WO2017096730A1 - 用于骨科微创手术的接骨组件 - Google Patents

用于骨科微创手术的接骨组件 Download PDF

Info

Publication number
WO2017096730A1
WO2017096730A1 PCT/CN2016/076873 CN2016076873W WO2017096730A1 WO 2017096730 A1 WO2017096730 A1 WO 2017096730A1 CN 2016076873 W CN2016076873 W CN 2016076873W WO 2017096730 A1 WO2017096730 A1 WO 2017096730A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
rod
bone
minimally invasive
invasive surgery
Prior art date
Application number
PCT/CN2016/076873
Other languages
English (en)
French (fr)
Inventor
陈伟
孙家元
王娟
冯琛
郭家良
刘松
张英泽
Original Assignee
张英泽
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510886876.5A external-priority patent/CN105534590B/zh
Priority claimed from CN201510886228.XA external-priority patent/CN105534589B/zh
Priority claimed from CN201510887124.0A external-priority patent/CN105534591B/zh
Application filed by 张英泽 filed Critical 张英泽
Publication of WO2017096730A1 publication Critical patent/WO2017096730A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates

Definitions

  • the invention relates to a bone assembly for orthopedic minimally invasive surgery, belonging to the technical field of orthopedic medical devices.
  • plate fixation is a common method of internal fixation of fractures.
  • Plate fixation includes reconstruction plates, anatomical plates, hook plates, etc.
  • anatomical plates are the most common.
  • Currently widely used bone plates are curved end steel plates or titanium slats, and a plurality of fixing holes are arranged thereon for fixing the nails.
  • the position of the bone plate often varies, which not only affects the surgical effect, but also increases the suffering of the patient.
  • medical personnel and researchers have carried out a lot of research and improvement on the bone plate, and achieved good results.
  • 200920103620.2 and 201020223842.0 respectively disclose a self-aligning bone.
  • Plate and a stress-distribution plate when these bone plates are placed under the skin to treat long bone fractures, the same bone plates, ie, the positioning plate, are connected through the groove structure at both ends and the two ends of the subcutaneous plate.
  • the position of the nail hole and the direction of the nail are temporarily positioned, and the bone plate placed under the skin during the operation can be prevented from sliding or moving.
  • the bone plates of these two structures have achieved good results in clinical practice, but there are still deficiencies.
  • the main problem is that the subcutaneous bone plate and the skin grafting plate for positioning function only rely on the Kirschner wire, and the connection is not strong.
  • the technical problem to be solved by the present invention is to provide a bone assembly for orthopedic minimally invasive surgery capable of accurately positioning and fixing a subcutaneous bone plate.
  • the present invention adopts the following technical solutions:
  • a bone assembly for orthopedic minimally invasive surgery includes an extracutaneous positioning plate, a subcutaneous bone plate, and a connection positioning structure.
  • the outer positioning plate includes a first plate body, and the two ends of the first plate body are symmetrically disposed with the first a groove, the first plate body is provided with a plurality of first through holes;
  • the subcutaneous bone plate comprises a second plate body, and the two ends of the second plate body are symmetrically disposed with a second groove, the second plate
  • the body is provided with a plurality of second through holes;
  • the connection positioning structure is connected to the outer skin positioning plate and the subcutaneous bone plate, and the first groove and the first through hole on the first plate body are respectively associated with the first The second groove on the second plate body and the plurality of second through holes are in one-to-one correspondence.
  • the connection positioning structure includes a connecting rod, and a connecting hole is respectively disposed on the second plate body of the subcutaneous bone plate and the first plate body of the outer skin positioning plate, and the two The connecting hole is oppositely disposed on the subcutaneous bone plate and the outer skin positioning plate, and the two ends of the connecting rod are respectively connected to the two connecting holes, the subcutaneous bone plate and the outer skin positioning plate are parallel to each other, and the subcutaneous bone plate and the The centerline of the longitudinal direction of the outer positioning plate is in a plane perpendicular to the outer positioning plate.
  • a connecting hole on the subcutaneous bone plate is located at a center of the second body, a connecting hole of the skin positioning plate is located at a center of the first body, and the connecting rod is vertical
  • the subcutaneous plate is attached to the skin.
  • the connecting holes of the subcutaneous bone plate and the outer skin positioning plate are screw holes, and the two ends of the connecting rod are provided with a thread, and the thread at both ends of the connecting rod can be connected with two threads.
  • the threads of the holes are matched.
  • the upper end of the connecting rod passes through the outer positioning plate and is fastened by a nut.
  • the connecting holes of the subcutaneous bone plate and the outer skin positioning plate are all polygonal, and the cross-sectional shapes of the two ends of the connecting rod are matched with the connecting holes.
  • connection positioning structure further includes a push rod, and a front end of the push rod is connected to the connecting rod.
  • the push rod is a long rod
  • the front end of the push rod is provided with a cardan shaft
  • the universal joint shaft is connected to the connecting rod
  • the universal joint shaft is provided with a locking structure.
  • the push rod comprises two parallel cross bars and one vertical bar, the front ends of the two cross bars are respectively connected to the connecting rod, and the rear ends of the two cross bars They are respectively connected to the upper and lower ends of the vertical rod.
  • the front ends of the two cross bars are respectively provided with elastic collets, and the elastic collets are clamped and connected with the connecting rods.
  • the elastic collet includes two semi-circular arc-shaped spring pieces, and the rear ends of the two spring pieces are fixedly connected to the front end of the cross bar, and the front ends of the two spring pieces have openings. To be clamped to the connecting rod through the opening.
  • connection positioning structure further comprises a pinch push handle, the pinch push handle being detachably coupled to the outer skin positioning plate or the subcutaneous bone plate.
  • the pinch push handle comprises two parallel vertical bars and one connected to the two a cross bar of the vertical rod, the two vertical rods are respectively provided with a plurality of transverse bayonet pins, the plurality of bayonet pins are arranged along the length direction of the vertical rod, and the corresponding bayons on the two vertical rods can be carded Connected to both sides of the outer skin positioning plate.
  • the pinch push handle comprises two parallel vertical bars and one cross bar, the front ends of the two vertical bars are respectively provided with lateral plugs, the rear ends of the two vertical bars and the cross bar The two ends are connected to each other, and a plurality of lateral insertion holes are arranged on two sides of the subcutaneous bone plate, and a plurality of insertion holes are arranged along the length direction of the subcutaneous bone plate, and the plugs of the front ends of the two vertical rods can be inserted into the In the jack on both sides of the subcutaneous bone plate.
  • an elastic member is connected between two parallel vertical rods of the pinch push handle.
  • the elastic member is a tension spring or an elastic tie rod.
  • the connection positioning structure includes an operating rod, the operating rod is a long rod placed along a length direction of the subcutaneous bone plate, and the rod body of the operating rod and the subcutaneous bone plate The bottom end of the operating rod is provided with a bent connecting portion, the connecting portion is detachably connected to the subcutaneous bone plate, and the rod body of the operating rod is provided with the The positioning portion of the external positioning plate is connected.
  • connection between the connecting portion and the subcutaneous bone plate is a plug or a screw connection.
  • the upper end of the operating lever is provided with a handle.
  • the connecting portion and the operating rod are connected by a universal joint shaft, and the universal joint shaft is provided with a locking device.
  • the positioning portion includes a plurality of pins, each of the pins vertically extending through the shaft of the operating rod, and a plurality of pins are arranged along the length of the operating rod, the external positioning plate The two side edges are respectively embedded in the gaps of adjacent pins.
  • the positioning portion includes a plurality of card slots symmetrically disposed on two sides of the operating rod, the plurality of card slots are arranged along a length direction of the operating rod, and both sides of the external positioning plate The edges are respectively embedded in the card slots.
  • the rod body below the positioning portion of the operating rod is provided with a hollow portion or a escaping groove, and the maximum width of the hollow portion is larger than the diameter of the fixing screw of the subcutaneous bone plate.
  • the bone assembly for minimally invasive surgery of the present invention comprises a subcutaneous bone plate, an extracutaneous positioning bone plate and a connection positioning structure.
  • the connection positioning structure connects the outer positioning plate and the subcutaneous bone plate together and accurately aligns the two, that is, the first groove and the plurality of first through holes on the first plate respectively and the second
  • the second groove on the plate body and the plurality of second through holes are in one-to-one correspondence; the outer skin positioning plate and the subcutaneous bone plate which are connected together can be synchronously moved, and the fixing screw is set when the subcutaneous bone plate is placed in a predetermined position under the skin.
  • the invention is an innovation of the method for inserting the external positioning plate and the subcutaneous bone plate, solving the problem that the positioning of the external positioning plate and the subcutaneous bone plate is inaccurate and inconvenient to insert, reducing the operation time and improving the minimally invasive surgery. effectiveness.
  • FIG. 1 is a schematic perspective view showing an embodiment of an osteosynthesis assembly for minimally invasive surgery of the present invention
  • FIG. 2 is a schematic perspective structural view of another embodiment of a bone assembly for minimally invasive surgery of the present invention
  • FIG. 3 is a schematic perspective structural view of another embodiment of a bone assembly for minimally invasive surgery of the present invention.
  • FIG. 4 is a schematic perspective structural view of another embodiment of a bone assembly for minimally invasive surgery of the present invention.
  • FIG. 5 is a schematic perspective structural view of another embodiment of a bone assembly for minimally invasive surgery of the present invention.
  • Figure 6 is a perspective view showing the operation of a lever in the embodiment shown in Figure 5;
  • Figure 7 is a perspective view showing another operation lever of the embodiment shown in Figure 5;
  • FIG. 8 is a schematic perspective structural view of another operating lever in the embodiment shown in FIG. 5.
  • FIG. 8 is a schematic perspective structural view of another operating lever in the embodiment shown in FIG. 5.
  • the present invention connects the outer skin positioning plate 11 and the subcutaneous bone plate 12 by connecting a positioning structure, such as the connecting rod 2 and the push rod 1, and pushes the subcutaneous bone plate 12 along the length of the long bone through the push rod 1 in use. After the bone positioning position, and the outer positioning plate 11 is synchronously moved to the bone contacting position, the subcutaneous bone plate 12 is fixed, so that the subcutaneous bone plate 12 can be accurately positioned.
  • a positioning structure such as the connecting rod 2 and the push rod 1
  • FIG. 1 is a schematic perspective structural view of an embodiment of a bone assembly for minimally invasive surgery of the present invention.
  • the first embodiment of the osteosynthesis assembly for minimally invasive surgery of the present invention comprises an extracutaneous positioning plate 11, a subcutaneous bone plate 12 and a connection positioning structure.
  • the outer positioning plate 11 includes a first plate body, the first plate body is in the shape of an elongated plate, and the first groove 111 is symmetrically disposed at both ends of the first plate body, and the two first grooves 111 are disposed along the
  • the first plate body is further provided with a plurality of first through holes 110, and the first through holes 110 may also be screw holes.
  • the structure of the subcutaneous bone plate 12 can be the same as that of the outer skin positioning plate 11, and includes a second plate body.
  • the second groove 121 is symmetrically disposed at two ends of the second plate body, and the two second grooves 121 are disposed along the second plate.
  • the second plate body is provided with a plurality of second through holes 120.
  • the second through holes 120 may be screw holes, and the long bones may be fixed by a fixing screw.
  • connection positioning structure connects the outer positioning plate 11 and the subcutaneous bone plate 12, and the first groove 111 and the plurality of first through holes 110 on the first plate body and the second groove 121 on the second plate body and
  • the plurality of second through holes 120 are in one-to-one correspondence, that is, the relative positions of the outer positioning plate 11 and the subcutaneous plate 12 connected together by the connection positioning structure are precisely corresponding so as to be placed after the subcutaneous plate 12 is placed.
  • the subcutaneous bone plate 12 can be accurately positioned by the position of the outer positioning plate 11.
  • the connection positioning structure comprises a connecting rod 2.
  • a connecting hole 4 is disposed on the second plate body of the subcutaneous bone plate 12 and the first plate body of the outer skin positioning plate 11, and the two connecting holes 4 are oppositely disposed on the subcutaneous bone plate 12 and the outer skin positioning plate 11,
  • the two ends of the connecting rod 2 are respectively connected to the two connecting holes 4, and the subcutaneous bone plate 12 and the outer skin positioning plate 11 are parallel to each other, and the longitudinal center line of the subcutaneous bone plate 12 and the outer skin positioning plate 11 is perpendicular to the outer skin.
  • Positioning plate 11 is in the plane.
  • the two connecting holes 4 are located at the same position and precisely opposite on the subcutaneous bone plate 12 and the outer skin positioning plate 11, so that the first through hole 110 of the outer skin positioning plate 11 and the second through hole 120 of the subcutaneous bone plate 12 can be accurately opposed. .
  • the connecting holes 4 on the subcutaneous bone plate 12 and the outer skin positioning plate 11 are screw holes, and the two ends of the connecting rod 2 are provided with threads, and the threading energy at both ends of the connecting rod 2 and the two connecting holes 4 are The threads match.
  • the lower end of the connecting rod 2 can be screwed into the connecting hole 4 of the subcutaneous bone plate 12, and then the connecting hole 4 on the outer positioning plate 11 is sleeved in the screw hole of the upper end of the connecting rod 2 until the connecting rod 2 is After the upper end passes through the outer positioning plate 11, the nut 5 is fastened to the upper end of the connecting rod 2.
  • the connecting hole 4 on the subcutaneous bone plate 12 may be located at the center of the second body, and the connecting hole 4 on the outer skin positioning plate 11 may be located at the center of the first body, and the connecting rod 2 is perpendicular to the subcutaneous bone plate 12.
  • the push rod 1 is a long rod, and the front end of the push rod 1 is provided with a cardan shaft 6, and the push rod 1 is connected through the universal joint shaft 6 Connected to the connecting rod 2, the universal joint shaft 6 is provided with a locking structure, and the locking structure can lock the push rod 1 to the connecting rod 2 when the push rod 1 is adjusted to a proper position.
  • the front end of the push rod 1 can also be directly connected to the middle of the connecting rod 2 without using the cardan shaft 6.
  • the rear end of the push rod 1 has a handle 3.
  • the subcutaneous bone plate 12 and the outer skin positioning plate 11 are connected together by a connecting rod 2, and the subcutaneous bone plate 12 can be quickly placed under the skin by pushing the push rod 1.
  • the screw hole of the subcutaneous bone plate 12 is quickly and accurately positioned by the screw hole of the external positioning plate 11 , and the fractured bone is fixed by the fixing screw.
  • the push rod 1 can adjust the pushing angle through the cardan shaft 6 to facilitate pushing the outer positioning plate 11 and the subcutaneous bone plate 12 to be inserted.
  • FIG. 2 is a schematic perspective structural view of a second embodiment of a bone assembly for minimally invasive surgery of the present invention.
  • a second embodiment of an osteosynthesis assembly for orthopedic minimally invasive surgery includes an extracutaneous positioning plate 11, a subcutaneous bone plate 12, and a connection positioning structure.
  • the second embodiment differs from the first embodiment shown in FIG. 1 only in that:
  • the connecting holes 4 on the subcutaneous bone plate 12 and the outer skin positioning plate 11 are all polygonal, for example, regular polygons, and the cross-sectional shapes of the both ends of the connecting rod 2 match the connecting holes 4. Both ends of the connecting rod 2 are inserted into the connecting holes 4 of the subcutaneous bone plate 12 and the outer skin positioning plate 11, respectively, and are closely fitted with the connecting holes 4.
  • the shape matching of the polygonal connecting hole 4 and the connecting rod 2 makes the subcutaneous bone plate 12 and the outer skin positioning plate 11 more convenient and quick to operate accurately.
  • the regular polygonal connecting hole 4 can be triangular, quadrangular, pentagonal or hexagonal. Shape and so on.
  • the push rod 1 comprises two parallel cross bars 7 and a vertical rod 8.
  • the front ends of the two cross bars 7 are respectively connected to the connecting rod 2, and the rear ends of the two cross bars 7 respectively correspond to the upper end and the lower end of the vertical rod 8. connection.
  • the front ends of the two cross bars 7 respectively have elastic collets 9, and the elastic collets 9 are clamped and connected to the connecting rod 2.
  • the elastic collet 9 may include two semicircular arc-shaped spring pieces 10, the rear ends of the two spring pieces 10 are fixedly connected to the front end of the cross bar 7, and the front ends of the two spring pieces 10 have openings for being clamped through the opening Connecting rod 2.
  • the front ends of the two crossbars 7 can also be directly connected to the connecting rod 2, such as welding or riveting, so that the structure is simple, but the angle cannot be adjusted, and the user can select according to the needs.
  • the two ends of the connecting rod 2 are respectively connected with the connecting holes 4 on the subcutaneous bone plate 12 and the outer skin positioning plate 11, and the threaded connection or the regular polygonal hole can be used for the connection, and the connected subcutaneous bone plate 12 and the outer skin are positioned.
  • the center lines of the longitudinal direction of the plate 11 are parallel in the same vertical plane, so that the first groove 111 on the outer skin positioning plate 11, the first through holes 110 and the second grooves 121 on the subcutaneous bone plate 12, each The two through holes 120 are sufficiently accurate to oppose each other.
  • the driving angle of the push rod 1 is adjusted by the universal joint shaft 6 or the elastic collet 9 at the front end of the push rod 1, so that the connecting rod 2 is driven to drive the outer skin positioning plate 11 and the subcutaneous bone plate 12 to move together.
  • the fixing screw is implanted downward through the first groove 111 of the outer skin positioning plate 11 to accurately position and The subcutaneous bone plate 12 is fixed.
  • Fig. 2 The other structure of the second embodiment of the bone assembly for orthopedic minimally invasive surgery shown in Fig. 2 is substantially the same as that of the first embodiment, and will not be described again.
  • FIG. 3 is a schematic perspective structural view of a third embodiment of an osteosynthesis assembly for minimally invasive surgery of the present invention.
  • a third embodiment of a bone assembly for orthopedic minimally invasive surgery includes an extracutaneous positioning plate 11, a subcutaneous bone plate 12, and a connection positioning structure.
  • the third embodiment differs from the first embodiment shown in FIG. 1 only in that the connection positioning structure includes a connecting rod 2 and a pinch push handle 20, and the pinch push handle 20 is detachably coupled to the outer skin positioning plate. 12 or subcutaneous bone plate 12. That is, the pinch pusher 20 in the connection positioning structure in the third embodiment replaces the pusher 1 in the first embodiment.
  • the pinch push handle 20 includes two parallel vertical rods 21 and one cross rod 22, and the front ends of the two vertical rods 21 respectively have a plurality of lateral latching pins 23, and the rear of the two vertical rods 21
  • the ends are connected to the two ends of the cross bar 22, and the plurality of bayonet pins 23 are arranged in parallel along the longitudinal direction of the vertical rod 21, and the corresponding bayonet pins on the two vertical rods 21 can be engaged with the two sides of the outer skin positioning plate 11.
  • an elastic member such as a tension spring 25 is connected between the two parallel vertical rods 21 of the pinch pusher 20, and the tension spring 25 pulls the two vertical rods in the middle by virtue of its own elastic force. twenty one.
  • a handle 27 is also provided on the crossbar 22 of the pinch pusher 20.
  • the pinch push handle 20 is coupled to the outer skin positioning plate 11, and by selecting the bayonet 23 at different positions, the position of the pinch push bar 20 relative to the outer skin positioning plate 11 can be adjusted. Then, the grip handle 27 pushes the outer positioning plate 11 and the subcutaneous bone plate 12 along the longitudinal direction of the long bone to the bone receiving position.
  • FIG. 3 The other structure of the third embodiment of the osteosynthesis assembly for orthopedic minimally invasive surgery shown in FIG. 3 is substantially the same as that of the first embodiment, and details are not described herein again.
  • FIG. 4 is a schematic perspective view showing a fourth embodiment of an osteosynthesis assembly for minimally invasive surgery of the present invention.
  • the fourth embodiment of the bone assembly for orthopedic minimally invasive surgery differs from the second embodiment shown in FIG. 2 only in that the pinch push in the connection positioning structure in the fourth embodiment
  • the pusher 1 in the second embodiment is replaced by 20.
  • the pinch push handle 20 includes two parallel vertical rods 21 and one cross bar 22, and the front ends of the two vertical rods 21 respectively have lateral pins 24, and the rear ends of the two vertical rods 21 are connected to the two ends of the cross bar 22.
  • a plurality of lateral insertion holes 122 are disposed on both sides of the subcutaneous bone plate 12. The plurality of insertion holes 122 are arranged along the length direction of the subcutaneous bone plate 12, and the plugs 24 at the front ends of the two vertical rods 21 can be inserted into the subcutaneous bone plate 12. In the socket 122 on both sides.
  • an elastic member such as an elastic pull rod 26 is connected between the two parallel vertical rods 21 of the pinch pusher 20, and the elastic pull rod 26 pulls the two vertical rods in the middle by their own elastic force. twenty one.
  • a handle 27 is also provided on the crossbar 22 of the pinch pusher 20.
  • the pinch pusher 20 is coupled to the subcutaneous bone plate 12, and the position of the pinch pusher 20 relative to the outer skin positioning plate 11 can be adjusted by selecting the receptacle 122 at a different position. Then, the grip handle 27 can push the extracutaneous positioning plate 11 and the subcutaneous bone plate 12 into the bone contacting position along the longitudinal direction of the long bone.
  • FIG. 4 The other structure of the fourth embodiment of the osteosynthesis assembly for orthopedic minimally invasive surgery shown in FIG. 4 is substantially the same as that of the second embodiment, and details are not described herein again.
  • FIG. 5 is a perspective structural schematic view of a fifth embodiment of a bone-joining assembly for minimally invasive surgery of the present invention.
  • the fourth embodiment of the osteosynthesis assembly for orthopedic minimally invasive surgery differs from the first embodiment shown in FIG. 1 only in that the connection positioning structure is an operation in the fifth embodiment.
  • Rod 30 is an operation in the fifth embodiment.
  • the lever body of the operating lever 30 is a long lever, and the lever body of the operating lever 30 is placed along the length direction of the subcutaneous bone plate 12.
  • the lever body of the operating lever 30 and the subcutaneous bone plate 12 have an inclination angle from the bottom to the top, and the lower end of the operating lever 30 has a curved shape.
  • the folded connecting portion 31 is connected to the subcutaneous bone plate 12, and the connecting portion of the rod body of the operating rod 30 has a connecting portion connected to the external positioning plate 11, and the upper end of the operating rod 30 has a handle 32.
  • the lower end portion of the operating lever 30 and the connecting portion 31 are connected by a cardan shaft 33, and the universal joint shaft 33 has a locking device.
  • the universal shaft 33 can be used to adjust the tilt angle of the operating rod 30, and the locking is adjusted to ensure accurate alignment of the external positioning plate 11 when connected to the subcutaneous bone plate 12.
  • the second plate body of the subcutaneous bone plate 12 is provided with an insertion hole 122 adjacent to the two second concave bodies 121.
  • the front end of the connection portion 31 at the lower end of the operation rod 30 can be inserted into the insertion hole 122 to be connected to the subcutaneous bone plate.
  • the inner wall of the socket 122 may be provided with a thread, and correspondingly, the front end of the connecting portion 31 is provided with a thread, and the connecting portion 31 and the subcutaneous bone plate 12 are provided.
  • the connections are made by a threaded fit so that the connection of the connecting portion 31 to the subcutaneous bone plate 12 is more secure.
  • the positioning portion may be a plurality of pins 34 or a plurality of slots 35, and the rod of the operating lever 30 and the external positioning plate 11 are connected by a pin 34 or a slot 35.
  • a positioning portion structure includes a plurality of pins 34, each of which is vertically fixed to the rod of the operating rod 30, and both ends of the pin 34 extend out of the rod of the operating rod 30.
  • a plurality of pins 34 are arranged along the length direction of the operating rod 30, and both side edges of the external positioning plate 11 are respectively embedded in the gaps of the adjacent pins 34, and the operating rod 30 is fixed by the adjacent two pins 34 and positioned outside the body. The relative position of the board 11.
  • the other positioning portion includes a plurality of card slots 35 symmetrically disposed on opposite sides of the operating rod 30.
  • the plurality of card slots 35 are arranged along the length direction of the operating rod 30, and the two side edges of the external positioning plate 11 are respectively embedded in the card slot 35.
  • the relative position of the operating lever 30 and the external positioning plate 11 is fixed by the card slot 35.
  • a hollow portion 36 is provided on the rod below the positioning portion of the operating lever 30 (for example, the pin shaft 34 or the card slot 35).
  • the maximum width of the hollow portion 36 matches the diameter of the fixing screw of the subcutaneous bone plate 12, that is, the hollow portion 36.
  • the maximum width is greater than the diameter of the set screw of the subcutaneous bone plate 12.
  • the hollow portion 36 may have a rectangular shape (see Fig. 6), a circular shape, a diamond shape (see Fig. 8), or other regular or irregular shapes. Since the hollow portion 36 is designed on the operating rod 30, when the operating rod 30 puts the subcutaneous bone plate 12 in place, the fixing screw can be directly passed from the first groove 111 of the external positioning plate 11 through the hollow portion 36. Into, thereby avoiding the case where the rod of the operating lever 30 blocks the fixing screw.
  • a escaping groove 37 may be provided on the rod body below the positioning portion of the operating lever 30 (for example, the pin shaft 34 or the card slot 35), and the escaping groove 37 may be bent by bending the operating lever 30 a plurality of times. It can also be made by other means.
  • the escape groove 37 can also function to prevent the rod of the operating lever 30 from obstructing the fixing screw.
  • the connecting portion 31 of the lower end of the operating lever 30 is connected to the insertion hole 122 of the subcutaneous bone plate 12, and the first groove 111 of the external positioning plate 11 is inserted into the pin 34 or the card slot 35 on both sides of the operating lever 30.
  • the angle of the operating rod 30 is adjusted by the cardan shaft 33 at the lower end of the operating rod 30, so that the external positioning plate 11 and the subcutaneous bone plate 12 are accurately aligned, and then the cardan shaft 33, the external positioning plate 11 and the subcutaneous bone plate are locked. 12 fixed connection is completed.
  • the subcutaneous bone plate 12 is pushed into the bone connecting position along the length of the long bone, and the external positioning plate 11 moves synchronously with the subcutaneous bone plate 12 to reach the bone receiving position, and then passes through the external positioning plate 11
  • the first groove 111 and the hollow portion 36 are implanted with a fixing screw downward to accurately position and fix the subcutaneous bone plate 12.
  • the external positioning plate 11 and the subcutaneous bone plate 12 are connected by the positioning portion of the operating rod 30, and the pin 34 or the card slot 35 at different positions can be selected for connection;
  • the connecting portion 31 at the lower end of the operating rod 30 can adjust the tilting angle by the cardan shaft 33, so that the outer positioning plate 11 and the subcutaneous bone plate 12 are accurately aligned, and the hollow portion 36 or the escape groove 37 of the operating rod 30 is convenient for fixing the subcutaneous bone.
  • Plate fixing screw Or Kirschner wire implants are used to fix the spinal fix the spinal rod 30.
  • the other structure of the fifth embodiment of the osteosynthesis assembly for minimally invasive surgery of FIG. 5 is substantially the same as that of the first embodiment, and will not be described again.
  • the bone assembly for orthopedic minimally invasive surgery of the present invention comprises a subcutaneous bone plate, an extracutaneous positioning bone plate and a connection positioning structure.
  • the connecting positioning structure connects the outer positioning plate and the subcutaneous bone plate together and accurately aligns the two, that is, the first groove and the first through hole on the first plate body and the second plate body respectively.
  • the upper second groove and the plurality of second through holes are in one-to-one correspondence; the outer skin positioning plate and the subcutaneous bone plate which are connected together can be synchronously moved, and the fixing screw or the gram is fixed when the subcutaneous bone plate is placed into a predetermined position under the skin.
  • the fixing member for fixing the subcutaneous bone plate can be accurately implanted through the first groove of the end of the outer positioning plate and the second groove of the subcutaneous plate to fix the subcutaneous plate.
  • the invention is an innovation of the method for inserting the external positioning plate and the subcutaneous bone plate, solving the problem that the positioning of the external positioning plate and the subcutaneous bone plate is inaccurate and inconvenient to insert, reducing the operation time and improving the minimally invasive surgery. effectiveness. While the invention has been described with respect to the exemplary embodiments illustrated embodiments The present invention may be embodied in a variety of forms without departing from the spirit or scope of the invention. It is to be understood that the invention is not limited to the details. All changes and modifications that come within the scope of the claims or the equivalents thereof are intended to be covered by the appended claims.

Abstract

一种用于骨科微创手术的接骨组件,包括皮外定位板(11)、皮下接骨板(12)和连接定位结构。所述皮外定位板(11)包括第一板体,所述第一板体的两端对称设置有第一凹槽(111),所述第一板体上设有多个第一通孔(110)。所述皮下接骨板(12)包括第二板体,所述第二板体的两端对称设置有第二凹槽(121),所述第二板体上设有多个第二通孔(120)。连接定位结构连接所述皮外定位板(11)和皮下接骨板(12),并使得所述第一板体上的第一凹槽(111)和多个第一通孔(110)分别与所述第二板体上的第二凹槽(121)和多个第二通孔(120)一一对应。

Description

用于骨科微创手术的接骨组件 技术领域
本发明涉及一种用于骨科微创手术的接骨组件,属于骨科医疗器械技术领域。
背景技术
在治疗骨折的手术中,钢板固定是常见的骨折内固定方法,钢板固定包括重建钢板、解剖钢板、钩钢板等,其中以解剖钢板最为常见。目前广泛使用的接骨板为弧形端头的钢板或钛板条,其上排列有多个固定孔,用于植入钉的固定。在使用中发现,在将接骨板置入患者皮下后,接骨板的位置常出现偏差,不但手术效果受到影响,还增加了患者的痛苦。针对常规接骨板及植入技术的局限性,医疗人员和科研人员对接骨板进行了大量的研究和改进,取得了良好的效果,中国专利申请号200920103620.2、201020223842.0分别公开了一种自定位型接骨板和一种应力分散型接骨板,将这些接骨板置于皮下治疗长骨干骨折时,皮外以相同的接骨板即定位板通过两端的槽型结构和皮下的接骨板的两端相连,用于临时定位钉孔位置及置钉方向,同时可以避免手术操作时皮下置放的接骨板滑动或者移动。这两种结构的接骨板应用于临床取得了良好的效果,但是仍然存在不足,主要的问题是皮下接骨板与起到定位作用的皮外接骨板连接仅仅依靠克氏针,连接不牢固,很容易发生错位、移位等现象,为接续的固定螺钉的操作造成很大困难,甚至无法进行,不但延误了手术时间,还可能产生接骨板固定不牢固的严重后果。为了使微创手术中皮下接骨板与起到皮外定位作用的接骨板连接牢固,以达到定位准确的效果,十分有必要开发新的装置和技术解决存在的技术难题。
在所述背景技术部分公开的上述信息仅用于加强对本发明的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本发明所要解决的技术问题是提供一种能准确定位并固定皮下接骨板的用于骨科微创手术的接骨组件。
为实现上述目的,本发明采用如下技术方案:
根据本发明的一个方面,一种用于骨科微创手术的接骨组件,包括皮外定位板、皮下接骨板和连接定位结构。皮外定位板包括第一板体,所述第一板体的两端对称设置有第一 凹槽,所述第一板体上设有多个第一通孔;皮下接骨板包括第二板体,所述第二板体的两端对称设置有第二凹槽,所述第二板体上设有多个第二通孔;连接定位结构连接所述皮外定位板和皮下接骨板,并使所述第一板体上的第一凹槽和第一通孔分别与所述第二板体上的第二凹槽和多个第二通孔一一对应。
根据本发明的一实施方式,所述连接定位结构包括连接杆,在所述皮下接骨板的第二板体上和皮外定位板的第一板体上分别设有连接孔,两个所述连接孔在皮下接骨板和皮外定位板上相对设置,所述连接杆的两端分别连接于两个连接孔,所述皮下接骨板和皮外定位板相互平行,且所述皮下接骨板和皮外定位板的长度方向的中心线在垂直于所述皮外定位板的平面内。
根据本发明的一实施方式,所述皮下接骨板上的连接孔位于所述第二本体的中央,所述皮外定位板上的连接孔位于所述第一本体的中央,所述连接杆垂直于所述皮下接骨板。
根据本发明的一实施方式,所述皮下接骨板和皮外定位板上的连接孔均为螺孔,所述连接杆的两端设有螺纹,所述连接杆两端的螺纹能与两个连接孔的螺纹相配合。
根据本发明的一实施方式,所述连接杆的上端穿出所述皮外定位板,并由一螺母紧固。
根据本发明的一实施方式,所述皮下接骨板和皮外定位板上的连接孔均为多边形,所述连接杆两端的横截面形状与所述连接孔相匹配。
根据本发明的一实施方式,所述连接定位结构还包括推杆,所述推杆的前端连接于所述连接杆。
根据本发明的一实施方式,所述推杆为长杆,所述推杆的前端设有万向轴,所述万向轴连接于所述连接杆,所述万向轴设有锁紧结构。
根据本发明的一实施方式,所述推杆包括两根平行的横杆和一根竖杆,两根所述横杆的前端分别连接于所述连接杆,两根所述横杆的后端分别与竖杆的上端和下端相连接。
根据本发明的一实施方式,两根所述横杆的前端分别设有弹性夹头,所述弹性夹头与所述连接杆夹紧连接。
根据本发明的一实施方式,所述弹性夹头包括两个半圆弧形的弹簧片,两个所述弹簧片的后端固定连接于所述横杆的前端,两个弹簧片的前端有开口,以通过该开口夹持于所述连接杆。
根据本发明的一实施方式,所述连接定位结构还包括夹送推把,所述夹送推把可拆卸地连接于皮外定位板或皮下接骨板。
根据本发明的一实施方式,所述夹送推把包括两根平行的竖杆和一根连接于两根所述 竖杆的横杆,两根竖杆上分别设有多个横向的卡销,多个卡销沿着所述竖杆的长度方向排列,两根所述竖杆上相对应的卡销能卡接于所述皮外定位板的两侧。
根据本发明的一实施方式,所述夹送推把包括两根平行的竖杆和一根横杆,两根竖杆的前端分别设有横向的插销,两根竖杆的后端与横杆两端相连接,所述皮下接骨板的两侧上设有多个横向的插孔,多个插孔沿着所述皮下接骨板的长度方向排列,两根竖杆前端的插销能插入所述皮下接骨板两侧的插孔中。
根据本发明的一实施方式,所述夹送推把的两根平行的竖杆之间连接有弹性件。
根据本发明的一实施方式,所述弹性件为拉簧或弹性拉杆。
根据本发明的一实施方式,所述连接定位结构包括操作杆,所述操作杆为沿着所述皮下接骨板的长度方向放置的长杆,且所述操作杆的杆体与所述皮下接骨板有自下向上的倾斜角度,所述操作杆的下端设有弯折的连接部,所述连接部可拆卸地连接于所述皮下接骨板,所述操作杆的杆体上设有能与所述体外定位板连接的定位部。
根据本发明的一实施方式,所述连接部与所述皮下接骨板之间的连接为插接或螺纹连接。
根据本发明的一实施方式,所述操作杆的上端设有把手。
根据本发明的一实施方式,所述连接部与所述操作杆通过一万向轴连接,所述万向轴上设有锁紧装置。
根据本发明的一实施方式,所述定位部包括多个销轴,每个所述销轴垂直贯穿所述操作杆的杆体,多个销轴沿着操作杆长度方向排列,所述体外定位板的两侧边缘分别嵌入在相邻销轴的间隙中。
根据本发明的一实施方式,所述定位部包括对称设置于所述操作杆两侧的多个卡槽,所述多个卡槽沿着操作杆长度方向排列,所述体外定位板的两侧边缘分别嵌入在卡槽中。
根据本发明的一实施方式,所述操作杆的定位部以下的杆体上设有中空部或避让槽,所述中空部的最大宽度大于所述皮下接骨板的固定螺钉的直径。
由上述技术方案可知,本发明的有益效果是:
本发明用于骨科微创手术的接骨组件包括皮下接骨板、皮外定位接骨板以及连接定位结构。连接定位结构将皮外定位板和皮下接骨板连接到一起,并使二者准确对位,也就是使第一板体上的第一凹槽和多个第一通孔分别与所述第二板体上的第二凹槽和多个第二通孔一一对应;同时连接在一起的皮外定位板和皮下接骨板能同步移动,当皮下接骨板置入到皮下预定位置时,固定螺钉或克氏针等用于固定皮下接骨板的固定件可以通过皮外定 位板端部的第一凹槽、皮下接骨板的第二凹槽准确植入,从而固定皮下接骨板。本发明是皮外定位板与皮下接骨板置入方式的创新,解决了皮外定位板与皮下接骨板对位不准确和置入不方便的难题,减少了手术时间,提高了微创手术的效率。本发明中通过以下参照附图对优选实施例的说明,本发明的上述以及其它目的、特征和优点将更加明显。
附图说明
图1是本发明用于骨科微创手术的接骨组件一实施方式的立体结构示意图;
图2是本发明用于骨科微创手术的接骨组件另一实施方式的立体结构示意图;
图3是本发明用于骨科微创手术的接骨组件另一实施方式的立体结构示意图;
图4是本发明用于骨科微创手术的接骨组件另一实施方式的立体结构示意图;
图5是本发明用于骨科微创手术的接骨组件另一实施方式的立体结构示意图;
图6是图5所示的实施方式中一种操作杆的立体结构示意图;
图7是图5所示的实施方式中另一种操作杆的立体结构示意图;
图8是图5所示的实施方式中另一种操作杆的立体结构示意图。
图中主要标记如下:
推杆1、连接杆2、把手3、连接孔4、螺母5、万向轴6、横杆7、竖杆8、弹性夹头9、弹簧片10、皮外定位板11、皮下接骨板12、第一凹槽111、第一通孔110、第二凹槽121、第二通孔120、夹持推把20、竖杆21、横杆22、卡销23、插销24、插孔122、拉簧25、弹性拉杆26、操作杆30、连接部31、把手32、万向轴33、销轴34、卡槽35、中空部36、避让槽37。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本发明将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
本发明通过连接定位结构,例如连接杆2和推杆1,将皮外定位板11和皮下接骨板12连接在一起,使用时通过推杆1将皮下接骨板12沿着长骨的长度方向推入到接骨位置,同时皮外定位板11同步移动至接骨位置后,再固定皮下接骨板12,从而使皮下接骨板12能准确定位。
第一实施方式
参见图1,图1是本发明用于骨科微创手术的接骨组件一实施方式的立体结构示意图。如图1所示,本发明用于骨科微创手术的接骨组件第一实施方式,包括皮外定位板11、皮下接骨板12和连接定位结构。
皮外定位板11包括第一板体,第一板体为长条形板形状,在第一板体的两端对称设置有第一凹槽111,两个第一凹槽111设置于沿着第一板体的长度方向上;第一板体上还设有多个第一通孔110,第一通孔110也可以是螺孔。
皮下接骨板12的构造可以与皮外定位板11相同,包括第二板体,在第二板体的两端对称设置有第二凹槽121,两个第二凹槽121设置于沿着第二板体的长度方向上;第二板体上设有多个第二通孔120,第二通孔120可以是螺孔,可以与一固定螺钉配合对长骨进行固定。
连接定位结构连接皮外定位板11和皮下接骨板12,并使第一板体上的第一凹槽111和多个第一通孔110分别与第二板体上的第二凹槽121和多个第二通孔120一一对应,也就是说,经连接定位结构连接到一起的皮外定位板11和皮下接骨板12的相对位置是精确对应的,以便在置入皮下接骨板12后能够通过皮外定位板11的位置准确定位皮下接骨板12。
如图1所示的第一实施方式中,连接定位结构包括连接杆2。在皮下接骨板12的第二板体上和皮外定位板11的第一板体上分别设有连接孔4,两个连接孔4在皮下接骨板12和皮外定位板11上相对设置,连接杆2的两端分别连接于两个连接孔4,皮下接骨板12和皮外定位板11相互平行,且皮下接骨板12和皮外定位板11的长度方向的中心线在垂直于皮外定位板11的平面内。两个连接孔4在皮下接骨板12和皮外定位板11上的位置相同且精确相对,使得皮外定位板11的第一通孔110和皮下接骨板12的第二通孔120能够准确相对。
如图1所示,皮下接骨板12和皮外定位板11上的连接孔4均为螺孔,连接杆2的两端设有螺纹,连接杆2两端的螺纹能与两个连接孔4的螺纹相配合。可以将连接杆2的下端旋紧在皮下接骨板12的连接孔4中,然后将皮外定位板11上的连接孔4套在连接杆2的上端的螺孔中旋转,直到连接杆2的上端穿过皮外定位板11后,再用螺母5与连接杆2上端的螺纹紧固。皮下接骨板12上的连接孔4可以位于第二本体的中央,皮外定位板11上的连接孔4可以位于第一本体的中央,连接杆2垂直于皮下接骨板12。
如图1所示,推杆1为长杆,推杆1的前端设有万向轴6,推杆1通过该万向轴6连 接于连接杆2,万向轴6设有锁紧结构,当推杆1调节至合适位置后,锁紧结构能将推杆1锁紧于连接杆2。当然推杆1的前端也可以直接连接于连接杆2的中部,而不必使用万向轴6。推杆1的后端有把手3。
本发明用于骨科微创手术的接骨组件第一实施方式中,皮下接骨板12和皮外定位板11通过连接杆2连接在一起,通过推动推杆1可将皮下接骨板12快速置入皮下隧道,再利用皮外定位板11螺孔快速、准确定位皮下接骨板12的螺孔,置入固定螺钉固定有骨折的骨。推杆1可以通过万向轴6调节推动角度,方便推动皮外定位板11与皮下接骨板12置入。
第二实施方式
参见图2,图2是本发明用于骨科微创手术的接骨组件第二实施方式的立体结构示意图。如图2所示,用于骨科微创手术的接骨组件第二实施方式,包括皮外定位板11、皮下接骨板12和连接定位结构。该第二实施方式与图1所示的第一实施方式的不同之处仅在于:
皮下接骨板12和皮外定位板11上的连接孔4均为多边形例如正多边形,连接杆2两端部的横截面形状与连接孔4相匹配。连接杆2两端部分别插入在皮下接骨板12和皮外定位板11上的连接孔4中,并与连接孔4紧密配合。通过多边形的连接孔4与连接杆2的形状配合使得皮下接骨板12和皮外定位板11准确对位操作更方便、快捷,正多边形连接孔4可以呈三角形、四边形、五边形或六边形等。
推杆1包括两根平行的横杆7和一根竖杆8,两根横杆7的前端分别连接于连接杆2,两根横杆7的后端分别与竖杆8的上端和下端相连接。两根横杆7的前端分别有弹性夹头9,弹性夹头9与连接杆2夹紧连接。弹性夹头9可以包括两个半圆弧形的弹簧片10,两个弹簧片10的后端固定连接于横杆7的前端,两个弹簧片10的前端有开口,以通过该开口夹持于连接杆2。两根横杆7的前端也可以直接与连接杆2固定连接,如焊接或铆接,这样结构简单,但是不能调整角度,用户可以根据需要自行选择。
该第二实施方式的使用过程如下:
将连接杆2的两端分别与皮下接骨板12和皮外定位板11上的连接孔4相连接,采用螺纹连接或正多边形孔配合连接均可,连接后的皮下接骨板12和皮外定位板11的长度方向的中心线在同一垂直平面内平行,使得皮外定位板11上的第一凹槽111、各第一通孔110和皮下接骨板12上的第二凹槽121、各第二通孔120够准确相对。
通过推杆1前端的万向轴6或弹性夹头9调节推杆1的推动角度,方便推动连接杆2带动皮外定位板11与皮下接骨板12共同运动。
通过推杆1将皮外定位板11和皮下接骨板12沿着长骨的长度方向推入到接骨位置后,通过皮外定位板11的第一凹槽111向下方植入固定螺钉,准确定位并固定皮下接骨板12。
图2所示的用于骨科微创手术的接骨组件第二实施方式的其他结构与第一实施方式基本相同,这里不再赘述。
第三实施方式
参见图3,图3是本发明用于骨科微创手术的接骨组件第三实施方式的立体结构示意图。如图3所示,用于骨科微创手术的接骨组件第三实施方式,包括皮外定位板11、皮下接骨板12和连接定位结构。该第三实施方式与图1所示的第一实施方式的不同之处仅在于:连接定位结构包括连接杆2和夹送推把20,夹送推把20可拆卸地连接于皮外定位板12或皮下接骨板12。也就是说,该第三实施方式中的连接定位结构中的夹送推把20代替了第一实施方式中的推杆1。
如图3所示,夹送推把20包括两根平行的竖杆21和一根横杆22,两根竖杆21的前端分别有多个横向的卡销23,两根竖杆21的后端与横杆22两端相连接,多个卡销23沿着竖杆21的长度方向平行排列,两根竖杆21上相对应的卡销能卡接于皮外定位板11的两侧。
为了夹持更加方便并防止脱开,夹送推把20的两根平行的竖杆21之间连接有弹性件,例如拉簧25,拉簧25依靠自身的弹力向中间拉紧两根竖杆21。夹送推把20的横杆22上还设有把手27。
使用时,将夹送推把20连接于皮外定位板11,通过选择不同位置的卡销23,可以调节夹送推把20相对于皮外定位板11的位置。然后,握持把手27将皮外定位板11及皮下接骨板12沿着长骨的长度方向推入到接骨位置即可。
图3所示的用于骨科微创手术的接骨组件第三实施方式的其他结构与第一实施方式基本相同,这里不再赘述。
第四实施方式
参见图4,图4是本发明用于骨科微创手术的接骨组件第四实施方式的立体结构示意 图。如图4所示,用于骨科微创手术的接骨组件第四实施方式与图2所示的第二实施方式的不同之处仅在于:该第四实施方式中连接定位结构中的夹送推把20代替了第二实施方式中的推杆1。
夹送推把20包括两根平行的竖杆21和一根横杆22,两根竖杆21的前端分别有横向的插销24,两根竖杆21的后端与横杆22两端相连接,皮下接骨板12的两侧上设有多个横向的插孔122,多个插孔122沿着皮下接骨板12的长度方向排列,两根竖杆21前端的插销24能插入皮下接骨板12两侧的插孔122中。
为了夹持更加方便并防止脱开,夹送推把20的两根平行的竖杆21之间连接有弹性件,例如弹性拉杆26,弹性拉杆26依靠自身的弹力向中间拉紧两根竖杆21。夹送推把20的横杆22上还设有把手27。
使用时,将夹送推把20连接于皮下接骨板12,通过选择不同位置的插孔122,可以调节夹送推把20相对于皮外定位板11的位置。然后,握持把手27可以将皮外定位板11及皮下接骨板12沿着长骨的长度方向推入到接骨位置即可。
图4所示的用于骨科微创手术的接骨组件第四实施方式的其他结构与第二实施方式基本相同,这里不再赘述。
第五实施方式
参见图5,图5是本发明用于骨科微创手术的接骨组件第五实施方式的立体结构示意图。如图5所示,用于骨科微创手术的接骨组件第四实施方式,其与图1所示的第一实施方式的不同之处仅在于:该第五实施方式中连接定位结构为一操作杆30。
操作杆30的杆体为长杆,操作杆30的杆体沿着皮下接骨板12的长度方向放置,操作杆30的杆体与皮下接骨板12有自下向上的倾斜角度,操作杆30的下端有弯折的连接部31与皮下接骨板12相连接,操作杆30的杆体中部有连接部与体外定位板11相连接,操作杆30的上端有把手32。
操作杆30下端部与连接部31由万向轴33连接,万向轴33上有锁紧装置。采用万向轴33可以调整操作杆30的倾斜角度,调整后锁紧,以使得体外定位板11与皮下接骨板12连接时准确对位。
皮下接骨板12的第二板体上邻近两个第二凹曹121位置各设有一个插孔122,操作杆30下端的连接部31的前端能插入插孔122内,从而连接于皮下接骨板12。进一步的,插孔122内壁可以设置螺纹,相应地,连接部31前端设有螺纹,连接部31与皮下接骨板12 通过螺纹配合连接在一起,使得连接部31与皮下接骨板12的连接更加牢固。
定位部可以是多个销轴34或多个卡槽35,操作杆30的杆体与体外定位板11由销轴34或卡槽35相连接。
详细来说,一种定位部结构包括多个销轴34,每个销轴34垂直固定于操作杆30的杆体,并且销轴34的两端均延伸出操作杆30的杆体。多个销轴34沿着操作杆30长度方向排列,体外定位板11的两侧边缘分别嵌入在相邻销轴34的间隙中,通过相邻的两个销轴34固定操作杆30与体外定位板11的相对位置。
另一种定位部结构包括对称设置于操作杆30两侧的多个卡槽35,多个卡槽35沿着操作杆30长度方向排列,体外定位板11的两侧边缘分别嵌入在卡槽35中,通过卡槽35固定操作杆30与体外定位板11的相对位置。
在操作杆30的定位部(例如销轴34或卡槽35)以下的杆体上设有中空部36,中空部36的最大宽度与皮下接骨板12的固定螺钉的直径相匹配,即中空部36的最大宽度大于皮下接骨板12的固定螺钉的直径。中空部36的形状可以呈矩形(见图6),也可以呈圆形、菱形(见图8)或其他规则或不规则形状。由于操作杆30上设计了中空部36后,当操作杆30将皮下接骨板12置入到位后,固定螺钉可以直接从体外定位板11的第一凹槽111向下方穿过中空部36而植入,从而避免了操作杆30的杆体阻碍固定螺钉的情况。
此外,也可以在操作杆30的定位部(例如销轴34或卡槽35)以下的杆体上设置避让槽37(见图7),该避让槽37可以通过将操作杆30多次弯折制成,也可以通过其他方式制成。避让槽37同样可以起到避免操作杆30的杆体阻碍固定螺钉的作用。
使用时,将操作杆30下端的连接部31与皮下接骨板12的插孔122连接,再将体外定位板11的第一凹槽111插入到操作杆30两侧的销轴34或卡槽35中,同时通过操作杆30下端的万向轴33调整操作杆30的角度,使体外定位板11和皮下接骨板12准确对位,然后锁紧万向轴33,体外定位板11与皮下接骨板12固定连接完成。
握住操作杆30上方的把手32将皮下接骨板12沿着长骨的长度方向推入到接骨位置,体外定位板11随着皮下接骨板12同步移动,到达接骨位置后,通过体外定位板11的第一凹槽111、中空部36向下方植入固定螺钉,从而准确定位固定皮下接骨板12。
本发明用于骨科微创手术的接骨组件第五实施方式中,体外定位板11与皮下接骨板12由操作杆30的定位部连接,可以选择不同位置的销轴34或卡槽35进行连接;操作杆30下端的连接部31通过万向轴33可以调节倾斜角度,从而外定位板11与皮下接骨板12准确对位,操作杆30的中空部36或避让槽37方便了用于固定皮下接骨板12的固定螺钉 或克氏针植入。
图5所示的用于骨科微创手术的接骨组件第五实施方式的其他结构与第一实施方式基本相同,这里不再赘述。
工业实用性
本发明的用于骨科微创手术的接骨组件包括皮下接骨板、皮外定位接骨板以及连接定位结构。连接定位结构将皮外定位板和皮下接骨板连接到一起,并使二者准确对位,也就是使第一板体上的第一凹槽和第一通孔分别与所述第二板体上的第二凹槽和多个第二通孔一一对应;同时连接在一起的皮外定位板和皮下接骨板能同步移动,当皮下接骨板置入到皮下预定位置时,固定螺钉或克氏针等用于固定皮下接骨板的固定件可以通过皮外定位板端部的第一凹槽、皮下接骨板的第二凹槽准确植入,从而固定皮下接骨板。本发明是皮外定位板与皮下接骨板置入方式的创新,解决了皮外定位板与皮下接骨板对位不准确和置入不方便的难题,减少了手术时间,提高了微创手术的效率。虽然已参照几个典型实施例描述了本发明,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。
应可理解的是,本发明不将其应用限制到本文提出的部件的详细结构和布置方式。本发明能够具有其他实施例,并且能够以多种方式实现并且执行。前述变形形式和修改形式落在本发明的范围内。本文公开和限定的本发明延伸到文中和/或附图中提到或明显的两个或两个以上单独特征的所有可替代组合。所有这些不同的组合构成本发明的多个可替代方面。本文所述的实施例说明了已知用于实现本发明的最佳方式,并且将使本领域技术人员能够利用本发明。其中的用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等。术语“包含”、“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等。此外,权利要求书中的术语“第一”、“第二”和“第三”等仅作为标记使用,不是对其对象的数字限制。而且,虽然本说明书中可使用术语“上端”、“下端”、“左侧”、“右侧”等来描述本发明的不同示例性特征,但是这些术语用于本文中仅出于方便,例如根据附图中所述的示例的方向。

Claims (23)

  1. 一种用于骨科微创手术的接骨组件,其特征在于:所述的接骨组件包括:
    皮外定位板(11),其包括第一板体,所述第一板体的两端对称设置有第一凹槽(111),所述第一板体上设有多个第一通孔(110);
    皮下接骨板(12),其包括第二板体,所述第二板体的两端对称设置有第二凹槽(121),所述第二板体上设有多个第二通孔(120);
    连接定位结构,其连接所述皮外定位板(11)和皮下接骨板(12),并使所述第一板体上的第一凹槽(111)和多个第一通孔(110)分别与所述第二板体上的第二凹槽(121)和多个第二通孔(120)一一对应。
  2. 根据权利要求1所述的用于骨科微创手术的接骨组件,其特征在于:
    所述连接定位结构包括连接杆(2),在所述皮下接骨板(12)的第二板体上和皮外定位板(11)的第一板体上分别设有连接孔(4),两个所述连接孔(4)在皮下接骨板(12)和皮外定位板(11)上相对设置,所述连接杆(2)的两端分别连接于两个连接孔(4),所述皮下接骨板(12)和皮外定位板(11)相互平行,且所述皮下接骨板(12)和皮外定位板(11)的长度方向的中心线在垂直于所述皮外定位板(11)的平面内。
  3. 根据权利要求2所述的用于骨科微创手术的接骨组件,其特征在于:
    所述皮下接骨板(12)上的连接孔(4)位于所述第二本体的中央,所述皮外定位板(11)上的连接孔(4)位于所述第一本体的中央,所述连接杆(2)垂直于所述皮下接骨板(12)。
  4. 根据权利要求2所述的用于骨科微创手术的接骨组件,其特征在于:
    所述皮下接骨板(12)和皮外定位板(11)上的连接孔(4)均为螺孔,所述连接杆(2)的两端设有螺纹,所述连接杆(2)两端的螺纹能与两个连接孔(4)的螺纹相配合。
  5. 根据权利要求4所述的用于骨科微创手术的接骨组件,其特征在于:
    所述连接杆(2)的上端穿出所述皮外定位板(11),并由一螺母(5)紧固。
  6. 根据权利要求2所述的用于骨科微创手术的接骨组件,其特征在于:
    所述皮下接骨板(12)和皮外定位板(11)上的连接孔(4)均为多边形,所述连接杆(2)两端的横截面形状与所述连接孔(4)相匹配。
  7. 根据权利要求2所述的用于骨科微创手术的接骨组件,其特征在于:
    所述连接定位结构还包括推杆(1),所述推杆(1)的前端连接于所述连接杆(2)。
  8. 根据权利要求7所述的用于骨科微创手术的接骨组件,其特征在于:
    所述推杆(1)为长杆,所述推杆(1)的前端设有万向轴(6),所述万向轴(6)连接于所述连接杆(2),所述万向轴(6)设有锁紧结构。
  9. 根据权利要求7所述的用于骨科微创手术的接骨组件,其特征在于:
    所述推杆(1)包括两根平行的横杆(7)和一根竖杆(8),两根所述横杆(7)的前端分别连接于所述连接杆(2),两根所述横杆(7)的后端分别与竖杆(8)的上端和下端相连接。
  10. 根据权利要求9所述的用于骨科微创手术的接骨组件,其特征在于:
    两根所述横杆(7)的前端分别设有弹性夹头(9),所述弹性夹头(9)与所述连接杆(2)夹紧连接。
  11. 根据权利要求10所述的用于骨科微创手术的接骨组件,其特征在于:
    所述弹性夹头(9)包括两个半圆弧形的弹簧片(10),两个所述弹簧片(10)的后端固定连接于所述横杆(7)的前端,两个弹簧片(10)的前端有开口,以通过该开口夹持于所述连接杆(2)。
  12. 根据权利要求2所述的用于骨科微创手术的接骨组件,其特征在于:
    所述连接定位结构还包括夹送推把(20),所述夹送推把(20)可拆卸地连接于皮外定位板(11)或皮下接骨板(12)。
  13. 根据权利要求12所述的用于骨科微创手术的接骨组件,其特征在于:
    所述夹送推把(20)包括两根平行的竖杆(21)和一根连接于两根所述竖杆(21)的横杆(22),两根竖杆(21)上分别设有多个横向的卡销(23),多个卡销(23)沿着所述竖杆(21)的长度方向排列,两根所述竖杆(21)上相对应的卡销(23)能卡接于所述皮外定位板(11)的两侧。
  14. 根据权利要求12所述的用于骨科微创手术的接骨组件,其特征在于:
    所述夹送推把(20)包括两根平行的竖杆(21)和一根横杆(22),两根竖杆(21)的前端分别设有横向的插销(24),两根竖杆(21)的后端与横杆(22)两端相连接,所述皮下接骨板(12)的两侧设有多个横向的插孔(122),多个插孔(122)沿着所述皮下接骨板(12)的长度方向排列,两根竖杆(21)前端的插销(24)能插入所述皮下接骨板(12)两侧的插孔(122)中。
  15. 根据权利要求13或14所述的用于骨科微创手术的接骨组件,其特征在于:
    所述夹送推把(20)的两根平行的竖杆(21)之间连接有弹性件。
  16. 根据权利要求15所述的用于骨科微创手术的接骨组件,其特征在于:
    所述弹性件为拉簧(25)或弹性拉杆(26)。
  17. 根据权利要求1所述的用于骨科微创手术的接骨组件,其特征在于:
    所述连接定位结构包括操作杆(30),所述操作杆(30)为沿着所述皮下接骨板(12)的长度方向放置的长杆,且所述操作杆(30)的杆体与所述皮下接骨板(12)有自下向上的倾斜角度,所述操作杆(30)的下端设有弯折的连接部(31),所述连接部(31)可拆卸地连接于所述皮下接骨板(12),所述操作杆(30)的杆体上设有能与所述体外定位板(11)连接的定位部。
  18. 根据权利要求17所述的用于骨科微创手术的接骨组件,其特征在于:
    所述连接部(31)与所述皮下接骨板(12)之间的连接为插接或螺纹连接。
  19. 根据权利要求17所述的用于骨科微创手术的接骨组件,其特征在于:
    所述操作杆(30)的上端设有把手(32)。
  20. 根据权利要求17所述的用于骨科微创手术的接骨组件,其特征在于:
    所述连接部(31)与所述操作杆(30)通过一万向轴(33)连接,所述万向轴(33)上设有锁紧装置。
  21. 根据权利要求17所述的用于骨科微创手术的接骨组件,其特征在于:
    所述定位部包括多个销轴(34),每个所述销轴(34)垂直贯穿所述操作杆(30)的杆体,多个销轴(34)沿着操作杆(30)长度方向排列,所述体外定位板(11)的两侧边缘分别嵌入在相邻销轴(34)的间隙中。
  22. 根据权利要求17所述的用于骨科微创手术的接骨组件,其特征在于:
    所述定位部包括对称设置于所述操作杆(30)两侧的多个卡槽(35),所述多个卡槽(35)沿着操作杆(30)长度方向排列,所述体外定位板(11)的两侧边缘分别嵌入在卡槽(35)中。
  23. 根据权利要求17所述的用于骨科微创手术的接骨组件,其特征在于:
    所述操作杆(30)的定位部以下的杆体上设有中空部(36)或避让槽(37),所述中空部(36)的最大宽度大于所述皮下接骨板(12)的固定螺钉的直径。
PCT/CN2016/076873 2015-12-07 2016-03-21 用于骨科微创手术的接骨组件 WO2017096730A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201510886876.5A CN105534590B (zh) 2015-12-07 2015-12-07 一种皮外定位板与皮下接骨板的连接和夹送装置
CN201510886228.XA CN105534589B (zh) 2015-12-07 2015-12-07 一种将体外定位板与皮下接骨板连接和置入的推杆
CN201510886876.5 2015-12-07
CN201510887124.0 2015-12-07
CN201510886228.X 2015-12-07
CN201510887124.0A CN105534591B (zh) 2015-12-07 2015-12-07 一种将皮外定位板与皮下接骨板连接和置入的装置

Publications (1)

Publication Number Publication Date
WO2017096730A1 true WO2017096730A1 (zh) 2017-06-15

Family

ID=59012631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076873 WO2017096730A1 (zh) 2015-12-07 2016-03-21 用于骨科微创手术的接骨组件

Country Status (1)

Country Link
WO (1) WO2017096730A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109009393A (zh) * 2018-07-24 2018-12-18 莆田学院附属医院(莆田市第二医院) 一种经皮微创骨折复位器
CN109646105A (zh) * 2019-01-25 2019-04-19 大连医科大学附属第医院 肱骨中远交界部骨折微创手术器具

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101365393A (zh) * 2005-12-22 2009-02-11 圣歌整形外科有限责任公司 药物输送接骨板及一起使用的方法和瞄准装置
CN201453358U (zh) * 2009-07-09 2010-05-12 张英泽 一种自定位微创接骨板
TW201136566A (en) * 2010-04-26 2011-11-01 Cheng-Kung Cheng An assisted positioning device for bone plate
TW201302150A (zh) * 2011-05-18 2013-01-16 Synthes Gmbh 板上的瞄準
CN203017076U (zh) * 2012-08-25 2013-06-26 重庆西南医院 一种lcp钢板导向器
US20140243837A1 (en) * 2013-02-27 2014-08-28 Biomet C.V. Jig with Guide Adapted to Lock Relative to Both of Threaded Holes and Non-Threaded Slots in a Bone Plate
CN204744374U (zh) * 2015-06-26 2015-11-11 陈伟 一种骨盆骨折微创髓内固定装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101365393A (zh) * 2005-12-22 2009-02-11 圣歌整形外科有限责任公司 药物输送接骨板及一起使用的方法和瞄准装置
CN201453358U (zh) * 2009-07-09 2010-05-12 张英泽 一种自定位微创接骨板
TW201136566A (en) * 2010-04-26 2011-11-01 Cheng-Kung Cheng An assisted positioning device for bone plate
TW201302150A (zh) * 2011-05-18 2013-01-16 Synthes Gmbh 板上的瞄準
CN203017076U (zh) * 2012-08-25 2013-06-26 重庆西南医院 一种lcp钢板导向器
US20140243837A1 (en) * 2013-02-27 2014-08-28 Biomet C.V. Jig with Guide Adapted to Lock Relative to Both of Threaded Holes and Non-Threaded Slots in a Bone Plate
CN204744374U (zh) * 2015-06-26 2015-11-11 陈伟 一种骨盆骨折微创髓内固定装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109009393A (zh) * 2018-07-24 2018-12-18 莆田学院附属医院(莆田市第二医院) 一种经皮微创骨折复位器
CN109646105A (zh) * 2019-01-25 2019-04-19 大连医科大学附属第医院 肱骨中远交界部骨折微创手术器具

Similar Documents

Publication Publication Date Title
US20220125492A1 (en) Implant positioning devices and methods
US8623020B2 (en) Vertebral staples and insertion tools
JP5108060B2 (ja) 骨構造体の安定化用器具及び方法
KR101987004B1 (ko) 골 수복 시스템, 키트 및 방법
EP2870935A2 (en) Drill guides and inserters for bone plates having hook members
EP2756814A2 (en) Distal tibia plating system
US8343152B2 (en) Fixed angle dual prong pin fixation system
KR20070042146A (ko) 골수내 고정 조립체 및 이것을 장착하기 위한 장치 및 방법
US20140088654A1 (en) Bone Splint
GB2477086A (en) Distal radius fixation system
WO2017096730A1 (zh) 用于骨科微创手术的接骨组件
CN209499881U (zh) 一种骨科克氏针导向装置
CN201135492Y (zh) 股骨髓内钉进针瞄准器
US20230088523A1 (en) Drill guide for orthopedic device
CN108236493B (zh) 脊柱侧弯钉棒矫正支架系统
KR20150143130A (ko) 내고정술이 가능한 정복 수술용 고정핀
CN105534589B (zh) 一种将体外定位板与皮下接骨板连接和置入的推杆
CN218943489U (zh) 骨折复位导向器
CN205181466U (zh) 一种将皮外定位板与皮下接骨板连接和置入的装置
CN219661868U (zh) 一种骨折固定装置
CN213697164U (zh) 一种股骨颈空心钉经皮置钉导向装置
CN105534591B (zh) 一种将皮外定位板与皮下接骨板连接和置入的装置
KR20180134861A (ko) 추간 임플란트를 동적으로 안정화 및 이를 위치시키기 위한 도구
CN112244981A (zh) 一种骨折固定系统
RU41409U1 (ru) Устройство для репозиции и фиксации переломов вертлужной впадины

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16871936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16871936

Country of ref document: EP

Kind code of ref document: A1