
  • the second node may determine, according to the indication information, whether to perform parallel transmission across the boundary of the PPDU, and a cross-boundary duration of parallel transmission, thereby avoiding a change of the parallel link on the secondary link due to a change of the primary link.
  • the problem of interference caused by data transmission is that it can reduce the link interference caused by parallel transmission while achieving parallel transmission across the boundaries of PPDUs.
  • the secondary link may obtain the indication information carried in the PPDU, but the second node that obtains the indication information may have multiple, so the second node acquires the After the indication information carried in the PPDU, the second node may also perform channel competition based on the backoff mechanism, thereby transmitting data in parallel on the channel obtained by the competition.
  • an embodiment of the present invention provides a method for transmitting data in parallel, as shown in FIG. 7, including:
  • the second node determines whether the condition for parallel transmission of data is met.
  • the second node finds that the PPDU is from the OBSS, and the signal strength received by the second node is in a certain time.
  • the physical carrier senses that the channel is idle; and if the second node itself is not set by the other stations in the BSS, the virtual carrier senses that the channel is idle, then if the physical carrier is true Both the listening and virtual carrier sensing channels are idle, and the second node can determine that the conditions for parallel data transmission are met.
  • the second node determines a count value of the first backoff counter, a transmission duration required for the PPDU to be sent, and a remaining duration of the end of the cross-border duration.
  • the second node may determine the count value of the first backoff counter. For example, the second node determines according to the size of the first backoff window corresponding to the first backoff counter. The count value of the first backoff counter, or, if the first backoff counter is suspended after the last transmission of the PPDU, when the count value is 10, the second node can restore the first backoff counter at this time. That is, the rollback is continued from the count value of 10.
  • the second node needs to determine the distance span The remaining time length of the end of the bound time, because the indication information acquired by the second node indicates a cross-boundary duration that allows the second node to transmit data in parallel, for example, 500 microseconds, the second node can calculate the current time, the distance The remaining duration of the end of the cross-border duration.
  • the cross-border duration may be determined by the second node itself, which is not limited by the embodiment of the present invention.
  • the second node also needs to determine the transmission duration required for the PPDU to be transmitted, for example, 100 microseconds.
  • the second node determines, according to the count value of the first backoff counter, the transmission duration, and the remaining duration, a channel contention scheme, so that the second node transmits the PPDU to be sent in parallel on the channel obtained by the competition.
  • the second node uses the first backoff counter to start the rollback from the count value determined in step 502; when the first backoff counter falls back to 0, the second node compares the transmission duration and the required transmission time of the PPDU to be sent. If the remaining duration is less than the transmission duration, the second node may determine that the channel competition scheme is: waiting for the cross-boundary duration to re-compete the channel; or, immediately re-competition the channel .
  • the second node uses the first backoff counter to perform the rollback from the count value of 10; when the first backoff counter falls back to 0, the transmission time of the PPDU to be sent needs to be 200 microseconds, and the distance span The remaining duration of the end of the bound duration is 100 microseconds, that is, the remaining duration is less than the transmission duration. Obviously, the second node cannot transmit the PPDU to be transmitted in parallel during the remaining duration, so the second node can wait for the span. After the end of the bounding time, the channel competition is resumed.
  • the second node may change the PPDU to be transmitted, for example, changing the PPDU1 to be transmitted to the PPDU2 to be transmitted, and the transmission duration of the PPDU 2 to be transmitted is 90 microseconds. , that is, the remaining duration is greater than the transmission duration, then the second node can immediately re-compete the channel, so that the second node is competing
  • the PPDU 2 to be transmitted is transmitted in parallel on the obtained channel.
  • the second node needs to reset the size of the first back-off window when waiting for the channel to re-compete after the end of the cross-border period; or, if the channel competition is re-executed, the second node needs to reset the size of the first back-off window; The size of the window; or, double the size of the first back-off window, so that the second node resets the count value of the first back-off count according to the size of the first back-off window, and then based on the first reset The count value of the backoff count continues to be rolled back.
  • the first back-off window is reserved or doubled.
  • the size is advantageous in avoiding the problem that the first back-off window of the plurality of second nodes suddenly becomes the minimum value while competing for the channel to collide or collide.
  • the second node compares the transmission duration required for the PPDU to be sent and the remaining duration of the distance crossing time duration, if the remaining duration is not less than the transmission The duration, at this time, the second node may determine that the channel contention scheme is: immediately transmitting the PPDU to be transmitted in parallel.
  • the second node may also wait for the channel competition to resume after the end of the cross-border duration; or, similar to the method 1, the second node may immediately re-compete the channel.
  • the second node needs to reset the size of the first back-off window, so that the second node is based on the first one, whether it is waiting for the channel to compete again after the end of the cross-border period; or
  • the size of the rollback window resets the count value of the first backoff count, and further continues to roll back based on the count value of the first backoff count after the reset.
  • the second node does not need to wait until the first backoff counter rolls back to 0, compares the transmission duration required for the PPDU to be sent and the remaining duration of the distance crossing time duration, but after step 502, directly according to the The count value of the first backoff counter, Calculating whether the first backoff counter can be rolled back to 0 within the remaining time period, and sending the PPDU to be sent; that is, the second node can directly calculate the duration of the first backoff counter to fall back to 0+waiting Whether the transmission duration required for the transmitted PPDU is less than the remaining duration from the end of the cross-border duration.
  • the second node may determine that the channel competition scheme is: suspending the first back-off counter, and the cross-border After the duration is over, the first backoff counter continues to be used for channel contention.
  • a second backoff counter can also be introduced, ie the second node uses two backoff counters (a first backoff counter and a second backoff counter) for channel contention.
  • the second backoff counter when the second node is used as the sending end of the primary link, the second backoff counter may be used for channel contention, and when the second node is used as the sending end of the secondary link, in step 501, that is, the second node After determining whether the condition for parallel transmission of data is satisfied, if the condition for parallel transmission of data is satisfied, the second node may suspend the second backoff counter and use the first backoff counter to perform channel contention.
  • the second node uses the first back-off counter to start the rollback from the count value determined in step 502; when the first back-off counter falls back to 0, the second node compares the to-be-sent The remaining duration of the transmission time length and the distance of the cross-border duration of the PPDU is required. If the remaining duration is less than the transmission duration, the second node may determine that the channel competition scheme is: waiting for the cross-boundary duration to end the channel competition again; Or, re-play channel competition immediately.
  • the second node needs to reset the size of the first back-off window; or, the first back-off window is reserved. Or doubling the size of the first back-off window, so that the second node resets the count value of the first back-off count according to the size of the first back-off window, and further based on the first back-off after the reset The counted count value continues to be rolled back.
  • the letter is re-sent after waiting for the cross-border duration to end.
  • the second node can determine whether the channel is idle through carrier sensing. If the channel is found to be idle, the second counter that is suspended can be restored, and the second back-off counter is used as the transmitting end of the primary link. Perform channel competition. If it is found that the primary link transmission already exists in the channel and the condition for parallel transmission of data is satisfied, the second node may use the first counter to compete for the channel.
  • the second node compares the transmission duration required for the PPDU to be sent and the remaining duration of the distance crossing time duration, if the remaining duration is not less than the transmission The duration, at this time, the second node may determine that the channel contention scheme is: immediately transmitting the PPDU to be transmitted in parallel.
  • the second node may also reset the size of the first back-off window, and then wait for the cross-boundary duration to end to re-compete the channel; or, immediately resume channel competition.
  • the second node may determine whether the channel is idle through carrier sensing, and if the channel is found to be idle, the suspended first may be restored.
  • the second counter, and the transmitting end of the primary link uses the second backoff counter for channel contention. If it is found that the primary link transmission already exists in the channel and the condition for parallel transmission of data is satisfied, the second node may use the first counter to compete for the channel.
  • the second node may determine that the channel competition scheme is: suspending the first back-off. counter.
  • the second node may determine whether the channel is idle by carrier sensing, and if the channel is found to be idle, the suspended second counter may be restored or reset. And the transmitting end as the primary link uses the second backoff counter for channel contention. If it is found that the primary link transmission already exists in the channel and the condition for parallel transmission of data is satisfied, the second node may use the first counter to compete for the channel.
  • the first backoff counter may be a counter that is unified for all services, or may be multiple counters of different services.
  • the second backoff meter The counter can be a counter that is uniform for all services, or multiple counters for different services.
  • the method 2 uses two back-off counters to ensure the fairness of the primary link and the secondary link in the channel competition, and the parallel transmission as the additional transmission of the second node on the secondary link. Opportunity, which improves transmission efficiency.
  • the embodiment of the present invention provides a method for transmitting data in parallel, wherein the second node determines whether the condition for parallel transmission of data is satisfied; if the condition for parallel transmission of data is satisfied, the second node determines the count value of the first backoff counter.
  • FIG. 8 is a schematic structural diagram of a first node according to an embodiment of the present invention.
  • the first node provided by the embodiment of the present invention may be used to implement the method implemented by the foregoing embodiments of the present invention shown in FIG. 1-7.
  • FIGS. 8 For the convenience of description, only parts related to the embodiment of the present invention are shown. Without specific details, please refer to the embodiments of the present invention shown in FIGS.
  • the first node includes:
  • the generating unit 11 is configured to generate a PPDU, where the PPDU carries indication information, where the indication information is used to indicate whether to allow the second node to transmit data in parallel across the duration of the PPDU, and the cross-boundary duration of the parallel transmission data.
  • the first node belongs to the first BSS, and the second node belongs to the second BSS;
  • the sending unit 12 is configured to send the PPDU.
  • the first node may specifically be an AP or a site in the first BSS.
  • the sending unit 12 is specifically configured to send the PPDU to a station in the first BSS, where the first node is an access point AP in the first BSS, and the PPDU is highly efficient.
  • the indication information is carried in the signaling field or the medium access control MAC frame.
  • the indication information whether the number is allowed by the 2-bit bit
  • the two nodes transmit data in parallel across the duration of the PPDU, and the duration of the cross-boundary transmission of data in parallel; or, in the indication information, indicate whether the second node is allowed to transmit in parallel across the duration of the PPDU by using 1 bit Data, if the second node is allowed to transmit data in parallel across the duration of the PPDU, the cross-boundary duration of the parallel transmission data is indicated by the 2-bit bit in the indication information.
  • the apparatus further includes a receiving unit 13, and the receiving unit 13 is configured to receive the first BSS.
  • the indication information sent by the AP is used to indicate whether to allow the second node to transmit data in parallel across the duration of the PPDU, and the cross-boundary duration of the parallel transmission data.
  • the generating unit 11 is specifically configured to generate a PPDU, the PPDU.
  • the indication information is carried in the middle.
  • the receiving unit 13 is configured to receive an indication parameter sent by an AP in the first BSS, where the indication parameter is used to indicate the Whether the AP allows the second node to transmit data in parallel across the duration of the PPDU, and the cross-boundary duration of the data to be transmitted in parallel;
  • the generating unit 11 is configured to generate an indication according to the duration of the PPDU, the duration of the TXOP, and the indication parameter.
  • Information the indication information is used to indicate whether the station allows the second node to transmit data in parallel across the duration of the PPDU, and the cross-boundary duration of the parallel transmission data; and generate a PPDU, where the indication is carried in the PPDU information.
  • FIG. 10 is a schematic structural diagram of a second node according to an embodiment of the present invention.
  • the first node provided by the embodiment of the present invention may be used to implement the method implemented by the foregoing embodiments of the present invention shown in FIG. 1 to FIG.
  • FIGS. 10 For ease of description, only parts related to the embodiments of the present invention are shown. Without specific details, please refer to the embodiments of the present invention shown in FIGS.
  • the two nodes may be APs or sites in the second BSS, and the present invention No restrictions.
  • the second node includes:
  • the acquiring unit 21 is configured to acquire a PPDU sent by the first node, where the PPDU carries indication information, where the indication information is used to indicate whether the second node is allowed to transmit data in parallel across the duration of the PPDU, and parallel transmission The cross-boundary duration of the data, the first node belongs to the first BSS, and the second node belongs to the second BSS;
  • the transmitting unit 22 is configured to: if the first node indicates that data is not allowed to be transmitted in parallel across the length of the PPDU, transmit data in parallel within the duration of the PPDU; if the first node indicates that the PPDU is allowed to be spanned The data is transmitted in parallel for a period of time, and data is transmitted in parallel within the duration of the cross-border.
  • the first node is an AP or a site in the first BSS, where, as shown in FIG. 11, the second node further includes a selecting unit 23, where the acquiring unit 21 is specifically configured to acquire The PPDU sent by the AP, the PPDU sent by the AP carries the first indication information, where the first indication information is used to indicate whether the AP allows the second node to transmit data in parallel across the duration of the PPDU, and parallel transmission.
  • the cross-border duration of the data is obtained.
  • the PPDU sent by the station is obtained, and the PPDU sent by the station carries the second indication information, where the second indication information is used to indicate whether the station allows the second node to cross the PPDU.
  • the time length is transmitted in parallel, and the cross-boundary duration of the data is transmitted in parallel; the selecting unit 23 is configured to select the first indication information or the second indication information as the indication information; or, the second node
  • the first indication information is used as the indication information.
  • the selecting unit 23 is specifically configured to compare a cross-border time indicated by the first indication information with a cross-border time indicated by the second indication information, and the first indication that the cross-bound time is shorter.
  • the information or the second indication information is used as the indication information.
  • the first node and the second node provided by the embodiment of the present invention can implement data transmission in parallel, because the transmitting end of the primary link, that is, the first node, explicitly transmits to the transmitting end of the secondary link when transmitting the PPDU, that is, a second node indicating whether to allow the second node to transmit data in parallel across the length of the PPDU, and a cross-boundary duration of data to be transmitted in parallel. Therefore, the second node may determine, according to the indication information, whether to cross the boundary of the PPDU.
  • the embodiment of the present invention provides a second node method, as shown in FIG. 12, including:
  • a determining unit 31 configured to determine whether a condition for parallel transmission of data is satisfied; and, if a condition for parallel transmission of data is satisfied, determining a count value of the first backoff counter, a transmission duration required by the physical protocol data unit PPDU to be transmitted, and The remaining time from the end of the cross-border duration
  • a competing unit 32 configured to determine a channel contention scheme according to the count value of the first backoff counter, the transmission duration required for the PPDU to be sent, and the remaining duration of the distance crossing time duration, so that the first The two nodes transmit the PPDU to be transmitted in parallel on the channel obtained by the competition.
  • the second node further includes a back-off unit 33.
  • the back-off unit 33 is configured to use the first back-off counter to start back from the count value.
  • the contention unit 32 is configured to: when the first backoff counter falls back to 0, if the remaining duration is less than the transmission duration, determine that the channel contention scheme is: waiting for the crossover After the end of the duration, the channel competition is resumed; or, the channel competition is resumed immediately.
  • the contention unit 32 is further configured to reset a size of the first back-off window; or, keep a size of the first back-off window; or double the size of the first back-off window, so that The second node resets the count value of the first backoff count according to the size of the first backoff window.
  • the contention unit 32 is specifically configured to: when the first backoff counter falls back to 0, if the remaining duration is not less than the transmission duration, determine that the channel contention scheme is: immediate parallel transmission The PPDU to be sent.
  • the contention unit 32 is further configured to wait for the end of the cross-border duration to be restarted. Performing channel competition; or, the second node immediately re-competes the channel, and resets the size of the first back-off window, so that the second node updates the first according to the size of the first back-off window The count value of a back-off count.
  • the second node further includes a calculating unit 34; specifically, the calculating unit 34 is configured to calculate, according to the count value, whether the first backoff counter can be in the Retrieving the PPDU to be sent within the remaining time period, and sending the PPDU to be sent; the contention unit 32 is specifically configured to: if the PPDU cannot be sent back to the cross-length, and send the PPDU to be sent, Determining the channel contention scheme is: suspending the first backoff counter, and continuing to use the first backoff counter for channel contention after the end of the crossover duration.
  • the second node further includes a second back-off counter, wherein the contention unit 32 is specifically configured to suspend the second back-off counter if the condition for parallel transmission of data is met; After the end of the bound time, if it is detected that the channel is in an idle state, the second backoff counter is restored, and the second backoff counter is used for channel contention.
  • the contention unit 32 is specifically configured to suspend the second back-off counter if the condition for parallel transmission of data is met; After the end of the bound time, if it is detected that the channel is in an idle state, the second backoff counter is restored, and the second backoff counter is used for channel contention.
  • the embodiment of the present invention provides a second node, where the second node determines whether the condition for parallel transmission of data is met; if the condition for parallel transmission of data is met, the second node determines the count value of the first backoff counter to be sent.
  • the PPDU to be transmitted is transmitted in parallel on the obtained channel.
  • FIG. 15 is a schematic diagram of a hardware structure of a first node according to an embodiment of the present invention.
  • the first node provided by the embodiment of the present invention may be used to implement the implementation of the embodiments of the present invention shown in FIG. 1 to FIG.
  • FIGS. 15 For the sake of convenience of explanation, only parts related to the embodiments of the present invention are shown. Without specific details, please refer to the embodiments of the present invention shown in FIGS.
  • the first node may be an AP or a site in the first BSS, and the present invention does not impose any limitation on this, and all hardware products that can meet the computing capability requirements are applicable.
  • the first node includes a processor 41 and a communication interface. 42 and the memory 43, and the processor 41, the communication interface 42, and the memory 43 communicate via the bus 44.
  • the memory 43 is configured to store computer execution instructions
  • the processor 41 is connected to the memory 43 via the bus 44, and when the first node is running, the processor 41 executes computer execution stored by the memory 42.
  • For a specific method for transmitting data in parallel refer to the related description in the foregoing embodiment shown in any one of FIG. 3 to FIG. 6, and details are not described herein again.
  • FIG. 16 is a schematic diagram of a hardware structure of a second node according to an embodiment of the present invention.
  • the first node provided by the embodiment of the present invention may be used to implement the implementation of the embodiments of the present invention shown in FIG. 1 to FIG.
  • FIGS. 1-7 For the convenience of description, only parts related to the embodiments of the present invention are shown. Without specific details, please refer to the embodiments of the present invention shown in FIGS. 1-7.
  • the second node may be an AP or a site in the second BSS, and the present invention does not impose any limitation on this, and all hardware products that can meet the computing capability requirements are applicable.
  • the second node includes a processor 51, a communication interface 52, and a memory 53, and the processor 51, the communication interface 52, and the memory 53 communicate via the bus 55.
  • the memory 53 is configured to store computer execution instructions
  • the processor 51 is connected to the memory 53 via the bus 55, and when the first node is running, the processor 51 executes computer execution stored by the memory 52.
  • For a specific method for transmitting data in parallel refer to the related description in the foregoing embodiment shown in any one of FIG. 3 to FIG. 6, and details are not described herein again.
  • the processor 21 can be a central processing unit (English: central processing unit, abbreviated as: CPU).
  • the processor 21 can also be other general-purpose processors, digital signal processing (DSP), application specific integrated circuit (ASIC), field programmable gate array (English) :field-programmable gate Array, referred to as FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the processor 41 or 51 is a control center of the first node and the second node, respectively, and the processor 41 or 51 processes the data received by the communication interface 42 or 52 and calls the software or program in the memory 43 or 53. Performing various functions of the first node or the second node.
  • the communication interface 42 or 52 may be specifically an interface circuit for receiving and transmitting signals during the process of transmitting and receiving information or requests. After receiving the information sent by the external device, the communication interface 42 or 52 processes the processor 41 or 51; The communication interface 42 or 52 can communicate with the network and other devices via wireless communication.
  • the memory 43 or 53 may include a volatile memory (English: volatile memory), such as random-access memory (abbreviation: RAM); the memory 43 or 53 may also include non-volatile memory. (English: non-volatile memory), such as read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state Hard disk (English: solid-state drive, abbreviation: SSD); the memory 43 or 53 may also include a combination of the above types of memory.
  • the processor 41 or 51 can execute various functional applications and data processing of the first node or the second node by running a software program stored in the memory 43 or 53.
  • the bus 44 or 54 may include a data bus, a power bus, a control bus, and a signal status bus.
  • the various buses are illustrated as a straight line in Figures 15-16.
  • an embodiment of the present invention provides an apparatus for transmitting data in parallel, wherein a first node in a first BSS generates a PPDU, where the PPDU carries indication information, where the indication information is used to indicate whether to allow the second in the second BSS.
  • the second node transmits data in parallel across the duration of the PPDU, and the cross-boundary duration of the parallel transmission data, the first node belongs to the first basic service set BSS, and the second node belongs to the second BSS;
  • the PPDU is such that the second node can determine whether to perform parallel transmission across the boundary of the PPDU and the cross-boundary duration of the parallel transmission according to the indication information, thereby avoiding parallel transmission on the secondary link due to a change of the primary link.
  • the problem of interference on the data transmission on the changed primary link that is, parallel transmission between the boundaries of the PPDUs can be realized, and the link interference caused by the parallel transmission can be reduced.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and is independent When the product is sold or used, it can be stored on a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明的实施例提供一种并行传输数据的方法及装置,涉及通信技术领域,可以在实现跨PPDU的界限进行并行传输的同时,降低并行传输带来的链路干扰。该方案包括:第一节点生成PPDU,该PPDU中携带有指示信息,该指示信息用于指示是否允许第二节点跨越该PPDU的时长并行传输数据,以及并行传输数据的跨界时长,该第一节点属于第一BSS,该第二节点属于第二BSS;该第一节点发送该PPDU。

Description

一种并行传输数据的方法及装置
本申请要求于2015年12月07日提交中国专利局、申请号为201510896649.0、发明名称为“一种并行传输数据的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种并行传输数据的方法及装置。
背景技术
无线网络可以包含多个基本服务集(Basic Service Set,BSS),通常,使用标准802.11中的CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance,带有碰撞避免的载波侦听多址接入)机制,以保证不同BSS内的接入点(Access Point,AP)和站点(Station,STA)能够接入无线媒体(wireless medium),且互相之间不发生冲突。
但是,在两个BSS边缘的交界处,基于上述CSMA/CA机制传输PPDU(Physical Protocol Data Unit,物理协议数据单元)时,往往只有一个小区的AP/STA可以传输数据,而另一个小区的AP/STA往往只能保持静默,从而造成资源不能充分利用的问题。
对此,在新一代标准802.11ax中提出了空间复用下的并行传输概念,例如,如图1所示,在BSS 1中AP 1与STA 1在链路1上传输一个PPDU,此时,BSS 2中的AP 2可以根据获取到的空间复用参数,例如,发送功率控制(Transmit Power Control,TPC)信息等,进而判断自己与本BSS 2中的STA 2建立链路2进行传输数据时,是否会对AP 1与STA 1之间的链路1造成干扰。若AP 2确定不会对该链路1造成干扰,则AP 2可以在AP 1与STA 1结束传输该PPDU后继续传输数据,即跨越PPDU的界限进行数据传输。
但是,AP 1与STA 1结束传输该PPDU后,还可能与其他AP/STA 进行交互,例如,当AP 1后续与位于重叠基本服务集(Overlapped BSS,OBSS)的STA 3建立链路3进行交互时,AP 2与STA 2之间的链路2则会对链路3上的数据传输造成干扰。
发明内容
本发明的实施例提供一种并行传输数据的方法及装置,可以在实现跨PPDU的界限进行并行传输的同时,降低并行传输带来的链路干扰。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,本发明的实施例提供一种并行传输数据的方法,包括:第一节点生成PPDU,该PPDU中携带有指示信息,该指示信息用于指示是否允许第二节点跨越该PPDU的时长并行传输数据,以及并行传输数据的跨界时长,该第一节点属于第一BSS,该第二节点属于第二BSS;该第一节点发送该PPDU。
可以看出,通过本发明实施例提供的并行传输数据的方法,由于第一节点在传输PPDU时,明确向第二节点指示了指示是否允许该第二节点跨越该PPDU的时长并行传输数据,以及并行传输数据的跨界时长,因此,第二节点可以根据该指示信息确定是否跨越该PPDU的界限进行并行传输,以及并行传输的跨界时长,从而避免了由于第一节点的主链路发生改变,而导致第二节点的次链路上的并行传输对改变后的主链路上的数据传输造成干扰的问题,即可以在实现跨PPDU的界限进行并行传输的同时,降低并行传输带来的链路干扰。
结合第一方面,在第一方面的第一种可能的实现方式中,若该第一节点为该第一BSS内的接入点AP,则该第一节点发送该PPDU,包括:该AP向该第一BSS内的站点发送该PPDU,该PPDU的高效信令字段或MAC帧中携带有该指示信息。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,在该指示信息中,通过2比特位指示是否允许该第二节点跨越该PPDU的时长并行传输数据,以及并行传输数据的 跨界时长;或者,在该指示信息中,通过1比特位指示是否允许该第二节点跨越该PPDU的时长并行传输数据,若允许该第二节点跨越该PPDU的时长并行传输数据,则在该指示信息中通过2比特位指示并行传输数据的跨界时长。
结合第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式中,在该指示信息中,通过M比特位,分别指示在传输机会TXOP时长中的M个时间段内是否允许第二节点并行传输数据,M≥1;或者,在该指示信息中,通过N比特位,分别指示在N个PPDU的时长内是否允许第二节点并行传输数据,N≥1。
结合第一方面,在第一方面的第四种可能的实现方式中,若该第一节点为该第一BSS内的站点,则该第一节点生成PPDU,包括:该站点接收该第一BSS内的AP发送的指示信息,该指示信息用于指示是否允许第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长;该站点生成PPDU,该PPDU中携带有该指示信息。
结合第一方面,在第一方面的第五种可能的实现方式中,若该第一节点为该第一BSS内的站点,则该第一节点生成PPDU,包括:该站点接收该第一BSS内的AP发送的指示参数,该指示参数用于指示该AP是否允许第二节点跨越该PPDU的时长并行传输数据,以及并行传输数据的跨界时长;该站点根据PPDU的时长、TXOP的时长、以及该指示参数生成指示信息,该指示信息用于指示该站点是否允许该第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长;该站点生成PPDU,该PPDU中携带有该指示信息。
第二方面,本发明的实施例提供一种并行传输数据的方法,包括:第二节点获取第一节点发送的PPDU,该PPDU中携带有指示信息,该指示信息用于指示是否允许该第二节点跨越该PPDU的时长并行传输数据,以及并行传输数据的跨界时长,该第一节点属于第一基本服务集BSS,该第二节点属于第二BSS;若该第一节点指示不允许跨越该PPDU的时长并行传输数据,该第二节点则在该PPDU的时长内并行传输数据;若该第一节点指示允许跨越该PPDU的时长并行 传输数据,该第二节点则在该跨界时长内并行传输数据。
结合第二方面,在第二方面的第一种可能的实现方式中,该第一节点为该第一BSS内的AP或站点;其中,该第二节点获取第一节点发送的PPDU,包括:该第二节点获取该AP发送的PPDU,该AP发送的PPDU中携带有第一指示信息,该第一指示信息用于指示该AP是否允许该第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长;该第二节点获取该站点发送的PPDU,该站点发送的PPDU中携带有第二指示信息,该第二指示信息用于指示该站点是否允许该第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长;该第二节点选择该第一指示信息或该第二指示信息作为该指示信息;或者,该第二节点将该第一指示信息作为该指示信息。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,该第二节点选择该第一指示信息或该第二指示信息作为该指示信息,包括:该第二节点比较该第一指示信息所指示的跨界时间和该第二指示信息所指示的跨界时间;该第二节点将跨界时间较短的该第一指示信息或该第二指示信息作为该指示信息。
至此,本发明实施例提供一种并行传输数据的方法,其中,第一BSS内的第一节点生成PPDU,该PPDU中携带有指示信息,该指示信息用于指示是否允许第二BSS内的第二节点跨越该PPDU的时长并行传输数据,以及并行传输数据的跨界时长,第一节点属于第一基本服务集BSS,第二节点属于第二BSS;进而,第一节点发送该PPDU,使得该第二节点可以根据该指示信息确定是否跨越该PPDU的界限进行并行传输,以及并行传输的跨界时长,从而避免了由于主链路发生改变,而导致次链路上的并行传输对改变后的主链路上的数据传输造成干扰的问题,即可以在实现跨PPDU的界限进行并行传输的同时,降低并行传输带来的链路干扰。
第三方面,在第二节点获取到该PPDU内携带的指示信息之后, 第二节点还可以基于回退机制进行信道竞争,从而在竞争得到的信道上并行传输数据。对此,基于如何基于回退机制进行信道竞争的问题,本发明的实施例提供一种并行传输数据的方法,包括:第二节点确定是否满足并行传输数据的条件;若满足并行传输数据的条件,则第二节点确定第一回退计数器的计数值,待发送的PPDU需要的传输时长,以及距离跨界时长结束的剩余时长;该第二节点根据该第一回退计数器的计数值、待发送的PPDU需要的该传输时长以及距离跨界时长结束的该剩余时长,确定信道竞争方案,以使得该第二节点在竞争得到的信道上并行传输该待发送的PPDU。
这样,第二节点可以针对该计数值、该传输时长以及该剩余时长在不同的应用场景下确定不同的信道竞争方案,以使得第二节点在竞争得到的信道上并行传输待发送的PPDU。
结合第三方面,在第三方面的第一种可能的实现方式中,该第二节点根据该第一回退计数器的计数值、该传输时长以及该剩余时长,确定信道竞争方案,包括:该第二节点使用该第一回退计数器,从该计数值开始进行回退;当该第一回退计数器回退到0时,若该剩余时长小于该传输时长,则该第二节点确定该信道竞争方案为:等待该跨界时长结束后重新进行信道竞争;或者,立即重新进行信道竞争。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,该信道竞争方案还包括:该第二节点重置第一回退窗口的大小;或,保留该第一回退窗口的大小;或,加倍该第一回退窗口的大小,以使得该第二节点根据该第一回退窗口的大小重置该第一回退计数的计数值。
结合第三方面,在第三方面的第三种可能的实现方式中,该第二节点根据该第一回退计数器的计数值、该传输时长以及该剩余时长,确定信道竞争方案,包括:该第二节点使用该第一回退计数器,从该计数值开始进行回退:当该第一回退计数器回退到0时,若该剩余时长不小于该传输时长,则该第二节点确定该信道竞争方案为: 立即并行传输该待发送的PPDU。
结合第三方面的第三种可能的实现方式,在第三方面的第四种可能的实现方式中,该信道竞争方案还包括:该第二节点等待该跨界时长结束后重新进行信道竞争;或者,该第二节点立即重新进行信道竞争。
结合第三方面的第四种可能的实现方式,在第三方面的第五种可能的实现方式中,该信道竞争方案还包括:该第二节点重置第一回退窗口的大小,以使得该第二节点根据该第一回退窗口的大小更新该第一回退计数的计数值。
结合第三方面,在第三方面的第六种可能的实现方式中,该第二节点根据该第一回退计数器的计数值、该传输时长以及该剩余时长,确定信道竞争方案,包括:该第二节点根据该计数值,计算该第一回退计数器能否在该剩余时长内回退到0,且发送该待发送的PPDU;若无法在该跨界时长内回退到0,且发送该待发送的PPDU,则该第二节点确定该信道竞争方案为:挂起该第一回退计数器,并在该跨界时长结束后继续使用该第一回退计数器进行信道竞争。
结合第三方面,在第三方面的第七种可能的实现方式中,在该第二节点确定是否满足并行传输数据的条件之后,还包括:若满足并行传输数据的条件,则第二节点挂起第二回退计数器;其中,该信道竞争方案包括:在该跨界时长结束后,若检测到信道为空闲状态,则该第二节点恢复该第二回退计数器,并使用该第二回退计数器进行信道竞争。
可以看出,在这种信道竞争方案中采用两个回退计数器,保证了主链路和次链路的发送端在进行信道竞争时的公平性,把并行传输作为次链路上第二节点的额外的传输机会,从而提高了传输效率。
第四方面,本发明的实施例提供一种第一节点,包括:生成单元,用于生PPDU,该PPDU中携带有指示信息,该指示信息用于指示是否允许第二节点跨越该PPDU的时长并行传输数据,以及并行传输数据的跨界时长,该第一节点属于第一基本服务集BSS,该第二 节点属于第二BSS;发送单元,用于发送该PPDU。
结合第四方面,在第四方面的第一种可能的实现方式中,若该第一节点为该第一BSS内的接入点AP,则该发送单元,具体用于向该第一BSS内的站点发送该PPDU,该PPDU的高效信令字段或媒体访问控制MAC帧中携带有该指示信息。
结合第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,在该指示信息中,通过2比特位指示是否允许该第二节点跨越该PPDU的时长并行传输数据,以及并行传输数据的跨界时长;或者,在该指示信息中,通过1比特位指示是否允许该第二节点跨越该PPDU的时长并行传输数据,若允许该第二节点跨越该PPDU的时长并行传输数据,则在该指示信息中通过2比特位指示并行传输数据的跨界时长。
结合第四方面的第一种可能的实现方式,在第四方面的第三种可能的实现方式中,在该指示信息中,通过M比特位,分别指示在传输机会TXOP时长中的M个时间段内是否允许第二节点并行传输数据,M≥1;或者,在该指示信息中,通过N比特位,分别指示在N个PPDU的时长内是否允许第二节点并行传输数据,N≥1。
结合第四方面,在第四方面的第四种可能的实现方式中,若该第一节点为该第一BSS内的站点,则该装置还包括接收单元,该接收单元,用于接收该第一BSS内的AP发送的指示信息,该指示信息用于指示是否允许第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长;该生成单元,具体用于生成PPDU,该PPDU中携带有该指示信息。
结合第四方面,在第四方面的第五种可能的实现方式中,若该第一节点为该第一BSS内的站点,则该装置还包括接收单元,该接收单元,用于接收该第一BSS内的AP发送的指示参数,该指示参数用于指示该AP是否允许第二节点跨越该PPDU的时长并行传输数据,以及并行传输数据的跨界时长;该生成单元,具体用于根据PPDU的时长、TXOP的时长、以及该指示参数生成指示信息,该指示信息用 于指示该站点是否允许该第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长;以及,生成PPDU,该PPDU中携带有该指示信息。
第五方面,本发明的实施例提供一种第二节点,包括:获取单元,用于获取第一节点发送的PPDU,该PPDU中携带有指示信息,该指示信息用于指示是否允许该第二节点跨越该PPDU的时长并行传输数据,以及并行传输数据的跨界时长,该第一节点属于第一基本服务集BSS,该第二节点属于第二BSS;传输单元,用于若该第一节点指示不允许跨越该PPDU的时长并行传输数据,则在该PPDU的时长内并行传输数据;若该第一节点指示允许跨越该PPDU的时长并行传输数据,则在该跨界时长内并行传输数据。
结合第五方面,在第五方面的第一种可能实现的方式中,该第一节点为该第一BSS内的AP或站点,其中,该第二节点还包括选择单元,该获取单元,具体用于获取该AP发送的PPDU,该AP发送的PPDU中携带有第一指示信息,该第一指示信息用于指示该AP是否允许该第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长;获取该站点发送的PPDU,该站点发送的PPDU中携带有第二指示信息,该第二指示信息用于指示该站点是否允许该第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长;该选择单元,用于选择该第一指示信息或该第二指示信息作为该指示信息;或者,该第二节点将该第一指示信息作为该指示信息。
结合第五方面的第一种可能实现的方式,在第五方面的第二种可能实现的方式中,该选择单元,具体用于比较该第一指示信息所指示的跨界时间和该第二指示信息所指示的跨界时间;将跨界时间较短的该第一指示信息或该第二指示信息作为该指示信息。
第六方面,本发明的实施例提供一种第二节点,包括:确定单元,用于确定是否满足并行传输数据的条件;以及,若满足并行传输数据的条件,则确定第一回退计数器的计数值,待发送的PPDU需要的传输时长,以及距离跨界时长结束的剩余时长;竞争单元,用 于根据该第一回退计数器的计数值、待发送的PPDU需要的该传输时长以及距离跨界时长结束的该剩余时长,确定信道竞争方案,以使得该第二节点在竞争得到的信道上并行传输该待发送的PPDU。
结合第六方面,在第六方面的第一种可能的实现方式中,该第二节点还包括回退单元;该回退单元,用于使用该第一回退计数器,从该计数值开始进行回退;该竞争单元,具体用于当该第一回退计数器回退到0时,若该剩余时长小于该传输时长,则确定该信道竞争方案为:等待该跨界时长结束后重新进行信道竞争;或者,立即重新进行信道竞争。
结合第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,该竞争单元,还用于重置第一回退窗口的大小;或,保留该第一回退窗口的大小;或,加倍该第一回退窗口的大小,以使得该第二节点根据该第一回退窗口的大小重置该第一回退计数的计数值。
结合第六方面,在第六方面的第三种可能的实现方式中,该第二节点还包括回退单元;该回退单元,用于使用该第一回退计数器,从该计数值开始进行回退;该竞争单元,具体用于当该第一回退计数器回退到0时,若该剩余时长不小于该传输时长,则确定该信道竞争方案为:立即并行传输该待发送的PPDU。
结合第六方面,在第六方面的第四种可能的实现方式中,该第二节点还包括计算单元;该计算单元,用于根据该计数值,计算该第一回退计数器能否在该剩余时长内回退到0,且发送该待发送的PPDU;该竞争单元,具体用于若无法在该跨界时长内回退到0,且发送该待发送的PPDU,则确定该信道竞争方案为:挂起该第一回退计数器,并在该跨界时长结束后继续使用该第一回退计数器进行信道竞争。
结合第六方面,在第六方面的第五种可能的实现方式中,该第二节点还包括第二回退计数器;其中,该竞争单元,具体用于若满足并行传输数据的条件,则挂起该第二回退计数器;在该跨界时长 结束后,若检测到信道为空闲状态,则恢复该第二回退计数器,并使用该第二回退计数器进行信道竞争。
第七方面,本发明的实施例提供一种第一节点,包括:处理器、存储器、总线和通信接口;所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述第一节点运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述第一节点执行上述第一方面中任意一项所述的并行传输数据的方法。
第八方面,本发明的实施例提供一种第二节点,包括:处理器、存储器、总线和通信接口;所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述第二节点运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述第二节点执行上述第二方面或第三方面中任意一项所述的并行传输数据的方法。
至此,本发明实施例提供一种第一节点和第二节点,其中,第一BSS内的第一节点生成PPDU,该PPDU中携带有指示信息,该指示信息用于指示是否允许第二BSS内的第二节点跨越该PPDU的时长并行传输数据,以及并行传输数据的跨界时长,第一节点属于第一基本服务集BSS,第二节点属于第二BSS;进而,第一节点发送该PPDU,使得该第二节点可以根据该指示信息确定是否跨越该PPDU的界限进行并行传输,以及并行传输的跨界时长,从而避免了由于主链路发生改变,而导致次链路上的并行传输对改变后的主链路上的数据传输造成干扰的问题,即可以在实现跨PPDU的界限进行并行传输的同时,降低并行传输带来的链路干扰。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为现有技术中并行传输数据的应用场景示意图;
图2为本发明实施例提供的行传输数据的应用场景示意图;
图3为本发明实施例提供的一种并行传输数据的方法的流程图一;
图4为本发明实施例提供的一种并行传输数据的方法的交互图一;
图5为本发明实施例提供的一种并行传输数据的方法的交互图二;
图6为本发明实施例提供的一种并行传输数据的方法的交互图三;
图7为本发明实施例提供的一种并行传输数据的方法的流程图二;
图8为本发明实施例提供的一种第一节点的结构示意图一;
图9为本发明实施例提供的一种第一节点的结构示意图二;
图10为本发明实施例提供的一种第二节点的结构示意图一;
图11为本发明实施例提供的一种第二节点的结构示意图二;
图12为本发明实施例提供的一种第二节点的结构示意图三;
图13为本发明实施例提供的一种第二节点的结构示意图四;
图14为本发明实施例提供的一种第二节点的结构示意图五;
图15为本发明实施例提供的一种第一节点的硬件结构示意图;
图16为本发明实施例提供的一种第二节点的硬件结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
另外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本发明的实施例提的并行传输数据的方法,可应用在标准 802.11ax中提出的空间复用的应用场景下。
为方便描述本发明实施例中的发明细节,首先介绍空间复用下的并行传输概念。如图2所示,以无线网络中包含2个BSS为例,在未引入空间复用的概念之前,BSS 1或BSS2内的节点需要传输数据时(例如发送PPDU时),会通过进行物理载波侦听和虚拟载波侦听判断信道是否空闲,若信道空闲,则通过信道竞争机制在本BSS内建立链路传输数据,若信道被占用,则基于回退机制等待信道空闲后,再通过信道竞争机制在本BSS内建立链路传输数据。
这样可以保证该信道在一定范围内被某个BSS内的链路独占,而不会发生碰撞,但同时造成的问题就是:在两个BSS边缘的交界处,由于过度保守的条件,往往只有一个BSS内的节点可以传输数据,而其他BSS内的节点往往只能保持静默,造成系统效率较低。
对此,标准802.11ax中提出了空间复用下的并行传输概念,仍以图2为例,当BSS1内的AP1与站点1(STA1)建立主链路传输PPDU时,若满足并行传输数据的条件,例如,当AP2接收到AP1发送的PPDU,发现该PPDU是来自OBSS的,并且在一定时间内,所接收到的信号强度在某一门限值值以下,则物理载波侦听上认为信道空闲;并且,若AP2自身没有被本BSS内的其他站点设置网络分配向量(Network Alloction Vector,缩写:NAV),则虚拟载波侦听上认为信道空闲,若物理载波真听和虚拟载波侦听上信道均空闲,则可以允许BSS2内的AP2与站点2(STA2)建立次链路传输PPDU,从而达到并行传输的目的,提高无线网络的传输效率。
但目前在实现并行传输数据时,通常由次链路的发送端,例如BSS2内的AP2,判断在该次链路上传输数据时是否会对AP 1与STA1之间的主链路造成干扰。若AP 2确定不会对该主链路造成干扰,则AP 2可以在AP 1与STA 1结束传输该PPDU后继续传输数据,即跨越当前的PPDU的界限进行数据传输。这样导致的问题就是:一旦主链路的发送端,例如BSS1内的AP1,在结束传输该当前的PPDU后继续与其他节点,例如STA 3,重新建立主链路进行数据交互时, 由于主链路发生改变,从而可能导致次链路上的并行传输对改变后的主链路上的数据传输造成干扰。
需要说明的是,本发明实施例中将某BSS内正在传输的链路称作为主链路,而后续进行并行传输的链路称作为次链路。
对此,本发明的实施例提供一种并行传输数据的方法,如图3所示,包括:
101、第一节点生成PPDU,该PPDU中携带有指示信息,该指示信息用于指示是否允许第二节点跨越该PPDU的时长并行传输数据,以及并行传输数据的跨界时长。
其中,该第一节点属于第一BSS,第二节点属于第二BSS。
具体的,第一BSS内的第一节点在生成PPDU时,在该PPDU内携带该指示信息,指示是否允许第二BSS内的第二节点跨越该PPDU的时长并行传输数据,以及并行传输数据的跨界时长。
该跨界时长即为允许该第二节点进行并行传输的时长。若不允许第二节点跨越该PPDU的时长并行传输数据,则该跨界时长为该PPDU的时长,即第二节点只能在第一节点传输该PPDU的时长内进行并行传输;若允许第二节点跨越该PPDU的时长并行传输数据,则该跨界时长可以为小于TXOP(Transmission Opportunity,传输机会)时长内的任意值,例如,该跨界时长可以为2个PPDU的时长,或者1/2个TXOP时长。
需要说明的是,该第一BSS内的第一节点可以为AP或者站点,后续实施例中将分别以AP和站点为第一节点详细阐述本发明实施例提供的并行传输数据的方法,故此处不再赘述,并且,该第二BSS内的第二节点也可以为AP或者站点。
102、第一节点发送该PPDU。
在步骤101之后,第一节点可以将携带有该指示信息的PPDU发送至主链路的接收端,例如,当第一节点为图2中的AP1时,该AP可以以广播的形式向该主链路的接收端站点1发送该PPDU。
这样一来,第二BSS的第二节点便可以通过获取该PPDU得到该 指示信息,从而根据该指示信息确定自身在次链路上进行并行传输时,能否跨越主链路上第一节点传输该PPDU的时长,以及并行传输数据的跨界时长,那么,若不允许跨越该PPDU的时长并行传输数据,第二节点则在该PPDU的时长内并行传输数据;若允许跨越该PPDU的时长并行传输数据,第二节点则在该跨界时长内并行传输数据。
可以看出,通过本发明实施例提供的并行传输数据的方法,由于主链路的发送端,即第一节点,在传输PPDU时,明确向次链路的发送端,即第二节点,指示了指示是否允许该第二节点跨越该PPDU的时长并行传输数据,以及并行传输数据的跨界时长,因此,第二节点可以根据该指示信息确定是否跨越该PPDU的界限进行并行传输,以及并行传输的跨界时长,从而避免了由于主链路发生改变,而导致次链路上的并行传输对改变后的主链路上的数据传输造成干扰的问题,即可以在实现跨PPDU的界限进行并行传输的同时,降低并行传输带来的链路干扰。
下面以第一节点为第一BSS内的AP为例,阐述本发明实施例提供的一种并行传输数据的方法,如图4所示,该方法包括:
201、AP生成PPDU,该PPDU中携带有指示信息,该指示信息用于指示是否允许第二节点跨越该PPDU的时长并行传输数据,以及并行传输数据的跨界时长。
202、AP向第一BSS内的站点发送该PPDU,该PPDU的高效信令字段或MAC帧中携带有该指示信息。
203、第二节点获取该AP发送的该PPDU内携带的指示信息。
204、若该指示信息中指示不允许跨越该PPDU的时长并行传输数据,第二节点则在该PPDU的时长内并行传输数据。
205、若该指示信息中指示允许跨越该PPDU的时长并行传输数据,第二节点则在该跨界时长内并行传输数据。
在步骤201中,当主链路的发送端为第一BSS内的AP时,该AP生成PPDU,该PPDU中携带有指示信息,该指示信息用于指示是否允许第二节点跨越该PPDU的时长并行传输数据,以及并行传输数 据的跨界时长。其中,第一BSS内的AP生成PPDU的方法参见步骤101中第一节点生成PPDU的描述,故此处不再赘述。
在步骤201中,该AP向第一BSS内的站点发送该PPDU,其中,该PPDU的高效信令字段(例如,HE-SIG-A)或MAC帧中携带有该指示信息。
如表1所示,为标准802.11ax中一个PPDU的分组结构,其中,包括传统短训练字段(Legacy Short Training Field,L-STF);传统长训练字段(Legacy Long Training Field,L-LTF);传统信令字段(L-SIG),用来保证后向兼容性,使得以前版本标准的站点可以读懂传统前导码部分。
除此之外,PPDU的分组结构中还包括:传统信令字段的重复(Repeated L-SIG,即R L-SIG),用于802.11ax进行自动检测以及L-SIG鲁棒性的增强;HE-SIG-A(High Efficient Signal Field A,高效信令字段A),用来承载带宽,AP标识符(AP ID,也被叫做BSSColor,BSS颜色)等本BSS以及OBSS内站点都会读取的信息;HE-SIG-B(High Efficient Signal Field B,高效信令字段B),主要用来承载本BSS内站点会读取的资源调度信息。后续为HE-STF(High Efficient Short Training Field,高效短训练序列)和HE-LTF(High Efficient Long Training Field,高效长训练序列),分别用来进行MIMO(Multiple Input Multiple Ou tput,多输入)的AGC(Automatic Gain Control,自动增益控制)和信道测量。最后是数据(Data)部分,用来承载MAC帧。
表1
Figure PCTCN2016091784-appb-000001
而本发明实施例提供的指示信息,可承载在高效信令字段(例 如,HE-SIG-A)或MAC帧(例如,MAC帧头中,或者在MAC帧体)中,这样,第二BSS内的第二节点便可以从第一BSS内的该AP向站点发送的PPDU中获取到该指示信息。
具体的,在该指示信息中,可以通过2比特位指示是否允许第二节点跨越该PPDU的时长并行传输数据,以及并行传输数据的跨界时长,例如:
–00:不允许跨越该PPDU的时长,该跨界时长为该PPDU的时长;
–01:允许跨越,且跨界时长为2倍该PPDU的时长;
–10:允许跨越,且跨界时长为3倍该PPDU的时长;
–11:允许跨越,且跨界时长为4倍该PPDU的时长。
当然,由于在HE-SIG-A或者MAC帧头中,会存在TXOP时长的指示,因此也可以在该指示信息中基于TXOP时长进行指示,例如:
–00:不允许跨越该PPDU的时长,该跨界时长为该PPDU的时长;
–01:允许跨越,且跨界时长为1/4TXOP时长;
–10:允许跨越,且跨界时长为1/2TXOP时长;
–11:允许跨越,且跨界时长为整个TXOP时长。
又或者,在指示信息中,通过1比特位指示是否允许第二节点跨越PPDU的时长并行传输数据,若允许第二节点跨越PPDU的时长并行传输数据,则在指示信息中通过2比特位指示并行传输数据的跨界时长,例如:
–0:不允许跨越该PPDU的时长;
–1:允许跨越该PPDU的时长,并进一步指示;
■00:跨界时长为2倍该PPDU的时长;
■01:跨界时长为3倍该PPDU的时长;
■10:跨界时长为4倍该PPDU的时长;
■11:跨界时长为整个TXOP时长。
又或者,可以预先将TXOP分为M个时间段,这样,在该指示信 息中,可通过M比特位,分别指示在TXOP中的M个时间段内是否允许第二节点并行传输数据,M≥1,例如,预先将TXOP分为4个时间段(例如TXOP1、TXOP2、TXOP3和TXOP4),若该指示信息为1101,即在TXOP1、TXOP2和TXOP4内允许第二节点并行传输数据,而在TXOP3内不允许第二节点并行传输数据。
类似的,在指示信息中,也可以通过N比特位,分别指示在N个PPDU的时长内是否允许第二节点并行传输数据,N≥1,例如,该指示信息为1101,即允许第二节点在第一个PPDU、第二个PPDU以及第四个PPDU的时长内并行传输数据,而不允许第二节点在第三个PPDU的时长内并行传输数据。
当然,也可以使用其他方式设计该指示信息,比如,在MAC帧头或者帧体中,由于比特数不像HE-SIG-A那样紧张,可以采用更多比特,进行更细粒度的指示跨界时长等,本发明实施例对此不做限制。
进一步地,在步骤203中,第二BSS内的第二节点获取第一BSS内该AP发送的该PPDU,进而得到该PPDU内携带的该指示信息。
其中,若该指示信息中指示不允许跨越该PPDU的时长并行传输数据,第二节点则执行步骤204,即在该PPDU的时长内并行传输数据。
若该指示信息中指示允许跨越该PPDU的时长并行传输数据,第二节点则执行步骤205,即在该跨界时长内并行传输数据。
另外,若第二节点所在的次链路进行并行传输时,需要保证对主链路上发送端和接收端之间的双方向上的传输都不造成干扰,比如,主链路在传输该PPDU之前进行了短帧的交互,使得次链路对主链路收发的情况都有所了解,则可以采用一次双向交互的时长作为次链路进行并行传输的基准,即将PPDU的时长+响应该PPDU的响应帧的时长作为次链路进行并行传输的时间单位,本发明实施例中将该PPDU的时长与响应该PPDU的响应帧的时长之和称为扩展时长,即扩展时长=PPDU的时长+响应该PPDU的响应帧的时长,这样,可 以使用该扩展时长代替上述方案中的跨界时长,保证对主链路上发送端和接收端之间的双方向上的传输都不造成干扰。
例如,若该指示信息中指示不允许跨越该PPDU的时长并行传输数据,第二节点则在该扩展时长内并行传输数据。
进一步地,在步骤203之后,即第二节点获取该AP发送的该PPDU内携带的指示信息之后,第二节点还可以基于回退机制进行信道竞争,从而在竞争得到的信道上并行传输数据,该第二节点基于回退机制进行信道竞争的方法将在后续实施例中详细阐述,故此处不再赘述。
另一方面,当主链路的发送端为站点时(即第一节点为站点),站点也可以对第二BSS内的第二节点指示:是否允许该第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长。
在这种场景下有两种可能的实现方式,第一种实现方式是:站点直接将AP下发的指示信息携带在需要生成的PPDU中,进而通过发送PPDU的方式向第二节点发送该指示信息;第二种实现方式是:站点根据AP发送的指示参数,并结合PPDU的时长、TXOP的时长自己生成该指示信息,进而将该指示信息携带在PPDU中,通过发送PPDU的方式向第二节点发送该指示信息。
下面以上述第一种实现方式为例,阐述本发明实施例提供的并行传输数据的方法的一种可能的实现方式,如图5所示,该方法包括:
301、第一BSS内的站点接收第一BSS内的AP发送的指示信息,指示信息用于指示是否允许第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长。
302、该站点生成PPDU,该PPDU中携带有指示信息。
303、该站点向第一BSS内的AP或其他站点发送该PPDU,该PPDU的高效信令字段或MAC帧中携带有该指示信息。
304、第二节点获取该站点发送的该PPDU内携带的指示信息。
305、若该指示信息中指示不允许跨越该PPDU的时长并行传输 数据,第二节点则在该PPDU的时长内并行传输数据。
306、若该指示信息中指示允许跨越该PPDU的时长并行传输数据,第二节点则在该跨界时长内并行传输数据。
在步骤301中,第一BSS内的AP直接向站点发送指示信息,例如,将指示信息携带在PPDU中发送至站点,其中,AP直接向站点发送指示信息的方法可参见上述步骤201-202,故此处不再赘述。
进一步地,在步骤302中,站点可以直接将该指示信息携带在PPDU中,以生成该PPDU。
这样,在步骤303中,作为主链路的发送端,该站点可以向主链路的接收端,即第一BSS内的AP或其他站点,发送该PPDU,其中,该PPDU的高效信令字段或MAC帧中携带有该指示信息。
进而,在步骤304中,对于次链路的发送端,即第二BSS的第二节点,便可以通过获取该PPDU得到该指示信息,从而根据该指示信息确定自身在次链路上进行并行传输时,能否跨越主链路上站点传输该PPDU的时长,以及并行传输数据的跨界时长。
其中。步骤305-306可参见上述步骤204-205的描述,故此处不再赘述。
下面以上述第二种实现方式为例,阐述本发明实施例提供的并行传输数据的方法的一种可能的实现方式,如图6所示,该方法包括:
401、第一BSS内的站点接收第一BSS内的AP发送的指示参数,该指示参数用于指示该AP是否允许第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长。
402、站点根据PPDU的时长、TXOP的时长、以及该指示参数生成指示信息,该指示信息用于指示站点是否允许第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长。
403、站点生成PPDU,该PPDU中携带有该指示信息。
404、该站点向第一BSS内的AP或其他站点发送该PPDU,该PPDU的高效信令字段或MAC帧中携带有该指示信息。
405、第二节点获取该站点发送的该PPDU内携带的指示信息。
406、若该指示信息中指示不允许跨越该PPDU的时长并行传输数据,第二节点则在该PPDU的时长内并行传输数据。
407、若该指示信息中指示允许跨越该PPDU的时长并行传输数据,第二节点则在该跨界时长内并行传输数据。
在步骤401中,站点接收AP发送的指示参数,该指示参数用于指示:该AP是否允许第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长。
这样,在步骤402中,站点便可以根据PPDU的时长、TXOP的时长、以及步骤401中该指示参数自己确定得到:该站点(即自身)是否允许第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长,即生成该指示信息。
例如,AP发送指示参数,用于指示该AP允许第二节点跨越PPDU的时长并行传输,且跨界时长为3个PPDU时长,此时,主链路的站点经过计算,确定距离该AP指示的3个PPDU时长还剩下自己所要传输的PPDU时长的2倍。那么,当站点作为主链路的发送端时,则可以生成指示信息,用于指示该站点允许第二节点跨越PPDU的时长并行传输,且跨界时长为2倍PPDU的时长。
相应的,主链路的站点经过计算,确定距离该AP指示的3个PPDU时长还剩下的时间为自己所要传输的PPDU时长,则可以生成指示信息,用于指示站点不允许第二节点跨越PPDU的时长并行传输。
由于粒度没有那么精细,站点侧可以取最小值,保证站点生成的指示信息中,所指示的跨界时长小于AP发送的指示参数中的跨界时长。
与上述方法类似的,还可以对于剩余的TXOP时长与AP发送的指示参数中的跨界时长进行比较,确定站点是否允许第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长。
进而,与步骤302和303类似的,在步骤403中,站点生成PPDU, 该PPDU中携带有该指示信息。在步骤404中,该站点向第一BSS内的AP或其他站点发送该PPDU,该PPDU的高效信令字段或MAC帧中携带有该指示信息。
其中,步骤405-407可参见上述步骤304-306的相关描述,故此处不再赘述。
需要注意的是,由于发送携带有上述指示信息的PPDU既有可能是第一BSS中的AP发送的,也有可能是第一BSS中的站点发送的,因此,第二BSS中的第二节点可能会从AP和站点中分别获取到一个指示信息。即第二节点获取AP发送的PPDU,AP发送的PPDU中携带有第一指示信息,第一指示信息用于指示AP是否允许第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长;并且,获取站点发送的PPDU,站点发送的PPDU中携带有第二指示信息,第二指示信息用于指示站点是否允许第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长。
此时,第二节点选择该第一指示信息或该第二指示信息作为上述指示信息;或者,该第二节点以AP发送的第一指示信息为标准,将该第一指示信息作为上述指示信息。
其中,第二节点在选择该第一指示信息或该第二指示信息作为上述指示信息时,可以进一步比较第一指示信息所指示的跨界时间和第二指示信息所指示的跨界时间;进而将跨界时间较短的第一指示信息或第二指示信息作为上述指示信息。
至此,本发明实施例提供一种并行传输数据的方法,其中,第一BSS内的第一节点生成PPDU,该PPDU中携带有指示信息,该指示信息用于指示是否允许第二BSS内的第二节点跨越该PPDU的时长并行传输数据,以及并行传输数据的跨界时长,第一节点属于第一基本服务集BSS,第二节点属于第二BSS;进而,第一节点发送该PPDU,使得该第二节点可以根据该指示信息确定是否跨越该PPDU的界限进行并行传输,以及并行传输的跨界时长,从而避免了由于主链路发生改变,而导致次链路上的并行传输对改变后的主链路上的 数据传输造成干扰的问题,即可以在实现跨PPDU的界限进行并行传输的同时,降低并行传输带来的链路干扰。
进一步地,在上述实施例中已经阐述过,当主链路的发送端(即第一BSS内的AP或站点)将携带有上述指示信息的PPDU向主链路的接收端发送时,次链路的发送端(即第二BSS内的第二节点)可以获取到该PPDU中携带的指示信息,但是,获取到该指示信息的第二节点可能有多个,因此,在第二节点获取到该PPDU内携带的指示信息之后,第二节点还可以基于回退机制进行信道竞争,从而在竞争得到的信道上并行传输数据。
对此,基于上述如何基于回退机制进行信道竞争的问题,本发明的实施例提供一种并行传输数据的方法,如图7所示,包括:
501、第二节点确定是否满足并行传输数据的条件。
例如,当第二节点获取到第一节点发送的PPDU中的指示信息后,第二节点发现该PPDU是来自OBSS的,并且,在一定时间内,第二节点所接收到的信号强度在某一门限值值以下,则物理载波侦听上认为信道空闲;并且,若第二节点自身没有被本BSS内的其他站点设置NAV,则虚拟载波侦听上认为信道空闲,那么,若物理载波真听和虚拟载波侦听上信道均空闲,第二节点则可以认定满足并行传输数据的条件。
502、若满足并行传输数据的条件,则第二节点确定第一回退计数器的计数值,待发送的PPDU需要的传输时长,以及距离跨界时长结束的剩余时长。
具体的,若满足并行传输数据的条件,那么,第二节点可以确定第一回退计数器的计数值,例如,第二节点根据与第一回退计数器对应的第一回退窗口的大小,确定第一回退计数器的计数值,又或者,若第一回退计数器在上一次传输PPDU之后在计数值为10时被挂起,那么,第二节点此时可以恢复该第一回退计数器,即从计数值为10开始继续进行回退。
并且,若满足并行传输数据的条件,第二节点需要确定距离跨 界时长结束的剩余时长,由于第二节点获取到的指示信息中指示有允许该第二节点并行传输数据的跨界时长,例如500微秒,因此,第二节点可以计算出当前时刻,距离该跨界时长结束的剩余时长。又或者,该跨界时长也可以是由第二节点自身确定的,本发明实施例对此不做限定。
另外,若满足并行传输数据的条件,第二节点还需要确定待发送的PPDU需要的传输时长,例如100微秒。
503、第二节点根据该第一回退计数器的计数值、该传输时长以及该剩余时长,确定信道竞争方案,以使得第二节点在竞争得到的信道上并行传输该待发送的PPDU。
以下将分别阐述第二节点根据步骤502中得到的该第一回退计数器的计数值、该传输时长以及该剩余时长,确定不同信道竞争方案的方法。
方法1
第二节点使用上述第一回退计数器,从步骤502中确定的计数值开始进行回退;当该第一回退计数器回退到0时,第二节点比较待发送的PPDU需要的传输时长和距离跨界时长结束的剩余时长,若该剩余时长小于该传输时长,此时,第二节点可以确定信道竞争方案为:等待该跨界时长结束后重新进行信道竞争;或者,立即重新进行信道竞争。
例如,第二节点使用第一回退计数器,从计数值为10开始进行回退;当该第一回退计数器回退到0时,待发送的PPDU需要的传输时长为200微秒,距离跨界时长结束的剩余时长为100微秒,即该剩余时长小于该传输时长,显然,此时第二节点无法在该剩余时长内并行传输该待传输的PPDU,因此,第二节点可以等待该跨界时长结束后重新进行信道竞争;又或者,第二节点可以改变该待传输的PPDU,例如,将待传输的PPDU1改变为待传输的PPDU2,且待传输的PPDU2需要的传输时长为90微秒,即该剩余时长大于该传输时长,那么第二节点可以立即重新进行信道竞争,以使得第二节点在竞争 得到的信道上并行传输该待发送的PPDU2。
进一步地,无论是等待该跨界时长结束后重新进行信道竞争时;或者,立即重新进行信道竞争时,第二节点需要重置该第一回退窗口的大小;或,保留该第一回退窗口的大小;或,加倍该第一回退窗口的大小,以使得第二节点根据该第一回退窗口的大小重置第一回退计数的计数值,进而基于该重置后的第一回退计数的计数值继续进行回退。
优选的,由于可能存在多个第二节点在跨界时长内回退到0,并在跨界时长结束后同时开始竞争信道,造成冲突的情况,因此,保留或者加倍该第一回退窗口的大小有利于避免过多个第二节点的第一回退窗口突然变为最小值,同时竞争信道发生冲突或碰撞的问题。
方法2
与方法1不同的是,当该第一回退计数器回退到0时,第二节点比较待发送的PPDU需要的传输时长和距离跨界时长结束的剩余时长,若该剩余时长不小于该传输时长,此时,第二节点可以确定信道竞争方案为:立即并行传输该待发送的PPDU。
并且,第二节点还可以等待该跨界时长结束后重新进行信道竞争;或者,与方法1中类似的,第二节点可以立即重新进行信道竞争。
当然,无论是等待该跨界时长结束后重新进行信道竞争时;或者,立即重新进行信道竞争时,第二节点需要重置该第一回退窗口的大小,以使得第二节点根据该第一回退窗口的大小重置第一回退计数的计数值,进而基于该重置后的第一回退计数的计数值继续进行回退。
方法3
在方法3中,第二节点无须等到第一回退计数器回退到0时,比较待发送的PPDU需要的传输时长和距离跨界时长结束的剩余时长,而是在步骤502之后,直接根据该第一回退计数器的计数值, 计算该第一回退计数器能否在该剩余时长内回退到0,且发送该待发送的PPDU;也就是说,第二节点可以直接计算第一回退计数器回退到0的时长+待发送的PPDU需要的传输时长是否小于距离跨界时长结束的剩余时长。
若无法在该跨界时长内回退到0,且发送该待发送的PPDU,此时,第二节点可以确定所述信道竞争方案为:挂起该第一回退计数器,并在该跨界时长结束后继续使用该第一回退计数器进行信道竞争。
方法4
在方法4中,还可以引入第二回退计数器,即第二节点使用两个回退计数器(第一回退计数器和第二回退计数器)进行信道竞争。
具体的,当第二节点作为主链路的发送端时,可以使用该第二回退计数器进行信道竞争,而当第二节点作为次链路的发送端时,在步骤501,即第二节点确定是否满足并行传输数据的条件之后,若满足并行传输数据的条件,第二节点可以挂起该第二回退计数器,并使用上述第一回退计数器进行信道竞争。
与上述方法1类似的,第二节点使用上述第一回退计数器,从步骤502中确定的计数值开始进行回退;当该第一回退计数器回退到0时,第二节点比较待发送的PPDU需要的传输时长和距离跨界时长结束的剩余时长,若该剩余时长小于该传输时长,此时,第二节点可以确定信道竞争方案为:等待该跨界时长结束后重新进行信道竞争;或者,立即重新进行信道竞争。
并且,在等待该跨界时长结束后重新进行信道竞争时;或者,立即重新进行信道竞争时,第二节点需要重置该第一回退窗口的大小;或,保留该第一回退窗口的大小;或,加倍该第一回退窗口的大小,以使得第二节点根据该第一回退窗口的大小重置第一回退计数的计数值,进而基于该重置后的第一回退计数的计数值继续进行回退。
与上述方法1不同的是,在等待该跨界时长结束后重新进行信 道竞争时,第二节点可以通过载波侦听判断信道是否空闲,若发现信道为空闲,则可以恢复上述被挂起的第二计数器,并作为主链路的发送端使用该第二回退计数器进行信道竞争。若发现信道中已存在主链路传输,且满足并行传输数据的条件,第二节点则可以使用上述第一计数器进行竞争信道。
与上述方法2类似的,当该第一回退计数器回退到0时,第二节点比较待发送的PPDU需要的传输时长和距离跨界时长结束的剩余时长,若该剩余时长不小于该传输时长,此时,第二节点可以确定信道竞争方案为:立即并行传输该待发送的PPDU。
并且,第二节点还可以重置该第一回退窗口的大小,进而等待该跨界时长结束后重新进行信道竞争;或者,立即重新进行信道竞争。
与上述方法2不同的是,在等待该跨界时长结束后重新进行信道竞争时,第二节点可以通过载波侦听判断信道是否空闲,若发现信道为空闲,则可以恢复上述被挂起的第二计数器,并作为主链路的发送端使用该第二回退计数器进行信道竞争。若发现信道中已存在主链路传输,且满足并行传输数据的条件,第二节点则可以使用上述第一计数器进行竞争信道。
与上述方法3类似的,若无法在该跨界时长内回退到0,且发送该待发送的PPDU,此时,第二节点可以确定所述信道竞争方案为:挂起该第一回退计数器。
与上述方法3不同的是,在该跨界时长结束后,第二节点可以通过载波侦听判断信道是否空闲,若发现信道为空闲,则可以恢复或重置上述被挂起的第二计数器,并作为主链路的发送端使用该第二回退计数器进行信道竞争。若发现信道中已存在主链路传输,且满足并行传输数据的条件,第二节点则可以使用上述第一计数器进行竞争信道。
需要说明的是,该第一回退计数器可以为所有业务统一的一个计数器,也可以为不同业务的多个计数器。类似的,该第二回退计 数器可以为所有业务统一的一个计数器,也可以为不同业务的多个计数器。
可以看出,方法4中采用两个回退计数器,保证了主链路和次链路的发送端在进行信道竞争时的公平性,把并行传输作为次链路上第二节点的额外的传输机会,从而提高了传输效率。
至此,本发明实施例提供一种并行传输数据的方法,其中,第二节点确定是否满足并行传输数据的条件;若满足并行传输数据的条件,则第二节点确定第一回退计数器的计数值,待发送的PPDU需要的传输时长,以及距离跨界时长结束的剩余时长;进而针对该计数值、该传输时长以及该剩余时长在不同的应用场景下确定不同的信道竞争方案,以使得第二节点在竞争得到的信道上并行传输待发送的PPDU。
另外,图8为本发明实施例提供的一种第一节点的结构示意图,本发明实施例提供的第一节点可以用于实施上述图1-图7所示的本发明各实施例实现的方法,为了便于说明,仅示出了与本发明实施例相关的部分,具体技术细节未揭示的,请参照图1-图7所示的本发明各实施例。
具体的,如图8所示,该第一节点包括:
生成单元11,用于生成PPDU,所述PPDU中携带有指示信息,所述指示信息用于指示是否允许第二节点跨越所述PPDU的时长并行传输数据,以及并行传输数据的跨界时长,所述第一节点属于第一BSS,所述第二节点属于第二BSS;
发送单元12,用于发送所述PPDU。
需要说明的是,该第一节点具体可以为第一BSS内的AP或站点。
其中,若所述第一节点为所述第一BSS内的接入点AP,则所述发送单元12,具体用于向所述第一BSS内的站点发送所述PPDU,所述PPDU的高效信令字段或媒体访问控制MAC帧中携带有所述指示信息。
其中,在所述指示信息中,通过2比特位指示是否允许所述第 二节点跨越所述PPDU的时长并行传输数据,以及并行传输数据的跨界时长;或者,在所述指示信息中,通过1比特位指示是否允许所述第二节点跨越所述PPDU的时长并行传输数据,若允许所述第二节点跨越所述PPDU的时长并行传输数据,则在所述指示信息中通过2比特位指示并行传输数据的跨界时长。
或者,在所述指示信息中,通过M比特位,分别指示在传输机会TXOP时长中的M个时间段内是否允许第二节点并行传输数据,M≥1;或者,在所述指示信息中,通过N比特位,分别指示在N个PPDU的时长内是否允许第二节点并行传输数据,N≥1。
另外,如图9所示,若所述第一节点为所述第一BSS内的站点,则所述装置还包括接收单元13,所述接收单元13,用于接收所述第一BSS内的AP发送的指示信息,所述指示信息用于指示是否允许第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长;所述生成单元11,具体用于生成PPDU,所述PPDU中携带有所述指示信息。
或者,当所述第一节点为所述第一BSS内的站点时,所述接收单元13,用于接收所述第一BSS内的AP发送的指示参数,所述指示参数用于指示所述AP是否允许第二节点跨越所述PPDU的时长并行传输数据,以及并行传输数据的跨界时长;所述生成单元11,具体用于根据PPDU的时长、TXOP的时长、以及所述指示参数生成指示信息,所述指示信息用于指示所述站点是否允许所述第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长;以及,生成PPDU,所述PPDU中携带有所述指示信息。
图10为本发明实施例提供的一种第二节点的结构示意图,本发明实施例提供的第一节点可以用于实施上述图1-图7所示的本发明各实施例实现的方法,为了便于说明,仅示出了与本发明实施例相关的部分,具体技术细节未揭示的,请参照图1-图7所示的本发明各实施例。
其中,所述二节点可以为第二BSS内的AP或站点,本发明对此 不作限制。
具体的,如图10所示,该第二节点包括:
获取单元21,用于获取第一节点发送的PPDU,所述PPDU中携带有指示信息,所述指示信息用于指示是否允许所述第二节点跨越所述PPDU的时长并行传输数据,以及并行传输数据的跨界时长,所述第一节点属于第一BSS,所述第二节点属于第二BSS;
传输单元22,用于若所述第一节点指示不允许跨越所述PPDU的时长并行传输数据,则在所述PPDU的时长内并行传输数据;若所述第一节点指示允许跨越所述PPDU的时长并行传输数据,则在所述跨界时长内并行传输数据。
进一步地,所述第一节点为所述第一BSS内的AP或站点,其中,如图11所示,所述第二节点还包括选择单元23,所述获取单元21,具体用于获取所述AP发送的PPDU,所述AP发送的PPDU中携带有第一指示信息,所述第一指示信息用于指示所述AP是否允许所述第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长;获取所述站点发送的PPDU,所述站点发送的PPDU中携带有第二指示信息,所述第二指示信息用于指示所述站点是否允许所述第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长;所述选择单元23,用于选择所述第一指示信息或所述第二指示信息作为所述指示信息;或者,所述第二节点将所述第一指示信息作为所述指示信息。
其中,所述选择单元23,具体用于比较所述第一指示信息所指示的跨界时间和所述第二指示信息所指示的跨界时间;将跨界时间较短的所述第一指示信息或所述第二指示信息作为所述指示信息。
至此,通过本发明实施例提供的第一节点与第二节点可实现并行传输数据,由于主链路的发送端,即第一节点,在传输PPDU时,明确向次链路的发送端,即第二节点,指示了指示是否允许该第二节点跨越该PPDU的时长并行传输数据,以及并行传输数据的跨界时长,因此,第二节点可以根据该指示信息确定是否跨越该PPDU的界 限进行并行传输,以及并行传输的跨界时长,从而避免了由于主链路发生改变,而导致次链路上的并行传输对改变后的主链路上的数据传输造成干扰的问题,即可以在实现跨PPDU的界限进行并行传输的同时,降低并行传输带来的链路干扰。
进一步地,针对上述实施例中步骤501-203的相关描述,基于上述如何基于回退机制进行信道竞争的问题,本发明的实施例提供一种第二节点法,如图12所示,包括:
确定单元31,用于确定是否满足并行传输数据的条件;以及,若满足并行传输数据的条件,则确定第一回退计数器的计数值,待发送的物理协议数据单元PPDU需要的传输时长,以及距离跨界时长结束的剩余时长
竞争单元32,用于根据所述第一回退计数器的计数值、待发送的PPDU需要的所述传输时长以及距离跨界时长结束的所述剩余时长,确定信道竞争方案,以使得所述第二节点在竞争得到的信道上并行传输所述待发送的PPDU。
进一步地,如图13所示,所述第二节点还包括回退单元33;具体的,所述回退单元33,用于使用所述第一回退计数器,从所述计数值开始进行回退;所述竞争单元32,具体用于当所述第一回退计数器回退到0时,若所述剩余时长小于所述传输时长,则确定所述信道竞争方案为:等待所述跨界时长结束后重新进行信道竞争;或者,立即重新进行信道竞争。
进一步地,所述竞争单元32,还用于重置第一回退窗口的大小;或,保留所述第一回退窗口的大小;或,加倍所述第一回退窗口的大小,以使得所述第二节点根据所述第一回退窗口的大小重置所述第一回退计数的计数值。
又或者,所述竞争单元32,具体用于当所述第一回退计数器回退到0时,若所述剩余时长不小于所述传输时长,则确定所述信道竞争方案为:立即并行传输所述待发送的PPDU。
此时,所述竞争单元32,还用于等待所述跨界时长结束后重新 进行信道竞争;或者,所述第二节点立即重新进行信道竞争,并且,重置第一回退窗口的大小,以使得所述第二节点根据所述第一回退窗口的大小更新所述第一回退计数的计数值。
又或者,如图14所示,所述第二节点还包括计算单元34;具体的,所述计算单元34,用于根据所述计数值,计算所述第一回退计数器能否在所述剩余时长内回退到0,且发送所述待发送的PPDU;所述竞争单元32,具体用于若无法在所述跨界时长内回退到0,且发送所述待发送的PPDU,则确定所述信道竞争方案为:挂起所述第一回退计数器,并在所述跨界时长结束后继续使用所述第一回退计数器进行信道竞争。
进一步地,所述第二节点还包括第二回退计数器;其中,所述竞争单元32,具体用于若满足并行传输数据的条件,则挂起所述第二回退计数器;在所述跨界时长结束后,若检测到信道为空闲状态,则恢复所述第二回退计数器,并使用所述第二回退计数器进行信道竞争。
至此,本发明实施例提供一种第二节点,该第二节点确定是否满足并行传输数据的条件;若满足并行传输数据的条件,则第二节点确定第一回退计数器的计数值,待发送的PPDU需要的传输时长,以及距离跨界时长结束的剩余时长;进而针对该计数值、该传输时长以及该剩余时长在不同的应用场景下确定不同的信道竞争方案,以使得第二节点在竞争得到的信道上并行传输待发送的PPDU。
另外,图15为本发明实施例提供的一种第一节点的硬件结构示意图,本发明实施例提供的第一节点可以用于实施上述图1-图6所示的本发明各实施例实现的方法,为了便于说明,仅示出了与本发明实施例相关的部分,具体技术细节未揭示的,请参照图1-图6所示的本发明各实施例。
其中,该第一节点可以为第一BSS内的AP或站点,本发明对对此不作任何限制,可满足运算能力需求的所有硬件产品都适用。
具体的,如图15所示,该第一节点包括处理器41、通信接口 42以及存储器43,并且,该处理器41、通信接口42以及存储器43通过总线44进行通信。
所述存储器43用于存储计算机执行指令,所述处理器41与所述存储器43通过所述总线44连接,当该第一节点运行时,所述处理器41执行所述存储器42存储的计算机执行指令,以使该第一节点执行如图3-图6中所述的并行传输数据的方法。具体的并行传输数据的方法可参见上述如图3-图6任意之一所示的实施例中的相关描述,此处不再赘述。
类似的,图16为本发明实施例提供的一种第二节点的硬件结构示意图,本发明实施例提供的第一节点可以用于实施上述图1-图7所示的本发明各实施例实现的方法,为了便于说明,仅示出了与本发明实施例相关的部分,具体技术细节未揭示的,请参照图1-图7所示的本发明各实施例。
其中,该第二节点可以为第二BSS内的AP或站点,本发明对对此不作任何限制,可满足运算能力需求的所有硬件产品都适用。
具体的,如图16所示,该第二节点包括处理器51、通信接口52以及存储器53,并且,该处理器51、通信接口52以及存储器53通过总线55进行通信。
所述存储器53用于存储计算机执行指令,所述处理器51与所述存储器53通过所述总线55连接,当该第一节点运行时,所述处理器51执行所述存储器52存储的计算机执行指令,以使该第一节点执行如图3-图7中所述的并行传输数据的方法。具体的并行传输数据的方法可参见上述如图3-图6任意之一所示的实施例中的相关描述,此处不再赘述。
其中,处理器21,可以为中央处理器(英文:central processing unit,缩写:CPU)。所述处理器21还可以为其他通用处理器、数字信号处理器(英文:digital signal processing,简称DSP)、专用集成电路(英文:application specific integrated circuit,简称ASIC)、现场可编程门阵列(英文:field-programmable gate  array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
处理器41或51分别是所述第一节点和第二节点的控制中心,处理器41或51通过对通信接口42或52接收到的数据进行处理,并调用存储器43或53中的软件或程序,执行所述第一节点或第二节点的各项功能。
通信接口42或52,可具体为接口电路,用于收发信息或请求的过程中,信号的接收和发送,通信接口42或52接收外部设备发送的信息后,给处理器41或51处理;另外,通信接口42或52可以通过无线通信与网络和其他设备通信。
存储器43或53,可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);所述存储器43或53也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);所述存储器43或53还可以包括上述种类的存储器的组合。处理器41或51可通过运行存储在存储器43或53的软件程序,从而执行所述第一节点或第二节点的各种功能应用以及数据处理。
而总线44或54可以包括数据总线、电源总线、控制总线和信号状态总线等。本实施例中为了清楚说明,在图15-16中将各种总线都示意为一条直线。
至此,本发明实施例提供一种并行传输数据的装置,其中,第一BSS内的第一节点生成PPDU,该PPDU中携带有指示信息,该指示信息用于指示是否允许第二BSS内的第二节点跨越该PPDU的时长并行传输数据,以及并行传输数据的跨界时长,第一节点属于第一基本服务集BSS,第二节点属于第二BSS;进而,第一节点发送该 PPDU,使得该第二节点可以根据该指示信息确定是否跨越该PPDU的界限进行并行传输,以及并行传输的跨界时长,从而避免了由于主链路发生改变,而导致次链路上的并行传输对改变后的主链路上的数据传输造成干扰的问题,即可以在实现跨PPDU的界限进行并行传输的同时,降低并行传输带来的链路干扰。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的 产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (34)

  1. 一种并行传输数据的方法,其特征在于,包括:
    第一节点生成物理协议数据单元PPDU,所述PPDU中携带有指示信息,所述指示信息用于指示是否允许第二节点跨越所述PPDU的时长并行传输数据,以及并行传输数据的跨界时长,所述第一节点属于第一基本服务集BSS,所述第二节点属于第二BSS;
    所述第一节点发送所述PPDU。
  2. 根据权利要求1所述的方法,其特征在于,若所述第一节点为所述第一BSS内的接入点AP,则所述第一节点发送所述PPDU,包括:
    所述AP向所述第一BSS内的站点发送所述PPDU,所述PPDU的高效信令字段或媒体访问控制MAC帧中携带有所述指示信息。
  3. 根据权利要求2所述的方法,其特征在于,
    在所述指示信息中,通过2比特位指示是否允许所述第二节点跨越所述PPDU的时长并行传输数据,以及并行传输数据的跨界时长;或者,
    在所述指示信息中,通过1比特位指示是否允许所述第二节点跨越所述PPDU的时长并行传输数据,若允许所述第二节点跨越所述PPDU的时长并行传输数据,则在所述指示信息中通过2比特位指示并行传输数据的跨界时长。
  4. 根据权利要求2所述的方法,其特征在于,
    在所述指示信息中,通过M比特位,分别指示在传输机会TXOP时长中的M个时间段内是否允许第二节点并行传输数据,M≥1;或者,
    在所述指示信息中,通过N比特位,分别指示在N个PPDU的时长内是否允许第二节点并行传输数据,N≥1。
  5. 根据权利要求1所述的方法,其特征在于,若所述第一节点为所述第一BSS内的站点,则所述第一节点生成PPDU,包括:
    所述站点接收所述第一BSS内的AP发送的指示信息,所述指示信息用于指示是否允许第二节点跨越PPDU的时长并行传输数据,以 及并行传输数据的跨界时长;
    所述站点生成PPDU,所述PPDU中携带有所述指示信息。
  6. 根据权利要求1所述的方法,其特征在于,若所述第一节点为所述第一BSS内的站点,则所述第一节点生成PPDU,包括:
    所述站点接收所述第一BSS内的AP发送的指示参数,所述指示参数用于指示所述AP是否允许第二节点跨越所述PPDU的时长并行传输数据,以及并行传输数据的跨界时长;
    所述站点根据PPDU的时长、TXOP的时长、以及所述指示参数生成指示信息,所述指示信息用于指示所述站点是否允许所述第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长;
    所述站点生成PPDU,所述PPDU中携带有所述指示信息。
  7. 一种并行传输数据的方法,其特征在于,包括:
    第二节点获取第一节点发送的物理协议数据单元PPDU,所述PPDU中携带有指示信息,所述指示信息用于指示是否允许所述第二节点跨越所述PPDU的时长并行传输数据,以及并行传输数据的跨界时长,所述第一节点属于第一基本服务集BSS,所述第二节点属于第二BSS;
    若所述第一节点指示不允许跨越所述PPDU的时长并行传输数据,所述第二节点则在所述PPDU的时长内并行传输数据;
    若所述第一节点指示允许跨越所述PPDU的时长并行传输数据,所述第二节点则在所述跨界时长内并行传输数据。
  8. 根据权利要求7所述的方法,其特征在于,所述第一节点为所述第一BSS内的AP或站点;
    其中,所述第二节点获取第一节点发送的PPDU,包括:
    所述第二节点获取所述AP发送的PPDU,所述AP发送的PPDU中携带有第一指示信息,所述第一指示信息用于指示所述AP是否允许所述第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长;
    所述第二节点获取所述站点发送的PPDU,所述站点发送的PPDU 中携带有第二指示信息,所述第二指示信息用于指示所述站点是否允许所述第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长;
    所述第二节点选择所述第一指示信息或所述第二指示信息作为所述指示信息;或者,所述第二节点将所述第一指示信息作为所述指示信息。
  9. 根据权利要求8所述的方法,其特征在于,所述第二节点选择所述第一指示信息或所述第二指示信息作为所述指示信息,包括:
    所述第二节点比较所述第一指示信息所指示的跨界时间和所述第二指示信息所指示的跨界时间;
    所述第二节点将跨界时间较短的所述第一指示信息或所述第二指示信息作为所述指示信息。
  10. 一种并行传输数据的方法,其特征在于,包括:
    第二节点确定是否满足并行传输数据的条件;
    若满足并行传输数据的条件,则第二节点确定第一回退计数器的计数值,待发送的物理协议数据单元PPDU需要的传输时长,以及距离跨界时长结束的剩余时长;
    所述第二节点根据所述第一回退计数器的计数值、待发送的PPDU需要的所述传输时长以及距离跨界时长结束的所述剩余时长,确定信道竞争方案,以使得所述第二节点在竞争得到的信道上并行传输所述待发送的PPDU。
  11. 根据权利要求10所述的方法,其特征在于,所述第二节点根据所述第一回退计数器的计数值、所述传输时长以及所述剩余时长,确定信道竞争方案,包括:
    所述第二节点使用所述第一回退计数器,从所述计数值开始进行回退;
    当所述第一回退计数器回退到0时,若所述剩余时长小于所述传输时长,则所述第二节点确定所述信道竞争方案为:等待所述跨界时长结束后重新进行信道竞争;或者,立即重新进行信道竞争。
  12. 根据权利要求11所述的方法,其特征在于,所述信道竞争方案还包括:
    所述第二节点重置第一回退窗口的大小;或,保留所述第一回退窗口的大小;或,加倍所述第一回退窗口的大小,以使得所述第二节点根据所述第一回退窗口的大小重置所述第一回退计数的计数值。
  13. 根据权利要求10所述的方法,其特征在于,所述第二节点根据所述第一回退计数器的计数值、所述传输时长以及所述剩余时长,确定信道竞争方案,包括:
    所述第二节点使用所述第一回退计数器,从所述计数值开始进行回退:
    当所述第一回退计数器回退到0时,若所述剩余时长不小于所述传输时长,则所述第二节点确定所述信道竞争方案为:立即并行传输所述待发送的PPDU。
  14. 根据权利要求13所述的方法,其特征在于,其特征在于,所述信道竞争方案还包括:
    所述第二节点等待所述跨界时长结束后重新进行信道竞争;或者,所述第二节点立即重新进行信道竞争。
  15. 根据权利要求14所述的方法,其特征在于,其特征在于,所述信道竞争方案还包括:
    所述第二节点重置第一回退窗口的大小,以使得所述第二节点根据所述第一回退窗口的大小更新所述第一回退计数的计数值。
  16. 根据权利要求10所述的方法,其特征在于,所述第二节点根据所述第一回退计数器的计数值、所述传输时长以及所述剩余时长,确定信道竞争方案,包括:
    所述第二节点根据所述计数值,计算所述第一回退计数器能否在所述剩余时长内回退到0,且发送所述待发送的PPDU;
    若无法在所述跨界时长内回退到0,且发送所述待发送的PPDU,则所述第二节点确定所述信道竞争方案为:挂起所述第一回退计数器,并在所述跨界时长结束后继续使用所述第一回退计数器进行信道 竞争。
  17. 根据权利要求10所述的方法,其特征在于,在所述第二节点确定是否满足并行传输数据的条件之后,还包括:
    若满足并行传输数据的条件,则第二节点挂起第二回退计数器;
    其中,所述信道竞争方案包括:在所述跨界时长结束后,若检测到信道为空闲状态,则所述第二节点恢复所述第二回退计数器,并使用所述第二回退计数器进行信道竞争。
  18. 一种第一节点,其特征在于,包括:
    生成单元,用于生成物理协议数据单元PPDU,所述PPDU中携带有指示信息,所述指示信息用于指示是否允许第二节点跨越所述PPDU的时长并行传输数据,以及并行传输数据的跨界时长,所述第一节点属于第一基本服务集BSS,所述第二节点属于第二BSS;
    发送单元,用于发送所述PPDU。
  19. 根据权利要求18所述的第一节点,其特征在于,若所述第一节点为所述第一BSS内的接入点AP,则
    所述发送单元,具体用于向所述第一BSS内的站点发送所述PPDU,所述PPDU的高效信令字段或媒体访问控制MAC帧中携带有所述指示信息。
  20. 根据权利要求19所述的第一节点,其特征在于,在所述指示信息中,通过2比特位指示是否允许所述第二节点跨越所述PPDU的时长并行传输数据,以及并行传输数据的跨界时长;或者,在所述指示信息中,通过1比特位指示是否允许所述第二节点跨越所述PPDU的时长并行传输数据,若允许所述第二节点跨越所述PPDU的时长并行传输数据,则在所述指示信息中通过2比特位指示并行传输数据的跨界时长。
  21. 根据权利要求19所述的第一节点,其特征在于,在所述指示信息中,通过M比特位,分别指示在传输机会TXOP时长中的M个时间段内是否允许第二节点并行传输数据,M≥1;或者,在所述指示信息中,通过N比特位,分别指示在N个PPDU的时长内是否允许第 二节点并行传输数据,N≥1。
  22. 根据权利要求18所述的第一节点,其特征在于,若所述第一节点为所述第一BSS内的站点,则所述装置还包括接收单元,
    所述接收单元,用于接收所述第一BSS内的AP发送的指示信息,所述指示信息用于指示是否允许第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长;
    所述生成单元,具体用于生成PPDU,所述PPDU中携带有所述指示信息。
  23. 根据权利要求18所述的第一节点,其特征在于,若所述第一节点为所述第一BSS内的站点,则所述装置还包括接收单元,
    所述接收单元,用于接收所述第一BSS内的AP发送的指示参数,所述指示参数用于指示所述AP是否允许第二节点跨越所述PPDU的时长并行传输数据,以及并行传输数据的跨界时长;
    所述生成单元,具体用于根据PPDU的时长、TXOP的时长、以及所述指示参数生成指示信息,所述指示信息用于指示所述站点是否允许所述第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长;以及,生成PPDU,所述PPDU中携带有所述指示信息。
  24. 一种第二节点,其特征在于,包括:
    获取单元,用于获取第一节点发送的物理协议数据单元PPDU,所述PPDU中携带有指示信息,所述指示信息用于指示是否允许所述第二节点跨越所述PPDU的时长并行传输数据,以及并行传输数据的跨界时长,所述第一节点属于第一基本服务集BSS,所述第二节点属于第二BSS;
    传输单元,用于若所述第一节点指示不允许跨越所述PPDU的时长并行传输数据,则在所述PPDU的时长内并行传输数据;若所述第一节点指示允许跨越所述PPDU的时长并行传输数据,则在所述跨界时长内并行传输数据。
  25. 根据权利要求24所述的第二节点,其特征在于,所述第一节点为所述第一BSS内的AP或站点,其中,所述第二节点还包括选 择单元,
    所述获取单元,具体用于获取所述AP发送的PPDU,所述AP发送的PPDU中携带有第一指示信息,所述第一指示信息用于指示所述AP是否允许所述第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长;获取所述站点发送的PPDU,所述站点发送的PPDU中携带有第二指示信息,所述第二指示信息用于指示所述站点是否允许所述第二节点跨越PPDU的时长并行传输数据,以及并行传输数据的跨界时长;
    所述选择单元,用于选择所述第一指示信息或所述第二指示信息作为所述指示信息;或者,所述第二节点将所述第一指示信息作为所述指示信息。
  26. 根据权利要求25所述的第二节点,其特征在于,
    所述选择单元,具体用于比较所述第一指示信息所指示的跨界时间和所述第二指示信息所指示的跨界时间;将跨界时间较短的所述第一指示信息或所述第二指示信息作为所述指示信息。
  27. 一种第二节点,其特征在于,包括:
    确定单元,用于确定是否满足并行传输数据的条件;以及,若满足并行传输数据的条件,则确定第一回退计数器的计数值,待发送的物理协议数据单元PPDU需要的传输时长,以及距离跨界时长结束的剩余时长;
    竞争单元,用于根据所述第一回退计数器的计数值、待发送的PPDU需要的所述传输时长以及距离跨界时长结束的所述剩余时长,确定信道竞争方案,以使得所述第二节点在竞争得到的信道上并行传输所述待发送的PPDU。
  28. 根据权利要求27所述的第二节点,其特征在于,所述第二节点还包括回退单元;
    所述回退单元,用于使用所述第一回退计数器,从所述计数值开始进行回退;
    所述竞争单元,具体用于当所述第一回退计数器回退到0时,若 所述剩余时长小于所述传输时长,则确定所述信道竞争方案为:等待所述跨界时长结束后重新进行信道竞争;或者,立即重新进行信道竞争。
  29. 根据权利要求28所述的第二节点,其特征在于,
    所述竞争单元,还用于重置第一回退窗口的大小;或,保留所述第一回退窗口的大小;或,加倍所述第一回退窗口的大小,以使得所述第二节点根据所述第一回退窗口的大小重置所述第一回退计数的计数值。
  30. 根据权利要求27所述的第二节点,其特征在于,所述第二节点还包括回退单元;
    所述回退单元,用于使用所述第一回退计数器,从所述计数值开始进行回退;
    所述竞争单元,具体用于当所述第一回退计数器回退到0时,若所述剩余时长不小于所述传输时长,则确定所述信道竞争方案为:立即并行传输所述待发送的PPDU。
  31. 根据权利要求27所述的第二节点,其特征在于,所述第二节点还包括计算单元;
    所述计算单元,用于根据所述计数值,计算所述第一回退计数器能否在所述剩余时长内回退到0,且发送所述待发送的PPDU;
    所述竞争单元,具体用于若无法在所述跨界时长内回退到0,且发送所述待发送的PPDU,则确定所述信道竞争方案为:挂起所述第一回退计数器,并在所述跨界时长结束后继续使用所述第一回退计数器进行信道竞争。
  32. 根据权利要求27所述的第二节点,其特征在于,所述第二节点还包括第二回退计数器;其中,
    所述竞争单元,具体用于若满足并行传输数据的条件,则挂起所述第二回退计数器;在所述跨界时长结束后,若检测到信道为空闲状态,则恢复所述第二回退计数器,并使用所述第二回退计数器进行信道竞争。
  33. 一种第一节点,其特征在于,包括:处理器、存储器、总线和通信接口;
    所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述第一节点运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述第一节点执行如权利要求1-6中任意一项所述的并行传输数据的方法。
  34. 一种第二节点,其特征在于,包括:处理器、存储器、总线和通信接口;
    所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述第二节点运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述第二节点执行如权利要求7-9或10-17中任意一项所述的并行传输数据的方法。
PCT/CN2016/091784 2015-12-07 2016-07-26 一种并行传输数据的方法及装置 WO2017096918A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16872117.3A EP3376813B1 (en) 2015-12-07 2016-07-26 Method and device for parallel transmission of data
US16/001,713 US10645724B2 (en) 2015-12-07 2018-06-06 Parallel data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510896649.0A CN106851848B (zh) 2015-12-07 2015-12-07 一种并行传输数据的方法及装置
CN201510896649.0 2015-12-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/001,713 Continuation US10645724B2 (en) 2015-12-07 2018-06-06 Parallel data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2017096918A1 true WO2017096918A1 (zh) 2017-06-15

Family

ID=59012640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091784 WO2017096918A1 (zh) 2015-12-07 2016-07-26 一种并行传输数据的方法及装置

Country Status (4)

Country Link
US (1) US10645724B2 (zh)
EP (1) EP3376813B1 (zh)
CN (1) CN106851848B (zh)
WO (1) WO2017096918A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536469A (zh) * 2018-05-23 2019-12-03 华为技术有限公司 基于多接入点ap协作的空间复用的方法和装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017142210A1 (ko) * 2016-02-17 2017-08-24 엘지전자 주식회사 무선랜 시스템에서 상향링크 확인응답 신호 송수신 방법 및 이를 위한 장치
CN108811161B (zh) * 2017-04-28 2023-12-29 中兴通讯股份有限公司 一种信道接入的方法及装置
CN114245463A (zh) 2017-08-17 2022-03-25 华为技术有限公司 一种数据传输的方法和装置
CN110139353A (zh) 2018-02-08 2019-08-16 华为技术有限公司 一种多接入点ap协调传输的方法以及相关装置
US11432247B2 (en) 2019-04-22 2022-08-30 Cypress Semiconductor Corporation Methods, systems and devices for varying wireless transmit power based on path loss information
CN116249146B (zh) * 2020-03-11 2023-12-08 华为技术有限公司 一种通信方法和通信装置
CN113825248A (zh) * 2020-06-18 2021-12-21 华为技术有限公司 多链路设备的信道接入方法及相关装置
CN116709511A (zh) * 2022-02-22 2023-09-05 华为技术有限公司 一种空间复用方法及第一设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102843785A (zh) * 2011-06-25 2012-12-26 华为技术有限公司 无线局域网中逆向协议传输的方法及装置
CN103298079A (zh) * 2012-02-23 2013-09-11 华为技术有限公司 数据传输方法、接入点和站点
US20150023335A1 (en) * 2013-07-17 2015-01-22 Qualcomm Incorporated Physical layer design for uplink (ul) multiuser multiple-input, multiple-output (mu-mimo) in wireless local area network (wlan) systems
CN105101435A (zh) * 2015-07-29 2015-11-25 魅族科技(中国)有限公司 数据传输的方法和设备
CN105120520A (zh) * 2015-07-17 2015-12-02 魅族科技(中国)有限公司 无线局域网络中数据传输的方法和设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8923172B2 (en) * 2009-08-24 2014-12-30 Qualcomm Incorporated Deterministic backoff channel access
KR101667588B1 (ko) 2009-10-21 2016-10-19 엘지전자 주식회사 광대역 무선 접속 시스템에서 레인징 채널 및 기회 매핑 방법
US9693367B2 (en) * 2014-01-13 2017-06-27 Zte Corporation Contention arbitration using code division multiplexing
WO2015112780A1 (en) * 2014-01-24 2015-07-30 Mediatek Singapore Pte. Ltd. Adaptive cca and tx power level adjustment for dense deployment of wireless networks
CN105406948B (zh) * 2014-09-12 2020-03-06 中兴通讯股份有限公司 一种实现并行多用户数据传输的方法及主节点
US9749967B2 (en) * 2015-09-07 2017-08-29 Mediatek Inc. Spatial reuse parameters for opportunistic adaptive TPC and CCA

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102843785A (zh) * 2011-06-25 2012-12-26 华为技术有限公司 无线局域网中逆向协议传输的方法及装置
CN103298079A (zh) * 2012-02-23 2013-09-11 华为技术有限公司 数据传输方法、接入点和站点
US20150023335A1 (en) * 2013-07-17 2015-01-22 Qualcomm Incorporated Physical layer design for uplink (ul) multiuser multiple-input, multiple-output (mu-mimo) in wireless local area network (wlan) systems
CN105120520A (zh) * 2015-07-17 2015-12-02 魅族科技(中国)有限公司 无线局域网络中数据传输的方法和设备
CN105101435A (zh) * 2015-07-29 2015-11-25 魅族科技(中国)有限公司 数据传输的方法和设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536469A (zh) * 2018-05-23 2019-12-03 华为技术有限公司 基于多接入点ap协作的空间复用的方法和装置
EP3796747A4 (en) * 2018-05-23 2021-07-28 Huawei Technologies Co., Ltd. SPATIAL REUSE PROCESS AND APPARATUS BASED ON MULTIPLE ACCESS POINTS (PA) COORDINATION
US11476986B2 (en) 2018-05-23 2022-10-18 Huawei Technologies Co., Ltd. Method and apparatus for spatial reuse based on multi-access point AP coordination
US11784766B2 (en) 2018-05-23 2023-10-10 Huawei Technologies Co., Ltd. Method and apparatus for spatial reuse based on multi-access point AP coordination
EP4307819A3 (en) * 2018-05-23 2024-04-17 Huawei Technologies Co., Ltd. Method and apparatus for spatial reuse based on multi-access point ap coordination

Also Published As

Publication number Publication date
US20180288800A1 (en) 2018-10-04
EP3376813B1 (en) 2020-09-23
CN106851848A (zh) 2017-06-13
CN106851848B (zh) 2020-06-16
EP3376813A1 (en) 2018-09-19
EP3376813A4 (en) 2018-11-14
US10645724B2 (en) 2020-05-05

Similar Documents

Publication Publication Date Title
WO2017096918A1 (zh) 一种并行传输数据的方法及装置
US11658843B2 (en) System and method for full-duplex media access control using request-to-send signaling
JP6868578B2 (ja) セカンダリチャネル上の基本帯域幅デバイス
US11792829B2 (en) Method and apparatus for multi-link operations
JP6697003B2 (ja) Wlanにおけるサブチャネル化送信方式のための方法およびデバイス
JP4152322B2 (ja) IEEE802.11eハイブリッドコーディネータの回復及びバックオフ規則を定める装置及び方法
WO2016062263A1 (zh) 一种数据传输方法及站点
JP2005510130A6 (ja) IEEE802.11eハイブリッドコーディネータの回復及びバックオフ規則を定める装置及び方法
TWI702875B (zh) 資訊處理裝置及資訊處理方法
US20180014165A1 (en) Triggered wireless access protocol with grouped multi-user transmissions
WO2014187333A1 (zh) 一种数据传输方法和设备
JP6151865B2 (ja) ワイヤレス通信システムにおける一方向トラフィックのためのシステムおよび方法
CN106455114B (zh) 基于多信道的退避方法及设备
WO2014166379A1 (zh) 一种资源预约方法及装置
TW201640943A (zh) 於無線網路中減少碰撞之系統及方法
US11290955B2 (en) Low latency wireless protocol
WO2017143849A1 (zh) 一种休眠控制方法及相关设备
WO2022033283A1 (zh) 一种信道竞争方法及相关装置
US20160295612A1 (en) Information sending method and apparatus
JP6423525B2 (ja) マルチチャネルアクセス方法および装置
US10524286B2 (en) Power saving using integrated CF-End indication
WO2017152599A1 (zh) 网络分配矢量的处理方法及装置
WO2017152727A1 (zh) 数据传输方法及装置
WO2017031645A1 (zh) 一种退避方法、传输消息方法及装置
JP7395379B2 (ja) 通信装置、制御方法、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016872117

Country of ref document: EP