WO2017096729A1 - 一种石灰质飞机越界捕获材料及其制备工艺 - Google Patents

一种石灰质飞机越界捕获材料及其制备工艺 Download PDF

Info

Publication number
WO2017096729A1
WO2017096729A1 PCT/CN2016/076573 CN2016076573W WO2017096729A1 WO 2017096729 A1 WO2017096729 A1 WO 2017096729A1 CN 2016076573 W CN2016076573 W CN 2016076573W WO 2017096729 A1 WO2017096729 A1 WO 2017096729A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcareous
capture material
aircraft
preparing
calcium carbonate
Prior art date
Application number
PCT/CN2016/076573
Other languages
English (en)
French (fr)
Inventor
朱晓燕
Original Assignee
朱晓燕
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朱晓燕 filed Critical 朱晓燕
Publication of WO2017096729A1 publication Critical patent/WO2017096729A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/10Lime cements or magnesium oxide cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/48Foam stabilisers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00982Uses not provided for elsewhere in C04B2111/00 as construction elements for space vehicles or aeroplanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/20Mortars, concrete or artificial stone characterised by specific physical values for the density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength

Definitions

  • the invention relates to the field of novel materials, in particular to a calcareous aircraft transboundary capture material and a preparation process thereof.
  • the aircraft is most vulnerable to dangers during take-off and landing, and rushing out of the runway is one of the most serious hazards in aviation accidents.
  • the usual method is to prevent the aircraft from rushing out of the runway safety zone and causing serious consequences and ensuring passenger safety and comfort.
  • Active capture uses aircraft deceleration and hook-and-lock systems. In general, active capture is primarily suitable for military aircraft. For civil aircraft with large volume, passive capture is often used.
  • EAS material blocking system
  • the EMAS consists mainly of tens of centimeters of thickness obstruction beds laid on the runway extension.
  • the main material of the arresting bed is a cement-based foaming material (foam concrete) with specific mechanical properties.
  • ICAO International Civil Aviation Convention Annex 14 "Airport” Volume I "Airport Design and Operation” section 3.5 .5, becoming an internationally equivalent safety measure.
  • the characteristic material blocking system can provide the same safety guarantee as the standard runway end safety zone, saving the land area used by the airport for the runway end safety zone, and is conducive to enhancing the airport support capability of our country.
  • the characteristic material is an excellent property of energy release, heat insulation, noise reduction, etc., and can be used as a vehicle damping energy absorbing material and an arresting capture material.
  • the technical problem to be solved by the present invention is to provide a limestone aircraft crossing the boundary capture material with good strength stability, no collapse and no delamination.
  • the present invention also provides a process for preparing a limestone aircraft crossing the capture material.
  • the technical solution adopted by the present invention to solve the above problems is: a calcareous aircraft crossing the boundary capture material, the capture material is a calcium carbonate block, and a closed cell honeycomb structure is formed inside the calcium carbonate block.
  • the existing aircraft cross-border capture materials mainly use cement-based foaming materials (ie foam concrete).
  • the foam concrete has a long production cycle, easy to collapse, and stratification.
  • the foaming concrete has a tendency to gradually weaken in use strength, resulting in foam.
  • the strength of concrete in the middle and late use is small, and the strength stability of foam concrete is poor during use.
  • the lightweight porous material uniformly introduces an appropriate amount of bubbles in a material through a certain process to form a porous material containing a large amount of pores therein. It has excellent performances such as energy release, heat insulation, noise reduction, etc., and can be used as a vehicle shock absorption energy absorbing material and an arresting capture material.
  • the calcium carbonate block body of the present invention specifically refers to a block material based on calcium carbonate. having a density in the range of 150 ⁇ 300kg / m 3, the crush strength is 0.20 ⁇ 0.45Mpa, and arresting properties of the material captured and intensity related to its density, the lower the density, the lower the intensity, the smaller the crush resistance; the higher the density The higher the strength, the greater the crush resistance; according to the strength analysis of the existing non-collapsed and non-layered materials, the existing none
  • the collapse strength of the trapped and non-layered material is in the range of 0.20-0.45 Mpa, and the apparent density of the capture material of the present invention is high, so that the capture material of the present invention has no problem of collapse and delamination, and further the present invention
  • the strength of the capturing material is high, and at the same time, the inside of the calcium carbonate block of the present invention is formed with a closed cell honeycomb structure, so that the calcium carbonate block is light in weight, forming a calcium carbonate-based lightweight
  • the calcium carbonate block is mixed and matured by the quicklime powder, the foam stabilizer and the water, and then the blowing agent is introduced into the bleed air, and then formed by pressurized carbonization.
  • the calcium carbonate block of the invention adopts quicklime powder, common foam stabilizer and foaming agent, and has low cost, easy availability of raw materials, and is convenient for scale expansion.
  • a preparation process for a calcareous aircraft crossing the capture material comprises the following steps:
  • slurry preparation the quicklime powder, the foam stabilizer and the water are mixed into the mold in proportion, and the mixed slurry is subjected to the ripening reaction;
  • step B bleed air: adding a foaming agent to the slurry prepared in step A), and stirring rapidly;
  • pressurized carbonization after the ripening reaction is carried out for 2 to 8 hours, the mold is removed for pressurized carbonization;
  • the maturation reaction of the present invention specifically refers to the fact that the quicklime powder is mixed with water.
  • the process of chemically reacting mature lime (Ca(OH) 2 ), the reaction equation is: CaO+H 2 O Ca(OH) 2 , and the pressurized carbonization specifically refers to a certain concentration of carbon dioxide gas (CO) 2 )
  • the gas pressure in the space is greater than the external pressure by a certain technical means, thereby promoting the carbonization reaction between the carbon dioxide gas and the slaked lime to form calcium carbonate
  • the main steps of the invention are: mixing the quicklime powder, the foam stabilizer and the water which are ground to a certain fineness into a slurry, introducing a gas or a bubble into the slurry to form a gas-containing slurry having a certain fluidity.
  • the gas-containing slurry is aged to form a light solid wet precursor material having a certain strength. Since the Ca(OH) 2 formed after the aging is in the form of a gel, the pore wall can be further closed to form a closed cell structure. After the demold material is demolded and placed in a certain pressure and high concentration of carbon dioxide for pressurized carbonization, finally a calcium carbonate-based lightweight foam material is formed, and the material is removed by residual moisture to form a calcium carbonate-based fly.
  • the raw lime is mainly used to provide a raw material for hydration to form a gel.
  • the foaming agent mainly makes the above-mentioned quicklime slurry lighter
  • the foam stabilizer is mainly a chemical material capable of improving bubble stability and prolonging foam collapse, and is used for effectively fixing the air bubbles inside the slurry.
  • the present invention promotes the carbon dioxide gas to smoothly carry out carbonization reaction with the slaked lime inside the calcium hydroxide gel block by setting a process step of supercharging carbonization, thereby uniformly generating calcium carbonate, and the uniformity of the calcium carbonate is favorable. Improve the uniformity of the strength of the material, thus increasing the strength stability of the captured material.
  • the calcareous porous capture material prepared by the process of the present invention has good strength stability of the capture material due to the generated calcium carbonate and the uniformity of the pores, and the internal closed cell honeycomb structure, and the capture prepared by the process of the present invention
  • the material density ranges from 150 to 300 kg/m 3 and the crush strength is from 0.20 to 0.45 Mpa, which has the advantages of no collapse and no delamination.
  • the quicklime is quicklime formed by calcining limestone at a high temperature of 1000 to 1300 ° C, and then formed into a powder after grinding.
  • the quicklime powder, the foam stabilizer and the water are rapidly stirred uniformly in a vertical mixer at a speed of 200 to 800 rpm.
  • the weight ratio of the quicklime powder, the foam stabilizer, the water and the foaming agent is from 112 to 100:0 to 5:33 to 112:1 to 10.
  • the slurry after mixing the raw materials has a certain fluidity and at the same time has a certain consistency, and the bubbles can maintain a relatively stable state in which the bubbles do not float, and the main function of the foam stabilizer is to reduce The surface tension of the bubble forms a hydrophilic, lipophilic water film to ensure the stability of the bubble.
  • the foam stabilizer is at least one of calcium stearate, silicone amide, silicone polyether emulsion, dodecyl dimethyl amine oxide, and alkyl alcohol amide.
  • the foaming agent is an industrial hydrogen peroxide or foam concrete foaming agent.
  • the concentration of industrial hydrogen peroxide is 20 ⁇ 35%.
  • the industrial hydrogen peroxide can react directly with the quicklime to release oxygen, thereby generating bubbles through the chemical reaction inside the slurry; the foam concrete foaming agent physically passes the foaming agent through high-speed stirring first.
  • Introducing a gas such as air into a wet foam by introducing the foam into the slurry of quicklime-water, gradually condensing the moisture absorption during the ripening process of the quicklime to fix the shape of the bubble, and the hydrogen peroxide is suitable for rapid stirring, and the block is fast.
  • the form of the foamed concrete foaming agent is suitable for continuous casting.
  • the period of pressurized carbonization is one day.
  • the time of bleed air agitation is 5 to 200 seconds. If the stirring time is too long, the foam will be broken. If the time is too short, the foam distribution will be uneven, and the stirring time will be set to 5 to 200 seconds so that the foam is uniform and does not break.
  • the calcareous capture material of the present invention is a porous material having a large apparent density, a large crush strength, and a closed cell honeycomb structure, and has the advantages of good strength stability, no collapse, and no delamination.
  • the process of the present invention adopts a pressurized carbonization process, which can increase the permeability of carbon dioxide, and can also rapidly carbonize the interior of the matured light solid, thereby making the whole material fast and uniform.
  • the invention has low cost, easy availability of raw materials, convenient scale expansion, simple process, and stable foaming of the slurry after pouring.
  • the calcareous aircraft prepared by the invention has an environment-friendly and cross-border capture material, and the replaced waste material can be directly crushed and mixed with the soil as a calcium-toning material.
  • Figure 1 is a flow chart of the process of the present invention
  • Figure 2 is a graph showing the collapse of the capture material of the present invention.
  • Figure 3 is a diagram of a closed cell honeycomb structure of the capture material of the present invention.
  • a preparation process for a calcareous aircraft crossing the capture material comprises the following steps:
  • slurry preparation 112 parts of quicklime powder, 5 parts of calcium stearate and 50 parts of water are mixed into the mold, and the mixed slurry is subjected to ripening reaction, and then added to a vertical mixer at a speed of 200 rpm.
  • the quicklime is quicklime formed by calcination of powder limestone at a high temperature of 1000 ° C, and then formed into a powder after grinding;
  • step B bleed air: adding 7 parts of hydrogen peroxide to the slurry prepared in step A), stirring rapidly for 8 seconds;
  • pressurized carbonization after the ripening reaction is carried out for 2 hours, the mold is removed for pressurized carbonization, and the carbonization cycle is 1 day;
  • dehumidification drying the calcium carbonate block after the step D), after the moisture content is less than 10% Packing.
  • the capture material of the present embodiment has an apparent density of 180 kg/m 3 and a crush strength of 0.22 MPa.
  • the calcareous aircraft crossing boundary capture material prepared by the above process is a calcium carbonate block, and a closed cell honeycomb structure is formed inside the calcium carbonate block.
  • the calcium carbonate block was observed by an electron microscope and was stable to the crush strength.
  • a preparation process for a calcareous aircraft crossing the capture material comprises the following steps:
  • slurry preparation 105 parts of quicklime powder, 3 parts of dodecyl dimethylamine oxide and 46 parts of water are mixed into the mold, the mixed slurry is matured, and then added to the vertical mixer to 400 Quickly stir evenly at a speed of rpm, which is a quicklime formed by calcining limestone at a high temperature of 1300 ° C, and then formed into a powder after grinding;
  • step B) bleed air: add 2 parts of foam concrete foaming agent to the slurry prepared in step A), add 4 parts of water to dilute, use a foaming agent to form a uniform foam, and quickly introduce the foam into the slurry, and stir quickly. 110 seconds until the foam and slurry are evenly mixed;
  • pressurized carbonization after the ripening reaction is carried out for 8 hours, the mold is removed for pressurized carbonization, and the carbonization period is 1 day;
  • the capture material of the present embodiment has an apparent density of 200 kg/m 3 and a crush strength of 0.28 MPa.
  • the calcareous aircraft crossing boundary capture material prepared by the above process is a calcium carbonate block, and a closed cell honeycomb structure is formed inside the calcium carbonate block.
  • the calcium carbonate block was observed by an electron microscope and was stable to the crush strength.
  • a preparation process for a calcareous aircraft crossing the capture material comprises the following steps:
  • slurry preparation 112 parts of quicklime powder, 3 parts of silicone amide and 50 parts of water are mixed into the mold, and the mixed slurry is subjected to aging reaction, and then added to a vertical mixer at a speed of 800 rpm.
  • the quicklime is a quicklime formed by calcining limestone at a high temperature of 1000 ° C, and then formed into a powder after grinding;
  • step B) bleed air: add 1 part of the foam concrete foaming agent to the slurry prepared in step A), add 3 parts of water to dilute, use a foaming agent to form a uniform foam, and quickly introduce the foam into the slurry, and stir quickly. 200 seconds until the foam and slurry are mixed evenly;
  • pressurized carbonization after the ripening reaction is carried out for 6 hours, the mold is removed for pressurized carbonization, and the carbonization cycle is 1 day;
  • the capture material of the present embodiment has an apparent density of 250 kg/m 3 and a crush strength of 0.31 MPa.
  • the calcareous aircraft crossing boundary capture material prepared by the above process is a calcium carbonate block, and a closed cell honeycomb structure is formed inside the calcium carbonate block.
  • the calcium carbonate block was observed by an electron microscope and was stable to the crush strength.
  • a preparation process for a calcareous aircraft crossing the capture material comprises the following steps:
  • slurry preparation 100 parts of quicklime powder, 33 parts of water are mixed into the mold, the mixed slurry is subjected to aging reaction, and then added to a vertical mixer, and rapidly stirred at a speed of 600 rpm, the said Quicklime is quicklime formed by calcination of powdered limestone at a high temperature of 1200 ° C, and then formed into a powder after grinding;
  • step B bleed air: 10 parts of hydrogen peroxide is added to the slurry prepared in step A), and stirred rapidly for 10 seconds;
  • pressurized carbonization after the ripening reaction is carried out for 2 hours, the mold is removed for pressurized carbonization, and the carbonization cycle is 1 day;
  • the capture material of the present embodiment has an apparent density of 150 kg/m 3 and a crush strength of 0.20 MPa.
  • the calcareous aircraft crossing boundary capture material prepared by the above process is a calcium carbonate block, and a closed cell honeycomb structure is formed inside the calcium carbonate block.
  • the calcium carbonate block was observed by an electron microscope and was stable to the crush strength.
  • a preparation process for a calcareous aircraft crossing the capture material comprises the following steps:
  • slurry preparation 110 parts of quicklime powder, 5 parts of alkyl alcohol amide and 112 parts of water are mixed into the mold, and the mixed slurry is subjected to ripening reaction, and then added to a vertical mixer at a speed of 400 rpm.
  • the quicklime is quicklime formed by calcination of powder limestone at a high temperature of 1000 ° C, and then formed into a powder after grinding;
  • step B bleed air: 10 parts of hydrogen peroxide is added to the slurry prepared in step A), and stirred rapidly for 30 seconds;
  • pressurized carbonization after the ripening reaction is carried out for 4 hours, the mold is removed for pressurized carbonization, and the carbonization cycle is 1 day;
  • the capture material of the present embodiment has an apparent density of 300 kg/m 3 and a crush strength of 0.45 MPa.
  • the calcareous aircraft crossing boundary capture material prepared by the above process is a calcium carbonate block, and a closed cell honeycomb structure is formed inside the calcium carbonate block.
  • the calcium carbonate block was observed by an electron microscope and was stable to the crush strength.
  • the present invention can be preferably implemented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

一种石灰质飞机越界捕获材料及其制备工艺。该石灰质飞机越界捕获材料由生石灰粉、稳泡剂、水和发泡剂按比例混合,混合后通过多次成分转化及还原而制得。该石灰质飞机越界捕获材料的制备工艺是:将生石灰粉、稳泡剂、水在高速搅拌机中快速搅拌成均匀的料浆;快速引入气体,并搅拌成均匀的轻质料浆;经熟化工艺和增压碳化工艺,使生石灰转化为碳酸钙轻质块状固体。该工艺制备的捕获材料溃缩强度好、表观密度高。

Description

一种石灰质飞机越界捕获材料及其制备工艺 技术领域
本发明涉及新型材料领域,具体地,涉及一种石灰质飞机越界捕获材料及其制备工艺。
背景技术
飞机在起飞和降落时最容易出现危险,而冲出跑道是航空事故中危害程度较大的问题之一,为防止飞机冲出跑道安全区造成严重后果以及保证乘客的安全舒适,通常采取的方法有主动式和被动式捕获方式。其中主动式捕获采取飞机减速伞和钩锁系统,一般来说,主动式捕获主要适用于军用飞机。对于体量大的民用飞机,常采用被动式捕获方式,世界上目前用的最多是在跑道末端安全区外安装特性材料拦阻系统(EMAS)。
EMAS主要由铺设在跑道延长线上的数十厘米的厚度拦阻床构成。拦阻床的主材料为具有特定力学性能的水泥基发泡材料(泡沫混凝土),失速越界飞机在冲出跑道的情况下进入拦阻床时,其中的泡沫混凝土在机轮的碾压下破碎,以此吸收飞机的动能,在保证飞机和机上人员安全的前提下,让飞机逐渐减速并最终停止在拦阻床内。
2012年,国际民航组织将在“国际标准与建议措施”中提出提高跑道端安全区长度的标准,以减少因为冲出跑道造成的重大飞行安全事故。但因为地理或者别的环境因素制约,很多机场难以满足新的跑道端安全区长度要求,EMAS已写入ICAO《国际民用航空公约》附件14《机场》第一卷《机场设计和运行》第3.5.5条,成为国际通行的等效安全措施。
我国将要求在民用机场和支线机场的跑道末端安全区外安装特性材料拦阻系统。特性材料拦阻系统能够提供与标准跑道末端安全区相同的安全保障,节省机场用于跑道末端安全区的土地面积,有利于增强我国机场保障能力。特性材料是一种具有能量缓释、隔热、降噪等优良性能,可作为交通工具减震吸能材料和拦阻捕获材料。
发明内容
本发明所要解决的技术问题是提供一种强度稳定性好、无塌陷、无分层的石灰质飞机越界捕获材料。
此外,本发明还提供一种石灰质飞机越界捕获材料的制备工艺。
本发明解决上述问题所采用的技术方案是:一种石灰质飞机越界捕获材料,捕获材料为碳酸钙块体,碳酸钙块体的内部形成有闭孔蜂窝结构。
现有的飞机越界捕获材料主要采用水泥基发泡材料(即泡沫混凝土),泡沫混凝土存在生产过程周期长,易于塌陷,分层现象的问题,泡沫混凝土在使用强度逐渐减弱的趋势明 显,导致泡沫混凝土在使用中后期的强度小,进而泡沫混凝土在使用过程的强度稳定性差,轻质多孔材料是在材料中通过一定的工艺均匀的引入适量的气泡,形成一种内部含有大量气孔的多孔材料,具有能量缓释、隔热、降噪等优良性能,可作为交通工具减震吸能材料和拦阻捕获材料,本发明所述碳酸钙块体具体是指一种以碳酸钙为基体的块体材料,其密度范围为150~300kg/m3,溃缩强度为0.20~0.45Mpa,而捕获材料的拦阻性能与其密度和强度有关,密度越低,强度越低,压溃阻力越小;密度越高,强度越高,压溃阻力越大;据现有制备的无塌陷、无分层材料的强度分析,现有的无塌陷、无分层材料的溃缩强度在0.20~0.45Mpa范围内,且本发明的捕获材料的表观密度高,因而本发明所述的捕获材料无塌陷、无分层的问题,进而本发明所述捕获材料的强度高,同时,本发明所述碳酸钙块体的内部形成有闭孔蜂窝结构,使得碳酸钙块体的质量轻,形成碳酸钙基轻质泡沫材料,由于碳酸钙材料是自然界长期存在的石灰石是同一组成,在大气环境下,不会再发生任何反应,因此,有利于提高捕获材料在长期使用过程中的强度稳定性。
进一步地,碳酸钙块体由生石灰粉、稳泡剂和水混合熟化后再加入发泡剂引气,然后经过增压碳化生成。
本发明所述碳酸钙块体采用生石灰粉,常见稳泡剂和发泡剂,成本低、原材料易得,便于规模扩大化。
一种石灰质飞机越界捕获材料的制备工艺,包括以下步骤:
A)、料浆制备:将生石灰粉、稳泡剂和水按比例混合入模具,混合后的料浆进行熟化反应;
B)、引气:向经过步骤A)制备的料浆中加入发泡剂,快速搅拌;
C)、增压碳化:熟化反应进行2~8小时后,拆模进行增压碳化;
D、切割:将经步骤C)碳化后的大型块体在切割机上要求进行切割;
E)、排湿:将经步骤D)切割后的碳酸钙块体进行干燥处理。
本发明所述熟化反应具体是指生石灰粉在与水混合情况下,发
生化学反应变成熟石灰(Ca(OH)2)的过程,反应方程式为:CaO+H2O=Ca(OH)2,所述增压碳化具体是指在一定的具有高浓度二氧化碳气体(CO2)空间内,通过一定技术手段使空间内的气体压力大于外界压力,从而促进二氧化碳气体与熟石灰发生碳化反应生成碳酸钙,反应方程式为:Ca(OH)2+CO2=CaCO3↓+H2O,本发明的主要步骤为:将磨到一定细度的生石灰粉、稳泡剂和水一起调成料浆,在料浆中引入气体或气泡,形成具有一定流动性的含气料浆,含气料浆经过熟化生成具有一定的强度的轻质固态湿前驱体材料,由于熟化后生 成的Ca(OH)2以凝胶状存在,所以能够将气孔孔壁进一步封闭,形成闭孔结构,将此前驱体材料脱模后置于有一定压力、高浓度二氧化碳的环境中进行增压碳化,最后生成碳酸钙基轻质泡沫材料,该材料经过残余水分排除,形成碳酸钙基飞机越界捕获材料,上述原材料中生石灰主要用来提供水化形成胶凝体的原材料,当熟化后,形成致密连续的氢氧化钙凝胶并产生足够的初始强度,经过增压碳化后,形成强度稳定的轻质固化体;发泡剂主要是使上述生石灰料浆轻量化;稳泡剂主要为能够提高气泡稳定性,延长泡沫破灭的化工材料,用来使料浆内部的气泡能有效的固定下来并形成气孔状孔隙;由于熟化后形成氢氧化钙凝胶的块体较大,在没有足够压力的情况下,气体很难和内部的熟石灰反应,因而会导致生成材料的强度十分不均匀,导致材料性能不稳定,本发明通过设置增压碳化的工艺步骤,促进二氧化碳气体顺利进行到氢氧化钙凝胶块体内部与熟石灰发生碳化反应,进而均匀生成碳酸钙,生成碳酸钙的均匀性有利于提高材料强度的均匀性,因而使得捕获材料的强度稳定性增加,通过本发明所述工艺制备的石灰质多孔捕获材料由于生成的碳酸钙以及孔隙的均匀性,以及内部的闭孔的蜂窝结构,使得捕获材料的强度稳定性好,且通过本发明所述工艺制备的捕获材料密度范围为150~300kg/m3,溃缩强度为0.20~0.45Mpa,具有无塌陷、无分层的优点。
进一步地,生石灰为粉石灰石经过1000~1300℃高温煅烧形成的生石灰,再经过粉磨后形成的粉状物。
有利于生石灰的熟化反应的均匀性。
进一步地,生石灰粉、稳泡剂和水按比例在立式搅拌机中以200~800转/min的速度快速搅拌均匀。
进一步地,生石灰粉、稳泡剂、水和发泡剂的重量比为112~100:0~5:33~112:1~10。
在上述比例范围内既能使原料混合后的浆体具有一定的流动度,同时又具有一定的稠度,能够使气泡在浆体中保持不上浮的相对稳定状态,而稳泡剂主要作用是降低气泡的表面张力,形成一面亲水、一面亲油的水膜,保证气泡的稳定性。
进一步地,稳泡剂为硬脂酸钙、硅酮酰胺、硅树脂聚醚乳液、十二烷基二甲基氧化胺、烷基醇酰胺中的至少一种。
进一步地,发泡剂为工业双氧水或泡沫混凝土发泡剂。
[根据细则91更正 13.05.2016] 
采用工业双氧水的浓度为20~35%,工业双氧水能够与生石灰直接反应放出氧气,从而在料浆内部通过化学反应生成气泡;泡沫混凝土发泡剂是通过物理方式先将发泡剂通过高速搅拌,将空气等气体引入形成湿态泡沫,通过将该泡沫引入生石灰-水的料浆中,利用生石灰熟化过程中逐渐将水分吸收变稠从而将气泡的形态固定下来,双氧水适合快速搅拌,单块快速成型,泡沫混凝土发泡剂的方式适合连续浇注成型。
进一步地,增压碳化的周期为一天。
进一步地,引气搅拌的时间为5~200秒。搅拌时间如果太长会将泡沫破坏,时间太短则泡沫分布不均匀,将搅拌时间设置为5~200秒使得泡沫均匀且不会破坏。
综上,本发明的有益效果是:
1、本发明的石灰质捕获材料为一种表观密度大、溃缩强度大,且内部为闭孔蜂窝结构的多孔材料,具有强度稳定性好,无塌陷、无分层的优点。
2、本发明的的工艺采用了增压碳化工艺,能够增加二氧化碳的渗透能力,使熟化后的轻质固体内部也能够快速碳化,从而使整块材料快速均匀一致。
3、本发明的成本低、原材料易得,便于规模扩大化,且工艺简单,浇注后料浆发泡稳定。
4、本发明所制备的石灰质飞机越界捕获材料环境友好,更换后的废料可以直接粉碎后与土壤混合,作为钙质调和材料。
附图说明
图1是本发明的工艺的流程图;
图2是本发明捕获材料的溃缩曲线图;
图3是本发明捕获材料的闭孔蜂窝结构图。
具体实施方式
下面结合实施例及附图,对发明作进一步地的详细说明,但本发明的实施方式不限于此。
实施例1:
如图1所示,一种石灰质飞机越界捕获材料的制备工艺,包括以下步骤:
A)、料浆制备:将112份生石灰粉、5份硬脂酸钙和50份水混合入模具,混合后的料浆进行熟化反应,然后加入立式搅拌机中,以200转/min的速度下快速搅拌均匀,所述生石灰为粉石灰石经过1000℃高温煅烧形成的生石灰,再经过粉磨后形成的粉状物;
B)、引气:向经过步骤A)制备的料浆中加入7份双氧水,快速搅拌8秒;
C)、增压碳化:熟化反应进行2小时后,拆模进行增压碳化,碳化周期为1天;
D、切割:将经步骤C)碳化后的大型块体在切割机上要求进行切割;
E)、排湿:将经步骤D)切割后的碳酸钙块体进行干燥处理,待含湿量小于10%以后 进行包装。
本实施例所述捕获材料的表观密度为180kg/m3,溃缩强度为0.22Mpa。
如图2、图3所示,通过上述工艺制备的石灰质飞机越界捕获材料为碳酸钙块体,碳酸钙块体的内部形成有闭孔蜂窝结构。对碳酸钙块体采用电子显微镜进行观察,并且对溃缩强度性能稳定。
实施例2:
如图1所示,一种石灰质飞机越界捕获材料的制备工艺,包括以下步骤:
A)、料浆制备:将105份生石灰粉、3份十二烷基二甲基氧化胺和46份水混合入模具,混合后的料浆进行熟化反应,然后加入立式搅拌机中,以400转/min的速度下快速搅拌均匀,所述生石灰为粉石灰石经过1300℃高温煅烧形成的生石灰,再经过粉磨后形成的粉状物;
B)、引气:向经过步骤A)制备的料浆中加入2份泡沫混凝土发泡剂加水4份稀释,用发泡剂发成均匀的泡沫,并将泡沫快速引入料浆,并快速搅拌110秒至泡沫和料浆均匀混合;
C)、增压碳化:熟化反应进行8小时后,拆模进行增压碳化,碳化周期为1天;
D、切割:将经步骤C)碳化后的大型块体在切割机上要求进行切割;
E)、排湿:将经步骤D)切割后的碳酸钙块体进行干燥处理,待含湿量小于10%以后进行包装。
本实施例所述捕获材料的表观密度为200kg/m3,溃缩强度为0.28Mpa。
如图2、图3所示,通过上述工艺制备的石灰质飞机越界捕获材料为碳酸钙块体,碳酸钙块体的内部形成有闭孔蜂窝结构。对碳酸钙块体采用电子显微镜进行观察,并且对溃缩强度性能稳定。
实施例3:
如图1所示,一种石灰质飞机越界捕获材料的制备工艺,包括以下步骤:
A)、料浆制备:将112份生石灰粉、3份硅酮酰胺和50份水混合入模具,混合后的料浆进行熟化反应,然后加入立式搅拌机中,以800转/min的速度下快速搅拌均匀,所述生石灰为粉石灰石经过1000℃高温煅烧形成的生石灰,再经过粉磨后形成的粉状物;
B)、引气:向经过步骤A)制备的料浆中加入1份泡沫混凝土发泡剂加水3份稀释,用发泡剂发成均匀的泡沫,并将泡沫快速引入料浆,并快速搅拌200秒至泡沫和料浆均匀混合;
C)、增压碳化:熟化反应进行6小时后,拆模进行增压碳化,碳化周期为1天;
D、切割:将经步骤C)碳化后的大型块体在切割机上要求进行切割;
E)、排湿:将经步骤D)切割后的碳酸钙块体进行干燥处理,待含湿量小于10%以后进行包装。
本实施例所述捕获材料的表观密度为250kg/m3,溃缩强度为0.31Mpa。
如图2、图3所示,通过上述工艺制备的石灰质飞机越界捕获材料为碳酸钙块体,碳酸钙块体的内部形成有闭孔蜂窝结构。对碳酸钙块体采用电子显微镜进行观察,并且对溃缩强度性能稳定。
实施例4:
如图1所示,一种石灰质飞机越界捕获材料的制备工艺,包括以下步骤:
A)、料浆制备:将100份生石灰粉、33份水混合入模具,混合后的料浆进行熟化反应,然后加入立式搅拌机中,以600转/min的速度下快速搅拌均匀,所述生石灰为粉石灰石经过1200℃高温煅烧形成的生石灰,再经过粉磨后形成的粉状物;
B)、引气:向经过步骤A)制备的料浆中加入10份双氧水,快速搅拌10秒;
C)、增压碳化:熟化反应进行2小时后,拆模进行增压碳化,碳化周期为1天;
D、切割:将经步骤C)碳化后的大型块体在切割机上要求进行切割;
E)、排湿:将经步骤D)切割后的碳酸钙块体进行干燥处理,待含湿量小于10%以后进行包装。
本实施例所述捕获材料的表观密度为150kg/m3,溃缩强度为0.20Mpa。
如图2、图3所示,通过上述工艺制备的石灰质飞机越界捕获材料为碳酸钙块体,碳酸钙块体的内部形成有闭孔蜂窝结构。对碳酸钙块体采用电子显微镜进行观察,并且对溃缩强度性能稳定。
实施例5:
如图1所示,一种石灰质飞机越界捕获材料的制备工艺,包括以下步骤:
A)、料浆制备:将110份生石灰粉、5份烷基醇酰胺和112份水混合入模具,混合后的料浆进行熟化反应,然后加入立式搅拌机中,以400转/min的速度下快速搅拌均匀,所述生石灰为粉石灰石经过1000℃高温煅烧形成的生石灰,再经过粉磨后形成的粉状物;
B)、引气:向经过步骤A)制备的料浆中加入10份双氧水,快速搅拌30秒;
C)、增压碳化:熟化反应进行4小时后,拆模进行增压碳化,碳化周期为1天;
D、切割:将经步骤C)碳化后的大型块体在切割机上要求进行切割;
E)、排湿:将经步骤D)切割后的碳酸钙块体进行干燥处理,待含湿量小于10%以后进行包装。
本实施例所述捕获材料的表观密度为300kg/m3,溃缩强度为0.45Mpa。
如图2、图3所示,通过上述工艺制备的石灰质飞机越界捕获材料为碳酸钙块体,碳酸钙块体的内部形成有闭孔蜂窝结构。对碳酸钙块体采用电子显微镜进行观察,并且对溃缩强度性能稳定。
如上所述,可较好的实现本发明。

Claims (10)

  1. 一种石灰质飞机越界捕获材料,其特征在于,捕获材料为碳酸钙块体,碳酸钙块体的内部形成有闭孔蜂窝结构。
  2. 根据权利要求1所述的一种石灰质飞机越界捕获材料,其特征在于,所述碳酸钙块体由生石灰粉、稳泡剂和水混合熟化后再加入发泡剂引气,然后经过增压碳化生成。
  3. 一种如权利要求1或2所述石灰质飞机越界捕获材料的制备工艺,其特征在于,包括以下步骤:
    A)、料浆制备:将生石灰粉、稳泡剂和水按比例混合入模具,混合后的料浆进行熟化反应;
    B)、引气:向经过步骤A)制备的料浆中加入发泡剂,快速搅拌;
    C)、增压碳化:熟化反应进行2~8小时后,拆模进行增压碳化;
    D、切割:将经步骤C)碳化后的大型块体在切割机上要求进行切割;
    E)、排湿:将经步骤D)切割后的碳酸钙块体进行干燥处理。
  4. 根据权利要求3所述的一种石灰质飞机越界捕获材料的制备工艺,其特征在于,所述生石灰为粉石灰石经过1000~1300℃高温煅烧形成的生石灰,再经过粉磨后形成的粉状物。
  5. 根据权利要求3所述的一种石灰质飞机越界捕获材料的制备工艺,其特征在于,所述生石灰粉、稳泡剂和水按比例在立式搅拌机中以200~800转/min的速度快速搅拌均匀。
  6. 根据权利要求3所述的一种石灰质飞机越界捕获材料的制备工艺,其特征在于,所述生石灰粉、稳泡剂、水和发泡剂的重量比为112~100:0~5:33~112:1~10。
  7. 根据权利要求3所述的一种石灰质飞机越界捕获材料的制备工艺,其特征在于,所述稳泡剂为硬脂酸钙、硅酮酰胺、硅树脂聚醚乳液、十二烷基二甲基氧化胺、烷基醇酰胺中的至少一种。
  8. 根据权利要求3所述的一种石灰质飞机越界捕获材料的制备工艺,其特征在于,所述发泡剂为工业双氧水或泡沫混凝土发泡剂。
  9. 根据权利要求3所述的一种石灰质飞机越界捕获材料的制备工艺,其特征在于,所述增压碳化的周期为一天。
  10. 根据权利要求3所述的一种石灰质飞机越界捕获材料的制备工艺,其特征在于,所述引气搅拌的时间为5~200秒。
PCT/CN2016/076573 2015-12-10 2016-03-17 一种石灰质飞机越界捕获材料及其制备工艺 WO2017096729A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510905341.8A CN105503107B (zh) 2015-12-10 2015-12-10 一种石灰质飞机越界捕获材料及其制备工艺
CN201510905341.8 2015-12-10

Publications (1)

Publication Number Publication Date
WO2017096729A1 true WO2017096729A1 (zh) 2017-06-15

Family

ID=55711486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076573 WO2017096729A1 (zh) 2015-12-10 2016-03-17 一种石灰质飞机越界捕获材料及其制备工艺

Country Status (2)

Country Link
CN (1) CN105503107B (zh)
WO (1) WO2017096729A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102589421B1 (ko) * 2017-02-27 2023-10-13 가부시키가이샤 시라이시 쥬오 겡뀨쇼 고순도 탄산칼슘 소결체 및 그 제조 방법, 그리고 고순도 탄산칼슘 다공질 소결체 및 그 제조 방법
CN110698155A (zh) * 2018-07-09 2020-01-17 中国民航科学技术研究院 一种轻质多孔碳酸钙材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122653A (ja) * 1999-10-26 2001-05-08 Clion Co Ltd 炭酸硬化体の製造方法
CN101016203A (zh) * 2007-01-22 2007-08-15 桂永全 一种航空跑道压溃型安全拦阻方块及其生产方法
GB2476944A (en) * 2010-01-13 2011-07-20 Norsk Glassgjenvinning As Vehicle arresting system
CN102741195A (zh) * 2010-01-14 2012-10-17 工程阻拦系统公司 蜂窝状磷酸盐陶瓷和制备方法及用途

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57106557A (en) * 1980-12-18 1982-07-02 Asahi Chemical Ind Foamed concrete
US5902068A (en) * 1997-02-07 1999-05-11 Datron, Inc. Vehicle arresting unit fabrication methods
CN102617106A (zh) * 2012-03-30 2012-08-01 华南理工大学 一种矿物聚合物发泡材料及其制备方法与应用
CN104177115B (zh) * 2013-05-27 2018-03-27 乌鲁木齐益好天成新型节能材料有限公司 一种固相硅凝胶制备泡沫材料的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122653A (ja) * 1999-10-26 2001-05-08 Clion Co Ltd 炭酸硬化体の製造方法
CN101016203A (zh) * 2007-01-22 2007-08-15 桂永全 一种航空跑道压溃型安全拦阻方块及其生产方法
GB2476944A (en) * 2010-01-13 2011-07-20 Norsk Glassgjenvinning As Vehicle arresting system
CN102741195A (zh) * 2010-01-14 2012-10-17 工程阻拦系统公司 蜂窝状磷酸盐陶瓷和制备方法及用途

Also Published As

Publication number Publication date
CN105503107B (zh) 2017-11-10
CN105503107A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
CN106966670B (zh) 一种硅酸盐基轻质泡沫混凝土及其制备方法
CN113968701B (zh) 一种co2驱动固结的轻质混凝土及其制备方法
CN103922668B (zh) 轻质混凝土以及采用该混凝土的多功能防护板与制备方法
CN203891320U (zh) 采用轻质混凝土的多功能防护板
WO2018233449A1 (zh) 高强度地聚合物空心微球、其制备方法和相变储能微球
CN114573361B (zh) 环保固碳加气砖的生产方法及系统
CN102807349A (zh) 一种用陶瓷废渣生产的发泡混凝土砌块及其制造方法
CN107032676B (zh) 一种地聚物多孔材料的制备方法
WO2017096729A1 (zh) 一种石灰质飞机越界捕获材料及其制备工艺
CN111499405A (zh) 一种多孔陶粒的制备方法和产品及其在混凝土地铁轨道吸音板中的应用
CN105152598A (zh) 一种网架型陶粒泡沫混凝土及其制备方法
CN111087187A (zh) 一种混凝土再生微粉及其制备方法
WO2017097268A1 (zh) 一种轻质多孔密胺树脂类越界捕获材料及其制备工艺
CN112707747A (zh) 一种环保保温墙砖及其制备方法
CN113845348A (zh) 一种铁尾矿轻质相变混凝土及其制备方法
CN112408876B (zh) 基于二氧化硅的水泥基多孔材料及其制备方法
CN114573315A (zh) 一种免蒸压碳化养护再生轻质混凝土及其制备方法
CN116283139B (zh) 一种蒸压加气混凝土废料碳化再利用方法
CN110467384B (zh) 一种轻质高强度混凝土及其制备方法
CN115259823B (zh) 一种轻质高强低导热系数加气混凝土及其制备方法
CN110078437A (zh) 一种机场跑道特性材料拦阻系统及其制备方法和测试装置
JP5449389B2 (ja) 調湿建材及びその製造方法
JP6681273B2 (ja) 組成物及び不燃材
CN108975791A (zh) 一种抗冻性能优异的再生型加气混凝土及其制备方法
Zhang et al. Preparation of ceramic foams suitable for aircraft arresting by the airport runway based on a protein foaming agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16871935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16871935

Country of ref document: EP

Kind code of ref document: A1