WO2017094490A1 - Liquid crystal display apparatus and manufacturing method for liquid crystal display apparatus - Google Patents

Liquid crystal display apparatus and manufacturing method for liquid crystal display apparatus Download PDF

Info

Publication number
WO2017094490A1
WO2017094490A1 PCT/JP2016/083761 JP2016083761W WO2017094490A1 WO 2017094490 A1 WO2017094490 A1 WO 2017094490A1 JP 2016083761 W JP2016083761 W JP 2016083761W WO 2017094490 A1 WO2017094490 A1 WO 2017094490A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
structural unit
polymer
protective layer
Prior art date
Application number
PCT/JP2016/083761
Other languages
French (fr)
Japanese (ja)
Inventor
山田 悟
若彦 金子
秀人 田鍋
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201680064694.2A priority Critical patent/CN108351558A/en
Priority to KR1020187013001A priority patent/KR102061587B1/en
Publication of WO2017094490A1 publication Critical patent/WO2017094490A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/35Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being liquid crystals

Definitions

  • the present invention relates to a liquid crystal display device and a method for manufacturing the liquid crystal display device.
  • Liquid crystal displays are widely used in monitors and television applications such as personal computers and smartphones because of their various advantages such as low voltage and low power consumption, and enabling miniaturization and thinning.
  • Such a liquid crystal display device has a liquid crystal cell and two polarizing plates disposed on both sides of the liquid crystal cell, and the liquid crystal cell is disposed to face each other with the liquid crystal layer and the liquid crystal layer interposed therebetween.
  • the two substrates are generally provided with an alignment film for aligning the liquid crystal constituting the liquid crystal layer.
  • Patent Document 1 discloses that “a polymer having a silicone group or a fluorine-substituted alkyl group and a photoalignment group as a first component, and methacrylic acid and methacrylic acid as a second component”.
  • a photoalignable polymer composition comprising a non-photoalignable polymer obtained by polymerizing a monomer containing at least one selected from the group consisting of esters” ([Claim 1]). [Claim 28]).
  • a liquid crystal display device is provided with a color filter on the viewing side.
  • the color filter has a viewpoint of preventing permeation of impurities from the color filter and a viewpoint of flattening a step of the color filter. Therefore, it is known to provide a protective layer (overcoat layer).
  • the present inventors examined providing an alignment film that does not require a protective layer when a color filter is provided on the viewing side, that is, an alignment protective layer having a function of the protective layer and the alignment film.
  • the present invention provides a liquid crystal display device that maintains excellent flatness even when a color filter is provided on the viewing side, and has good display performance even when exposed to high temperature and high humidity, and its liquid crystal display device It is an object to provide a manufacturing method.
  • the present inventors have provided an orientation protective layer having an orientation group and a cross-linked structure connected to each other through a covalent bond, and the surface in contact with the liquid crystal layer. It is found that even when a color filter is provided on the viewing side, the flatness is maintained even when the color filter is provided on the viewing side, and the display performance is improved even when exposed to high temperatures and high humidity.
  • the present invention has been completed. That is, it has been found that the above-described problem can be achieved by the following configuration.
  • a liquid crystal display device having a first substrate, a liquid crystal layer, and a second substrate in this order from the viewing side
  • the first substrate comprises a base material and an orientation protective layer
  • the second substrate comprises a base material, a thin film transistor, a display electrode, and an alignment film
  • the alignment protective layer has a surface in contact with the liquid crystal layer;
  • the alignment protective layer has an alignment group and a crosslinked structure linked to each other via a covalent bond;
  • the intensity ELq of the mass analysis of the fragment derived from the orientation group on the surface in contact with the liquid crystal layer of the orientation protection layer, and the orientation protection layer The strength ESsub of the mass spectrometry of the fragment derived from the orientation group on the surface of the base material side satisfies the following condition 1 or 2:
  • a liquid crystal display device, wherein the crosslinked structure includes any one of structures represented by formulas (A-1) to (A-3) described later.
  • Condition 1 The intensity ELq is 2 to 20 times the intensity ESub.
  • Condition 2 The intensity ELq is significantly measured and the intensity ESub is below the measurement limit.
  • [5] The liquid crystal display device according to any one of [1] to [4], wherein the liquid crystal constituting the liquid crystal layer is a horizontally aligned liquid crystal.
  • the fragment derived from the orientation group is a fragment derived from at least one photoalignment group selected from the group consisting of a cinnamate group and a chalcone group.
  • the polymer P includes a structural unit represented by s1 below as a structural unit having an orientation group, The method for producing a liquid crystal display device according to [7], wherein the polymer P and the polymer A satisfy the following condition 3 or 4.
  • s1 a structural unit having at least one partial structure selected from the group consisting of a fluorine-substituted hydrocarbon group, a siloxane skeleton and an alkyl group having 10 to 30 carbon atoms, and a structural unit having a photoalignment group
  • Condition 3 Heavy
  • the coalescence P includes a structural unit a2 having a crosslinkable group
  • the polymer A includes a structural unit a3 having an acid group.
  • the polymer P includes a structural unit a3 having an acid group
  • the polymer A includes a structural unit a2 having a crosslinkable group.
  • composition for forming an alignment protective layer further contains a crosslinking agent B having a molecular weight of 5000 or less.
  • the crosslinking agent B includes a crosslinking agent having an epoxy group, The method for producing a liquid crystal display device according to [11], wherein the mass ratio of the crosslinking agent B to the total mass of the crosslinking agent B, the polymer P, and the polymer A is 30% by mass or less.
  • the orientation group is a photo-alignment group
  • a liquid crystal display device that maintains excellent flatness even when a color filter is provided on the viewing side and has good display performance even when exposed to high temperature and high humidity, and its liquid crystal display device A manufacturing method can be provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of the liquid crystal display device of the present invention.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • substitution and non-substitution includes what does not have a substituent and what has a substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • (meth) acrylate is a notation representing “acrylate” or “methacrylate”
  • (meth) acryl is a notation representing “acryl” or “methacryl”
  • (meth) The “) acryloyl” is a notation representing “acryloyl” or “methacryloyl”.
  • the liquid crystal display device of the present invention is a liquid crystal display device having a first substrate, a liquid crystal layer, and a second substrate in this order from the viewing side, wherein the first substrate includes a base material and orientation protection. And the second substrate includes a base material, a thin film transistor, a display electrode, and an alignment film.
  • the orientation protective layer has a surface in contact with the liquid crystal layer, and any of the orientation groups and formulas (A-1) to (A-3) described later. And a structure in which the orientation group and the crosslinked structure are linked to each other through a covalent bond.
  • the liquid crystal display device of the present invention alignment protection is provided for fragments derived from alignment groups detected by time-of-flight secondary ion mass spectrometry (TOF-SIMS).
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • the intensity ELq of the mass analysis of the fragment derived from the orientation group on the surface in contact with the liquid crystal layer of the layer and the intensity ESub of the mass analysis of the fragment derived from the orientation group on the substrate side surface of the orientation protective layer are as follows: Condition 1 or 2 is satisfied.
  • Condition 1 The intensity ELq is 2 to 20 times the intensity ESub.
  • Condition 2 The intensity ELq is significantly measured and the intensity ESub is below the measurement limit.
  • the measurement by TOF-SIMS in the present invention is performed as follows.
  • the alignment protective layer and the adjacent layer adjacent to the alignment protective layer are peeled off, and the surface of the alignment protective layer (referring to the surface in contact with the liquid crystal layer; hereinafter the same) and the back surface of the alignment protective layer (base material) Or the surface in contact with the adjacent layer on the substrate side, the same shall apply hereinafter), derived from the orientation group on the surface of the orientation protective layer with the apparatus and conditions shown in (3) below.
  • the mass analysis intensity ELq of the fragment to be analyzed and the mass analysis intensity ESsub of the fragment derived from the orientation group on the back surface of the alignment protective layer are measured.
  • the cutting surface is determined by using the CYCUS method (Surface and Interfacial Cutting Analysis System: SAICAS) for the laminate having the alignment protective layer and the adjacent layer. Cutting is performed in an oblique direction so as to reach the front and back surfaces of the alignment protective layer, and the cross section of the alignment protective layer is exposed. With respect to the exposed cross section, the intensity of the mass analysis of the fragment derived from the orientation group measured with the apparatus and conditions shown in (3) below in the depth (thickness) direction from the surface of the orientation protective layer is 10 nm.
  • SAICAS Surface and Interfacial Cutting Analysis System
  • the alignment protective layer has a crosslinking structure containing an orientation group and any of the structures represented by formulas (A-1) to (A-3) described later.
  • the orientation group is unevenly distributed on the surface of the orientation protective layer, And it is thought that the orientation group has couple
  • the intensity ELq by the TOF-SIMS measurement is 5 to 20 times the intensity ESub because the display performance is improved even when exposed to high temperature and high humidity.
  • FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of the liquid crystal display device of the present invention.
  • the liquid crystal display device 10 illustrated in FIG. 1 includes a first substrate 30, a liquid crystal layer 20, and a second substrate 40 in this order from the viewing side.
  • the first substrate 30 is provided with a base material 15 to which a polarizing film is attached, an RGB color filter 22 on which a black matrix is disposed, and an alignment protective layer 21 having a surface in contact with the liquid crystal layer 20.
  • the second substrate 40 is provided with the base material 14 to which the polarizing film is attached and the element of the thin film transistor 16.
  • the liquid crystal display device 10 shown in FIG. 1 has a backlight unit 12 on the back surface, and the light source of the backlight is not particularly limited, and a known light source can be used. For example, white LEDs (light emitting diodes), multicolor LEDs such as blue, red, and green, fluorescent lamps (cold cathode tubes), organic electroluminescence, and the like can be given. Further, the liquid crystal display device can be a 3D (stereoscopic) type or a touch panel type. Further, it can be made flexible, and can be used as the second interphase insulating film (48) of JP 2011-145686A or the interphase insulating film (520) of JP 2009-258758A.
  • substrate which the liquid crystal display device of this invention has is a board
  • a transparent substrate used in a liquid crystal cell of a conventionally known liquid crystal display device can be used.
  • a glass substrate, a quartz substrate, a transparent resin substrate, or the like can be used.
  • the alignment protective layer has a surface in contact with a liquid crystal layer described later, and has an alignment group and any structure represented by formulas (A-1) to (A-3) described later. And having a structure in which the orientation group and the crosslinked structure are linked to each other through a covalent bond.
  • the alignment group possessed by the alignment protective layer is not particularly limited as long as it is a group in which a functional group having a function of aligning a liquid crystalline compound is aligned, but in the present invention, the alignment protective layer is brought into contact with the surface when the alignment protective layer is formed. However, it is preferably a group obtained by photoreacting a photoalignable group for the reason that it is possible to prevent deterioration of the surface state.
  • the photoalignment group refers to a photoreactive group that imparts orientation by any of a photodimerization reaction, a photoisomerization reaction, and a photolysis reaction.
  • the group that imparts orientation by a photodimerization reaction include groups introduced from at least one derivative selected from the group consisting of maleimide derivatives, cinnamic acid derivatives, and coumarin derivatives.
  • Preferred examples include cinnamate group and chalcone group.
  • the cinnamate group and the chalcone group for example, the following structure (in the following formula, * represents a connecting site to a polymer chain, and R represents a hydrogen atom or a monovalent organic group) is introduced.
  • the connecting site to the polymer chain represented by * may be directly connected to the main chain of the polymer or may be bonded via a divalent linking group.
  • the monovalent organic group represented by R is preferably an alkyl group or an aryl group.
  • the monovalent organic group represented by R preferably has 1 to 10 carbon atoms, and more preferably 1 to 7 carbon atoms.
  • the reactive group that isomerizes by the action of light specifically, for example, a group composed of a skeleton of at least one compound selected from the group consisting of an azobenzene compound, a stilbene compound, and a spiropyran compound is preferable. It is mentioned in.
  • Specific examples of the reactive group capable of decomposing by the action of light include a group composed of a skeleton of a cyclobutane compound.
  • the reaction is preferably a group that imparts orientation by a photodimerization reaction that reacts with shorter wave light, and is at least one selected from the group consisting of a cinnamate group and a chalcone group. More preferably.
  • the crosslinked structure of the orientation protective layer is a crosslinked structure including any one of the structures represented by the following formulas (A-1) to (A-3).
  • each R 1 independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, hexyl group and the like.
  • examples of the crosslinked structure including the structures represented by the above formulas (A-1) to (A-3) include, for example, a crosslinkable group (for example, epoxy group, oxetanyl group) and an acid group (for example, carboxyl group). And the like, specifically, represented by the following formula (A-1-1), formula (A-2-1) and formula (A-3-1).
  • a crosslinked structure is mentioned.
  • * represents a bonding position
  • R in the following formula (A-3-1) 1 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the orientation protective layer has a structure in which the orientation group and the crosslinked structure are connected to each other through a covalent bond. Therefore, in the present invention, a polymer containing a structural unit having a crosslinkable group (for example, an epoxy group, an oxetanyl group, etc.) described later, and / or a structural unit having an acid group (for example, a carboxyl group, etc.) described later. It is preferable that the polymer containing contains further the structural unit which has the said orientation group.
  • a crosslinkable group for example, an epoxy group, an oxetanyl group, etc.
  • an acid group for example, a carboxyl group, etc.
  • the thickness of the alignment protective layer is preferably 1 to 4 ⁇ m, more preferably 2 to 3 ⁇ m.
  • substrate which the liquid crystal display device of this invention has may have comprised the color filter between the base material mentioned above and the alignment protective layer.
  • the color filter is not particularly limited, and, for example, a commonly known color filter for a liquid crystal display device can be used.
  • a color filter is usually composed of transparent colored patterns of red, green and blue, and each transparent colored pattern is made of a resin composition in which a colorant is dissolved or dispersed, preferably pigment fine particles are dispersed. Composed.
  • the color filter may be formed by preparing an ink composition colored in a predetermined color and printing it for each colored pattern.
  • a paint-type photosensitive material containing a colorant of a predetermined color may be used. It is more preferable to carry out by a photolithography method using a conductive resin composition.
  • the liquid crystal layer included in the liquid crystal display device of the present invention is a liquid crystal layer sandwiched between the first substrate described above and a second substrate described later. Further, as described above, the liquid crystal layer is provided so as to be in contact with the alignment protective layer included in the first substrate described above.
  • Driving methods for driving the liquid crystal layer used in the liquid crystal display device of the present invention include TN (Twisted-Nematic) method, VA (Vertical-Alignment) method, IPS (In-Plane-Switching) method, FFS (Fringe-Field). Switching) method, OCB (Optically Compensated Bend) method, etc.
  • the IPS method is preferable.
  • the IPS liquid crystal cell rod-like liquid crystal molecules are aligned substantially parallel to the substrate, and the liquid crystal molecules respond in a planar manner when an electric field parallel to the substrate surface is applied. That is, in the IPS system, the liquid crystal constituting the liquid crystal layer is a horizontally aligned liquid crystal.
  • black is displayed when no electric field is applied, and the absorption axes of a pair of upper and lower polarizing plates are orthogonal.
  • the second substrate included in the liquid crystal display device of the present invention is a substrate provided on the opposite side (backlight side) of the liquid crystal layer described above, and includes a base material, a thin film transistor, a display electrode, and an orientation. And a membrane.
  • a transparent substrate used in a liquid crystal cell of a conventionally known liquid crystal display device can be used, for example, a glass substrate, a quartz substrate, a transparent substrate, as in the first substrate described above.
  • a resin substrate or the like can be used. Among these, it is preferable to use a glass substrate.
  • a thin film transistor (TFT) included in the second substrate a thin film transistor (TFT) used in a known liquid crystal display device can be used as appropriate, and the configuration is not particularly limited. Or a bottom gate type.
  • Specific examples of the thin film transistor include an amorphous silicon TFT, a low temperature polysilicon TFT, an oxide semiconductor TFT, and the like.
  • Display electrodes As the display electrodes provided in the second substrate, those used in known liquid crystal display devices can be used as appropriate, and examples of the constituent material thereof include indium tin oxide (ITO) and oxidation.
  • ITO indium tin oxide
  • a transparent conductive material such as zinc aluminum (Aluminum doped Zinc Oxide: AZO) or indium zinc oxide (IZO) can be used.
  • the alignment film provided in the second substrate generally used as a main component of a polymer, which is used in a known liquid crystal display device, can be appropriately used.
  • the polymer material for alignment film is described in many documents, and many commercially available products can be obtained.
  • the polymer material used in the present invention is preferably polyvinyl alcohol or polyimide, and derivatives thereof. In particular, modified or unmodified polyvinyl alcohol is preferred.
  • liquid crystal display device for example, a polarizing plate, a backlight, and the like
  • the descriptions in JP-A-2007-328210 and JP-A-2014-238438 can be referred to, and the contents thereof are incorporated in this specification. I will do it.
  • the method for producing a liquid crystal display device of the present invention comprises an alignment protective layer containing, on a substrate, a polymer P containing a structural unit having an orientation group and a polymer A not containing a structural unit having an orientation group. After forming a protective layer using the composition for formation, the protective layer is subjected to an alignment treatment to form an alignment protective layer, and a first step of producing a first substrate is included.
  • the method for manufacturing a liquid crystal display device of the present invention includes a second substrate including a base material, a thin film transistor, a display electrode, and an alignment film, and a first substrate bonded to each other to enclose liquid crystal, A liquid crystal layer is formed between the second substrate and the second step of manufacturing a liquid crystal display device.
  • the first step uses a composition for forming an alignment protective layer containing, on a substrate, a polymer P containing a structural unit having an orientation group and a polymer A not containing a structural unit having an orientation group.
  • the protective layer is subjected to an alignment treatment to form an alignment protective layer, thereby producing a first substrate.
  • the base material in a 1st process is the same as the base material with which the 1st board
  • the composition for forming an alignment protective layer lowers the phase difference of the alignment protective layer, increases transparency, and facilitates the formation of the above-described crosslinked structure in the alignment protective layer. It is preferable that the structural unit represented by the following s1 is included as the structural unit having a group, and the polymer P and the polymer A satisfy the following condition 3 or 4.
  • s1 a structural unit having at least one partial structure selected from the group consisting of a fluorine-substituted hydrocarbon group, a siloxane skeleton and an alkyl group having 10 to 30 carbon atoms, and a structural unit having a photoalignment group
  • Condition 3 Heavy The coalescence P includes a structural unit a2 having a crosslinkable group, and the polymer A includes a structural unit a3 having an acid group.
  • Condition 4 The polymer P includes a structural unit a3 having an acid group, and the polymer A includes a structural unit a2 having a crosslinkable group.
  • the crosslinkable group possessed by the polymer P and / or the polymer A is an oxiranyl group, a 3,4-epoxycyclohexyl group, because the above-mentioned crosslinked structure is more easily formed in the alignment protective layer. And at least one selected from the group consisting of oxetanyl groups.
  • a polymer containing a structural unit represented by the following s1 (hereinafter also referred to as “structural unit s1”) is preferably exemplified.
  • structural unit s1 a structural unit having at least one partial structure selected from the group consisting of a fluorine-substituted hydrocarbon group, a siloxane skeleton and an alkyl group having 10 to 30 carbon atoms (hereinafter also referred to as “unevenly-distributed group”), and Constituent unit having photo-alignment group
  • the fluorine-substituted hydrocarbon group may be a hydrocarbon group substituted with at least one fluorine atom, and is at least one of an alkyl group or an alkylene group (hereinafter abbreviated as “alkyl group etc.” in this paragraph).
  • alkyl group etc.” examples include alkyl groups in which hydrogen atoms are substituted with fluorine atoms, and alkyl groups in which all hydrogen atoms such as alkyl groups are substituted with fluorine atoms are more preferable.
  • Such a fluorine-substituted hydrocarbon group is preferably a group represented by the following formula (I) from the viewpoint of uneven distribution.
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents a site connected to a polymer chain.
  • X represents a single bond or a divalent linking group
  • m represents an integer of 1 to 3
  • n represents an integer of 1 or more
  • r represents 0 or an integer of 1 to 2.
  • m 1, the plurality of R 2 may be the same or different.
  • M in the above formula (I) represents an integer of 1 to 3, and is preferably 1 or 2.
  • N in the above formula (I) represents an integer of 1 or more, preferably an integer of 1 to 10, more preferably an integer of 1 to 4, and particularly preferably 1 or 2.
  • R in the general formula I represents 0 or an integer of 1 to 2, preferably 1 or 2, and more preferably 2.
  • the connecting part to the polymer chain represented by * may be directly connected to the main chain of the polymer such as the above-mentioned polymer A1-1, or a polyoxyalkylene group, an alkylene group, an ester group, a urethane group. And may be bonded via a divalent linking group such as a cyclic alkylene group which may contain a hetero atom, poly (caprolactone), or amino group. It is preferable that they are bonded via a polyoxyalkylene group.
  • alkyl group having 1 to 4 carbon atoms represented by R 2 in the above formula (I) examples include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group and the like. Preferably, they are a hydrogen atom or a methyl group, More preferably, it is a hydrogen atom.
  • X when X is a single bond, it means that the polymer main chain and the carbon atom to which R 2 is bonded are directly connected.
  • examples of the linking group include —O—, —S—, —N (R 4 ) —, —CO—, and the like. Among these, —O— is more preferable.
  • R 4 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group, and a hydrogen atom and a methyl group are preferable.
  • a method of introducing a fluorine-substituted hydrocarbon group into a polymer a method of introducing a fluorine-substituted hydrocarbon group into a polymer by a polymer reaction; a monomer having a fluorine-substituted hydrocarbon group (hereinafter referred to as “fluorine-substituted hydrocarbon group-containing” And a method of introducing a structural unit having a fluorine-substituted hydrocarbon group into the polymer.
  • the fluorine-substituted hydrocarbon group-containing monomer is a monomer represented by the following formula (II) Is preferable.
  • R 1 represents a hydrogen atom, a halogen atom, a methyl group which may have a substituent, or an ethyl group which may have a substituent.
  • R 2 , X, m, n and r all have the same meaning as R 2 , X, m, n and r in formula I, and preferred examples are also the same.
  • the halogen atom represented by R 1 in the above-mentioned formula (II) for example, a fluorine atom, a chlorine atom, a bromine atom.
  • the monomer represented by the above formula (II) include tetrafluoroisopropyl methacrylate represented by the following formula (IIa), hexafluoroisopropyl methacrylate represented by the following formula (IIb), and the like.
  • Other specific examples include compounds described in paragraph numbers [0058] to [0061] of JP 2010-18728 A. Of these, a structure in which a fluorine-substituted hydrocarbon group is bonded to a polyoxyalkylene group is preferable.
  • the siloxane skeleton is not particularly limited as long as it has “—Si—O—Si—”, and preferably contains a polyoxyalkylene group.
  • the siloxane skeleton is copolymerized with a compound having a (meth) acryloyloxy group and an alkoxysilyl group and introduced into a constituent unit having a partial structure of the siloxane skeleton in the polymer.
  • a compound having a (meth) acryloyloxy group and an alkoxysilyl group is preferable.
  • the alkoxysilyl group for example, a group represented by the following formula (X) is preferable.
  • R 3 to R 5 each independently represent a hydrogen atom, a hydroxyl group, a halogen atom, an alkyl group or an alkoxy group, and at least one is an alkoxy group. * Represents a binding position.
  • At least one of R 3 to R 5 is an alkoxy group, and the alkoxy group is preferably an alkoxy group having 1 to 15 carbon atoms, and an alkoxy group having 1 to 8 carbon atoms. It is more preferably a group, more preferably an alkoxy group having 1 to 4 carbon atoms, and particularly preferably an ethoxy group or a methoxy group.
  • Specific examples of the compound having such an alkoxysilyl group and a (meth) acryloyloxy group include 3- (meth) acryloxypropylmethyldimethoxysilane and 3- (meth) acryloxypropyltrimethoxysilane. 3- (meth) acryloxypropylmethyldiethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, and the like.
  • the siloxane skeleton is polymerized with a compound represented by the following structural formula (A) (hereinafter also referred to as “specific siloxane compound”), and the siloxane skeleton is converted into a polymer. It is preferable to introduce.
  • R 7 represents a linear or branched alkylene group having 2 to 6 carbon atoms which may have a substituent such as a hydroxyl group, an amine group, or a halogen atom, or the following structural formula (B ) Represents a divalent linking group.
  • R 4 represents a hydrogen atom, a methyl group, or an ethyl group.
  • n1, n2, and n3 are each independently an integer of 0 to 100.
  • two or more R 4 s exist in the structural formula (B), but they may be different or the same.
  • x1, x2 and x3 are integers whose sum satisfies 1 to 100.
  • Y1 is an integer of 1 to 30.
  • X 2 is a single bond or a divalent group represented by the following structural formula (C).
  • R 8 represents a linear or branched alkylene group having 1 to 6 carbon atoms which may have a substituent such as a hydroxyl group, an amine group, or a halogen atom
  • Q 1 , Q 2 represents an oxygen atom, a sulfur atom, or —NRB—, and Q 1 and Q 2 may be different from each other or the same.
  • RB represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • Q 2 is bonded to R 7 in the structural formula (A).
  • Y 2 represents a monovalent group represented by the following structural formula (D) to the following structural formula (F).
  • R 5 represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms.
  • Z 1 , Z 2 , and Z 3 each independently represent a monovalent group represented by the following structural formula (G).
  • R 6 represents an unsubstituted alkyl group having 1 to 4 carbon atoms
  • y2 represents an integer of 1 to 100, preferably an integer of 1 to 50, more preferably 1 to 20 It is an integer.
  • siloxane skeleton examples include the structures described in paragraphs [0092] to [0094] of JP 2010-18728 A, as specific examples of the above formula (A), but are not limited thereto. Absent. Of these, a structure in which a siloxane structure is bonded to a polymer via a polyoxyalkylene group is preferable.
  • the alkyl group having 10 to 30 carbon atoms may contain a branched structure or a cyclic structure, but the linear structure portion preferably has a carbon number in the range of 10 to 30, and all have a linear structure. Is more preferable.
  • the alkyl group preferably has 10 to 20 carbon atoms.
  • the side chain of the polymer preferably has a group represented by the following general formula (a3-1).
  • n a3 represents an integer of 10 to 30, and * represents a position linked to the main chain or side chain of the polymer. na3 is preferably an integer of 10 to 20.
  • the method for introducing the structure of the general formula (a3-1) into the main chain or side chain of the polymer For example, a monomer having the structure of (a3-1) is appropriately selected during synthesis and applied. In this case, the structure (a3-1) can be introduced into the repeating unit of the obtained polymer.
  • the monomer having the structure of the general formula (a3-1) a commercially available compound can be used, but it is included in (a3-1) with respect to a commercially available monomer having no structure of (a3-1).
  • a desired structure may be introduced as appropriate.
  • the method of introducing the structure (a3-1) into a commercially available monomer and a known method may be applied as appropriate.
  • the monomer having the structure of the general formula (a3-1) can be appropriately selected according to the main chain structure of the polymer.
  • the polymer has a (meth) acrylic structure in the main chain, the following general It is preferable to use a monomer represented by the formula (a3-2).
  • R 32 represents a hydrogen atom, a methyl group, an ethyl group, or a halogen atom
  • X 31 represents a divalent linking group
  • R 33 represents a single bond or an alkyleneoxy group.
  • N a3 has the same meaning as the general formula (a3-1), including the preferred range.
  • R 32 represents a hydrogen atom, a methyl group, an ethyl group, or a halogen atom, more preferably a hydrogen atom or a methyl group, and still more preferably a methyl group.
  • examples of the divalent linking group as X 31 include —O—, —S—, —N (R 4 ) —, and the like. Among these, —O— is more preferable.
  • R 4 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group may be a linear structure or a branched structure, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group.
  • they are a hydrogen atom and a methyl group.
  • the alkyleneoxy group for R 33 preferably has 1 to 4 carbon atoms.
  • the alkyleneoxy group may have a branched structure. Moreover, even if it has a substituent, it may be unsubstituted. Examples of the substituent that may have include a halogen atom. Specific examples of the alkyleneoxy group include a methyleneoxy group, an ethyleneoxy group, a propyleneoxy group, a butyleneoxy group, and the like.
  • R 33 is preferably an unsubstituted linear alkyleneoxy group having 1 to 4 carbon atoms, or a single bond, and more preferably a single bond.
  • a polymer having a repeating unit represented by the following general formula (U-a3-1) can be obtained.
  • Such a polymer is one of preferred embodiments having a repeating unit represented by the following general formula (U-a3-1).
  • n a3 has the same meaning as that of the general formula (a3-1), including a preferable range, and R 32 , X 31 , and R 33 represent the general formula (a3- It is synonymous including 2) and a preferable range.
  • the polymer P has a photoalignable group together with the above-described structural unit having at least one partial structure selected from the group consisting of a fluorine-substituted hydrocarbon group, a siloxane skeleton, and an alkyl group having 10 to 30 carbon atoms.
  • the photo-alignment group is the same as that described for the orientation group.
  • the main chain skeleton of the polymer having a structural unit having a photo-alignment group is not particularly limited, but the side chain molecular design is diversified, and the main chain formation by radical polymerization reaction of an ethylenically unsaturated compound is simple.
  • a polymer having a repeating unit represented by the following formula (III) is preferable.
  • R 1 represents a hydrogen atom or an alkyl group.
  • X represents an arylene group, — (C ⁇ O) —O—, or — (C ⁇ O) —NR— (R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms).
  • L represents a single bond or a divalent linking group
  • P represents a photoalignment group.
  • R 1 represents a hydrogen atom or an alkyl group
  • the alkyl group is an alkyl group having 1 to 4 carbon atoms (for example, methyl group, ethyl group, n-propyl group, isopropyl group, n- Butyl group and the like are preferable.
  • R 1 is preferably a hydrogen atom or a methyl group.
  • L represents a single bond or a divalent linking group, and the divalent linking group may be —O—, —S—, an alkylene group, an arylene group, or a combination thereof. Is preferred.
  • the alkylene group represented by L may be a linear, branched, or cyclic structure, but is preferably a linear structure.
  • the alkylene group represented by L preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 2 to 4 carbon atoms.
  • a phenylene group is preferable.
  • P represents a photoalignable group, and specific examples thereof include a chalcone group, a cinnamate group, a stilbenyl group, a maleimide group, and an azobenzyl group.
  • the photoalignable group represented by P may have a substituent as long as the photoalignment is not lost.
  • the substituent include a halogeno group, an alkyl group, and an aryl group, and an alkyl group or an aryl group is preferable.
  • the alkyl group or aryl group preferably has 1 to 10 carbon atoms, and more preferably 1 to 7 carbon atoms.
  • the polymer having a repeating unit represented by the above formula (I) may be synthesized by (a) a method in which a corresponding monomer is polymerized to directly introduce a photoreactive group, and (b) any functional group. It may be synthesized by a method in which a photoreactive group is introduced into a polymer obtained by polymerizing a monomer having a polymer reaction. Moreover, it can also synthesize
  • radical polymerization, cation polymerization, anion polymerization, etc. are mentioned as a polymerization reaction which can be utilized in the method of (a) and (b) mentioned above.
  • the polymer having a repeating unit represented by the above formula (I) may be a copolymer composed of a plurality of types of repeating units represented by the above formula (I). ) May be a copolymer containing a repeating unit other than (for example, a repeating unit not containing an ethylenically unsaturated group).
  • the structural unit s1 is preferably 0.01 to 10% by mole, more preferably 0.1 to 10% by mole, still more preferably 0.1 to 5% by mole, based on the structural unit of all polymer components. 1 to 3 mol% is particularly preferred, and 0.5 to 3 mol% is most preferred.
  • the content of the structural unit having a ubiquitous group is preferably 0.01 to 3% by mole, more preferably 0.1 to 3% by mole, and 0.5 to 3% by mole. Is more preferable.
  • the content of the structural unit having a photo-alignment group is preferably 0.01 to 5% by mole, more preferably 0.1 to 5% by mole, and 1 to 3% by mole. Further preferred.
  • the content of the structural unit s1 is preferably 20 to 90% by mole, more preferably 20 to 80% by mole, and more preferably 20 to 70% by mole based on all the structural units of the polymer. Is more preferable.
  • the content of the structural unit having a ubiquitous group is preferably 1 to 50 mol%, more preferably 5 to 30 mol%, and still more preferably 10 to 20 mol%.
  • the content of the structural unit having a photoalignable group is preferably 1 to 70 mol%, more preferably 10 to 60 mol%, still more preferably 20 to 50 mol%.
  • the “structural unit” is synonymous with the “monomer unit”.
  • the “monomer unit” may be modified after polymerization by a polymer reaction or the like. The same applies to the following.
  • Examples of the polymer P include, in addition to the structural unit s1 described above, a structural unit a1 having a group in which an acid group is protected by an acid-decomposable group, a structural unit a2 having a crosslinkable group, and a structural unit having an acid group. a3, other structural units a4 may be included.
  • the structural unit a2 having a crosslinkable group and / or the structural unit a3 having an acid group is included for the reason that the above-described crosslinked structure is easily formed in the alignment protective layer. Is preferred.
  • the structural unit a1 is a structural unit having an acid group protected with an acid-decomposable group (hereinafter also referred to as the structural unit a1).
  • the “group in which an acid group is protected with an acid-decomposable group” in the present invention is a group that causes a deprotection reaction using an acid as a catalyst (or an initiator) to generate an acid group, a regenerated acid, and a decomposed structure. Means.
  • the “group in which the acid group is protected with an acid-decomposable group” in the present invention those known as an acid group and an acid-decomposable group can be used, and are not particularly limited.
  • the acid group include a carboxyl group and a phenolic hydroxyl group.
  • an acid-decomposable group a group that is relatively easily decomposed by an acid (for example, an acetal functional group such as an ester structure, a tetrahydropyranyl ester group, or a tetrahydrofuranyl ester group) or an acid-decomposable group is relatively difficult to decompose by an acid.
  • Groups for example, tertiary alkyl groups such as tert-butyl ester groups and tertiary alkyl carbonate groups such as tert-butyl carbonate groups).
  • the structural unit a1 having a group in which an acid group is protected with an acid-decomposable group is a structural unit having a protected carboxyl group in which a carboxyl group is protected with an acid-decomposable group (hereinafter referred to as “protection protected with an acid-decomposable group”).
  • a structural unit having a protected phenolic hydroxyl group in which the phenolic hydroxyl group is protected with an acid-decomposable group hereinafter referred to as “protected phenolic hydroxyl group protected with an acid-decomposable group”. It is also preferable that it is also referred to as a “structural unit”.
  • the structural unit a1-1 having a protected carboxyl group protected with an acid-decomposable group and the structural unit a1-2 having a protected phenolic hydroxyl group protected with an acid-decomposable group will be described in order.
  • the structural unit a1-1 having a protected carboxyl group protected with an acid-decomposable group has a carboxyl group in the structural unit having a carboxyl group as a protected carboxyl group protected by an acid-decomposable group described in detail below. It is a structural unit.
  • the structural unit having a carboxyl group that can be used for the structural unit a1-1 having a protected carboxyl group protected by the acid-decomposable group is not particularly limited, and a known structural unit can be used.
  • the structural unit a1-1-1 derived from an unsaturated carboxylic acid having at least one carboxyl group in the molecule, such as an unsaturated monocarboxylic acid, an unsaturated dicarboxylic acid, or an unsaturated tricarboxylic acid; And a structural unit a1-1-2 having both an unsaturated group and a structure derived from an acid anhydride.
  • ⁇ Structural unit a1-1-1 derived from unsaturated carboxylic acid having at least one carboxyl group in the molecule examples include those described in JP-A-2014-238438. And the compounds described in paragraph 0043. Among these, from the viewpoint of developability, in order to form the structural unit a1-1-1, acrylic acid, methacrylic acid, 2- (meth) acryloyloxyethyl-succinic acid, 2- (meth) acryloyloxy are used.
  • ethyl hexahydrophthalic acid 2- (meth) acryloyloxyethyl-phthalic acid, or an anhydride of an unsaturated polyvalent carboxylic acid.
  • the structural unit a1-1-1 derived from an unsaturated carboxylic acid having at least one carboxyl group in the molecule may be composed of one kind alone, or may be composed of two or more kinds. Good.
  • ⁇ Structural unit a1-1-2 having both an ethylenically unsaturated group and a structure derived from an acid anhydride The structural unit a1-1-2 having both an ethylenically unsaturated group and a structure derived from an acid anhydride is obtained by reacting a hydroxyl group present in a structural unit having an ethylenically unsaturated group with an acid anhydride.
  • the unit is preferably derived from a monomer.
  • the acid anhydride known ones can be used, and specifically, maleic anhydride, succinic anhydride, itaconic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, chlorendic anhydride, etc.
  • phthalic anhydride, tetrahydrophthalic anhydride, or succinic anhydride is preferable from the viewpoint of developability.
  • the reaction rate of the acid anhydride with respect to the hydroxyl group is preferably 10 to 100 mol%, more preferably 30 to 100 mol% from the viewpoint of developability.
  • the above-mentioned acid-decomposable groups can be used.
  • the carboxyl group is a protected carboxyl group protected in the form of an acetal, so that the basic physical properties of the resin composition, particularly sensitivity and pattern shape, contact hole formation, and storage of the resin composition It is preferable from the viewpoint of stability.
  • the carboxyl group is more preferably a protected carboxyl group protected in the form of an acetal represented by the following formula (a1-10) from the viewpoint of sensitivity.
  • the entire protected carboxyl group is — (C ⁇ O) —O—CR 101 R 102 ( OR 103 ).
  • R 101 and R 102 each independently represent a hydrogen atom or a hydrocarbon group, except that R 101 and R 102 are both hydrogen atoms.
  • R 103 represents an alkyl group.
  • R 101 or R 102 and R 103 may be linked to form a cyclic ether.
  • R 101 and R 102 each independently represents a hydrogen atom or an alkyl group, and the alkyl group may be linear, branched or cyclic.
  • both R 101 and R 102 do not represent a hydrogen atom, and at least one of R 101 and R 102 represents an alkyl group.
  • the alkyl group may be linear, branched or cyclic.
  • the linear alkyl group preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms.
  • the branched chain preferably has 3 to 6 carbon atoms, and more preferably has 3 or 4 carbon atoms.
  • methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group, n examples include -hexyl group, texyl group (2,3-dimethyl-2-butyl group), n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group and the like.
  • the cyclic alkyl group preferably has 3 to 12 carbon atoms, more preferably 4 to 8 carbon atoms, and still more preferably 4 to 6 carbon atoms.
  • Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a norbornyl group, and an isobornyl group.
  • the alkyl group may have a substituent, and examples of the substituent include a halogen atom, an aryl group, and an alkoxy group.
  • R 101 , R 102 and R 103 When it has a halogen atom as a substituent, R 101 , R 102 and R 103 become a haloalkyl group, and when it has an aryl group as a substituent, R 101 , R 102 and R 103 become an aralkyl group.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and among these, a fluorine atom or a chlorine atom is preferable.
  • the aryl group is preferably an aryl group having 6 to 20 carbon atoms, and more preferably an aryl group having 6 to 12 carbon atoms.
  • Specific examples include a phenyl group, an ⁇ -methylphenyl group, a naphthyl group, and the like, and examples of the entire alkyl group substituted with an aryl group, that is, an aralkyl group include a benzyl group, an ⁇ -methylbenzyl group, a phenethyl group, A naphthylmethyl group etc. can be illustrated.
  • the alkoxy group is preferably an alkoxy group having 1 to 6 carbon atoms, more preferably an alkoxy group having 1 to 4 carbon atoms, and still more preferably a methoxy group or an ethoxy group.
  • the alkyl group is a cycloalkyl group
  • the cycloalkyl group may have a linear or branched alkyl group having 1 to 10 carbon atoms as a substituent, and the alkyl group is a linear chain. Or a branched alkyl group, it may have a cycloalkyl group having 3 to 12 carbon atoms as a substituent. These substituents may be further substituted with the above substituents.
  • R 101 , R 102 and R 103 represent an aryl group
  • the aryl group preferably has 6 to 12 carbon atoms, and more preferably 6 to 10 carbon atoms.
  • the aryl group may have a substituent, and preferred examples of the substituent include an alkyl group having 1 to 6 carbon atoms. Examples of the aryl group include a phenyl group, a tolyl group, a xylyl group, a cumenyl group, and a 1-naphthyl group.
  • R 101 , R 102 and R 103 can be bonded together to form a ring together with the carbon atom to which they are bonded.
  • Examples of the ring structure when R 101 and R 102 , R 101 and R 103 or R 102 and R 103 are bonded include, for example, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a tetrahydrofuranyl group, an adamantyl group, and a tetrahydropyrani group. And the like.
  • any one of R 101 and R 102 is preferably a hydrogen atom or a methyl group.
  • radical polymerizable monomer used for forming the structural unit having a protected carboxyl group represented by the above formula (a1-10) a commercially available one may be used, or one synthesized by a known method Can also be used. For example, it can be synthesized by the synthesis method described in paragraphs 0037 to 0040 of JP2011-212494A.
  • a first preferred embodiment of the structural unit a1-1 having a protected carboxyl group protected by the acid-decomposable group is a structural unit represented by the following formula.
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group or an aryl group, at least one of R 1 and R 2 is an alkyl group or an aryl group, and R 3 is an alkyl group or Represents an aryl group, R 1 or R 2 and R 3 may be linked to form a cyclic ether, R 4 represents a hydrogen atom or a methyl group, and X represents a single bond or an arylene group;
  • R 1 and R 2 are alkyl groups, alkyl groups having 1 to 10 carbon atoms are preferred. When R 1 and R 2 are aryl groups, a phenyl group is preferred. R 1 and R 2 are preferably each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. R 3 represents an alkyl group or an aryl group, preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms. X represents a single bond or an arylene group, and a single bond is preferable.
  • a second preferred embodiment of the structural unit a1-1 having a protected carboxyl group protected by the acid-decomposable group is a structural unit represented by the following formula.
  • R 121 represents a hydrogen atom or a methyl group
  • L 1 represents a carbonyl group
  • R 122 to R 128 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and a hydrogen atom is preferred.
  • R represents a hydrogen atom or a methyl group.
  • ⁇ Structural unit a1-2 having a protected phenolic hydroxyl group protected with an acid-decomposable group examples include a structural unit in a hydroxystyrene-based structural unit and a novolac-based resin. Of these, a structural unit derived from hydroxystyrene or ⁇ -methylhydroxystyrene is preferred from the viewpoint of sensitivity. As the structural unit having a phenolic hydroxyl group, the structural units described in paragraphs 0065 to 0073 of JP-A-2014-238438 are also preferable from the viewpoint of sensitivity.
  • the structural unit a2 is a structural unit having a crosslinkable group (hereinafter also referred to as a structural unit a2).
  • the crosslinkable group is not particularly limited as long as it is a group that causes a curing reaction by heat treatment.
  • Preferred embodiments of the structural unit having a crosslinkable group include an epoxy group (for example, oxiranyl group, 3,4-epoxycyclohexyl group, etc.), oxetanyl group, —NH—CH 2 —O—R (R is a hydrogen atom or carbon atom) And a structural unit containing at least one selected from the group consisting of a group represented by formula (1) to (20), an ethylenically unsaturated group, and a blocked isocyanate group, such as an epoxy group and an oxetanyl group.
  • an epoxy group for example, oxiranyl group, 3,4-epoxycyclohexyl group, etc.
  • oxetanyl group —NH—CH 2 —O—R (R is a hydrogen atom or carbon atom)
  • R is a hydrogen atom or carbon atom
  • a group represented by the group: —NH—CH 2 —O—R (R represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms), a (meth) acryloyl group, and a blocked isocyanate group. is preferably a structural unit containing at least one selected, epoxy group, oxetanyl group, and, -NH-CH 2 -O-R (R is a hydrogen atom or a carbon atoms ⁇ And more preferably a structural unit containing at least one selected from the group consisting of groups represented by.) Represents an alkyl group of 20.
  • the polymer component A1 preferably contains a polymer having a structural unit a2-1 having an epoxy group and / or an oxetanyl group.
  • a 3-membered cyclic ether group is also called an epoxy group, and a 4-membered cyclic ether group is also called an oxetanyl group.
  • the structural unit a2-1 having an epoxy group and / or oxetanyl group may have at least one epoxy group or oxetanyl group in one structural unit, and may be one or more epoxy groups and one or more oxetanyl groups.
  • Group, two or more epoxy groups, or two or more oxetanyl groups may be included, and is not particularly limited, but preferably has a total of 1 to 3 epoxy groups and / or oxetanyl groups. It is more preferable to have one or two oxetanyl groups in total, and it is even more preferable to have one epoxy group or oxetanyl group.
  • radical polymerizable monomer used for forming the structural unit having an epoxy group include, for example, glycidyl acrylate, glycidyl methacrylate, glycidyl ⁇ -ethyl acrylate, and glycidyl ⁇ -n-propyl acrylate.
  • radical polymerizable monomer used for forming the structural unit having an oxetanyl group include, for example, a (meth) acryl having an oxetanyl group described in paragraphs 0011 to 0016 of JP-A No. 2001-330953. Acid esters, and the like, the contents of which are incorporated herein.
  • radical polymerizable monomer used for forming the structural unit a2-1 having the epoxy group and / or oxetanyl group include a monomer having a methacrylic ester structure and an acrylic ester structure. A monomer is preferred.
  • These structural units can be used individually by 1 type or in combination of 2 or more types.
  • R represents a hydrogen atom or a methyl group.
  • ⁇ Structural unit a2-2 having an ethylenically unsaturated group Another example of the structural unit a2 having a crosslinkable group includes the structural unit a2-2 having an ethylenically unsaturated group.
  • the structural unit a2-2 having an ethylenically unsaturated group is preferably a structural unit having an ethylenically unsaturated group in the side chain, having an ethylenically unsaturated group at the terminal, and having 3 to 16 carbon atoms.
  • Another example of the structural unit a2 having a crosslinkable group has a group represented by —NH—CH 2 —O—R (R represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms).
  • the structural unit a2-3 is also preferable.
  • R is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 9 carbon atoms, and still more preferably an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group may be a linear, branched or cyclic alkyl group, but is preferably a linear or branched alkyl group.
  • the structural unit a2-3 is more preferably a structural unit having a group represented by the following formula (a2-30).
  • R 31 represents a hydrogen atom or a methyl group
  • R 32 represents an alkyl group having 1 to 20 carbon atoms.
  • R 32 is preferably an alkyl group having 1 to 9 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group may be a linear, branched or cyclic alkyl group, but is preferably a linear or branched alkyl group.
  • Specific examples of R 32 include a methyl group, an ethyl group, an n-butyl group, an i-butyl group, a cyclohexyl group, and an n-hexyl group. Of these, i-butyl group, n-butyl group and methyl group are preferable.
  • the structural unit a3 is a structural unit having an acid group (hereinafter also referred to as a structural unit a3).
  • the acid group in the present invention means a proton dissociable group having a pKa smaller than 11.
  • Examples of the acid group used in the present invention include a carboxylic acid group, a sulfonamide group, a phosphonic acid group, a sulfonic acid group, a phenolic hydroxyl group, a sulfonamide group, a sulfonylimide group, and acid anhydride groups of these acid groups, And the group etc.
  • the structural unit containing an acid group used in the present invention is more preferably a structural unit derived from styrene, a structural unit derived from a vinyl compound, a structural unit derived from (meth) acrylic acid and / or an ester thereof. .
  • the structural unit a3 having an acid group from the viewpoint of sensitivity, a structural unit having a carboxyl group or a structural unit having a phenolic hydroxyl group is preferable, and a structural unit having a carboxyl group is more preferable.
  • Specific examples of the structural unit a3 having an acid group include the structural unit a1-1-1 derived from an unsaturated carboxylic acid having at least one carboxyl group in the molecule, an ethylenically unsaturated group, and an acid anhydride. Examples thereof include a structural unit a1-1-2 having both a structure derived from a product and a structural unit a1-2-1 having a phenolic hydroxyl group, and preferred embodiments are also the same.
  • the structural unit a3 having an acid group is a structural unit derived from a compound selected from the group consisting of methacrylic acid, acrylic acid and p-hydroxystyrene [of the following formulas (a3-1) to (a3-3):
  • a structural unit represented by any of the above formulas preferably a structural unit derived from methacrylic acid [a structural unit represented by the following formula (a3-1)] or a structural unit derived from acrylic acid [the following formula (a3-2) Is more preferably a structural unit derived from methacrylic acid [a structural unit represented by the following formula (a3-1)].
  • Structural Unit a4 >>>
  • the monomer which forms the other structural unit a4 can be used individually by 1 type or in combination of 2 or more types.
  • the other structural unit a4 include styrene, methylstyrene, ⁇ -methylstyrene, acetoxystyrene, methoxystyrene, ethoxystyrene, chlorostyrene, methyl vinylbenzoate, ethyl vinylbenzoate, 4-hydroxybenzoic acid ( 3-methacryloyloxypropyl) ester, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, (meth And a structural unit such as 2-hydroxypropyl acrylate, benzyl (meth) acrylate, isobornyl (meth) acrylate, acrylonitrile, ethylene glycol monoacetoacetate mono (meth) acrylate, and the like.
  • compounds described in paragraphs compounds described in paragraph
  • a structural unit derived from a monomer having a styrene or an aliphatic cyclic skeleton is preferable from the viewpoint of electrical characteristics.
  • Specific examples include styrene, methylstyrene, ⁇ -methylstyrene, dicyclopentanyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, and benzyl (meth) acrylate.
  • a structural unit derived from (meth) acrylic acid alkyl ester is preferable from the viewpoint of adhesion.
  • Specific examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and n-butyl (meth) acrylate, and methyl (meth) acrylate is more preferable.
  • the content of the structural unit a4 is preferably 60 mol% or less, more preferably 50 mol% or less, and still more preferably 40 mol% or less.
  • 0 mol% may be sufficient, it is preferable to set it as 1 mol% or more, for example, and it is more preferable to set it as 5 mol% or more.
  • various properties of the cured film obtained from the resin composition are improved.
  • polymer A examples include a polymer that does not include the above-described structural unit s1, but includes any one or more of the above-described structural units a1 to a4.
  • a polymer having a structural unit a2 having a crosslinkable group and / or a structural unit a3 having an acid group is preferable because the above-described crosslinked structure is easily formed in the layer.
  • the molecular weight of the above-mentioned polymer P and polymer A is a polystyrene-converted weight average molecular weight, preferably 1,000 to 200,000, more preferably 2,000 to 50,000, and still more preferably 10,000 to 20,000. 000 range. Various characteristics are favorable in the range of said numerical value.
  • the ratio (dispersity, Mw / Mn) between the number average molecular weight Mn and the weight average molecular weight Mw is preferably 1.0 to 5.0, more preferably 1.5 to 3.5.
  • GPC gel permeation chromatography
  • HLC-8020GPC manufactured by Tosoh Corporation
  • TSKgel Super HZ MH TSK gel Super HZ4000
  • TSKgel SuperHZ200 manufactured by Tosoh Corporation
  • THF tetrahydrofuran
  • the polymer P and the polymer A include a radical polymerizable monomer used to form each structural unit described above. It can be synthesized by polymerizing a radical polymerizable monomer mixture in an organic solvent using a radical polymerization initiator. It can also be synthesized by a so-called polymer reaction.
  • the mass ratio of the polymer P to the total mass of the polymer P and the polymer A described above is preferably less than 10% by mass. More preferably, the content is 1 to 5% by mass.
  • the alignment protective layer has a molecular weight of 5000 or less because the flatness when a color filter is provided on the viewing side is improved and the display performance after being exposed to high temperature and high humidity becomes better. It is preferable to contain the crosslinking agent B.
  • the crosslinking agent B any crosslinking agent can be used as long as it causes a crosslinking reaction by heat. For example, a compound having two or more epoxy groups or oxetanyl groups in the molecule described below, a blocked isocyanate compound (a compound having a protected isocyanato group), an alkoxymethyl group-containing compound, or at least one ethylenic group.
  • the crosslinking agent B preferably used in this invention is demonstrated.
  • crosslinking agent B examples include polyfunctional small ring cyclic ether compounds. That is, it means a compound having two or more epoxy groups and / or oxetanyl groups in one molecule.
  • the compound having two or more epoxy groups in the molecule include aliphatic epoxy compounds. These are available as commercial products. For example, Denacol EX-611, EX-612, EX-614, EX-614B, EX-622, EX-512, EX-521, EX-411, EX-421, EX-313, EX-314, EX-321 , EX-211, EX-212, EX-810, EX-811, EX-850, EX-851, EX-821, EX-830, EX-832, EX-841, EX-911, EX-941, EX -920, EX-931, EX-212L, EX-214L, EX-216L, EX-321L, EX-850L, DLC-201, DLC-203, DLC-204, DLC-205, DLC-206, DLC-301 DLC-402 (manufactured by Nagase ChemteX Corporation), Celoxide 2021
  • Aron Oxetane OXT-121, OXT-221, OX-SQ, and PNOX above, manufactured by Toagosei Co., Ltd.
  • the compound containing an oxetanyl group is preferably used alone or mixed with a compound containing an epoxy group.
  • Block isocyanate compound As the crosslinking agent B, a blocked isocyanate compound can also be preferably employed.
  • the blocked isocyanate compound is not particularly limited as long as the isocyanate group has a chemically protected blocked isocyanate group, but is a compound having two or more blocked isocyanate groups in one molecule from the viewpoint of curability. It is preferable.
  • the blocked isocyanate group in this invention is a group which can produce
  • the group which reacted the blocking agent and the isocyanate group and protected the isocyanate group can illustrate preferably.
  • the blocked isocyanate group is preferably a group capable of generating an isocyanate group by heat at 90 ° C. to 250 ° C.
  • the skeleton of the blocked isocyanate compound is not particularly limited and may be any as long as it has two isocyanate groups in one molecule, and may be aliphatic, alicyclic or aromatic.
  • Polyisocyanates may be used, for example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, isophorone diisocyanate, 1,6-hexamethylene diisocyanate, 1,3-trimethylene diisocyanate, 1,4-tetramethylene Diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 1,9-nonamethylene diisocyanate, 1,10-decamethylene diisocyanate, 1,4-cyclohexane diisocyanate, 2, '-Diethyl ether diisocyanate, diphenylmethane-4,4'-diisocyanate, o-xylene diisocyanate, m-xylene diisocyanate, p-xylene diisocyanate, methylene bis (cyclohexyl isocyanate), cyclohexane-1,3
  • TDI tolylene diisocyanate
  • MDI diphenylmethane diisocyanate
  • HDI hexamethylene diisocyanate
  • IPDI isophorone diisocyanate
  • Examples of the matrix structure of the blocked isocyanate compound include biuret type, isocyanurate type, adduct type, and bifunctional prepolymer type.
  • Examples of the blocking agent that forms the block structure of the blocked isocyanate compound include oxime compounds, lactam compounds, phenol compounds, alcohol compounds, amine compounds, active methylene compounds, pyrazole compounds, mercaptan compounds, imidazole compounds, and imide compounds. be able to.
  • a blocking agent selected from oxime compounds, lactam compounds, phenol compounds, alcohol compounds, amine compounds, active methylene compounds, and pyrazole compounds is particularly preferable.
  • Examples of the oxime compound include oxime and ketoxime, and specific examples include acetoxime, formaldoxime, cyclohexane oxime, methyl ethyl ketone oxime, cyclohexanone oxime, benzophenone oxime, and acetoxime.
  • Examples of the lactam compound include ⁇ -caprolactam and ⁇ -butyrolactam.
  • Examples of the phenol compound include phenol, naphthol, cresol, xylenol, and halogen-substituted phenol.
  • Examples of the alcohol compound include methanol, ethanol, propanol, butanol, cyclohexanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, and alkyl lactate.
  • amine compound a primary amine and a secondary amine are mentioned, Any of an aromatic amine, an aliphatic amine, and an alicyclic amine may be sufficient, An aniline, diphenylamine, ethyleneimine, polyethyleneimine etc. can be illustrated.
  • Examples of the active methylene compound include diethyl malonate, dimethyl malonate, ethyl acetoacetate, methyl acetoacetate and the like.
  • pyrazole compound include pyrazole, methylpyrazole, dimethylpyrazole and the like.
  • the mercaptan compound include alkyl mercaptans and aryl mercaptans.
  • the blocked isocyanate compound is available as a commercial product.
  • Coronate AP Stable M Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (above, manufactured by Nippon Polyurethane Industry Co., Ltd.), Takenate B -830, B-815N, B-820NSU, B-842N, B-846N, B-870N, B-874N, B-882N (manufactured by Mitsui Chemicals, Inc.), Duranate 17B-60PX, 17B-60P, TPA-B80X, TPA-B80E, MF-B60X, MF-B60B, MF-K60X, MF-K60B, E402-B80B, SBN-70D, SBB-70P, K6000 (above, manufactured by Asahi Kasei Chemicals Corporation), Death Module BL1100, BL1265 MPA / X BL3575 / 1, BL3272MPA, BL
  • alkoxymethyl group-containing crosslinking agent alkoxymethylated melamine, alkoxymethylated benzoguanamine, alkoxymethylated glycoluril, alkoxymethylated urea and the like are preferable. These can be obtained by converting the methylol group of methylolated melamine, methylolated benzoguanamine, methylolated glycoluril, or methylolated urea to an alkoxymethyl group, respectively.
  • the type of the alkoxymethyl group is not particularly limited, and examples thereof include a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, and a butoxymethyl group.
  • a methyl group is particularly preferred.
  • alkoxymethylated melamine, alkoxymethylated benzoguanamine, and alkoxymethylated glycoluril are preferable compounds, and alkoxymethylated glycoluril is particularly preferable from the viewpoint of transparency.
  • alkoxymethyl group-containing crosslinking agent a compound having a molecular weight of 1,000 or less is used for the curable composition. These alkoxymethyl group-containing compounds are available as commercial products.
  • Cymel 300, 301, 303, 370, 325, 327, 701, 266, 267, 238, 1141, 272, 202, 1156, 1158, 1123 1170, 1174, UFR65, 300 (above, manufactured by Mitsui Cyanamid), Nicarax MX-750, -032, -706, -708, -40, -31, -270, -280, -290, Nicarak MS-11, Nicarak MW-30HM, -100LM, -390, (manufactured by Sanwa Chemical Co., Ltd.) and the like can be preferably used.
  • the content is preferably 30% by mass or less, and preferably 10 to 30% by mass with respect to the total mass of the crosslinking agent B, the polymer P and the polymer A. More preferred.
  • the protective layer-forming composition preferably contains an organic solvent in addition to the polymer described above.
  • organic solvent known organic solvents can be used, such as ethylene glycol monoalkyl ethers, ethylene glycol dialkyl ethers, ethylene glycol monoalkyl ether acetates, propylene glycol monoalkyl ethers, propylene glycol dialkyl ethers, propylene.
  • Glycol monoalkyl ether acetates diethylene glycol dialkyl ethers, diethylene glycol monoalkyl ether acetates, dipropylene glycol monoalkyl ethers, butylene glycol diacetates, dipropylene glycol dialkyl ethers, dipropylene glycol monoalkyl ether acetates, alcohol , Esters, ketones, amides, lactones, etc. Kill.
  • these organic solvents reference can be made to paragraph 0062 of JP-A-2009-098616.
  • Preferred examples include propylene glycol monomethyl ether acetate, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, propylene glycol monomethyl ether, 1,3-butylene glycol diacetate, methoxypropyl acetate, cyclohexanol acetate, propylene glycol diacetate, tetrahydroflur Examples include furyl alcohol.
  • the boiling point of the organic solvent is preferably 100 ° C. to 300 ° C., more preferably 120 ° C. to 250 ° C. from the viewpoint of applicability.
  • the organic solvent which can be used for this invention can be used individually by 1 type or in combination of 2 or more types. It is also preferred to use solvents having different boiling points in combination.
  • the content is preferably from 100 to 3,000 parts by mass, preferably from 200 to 2 parts per 100 parts by mass of the total solid content of the composition, from the viewpoint of adjusting the viscosity to be suitable for coating. More preferably, it is 1,000,000 parts by mass, and even more preferably 250-1,000 parts by mass.
  • the solid content concentration of the composition is preferably 3 to 50% by mass, and more preferably 20 to 40% by mass.
  • the protective layer forming composition may contain a surfactant.
  • a surfactant any of anionic, cationic, nonionic, or amphoteric surfactants can be used, but a preferred surfactant is a nonionic surfactant.
  • nonionic surfactants are preferable, and fluorine-based surfactants are more preferable.
  • surfactant that can be used in the first embodiment, for example, commercially available products such as Megafac F142D, F172, F173, F176, F177, F183, F479, F482, F554, F780, F781, F781-F, R30, R08, F-472SF, BL20, R-61, R-90 (manufactured by DIC Corporation), Florard FC-135, FC- 170C, FC-430, FC-431, Novec FC-4430 (manufactured by Sumitomo 3M), Asahi Guard AG7105, 7000, 950, 7600, Surflon S-112, S-113, S-131, S-141, S-145, S-382, SC-101, SC-102, SC-103, SC-104, SC -105, SC-106 (manufactured by Asahi Glass Co., Ltd.), Ftop EF351, 352, 801, 802 (manufactured by Mitsubishi Materials Denka Kasei),
  • KP manufactured by Shin-Etsu Chemical Co., Ltd.
  • Polyflow manufactured by Kyoeisha Chemical Co., Ltd.
  • F-Top manufactured by Mitsubishi Materials Denka Kasei Co., Ltd.
  • MegaFuck manufactured by DIC Corporation
  • FLORARD manufactured by Sumitomo 3M
  • Asahi Guard Asahi Guard
  • Surflon manufactured by Asahi Glass Co., Ltd.
  • PolyFox manufactured by OMNOVA
  • the content is preferably 0.001 to 5.0 parts by mass and more preferably 0.01 to 2.0 parts by mass with respect to 100 parts by mass in the total solid content of the composition. . Only one type of surfactant may be included, or two or more types of surfactants may be included. When two or more types are included, the total amount is preferably within the above range.
  • the protective layer forming composition may contain an adhesion improving agent.
  • the adhesion improving agent include alkoxysilane compounds.
  • the alkoxysilane compound is a compound that improves the adhesion between an insulating material and an inorganic material serving as a base material, for example, a silicon compound such as silicon, silicon oxide, or silicon nitride, or a metal such as gold, copper, molybdenum, titanium, or aluminum. It is preferable.
  • adhesion improver examples include, for example, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycol.
  • ⁇ -glycidoxypropyltrimethoxysilane and ⁇ -methacryloxypropyltrimethoxysilane are preferred, and ⁇ -glycidoxypropyltrimethoxysilane is more preferred.
  • the content of the adhesion improving agent is preferably 0.001 to 15 parts by mass, and more preferably 0.005 to 10 parts by mass with respect to 100 parts by mass of the total solid components of the composition. Only one type of adhesion improver may be used, or two or more types may be used. When using 2 or more types, it is preferable that a total amount becomes the said range.
  • the protective layer forming composition may contain a photosensitizer.
  • the photosensitizer include a photoacid generator, a quinonediazide compound, and a photoradical initiator.
  • the method for applying the protective layer-forming composition on the substrate is not particularly limited. Specifically, for example, a printing method (for example, gravure printing method, screen printing method, flexographic printing method, inkjet printing method, imprinting) Method), spin coating method, slit coating method, slit and spin coating method, dip coating method, curtain coating method and the like.
  • a printing method for example, gravure printing method, screen printing method, flexographic printing method, inkjet printing method, imprinting
  • spin coating method for example, gravure printing method, screen printing method, flexographic printing method, inkjet printing method, imprinting
  • spin coating method for example, slit coating method, slit and spin coating method, dip coating method, curtain coating method and the like.
  • solvent removal In this invention, it is after the application
  • the solvent removal step varies depending on the type and amount of the solvent. For example, when NMP is used as the solvent, it is a step of heating at about 80 to 150 ° C. for about 0.5 to 3 minutes. The step of heating at about 90 to 120 ° C. for about 0.5 to 2 minutes is more preferable.
  • orientation protective layer ⁇ Formation of orientation protective layer (orientation treatment)>
  • the alignment treatment include non-contact alignment methods such as rubbing treatment, photo-alignment treatment, and magnetic alignment.
  • the orientation treatment is preferably a photo-alignment treatment using light having a wavelength of 365 nm or less.
  • the photo-alignment treatment is not particularly limited except that light having a wavelength of 365 nm or less is used, but it is preferable to use polarized ultraviolet rays for obtaining uniform alignment.
  • the method of irradiating polarized ultraviolet rays is not particularly limited.
  • limiting in particular as polarized light For example, linearly polarized light, circularly polarized light, elliptically polarized light etc. are mentioned, Among these, linearly polarized light is preferable.
  • non-polarized light may be irradiated at an angle inclined from the normal line of the thin film.
  • non-polarized light may be irradiated from an oblique direction on the surface of the thin film.
  • “Inclined irradiation” is not particularly limited as long as it is a direction inclined by a polar angle ⁇ (0 ⁇ ⁇ 90 °) with respect to the normal direction of the thin film surface, and can be appropriately selected according to the purpose.
  • is preferably 20 to 80 °.
  • Examples of the light source used include a xenon lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, and a metal halide lamp.
  • a xenon lamp By using an interference filter, a color filter, or the like for ultraviolet rays obtained from such a light source, the wavelength range of irradiation can be limited.
  • linearly polarized light can be obtained by using a polarizing filter or a polarizing prism for the light from these light sources.
  • the first step is preferably a step of performing a heat treatment before or after the alignment treatment.
  • a method of performing the heat treatment for example, a method of heating the protective layer or the alignment protective layer subjected to the alignment treatment at a temperature of 180 to 350 ° C., preferably 200 to 300 ° C., for 20 to 60 minutes is preferable. It is mentioned in.
  • the heat treatment is preferably performed using a heating device such as a hot plate or an oven. Further, the transparency can be further improved by performing the heat treatment in a nitrogen atmosphere.
  • the liquid crystal is sealed by bonding the second substrate having the base material, the thin film transistor, the display electrode, and the alignment film together with the first substrate, and between the first substrate and the second substrate.
  • Forming a liquid crystal layer and manufacturing a liquid crystal display device Note that the second substrate in the second step is similar to the second substrate of the liquid crystal display device of the present invention, and a manufacturing method thereof is not particularly limited.
  • the method for encapsulating the liquid crystal in the second step is not particularly limited.
  • reaction solution was poured into 1 L of water, neutralized with 2N HCl, extracted with 700 mL of ethyl acetate, washed with saturated brine, and concentrated. Subsequently, it fractionated by silica gel column chromatography, and 23g of intermediate compounds were obtained. 15 g (0.05 mol) of the intermediate compound and triethylamine (manufactured by Wako Pure Chemical Industries, Ltd., 5.6 g, 0.056 mol) were dissolved in 100 mL of THF and cooled to 0 ° C.
  • methacrylic acid chloride manufactured by Tokyo Chemical Industry Co., Ltd., 5.8 g, 0.056 mol
  • the reaction solution was poured into 500 g of water, extracted with ethyl acetate, and concentrated.
  • fractionation was performed by silica gel column chromatography to obtain 20 g of monomer a-2 having a cinnamate group as a photo-alignment group.
  • reaction solution was poured into 1 L of water, neutralized with 2N HCl, extracted with 700 mL of ethyl acetate, washed with saturated brine, and concentrated. Crude crystals were taken out and fractionated by silica gel column chromatography to obtain 18 g of an intermediate compound.
  • 18 g of the intermediate compound and triethylamine (Wako Pure Chemical Industries, Ltd., 7.79 g, 0.07 mol) were dissolved in 100 mL of THF and cooled to 0 ° C.
  • cinnamoyl chloride Tokyo Chemical Industry Co., Ltd., 13.1 g, 0.07 mol
  • reaction solution was poured into 500 g of water, extracted with ethyl acetate, and concentrated. Subsequently, fractionation was performed by silica gel column chromatography to obtain 22 g of monomer a-3 having a chalcone group as a photo-alignment group.
  • Synthesized monomer a-1 (11.1 g, 45 mol%), hexafluoroisopropyl methacrylate (hereinafter abbreviated as “HFIP”) (manufactured by Tokyo Chemical Industry Co., Ltd., 3.5 g, 15 mol%), methacrylic acid (hereinafter referred to as “HFIP”) (Hereinafter abbreviated as “MAA”) (manufactured by Wako Pure Chemical Industries, Ltd., 1.7 g, 20 mol%), glycidyl methacrylate (hereinafter abbreviated as “GMA”) (manufactured by Wako Pure Chemical Industries, Ltd.), 2.
  • HFIP hexafluoroisopropyl methacrylate
  • MAA methacrylic acid
  • GMA glycidyl methacrylate
  • HFIP Hexafluoroisopropyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • 6FM trifluoroethyl methacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd.)
  • KBM-503 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • C18MA Octadecane methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • MAA Methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.)
  • MMA Methyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.)
  • St Styrene (Wako Pure Chemical Industries, Ltd.)
  • AA Acrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.)
  • GMA Gly
  • reaction product solution was dropped into a large amount of water to coagulate the reaction product.
  • This coagulated product was washed with water, redissolved in THF (200 g), and coagulated again with a large amount of water.
  • This re-dissolution and coagulation operation was performed three times in total, and then the obtained coagulated product was dried under reduced pressure at 60 ° C. for 48 hours to obtain a polymer A-5.
  • a polymer A-5 solution was prepared using diethylene glycol so that the solid content concentration was 25% by mass.
  • Polymer A-6 was synthesized in the same manner as the non-oriented polymer (E-1) described in paragraph [0165] (Preparation Example 5) of JP2013-177561A.
  • Crosslinking agent B As the crosslinking agent B, those shown below were used.
  • a polyfunctional epoxy compound (Ogsol EG, manufactured by Osaka Gas Co., Ltd.) was used as the crosslinking agent B-1 having a molecular weight of 5,000 or less.
  • a polyfunctional epoxy compound (EX-321L, manufactured by Nagase ChemteX Corporation) was used as the crosslinking agent B-2 having a molecular weight of 5,000 or less.
  • ⁇ F-554> As the surfactant, a perfluoroalkyl group-containing nonionic surfactant (F-554, manufactured by DIC Corporation) was used.
  • F-554 a perfluoroalkyl group-containing nonionic surfactant
  • KBM-403> As the adhesion improving agent, ⁇ -glycidoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.) was used.
  • Examples 1 to 24 and Comparative Examples 1 to 6 Each component shown in Table 2 below is dissolved and mixed in a solvent (PGMEA) until the solid content is 18% by mass, filtered through a polytetrafluoroethylene filter having a diameter of 0.2 ⁇ m, and each example and comparative example. A resin composition was prepared. In addition, the addition amount in a table
  • surface represents the addition amount in solid content of each component, and a unit is a mass part.
  • the obtained resin composition was applied onto a glass substrate by a spin coat method, pre-dried on a hot plate at 80 ° C. for 1 minute, and then baked in a clean oven at 230 ° C. for 60 minutes to give a 3 ⁇ m overcoat.
  • a cured film of layers was formed.
  • the formed cured film was subjected to oblique cutting with a surface / interface cutting device (DN-20S type, manufactured by Daipura Wintes) to expose the cross section.
  • the intensity ELq and the intensity ESsub of the mass analysis of the fragment derived from the orientation group were measured using the measurement apparatus and conditions described above, and the intensity ratio (intensity ELq / intensity ESub) was measured.
  • the evaluation was based on the following criteria. The results are shown in Table 2 below.
  • C The intensity ratio is 5 times to less than 8 times.
  • F No fragment peak
  • the formed protective layer was irradiated with 750 mJ / cm 2 of polarized light using an ultraviolet polarized light exposure apparatus (HC-2150PUFM, manufactured by Run Technical Service Co., Ltd.) to form an alignment protective layer. . Thereafter, a horizontally aligned liquid crystal was applied, and the alignment state was observed with a polarizing microscope at a magnification of 20 times. The place was changed, and it observed in five visual fields (about 1 square micrometer), and evaluated with the following references
  • ⁇ Flatness> Create an L / S pattern with a height of 1 ⁇ m and a width of 10 ⁇ m (L / S width ratio is 1: 1), apply the resin composition on it with a spin coater, pre-bake at 90 ° C./120 seconds, And cured at 230 ° C./30 minutes to obtain a cured film of 2 ⁇ m.
  • the flatness of the obtained cured film was defined by the following formula and calculated. The results are shown in Table 3 below. As the flatness, the closer the value is to 100, the higher the flattening ability, and 70% or more is required for practical use.
  • a transparent conductive layer made of ITO was formed on the interlayer insulating film using a sputtering method.
  • the transparent conductive layer was etched using a photolithography method, and a comb-like pixel electrode was formed on the inorganic insulating film.
  • the array substrate of this example was manufactured.
  • a contact hole of a desired size is formed at a desired position of the insulating film, and electrical connection between the pixel electrode and the source-drain electrode of the active element is realized. It was.
  • the surface of the coating film polarized ultraviolet rays 200 J / m 2, including a bright line of 313nm using a Hg-Xe lamp and Gran Taylor prism, irradiated from 40 ° inclined direction with respect to the direction perpendicular to the substrate surface, An array substrate having a liquid crystal alignment film was manufactured.
  • a color filter substrate produced by a known method was prepared.
  • fine coloring patterns of three colors of red, green, and blue and a black matrix are arranged in a lattice pattern on a transparent substrate.
  • a coating film was formed on the color pattern of the color filter substrate and the black matrix using the resin compositions of Examples 1 to 24 and Comparative Examples 1 to 6 shown in Table 2 above, and the coating was formed at 90 ° C./120 After pre-baking for 2 seconds, it was thermally cured in an oven at 230 ° C./30 minutes to produce a protective film.
  • the protective film was subjected to a photo-alignment treatment by irradiating polarized light with 750 mJ / cm 2 using an ultraviolet polarized light exposure apparatus (HC-2150PUFM, manufactured by Run Technical Service Co., Ltd.), and a 2 ⁇ m alignment protective film.
  • the counter substrate was manufactured.
  • liquid crystal layer was sandwiched between the obtained counter substrate with an alignment protective film and the array substrate to manufacture a color liquid crystal display element.
  • the liquid crystal layer a layer made of nematic liquid crystal and aligned parallel to the substrate surface was used. The display characteristics and reliability of these liquid crystal display elements were evaluated.
  • the formed alignment protective layer has a covalent bond.
  • an intensity ratio (strength ELq / strength ESub) of mass analysis intensity ELq and intensity ESub of the fragment derived from the orientation group satisfies a predetermined condition.

Abstract

The present invention addresses the problem of providing a liquid crystal display apparatus that maintains high flatness even when a color filer is provided on a visual recognition side, and exhibits high display performance even under a high temperature and a high humidity, and a manufacturing method therefor. A liquid crystal display apparatus according to the present invention has a first substrate, a liquid crystal layer, and a second substrate in this order from the visual recognition side, wherein: the first substrate is provided with a base material and an oriented protective layer; the second substrate is provided with a base material, a thin-film transistor, a display electrode, and an oriented film; the oriented protective layer has a surface which comes into contact with the liquid crystal layer; the oriented protective layer has an orientation group and a crosslink structure mutually connected through covalent bonding; regarding fragments derived from the orientation group and detected by time-of-flight secondary ion mass spectrometry, the strength ELq of a fragment on the surface of the oriented protective layer that is in contact with the liquid crystal layer and the strength ESub of a fragment on a surface of the oriented protective layer on the base material side satisfy a prescribed relationship; and the crosslink structure is represented by a prescribed structural formula.

Description

液晶表示装置および液晶表示装置の製造方法Liquid crystal display device and method of manufacturing liquid crystal display device
 本発明は、液晶表示装置および液晶表示装置の製造方法に関する。 The present invention relates to a liquid crystal display device and a method for manufacturing the liquid crystal display device.
 液晶表示装置(liquid crystal display:LCD)は、低電圧および低消費電力で小型化および薄膜化が可能など様々な利点からパーソナルコンピューターやスマートフォンなどのモニター、テレビ用途に広く利用されている。
 このような液晶表示装置は、液晶セルおよび液晶セルの両側に配置された2枚の偏光板を有しており、また、液晶セルは、液晶層と液晶層を挟んで互いに対向して配置される2枚の基板とを有しており、この2枚の基板には、一般的に液晶層を構成する液晶を配向させるため配向膜が設けられている。
Liquid crystal displays (LCDs) are widely used in monitors and television applications such as personal computers and smartphones because of their various advantages such as low voltage and low power consumption, and enabling miniaturization and thinning.
Such a liquid crystal display device has a liquid crystal cell and two polarizing plates disposed on both sides of the liquid crystal cell, and the liquid crystal cell is disposed to face each other with the liquid crystal layer and the liquid crystal layer interposed therebetween. The two substrates are generally provided with an alignment film for aligning the liquid crystal constituting the liquid crystal layer.
 このような配向膜を形成する材料として、例えば、特許文献1には、「第一成分としてシリコーン基又はフッ素置換アルキル基及び光配向性基を有するポリマーと、第二成分としてメタクリル酸及びメタクリル酸エステルからなる群より選ばれる少なくとも1種を含む単量体を重合して得られる非光配向性ポリマーとを含有する光配向性高分子組成物。」が記載されている([請求項1][請求項28])。 As a material for forming such an alignment film, for example, Patent Document 1 discloses that “a polymer having a silicone group or a fluorine-substituted alkyl group and a photoalignment group as a first component, and methacrylic acid and methacrylic acid as a second component”. "A photoalignable polymer composition comprising a non-photoalignable polymer obtained by polymerizing a monomer containing at least one selected from the group consisting of esters" ([Claim 1]). [Claim 28]).
特開2013-177561号公報JP 2013-177561 A
 ところで、液晶表示装置には、視認側にカラーフィルターを設けることが一般的であり、また、このカラーフィルターには、カラーフィルターからの不純物の透過を防ぐ観点やカラーフィルターの段差を平坦化させる観点から、保護層(オーバーコート層)を設けることが知られている。
 ここで、本発明者らは、視認側にカラーフィルターを設けた場合に保護層が不要となる配向膜、すなわち、保護層と配向膜との機能を有する配向保護層を設けることを検討した。
 また、本発明者らは、このような配向保護層として、特許文献1に記載された配向膜を検討したところ、光配向性高分子組成物の配合剤によっては平坦性が劣る場合があり、また、液晶表示装置が高温高湿下に晒された場合には表示性能が劣る問題点があることを明らかとした。
 そこで、本発明は、視認側にカラーフィルターを設けた場合であっても優れた平坦性を維持し、かつ、高温高湿下に晒された場合にも表示性能が良好な液晶表示装置およびその製造方法を提供することを課題とする。
By the way, it is general that a liquid crystal display device is provided with a color filter on the viewing side. In addition, the color filter has a viewpoint of preventing permeation of impurities from the color filter and a viewpoint of flattening a step of the color filter. Therefore, it is known to provide a protective layer (overcoat layer).
Here, the present inventors examined providing an alignment film that does not require a protective layer when a color filter is provided on the viewing side, that is, an alignment protective layer having a function of the protective layer and the alignment film.
In addition, the inventors examined the alignment film described in Patent Document 1 as such an alignment protective layer, and the flatness may be inferior depending on the compounding agent of the photoalignable polymer composition, Also, it has been clarified that there is a problem that the display performance is inferior when the liquid crystal display device is exposed to high temperature and high humidity.
Therefore, the present invention provides a liquid crystal display device that maintains excellent flatness even when a color filter is provided on the viewing side, and has good display performance even when exposed to high temperature and high humidity, and its liquid crystal display device It is an object to provide a manufacturing method.
 本発明者らは、上記課題を達成すべく鋭意検討した結果、共有結合を介して互いに連結した配向性基および架橋構造を有する配向保護層を設け、かつ、配向性基を液晶層に接する面側に偏在させることにより、視認側にカラーフィルターを設けた場合であっても優れた平坦性を維持し、かつ、高温高湿下に晒された場合にも表示性能が良好となることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記課題を達成することができることを見出した。
As a result of intensive studies to achieve the above-mentioned problems, the present inventors have provided an orientation protective layer having an orientation group and a cross-linked structure connected to each other through a covalent bond, and the surface in contact with the liquid crystal layer. It is found that even when a color filter is provided on the viewing side, the flatness is maintained even when the color filter is provided on the viewing side, and the display performance is improved even when exposed to high temperatures and high humidity. The present invention has been completed.
That is, it has been found that the above-described problem can be achieved by the following configuration.
 [1] 視認側から、第1の基板と、液晶層と、第2の基板とをこの順に有する液晶表示装置であって、
 第1の基板が、基材と、配向保護層とを具備し、
 第2の基板が、基材と、薄膜トランジスタと、表示電極と、配向膜とを具備し、
 配向保護層が、液晶層と接する面を有し、
 配向保護層が、共有結合を介して互いに連結した配向性基および架橋構造を有し、
 飛行時間型二次イオン質量分析法で検出される配向性基に由来するフラグメントについて、配向保護層の液晶層に接する面における配向性基に由来するフラグメントの質量分析の強度ELqと、配向保護層の基材側の面における配向性基に由来するフラグメントの質量分析の強度ESubとが、下記条件1または2を満たし、
 架橋構造が、後述する式(A-1)~(A-3)で表されるいずれかの構造を含む、液晶表示装置。
 条件1:強度ELqが強度ESubの2倍~20倍である。
 条件2:強度ELqが有意に測定され、強度ESubが測定限界以下である。
 [2] 強度ELqが、強度ESubの5倍~20倍である、[1]に記載の液晶表示装置。
 [3] 配向性基が、光配向性基を光反応させてなる基である、[1]または[2]に記載の液晶表示装置。
 [4] 配向保護層の膜厚が1~4μmである、[1]~[3]のいずれかに記載の液晶表示装置。
 [5] 液晶層を構成する液晶が、水平配向液晶である、[1]~[4]のいずれかに記載の液晶表示装置。
 [6] 配向性基に由来するフラグメントが、シンナメート基およびカルコン基からなる群から選択される少なくとも1種の光配向性基に由来するフラグメントである、[1]~[5]のいずれかに記載の液晶表示装置。
[1] A liquid crystal display device having a first substrate, a liquid crystal layer, and a second substrate in this order from the viewing side,
The first substrate comprises a base material and an orientation protective layer,
The second substrate comprises a base material, a thin film transistor, a display electrode, and an alignment film,
The alignment protective layer has a surface in contact with the liquid crystal layer;
The alignment protective layer has an alignment group and a crosslinked structure linked to each other via a covalent bond;
For fragments derived from the orientation group detected by time-of-flight secondary ion mass spectrometry, the intensity ELq of the mass analysis of the fragment derived from the orientation group on the surface in contact with the liquid crystal layer of the orientation protection layer, and the orientation protection layer The strength ESsub of the mass spectrometry of the fragment derived from the orientation group on the surface of the base material side satisfies the following condition 1 or 2:
A liquid crystal display device, wherein the crosslinked structure includes any one of structures represented by formulas (A-1) to (A-3) described later.
Condition 1: The intensity ELq is 2 to 20 times the intensity ESub.
Condition 2: The intensity ELq is significantly measured and the intensity ESub is below the measurement limit.
[2] The liquid crystal display device according to [1], wherein the intensity ELq is 5 to 20 times the intensity ESub.
[3] The liquid crystal display device according to [1] or [2], wherein the orientation group is a group obtained by photoreaction of a photoalignment group.
[4] The liquid crystal display device according to any one of [1] to [3], wherein the thickness of the alignment protective layer is 1 to 4 μm.
[5] The liquid crystal display device according to any one of [1] to [4], wherein the liquid crystal constituting the liquid crystal layer is a horizontally aligned liquid crystal.
[6] In any one of [1] to [5], the fragment derived from the orientation group is a fragment derived from at least one photoalignment group selected from the group consisting of a cinnamate group and a chalcone group. The liquid crystal display device described.
 [7] 基材上に、配向性基を有する構成単位を含む重合体Pと、配向性基を有する構成単位を含まない重合体Aとを含有する配向保護層形成用組成物を用いて保護層を形成した後に、保護層に対して配向処理を施して配向保護層を形成し、第1の基板を作製する第1工程と、
 基材、薄膜トランジスタ、表示電極および配向膜を具備する第2の基板と、第1の基板とを張り合わせて液晶を封入し、第1の基板と第2の基板との間に液晶層を形成し、液晶表示装置を作製する第2工程と、を有する液晶表示装置の製造方法。
 [8] 重合体Pが、配向性基を有する構成単位として下記s1に示される構成単位を含み、
 重合体Pおよび重合体Aが、下記条件3または4を満たす、[7]に記載の液晶表示装置の製造方法。
 s1:フッ素置換炭化水素基、シロキサン骨格および炭素数10~30のアルキル基からなる群より選択される少なくとも1つの部分構造を有する構成単位、ならびに、光配向性基を有する構成単位
 条件3:重合体Pが、架橋性基を有する構成単位a2を含み、かつ、重合体Aが、酸基を有する構成単位a3を含む。
 条件4:重合体Pが、酸基を有する構成単位a3を含み、かつ、重合体Aが、架橋性基を有する構成単位a2を含む。
 [9] 架橋性基が、オキシラニル基、3,4-エポキシシクロヘキシル基、および、オキセタニル基からなる群から選択される少なくとも1種である、[8]に記載の液表示装置の製造方法。
 [10] 重合体Pおよび重合体Aの合計質量に対する重合体Pの質量割合が10質量%未満である、[7]~[9]のいずれかに記載の液晶表示装置の製造方法。
 [11] 配向保護層形成用組成物が、更に、分子量5000以下の架橋剤Bを含有する、[7]~[10]のいずれかに記載の液晶表示装置の製造方法。
 [12] 架橋剤Bが、エポキシ基を有する架橋剤を含み、
 架橋剤B、重合体Pおよび重合体Aの合計質量に対する架橋剤Bの質量割合が30質量%以下である、[11]に記載の液晶表示装置の製造方法。
 [13] 配向性基が、光配向性基であり、
 配向処理が、波長365nm以下の光を用いる光配向処理である、[7]~[12]のいずれかに記載の液晶表示装置の製造方法。
 [14] 第1工程が、配向処理の前または後に、熱処理を施す工程を含む、[7]~[13]のいずれかに記載の液晶表示装置の製造方法。
[7] Protection using a composition for forming an alignment protective layer containing a polymer P containing a structural unit having an orientation group and a polymer A not containing a structural unit having an orientation group on a substrate. A first step of forming a first substrate by forming an orientation protective layer by performing an orientation treatment on the protective layer after forming the layer;
A liquid crystal is sealed by bonding a second substrate having a base material, a thin film transistor, a display electrode, and an alignment film to the first substrate, and a liquid crystal layer is formed between the first substrate and the second substrate. And a second step of manufacturing the liquid crystal display device.
[8] The polymer P includes a structural unit represented by s1 below as a structural unit having an orientation group,
The method for producing a liquid crystal display device according to [7], wherein the polymer P and the polymer A satisfy the following condition 3 or 4.
s1: a structural unit having at least one partial structure selected from the group consisting of a fluorine-substituted hydrocarbon group, a siloxane skeleton and an alkyl group having 10 to 30 carbon atoms, and a structural unit having a photoalignment group Condition 3: Heavy The coalescence P includes a structural unit a2 having a crosslinkable group, and the polymer A includes a structural unit a3 having an acid group.
Condition 4: The polymer P includes a structural unit a3 having an acid group, and the polymer A includes a structural unit a2 having a crosslinkable group.
[9] The method for producing a liquid display device according to [8], wherein the crosslinkable group is at least one selected from the group consisting of an oxiranyl group, a 3,4-epoxycyclohexyl group, and an oxetanyl group.
[10] The method for producing a liquid crystal display device according to any one of [7] to [9], wherein the mass ratio of the polymer P to the total mass of the polymer P and the polymer A is less than 10 mass%.
[11] The method for producing a liquid crystal display device according to any one of [7] to [10], wherein the composition for forming an alignment protective layer further contains a crosslinking agent B having a molecular weight of 5000 or less.
[12] The crosslinking agent B includes a crosslinking agent having an epoxy group,
The method for producing a liquid crystal display device according to [11], wherein the mass ratio of the crosslinking agent B to the total mass of the crosslinking agent B, the polymer P, and the polymer A is 30% by mass or less.
[13] The orientation group is a photo-alignment group,
The method for producing a liquid crystal display device according to any one of [7] to [12], wherein the alignment treatment is a photo-alignment treatment using light having a wavelength of 365 nm or less.
[14] The method for manufacturing a liquid crystal display device according to any one of [7] to [13], wherein the first step includes a step of performing a heat treatment before or after the alignment treatment.
 本発明によれば、視認側にカラーフィルターを設けた場合であっても優れた平坦性を維持し、かつ、高温高湿下に晒された場合にも表示性能が良好な液晶表示装置およびその製造方法を提供することができる。 According to the present invention, a liquid crystal display device that maintains excellent flatness even when a color filter is provided on the viewing side and has good display performance even when exposed to high temperature and high humidity, and its liquid crystal display device A manufacturing method can be provided.
図1は、本発明の液晶表示装置の実施態様の一例を示す模式的な断面図である。FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of the liquid crystal display device of the present invention.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書における基(原子団)の表記において、置換および無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 本明細書において、「(メタ)アクリレート」は、「アクリレート」または「メタクリレート」を表す表記であり、「(メタ)アクリル」は、「アクリル」または「メタクリル」を表す表記であり、「(メタ)アクリロイル」は、「アクリロイル」または「メタクリロイル」を表す表記である。
Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In the description of the group (atomic group) in this specification, the description which does not describe substitution and non-substitution includes what does not have a substituent and what has a substituent. For example, the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
In this specification, “(meth) acrylate” is a notation representing “acrylate” or “methacrylate”, “(meth) acryl” is a notation representing “acryl” or “methacryl”, and “(meth) The “) acryloyl” is a notation representing “acryloyl” or “methacryloyl”.
[液晶表示装置]
 本発明の液晶表示装置は、視認側から、第1の基板と、液晶層と、第2の基板とをこの順に有する液晶表示装置であって、第1の基板が、基材と、配向保護層とを具備し、第2の基板が、基材と、薄膜トランジスタと、表示電極と、配向膜とを具備するものである。
 また、本発明の液晶表示装置においては、配向保護層が、液晶層と接する面を有し、また、配向性基および後述する式(A-1)~(A-3)で表されるいずれかの構造を含む架橋構造を有し、更に、配向性基および架橋構造が共有結合を介して互いに連結した構造を有している。
 更に、本発明の液晶表示装置においては、飛行時間型二次イオン質量分析法(Time-of-Flight Secondary Ion Mass Spectrometry:TOF-SIMS)で検出される配向性基に由来するフラグメントについて、配向保護層の液晶層に接する面における配向性基に由来するフラグメントの質量分析の強度ELqと、配向保護層の基材側の面における配向性基に由来するフラグメントの質量分析の強度ESubとが、下記条件1または2を満たしている。
 条件1:強度ELqが強度ESubの2倍~20倍である。
 条件2:強度ELqが有意に測定され、強度ESubが測定限界以下である。
[Liquid Crystal Display]
The liquid crystal display device of the present invention is a liquid crystal display device having a first substrate, a liquid crystal layer, and a second substrate in this order from the viewing side, wherein the first substrate includes a base material and orientation protection. And the second substrate includes a base material, a thin film transistor, a display electrode, and an alignment film.
In the liquid crystal display device of the present invention, the orientation protective layer has a surface in contact with the liquid crystal layer, and any of the orientation groups and formulas (A-1) to (A-3) described later. And a structure in which the orientation group and the crosslinked structure are linked to each other through a covalent bond.
Furthermore, in the liquid crystal display device of the present invention, alignment protection is provided for fragments derived from alignment groups detected by time-of-flight secondary ion mass spectrometry (TOF-SIMS). The intensity ELq of the mass analysis of the fragment derived from the orientation group on the surface in contact with the liquid crystal layer of the layer and the intensity ESub of the mass analysis of the fragment derived from the orientation group on the substrate side surface of the orientation protective layer are as follows: Condition 1 or 2 is satisfied.
Condition 1: The intensity ELq is 2 to 20 times the intensity ESub.
Condition 2: The intensity ELq is significantly measured and the intensity ESub is below the measurement limit.
 <TOF-SIMSの測定条件>
 本発明におけるTOF-SIMSによる測定は、以下に示すように測定する。
(1)配向保護層と配向保護層に隣接する隣接層とを剥離し、配向保護層の表面(液晶層に接している面をいう。以下、同様。)および配向保護層の裏面(基材または基材側の隣接層と接している面をいう。以下、同様。)を露出させることができる場合、下記(3)に示す装置および条件で、配向保護層の表面における配向性基に由来するフラグメントの質量分析の強度ELq、および、配向保護層の裏面における配向性基に由来するフラグメントの質量分析の強度ESubを測定する。
(2)配向保護層の表面および裏面を露出させることができない場合、配向保護層と隣接層とを有する積層体について、サイカス法(Surface and Interfacial Cutting Analysis System:SAICAS)を用いて、切削面が配向保護層の表面および裏面に至るように斜め方向に切削し、配向保護層の断面を露出させる。
 露出させた断面について、配向保護層の表面から深さ(厚み)方向に10nmの領域を下記(3)に示す装置および条件で測定した配向性基に由来するフラグメントの質量分析の強度を強度ELqとし、配向保護層の裏面から深さ(厚み)方向に2000nmの領域を下記(3)に示す装置および条件で測定した配向性基に由来するフラグメントの質量分析の強度を強度ESubとする。
(3)以下の装置および条件で測定する。
 ・装置:TOF-SIMS IV(ION-TOF社製)
 ・一次イオン:Bi3+(ビーム直径2μm)
 ・測定範囲:一の方向およびその直交方向に各々256点ずつラスタースキャン
 ・極性:posi、nega
<TOF-SIMS measurement conditions>
The measurement by TOF-SIMS in the present invention is performed as follows.
(1) The alignment protective layer and the adjacent layer adjacent to the alignment protective layer are peeled off, and the surface of the alignment protective layer (referring to the surface in contact with the liquid crystal layer; hereinafter the same) and the back surface of the alignment protective layer (base material) Or the surface in contact with the adjacent layer on the substrate side, the same shall apply hereinafter), derived from the orientation group on the surface of the orientation protective layer with the apparatus and conditions shown in (3) below. The mass analysis intensity ELq of the fragment to be analyzed and the mass analysis intensity ESsub of the fragment derived from the orientation group on the back surface of the alignment protective layer are measured.
(2) When the front and back surfaces of the alignment protective layer cannot be exposed, the cutting surface is determined by using the CYCUS method (Surface and Interfacial Cutting Analysis System: SAICAS) for the laminate having the alignment protective layer and the adjacent layer. Cutting is performed in an oblique direction so as to reach the front and back surfaces of the alignment protective layer, and the cross section of the alignment protective layer is exposed.
With respect to the exposed cross section, the intensity of the mass analysis of the fragment derived from the orientation group measured with the apparatus and conditions shown in (3) below in the depth (thickness) direction from the surface of the orientation protective layer is 10 nm. And the intensity of the mass analysis of the fragment derived from the orientation group measured in the depth (thickness) direction from the back surface of the orientation protective layer in the depth (thickness) direction using the apparatus and conditions shown in (3) below is defined as strength ESub.
(3) Measure with the following equipment and conditions.
・ Device: TOF-SIMS IV (made by ION-TOF)
Primary ion: Bi 3+ (beam diameter 2 μm)
・ Measurement range: raster scan of 256 points in each direction and orthogonal direction ・ Polarity: posi, negative
 本発明の液晶表示装置は、上述した配向保護層を設けることにより、視認側にカラーフィルターを設けた場合であっても優れた平坦性を維持し、かつ、高温高湿下に晒された場合にも表示性能が良好となる。
 これは、詳細には明らかではないが、本発明者らは以下のように推測している。
 すなわち、配向保護層が、配向性基および後述する式(A-1)~(A-3)で表されるいずれかの構造を含む架橋構造を有し、また、配向性基および架橋構造が共有結合を介して互いに連結した構造を有し、更に、TOF-SIMS測定による強度ELqおよび強度ESubが上述した条件1または2を満たすことにより、配向性基が配向保護層の表面に偏在し、かつ、配向性基が配向保護層を構成するポリマーと強固に結合していると考えられる。
 そのため、配向性基が配向保護層の裏面側にカラーフィルターを設けた場合であっても平坦性を損なわず、また、高温高湿下に晒された場合にも液晶層の配向を維持することができるため表示性能が良好になると考えられる。
When the liquid crystal display device of the present invention is provided with the alignment protective layer described above, it maintains excellent flatness even when a color filter is provided on the viewing side, and when exposed to high temperature and high humidity. In addition, the display performance is good.
Although this is not clear in detail, the present inventors presume as follows.
That is, the alignment protective layer has a crosslinking structure containing an orientation group and any of the structures represented by formulas (A-1) to (A-3) described later. When the structure has a structure linked to each other through a covalent bond, and the strength ELq and the strength ESub by TOF-SIMS measurement satisfy the above condition 1 or 2, the orientation group is unevenly distributed on the surface of the orientation protective layer, And it is thought that the orientation group has couple | bonded firmly with the polymer which comprises an orientation protective layer.
Therefore, even when the orientation group is provided with a color filter on the back side of the orientation protective layer, the flatness is not impaired, and the orientation of the liquid crystal layer is maintained even when exposed to high temperature and high humidity. Therefore, the display performance is considered to be good.
 本発明においては、高温高湿下に晒された場合にも表示性能がより良好となる理由から、TOF-SIMS測定による強度ELqが、強度ESubの5倍~20倍であるのが好ましい。 In the present invention, it is preferable that the intensity ELq by the TOF-SIMS measurement is 5 to 20 times the intensity ESub because the display performance is improved even when exposed to high temperature and high humidity.
 次に、図1を用いて本発明の液晶表示装置の構成の概要を説明した後に、本発明の液晶表示装置が有する第1の基板、液晶層および第2の基板について、詳細に説明する。 Next, after describing the outline of the configuration of the liquid crystal display device of the present invention with reference to FIG. 1, the first substrate, the liquid crystal layer, and the second substrate of the liquid crystal display device of the present invention will be described in detail.
 図1は、本発明の液晶表示装置の実施態様の一例を示す模式的な断面図である。
 図1に示す液晶表示装置10は、視認側から、第1の基板30と、液晶層20と、第2の基板40とがこの順に設けられている。
 また、第1の基板30は、偏光フィルムが貼り付けられた基材15と、ブラックマトリックスを配置したRGBカラーフィルター22と、液晶層20と接する面を有する配向保護層21とが設けられている。
 また、第2の基板40は、偏光フィルムが貼り付けられた基材14と薄膜トランジスタ16の素子とが配置されている。基材14上に形成された各素子には、硬化膜17中に形成されたコンタクトホール18を通して、表示電極を形成するITO透明電極19が配線されており、ITO透明電極19の上には、配向膜23が設けられている。
 また、図1に示す液晶表示装置10は、背面にバックライトユニット12を有しており、バックライトの光源としては、特に限定されず公知の光源を用いることができる。例えば、白色LED(light emitting diode)、青色、赤色、緑色などの多色LED、蛍光灯(冷陰極管)、有機エレクトロルミネッセンスなどを挙げることができる。
 また、液晶表示装置は、3D(立体視)型のものとしたり、タッチパネル型のものとしたりすることも可能である。更にフレキシブル型にすることも可能であり、特開2011-145686号公報の第2相間絶縁膜(48)や、特開2009-258758号公報の相間絶縁膜(520)として用いることができる。
FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of the liquid crystal display device of the present invention.
The liquid crystal display device 10 illustrated in FIG. 1 includes a first substrate 30, a liquid crystal layer 20, and a second substrate 40 in this order from the viewing side.
The first substrate 30 is provided with a base material 15 to which a polarizing film is attached, an RGB color filter 22 on which a black matrix is disposed, and an alignment protective layer 21 having a surface in contact with the liquid crystal layer 20. .
In addition, the second substrate 40 is provided with the base material 14 to which the polarizing film is attached and the element of the thin film transistor 16. Each element formed on the substrate 14 is wired with an ITO transparent electrode 19 that forms a display electrode through a contact hole 18 formed in the cured film 17. On the ITO transparent electrode 19, An alignment film 23 is provided.
Further, the liquid crystal display device 10 shown in FIG. 1 has a backlight unit 12 on the back surface, and the light source of the backlight is not particularly limited, and a known light source can be used. For example, white LEDs (light emitting diodes), multicolor LEDs such as blue, red, and green, fluorescent lamps (cold cathode tubes), organic electroluminescence, and the like can be given.
Further, the liquid crystal display device can be a 3D (stereoscopic) type or a touch panel type. Further, it can be made flexible, and can be used as the second interphase insulating film (48) of JP 2011-145686A or the interphase insulating film (520) of JP 2009-258758A.
 〔第1の基板〕
 本発明の液晶表示装置が有する第1の基板は、後述する液晶層よりも視認側に設けられる基板であり、基材と配向保護層とを具備する。なお、配向保護層は、後述する液晶層と接する面を有するため、第1の基板は、視認側から基材と配向保護層とをこの順に具備するものである。
 また、本発明の液晶表示装置が視認側に任意のカラーフィルターを設ける場合には、第1の基板は、基材とカラーフィルターと配向保護層とをこの順に具備する。
[First substrate]
The 1st board | substrate which the liquid crystal display device of this invention has is a board | substrate provided in the visual recognition side rather than the liquid crystal layer mentioned later, and comprises a base material and an orientation protective layer. Since the alignment protective layer has a surface in contact with a liquid crystal layer described later, the first substrate includes a base material and an alignment protective layer in this order from the viewing side.
When the liquid crystal display device of the present invention is provided with an arbitrary color filter on the viewing side, the first substrate includes a base material, a color filter, and an alignment protective layer in this order.
 <基材>
 上記基材としては、従来公知の液晶表示装置の液晶セルに用いられる透明基板を用いることができ、例えば、ガラス基板、石英基板、透明樹脂基板等を用いることができる。中でも、ガラス基板を用いるのが好ましい。
<Base material>
As the base material, a transparent substrate used in a liquid crystal cell of a conventionally known liquid crystal display device can be used. For example, a glass substrate, a quartz substrate, a transparent resin substrate, or the like can be used. Among these, it is preferable to use a glass substrate.
 <配向保護層>
 上記配向保護層は、上述した通り、後述する液晶層と接する面を有し、また、配向性基および後述する式(A-1)~(A-3)で表されるいずれかの構造を含む架橋構造を有し、更に、配向性基および架橋構造が共有結合を介して互いに連結した構造を有している。
<Orientation protective layer>
As described above, the alignment protective layer has a surface in contact with a liquid crystal layer described later, and has an alignment group and any structure represented by formulas (A-1) to (A-3) described later. And having a structure in which the orientation group and the crosslinked structure are linked to each other through a covalent bond.
 (配向性基)
 上記配向保護層が有する配向性基は、液晶性化合物を配向させる機能を有する官能基を配向させた基であれば特に限定されないが、本発明においては、配向保護層の形成時に表面に接触せず、面状悪化を防ぐことが可能となる理由から、光配向性基を光反応させてなる基であるのが好ましい。
(Orienting group)
The alignment group possessed by the alignment protective layer is not particularly limited as long as it is a group in which a functional group having a function of aligning a liquid crystalline compound is aligned, but in the present invention, the alignment protective layer is brought into contact with the surface when the alignment protective layer is formed. However, it is preferably a group obtained by photoreacting a photoalignable group for the reason that it is possible to prevent deterioration of the surface state.
 ここで、光配向性基とは、光二量化反応、光異性化反応および光分解反応のいずれかにより、配向性を付与する光反応性基をいう。
 また、光二量化反応によって配向性を付与する基としては、例えば、マレイミド誘導体、桂皮酸誘導体およびクマリン誘導体からなる群から選択される少なくとも1種の誘導体から導入される基などが挙げられ、具体的には、シンナメート基、カルコン基が好適に挙げられる。
 なお、シンナメート基、および、カルコン基としては、例えば、以下の構造(下記式中、*はポリマー鎖への連結部位を表し、Rは水素原子または1価の有機基を表す)を導入することができ、また、*で表されるポリマー鎖への連結部位は、ポリマーの主鎖に直結していてもよいし、2価の連結基を介して結合していてもよい。Rが表す1価の有機基としては、アルキル基またはアリール基が好ましい。また、Rが表す1価の有機基の炭素数は1~10が好ましく、1~7がより好ましい。
Figure JPOXMLDOC01-appb-C000002
Here, the photoalignment group refers to a photoreactive group that imparts orientation by any of a photodimerization reaction, a photoisomerization reaction, and a photolysis reaction.
Examples of the group that imparts orientation by a photodimerization reaction include groups introduced from at least one derivative selected from the group consisting of maleimide derivatives, cinnamic acid derivatives, and coumarin derivatives. Preferred examples include cinnamate group and chalcone group.
In addition, as the cinnamate group and the chalcone group, for example, the following structure (in the following formula, * represents a connecting site to a polymer chain, and R represents a hydrogen atom or a monovalent organic group) is introduced. The connecting site to the polymer chain represented by * may be directly connected to the main chain of the polymer or may be bonded via a divalent linking group. The monovalent organic group represented by R is preferably an alkyl group or an aryl group. In addition, the monovalent organic group represented by R preferably has 1 to 10 carbon atoms, and more preferably 1 to 7 carbon atoms.
Figure JPOXMLDOC01-appb-C000002
 一方、光の作用により異性化する反応性基としては、具体的には、例えば、アゾベンゼン化合物、スチルベン化合物およびスピロピラン化合物からなる群から選択される少なくとも1種の化合物の骨格からなる基などが好適に挙げられる。
 また、光の作用により分解する反応性基としては、具体的には、例えば、シクロブタン化合物の骨格からなる基などが好適に挙げられる。
On the other hand, as the reactive group that isomerizes by the action of light, specifically, for example, a group composed of a skeleton of at least one compound selected from the group consisting of an azobenzene compound, a stilbene compound, and a spiropyran compound is preferable. It is mentioned in.
Specific examples of the reactive group capable of decomposing by the action of light include a group composed of a skeleton of a cyclobutane compound.
 これらのうち、反応の不可逆性の理由から、より短波光で反応する光二量化反応によって配向性を付与する基であるのが好ましく、シンナメート基およびカルコン基からなる群から選択される少なくとも1種であるのがより好ましい。 Among these, for reasons of irreversibility of the reaction, it is preferably a group that imparts orientation by a photodimerization reaction that reacts with shorter wave light, and is at least one selected from the group consisting of a cinnamate group and a chalcone group. More preferably.
 (架橋構造)
 上記配向保護層が有する架橋構造は、下記式(A-1)~(A-3)で表されるいずれかの構造を含む架橋構造である。
Figure JPOXMLDOC01-appb-C000003
(Crosslinked structure)
The crosslinked structure of the orientation protective layer is a crosslinked structure including any one of the structures represented by the following formulas (A-1) to (A-3).
Figure JPOXMLDOC01-appb-C000003
 上記式(A-1)~(A-3)中、*は結合位置を表し、上記式(A-3)中、R1は、それぞれ独立に水素原子または炭素数1~6のアルキル基を表す。
 アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ヘキシル基等が挙げられる。
In the above formulas (A-1) to (A-3), * represents a bonding position. In the above formula (A-3), each R 1 independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. To express.
Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, hexyl group and the like.
 ここで、上記式(A-1)~(A-3)で表される構造を含む架橋構造としては、例えば、架橋性基(例えば、エポキシ基、オキセタニル基など)と酸基(例えば、カルボキシル基など)との反応により生じる架橋構造が挙げられ、具体的には、下記式(A-1-1)、式(A-2-1)および式(A-3-1)で表される架橋構造が挙げられる。
 なお、下記式(A-1-1)、式(A-2-1)および式(A-3-1)中、*は結合位置を表し、下記式(A-3-1)中、R1は、それぞれ独立に水素原子または炭素数1~6のアルキル基を表す。
Figure JPOXMLDOC01-appb-C000004
Here, examples of the crosslinked structure including the structures represented by the above formulas (A-1) to (A-3) include, for example, a crosslinkable group (for example, epoxy group, oxetanyl group) and an acid group (for example, carboxyl group). And the like, specifically, represented by the following formula (A-1-1), formula (A-2-1) and formula (A-3-1). A crosslinked structure is mentioned.
In the following formulas (A-1-1), (A-2-1), and (A-3-1), * represents a bonding position, and R in the following formula (A-3-1) 1 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
Figure JPOXMLDOC01-appb-C000004
 上記配向保護層は、上述した通り、上記配向性基および上記架橋構造が共有結合を介して互いに連結した構造を有する。
 そのため、本発明においては、後述する架橋性基(例えば、エポキシ基、オキセタニル基など)を有する構成単位を含む重合体、および/または、後述する酸基(例えば、カルボキシル基など)を有する構成単位を含む重合体が、上記配向性基を有する構成単位を更に含んでいることが好ましい。
As described above, the orientation protective layer has a structure in which the orientation group and the crosslinked structure are connected to each other through a covalent bond.
Therefore, in the present invention, a polymer containing a structural unit having a crosslinkable group (for example, an epoxy group, an oxetanyl group, etc.) described later, and / or a structural unit having an acid group (for example, a carboxyl group, etc.) described later. It is preferable that the polymer containing contains further the structural unit which has the said orientation group.
 本発明においては、上記配向保護層の膜厚が1~4μmであるのが好ましく、2~3μmであるのがより好ましい。 In the present invention, the thickness of the alignment protective layer is preferably 1 to 4 μm, more preferably 2 to 3 μm.
 <カラーフィルター>
 本発明の液晶表示装置が有する第1の基板は、上述した基材と配向保護層との間に、カラーフィルターを具備していてもよい。
 上記カラーフィルターとしては特に限定されず、例えば、一般的に液晶表示装置のカラーフィルターとして公知のものを用いることができる。
 このようなカラーフィルターは、通常、赤色、緑色及び青色の各色の透明着色パターンから構成され、それら各透明着色パターンは、着色剤が溶解又は分散、好ましくは顔料微粒子が分散された樹脂組成物から構成される。
 なお、上記カラーフィルターの形成は、所定の色に着色したインキ組成物を調製して、着色パターン毎に印刷することによって行なってもよいが、所定の色の着色剤を含有した塗料タイプの感光性樹脂組成物を用いて、フォトリソグラフィ法によって行なうのがより好ましい。
<Color filter>
The 1st board | substrate which the liquid crystal display device of this invention has may have comprised the color filter between the base material mentioned above and the alignment protective layer.
The color filter is not particularly limited, and, for example, a commonly known color filter for a liquid crystal display device can be used.
Such a color filter is usually composed of transparent colored patterns of red, green and blue, and each transparent colored pattern is made of a resin composition in which a colorant is dissolved or dispersed, preferably pigment fine particles are dispersed. Composed.
The color filter may be formed by preparing an ink composition colored in a predetermined color and printing it for each colored pattern. However, a paint-type photosensitive material containing a colorant of a predetermined color may be used. It is more preferable to carry out by a photolithography method using a conductive resin composition.
 〔液晶層〕
 本発明の液晶表示装置が有する液晶層は、上述した第1の基板と後述する第2の基板とに挟持される液晶層である。
 また、この液晶層は、上述した通り、上述した第1の基板が具備する配向保護層と接するように設けられる。
[Liquid crystal layer]
The liquid crystal layer included in the liquid crystal display device of the present invention is a liquid crystal layer sandwiched between the first substrate described above and a second substrate described later.
Further, as described above, the liquid crystal layer is provided so as to be in contact with the alignment protective layer included in the first substrate described above.
 本発明の液晶表示装置に利用される液晶層を駆動させるための駆動方式としては、TN(Twisted Nematic)方式、VA(Vertical Alignment)方式、IPS(In-Plane-Switching)方式、FFS(Fringe Field Switching)方式、OCB(Optically Compensated Bend)方式などが挙げられる。 Driving methods for driving the liquid crystal layer used in the liquid crystal display device of the present invention include TN (Twisted-Nematic) method, VA (Vertical-Alignment) method, IPS (In-Plane-Switching) method, FFS (Fringe-Field). Switching) method, OCB (Optically Compensated Bend) method, etc.
 これらの駆動方式の中でもIPS方式であることが好ましい。
 IPS方式の液晶セルは、棒状液晶分子が基板に対して実質的に平行に配向しており、基板面に平行な電界が印加することで液晶分子が平面的に応答する。即ち、IPS方式においては、液晶層を構成する液晶が水平配向液晶である。IPS方式は電界無印加状態で黒表示となり、上下一対の偏光板の吸収軸は直交している。
Among these driving methods, the IPS method is preferable.
In the IPS liquid crystal cell, rod-like liquid crystal molecules are aligned substantially parallel to the substrate, and the liquid crystal molecules respond in a planar manner when an electric field parallel to the substrate surface is applied. That is, in the IPS system, the liquid crystal constituting the liquid crystal layer is a horizontally aligned liquid crystal. In the IPS system, black is displayed when no electric field is applied, and the absorption axes of a pair of upper and lower polarizing plates are orthogonal.
 〔第2の基板〕
 本発明の液晶表示装置が有する第2の基板は、上述した液晶層の第1の基板と反対側(バックライト側)に設けられる基板であり、基材と、薄膜トランジスタと、表示電極と、配向膜とを具備する。
[Second substrate]
The second substrate included in the liquid crystal display device of the present invention is a substrate provided on the opposite side (backlight side) of the liquid crystal layer described above, and includes a base material, a thin film transistor, a display electrode, and an orientation. And a membrane.
 <基材>
 第2の基板が具備する基材としては、上述した第1の基板と同様、従来公知の液晶表示装置の液晶セルに用いられる透明基板を用いることができ、例えば、ガラス基板、石英基板、透明樹脂基板等を用いることができる。中でも、ガラス基板を用いるのが好ましい。
<Base material>
As the base material included in the second substrate, a transparent substrate used in a liquid crystal cell of a conventionally known liquid crystal display device can be used, for example, a glass substrate, a quartz substrate, a transparent substrate, as in the first substrate described above. A resin substrate or the like can be used. Among these, it is preferable to use a glass substrate.
 <薄膜トランジスタ>
 第2の基板が具備する薄膜トランジスタ(thin film transistor:TFT)としては、公知の液晶表示装置で使用されているものが適宜利用可能であり、その構成は、特に限定されるものではなく、トップゲート型であってもボトムゲート型であってもよい。
 上記薄膜トランジスタの具体例としては、アモルファスシリコン-TFT、低温ポリシリコンーTFT、酸化物半導体TFT等が挙げられる。
<Thin film transistor>
As a thin film transistor (TFT) included in the second substrate, a thin film transistor (TFT) used in a known liquid crystal display device can be used as appropriate, and the configuration is not particularly limited. Or a bottom gate type.
Specific examples of the thin film transistor include an amorphous silicon TFT, a low temperature polysilicon TFT, an oxide semiconductor TFT, and the like.
 <表示電極>
 第2の基板が具備する表示電極としては、公知の液晶表示装置で使用されているものが適宜利用可能であり、その構成材料としては、例えば、酸化インジウムスズ(Indium Tin Oxide:ITO)、酸化亜鉛アルミニウム(Aluminum doped Zinc Oxide:AZO)、酸化インジウム亜鉛(Indium Zinc oxide:IZO)等の透明な導電材料を用いることができる。
<Display electrode>
As the display electrodes provided in the second substrate, those used in known liquid crystal display devices can be used as appropriate, and examples of the constituent material thereof include indium tin oxide (ITO) and oxidation. A transparent conductive material such as zinc aluminum (Aluminum doped Zinc Oxide: AZO) or indium zinc oxide (IZO) can be used.
 <配向膜>
 第2の基板が具備する配向膜としては、一般的にはポリマーを主成分とする、公知の液晶表示装置で使用されているものが適宜利用可能である、
 配向膜用ポリマー材料としては、多数の文献に記載があり、多数の市販品を入手することができる。
 本発明において利用されるポリマー材料は、ポリビニルアルコール又はポリイミド、及びその誘導体が好ましい。特に変性又は未変性のポリビニルアルコールが好ましい。
 本発明に使用可能な配向膜については、例えば、国際公開第01/88574号の43頁24行~49頁8行に記載された配向膜;特許第3907735号公報の段落[0071]~[0095]に記載の変性ポリビニルアルコール;特開2012-155308号公報に記載された液晶配向剤により形成される液晶配向膜;等が挙げられる。
<Alignment film>
As the alignment film provided in the second substrate, generally used as a main component of a polymer, which is used in a known liquid crystal display device, can be appropriately used.
The polymer material for alignment film is described in many documents, and many commercially available products can be obtained.
The polymer material used in the present invention is preferably polyvinyl alcohol or polyimide, and derivatives thereof. In particular, modified or unmodified polyvinyl alcohol is preferred.
With respect to the alignment film that can be used in the present invention, for example, an alignment film described in International Publication No. 01/88574, page 43, line 24 to page 49, line 8; Japanese Patent No. 3907735, paragraphs [0071] to [0095] Modified liquid alcohol described in JP-A-2012-155308, a liquid crystal alignment film formed by a liquid crystal alignment agent described in JP 2012-155308 A, and the like.
 液晶表示装置の他の構成(例えば、偏光板、バックライトなど)については、特開2007-328210号公報および特開2014-238438号公報の記載を参酌でき、この内容は本明細書に組み込まれることとする。 For other configurations of the liquid crystal display device (for example, a polarizing plate, a backlight, and the like), the descriptions in JP-A-2007-328210 and JP-A-2014-238438 can be referred to, and the contents thereof are incorporated in this specification. I will do it.
[液晶表示装置の製造方法]
 本発明の液晶表示装置の製造方法は、基材上に、配向性基を有する構成単位を含む重合体Pと、配向性基を有する構成単位を含まない重合体Aとを含有する配向保護層形成用組成物を用いて保護層を形成した後に、保護層に対して配向処理を施して配向保護層を形成し、第1の基板を作製する第1工程を有する。
 また、本発明の液晶表示装置の製造方法は、基材、薄膜トランジスタ、表示電極および配向膜を具備する第2の基板と、第1の基板とを張り合わせて液晶を封入し、第1の基板と第2の基板との間に液晶層を形成し、液晶表示装置を作製する第2工程を有する。
[Method for manufacturing liquid crystal display device]
The method for producing a liquid crystal display device of the present invention comprises an alignment protective layer containing, on a substrate, a polymer P containing a structural unit having an orientation group and a polymer A not containing a structural unit having an orientation group. After forming a protective layer using the composition for formation, the protective layer is subjected to an alignment treatment to form an alignment protective layer, and a first step of producing a first substrate is included.
In addition, the method for manufacturing a liquid crystal display device of the present invention includes a second substrate including a base material, a thin film transistor, a display electrode, and an alignment film, and a first substrate bonded to each other to enclose liquid crystal, A liquid crystal layer is formed between the second substrate and the second step of manufacturing a liquid crystal display device.
 〔第1工程〕
 第1工程は、基材上に、配向性基を有する構成単位を含む重合体Pと、配向性基を有する構成単位を含まない重合体Aとを含有する配向保護層形成用組成物を用いて保護層を形成した後に、保護層に対して配向処理を施して配向保護層を形成し、第1の基板を作製する工程である。
 なお、第1工程における基材は、本発明の液晶表示装置の第1の基板が具備する基材と同様である。
[First step]
The first step uses a composition for forming an alignment protective layer containing, on a substrate, a polymer P containing a structural unit having an orientation group and a polymer A not containing a structural unit having an orientation group. In this step, after forming the protective layer, the protective layer is subjected to an alignment treatment to form an alignment protective layer, thereby producing a first substrate.
In addition, the base material in a 1st process is the same as the base material with which the 1st board | substrate of the liquid crystal display device of this invention comprises.
 <配向保護層形成用組成物>
 上記配向保護層形成用組成物は、配向保護層の位相差を低くし、透明性を高め、配向保護層において上述した架橋構造が形成しやすくなる理由から、上記重合体Pが、上記配向性基を有する構成単位として下記s1に示される構成単位を含み、上記重合体Pおよび上記重合体Aが、下記条件3または4を満たしているのが好ましい。
 s1:フッ素置換炭化水素基、シロキサン骨格および炭素数10~30のアルキル基からなる群より選択される少なくとも1つの部分構造を有する構成単位、ならびに、光配向性基を有する構成単位
 条件3:重合体Pが、架橋性基を有する構成単位a2を含み、かつ、重合体Aが、酸基を有する構成単位a3を含む。
 条件4:重合体Pが、酸基を有する構成単位a3を含み、かつ、重合体Aが、架橋性基を有する構成単位a2を含む。
<Orientation protective layer forming composition>
The composition for forming an alignment protective layer lowers the phase difference of the alignment protective layer, increases transparency, and facilitates the formation of the above-described crosslinked structure in the alignment protective layer. It is preferable that the structural unit represented by the following s1 is included as the structural unit having a group, and the polymer P and the polymer A satisfy the following condition 3 or 4.
s1: a structural unit having at least one partial structure selected from the group consisting of a fluorine-substituted hydrocarbon group, a siloxane skeleton and an alkyl group having 10 to 30 carbon atoms, and a structural unit having a photoalignment group Condition 3: Heavy The coalescence P includes a structural unit a2 having a crosslinkable group, and the polymer A includes a structural unit a3 having an acid group.
Condition 4: The polymer P includes a structural unit a3 having an acid group, and the polymer A includes a structural unit a2 having a crosslinkable group.
 本発明においては、配向保護層において上述した架橋構造が更に形成しやすくなる理由から、上記重合体Pおよび/または上記重合体Aが有する架橋性基が、オキシラニル基、3,4-エポキシシクロヘキシル基、および、オキセタニル基からなる群から選択される少なくとも1種であることが好ましい。 In the present invention, the crosslinkable group possessed by the polymer P and / or the polymer A is an oxiranyl group, a 3,4-epoxycyclohexyl group, because the above-mentioned crosslinked structure is more easily formed in the alignment protective layer. And at least one selected from the group consisting of oxetanyl groups.
 以下に、上記配向保護層形成用組成物が含有する重合体Pおよび重合体Aの具体例ならびに任意の添加剤等について詳述する。 Hereinafter, specific examples of the polymer P and the polymer A contained in the composition for forming an alignment protective layer and optional additives will be described in detail.
 (重合体P)
 上記重合体Pとしては、上述した通り、下記s1に示される構成単位(以下、「構成単位s1」ともいう。)を含む重合体が好ましく挙げられる。
 s1:フッ素置換炭化水素基、シロキサン骨格および炭素数10~30のアルキル基からなる群より選択される少なくとも1つの部分構造(以下、「偏在性基」ともいう。)を有する構成単位、ならびに、光配向性基を有する構成単位
(Polymer P)
As the polymer P, as described above, a polymer containing a structural unit represented by the following s1 (hereinafter also referred to as “structural unit s1”) is preferably exemplified.
s1: a structural unit having at least one partial structure selected from the group consisting of a fluorine-substituted hydrocarbon group, a siloxane skeleton and an alkyl group having 10 to 30 carbon atoms (hereinafter also referred to as “unevenly-distributed group”), and Constituent unit having photo-alignment group
 <<フッ素置換炭化水素基の部分構造を有する構成単位>>
 フッ素置換炭化水素基とは、少なくとも1つのフッ素原子により置換された炭化水素基であればよく、アルキル基またはアルキレン基(以下、本段落においては「アルキル基等」と略す。)における少なくとも1つの水素原子をフッ素原子に置換したアルキル基等が挙げられ、アルキル基等のすべての水素原子をフッ素原子に置換したアルキル基等がより好ましい。
<< Constitutional unit having a partial structure of a fluorine-substituted hydrocarbon group >>
The fluorine-substituted hydrocarbon group may be a hydrocarbon group substituted with at least one fluorine atom, and is at least one of an alkyl group or an alkylene group (hereinafter abbreviated as “alkyl group etc.” in this paragraph). Examples include alkyl groups in which hydrogen atoms are substituted with fluorine atoms, and alkyl groups in which all hydrogen atoms such as alkyl groups are substituted with fluorine atoms are more preferable.
 このようなフッ素置換炭化水素基は、偏在性の観点から、下記式(I)で表される基であることが好ましい。 Such a fluorine-substituted hydrocarbon group is preferably a group represented by the following formula (I) from the viewpoint of uneven distribution.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記式(I)中、Rは水素原子又は炭素数1~4個のアルキル基を表し、*はポリマー鎖への連結部位を表す。Xは単結合又は2価の連結基を表し、mは1~3の整数を表し、nは1以上の整数を表し、rは0または1~2の整数を表す。なお、mが1である場合、複数のRはそれぞれ同一であっても異なっていてもよい。 In the above formula (I), R 2 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents a site connected to a polymer chain. X represents a single bond or a divalent linking group, m represents an integer of 1 to 3, n represents an integer of 1 or more, and r represents 0 or an integer of 1 to 2. When m is 1, the plurality of R 2 may be the same or different.
 上記式(I)におけるmは、1~3の整数を表し、1又は2であることが好ましい。
 上記式(I)におけるnは、1以上の整数を表し、1~10の整数であることが好ましく、1~4の整数であることがより好ましく、1又は2であることが特に好ましい。
 一般式Iにおけるrは、0または1~2の整数を表し、1又は2であることが好ましく、2であることがより好ましい。
 また、*で表されるポリマー鎖への連結部位は、上述した重合体A1-1など重合体の主鎖に直結していてもよいし、ポリオキシアルキレン基、アルキレン基、エステル基、ウレタン基、ヘテロ原子を含んでもよい環状アルキレン基、ポリ(カプロラクトン)、アミノ基、等の2価の連結基を介して結合していてもよい。ポリオキシアルキレン基を介して結合していることが好ましい。
M in the above formula (I) represents an integer of 1 to 3, and is preferably 1 or 2.
N in the above formula (I) represents an integer of 1 or more, preferably an integer of 1 to 10, more preferably an integer of 1 to 4, and particularly preferably 1 or 2.
R in the general formula I represents 0 or an integer of 1 to 2, preferably 1 or 2, and more preferably 2.
Further, the connecting part to the polymer chain represented by * may be directly connected to the main chain of the polymer such as the above-mentioned polymer A1-1, or a polyoxyalkylene group, an alkylene group, an ester group, a urethane group. And may be bonded via a divalent linking group such as a cyclic alkylene group which may contain a hetero atom, poly (caprolactone), or amino group. It is preferable that they are bonded via a polyoxyalkylene group.
 上記式(I)においてRで表される炭素数1~4個のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等が挙げられ、好ましくは、水素原子、又はメチル基であり、より好ましくは水素原子である。
 上記式(I)において、Xが単結合である場合は、ポリマー主鎖と、Rが結合している炭素原子と、が直接連結していることを意味する。
 また、Xが2価の連結基である場合には、その連結基としては、-O-、-S-、-N(R)-、-CO-等が挙げられる。これらの中でも-O-がより好ましい。ここで、Rは、水素原子又は炭素数1~4個のアルキル基を表す。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等が挙げられ、好ましくは、水素原子、メチル基である。
Examples of the alkyl group having 1 to 4 carbon atoms represented by R 2 in the above formula (I) include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group and the like. Preferably, they are a hydrogen atom or a methyl group, More preferably, it is a hydrogen atom.
In the above formula (I), when X is a single bond, it means that the polymer main chain and the carbon atom to which R 2 is bonded are directly connected.
When X is a divalent linking group, examples of the linking group include —O—, —S—, —N (R 4 ) —, —CO—, and the like. Among these, —O— is more preferable. Here, R 4 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group, and a hydrogen atom and a methyl group are preferable.
 フッ素置換炭化水素基を重合体に導入する方法としては、高分子反応によってフッ素置換炭化水素基を重合体に導入する方法;フッ素置換炭化水素基を有するモノマー(以下、「フッ素置換炭化水素基含有モノマー」と称する。)を共重合し、重合体にフッ素置換炭化水素基を有する構成単位を導入する方法;などが挙げられる。 As a method of introducing a fluorine-substituted hydrocarbon group into a polymer, a method of introducing a fluorine-substituted hydrocarbon group into a polymer by a polymer reaction; a monomer having a fluorine-substituted hydrocarbon group (hereinafter referred to as “fluorine-substituted hydrocarbon group-containing” And a method of introducing a structural unit having a fluorine-substituted hydrocarbon group into the polymer.
 フッ素置換炭化水素基含有モノマーを共重合し、重合体にフッ素置換炭化水素基を有する構成単位を導入する方法における、フッ素置換炭化水素基含有モノマーとしては、下記式(II)で表されるモノマーが好ましいものとして挙げられる。 In the method of copolymerizing a fluorine-substituted hydrocarbon group-containing monomer and introducing a structural unit having a fluorine-substituted hydrocarbon group into the polymer, the fluorine-substituted hydrocarbon group-containing monomer is a monomer represented by the following formula (II) Is preferable.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記式(II)中、Rは水素原子、ハロゲン原子、置換基を有してもよいメチル基、又は置換基を有してもよいエチル基を表す。また、R、X、m、nおよびrはいずれも、一般式IにおけるR、X、m、nおよびrと同義であり、好ましい例も同様である。
 なお、上記式(II)においてRで表されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子が挙げられる。
In the above formula (II), R 1 represents a hydrogen atom, a halogen atom, a methyl group which may have a substituent, or an ethyl group which may have a substituent. R 2 , X, m, n and r all have the same meaning as R 2 , X, m, n and r in formula I, and preferred examples are also the same.
As the halogen atom represented by R 1 in the above-mentioned formula (II), for example, a fluorine atom, a chlorine atom, a bromine atom.
 なお、このようなフッ素置換炭化水素基含有モノマーの製造法に関しては、例えば、「フッ素化合物の合成と機能」(監修:石川延男、発行:株式会社シーエムシー、1987)の117~118ページや、「Chemistry of Organic Fluorine Compounds II」(Monograph 187,Ed by Milos Hudlicky and Attila E.Pavlath, American Chemical Society 1995)の747~752ページに記載されている。 As for the method for producing such a fluorine-substituted hydrocarbon group-containing monomer, for example, “Synthesis and Function of Fluorine Compound” (Supervision: Nobuo Ishikawa, published by CMC Corporation, 1987), pages 117 to 118, “Chemistry of Organic Fluorine Compounds II” (Monograph 187, Ed by Milos Hudlicky and Attila E.Pavlath, American Chemical Society2), which is described in American 47-Chem.
 また、上記式(II)で表されるモノマーの具体例としては、下記式(IIa)で表されるテトラフルオロイソプロピルメタクリレート、下記式(IIb)で表されるヘキサフルオロイソプロピルメタクリレートなどが挙げられる。
 また、その他の具体例としては、特開2010-18728号公報の段落番号〔0058〕~〔0061〕に記載の化合物が挙げられる。これらのうちポリオキシアルキレン基にフッ素置換炭化水素基が結合した構造が好ましい。
Figure JPOXMLDOC01-appb-C000007
Specific examples of the monomer represented by the above formula (II) include tetrafluoroisopropyl methacrylate represented by the following formula (IIa), hexafluoroisopropyl methacrylate represented by the following formula (IIb), and the like.
Other specific examples include compounds described in paragraph numbers [0058] to [0061] of JP 2010-18728 A. Of these, a structure in which a fluorine-substituted hydrocarbon group is bonded to a polyoxyalkylene group is preferable.
Figure JPOXMLDOC01-appb-C000007
 <<シロキサン骨格の部分構造を有する構成単位>>
 シロキサン骨格とは、「-Si-O-Si-」を有していれば、特に制限はなく、ポリオキシアルキレン基を含むことが好ましい。
<< Constitutional Unit Having Partial Structure of Siloxane Skeleton >>
The siloxane skeleton is not particularly limited as long as it has “—Si—O—Si—”, and preferably contains a polyoxyalkylene group.
 本発明においては、シロキサン骨格は、偏在性の観点から、(メタ)アクリロイルオキシ基とアルコキシシリル基とを有する化合物を共重合して、重合体にシロキサン骨格の部分構造を有する構成単位に導入することが好ましい。
 ここで、アルコキシシリル基としては、例えば、下記式(X)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000008
In the present invention, from the viewpoint of uneven distribution, the siloxane skeleton is copolymerized with a compound having a (meth) acryloyloxy group and an alkoxysilyl group and introduced into a constituent unit having a partial structure of the siloxane skeleton in the polymer. It is preferable.
Here, as the alkoxysilyl group, for example, a group represented by the following formula (X) is preferable.
Figure JPOXMLDOC01-appb-C000008
 上記式(X)中、R3~R5は、それぞれ独立して水素原子、水酸基、ハロゲン原子、アルキル基、または、アルコキシ基を表し、少なくとも1つはアルコキシ基である。*は、結合位置を表す。 In the above formula (X), R 3 to R 5 each independently represent a hydrogen atom, a hydroxyl group, a halogen atom, an alkyl group or an alkoxy group, and at least one is an alkoxy group. * Represents a binding position.
 上記式(X)中、R3~R5のうちの少なくとも1つはアルコキシ基であり、アルコキシ基としては、炭素数1~15のアルコキシ基であることが好ましく、炭素数1~8のアルコキシ基であることがより好ましく、炭素数1~4のアルコキシ基であることが更に好ましく、エトキシ基又はメトキシ基であることが特に好ましい。
 本発明においては、R3~R5のうち、2つがアルコキシ基及び1つがアルキル基である場合、又は、3つがアルコキシ基である場合が好ましい。中でも、3つがアルコキシ基である態様、すなわち、トリアルコキシシリル基であることがより好ましい。
In the above formula (X), at least one of R 3 to R 5 is an alkoxy group, and the alkoxy group is preferably an alkoxy group having 1 to 15 carbon atoms, and an alkoxy group having 1 to 8 carbon atoms. It is more preferably a group, more preferably an alkoxy group having 1 to 4 carbon atoms, and particularly preferably an ethoxy group or a methoxy group.
In the present invention, it is preferable that two of R 3 to R 5 are alkoxy groups and one is an alkyl group, or three are alkoxy groups. Among these, an embodiment in which three are alkoxy groups, that is, a trialkoxysilyl group is more preferable.
 このようなアルコキシシリル基と(メタ)アクリロイルオキシ基とを有する化合物としては、具体的には、例えば、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン等が挙げられる。 Specific examples of the compound having such an alkoxysilyl group and a (meth) acryloyloxy group include 3- (meth) acryloxypropylmethyldimethoxysilane and 3- (meth) acryloxypropyltrimethoxysilane. 3- (meth) acryloxypropylmethyldiethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, and the like.
 また、本発明においては、シロキサン骨格は、偏在性の観点から、下記構造式(A)で表される化合物(以下、「特定シロキサン化合物」ともいう)を重合して、シロキサン骨格を重合体に導入することが好ましい。 In the present invention, from the viewpoint of uneven distribution, the siloxane skeleton is polymerized with a compound represented by the following structural formula (A) (hereinafter also referred to as “specific siloxane compound”), and the siloxane skeleton is converted into a polymer. It is preferable to introduce.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記構造式(A)中、Rは、水酸基、アミン基、ハロゲン原子などの置換基を有してよい炭素数が2~6の直鎖若しくは分岐のアルキレン基、又は、下記構造式(B)で表される2価の連結基を示す。 In the structural formula (A), R 7 represents a linear or branched alkylene group having 2 to 6 carbon atoms which may have a substituent such as a hydroxyl group, an amine group, or a halogen atom, or the following structural formula (B ) Represents a divalent linking group.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記構造式(B)中、Rは、水素原子、メチル基、エチル基を表す。n1、n2、およびn3は、それぞれ独立に0~100の整数である。ここで、Rは構造式(B)中に2つ以上存在するが、それぞれ異なっていてもよく、また、同じであってもよい。 In the structural formula (B), R 4 represents a hydrogen atom, a methyl group, or an ethyl group. n1, n2, and n3 are each independently an integer of 0 to 100. Here, two or more R 4 s exist in the structural formula (B), but they may be different or the same.
 上記構造式(A)中、x1、x2、及びx3は、これらの合計が1~100を満たす整数である。
 また、y1は、1~30の整数である。
 上記構造式(A)中、Xは単結合、又は下記構造式(C)で表わされる2価の基である。
In the structural formula (A), x1, x2 and x3 are integers whose sum satisfies 1 to 100.
Y1 is an integer of 1 to 30.
In the structural formula (A), X 2 is a single bond or a divalent group represented by the following structural formula (C).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記構造式(C)中、Rは、水酸基、アミン基、ハロゲン原子などの置換基を有してよい炭素数が1~6の直鎖もしくは分岐のアルキレン基を表し、Q、及びQは、酸素原子、硫黄原子、又は-NRB-を表わし、Q、Qは、それぞれ異なっていてもよく、また、同じであってもよい。RBは、水素原子、又は炭素数1~4のアルキル基を表す。
 上記構造式(C)中、Qは、上記構造式(A)におけるRに結合する。
In the structural formula (C), R 8 represents a linear or branched alkylene group having 1 to 6 carbon atoms which may have a substituent such as a hydroxyl group, an amine group, or a halogen atom, and Q 1 , Q 2 represents an oxygen atom, a sulfur atom, or —NRB—, and Q 1 and Q 2 may be different from each other or the same. RB represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
In the structural formula (C), Q 2 is bonded to R 7 in the structural formula (A).
 上記構造式(A)中、Yは、下記構造式(D)~下記構造式(F)で表される1価の基を表す。 In the structural formula (A), Y 2 represents a monovalent group represented by the following structural formula (D) to the following structural formula (F).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記構造式(D)~(F)中、Rは、水素原子、又は炭素数1~6の直鎖状或いは分枝鎖状のアルキル基を表わす。 In the structural formulas (D) to (F), R 5 represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms.
 上記構造式(A)中、Z、Z、Zはそれぞれ独立して下記構造式(G)で表される1価の基を表す。 In the structural formula (A), Z 1 , Z 2 , and Z 3 each independently represent a monovalent group represented by the following structural formula (G).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記構造式(G)中、Rは炭素数1~4の無置換のアルキル基を表し、y2は1~100の整数を表し、好ましくは1~50の整数、より好ましくは1~20の整数である。 In the structural formula (G), R 6 represents an unsubstituted alkyl group having 1 to 4 carbon atoms, and y2 represents an integer of 1 to 100, preferably an integer of 1 to 50, more preferably 1 to 20 It is an integer.
 また、シロキサン骨格としては、特開2010-18728号公報の段落番号〔0092〕~〔0094〕に記載の構造が上記の式(A)の具体例として挙げられるが、これらに限定されるものではない。
 これらのうちポリオキシアルキレン基を介してシロキサン構造がポリマーに結合した構造が好ましい。
Examples of the siloxane skeleton include the structures described in paragraphs [0092] to [0094] of JP 2010-18728 A, as specific examples of the above formula (A), but are not limited thereto. Absent.
Of these, a structure in which a siloxane structure is bonded to a polymer via a polyoxyalkylene group is preferable.
 <<炭素数10~30のアルキル基の部分構造を有する構成単位>>
 炭素数10~30のアルキル基は、分岐構造または環状構造を含んでいてもよいが、直鎖構造の部分の炭素数が10~30の範囲にあることが好ましく、全て直鎖構造であることがより好ましい。
 また、アルキル基の炭素数は、10~20であるのが好ましい。
<< Structural unit having a partial structure of an alkyl group having 10 to 30 carbon atoms >>
The alkyl group having 10 to 30 carbon atoms may contain a branched structure or a cyclic structure, but the linear structure portion preferably has a carbon number in the range of 10 to 30, and all have a linear structure. Is more preferable.
In addition, the alkyl group preferably has 10 to 20 carbon atoms.
 具体的には、重合体の側鎖に、下記一般式(a3-1)で表される基を有することが好ましい。 Specifically, the side chain of the polymer preferably has a group represented by the following general formula (a3-1).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記一般式(a3-1)において、na3は10~30の整数を表し、*はポリマーの主鎖または側鎖と連結する位置を表す。na3は10~20の整数であることが好ましい。 In the general formula (a3-1), n a3 represents an integer of 10 to 30, and * represents a position linked to the main chain or side chain of the polymer. na3 is preferably an integer of 10 to 20.
 上記一般式(a3-1)の構造を重合体の主鎖または側鎖に導入する手法に特に限定はないが、例えば、合成時に(a3-1)の構造を有するモノマーを適宜選択して適用すれば、得られるポリマーの繰り返し単位中に(a3-1)の構造を導入することができる。
 また、上記一般式(a3-1)の構造を有するモノマーは、市販の化合物を用いることができるが、(a3-1)の構造を持たない市販のモノマーに対して(a3-1)に含まれる所望の構造を適宜導入して用いてもよい。市販のモノマーに(a3-1)の構造を導入する手法に限定はなく、公知の手法を適宜適用すればよい。
There is no particular limitation on the method for introducing the structure of the general formula (a3-1) into the main chain or side chain of the polymer. For example, a monomer having the structure of (a3-1) is appropriately selected during synthesis and applied. In this case, the structure (a3-1) can be introduced into the repeating unit of the obtained polymer.
As the monomer having the structure of the general formula (a3-1), a commercially available compound can be used, but it is included in (a3-1) with respect to a commercially available monomer having no structure of (a3-1). A desired structure may be introduced as appropriate. There is no limitation on the method of introducing the structure (a3-1) into a commercially available monomer, and a known method may be applied as appropriate.
 上記一般式(a3-1)の構造を有するモノマーは、重合体の主鎖構造に応じて適宜選択することができ、例えば、主鎖に(メタ)アクリル構造を有するポリマーであれば、下記一般式(a3-2)で表わされるモノマーを用いることが好ましい。 The monomer having the structure of the general formula (a3-1) can be appropriately selected according to the main chain structure of the polymer. For example, if the polymer has a (meth) acrylic structure in the main chain, the following general It is preferable to use a monomer represented by the formula (a3-2).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 上記一般式(a3-2)中、R32は水素原子、メチル基、エチル基、又はハロゲン原子を表し、X31は2価の連結基を表わし、R33は、単結合、又はアルキレンオキシ基を表す。また、na3は上記一般式(a3-1)と好ましい範囲も含めて同義である。 In the general formula (a3-2), R 32 represents a hydrogen atom, a methyl group, an ethyl group, or a halogen atom, X 31 represents a divalent linking group, and R 33 represents a single bond or an alkyleneoxy group. Represents. N a3 has the same meaning as the general formula (a3-1), including the preferred range.
 上記一般式(a3-2)において、R32は水素原子、メチル基、エチル基、又はハロゲン原子であり、より好ましくは、水素原子、又はメチル基であり、さらに好ましくは、メチル基である。 In the general formula (a3-2), R 32 represents a hydrogen atom, a methyl group, an ethyl group, or a halogen atom, more preferably a hydrogen atom or a methyl group, and still more preferably a methyl group.
 上記一般式(a3-2)において、X31としての2価の連結基としては、-O-、-S-、-N(R)-、等が挙げられる。これらの中でも-O-がより好ましい。
 ここで、Rは、水素原子、又は炭素数1~4個のアルキル基を表す。アルキル基としては、直鎖構造であっても、分岐構造であってもよく、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等が挙げられ、好ましくは、水素原子、メチル基である。
In the general formula (a3-2), examples of the divalent linking group as X 31 include —O—, —S—, —N (R 4 ) —, and the like. Among these, —O— is more preferable.
Here, R 4 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. The alkyl group may be a linear structure or a branched structure, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group. Preferably, they are a hydrogen atom and a methyl group.
 また、R33のアルキレンオキシ基としては、炭素数1~4であることが好ましい。アルキレンオキシ基は、分岐構造を有していてもよい。また、置換基を有していても、無置換であってもよい。有していてもよい置換基としては、ハロゲン原子等があげられる。アルキレンオキシ基の具体例としては、メチレンオキシ基、エチレンオキシ基、プロピレンオキシ基、ブチレンオキシ基、等を例示することができる。 Further, the alkyleneoxy group for R 33 preferably has 1 to 4 carbon atoms. The alkyleneoxy group may have a branched structure. Moreover, even if it has a substituent, it may be unsubstituted. Examples of the substituent that may have include a halogen atom. Specific examples of the alkyleneoxy group include a methyleneoxy group, an ethyleneoxy group, a propyleneoxy group, a butyleneoxy group, and the like.
 これらの中でも、R33は炭素数1~4の無置換の直鎖アルキレンオキシ基、または単結合であることが好ましく、単結合であることがより好ましい。 Among these, R 33 is preferably an unsubstituted linear alkyleneoxy group having 1 to 4 carbon atoms, or a single bond, and more preferably a single bond.
 上記一般式(a3―2)で表されるモノマーを用いることによって、下記一般式(U-a3-1)で表わされる繰り返し単位を有する重合体を得ることができる。
 このような重合体は、下記一般式(U-a3-1)で表される繰り返し単位を有することが好ましい形態のひとつである。
By using the monomer represented by the general formula (a3-2), a polymer having a repeating unit represented by the following general formula (U-a3-1) can be obtained.
Such a polymer is one of preferred embodiments having a repeating unit represented by the following general formula (U-a3-1).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 上記一般式(U-a3-1)において、na3は上記一般式(a3-1)と好ましい範囲も含めて同義であり、R32、X31、及びR33は、上記一般式(a3-2)と好ましい範囲も含めて同義である。 In the general formula (U-a3-1), n a3 has the same meaning as that of the general formula (a3-1), including a preferable range, and R 32 , X 31 , and R 33 represent the general formula (a3- It is synonymous including 2) and a preferable range.
 以下、上記一般式(a3-2)で表されるモノマーの具体例を示す。ただし、本発明は、これらに限定されるものではない。 Specific examples of the monomer represented by the general formula (a3-2) are shown below. However, the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 <<光配向性基を有する構成単位>>
 重合体Pは、上述した、フッ素置換炭化水素基、シロキサン骨格および炭素数10~30のアルキル基からなる群より選択される少なくとも1つの部分構造を有する構成単位とともに、光配向性基を有する構成単位を有する重合体である。
 ここで、光配向性基は、上記配向性基において説明したものと同様である。
<< Structural Unit Having Photo-Orienting Group >>
The polymer P has a photoalignable group together with the above-described structural unit having at least one partial structure selected from the group consisting of a fluorine-substituted hydrocarbon group, a siloxane skeleton, and an alkyl group having 10 to 30 carbon atoms. A polymer having units.
Here, the photo-alignment group is the same as that described for the orientation group.
 光配向性基を有する構成単位を有する重合体は、その主鎖骨格は特に限定されないが、側鎖の分子設計が多様となり、エチレン性不飽和化合物のラジカル重合反応による主鎖形成が簡便である理由から、下記式(III)で表される繰り返し単位を有するポリマーであるのが好ましい。
Figure JPOXMLDOC01-appb-C000018

 ここで、上記式(III)中、Rは水素原子またはアルキル基を表す。Xはアリーレン基、-(C=O)-O-、または-(C=O)-NR-(Rは水素原子または炭素数1~4個のアルキル基を表す)を表す。Lは単結合または2価の連結基を表し、Pは光配向性基を表す。
The main chain skeleton of the polymer having a structural unit having a photo-alignment group is not particularly limited, but the side chain molecular design is diversified, and the main chain formation by radical polymerization reaction of an ethylenically unsaturated compound is simple. For the reason, a polymer having a repeating unit represented by the following formula (III) is preferable.
Figure JPOXMLDOC01-appb-C000018

Here, in the formula (III), R 1 represents a hydrogen atom or an alkyl group. X represents an arylene group, — (C═O) —O—, or — (C═O) —NR— (R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms). L represents a single bond or a divalent linking group, and P represents a photoalignment group.
 上記式(III)中、Rは、水素原子またはアルキル基を表し、アルキル基としては炭素数1~4のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等)が好ましい。Rは、水素原子またはメチル基であるのが好ましい。
 また、上記式(III)中、Lは、単結合または2価の連結基を表し、2価の連結基としては-O-、-S-、アルキレン基、アリーレン基、またはこれらを複数組み合わせてなる基が好ましい。Lが表すアルキレン基としては直鎖、分岐、または環状構造であってもよいが、直鎖構造であることが好ましい。Lが表すアルキレン基の炭素数は1~10が好ましく、1~6がより好ましく、2~4がさらに好ましい。また、Lが表すアリーレン基としては、フェニレン基、トリレン基、キシリレン基などが挙げられ、フェニレン基が好ましい。
 上記式(III)中、Pは光配向性基を表し、その具体例としては、カルコン基、シンナメート基、スチルベニル基、マレイミド基、アゾベンジル基が好適に挙げられる。中でも、カルコン基、シンナメート基がより好ましい。また、Pが表す光配向性基は、光配向性を失わない限り、置換基を有していてもよい。具体的な置換基としては、例えば、ハロゲノ基、アルキル基、アリール基などが挙げられ、アルキル基またはアリール基であることが好ましい。上記のアルキル基またはアリール基の炭素数は1~10が好ましく、1~7がより好ましい。
In the above formula (III), R 1 represents a hydrogen atom or an alkyl group, and the alkyl group is an alkyl group having 1 to 4 carbon atoms (for example, methyl group, ethyl group, n-propyl group, isopropyl group, n- Butyl group and the like are preferable. R 1 is preferably a hydrogen atom or a methyl group.
In the above formula (III), L represents a single bond or a divalent linking group, and the divalent linking group may be —O—, —S—, an alkylene group, an arylene group, or a combination thereof. Is preferred. The alkylene group represented by L may be a linear, branched, or cyclic structure, but is preferably a linear structure. The alkylene group represented by L preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 2 to 4 carbon atoms. Moreover, as an arylene group which L represents, a phenylene group, a tolylene group, a xylylene group etc. are mentioned, A phenylene group is preferable.
In the above formula (III), P represents a photoalignable group, and specific examples thereof include a chalcone group, a cinnamate group, a stilbenyl group, a maleimide group, and an azobenzyl group. Of these, chalcone groups and cinnamate groups are more preferred. In addition, the photoalignable group represented by P may have a substituent as long as the photoalignment is not lost. Specific examples of the substituent include a halogeno group, an alkyl group, and an aryl group, and an alkyl group or an aryl group is preferable. The alkyl group or aryl group preferably has 1 to 10 carbon atoms, and more preferably 1 to 7 carbon atoms.
 以下に上記式(III)で表される繰り返し単位を有する重合体の好ましい具体例を示すが、本発明はこれらに限定されるものではない。 Hereinafter, preferred specific examples of the polymer having a repeating unit represented by the above formula (III) are shown, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022

Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-C000022

Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025

Figure JPOXMLDOC01-appb-I000026

Figure JPOXMLDOC01-appb-I000027

Figure JPOXMLDOC01-appb-I000028
Figure JPOXMLDOC01-appb-C000025

Figure JPOXMLDOC01-appb-I000026

Figure JPOXMLDOC01-appb-I000027

Figure JPOXMLDOC01-appb-I000028
Figure JPOXMLDOC01-appb-C000029

Figure JPOXMLDOC01-appb-I000030
Figure JPOXMLDOC01-appb-C000029

Figure JPOXMLDOC01-appb-I000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 上記式(I)で表される繰り返し単位を有する重合体は、(a)対応するモノマーを重合させて直接光反応性基を導入する方法で合成してもよく、(b)任意の官能基を有するモノマーを重合して得られるポリマーに高分子反応により光反応性基を導入する方法で合成してもよい。また、(a)および(b)の手法を組み合わせて合成することもできる。
 ここで、上述した(a)および(b)の方法において利用可能な重合反応としては、ラジカル重合、カチオン重合及びアニオン重合などが挙げられる。
The polymer having a repeating unit represented by the above formula (I) may be synthesized by (a) a method in which a corresponding monomer is polymerized to directly introduce a photoreactive group, and (b) any functional group. It may be synthesized by a method in which a photoreactive group is introduced into a polymer obtained by polymerizing a monomer having a polymer reaction. Moreover, it can also synthesize | combine combining the method of (a) and (b).
Here, radical polymerization, cation polymerization, anion polymerization, etc. are mentioned as a polymerization reaction which can be utilized in the method of (a) and (b) mentioned above.
 また、上記式(I)で表される繰り返し単位を有する重合体は、複数種の上記式(I)で表される繰り返し単位で構成されたコポリマーであってもよく、また、上記式(I)以外の繰り返し単位(例えばエチレン性不飽和基を含まない繰り返し単位)を含んだコポリマーでもよい。 The polymer having a repeating unit represented by the above formula (I) may be a copolymer composed of a plurality of types of repeating units represented by the above formula (I). ) May be a copolymer containing a repeating unit other than (for example, a repeating unit not containing an ethylenically unsaturated group).
 {構成単位s1の好ましい態様}
 上記構成単位s1は、全重合体成分の構成単位に対し、0.01~10モル%が好ましく、0.1~10モル%がより好ましく、0.1~5モル%が更に好ましく、0.1~3モル%が特に好ましく、0.5~3モル%が最も好ましい。
 また、上記構成単位s1の中で、偏在性基を有する構成単位の含有量は、0.01~3モル%が好ましく、0.1~3モル%がより好ましく、0.5~3モル%が更に好ましい。
 また、上記構成単位s1の中で、光配向性基を有する構成単位の含有量は、0.01~5モル%が好ましく、0.1~5モル%がより好ましく、1~3モル%が更に好ましい。
 上記構成単位s1を有する重合体において、構成単位s1の含有量は、上記重合体の全構成単位に対し、20~90モル%が好ましく、20~80モル%がより好ましく、20~70モル%が更に好ましい。この場合において、偏在性基を有する構成単位の含有量は、1~50モル%が好ましく、5~30モル%がより好ましく、10~20モル%が更に好ましい。また、光配向性基を有する構成単位の含有量は、1~70モル%が好ましく、10~60モル%がより好ましく、20~50モル%が更に好ましい。
 なお、本発明において、「構成単位」の含有量をモル比で規定する場合、「構成単位」は「モノマー単位」と同義であるものとする。また、本発明において「モノマー単位」は、高分子反応等により重合後に修飾されていてもよい。以下においても同様である。
{Preferred embodiment of the structural unit s1}
The structural unit s1 is preferably 0.01 to 10% by mole, more preferably 0.1 to 10% by mole, still more preferably 0.1 to 5% by mole, based on the structural unit of all polymer components. 1 to 3 mol% is particularly preferred, and 0.5 to 3 mol% is most preferred.
In the structural unit s1, the content of the structural unit having a ubiquitous group is preferably 0.01 to 3% by mole, more preferably 0.1 to 3% by mole, and 0.5 to 3% by mole. Is more preferable.
In the structural unit s1, the content of the structural unit having a photo-alignment group is preferably 0.01 to 5% by mole, more preferably 0.1 to 5% by mole, and 1 to 3% by mole. Further preferred.
In the polymer having the structural unit s1, the content of the structural unit s1 is preferably 20 to 90% by mole, more preferably 20 to 80% by mole, and more preferably 20 to 70% by mole based on all the structural units of the polymer. Is more preferable. In this case, the content of the structural unit having a ubiquitous group is preferably 1 to 50 mol%, more preferably 5 to 30 mol%, and still more preferably 10 to 20 mol%. In addition, the content of the structural unit having a photoalignable group is preferably 1 to 70 mol%, more preferably 10 to 60 mol%, still more preferably 20 to 50 mol%.
In the present invention, when the content of the “structural unit” is defined in terms of molar ratio, the “structural unit” is synonymous with the “monomer unit”. In the present invention, the “monomer unit” may be modified after polymerization by a polymer reaction or the like. The same applies to the following.
 <<他の構成単位>>
 上記重合体Pとしては、例えば、上述した構成単位s1以外に、酸基が酸分解性基で保護された基を有する構成単位a1、架橋性基を有する構成単位a2、酸基を有する構成単位a3、これらの以外の構成単位a4を有していてもよい。
 これらの構成単位のうち、上述した通り、配向保護層において上述した架橋構造を形成しやすい理由から、架橋性基を有する構成単位a2および/または酸基を有する構成単位a3を有しているのが好ましい。
<< Other structural units >>
Examples of the polymer P include, in addition to the structural unit s1 described above, a structural unit a1 having a group in which an acid group is protected by an acid-decomposable group, a structural unit a2 having a crosslinkable group, and a structural unit having an acid group. a3, other structural units a4 may be included.
Among these structural units, as described above, the structural unit a2 having a crosslinkable group and / or the structural unit a3 having an acid group is included for the reason that the above-described crosslinked structure is easily formed in the alignment protective layer. Is preferred.
 <<<構成単位a1>>>
 構成単位a1は、酸基が酸分解性基で保護された基を有する構成単位(以下、構成単位a1ともいう。)である。
 本発明における「酸基が酸分解性基で保護された基」は、酸を触媒(または開始剤)として脱保護反応を起こし、酸基と再生された酸と分解された構造とを生じる基を意味する。
 本発明における「酸基が酸分解性基で保護された基」は、酸基および酸分解性基として公知のものを使用でき、特に限定されない。
 酸基としては、例えば、カルボキシル基、フェノール性水酸基などが好ましく挙げられる。
 また、酸分解性基としては、酸により比較的分解し易い基(例えば、エステル構造、テトラヒドロピラニルエステル基、または、テトラヒドロフラニルエステル基等のアセタール系官能基)や、酸により比較的分解し難い基(例えば、tert-ブチルエステル基等の第三級アルキル基、tert-ブチルカーボネート基等の第三級アルキルカーボネート基)などが挙げられる。
<<< Structural Unit a1 >>>
The structural unit a1 is a structural unit having an acid group protected with an acid-decomposable group (hereinafter also referred to as the structural unit a1).
The “group in which an acid group is protected with an acid-decomposable group” in the present invention is a group that causes a deprotection reaction using an acid as a catalyst (or an initiator) to generate an acid group, a regenerated acid, and a decomposed structure. Means.
As the “group in which the acid group is protected with an acid-decomposable group” in the present invention, those known as an acid group and an acid-decomposable group can be used, and are not particularly limited.
Preferred examples of the acid group include a carboxyl group and a phenolic hydroxyl group.
In addition, as an acid-decomposable group, a group that is relatively easily decomposed by an acid (for example, an acetal functional group such as an ester structure, a tetrahydropyranyl ester group, or a tetrahydrofuranyl ester group) or an acid-decomposable group is relatively difficult to decompose by an acid. Groups (for example, tertiary alkyl groups such as tert-butyl ester groups and tertiary alkyl carbonate groups such as tert-butyl carbonate groups).
 酸基が酸分解性基で保護された基を有する構成単位a1は、カルボキシル基が酸分解性基で保護された保護カルボキシル基を有する構成単位(以下、「酸分解性基で保護された保護カルボキシル基を有する構成単位」ともいう。)、または、フェノール性水酸基が酸分解性基で保護された保護フェノール性水酸基を有する構成単位(以下、「酸分解性基で保護された保護フェノール性水酸基を有する構成単位」ともいう。)であることが好ましい。
 以下、酸分解性基で保護された保護カルボキシル基を有する構成単位a1-1と、酸分解性基で保護された保護フェノール性水酸基を有する構成単位a1-2について、順にそれぞれ説明する。
The structural unit a1 having a group in which an acid group is protected with an acid-decomposable group is a structural unit having a protected carboxyl group in which a carboxyl group is protected with an acid-decomposable group (hereinafter referred to as “protection protected with an acid-decomposable group”). Or a structural unit having a protected phenolic hydroxyl group in which the phenolic hydroxyl group is protected with an acid-decomposable group (hereinafter referred to as “protected phenolic hydroxyl group protected with an acid-decomposable group”). It is also preferable that it is also referred to as a “structural unit”.
Hereinafter, the structural unit a1-1 having a protected carboxyl group protected with an acid-decomposable group and the structural unit a1-2 having a protected phenolic hydroxyl group protected with an acid-decomposable group will be described in order.
 {酸分解性基で保護された保護カルボキシル基を有する構成単位a1-1}
 上記酸分解性基で保護された保護カルボキシル基を有する構成単位a1-1は、カルボキシル基を有する構成単位のカルボキシル基が、以下で詳細に説明する酸分解性基によって保護された保護カルボキシル基を有する構成単位である。
 上記酸分解性基で保護された保護カルボキシル基を有する構成単位a1-1に用いることができる上記カルボキシル基を有する構成単位としては、特に制限はなく公知の構成単位を用いることができる。例えば、不飽和モノカルボン酸、不飽和ジカルボン酸、不飽和トリカルボン酸などの、分子中に少なくとも1個のカルボキシル基を有する不飽和カルボン酸等に由来する構成単位a1-1-1や、エチレン性不飽和基と酸無水物由来の構造とを共に有する構成単位a1-1-2が挙げられる。
 以下、上記カルボキシル基を有する構成単位として用いられるa1-1-1分子中に少なくとも1個のカルボキシル基を有する不飽和カルボン酸等に由来する構成単位と、a1-1-2エチレン性不飽和基と酸無水物由来の構造とを共に有する構成単位について、それぞれ順に説明する。
{Structural unit a1-1 having a protected carboxyl group protected with an acid-decomposable group}
The structural unit a1-1 having a protected carboxyl group protected with an acid-decomposable group has a carboxyl group in the structural unit having a carboxyl group as a protected carboxyl group protected by an acid-decomposable group described in detail below. It is a structural unit.
The structural unit having a carboxyl group that can be used for the structural unit a1-1 having a protected carboxyl group protected by the acid-decomposable group is not particularly limited, and a known structural unit can be used. For example, the structural unit a1-1-1 derived from an unsaturated carboxylic acid having at least one carboxyl group in the molecule, such as an unsaturated monocarboxylic acid, an unsaturated dicarboxylic acid, or an unsaturated tricarboxylic acid; And a structural unit a1-1-2 having both an unsaturated group and a structure derived from an acid anhydride.
Hereinafter, a structural unit derived from an unsaturated carboxylic acid having at least one carboxyl group in the a1-1-1 molecule used as the structural unit having a carboxyl group, and an a1-1-2 ethylenically unsaturated group And the structural unit having both the structure derived from acid anhydride and the structure derived from acid anhydride will be described in order.
 {{分子中に少なくとも1個のカルボキシル基を有する不飽和カルボン酸等に由来する構成単位a1-1-1}}
 上記分子中に少なくとも1個のカルボキシル基を有する不飽和カルボン酸等に由来する構成単位a1-1-1として本発明で用いられる不飽和カルボン酸としては、例えば、特開2014-238438号公報の段落0043に記載の化合物が挙げられる。
 中でも、現像性の観点から、上記構成単位a1-1-1を形成するためには、アクリル酸、メタクリル酸、2-(メタ)アクリロイロキシエチル-コハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル-フタル酸、または不飽和多価カルボン酸の無水物等を用いることが好ましく、アクリル酸、メタクリル酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸を用いることがより好ましい。
 上記分子中に少なくとも1個のカルボキシル基を有する不飽和カルボン酸等に由来する構成単位a1-1-1は、1種単独で構成されていてもよいし、2種以上で構成されていてもよい。
{{Structural unit a1-1-1 derived from unsaturated carboxylic acid having at least one carboxyl group in the molecule}}
Examples of the unsaturated carboxylic acid used in the present invention as the structural unit a1-1-1 derived from an unsaturated carboxylic acid having at least one carboxyl group in the molecule include those described in JP-A-2014-238438. And the compounds described in paragraph 0043.
Among these, from the viewpoint of developability, in order to form the structural unit a1-1-1, acrylic acid, methacrylic acid, 2- (meth) acryloyloxyethyl-succinic acid, 2- (meth) acryloyloxy are used. It is preferable to use ethyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl-phthalic acid, or an anhydride of an unsaturated polyvalent carboxylic acid. Acrylic acid, methacrylic acid, 2- (meth) acryloyloxy More preferably, ethylhexahydrophthalic acid is used.
The structural unit a1-1-1 derived from an unsaturated carboxylic acid having at least one carboxyl group in the molecule may be composed of one kind alone, or may be composed of two or more kinds. Good.
 {{エチレン性不飽和基と酸無水物由来の構造とを共に有する構成単位a1-1-2}}
 エチレン性不飽和基と酸無水物由来の構造とを共に有する構成単位a1-1-2は、エチレン性不飽和基を有する構成単位中に存在する水酸基と酸無水物とを反応させて得られたモノマーに由来する単位であることが好ましい。
 上記酸無水物としては、公知のものが使用でき、具体的には、無水マレイン酸、無水コハク酸、無水イタコン酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水クロレンド酸等の二塩基酸無水物;無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、ビフェニルテトラカルボン酸無水物などの酸無水物が挙げられる。これらの中では、現像性の観点から、無水フタル酸、テトラヒドロ無水フタル酸、又は、無水コハク酸が好ましい。
 上記酸無水物の水酸基に対する反応率は、現像性の観点から、好ましくは10~100モル%、より好ましくは30~100モル%である。
{{Structural unit a1-1-2 having both an ethylenically unsaturated group and a structure derived from an acid anhydride}}
The structural unit a1-1-2 having both an ethylenically unsaturated group and a structure derived from an acid anhydride is obtained by reacting a hydroxyl group present in a structural unit having an ethylenically unsaturated group with an acid anhydride. The unit is preferably derived from a monomer.
As the acid anhydride, known ones can be used, and specifically, maleic anhydride, succinic anhydride, itaconic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, chlorendic anhydride, etc. Dibasic acid anhydrides; acid anhydrides such as trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic anhydride, biphenyltetracarboxylic anhydride, and the like. Among these, phthalic anhydride, tetrahydrophthalic anhydride, or succinic anhydride is preferable from the viewpoint of developability.
The reaction rate of the acid anhydride with respect to the hydroxyl group is preferably 10 to 100 mol%, more preferably 30 to 100 mol% from the viewpoint of developability.
 (構成単位a1-1に用いることができる酸分解性基)
 上記酸分解性基で保護された保護カルボキシル基を有する構成単位a1-1に用いることができる上記酸分解性基としては上述の酸分解性基を用いることができる。
 これらの酸分解性基の中でもカルボキシル基がアセタールの形で保護された保護カルボキシル基であることが、樹脂組成物の基本物性、特に感度やパターン形状、コンタクトホールの形成性、樹脂組成物の保存安定性の観点から好ましい。更に酸分解性基の中でもカルボキシル基が下記式(a1-10)で表されるアセタールの形で保護された保護カルボキシル基であることが、感度の観点からより好ましい。なお、カルボキシル基が下記式a1-10で表されるアセタールの形で保護された保護カルボキシル基である場合、保護カルボキシル基の全体としては、-(C=O)-O-CR101102(OR103)の構造となっている。
(Acid-decomposable group that can be used for the structural unit a1-1)
As the acid-decomposable group that can be used for the structural unit a1-1 having a protected carboxyl group protected by the acid-decomposable group, the above-mentioned acid-decomposable groups can be used.
Among these acid-decomposable groups, the carboxyl group is a protected carboxyl group protected in the form of an acetal, so that the basic physical properties of the resin composition, particularly sensitivity and pattern shape, contact hole formation, and storage of the resin composition It is preferable from the viewpoint of stability. Furthermore, among the acid-decomposable groups, the carboxyl group is more preferably a protected carboxyl group protected in the form of an acetal represented by the following formula (a1-10) from the viewpoint of sensitivity. In the case where the carboxyl group is a protected carboxyl group protected in the form of an acetal represented by the following formula a1-10, the entire protected carboxyl group is — (C═O) —O—CR 101 R 102 ( OR 103 ).
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 上記式(a1-10)中、R101及びR102はそれぞれ独立に、水素原子又は炭化水素基を表し、ただし、R101とR102とが共に水素原子の場合を除く。R103は、アルキル基を表す。R101又はR102と、R103とが連結して環状エーテルを形成してもよい。 In the above formula (a1-10), R 101 and R 102 each independently represent a hydrogen atom or a hydrocarbon group, except that R 101 and R 102 are both hydrogen atoms. R 103 represents an alkyl group. R 101 or R 102 and R 103 may be linked to form a cyclic ether.
 上記式(a1-10)中、R101及びR102はそれぞれ独立に、水素原子又はアルキル基を表し、上記アルキル基は直鎖状、分岐鎖状、環状のいずれでもよい。ここで、R101及びR102の双方が水素原子を表すことはなく、R101及びR102の少なくとも一方はアルキル基を表す。 In the above formula (a1-10), R 101 and R 102 each independently represents a hydrogen atom or an alkyl group, and the alkyl group may be linear, branched or cyclic. Here, both R 101 and R 102 do not represent a hydrogen atom, and at least one of R 101 and R 102 represents an alkyl group.
 上記式(a1-10)において、R101、R102及びR103がアルキル基を表す場合、上記アルキル基は直鎖状、分岐鎖状又は環状のいずれであってもよい。
 上記直鎖状のアルキル基としては、炭素数1~12であることが好ましく、炭素数1~6であることがより好ましく、炭素数1~4であることが更に好ましい。分岐鎖状としては、炭素数3~6であることがより好ましく、炭素数3または4であることが更に好ましい。具体的には、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、テキシル基(2,3-ジメチル-2-ブチル基)、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、n-ノニル基、n-デシル基等を挙げることができる。
In the above formula (a1-10), when R 101 , R 102 and R 103 represent an alkyl group, the alkyl group may be linear, branched or cyclic.
The linear alkyl group preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms. The branched chain preferably has 3 to 6 carbon atoms, and more preferably has 3 or 4 carbon atoms. Specifically, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group, n Examples include -hexyl group, texyl group (2,3-dimethyl-2-butyl group), n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group and the like.
 上記環状アルキル基としては、炭素数3~12であることが好ましく、炭素数4~8であることがより好ましく、炭素数4~6であることが更に好ましい。上記環状アルキル基としては、例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルニル基、イソボルニル基等を挙げることができる。 The cyclic alkyl group preferably has 3 to 12 carbon atoms, more preferably 4 to 8 carbon atoms, and still more preferably 4 to 6 carbon atoms. Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a norbornyl group, and an isobornyl group.
 上記アルキル基は、置換基を有していてもよく、置換基としては、ハロゲン原子、アリール基、アルコキシ基が例示できる。置換基としてハロゲン原子を有する場合、R101、R102、R103はハロアルキル基となり、置換基としてアリール基を有する場合、R101、R102、R103はアラルキル基となる。
 上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示され、これらの中でも、フッ素原子又は塩素原子が好ましい。
 また、上記アリール基としては、炭素数6~20のアリール基が好ましく、炭素数6~12のアリール基がより好ましい。具体的には、フェニル基、α-メチルフェニル基、ナフチル基等が例示でき、アリール基で置換されたアルキル基全体、すなわち、アラルキル基としては、ベンジル基、α-メチルベンジル基、フェネチル基、ナフチルメチル基等が例示できる。
 上記アルコキシ基としては、炭素数1~6のアルコキシ基が好ましく、炭素数1~4のアルコキシ基がより好ましく、メトキシ基又はエトキシ基が更に好ましい。
 また、上記アルキル基がシクロアルキル基である場合、上記シクロアルキル基は置換基として炭素数1~10の直鎖状又は分岐鎖状のアルキル基を有していてもよく、アルキル基が直鎖状又は分岐鎖状のアルキル基である場合には、置換基として炭素数3~12のシクロアルキル基を有していてもよい。
 これらの置換基は、上記置換基で更に置換されていてもよい。
The alkyl group may have a substituent, and examples of the substituent include a halogen atom, an aryl group, and an alkoxy group. When it has a halogen atom as a substituent, R 101 , R 102 and R 103 become a haloalkyl group, and when it has an aryl group as a substituent, R 101 , R 102 and R 103 become an aralkyl group.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and among these, a fluorine atom or a chlorine atom is preferable.
The aryl group is preferably an aryl group having 6 to 20 carbon atoms, and more preferably an aryl group having 6 to 12 carbon atoms. Specific examples include a phenyl group, an α-methylphenyl group, a naphthyl group, and the like, and examples of the entire alkyl group substituted with an aryl group, that is, an aralkyl group include a benzyl group, an α-methylbenzyl group, a phenethyl group, A naphthylmethyl group etc. can be illustrated.
The alkoxy group is preferably an alkoxy group having 1 to 6 carbon atoms, more preferably an alkoxy group having 1 to 4 carbon atoms, and still more preferably a methoxy group or an ethoxy group.
Further, when the alkyl group is a cycloalkyl group, the cycloalkyl group may have a linear or branched alkyl group having 1 to 10 carbon atoms as a substituent, and the alkyl group is a linear chain. Or a branched alkyl group, it may have a cycloalkyl group having 3 to 12 carbon atoms as a substituent.
These substituents may be further substituted with the above substituents.
 上記式(a1-10)において、R101、R102及びR103がアリール基を表す場合、上記アリール基は炭素数6~12であることが好ましく、炭素数6~10であることがより好ましい。上記アリール基は置換基を有していてもよく、上記置換基としては炭素数1~6のアルキル基が好ましく例示できる。アリール基としては、例えば、フェニル基、トリル基、キシリル基、クメニル基、1-ナフチル基等が例示できる。 In the above formula (a1-10), when R 101 , R 102 and R 103 represent an aryl group, the aryl group preferably has 6 to 12 carbon atoms, and more preferably 6 to 10 carbon atoms. . The aryl group may have a substituent, and preferred examples of the substituent include an alkyl group having 1 to 6 carbon atoms. Examples of the aryl group include a phenyl group, a tolyl group, a xylyl group, a cumenyl group, and a 1-naphthyl group.
 また、R101、R102及びR103は互いに結合して、それらが結合している炭素原子と一緒になって環を形成することができる。R101とR102、R101とR103又はR102とR103が結合した場合の環構造としては、例えばシクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、テトラヒドロフラニル基、アダマンチル基及びテトラヒドロピラニル基等を挙げることができる。 R 101 , R 102 and R 103 can be bonded together to form a ring together with the carbon atom to which they are bonded. Examples of the ring structure when R 101 and R 102 , R 101 and R 103 or R 102 and R 103 are bonded include, for example, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a tetrahydrofuranyl group, an adamantyl group, and a tetrahydropyrani group. And the like.
 なお、上記式(a1-10)において、R101及びR102のいずれか一方が、水素原子又はメチル基であることが好ましい。 Note that in the above formula (a1-10), any one of R 101 and R 102 is preferably a hydrogen atom or a methyl group.
 上記式(a1-10)で表される保護カルボキシル基を有する構成単位を形成するために用いられるラジカル重合性単量体は、市販のものを用いてもよいし、公知の方法で合成したものを用いることもできる。例えば、特開2011-221494号公報の段落0037~0040に記載の合成方法などで合成することができる。 As the radical polymerizable monomer used for forming the structural unit having a protected carboxyl group represented by the above formula (a1-10), a commercially available one may be used, or one synthesized by a known method Can also be used. For example, it can be synthesized by the synthesis method described in paragraphs 0037 to 0040 of JP2011-212494A.
 上記酸分解性基で保護された保護カルボキシル基を有する構成単位a1-1の第一の好ましい態様は、下記式で表される構成単位である。 A first preferred embodiment of the structural unit a1-1 having a protected carboxyl group protected by the acid-decomposable group is a structural unit represented by the following formula.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 式中、R1及びR2はそれぞれ独立に、水素原子、アルキル基又はアリール基を表し、少なくともR1及びR2のいずれか一方がアルキル基又はアリール基であり、R3は、アルキル基又はアリール基を表し、R1又はR2と、R3とが連結して環状エーテルを形成してもよく、R4は、水素原子又はメチル基を表し、Xは単結合又はアリーレン基を表す。 In the formula, R 1 and R 2 each independently represent a hydrogen atom, an alkyl group or an aryl group, at least one of R 1 and R 2 is an alkyl group or an aryl group, and R 3 is an alkyl group or Represents an aryl group, R 1 or R 2 and R 3 may be linked to form a cyclic ether, R 4 represents a hydrogen atom or a methyl group, and X represents a single bond or an arylene group;
 R1及びR2がアルキル基の場合、炭素数は1~10のアルキル基が好ましい。R1及びR2がアリール基の場合、フェニル基が好ましい。R1及びR2はそれぞれ独立に、水素原子又は炭素数1~4のアルキル基が好ましい。
 R3は、アルキル基又はアリール基を表し、炭素数1~10のアルキル基が好ましく、1~6のアルキル基がより好ましい。
 Xは、単結合又はアリーレン基を表し、単結合が好ましい。
When R 1 and R 2 are alkyl groups, alkyl groups having 1 to 10 carbon atoms are preferred. When R 1 and R 2 are aryl groups, a phenyl group is preferred. R 1 and R 2 are preferably each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
R 3 represents an alkyl group or an aryl group, preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms.
X represents a single bond or an arylene group, and a single bond is preferable.
 上記酸分解性基で保護された保護カルボキシル基を有する構成単位a1-1の第二の好ましい態様は、下記式で表される構成単位である。 A second preferred embodiment of the structural unit a1-1 having a protected carboxyl group protected by the acid-decomposable group is a structural unit represented by the following formula.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 式中、R121は水素原子又はメチル基を表し、L1はカルボニル基を表し、R122~R128はそれぞれ独立に、水素原子又は炭素数1~4のアルキル基を表し、水素原子が好ましい。 In the formula, R 121 represents a hydrogen atom or a methyl group, L 1 represents a carbonyl group, R 122 to R 128 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and a hydrogen atom is preferred. .
 上記酸分解性基で保護された保護カルボキシル基を有する構成単位a1-1の好ましい具体例としては、下記の構成単位が例示できる。なお、Rは水素原子又はメチル基を表す。 As preferred specific examples of the structural unit a1-1 having a protected carboxyl group protected by the acid-decomposable group, the following structural units can be exemplified. R represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 {酸分解性基で保護された保護フェノール性水酸基を有する構成単位a1-2}
 上記酸分解性基で保護された保護フェノール性水酸基を有する構成単位a1-2としては、ヒドロキシスチレン系構成単位やノボラック系の樹脂における構成単位が挙げられる。
 これらのうち、ヒドロキシスチレン、またはα-メチルヒドロキシスチレンに由来する構成単位が、感度の観点から好ましい。
 また、フェノール性水酸基を有する構成単位として、特開2014-238438号公報の段落0065~0073に記載の構成単位も、感度の観点から好ましい。
{Structural unit a1-2 having a protected phenolic hydroxyl group protected with an acid-decomposable group}
Examples of the structural unit a1-2 having a protected phenolic hydroxyl group protected with an acid-decomposable group include a structural unit in a hydroxystyrene-based structural unit and a novolac-based resin.
Of these, a structural unit derived from hydroxystyrene or α-methylhydroxystyrene is preferred from the viewpoint of sensitivity.
As the structural unit having a phenolic hydroxyl group, the structural units described in paragraphs 0065 to 0073 of JP-A-2014-238438 are also preferable from the viewpoint of sensitivity.
 <<<構成単位a2>>>
 構成単位a2は、架橋性基を有する構成単位(以下、構成単位a2ともいう。)である。
 上記架橋性基は、加熱処理で硬化反応を起こす基であれば特に限定はされない。
 好ましい架橋性基を有する構成単位の態様としては、エポキシ基(例えば、オキシラニル基、3,4-エポキシシクロヘキシル基など)、オキセタニル基、-NH-CH2-O-R(Rは水素原子又は炭素数1~20のアルキル基を表す。)で表される基、エチレン性不飽和基、及び、ブロックイソシアネート基よりなる群から選ばれた少なくとも1つを含む構成単位が挙げられ、エポキシ基、オキセタニル基、-NH-CH2-O-R(Rは水素原子又は炭素数1~20のアルキル基を表す。)で表される基、(メタ)アクリロイル基、及び、ブロックイソシアネート基よりなる群から選ばれた少なくとも1種を含む構成単位であることが好ましく、エポキシ基、オキセタニル基、及び、-NH-CH2-O-R(Rは水素原子又は炭素数1~20のアルキル基を表す。)で表される基よりなる群から選ばれた少なくとも1種を含む構成単位であることがより好ましい。
<<< Structural Unit a2 >>>
The structural unit a2 is a structural unit having a crosslinkable group (hereinafter also referred to as a structural unit a2).
The crosslinkable group is not particularly limited as long as it is a group that causes a curing reaction by heat treatment.
Preferred embodiments of the structural unit having a crosslinkable group include an epoxy group (for example, oxiranyl group, 3,4-epoxycyclohexyl group, etc.), oxetanyl group, —NH—CH 2 —O—R (R is a hydrogen atom or carbon atom) And a structural unit containing at least one selected from the group consisting of a group represented by formula (1) to (20), an ethylenically unsaturated group, and a blocked isocyanate group, such as an epoxy group and an oxetanyl group. A group represented by the group: —NH—CH 2 —O—R (R represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms), a (meth) acryloyl group, and a blocked isocyanate group. is preferably a structural unit containing at least one selected, epoxy group, oxetanyl group, and, -NH-CH 2 -O-R (R is a hydrogen atom or a carbon atoms ~ And more preferably a structural unit containing at least one selected from the group consisting of groups represented by.) Represents an alkyl group of 20.
 {エポキシ基及び/又はオキセタニル基を有する構成単位a2-1}
 重合体成分A1は、エポキシ基及び/又はオキセタニル基を有する構成単位a2-1を有する重合体を含有することが好ましい。なお、3員環の環状エーテル基はエポキシ基とも呼ばれ、4員環の環状エーテル基はオキセタニル基とも呼ばれる。
 上記エポキシ基及び/又はオキセタニル基を有する構成単位a2-1は、1つの構成単位中にエポキシ基又はオキセタニル基を少なくとも1つ有していればよく、1つ以上のエポキシ基及び1つ以上オキセタニル基、2つ以上のエポキシ基、又は、2つ以上のオキセタニル基を有していてもよく、特に限定されないが、エポキシ基及び/又はオキセタニル基を合計1~3つ有することが好ましく、エポキシ基及び/又はオキセタニル基を合計1又は2つ有することがより好ましく、エポキシ基又はオキセタニル基を1つ有することが更に好ましい。
{Structural unit a2-1 having an epoxy group and / or an oxetanyl group}
The polymer component A1 preferably contains a polymer having a structural unit a2-1 having an epoxy group and / or an oxetanyl group. A 3-membered cyclic ether group is also called an epoxy group, and a 4-membered cyclic ether group is also called an oxetanyl group.
The structural unit a2-1 having an epoxy group and / or oxetanyl group may have at least one epoxy group or oxetanyl group in one structural unit, and may be one or more epoxy groups and one or more oxetanyl groups. Group, two or more epoxy groups, or two or more oxetanyl groups may be included, and is not particularly limited, but preferably has a total of 1 to 3 epoxy groups and / or oxetanyl groups. It is more preferable to have one or two oxetanyl groups in total, and it is even more preferable to have one epoxy group or oxetanyl group.
 エポキシ基を有する構成単位を形成するために用いられるラジカル重合性単量体の具体例としては、例えば、アクリル酸グリシジル、メタクリル酸グリシジル、α-エチルアクリル酸グリシジル、α-n-プロピルアクリル酸グリシジル、α-n-ブチルアクリル酸グリシジル、アクリル酸-3,4-エポキシブチル、メタクリル酸-3,4-エポキシブチル、アクリル酸-3,4-エポキシシクロヘキシルメチル、メタクリル酸-3,4-エポキシシクロヘキシルメチル、α-エチルアクリル酸-3,4-エポキシシクロヘキシルメチル、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、特許第4168443号公報の段落0031~0035に記載の脂環式エポキシ骨格を含有する化合物などが挙げられ、これらの内容は本願明細書に組み込まれる。
 オキセタニル基を有する構成単位を形成するために用いられるラジカル重合性単量体の具体例としては、例えば、特開2001-330953号公報の段落0011~0016に記載のオキセタニル基を有する(メタ)アクリル酸エステルなどが挙げられ、これらの内容は本願明細書に組み込まれる。
 上記エポキシ基及び/又はオキセタニル基を有する構成単位a2-1を形成するために用いられるラジカル重合性単量体の具体例としては、メタクリル酸エステル構造を含有するモノマー、アクリル酸エステル構造を含有するモノマーであることが好ましい。
Specific examples of the radical polymerizable monomer used for forming the structural unit having an epoxy group include, for example, glycidyl acrylate, glycidyl methacrylate, glycidyl α-ethyl acrylate, and glycidyl α-n-propyl acrylate. Glycidyl α-n-butyl acrylate, 3,4-epoxybutyl acrylate, 3,4-epoxybutyl methacrylate, 3,4-epoxycyclohexylmethyl acrylate, 3,4-epoxycyclohexyl methacrylate Methyl, α-ethylacrylic acid-3,4-epoxycyclohexylmethyl, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinylbenzyl glycidyl ether, described in paragraphs 0031 to 0035 of Japanese Patent No. 4168443 Alicyclic epoch Such compounds may be mentioned containing shea skeleton, the contents of which are incorporated herein.
Specific examples of the radical polymerizable monomer used for forming the structural unit having an oxetanyl group include, for example, a (meth) acryl having an oxetanyl group described in paragraphs 0011 to 0016 of JP-A No. 2001-330953. Acid esters, and the like, the contents of which are incorporated herein.
Specific examples of the radical polymerizable monomer used for forming the structural unit a2-1 having the epoxy group and / or oxetanyl group include a monomer having a methacrylic ester structure and an acrylic ester structure. A monomer is preferred.
 これらの中でも好ましいものは、メタクリル酸グリシジル、アクリル酸3,4-エポキシシクロヘキシルメチル、メタクリル酸3,4-エポキシシクロヘキシルメチル、アクリル酸(3-エチルオキセタン-3-イル)メチル、及び、メタクリル酸(3-エチルオキセタン-3-イル)メチルである。これらの構成単位は、1種単独又は2種類以上を組み合わせて使用することができる。 Among these, glycidyl methacrylate, 3,4-epoxycyclohexylmethyl acrylate, 3,4-epoxycyclohexylmethyl methacrylate, (3-ethyloxetane-3-yl) methyl acrylate, and methacrylic acid ( 3-ethyloxetane-3-yl) methyl. These structural units can be used individually by 1 type or in combination of 2 or more types.
 エポキシ基及び/又はオキセタニル基を有する構成単位a2-1の好ましい具体例としては、下記の構成単位が例示できる。なお、Rは、水素原子又はメチル基を表す。 As preferred specific examples of the structural unit a2-1 having an epoxy group and / or oxetanyl group, the following structural units can be exemplified. R represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 {エチレン性不飽和基を有する構成単位a2-2}
 上記架橋性基を有する構成単位a2の他の例としては、エチレン性不飽和基を有する構成単位a2-2が挙げられる。上記エチレン性不飽和基を有する構成単位a2-2としては、側鎖にエチレン性不飽和基を有する構成単位が好ましく、末端にエチレン性不飽和基を有し、炭素数3~16の側鎖を有する構成単位がより好ましい。
{Structural unit a2-2 having an ethylenically unsaturated group}
Another example of the structural unit a2 having a crosslinkable group includes the structural unit a2-2 having an ethylenically unsaturated group. The structural unit a2-2 having an ethylenically unsaturated group is preferably a structural unit having an ethylenically unsaturated group in the side chain, having an ethylenically unsaturated group at the terminal, and having 3 to 16 carbon atoms. The structural unit having
 その他、エチレン性不飽和基を有する構成単位a2-2については、特開2011-215580号公報の段落0072~0090の記載、及び、特開2008-256974号公報の段落0013~0031の記載を参酌でき、これらの内容は本願明細書に組み込まれる。 In addition, regarding the structural unit a2-2 having an ethylenically unsaturated group, refer to the description in paragraphs 0072 to 0090 of JP2011-215580A and the description of paragraphs 0013 to 0031 in JP2008-256974A. The contents of which are incorporated herein by reference.
 {-NH-CH2-O-R(Rは水素原子又は炭素数1~20のアルキル基を表す。)で表される基を有する構成単位a2-3}
 上記架橋性基を有する構成単位a2の他の例としては、-NH-CH2-O-R(Rは水素原子又は炭素数1~20のアルキル基を表す。)で表される基を有する構成単位a2-3も好ましい。構成単位a2-3を有することで、緩やかな加熱処理で硬化反応を起こすことができ、諸特性に優れた硬化膜を得ることができる。ここで、Rは炭素数1~20のアルキル基が好ましく、炭素数1~9のアルキル基がより好ましく、炭素数1~4のアルキル基が更に好ましい。また、アルキル基は、直鎖、分岐又は環状のアルキル基のいずれであってもよいが、直鎖又は分岐のアルキル基であることが好ましい。構成単位a2-3は、下記式(a2-30)で表される基を有する構成単位であることがより好ましい。
{Structural unit a2-3 having a group represented by —NH—CH 2 —O—R (R represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms)}
Another example of the structural unit a2 having a crosslinkable group has a group represented by —NH—CH 2 —O—R (R represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms). The structural unit a2-3 is also preferable. By having the structural unit a2-3, a curing reaction can be caused by a mild heat treatment, and a cured film having excellent characteristics can be obtained. Here, R is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 9 carbon atoms, and still more preferably an alkyl group having 1 to 4 carbon atoms. The alkyl group may be a linear, branched or cyclic alkyl group, but is preferably a linear or branched alkyl group. The structural unit a2-3 is more preferably a structural unit having a group represented by the following formula (a2-30).
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 上記式(a2-30)中、R31は水素原子又はメチル基を表し、R32は炭素数1~20のアルキル基を表す。 In the above formula (a2-30), R 31 represents a hydrogen atom or a methyl group, and R 32 represents an alkyl group having 1 to 20 carbon atoms.
 R32は、炭素数1~9のアルキル基が好ましく、炭素数1~4のアルキル基が更に好ましい。また、アルキル基は、直鎖、分岐又は環状のアルキル基のいずれであってもよいが、好ましくは、直鎖又は分岐のアルキル基である。
 R32の具体例としては、メチル基、エチル基、n-ブチル基、i-ブチル基、シクロヘキシル基、及び、n-ヘキシル基を挙げることができる。中でも、i-ブチル基、n-ブチル基、メチル基が好ましい。
R 32 is preferably an alkyl group having 1 to 9 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms. The alkyl group may be a linear, branched or cyclic alkyl group, but is preferably a linear or branched alkyl group.
Specific examples of R 32 include a methyl group, an ethyl group, an n-butyl group, an i-butyl group, a cyclohexyl group, and an n-hexyl group. Of these, i-butyl group, n-butyl group and methyl group are preferable.
 <<<構成単位a3>>>
 構成単位a3は、酸基を有する構成単位(以下、構成単位a3ともいう。)である。
 本発明における酸基とは、pKaが11より小さいプロトン解離性基を意味する。
 本発明で用いられる酸基としては、カルボン酸基、スルホンアミド基、ホスホン酸基、スルホン酸基、フェノール性水酸基、スルホンアミド基、スルホニルイミド基、並びに、これらの酸基の酸無水物基、及び、これらの酸基を中和し塩構造とした基等が例示され、カルボン酸基及び/又はフェノール性水酸基が好ましい。上記塩としては、特に制限はないが、アルカリ金属塩、アルカリ土類金属塩、及び、有機アンモニウム塩が好ましく例示できる。
 本発明で用いられる酸基を含む構成単位は、スチレンに由来する構成単位や、ビニル化合物に由来する構成単位、(メタ)アクリル酸及び/又はそのエステルに由来する構成単位であることがより好ましい。例えば、特開2012-88459号公報の段落0021~0023及び段落0029~0044記載の化合物を用いることができ、この内容は本願明細書に組み込まれる。中でも、p-ヒドロキシスチレン、(メタ)アクリル酸、マレイン酸、無水マレイン酸に由来する構成単位が好ましい。
<<< Structural Unit a3 >>>
The structural unit a3 is a structural unit having an acid group (hereinafter also referred to as a structural unit a3).
The acid group in the present invention means a proton dissociable group having a pKa smaller than 11.
Examples of the acid group used in the present invention include a carboxylic acid group, a sulfonamide group, a phosphonic acid group, a sulfonic acid group, a phenolic hydroxyl group, a sulfonamide group, a sulfonylimide group, and acid anhydride groups of these acid groups, And the group etc. which neutralized these acid groups and made it into salt structure are illustrated, and a carboxylic acid group and / or a phenolic hydroxyl group are preferable. Although there is no restriction | limiting in particular as said salt, An alkali metal salt, alkaline-earth metal salt, and organic ammonium salt can illustrate preferably.
The structural unit containing an acid group used in the present invention is more preferably a structural unit derived from styrene, a structural unit derived from a vinyl compound, a structural unit derived from (meth) acrylic acid and / or an ester thereof. . For example, compounds described in paragraphs 0021 to 0023 and paragraphs 0029 to 0044 of JP2012-88459A can be used, the contents of which are incorporated herein. Of these, structural units derived from p-hydroxystyrene, (meth) acrylic acid, maleic acid, and maleic anhydride are preferred.
 酸基を有する構成単位a3としては、感度の観点から、カルボキシル基を有する構成単位、又は、フェノール性水酸基を有する構成単位が好ましく、カルボキシル基を有する構成単位がより好ましい。
 酸基を有する構成単位a3として具体的には、上述した分子中に少なくとも1個のカルボキシル基を有する不飽和カルボン酸等に由来する構成単位a1-1-1、エチレン性不飽和基と酸無水物由来の構造とを共に有する構成単位a1-1-2、フェノール性水酸基を有する構成単位a1-2-1が挙げられ、好ましい態様も同様である。
 中でも、酸基を有する構成単位a3としては、メタクリル酸、アクリル酸及びp-ヒドロキシスチレンよりなる群から選ばれた化合物由来の構成単位〔下記式(a3-1)~式(a3-3)のいずれかで表される構成単位〕であることが好ましく、メタクリル酸由来の構成単位〔下記式(a3-1)で表される構成単位〕又はアクリル酸由来の構成単位〔下記式(a3-2)で表される構成単位〕であることがより好ましく、メタクリル酸由来の構成単位〔下記式(a3-1)で表される構成単位〕であることが更に好ましい。
As the structural unit a3 having an acid group, from the viewpoint of sensitivity, a structural unit having a carboxyl group or a structural unit having a phenolic hydroxyl group is preferable, and a structural unit having a carboxyl group is more preferable.
Specific examples of the structural unit a3 having an acid group include the structural unit a1-1-1 derived from an unsaturated carboxylic acid having at least one carboxyl group in the molecule, an ethylenically unsaturated group, and an acid anhydride. Examples thereof include a structural unit a1-1-2 having both a structure derived from a product and a structural unit a1-2-1 having a phenolic hydroxyl group, and preferred embodiments are also the same.
Among them, the structural unit a3 having an acid group is a structural unit derived from a compound selected from the group consisting of methacrylic acid, acrylic acid and p-hydroxystyrene [of the following formulas (a3-1) to (a3-3): A structural unit represented by any of the above formulas, preferably a structural unit derived from methacrylic acid [a structural unit represented by the following formula (a3-1)] or a structural unit derived from acrylic acid [the following formula (a3-2) Is more preferably a structural unit derived from methacrylic acid [a structural unit represented by the following formula (a3-1)].
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 <<<構成単位a4>>>
 上述した構成単位s1、構成単位a1、構成単位a2および構成単位a3以外の構成単位a4となるモノマーとしては、特に制限はなく、例えば、スチレン類、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸環状アルキルエステル、(メタ)アクリル酸アリールエステル、不飽和ジカルボン酸ジエステル、ビシクロ不飽和化合物類、マレイミド化合物類、不飽和芳香族化合物を挙げることができる。
 その他の構成単位a4を形成するモノマーは、1種単独又は2種類以上を組み合わせて使用することができる。
<<< Structural Unit a4 >>>
There is no restriction | limiting in particular as a monomer used as the structural unit a4 other than the structural unit s1, the structural unit a1, the structural unit a2, and the structural unit a3, for example, styrenes, (meth) acrylic acid alkyl ester, (meth) acrylic Examples include acid cyclic alkyl esters, (meth) acrylic acid aryl esters, unsaturated dicarboxylic acid diesters, bicyclounsaturated compounds, maleimide compounds, and unsaturated aromatic compounds.
The monomer which forms the other structural unit a4 can be used individually by 1 type or in combination of 2 or more types.
 その他の構成単位a4は、具体的には、スチレン、メチルスチレン、α-メチルスチレン、アセトキシスチレン、メトキシスチレン、エトキシスチレン、クロロスチレン、ビニル安息香酸メチル、ビニル安息香酸エチル、4-ヒドロキシ安息香酸(3-メタクリロイルオキシプロピル)エステル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸イソボルニル、アクリロニトリル、エチレングリコールモノアセトアセテートモノ(メタ)アクリレートなどによる構成単位を挙げることができる。この他、特開2004-264623号公報の段落0021~0024に記載の化合物を挙げることができる。 Specific examples of the other structural unit a4 include styrene, methylstyrene, α-methylstyrene, acetoxystyrene, methoxystyrene, ethoxystyrene, chlorostyrene, methyl vinylbenzoate, ethyl vinylbenzoate, 4-hydroxybenzoic acid ( 3-methacryloyloxypropyl) ester, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, (meth And a structural unit such as 2-hydroxypropyl acrylate, benzyl (meth) acrylate, isobornyl (meth) acrylate, acrylonitrile, ethylene glycol monoacetoacetate mono (meth) acrylate, and the like. In addition, compounds described in paragraphs 0021 to 0024 of JP-A No. 2004-264623 can be exemplified.
 また、その他の構成単位a4としては、スチレン類、又は、脂肪族環式骨格を有するモノマー由来の構成単位が、電気特性の観点で好ましい。具体的にはスチレン、メチルスチレン、α-メチルスチレン、ジシクロペンタニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート等が挙げられる。 As the other structural unit a4, a structural unit derived from a monomer having a styrene or an aliphatic cyclic skeleton is preferable from the viewpoint of electrical characteristics. Specific examples include styrene, methylstyrene, α-methylstyrene, dicyclopentanyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, and benzyl (meth) acrylate.
 更にまた、その他の構成単位a4としては、(メタ)アクリル酸アルキルエステル由来の構成単位が、密着性の観点で好ましい。具体的には(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸n-ブチル等が挙げられ、(メタ)アクリル酸メチルがより好ましい。重合体を構成する全構成単位中、上記の構成単位a4の含有率は、60モル%以下が好ましく、50モル%以下がより好ましく、40モル%以下が更に好ましい。下限値としては、0モル%でもよいが、例えば、1モル%以上とすることが好ましく、5モル%以上とすることがより好ましい。上記の数値の範囲内であると、樹脂組成物から得られる硬化膜の諸特性が良好となる。 Furthermore, as other structural unit a4, a structural unit derived from (meth) acrylic acid alkyl ester is preferable from the viewpoint of adhesion. Specific examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and n-butyl (meth) acrylate, and methyl (meth) acrylate is more preferable. In all the structural units constituting the polymer, the content of the structural unit a4 is preferably 60 mol% or less, more preferably 50 mol% or less, and still more preferably 40 mol% or less. As a lower limit, although 0 mol% may be sufficient, it is preferable to set it as 1 mol% or more, for example, and it is more preferable to set it as 5 mol% or more. Within the above numerical range, various properties of the cured film obtained from the resin composition are improved.
 (重合体A)
 上記重合体Aとしては、例えば、上述した構成単位s1を含まず、上述した構成単位a1~構成単位a4のいずれか1つ以上を含む重合体が挙げられ、なかでも、上述した通り、配向保護層において上述した架橋構造を形成しやすい理由から、架橋性基を有する構成単位a2および/または酸基を有する構成単位a3を有する重合体であるのが好ましい。
(Polymer A)
Examples of the polymer A include a polymer that does not include the above-described structural unit s1, but includes any one or more of the above-described structural units a1 to a4. A polymer having a structural unit a2 having a crosslinkable group and / or a structural unit a3 having an acid group is preferable because the above-described crosslinked structure is easily formed in the layer.
 <<分子量>>
 上述した重合体Pおよび重合体Aの分子量は、ポリスチレン換算重量平均分子量で、好ましくは1,000~200,000、より好ましくは2,000~50,000、更に好ましくは10,000~20,000の範囲である。上記の数値の範囲内であると、諸特性が良好である。数平均分子量Mnと重量平均分子量Mwとの比(分散度、Mw/Mn)は1.0~5.0が好ましく、1.5~3.5がより好ましい。
 なお、本発明における重量平均分子量や数平均分子量の測定は、ゲル浸透クロマトグラフィ(GPC)法により測定することが好ましい。本発明におけるゲル浸透クロマトグラフィ法による測定は、HLC-8020GPC(東ソー(株)製)を用い、カラムとしてTSKgel Super HZ M-H、TSK gel Super HZ4000、TSKgel SuperHZ200(東ソー(株)製、4.6mmID×15cm)を、溶離液としてTHF(テトラヒドロフラン)を用いることが好ましい。
<< Molecular weight >>
The molecular weight of the above-mentioned polymer P and polymer A is a polystyrene-converted weight average molecular weight, preferably 1,000 to 200,000, more preferably 2,000 to 50,000, and still more preferably 10,000 to 20,000. 000 range. Various characteristics are favorable in the range of said numerical value. The ratio (dispersity, Mw / Mn) between the number average molecular weight Mn and the weight average molecular weight Mw is preferably 1.0 to 5.0, more preferably 1.5 to 3.5.
In addition, it is preferable to measure the weight average molecular weight and the number average molecular weight in the present invention by a gel permeation chromatography (GPC) method. In the measurement by gel permeation chromatography in the present invention, HLC-8020GPC (manufactured by Tosoh Corporation) is used, and TSKgel Super HZ MH, TSK gel Super HZ4000, TSKgel SuperHZ200 (manufactured by Tosoh Corporation), 4.6 mmID are used as columns. It is preferable to use THF (tetrahydrofuran) as an eluent.
 <<調製方法>>
 上述した重合体Pおよび重合体Aの合成法についても、様々な方法が知られているが、一例を挙げると、上述した各構成単位を形成するために用いられるラジカル重合性単量体を含むラジカル重合性単量体混合物を有機溶剤中、ラジカル重合開始剤を用いて重合することにより合成することができる。また、いわゆる高分子反応で合成することもできる。
<< Preparation method >>
Various methods for synthesizing the above-described polymer P and polymer A are also known. However, for example, the polymer P and the polymer A include a radical polymerizable monomer used to form each structural unit described above. It can be synthesized by polymerizing a radical polymerizable monomer mixture in an organic solvent using a radical polymerization initiator. It can also be synthesized by a so-called polymer reaction.
 本発明においては、厚み方向のレターデーション(Rth)を低く保つ理由から、上述した重合体Pおよび重合体Aの合計質量に対する重合体Pの質量割合が10質量%未満であるのが好ましく、0.1~5質量%であるのがより好ましい。 In the present invention, in order to keep the retardation (Rth) in the thickness direction low, the mass ratio of the polymer P to the total mass of the polymer P and the polymer A described above is preferably less than 10% by mass. More preferably, the content is 1 to 5% by mass.
 (架橋剤B)
 本発明においては、視認側にカラーフィルターを設けた場合の平坦性が向上し、高温高湿下に晒された後の表示性能もより良好となる理由から、上記配向保護層は、分子量5000以下の架橋剤Bを含有しているのが好ましい。
 架橋剤Bとしては、熱によって架橋反応が起こるものであれば制限なく使用できる。
 例えば、以下に述べる分子内に2個以上のエポキシ基又はオキセタニル基を有する化合物、ブロックイソシアネート化合物(保護されたイソシアナト基を有する化合物)、アルコキシメチル基含有化合物、又は、少なくとも1個のエチレン性不飽和二重結合(エチレン性不飽和基)よりなる群から選ばれた少なくとも1種であることが好ましく、分子内に2個以上のエポキシ基又はオキセタニル基を有する化合物、ブロックイソシアネート化合物よりなる群から選ばれた少なくとも1種であることがより好ましい。
 以下に、本発明において好ましく使用される架橋剤Bについて説明する。
(Crosslinking agent B)
In the present invention, the alignment protective layer has a molecular weight of 5000 or less because the flatness when a color filter is provided on the viewing side is improved and the display performance after being exposed to high temperature and high humidity becomes better. It is preferable to contain the crosslinking agent B.
As the crosslinking agent B, any crosslinking agent can be used as long as it causes a crosslinking reaction by heat.
For example, a compound having two or more epoxy groups or oxetanyl groups in the molecule described below, a blocked isocyanate compound (a compound having a protected isocyanato group), an alkoxymethyl group-containing compound, or at least one ethylenic group. It is preferably at least one selected from the group consisting of saturated double bonds (ethylenically unsaturated groups), from a group consisting of compounds having two or more epoxy groups or oxetanyl groups in the molecule, and blocked isocyanate compounds. More preferably, it is at least one selected.
Below, the crosslinking agent B preferably used in this invention is demonstrated.
 <<分子内に2個以上のエポキシ基又はオキセタニル基を有する化合物>>
 架橋剤Bとして、例えば、多官能の小員環環状エーテル化合物が挙げられる。
 すなわち、1分子内に、エポキシ基及び/又はオキセタニル基を2個以上有する化合物であることを意味する。
<< Compound having two or more epoxy groups or oxetanyl groups in the molecule >>
Examples of the crosslinking agent B include polyfunctional small ring cyclic ether compounds.
That is, it means a compound having two or more epoxy groups and / or oxetanyl groups in one molecule.
 分子内に2個以上のエポキシ基を有する化合物の具体例としては、脂肪族エポキシ化合物等を挙げることができる。
 これらは市販品として入手できる。例えば、デナコールEX-611、EX-612、EX-614、EX-614B、EX-622、EX-512、EX-521、EX-411、EX-421、EX-313、EX-314、EX-321、EX-211、EX-212、EX-810、EX-811、EX-850、EX-851、EX-821、EX-830、EX-832、EX-841、EX-911、EX-941、EX-920、EX-931、EX-212L、EX-214L、EX-216L、EX-321L、EX-850L、DLC-201、DLC-203、DLC-204、DLC-205、DLC-206、DLC-301、DLC-402(以上ナガセケムテックス(株)製)、セロキサイド2021P、2081、3000、EHPE3150、エポリードGT400、セルビナースB0134、B0177((株)ダイセル製)、などが挙げられる。
 これらは1種単独又は2種以上を組み合わせて使用することができる。
Specific examples of the compound having two or more epoxy groups in the molecule include aliphatic epoxy compounds.
These are available as commercial products. For example, Denacol EX-611, EX-612, EX-614, EX-614B, EX-622, EX-512, EX-521, EX-411, EX-421, EX-313, EX-314, EX-321 , EX-211, EX-212, EX-810, EX-811, EX-850, EX-851, EX-821, EX-830, EX-832, EX-841, EX-911, EX-941, EX -920, EX-931, EX-212L, EX-214L, EX-216L, EX-321L, EX-850L, DLC-201, DLC-203, DLC-204, DLC-205, DLC-206, DLC-301 DLC-402 (manufactured by Nagase ChemteX Corporation), Celoxide 2021P, 2081, 3000, EHPE31 0, Epolead GT400, Serubinasu B0134, B0177 ((Ltd.) manufactured by Daicel), and the like.
These can be used alone or in combination of two or more.
 分子内に2個以上のオキセタニル基を有する化合物の具体例としては、アロンオキセタンOXT-121、OXT-221、OX-SQ、PNOX(以上、東亞合成(株)製)を用いることができる。 As specific examples of the compound having two or more oxetanyl groups in the molecule, Aron Oxetane OXT-121, OXT-221, OX-SQ, and PNOX (above, manufactured by Toagosei Co., Ltd.) can be used.
 また、オキセタニル基を含む化合物は、単独で又はエポキシ基を含む化合物と混合して使用することが好ましい。 In addition, the compound containing an oxetanyl group is preferably used alone or mixed with a compound containing an epoxy group.
 <<ブロックイソシアネート化合物>>
 架橋剤Bとして、ブロックイソシアネート系化合物も好ましく採用できる。
 ブロックイソシアネート化合物は、イソシアネート基が化学的に保護されたブロックイソシアネート基を有する化合物であれば特に制限はないが、硬化性の観点から、1分子内に2以上のブロックイソシアネート基を有する化合物であることが好ましい。
 なお、本発明におけるブロックイソシアネート基とは、熱によりイソシアネート基を生成することが可能な基であり、例えば、ブロック剤とイソシアネート基とを反応させイソシアネート基を保護した基が好ましく例示できる。また、上記ブロックイソシアネート基は、90℃~250℃の熱によりイソシアネート基を生成することが可能な基であることが好ましい。
 また、ブロックイソシアネート化合物としては、その骨格は特に限定されるものではなく、1分子中にイソシアネート基を2個有するものであればどのようなものでもよく、脂肪族、脂環族又は芳香族のポリイソシアネートであってよいが、例えば2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、イソホロンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、1,3-トリメチレンジイソシアネート、1,4-テトラメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、1,9-ノナメチレンジイソシアネート、1,10-デカメチレンジイソシアネート、1,4-シクロヘキサンジイソシアネート、2,2’-ジエチルエーテルジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、o-キシレンジイソシアネート、m-キシレンジイソシアネート、p-キシレンジイソシアネート、メチレンビス(シクロヘキシルイソシアネート)、シクロヘキサン-1,3-ジメチレンジイソシアネート、シクロヘキサン-1,4-ジメチレンジイソシアネート、1,5-ナフタレンジイソシアネート、p-フェニレンジイソシアネート、3,3’-メチレンジトリレン-4,4’-ジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート、テトラクロロフェニレンジイソシアネート、ノルボルナンジイソシアネート、水素化1,3-キシリレンジイソシアネート、水素化1,4-キシリレンジイソシアネート等のイソシアネート化合物及びこれらの化合物から派生するプレポリマー型の骨格の化合物を好適に用いることができる。これらの中でも、トリレンジイソシアネート(TDI)やジフェニルメタンジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)が特に好ましい。
<< Block isocyanate compound >>
As the crosslinking agent B, a blocked isocyanate compound can also be preferably employed.
The blocked isocyanate compound is not particularly limited as long as the isocyanate group has a chemically protected blocked isocyanate group, but is a compound having two or more blocked isocyanate groups in one molecule from the viewpoint of curability. It is preferable.
In addition, the blocked isocyanate group in this invention is a group which can produce | generate an isocyanate group with a heat | fever, For example, the group which reacted the blocking agent and the isocyanate group and protected the isocyanate group can illustrate preferably. The blocked isocyanate group is preferably a group capable of generating an isocyanate group by heat at 90 ° C. to 250 ° C.
Further, the skeleton of the blocked isocyanate compound is not particularly limited and may be any as long as it has two isocyanate groups in one molecule, and may be aliphatic, alicyclic or aromatic. Polyisocyanates may be used, for example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, isophorone diisocyanate, 1,6-hexamethylene diisocyanate, 1,3-trimethylene diisocyanate, 1,4-tetramethylene Diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 1,9-nonamethylene diisocyanate, 1,10-decamethylene diisocyanate, 1,4-cyclohexane diisocyanate, 2, '-Diethyl ether diisocyanate, diphenylmethane-4,4'-diisocyanate, o-xylene diisocyanate, m-xylene diisocyanate, p-xylene diisocyanate, methylene bis (cyclohexyl isocyanate), cyclohexane-1,3-dimethylene diisocyanate, cyclohexane-1, 4-dimethylene diisocyanate, 1,5-naphthalene diisocyanate, p-phenylene diisocyanate, 3,3′-methylene ditolylene-4,4′-diisocyanate, 4,4′-diphenyl ether diisocyanate, tetrachlorophenylene diisocyanate, norbornane diisocyanate, Isocyanate compounds such as hydrogenated 1,3-xylylene diisocyanate and hydrogenated 1,4-xylylene diisocyanate In addition, a prepolymer type skeleton compound derived from these compounds can be preferably used. Among these, tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), and isophorone diisocyanate (IPDI) are particularly preferable.
 ブロックイソシアネート化合物の母構造としては、ビウレット型、イソシアヌレート型、アダクト型、2官能プレポリマー型等を挙げることができる。
 上記ブロックイソシアネート化合物のブロック構造を形成するブロック剤としては、オキシム化合物、ラクタム化合物、フェノール化合物、アルコール化合物、アミン化合物、活性メチレン化合物、ピラゾール化合物、メルカプタン化合物、イミダゾール系化合物、イミド系化合物等を挙げることができる。これらの中でも、オキシム化合物、ラクタム化合物、フェノール化合物、アルコール化合物、アミン化合物、活性メチレン化合物、ピラゾール化合物から選ばれるブロック剤が特に好ましい。
Examples of the matrix structure of the blocked isocyanate compound include biuret type, isocyanurate type, adduct type, and bifunctional prepolymer type.
Examples of the blocking agent that forms the block structure of the blocked isocyanate compound include oxime compounds, lactam compounds, phenol compounds, alcohol compounds, amine compounds, active methylene compounds, pyrazole compounds, mercaptan compounds, imidazole compounds, and imide compounds. be able to. Among these, a blocking agent selected from oxime compounds, lactam compounds, phenol compounds, alcohol compounds, amine compounds, active methylene compounds, and pyrazole compounds is particularly preferable.
 上記オキシム化合物としては、オキシム、及び、ケトオキシムが挙げられ、具体的には、アセトキシム、ホルムアルドキシム、シクロヘキサンオキシム、メチルエチルケトンオキシム、シクロヘキサノンオキシム、ベンゾフェノンオキシム、アセトキシム等が例示できる。
 上記ラクタム化合物としてはε-カプロラクタム、γ-ブチロラクタム等が例示できる。
 上記フェノール化合物としては、フェノール、ナフトール、クレゾール、キシレノール、ハロゲン置換フェノール等が例示できる。
 上記アルコール化合物としては、メタノール、エタノール、プロパノール、ブタノール、シクロヘキサノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、乳酸アルキル等が例示できる。
 上記アミン化合物としては、1級アミン及び2級アミンが挙げられ、芳香族アミン、脂肪族アミン、脂環族アミンいずれでもよく、アニリン、ジフェニルアミン、エチレンイミン、ポリエチレンイミン等が例示できる。
 上記活性メチレン化合物としては、マロン酸ジエチル、マロン酸ジメチル、アセト酢酸エチル、アセト酢酸メチル等が例示できる。上記ピラゾール化合物としては、ピラゾール、メチルピラゾール、ジメチルピラゾール等が例示できる。
 上記メルカプタン化合物としては、アルキルメルカプタン、アリールメルカプタン等が例示できる。
Examples of the oxime compound include oxime and ketoxime, and specific examples include acetoxime, formaldoxime, cyclohexane oxime, methyl ethyl ketone oxime, cyclohexanone oxime, benzophenone oxime, and acetoxime.
Examples of the lactam compound include ε-caprolactam and γ-butyrolactam.
Examples of the phenol compound include phenol, naphthol, cresol, xylenol, and halogen-substituted phenol.
Examples of the alcohol compound include methanol, ethanol, propanol, butanol, cyclohexanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, and alkyl lactate.
As said amine compound, a primary amine and a secondary amine are mentioned, Any of an aromatic amine, an aliphatic amine, and an alicyclic amine may be sufficient, An aniline, diphenylamine, ethyleneimine, polyethyleneimine etc. can be illustrated.
Examples of the active methylene compound include diethyl malonate, dimethyl malonate, ethyl acetoacetate, methyl acetoacetate and the like. Examples of the pyrazole compound include pyrazole, methylpyrazole, dimethylpyrazole and the like.
Examples of the mercaptan compound include alkyl mercaptans and aryl mercaptans.
 ブロックイソシアネート化合物は、市販品として入手可能であり、例えば、コロネートAPステーブルM、コロネート2503、2515、2507、2513、2555、ミリオネートMS-50(以上、日本ポリウレタン工業(株)製)、タケネートB-830、B-815N、B-820NSU、B-842N、B-846N、B-870N、B-874N、B-882N(以上、三井化学(株)製)、デュラネート17B-60PX、17B-60P、TPA-B80X、TPA-B80E、MF-B60X、MF-B60B、MF-K60X、MF-K60B、E402-B80B、SBN-70D、SBB-70P、K6000(以上、旭化成ケミカルズ(株)製)、デスモジュールBL1100、BL1265 MPA/X、BL3575/1、BL3272MPA、BL3370MPA、BL3475BA/SN、BL5375MPA、VPLS2078/2、BL4265SN、PL340、PL350、スミジュールBL3175(以上、住化バイエルウレタン(株)製)等を好ましく使用することができる。 The blocked isocyanate compound is available as a commercial product. For example, Coronate AP Stable M, Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (above, manufactured by Nippon Polyurethane Industry Co., Ltd.), Takenate B -830, B-815N, B-820NSU, B-842N, B-846N, B-870N, B-874N, B-882N (manufactured by Mitsui Chemicals, Inc.), Duranate 17B-60PX, 17B-60P, TPA-B80X, TPA-B80E, MF-B60X, MF-B60B, MF-K60X, MF-K60B, E402-B80B, SBN-70D, SBB-70P, K6000 (above, manufactured by Asahi Kasei Chemicals Corporation), Death Module BL1100, BL1265 MPA / X BL3575 / 1, BL3272MPA, BL3370MPA, BL3475BA / SN, BL5375MPA, VPLS2078 / 2, BL4265SN, PL340, PL350, Sumidur BL3175 (above, manufactured by Sumika Bayer Urethane Co.) can be preferably used, and the like.
 <<アルコキシメチル基含有架橋剤>>
 アルコキシメチル基含有化合物としては、アルコキシメチル化メラミン、アルコキシメチル化ベンゾグアナミン、アルコキシメチル化グリコールウリル及びアルコキシメチル化尿素等が好ましい。これらは、それぞれメチロール化メラミン、メチロール化ベンゾグアナミン、メチロール化グリコールウリル、又は、メチロール化尿素のメチロール基をアルコキシメチル基に変換することにより得られる。このアルコキシメチル基の種類については特に限定されるものではなく、例えば、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基等を挙げることができるが、アウトガスの発生量の観点から、メトキシメチル基が特に好ましい。
 これらの化合物のうち、アルコキシメチル化メラミン、アルコキシメチル化ベンゾグアナミン、アルコキシメチル化グリコールウリルが好ましい化合物として挙げられ、透明性の観点から、アルコキシメチル化グリコールウリルが特に好ましい。
 アルコキシメチル基含有架橋剤もその分子量が、1,000以下である化合物を硬化性組成物に使用する。
 これらアルコキシメチル基含有化合物は、市販品として入手可能であり、例えば、サイメル300、301、303、370、325、327、701、266、267、238、1141、272、202、1156、1158、1123、1170、1174、UFR65、300(以上、三井サイアナミッド製)、ニカラックMX-750、-032、-706、-708、-40、-31、-270、-280、-290、ニカラックMS-11、ニカラックMW-30HM、-100LM、-390、(以上、(株)三和ケミカル製)などを好ましく使用することができる。
<< Alkoxymethyl group-containing crosslinking agent >>
As the alkoxymethyl group-containing compound, alkoxymethylated melamine, alkoxymethylated benzoguanamine, alkoxymethylated glycoluril, alkoxymethylated urea and the like are preferable. These can be obtained by converting the methylol group of methylolated melamine, methylolated benzoguanamine, methylolated glycoluril, or methylolated urea to an alkoxymethyl group, respectively. The type of the alkoxymethyl group is not particularly limited, and examples thereof include a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, and a butoxymethyl group. From the viewpoint of outgas generation amount, A methyl group is particularly preferred.
Among these compounds, alkoxymethylated melamine, alkoxymethylated benzoguanamine, and alkoxymethylated glycoluril are preferable compounds, and alkoxymethylated glycoluril is particularly preferable from the viewpoint of transparency.
As the alkoxymethyl group-containing crosslinking agent, a compound having a molecular weight of 1,000 or less is used for the curable composition.
These alkoxymethyl group-containing compounds are available as commercial products. For example, Cymel 300, 301, 303, 370, 325, 327, 701, 266, 267, 238, 1141, 272, 202, 1156, 1158, 1123 1170, 1174, UFR65, 300 (above, manufactured by Mitsui Cyanamid), Nicarax MX-750, -032, -706, -708, -40, -31, -270, -280, -290, Nicarak MS-11, Nicarak MW-30HM, -100LM, -390, (manufactured by Sanwa Chemical Co., Ltd.) and the like can be preferably used.
 本発明においては、架橋剤Bとして、エポキシ基を有する架橋剤を用いるのが好ましい。
 また、架橋剤Bを含有する場合の含有量は、架橋剤B、重合体Pおよび重合体Aの合計質量に対して30質量%以下であるのが好ましく、10~30質量%であるのがより好ましい。
In the present invention, it is preferable to use a crosslinking agent having an epoxy group as the crosslinking agent B.
Further, when the crosslinking agent B is contained, the content is preferably 30% by mass or less, and preferably 10 to 30% by mass with respect to the total mass of the crosslinking agent B, the polymer P and the polymer A. More preferred.
 (有機溶剤)
 上記保護層形成用組成物は、上述した重合体以外に、有機溶剤を含有するのが好ましい。
 有機溶剤としては、公知の有機溶剤を用いることができ、エチレングリコールモノアルキルエーテル類、エチレングリコールジアルキルエーテル類、エチレングリコールモノアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテル類、プロピレングリコールジアルキルエーテル類、プロピレングリコールモノアルキルエーテルアセテート類、ジエチレングリコールジアルキルエーテル類、ジエチレングリコールモノアルキルエーテルアセテート類、ジプロピレングリコールモノアルキルエーテル類、ブチレングリコールジアセテート類、ジプロピレングリコールジアルキルエーテル類、ジプロピレングリコールモノアルキルエーテルアセテート類、アルコール類、エステル類、ケトン類、アミド類、ラクトン類等が例示できる。これらの有機溶剤の具体例としては、特開2009-098616号公報の段落0062を参照できる。
(Organic solvent)
The protective layer-forming composition preferably contains an organic solvent in addition to the polymer described above.
As the organic solvent, known organic solvents can be used, such as ethylene glycol monoalkyl ethers, ethylene glycol dialkyl ethers, ethylene glycol monoalkyl ether acetates, propylene glycol monoalkyl ethers, propylene glycol dialkyl ethers, propylene. Glycol monoalkyl ether acetates, diethylene glycol dialkyl ethers, diethylene glycol monoalkyl ether acetates, dipropylene glycol monoalkyl ethers, butylene glycol diacetates, dipropylene glycol dialkyl ethers, dipropylene glycol monoalkyl ether acetates, alcohol , Esters, ketones, amides, lactones, etc. Kill. As specific examples of these organic solvents, reference can be made to paragraph 0062 of JP-A-2009-098616.
 好ましい具体例には、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、プロピレングリコールモノメチルエーテル、1,3-ブチレングリコールジアセテート、メトキシプロピルアセテート、シクロヘキサノールアセテート、プロピレングリコールジアセテート、テトラヒドロフルフリルアルコールが挙げられる。 Preferred examples include propylene glycol monomethyl ether acetate, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, propylene glycol monomethyl ether, 1,3-butylene glycol diacetate, methoxypropyl acetate, cyclohexanol acetate, propylene glycol diacetate, tetrahydroflur Examples include furyl alcohol.
 有機溶剤の沸点は、塗布性の観点から100℃~300℃が好ましく、120℃~250℃がより好ましい。
 本発明に用いることができる有機溶剤は、1種単独、又は、2種以上を併用することができる。沸点の異なる溶剤を併用することも好ましい。
 有機溶剤を含有する場合の含有量は、塗布に適した粘度に調整するという観点から、組成物の全固形分100質量部あたり、100~3,000質量部であることが好ましく、200~2,000質量部であることがより好ましく、250~1,000質量部であることが更に好ましい。
 組成物の固形分濃度としては、3~50質量%が好ましく、20~40質量%であることがより好ましい。
The boiling point of the organic solvent is preferably 100 ° C. to 300 ° C., more preferably 120 ° C. to 250 ° C. from the viewpoint of applicability.
The organic solvent which can be used for this invention can be used individually by 1 type or in combination of 2 or more types. It is also preferred to use solvents having different boiling points in combination.
In the case of containing an organic solvent, the content is preferably from 100 to 3,000 parts by mass, preferably from 200 to 2 parts per 100 parts by mass of the total solid content of the composition, from the viewpoint of adjusting the viscosity to be suitable for coating. More preferably, it is 1,000,000 parts by mass, and even more preferably 250-1,000 parts by mass.
The solid content concentration of the composition is preferably 3 to 50% by mass, and more preferably 20 to 40% by mass.
 (界面活性剤)
 上記保護層形成用組成物は、界面活性剤を含有してもよい。
 界面活性剤としては、アニオン系、カチオン系、ノニオン系、又は、両性のいずれでも使用することができるが、好ましい界面活性剤はノニオン系界面活性剤である。界面活性剤としては、ノニオン系界面活性剤が好ましく、フッ素系界面活性剤がより好ましい。
 第1の態様に用いることができる界面活性剤としては、例えば、市販品である、メガファックF142D、同F172、同F173、同F176、同F177、同F183、同F479、同F482、同F554、同F780、同F781、同F781-F、同R30、同R08、同F-472SF、同BL20、同R-61、同R-90(DIC(株)製)、フロラードFC-135、同FC-170C、同FC-430、同FC-431、Novec FC-4430(住友スリーエム(株)製)、アサヒガードAG7105,7000,950,7600、サーフロンS-112、同S-113、同S-131、同S-141、同S-145、同S-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(旭硝子(株)製)、エフトップEF351、同352、同801、同802(三菱マテリアル電子化成(株)製)、フタージェント250(ネオス(株)製)が挙げられる。また、上記以外にも、KP(信越化学工業(株)製)、ポリフロー(共栄社化学(株)製)、エフトップ(三菱マテリアル電子化成(株)製)、メガファック(DIC(株)製)、フロラード(住友スリーエム(株)製)、アサヒガード、サーフロン(旭硝子(株)製)、PolyFox(OMNOVA製)等の各シリーズを挙げることができる。
(Surfactant)
The protective layer forming composition may contain a surfactant.
As the surfactant, any of anionic, cationic, nonionic, or amphoteric surfactants can be used, but a preferred surfactant is a nonionic surfactant. As the surfactant, nonionic surfactants are preferable, and fluorine-based surfactants are more preferable.
As the surfactant that can be used in the first embodiment, for example, commercially available products such as Megafac F142D, F172, F173, F176, F177, F183, F479, F482, F554, F780, F781, F781-F, R30, R08, F-472SF, BL20, R-61, R-90 (manufactured by DIC Corporation), Florard FC-135, FC- 170C, FC-430, FC-431, Novec FC-4430 (manufactured by Sumitomo 3M), Asahi Guard AG7105, 7000, 950, 7600, Surflon S-112, S-113, S-131, S-141, S-145, S-382, SC-101, SC-102, SC-103, SC-104, SC -105, SC-106 (manufactured by Asahi Glass Co., Ltd.), Ftop EF351, 352, 801, 802 (manufactured by Mitsubishi Materials Denka Kasei), and Footgent 250 (manufactured by Neos Co., Ltd.) It is done. In addition to the above, KP (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow (manufactured by Kyoeisha Chemical Co., Ltd.), F-Top (manufactured by Mitsubishi Materials Denka Kasei Co., Ltd.), MegaFuck (manufactured by DIC Corporation) , FLORARD (manufactured by Sumitomo 3M), Asahi Guard, Surflon (manufactured by Asahi Glass Co., Ltd.), PolyFox (manufactured by OMNOVA), and the like.
 また、界面活性剤としては、特開2014-238438号公報の段落0151~0155に記載の化合物も好ましい例として挙げることができる。 As the surfactant, compounds described in paragraphs 0151 to 0155 of JP-A-2014-238438 can also be mentioned as preferred examples.
 界面活性剤を含有する場合の含有量は、組成物の全固形分中100質量部に対して、0.001~5.0質量部が好ましく、0.01~2.0質量部がより好ましい。
 界面活性剤は、1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、その合計量が上記範囲となることが好ましい。
When the surfactant is contained, the content is preferably 0.001 to 5.0 parts by mass and more preferably 0.01 to 2.0 parts by mass with respect to 100 parts by mass in the total solid content of the composition. .
Only one type of surfactant may be included, or two or more types of surfactants may be included. When two or more types are included, the total amount is preferably within the above range.
 (密着改良剤)
 上記保護層形成用組成物は、密着改良剤を含有してもよい。
 密着改良剤としてはアルコキシシラン化合物などが挙げられる。
 アルコキシシラン化合物は、基材となる無機物、例えば、シリコン、酸化シリコン、窒化シリコン等のシリコン化合物、金、銅、モリブデン、チタン、アルミニウム等の金属と絶縁膜との密着性を向上させる化合物であることが好ましい。
 密着改良剤の具体例としては、例えば、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリメトキシシランなどが挙げられる。これらのうち、γ-グリシドキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシランが好ましく、γ-グリシドキシプロピルトリメトキシシランがより好ましい。これらは1種単独または2種以上を組み合わせて使用することができる。
 密着改良剤の含有量は、組成物の全固形成分100質量部に対し、0.001~15質量部であることが好ましく、0.005~10質量部であることがより好ましい。密着改良剤は、1種類のみ用いてもよいし、2種類以上用いてもよい。2種類以上用いる場合は、合計量が上記範囲となることが好ましい。
(Adhesion improver)
The protective layer forming composition may contain an adhesion improving agent.
Examples of the adhesion improving agent include alkoxysilane compounds.
The alkoxysilane compound is a compound that improves the adhesion between an insulating material and an inorganic material serving as a base material, for example, a silicon compound such as silicon, silicon oxide, or silicon nitride, or a metal such as gold, copper, molybdenum, titanium, or aluminum. It is preferable.
Specific examples of the adhesion improver include, for example, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycol. Sidoxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, β- (3,4-epoxy (Cyclohexyl) ethyltrimethoxysilane, vinyltrimethoxysilane and the like. Of these, γ-glycidoxypropyltrimethoxysilane and γ-methacryloxypropyltrimethoxysilane are preferred, and γ-glycidoxypropyltrimethoxysilane is more preferred. These can be used alone or in combination of two or more.
The content of the adhesion improving agent is preferably 0.001 to 15 parts by mass, and more preferably 0.005 to 10 parts by mass with respect to 100 parts by mass of the total solid components of the composition. Only one type of adhesion improver may be used, or two or more types may be used. When using 2 or more types, it is preferable that a total amount becomes the said range.
 (感光剤)
 上記保護層形成用組成物は、感光剤を含有してもよい。
 感光剤としては、例えば、光酸発生剤、キノンジアジド化合物、光ラジカル開始剤などが挙げられる。
(Photosensitive agent)
The protective layer forming composition may contain a photosensitizer.
Examples of the photosensitizer include a photoacid generator, a quinonediazide compound, and a photoradical initiator.
 <保護層の形成>
 基材上に保護層を形成する方法は特に制限されないが、例えば、基材上に上記保護層形成用組成物を塗布する方法が挙げられる。
<Formation of protective layer>
Although the method in particular of forming a protective layer on a base material is not restrict | limited, For example, the method of apply | coating the said composition for protective layer formation on a base material is mentioned.
 (塗布)
 保護層形成用組成物を基材上に塗布する方法は特に限定されず、具体的には、例えば、印刷法(例えば、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、インクジェット印刷法、インプリント法など)、スピンコーティング法、スリットコーティング法、スリットアンドスピンコーティング法、ディップコーティング法、カーテンコーティング法等が挙げられる。
(Application)
The method for applying the protective layer-forming composition on the substrate is not particularly limited. Specifically, for example, a printing method (for example, gravure printing method, screen printing method, flexographic printing method, inkjet printing method, imprinting) Method), spin coating method, slit coating method, slit and spin coating method, dip coating method, curtain coating method and the like.
 (溶媒除去)
 本発明においては、上述した塗布の後であって、後述する配向処理工程の前に、保護層形成用組成物に含まれる任意の溶媒を皮膜から除去する溶媒除去工程を有していてもよい。
 溶媒除去工程は、溶媒の種類や量により処理条件が異なるが、例えば、溶媒としてNMPを用いた場合には、80~150℃程度で、0.5~3分程度、加熱する工程であるのが好ましく、90~120℃程度で、0.5~2分程度、加熱する工程であるのがより好ましい。
(Solvent removal)
In this invention, it is after the application | coating mentioned above, Comprising: You may have the solvent removal process which removes the arbitrary solvents contained in the composition for protective layer formation from a membrane | film | coat before the orientation process process mentioned later. .
The solvent removal step varies depending on the type and amount of the solvent. For example, when NMP is used as the solvent, it is a step of heating at about 80 to 150 ° C. for about 0.5 to 3 minutes. The step of heating at about 90 to 120 ° C. for about 0.5 to 2 minutes is more preferable.
 <配向保護層の形成(配向処理)>
 配向処理としては、例えば、ラビング処理法、光配向処理、磁気配向等の非接触型の配向法等が挙げられる。
<Formation of orientation protective layer (orientation treatment)>
Examples of the alignment treatment include non-contact alignment methods such as rubbing treatment, photo-alignment treatment, and magnetic alignment.
 (光配向処理)
 本発明においては、配向性基が光配向性基である場合、配向処理は、波長365nm以下の光を用いる光配向処理であるのが好ましい。
 光配向処理は、波長365nm以下の光を用いること以外は特に限定されないが、偏光した紫外線を用いることが均一な配向を得る上で好ましい。この場合、偏光した紫外線を照射する方法は特に限定されない。なお、偏光としては特に制限はなく、例えば、直線偏光、円偏光、楕円偏光などが挙げられ、中でも、直線偏光が好ましい。
(Photo-alignment treatment)
In the present invention, when the orientation group is a photo-alignment group, the orientation treatment is preferably a photo-alignment treatment using light having a wavelength of 365 nm or less.
The photo-alignment treatment is not particularly limited except that light having a wavelength of 365 nm or less is used, but it is preferable to use polarized ultraviolet rays for obtaining uniform alignment. In this case, the method of irradiating polarized ultraviolet rays is not particularly limited. In addition, there is no restriction | limiting in particular as polarized light, For example, linearly polarized light, circularly polarized light, elliptically polarized light etc. are mentioned, Among these, linearly polarized light is preferable.
 また、実質的に偏光が得られればよく、無偏光の光を薄膜の法線から一定角度傾けて照射してもよい。言い換えると、薄膜表面の斜め方向から非偏光を照射してもよい。「傾けて照射」とは、薄膜表面の法線方向に対して極角θ(0<θ<90°)傾けた方向である限り、特に制限はなく、目的に応じて適宜選択することができるが、θが20~80°であることが好ましい。 Further, it is only necessary to obtain substantially polarized light, and non-polarized light may be irradiated at an angle inclined from the normal line of the thin film. In other words, non-polarized light may be irradiated from an oblique direction on the surface of the thin film. “Inclined irradiation” is not particularly limited as long as it is a direction inclined by a polar angle θ (0 <θ <90 °) with respect to the normal direction of the thin film surface, and can be appropriately selected according to the purpose. However, θ is preferably 20 to 80 °.
 使用される光の光源としては、例えば、キセノンランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプなどが挙げられる。
 このような光源から得た紫外線に対して、干渉フィルタや色フィルタなどを用いることで、照射する波長範囲を制限することができる。また、これらの光源からの光に対して、偏光フィルタや偏光プリズムを用いることで、直線偏光を得ることができる。
Examples of the light source used include a xenon lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, and a metal halide lamp.
By using an interference filter, a color filter, or the like for ultraviolet rays obtained from such a light source, the wavelength range of irradiation can be limited. Moreover, linearly polarized light can be obtained by using a polarizing filter or a polarizing prism for the light from these light sources.
 <熱処理>
 本発明においては、薄膜トランジスタの信頼性を高める観点から、第1工程が、上記配向処理の前または後に熱処理を施す工程であるのが好ましい。
<Heat treatment>
In the present invention, from the viewpoint of increasing the reliability of the thin film transistor, the first step is preferably a step of performing a heat treatment before or after the alignment treatment.
 熱処理を施す方法としては、例えば、保護層または配向処理が施された配向保護層を180~350℃の温度、好ましくは200~300℃の温度で、20~60分間、加熱する方法等が好適に挙げられる。
 また、熱処理は、ホットプレートやオーブン等の加熱装置を用いて行うことが好ましい。また、熱処理を窒素雰囲気下で行うことにより、透明性をより向上させることもできる。
As a method of performing the heat treatment, for example, a method of heating the protective layer or the alignment protective layer subjected to the alignment treatment at a temperature of 180 to 350 ° C., preferably 200 to 300 ° C., for 20 to 60 minutes is preferable. It is mentioned in.
The heat treatment is preferably performed using a heating device such as a hot plate or an oven. Further, the transparency can be further improved by performing the heat treatment in a nitrogen atmosphere.
 〔第2工程〕
 第2工程は、基材、薄膜トランジスタ、表示電極および配向膜を具備する第2の基板と、第1の基板とを張り合わせて液晶を封入し、第1の基板と第2の基板との間に液晶層を形成し、液晶表示装置を作製する工程を有する。
 なお、第2工程における第2の基板は、本発明の液晶表示装置の第2の基板と同様であり、その作製方法は特に限定されない。
[Second step]
In the second step, the liquid crystal is sealed by bonding the second substrate having the base material, the thin film transistor, the display electrode, and the alignment film together with the first substrate, and between the first substrate and the second substrate. Forming a liquid crystal layer and manufacturing a liquid crystal display device;
Note that the second substrate in the second step is similar to the second substrate of the liquid crystal display device of the present invention, and a manufacturing method thereof is not particularly limited.
 第2工程における液晶の封入方法は特に限定されず、例えば、上述した第1の基板および第2の基板との間にスペーサーを挟み込んで空間を形成した後に、形成した空間に液晶を封入する方法が挙げられる。 The method for encapsulating the liquid crystal in the second step is not particularly limited. For example, a method for encapsulating the liquid crystal in the formed space after the spacer is formed between the first substrate and the second substrate described above. Is mentioned.
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。なお、特に断りのない限り、「部」、「%」は質量基準である。 Hereinafter, the present invention will be described in more detail based on examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the following examples. Unless otherwise specified, “part” and “%” are based on mass.
 〔光配向性基を有する構成単位(モノマーa-1)の合成〕
 trans-4-ヒドロキシケイ皮酸メチル(東京化成工業(株)製、12.5g、0.07mol)とトリエチルアミン(和光純薬工業(株)製、7.79g、0.07mol)をテトラヒドロフラン(以下、「THF」と略す。)100mLに溶解させておき、0℃に冷却した後に、メタクリル酸クロリド(東京化成工業(株)製、7.33g、0.07mol)を徐々に滴下した。
 次いで、白濁した反応系に対して、水500gを入れ、1時間撹拌した後に、ろ過し、光配向性基としてシンナメート基を有するモノマーa-1を14g得た。構造をNMR(nuclear magnetic resonance)にて確認した。
[Synthesis of a structural unit having a photo-alignment group (monomer a-1)]
Methyl trans-4-hydroxycinnamate (manufactured by Tokyo Chemical Industry Co., Ltd., 12.5 g, 0.07 mol) and triethylamine (manufactured by Wako Pure Chemical Industries, Ltd., 7.79 g, 0.07 mol) were added to tetrahydrofuran (hereinafter referred to as “tetrahydrofuran”). , And abbreviated as “THF”) After dissolving in 100 mL and cooling to 0 ° C., methacrylic acid chloride (manufactured by Tokyo Chemical Industry Co., Ltd., 7.33 g, 0.07 mol) was gradually added dropwise.
Next, 500 g of water was added to the cloudy reaction system and stirred for 1 hour, followed by filtration to obtain 14 g of monomer a-1 having a cinnamate group as a photoaligning group. The structure was confirmed by NMR (nuclear magnetic resonance).
 〔光配向性基を有する構成単位(モノマーa-2)の合成〕
 4-ヒドロキシ-3-メトキシけい皮酸エチル(東京化成工業(株)製、22.2g、0.1mol)をジメチルアセトアミド150mLに溶解させておき、炭酸カリウム(和光純薬工業(株)製、30g、0.22mol)を加え、90℃に温度を上げた。
 次いで、4-クロロブタノール(和光純薬工業(株)製、21.6g、0.2mol)を滴下し、3時間撹拌した。
 その後、反応溶液を水1Lに注ぎ、2NHClで中和した後に、酢酸エチル700mLで抽出し、飽和食塩水で洗い、濃縮を行った。
 次いで、シリカゲルカラムクロマトグラフィーにより分取し、中間体化合物を23g得た。
 その中間体化合物15g(0.05mol)とトリエチルアミン(和光純薬工業(株)製、5.6g、0.056mol)とをTHF100mLに溶解させ、0℃に冷却した。
 次いで、メタクリル酸クロリド(東京化成工業(株)製、5.8g、0.056mol)を滴下し、3時間撹拌した後、反応溶液を水500gに注ぎ、酢酸エチルで抽出した後、濃縮した。
 次いで、シリカゲルカラムクロマトグラフィーにより分取し、光配向性基としてシンナメート基を有するモノマーa-2を20g得た。
[Synthesis of a structural unit having a photo-alignment group (monomer a-2)]
Ethyl 4-hydroxy-3-methoxycinnamate (manufactured by Tokyo Chemical Industry Co., Ltd., 22.2 g, 0.1 mol) was dissolved in 150 mL of dimethylacetamide, and potassium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) 30 g, 0.22 mol) was added and the temperature was raised to 90 ° C.
Subsequently, 4-chlorobutanol (manufactured by Wako Pure Chemical Industries, Ltd., 21.6 g, 0.2 mol) was added dropwise and stirred for 3 hours.
Thereafter, the reaction solution was poured into 1 L of water, neutralized with 2N HCl, extracted with 700 mL of ethyl acetate, washed with saturated brine, and concentrated.
Subsequently, it fractionated by silica gel column chromatography, and 23g of intermediate compounds were obtained.
15 g (0.05 mol) of the intermediate compound and triethylamine (manufactured by Wako Pure Chemical Industries, Ltd., 5.6 g, 0.056 mol) were dissolved in 100 mL of THF and cooled to 0 ° C.
Next, methacrylic acid chloride (manufactured by Tokyo Chemical Industry Co., Ltd., 5.8 g, 0.056 mol) was added dropwise and stirred for 3 hours, and then the reaction solution was poured into 500 g of water, extracted with ethyl acetate, and concentrated.
Subsequently, fractionation was performed by silica gel column chromatography to obtain 20 g of monomer a-2 having a cinnamate group as a photo-alignment group.
 〔光配向性基を有する構成単位(モノマーa-3)の合成〕
 ハイドロキノン(和光純薬工業(株)製、63.8g、0.58mol)をジメチルアセトアミド500mLに溶解させておき、炭酸カリウム(和光純薬工業(株)製、40g、0.29mol)を加え、90℃に温度を上げた。
 次いで、メタクリル酸4-クロロブチル(和光純薬工業(株)製、25.6g、0.145mol)を滴下し、3時間撹拌した。
 その後、反応溶液を水1Lへ注ぎ、2NHClで中和後、酢酸エチル700mLで抽出し、飽和食塩水で洗い、濃縮を行った。粗結晶を取り出し、シリカゲルカラムクロマトグラフィーにより分取し、中間体化合物18gを得た。
 その中間体化合物18gとトリエチルアミン(和光純薬工業(株)製、7.79g、0.07mol)とをTHF100mLに溶解させ、0℃に冷却した。
 次いで、シンナモイルクロリド(東京化成工業(株)製、13.1g、0.07mol)を滴下し、3時間撹拌した後、反応溶液を水500gにあけ、酢酸エチルで抽出した後、濃縮した。
 次いで、シリカゲルカラムクロマトグラフィーにより分取し、光配向性基としてカルコン基を有するモノマーa-3を22g得た。
[Synthesis of a structural unit having a photo-alignment group (monomer a-3)]
Hydroquinone (Wako Pure Chemical Industries, Ltd., 63.8 g, 0.58 mol) was dissolved in 500 mL of dimethylacetamide, and potassium carbonate (Wako Pure Chemical Industries, Ltd., 40 g, 0.29 mol) was added. The temperature was raised to 90 ° C.
Next, 4-chlorobutyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd., 25.6 g, 0.145 mol) was added dropwise and stirred for 3 hours.
Thereafter, the reaction solution was poured into 1 L of water, neutralized with 2N HCl, extracted with 700 mL of ethyl acetate, washed with saturated brine, and concentrated. Crude crystals were taken out and fractionated by silica gel column chromatography to obtain 18 g of an intermediate compound.
18 g of the intermediate compound and triethylamine (Wako Pure Chemical Industries, Ltd., 7.79 g, 0.07 mol) were dissolved in 100 mL of THF and cooled to 0 ° C.
Next, cinnamoyl chloride (Tokyo Chemical Industry Co., Ltd., 13.1 g, 0.07 mol) was added dropwise and stirred for 3 hours. The reaction solution was poured into 500 g of water, extracted with ethyl acetate, and concentrated.
Subsequently, fractionation was performed by silica gel column chromatography to obtain 22 g of monomer a-3 having a chalcone group as a photo-alignment group.
 〔光配向性基を有する構成単位(モノマーa-4)の合成〕
 Macromolecules 2004,Vol.37,#7,p.2572と同様にして、光配向性基としてアゾ基を有するモノマーa-4を合成した。
[Synthesis of a structural unit having a photo-alignment group (monomer a-4)]
Macromolecules 2004, Vol. 37, # 7, p. In the same manner as in 2572, monomer a-4 having an azo group as a photoalignable group was synthesized.
 〔光配向性基を有する構成単位(モノマーa-5)の合成〕
 Jounal of Polymer Science,Part A:Polymer Chemistry,2010,Vol.48,#19,4323と同様にして、光配向性基としてクマリン基を有するモノマーa-5を合成した。
[Synthesis of a structural unit having a photo-alignment group (monomer a-5)]
Journal of Polymer Science, Part A: Polymer Chemistry, 2010, Vol. Monomer a-5 having a coumarin group as a photo-alignment group was synthesized in the same manner as in 48, # 19, 4323.
 〔酸基が酸分解性基で保護された構成単位(モノマーe-1)の合成〕
 メタクリル酸(和光純薬工業(株)製、86g、1mol)を15℃に冷却しておき、カンファースルホン酸(東京化成工業(株)製、4.6g、0.02mol)添加した。
 次いで、反応溶液に、2-ジヒドロフラン(川研ファインケミカル(株)製、71g、1mol、1.0当量)を滴下した。
 1時間撹拌した後に、飽和炭酸水素ナトリウム(500mL)を加え、酢酸エチル(500mL)で抽出した。
 次いで、硫酸マグネシウムで乾燥させた後、不溶物を濾過後40℃以下で減圧濃縮し、さらに残渣の黄色油状物を減圧蒸留することにより、モノマーe-1として、沸点(bp.)54~56℃/3.5mmHg留分のメタクリル酸テトラヒドロ-2H-フラン-2-イルを無色油状物として125g得た(収率80%)。
[Synthesis of Structural Unit (Monomer e-1) in which Acid Group is Protected with Acid-Decomposable Group]
Methacrylic acid (Wako Pure Chemical Industries, Ltd., 86 g, 1 mol) was cooled to 15 ° C., and camphorsulfonic acid (Tokyo Chemical Industry Co., Ltd., 4.6 g, 0.02 mol) was added.
Subsequently, 2-dihydrofuran (manufactured by Kawaken Fine Chemical Co., Ltd., 71 g, 1 mol, 1.0 equivalent) was added dropwise to the reaction solution.
After stirring for 1 hour, saturated sodium hydrogen carbonate (500 mL) was added, and the mixture was extracted with ethyl acetate (500 mL).
Next, after drying with magnesium sulfate, the insoluble matter was filtered and concentrated under reduced pressure at 40 ° C. or lower, and the yellow oily residue was distilled under reduced pressure to give a boiling point (bp.) Of 54 to 56 as monomer e-1. 125 g of tetrahydro-2H-furan-2-yl methacrylate was obtained as a colorless oil (yield 80%) in the fraction of ℃ / 3.5 mmHg.
 〔構成単位s1を有する重合体(P1)の合成〕
 ジエチレングリコールメチルエチルエーテル(以下、「HS-EDM」と略す。)22gを、窒素気流下、70℃に加熱撹拌した。合成したモノマーa-1(11.1g、45mol%)、ヘキサフルオロイソプロピルメタクリレート(以下、「HFIP」と略す。)(東京化成工業(株)製、3.5g、15mol%)、メタクリル酸(以下、「MAA」と略す。)(和光純薬工業(株)製、1.7g、20mol%)、グリシジルメタクリレート(以下、「GMA」と略す。)(和光純薬工業(株)製、2.8g、20mol%)、ラジカル重合開始剤(V-65、和光純薬工業(株)製)497mg(2mol%)、および、PGMEA(30g)の混合溶液を2時間かけて滴下した。滴下が終了してから、さらに70℃で4時間反応させることにより、構成単位s1を有する重合体P1のPGMEA溶液(固形分濃度:27%)を得た。
[Synthesis of Polymer (P1) Having Structural Unit s1]
22 g of diethylene glycol methyl ethyl ether (hereinafter abbreviated as “HS-EDM”) was heated and stirred at 70 ° C. in a nitrogen stream. Synthesized monomer a-1 (11.1 g, 45 mol%), hexafluoroisopropyl methacrylate (hereinafter abbreviated as “HFIP”) (manufactured by Tokyo Chemical Industry Co., Ltd., 3.5 g, 15 mol%), methacrylic acid (hereinafter referred to as “HFIP”) (Hereinafter abbreviated as “MAA”) (manufactured by Wako Pure Chemical Industries, Ltd., 1.7 g, 20 mol%), glycidyl methacrylate (hereinafter abbreviated as “GMA”) (manufactured by Wako Pure Chemical Industries, Ltd.), 2. 8 g, 20 mol%), a mixed solution of radical polymerization initiator (V-65, manufactured by Wako Pure Chemical Industries, Ltd.) 497 mg (2 mol%), and PGMEA (30 g) were added dropwise over 2 hours. After completion of the dropping, the reaction was further performed at 70 ° C. for 4 hours to obtain a PGMEA solution (solid content concentration: 27%) of the polymer P1 having the structural unit s1.
 〔構成単位s1を有する重合体(P2~P11)の合成〕
 モノマー、開始剤および溶媒の種類を、下記第1表に従って変更した以外は、重合体P1と同様の方法で、重合体P2~P11を合成した。なお、下記第1表の各単量体成分の欄に記載した数値は、単量体成分の総量に対するそれぞれの単量体の使用量(mol%)である。また、重合開始剤の欄に記載した数値は、単量体成分の総量を100mol%とした場合の、mol%である。また、実施例で用いている略語は、以下の通りである。
 <略語>
 ・HFIP:ヘキサフルオロイソプロピルメタクリレート(東京化成工業(株)製)
 ・6FM:トリフルオロエチルメタクリレート(大阪有機化学工業(株)製)
 ・KBM-503:3-メタクリロキシプロピルトリメトキシシラン(信越化学工業(株)製)
 ・C18MA:オクタデカンメタクリレート(東京化成工業(株)製)
 ・MAA:メタクリル酸(和光純薬工業(株)製)
 ・MMA:メタクリル酸メチル(和光純薬工業(株)製)
 ・St:スチレン(和光純薬工業(株)製)
 ・AA:アクリル酸(和光純薬工業(株)製)
 ・GMA:グリシジルメタクリレート(東京化成工業(株)製)
 ・OXE-30:(3-エチルオキセタン-3-イル)メチルメタクリレート(大阪有機化学工業(株)製)
 ・サイクロマーM100:(3,4-エポキシシクロヘキシル)メチルメタクリレート(ダイセル化学工業(株)製)
 ・DCPM:ジシクロペンタニルメタクリレート(ファンクリルFA-513M、日立化成(株)製)
 ・NBMA:N-ブトキシメチルアクリルアミド(三菱レイヨン(株)製)
 ・V-601:ラジカル重合開始剤(和光純薬工業(株)製)
 ・V-65:ラジカル重合開始剤(和光純薬工業(株)製)
 ・PGMEA:メトキシプロピレングリコールアセテート((株)ダイセル製)
 ・HS-EDM:ジエチレングリコールメチルエチルエーテル(東邦化学工業(株)製)
[Synthesis of polymers having structural unit s1 (P2 to P11)]
Polymers P2 to P11 were synthesized in the same manner as the polymer P1, except that the types of the monomer, initiator, and solvent were changed according to Table 1 below. In addition, the numerical value described in the column of each monomer component of the following Table 1 is the usage-amount (mol%) of each monomer with respect to the total amount of a monomer component. Moreover, the numerical value described in the column of a polymerization initiator is mol% when the total amount of monomer components is 100 mol%. Abbreviations used in the examples are as follows.
<Abbreviation>
・ HFIP: Hexafluoroisopropyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
・ 6FM: trifluoroethyl methacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd.)
・ KBM-503: 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)
C18MA: Octadecane methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
・ MAA: Methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.)
・ MMA: Methyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.)
・ St: Styrene (Wako Pure Chemical Industries, Ltd.)
AA: Acrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.)
・ GMA: Glycidyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
OXE-30: (3-ethyloxetane-3-yl) methyl methacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd.)
Cyclomer M100: (3,4-epoxycyclohexyl) methyl methacrylate (manufactured by Daicel Chemical Industries, Ltd.)
DCPM: Dicyclopentanyl methacrylate (Fancryl FA-513M, manufactured by Hitachi Chemical Co., Ltd.)
NBMA: N-butoxymethylacrylamide (Mitsubishi Rayon Co., Ltd.)
V-601: radical polymerization initiator (manufactured by Wako Pure Chemical Industries, Ltd.)
V-65: radical polymerization initiator (manufactured by Wako Pure Chemical Industries, Ltd.)
・ PGMEA: Methoxypropylene glycol acetate (manufactured by Daicel Corporation)
HS-EDM: Diethylene glycol methyl ethyl ether (manufactured by Toho Chemical Industry Co., Ltd.)
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 〔他の光配向性ポリマーの合成〕
 <重合体P12の合成>
 特開2013-177561号公報の[0161]段落(調製例1)に記載された光配向性ポリマー(A-1)と同様の方法で、重合体P12を合成した。
 <重合体P13の合成>
 WO2010/150748の[0084]段落(合成例1)に記載された特定共重合体P1と同様の方法で、重合体P13を合成した。
[Synthesis of other photo-alignment polymers]
<Synthesis of Polymer P12>
A polymer P12 was synthesized in the same manner as the photoalignable polymer (A-1) described in paragraph [0161] (Preparation Example 1) of JP2013-177561A.
<Synthesis of Polymer P13>
A polymer P13 was synthesized in the same manner as the specific copolymer P1 described in paragraph [0084] (Synthesis Example 1) of WO2010 / 150748.
 〔他の構成単位を有する重合体Aの調製〕
 <酸基が酸分解性基で保護された基を有する構成単位a1および架橋性基を有する構成単位a2を含む重合体A-1の合成>
 HS-EDM(82部)を窒素気流下、90℃に加熱撹拌した。
 次いで、モノマーe-1として合成したメタクリル酸テトラヒドロ-2H-フラン-2-イル(43部(全単量体成分中の40.5mol%に相当))、OXE-30(48部(全単量体成分中の37.5mol%に相当))、MAA(6部(全単量体成分中の9.5mol%に相当))、ヒドロキシエチルメタクリレート(和光純薬工業(株)製、11部(全単量体成分中の12.5mol%に相当))、ラジカル重合開始剤V-601(4.3部)、および、PGMEA(82部)の混合溶液を2時間かけて滴下し、さらに2時間90℃で反応させることにより、重合体A-1の溶液(固形分濃度:40%)を得た。
 なお、得られた重合体A-1のゲルパーミエーションクロマトグラフィー(GPC)により測定した重量平均分子量は、15,000であった。
[Preparation of polymer A having other structural units]
<Synthesis of Polymer A-1 Containing Structural Unit a1 having a Group Protected with Acid-Decomposable Group and Structural Unit a2 Having a Crosslinkable Group>
HS-EDM (82 parts) was heated and stirred at 90 ° C. under a nitrogen stream.
Next, tetrahydro-2H-furan-2-yl methacrylate (43 parts (corresponding to 40.5 mol% of all monomer components)) synthesized as monomer e-1 and OXE-30 (48 parts (total single amount) (Corresponding to 37.5 mol% in body components)), MAA (6 parts (corresponding to 9.5 mol% in all monomer components)), hydroxyethyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd., 11 parts ( A mixed solution of radical polymerization initiator V-601 (4.3 parts) and PGMEA (82 parts) over 2 hours. By reacting at 90 ° C. for a time, a solution of polymer A-1 (solid content concentration: 40%) was obtained.
The resulting polymer A-1 had a weight average molecular weight of 15,000 as measured by gel permeation chromatography (GPC).
 <酸基が酸分解性基で保護された基を有する構成単位a1を含む重合体A-2の合成>
 PGMEA(238g)を窒素気流下、90℃に加熱撹拌した。
 次いで、モノマーe-1として合成したメタクリル酸テトラヒドロ-2H-フラン-2-イル(240g(全単量体成分中の61.1mol%に相当))、MAA(50.4g(全単量体成分中の17.6mol%に相当))、MMA(27.9g(全単量体成分中の21.3mol%に相当))、ラジカル重合開始剤V-601(14.7g)、および、PGMEA(238g)の混合溶液を2時間かけて滴下し、さらに2時間90℃で反応させ、冷却後にPGMEA(42g)を追加することにより、重合体A-2の溶液(固形分濃度:38%)を得た。
 得られた重合体A-2のゲルパーミエーションクロマトグラフィー(GPC)により測定した重量平均分子量は、15,000であった。
<Synthesis of Polymer A-2 Containing Structural Unit a1 having an Acid Group Protected with an Acid-Decomposable Group>
PGMEA (238 g) was heated and stirred at 90 ° C. under a nitrogen stream.
Next, tetrahydro-2H-furan-2-yl methacrylate (240 g (equivalent to 61.1 mol% in all monomer components)), MAA (50.4 g (total monomer components) synthesized as monomer e-1 ) (Equivalent to 17.6 mol%)), MMA (27.9 g (equivalent to 21.3 mol% in all monomer components)), radical polymerization initiator V-601 (14.7 g), and PGMEA ( 238 g) was added dropwise over 2 hours, and the mixture was further reacted at 90 ° C. for 2 hours. After cooling, PGMEA (42 g) was added to obtain a polymer A-2 solution (solid content concentration: 38%). Obtained.
The resulting polymer A-2 had a weight average molecular weight of 15,000 as measured by gel permeation chromatography (GPC).
 <架橋性基を有する構成単位a2を含む重合体A-3の合成>
 HS-EDM(145g)を窒素気流下、70℃に加熱撹拌した。
 次いで、GMA(144.7g(67.9mol%))、MAA(16.7g(12.9mol%))、St(28.1g(18.0mol%))、DCPM(3.87g(1.17mol%)、ラジカル重合開始剤V-65(20.8g(5.6mol%モノマー量換算))、および、HS-EDM(145g)の混合溶液を2時間かけて滴下した。
 滴下が終了してから、70℃で4時間反応させることにより、重合体A-3のPGMEA溶液(固形分濃度:35%)を得た。
<Synthesis of Polymer A-3 Containing Structural Unit a2 Having a Crosslinkable Group>
HS-EDM (145 g) was heated and stirred at 70 ° C. under a nitrogen stream.
Then, GMA (144.7 g (67.9 mol%)), MAA (16.7 g (12.9 mol%)), St (28.1 g (18.0 mol%)), DCPM (3.87 g (1.17 mol%)) %), Radical polymerization initiator V-65 (20.8 g (converted to 5.6 mol% monomer amount)), and HS-EDM (145 g) were added dropwise over 2 hours.
After completion of the dropwise addition, a PGMEA solution of polymer A-3 (solid content concentration: 35%) was obtained by reacting at 70 ° C. for 4 hours.
 <酸基を有する構成単位a3および架橋性基を有する構成単位a2を含む重合体A-4>
 PGMEA(268部)を窒素気流下、90℃に加熱撹拌した。
 次いで、モノマーe-1として合成したメタクリル酸テトラヒドロ-2H-フラン-2-イル(143.4部(全単量体成分中の40.1mol%に相当))、サイクロマーM100(168.4部(全単量体成分中の37.5mol%に相当))、MAA(19.5部(全単量体成分中の9.9mol%に相当))、ヒドロキシエチルメタクリレート(和光純薬工業(株)製、37.2部(全単量体成分中の12.5mol%に相当))、ラジカル重合開始剤V-601(5.5部)、および、PGMEA(268部)の混合溶液を2時間かけて滴下し、さらに2時間90℃で反応させることにより、重合体A-4の溶液(固形分濃度:40%)を得た。
 なお、得られた重合体A-4のゲルパーミエーションクロマトグラフィー(GPC)により測定した重量平均分子量は、16,000であった。
<Polymer A-4 Containing Structural Unit a3 Having Acid Group and Structural Unit a2 Having a Crosslinkable Group>
PGMEA (268 parts) was heated and stirred at 90 ° C. under a nitrogen stream.
Next, tetrahydro-2H-furan-2-yl methacrylate synthesized as monomer e-1 (143.4 parts (corresponding to 40.1 mol% in all monomer components)), cyclomer M100 (168.4 parts) (Corresponding to 37.5 mol% in all monomer components)), MAA (19.5 parts (corresponding to 9.9 mol% in all monomer components)), hydroxyethyl methacrylate (Wako Pure Chemical Industries, Ltd. ), 37.2 parts (corresponding to 12.5 mol% in all monomer components)), radical polymerization initiator V-601 (5.5 parts), and PGMEA (268 parts) in a mixed solution of 2 The solution was added dropwise over a period of time, and further reacted at 90 ° C. for 2 hours to obtain a solution of polymer A-4 (solid content concentration: 40%).
The resulting polymer A-4 had a weight average molecular weight of 16,000 as measured by gel permeation chromatography (GPC).
 <酸基を有する構成単位a3および架橋性基を有する構成単位a2を含む重合体A-5>
 フラスコ内を窒素置換した後、2,2’-アゾビスイソブチロニトリル9.0gを溶解したジエチレングリコールジメチルエーテル溶液を459.0g仕込んだ。
 次いで、St(22.5g)、MAA(45.0g)、DCPM(67.5g)、および、GMA(90.0g)を仕込んだ後、ゆるやかに撹拌を始めた。
 次いで、溶液の温度を80℃に上昇させ、この温度を5時間保持した後、90℃で1時間加熱させて重合を終結させた。
 その後、反応生成溶液を多量の水に滴下し反応物を凝固させた。この凝固物を水洗後、THF(200g)に再溶解し、多量の水で再度、凝固させた。
 この再溶解および凝固の操作を計3回行った後、得られた凝固物を60℃で48時間減圧乾燥し、重合体A-5を得た。その後、固形分濃度が25質量%になるようにジエチレングリコールを用いて重合体A-5溶液とした。
<Polymer A-5 Containing Structural Unit a3 Having Acid Group and Structural Unit a2 Having a Crosslinkable Group>
After the atmosphere in the flask was replaced with nitrogen, 459.0 g of a diethylene glycol dimethyl ether solution in which 9.0 g of 2,2′-azobisisobutyronitrile was dissolved was charged.
Next, St (22.5 g), MAA (45.0 g), DCPM (67.5 g), and GMA (90.0 g) were charged, and then gently stirring was started.
Subsequently, the temperature of the solution was raised to 80 ° C., and this temperature was maintained for 5 hours, and then heated at 90 ° C. for 1 hour to complete the polymerization.
Thereafter, the reaction product solution was dropped into a large amount of water to coagulate the reaction product. This coagulated product was washed with water, redissolved in THF (200 g), and coagulated again with a large amount of water.
This re-dissolution and coagulation operation was performed three times in total, and then the obtained coagulated product was dried under reduced pressure at 60 ° C. for 48 hours to obtain a polymer A-5. Thereafter, a polymer A-5 solution was prepared using diethylene glycol so that the solid content concentration was 25% by mass.
 <重合体A-6>
 特開2013-177561号公報の[0165]段落(調製例5)に記載された非配向性ポリマー(E-1)と同様の方法で、重合体A-6を合成した。
<Polymer A-6>
Polymer A-6 was synthesized in the same manner as the non-oriented polymer (E-1) described in paragraph [0165] (Preparation Example 5) of JP2013-177561A.
 〔架橋剤B〕
 架橋剤Bとして、以下に示すものを使用した。
 <B-1>
 分子量5,000以下の架橋剤B-1として、多官能エポキシ化合物(オグソールEG、大阪ガス(株)製)を用いた。
 <B-2>
 分子量5,000以下の架橋剤B-2として、多官能エポキシ化合物(EX-321L、ナガセケムテックス(株)製)を用いた。
 <B-3>
 分子量5,000以下の架橋剤B-3として、多官能エポキシ化合物(JER57S65、ジャパンエポキシレジン(株)製)を用いた。
[Crosslinking agent B]
As the crosslinking agent B, those shown below were used.
<B-1>
A polyfunctional epoxy compound (Ogsol EG, manufactured by Osaka Gas Co., Ltd.) was used as the crosslinking agent B-1 having a molecular weight of 5,000 or less.
<B-2>
A polyfunctional epoxy compound (EX-321L, manufactured by Nagase ChemteX Corporation) was used as the crosslinking agent B-2 having a molecular weight of 5,000 or less.
<B-3>
A polyfunctional epoxy compound (JER57S65, manufactured by Japan Epoxy Resins Co., Ltd.) was used as the crosslinking agent B-3 having a molecular weight of 5,000 or less.
 〔その他の成分〕
 <F-554>
 界面活性剤として、パーフルオロアルキル基含有ノニオン界面活性剤(F-554、DIC(株)製)を使用した。
 <KBM-403>
 密着改良剤として、γ-グリシドキシプロピルトリメトキシシラン(KBM-403、信越化学工業(株)製)を使用した。
[Other ingredients]
<F-554>
As the surfactant, a perfluoroalkyl group-containing nonionic surfactant (F-554, manufactured by DIC Corporation) was used.
<KBM-403>
As the adhesion improving agent, γ-glycidoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.) was used.
 〔実施例1~24および比較例1~6〕
 下記第2表に示す各成分を溶剤(PGMEA)に固形分濃度が18質量%となるまで溶解混合し、口径0.2μmのポリテトラフルオロエチレン製フィルターでろ過して、各実施例および比較例の樹脂組成物を調製した。なお、表中の添加量は各成分の固形分での添加量を表し、単位は質量部である。
 得られた樹脂組成物を、ガラス基板上にスピンコート法により塗布し、80℃のホットプレート上で1分間予備乾燥させた後、230℃のクリーンオーブン中で60分間焼成し、3μmのオーバーコート層の硬化膜を形成した。
 形成した硬化膜を表面・界面切削装置(DN-20S型、ダイプラ・ウィンテス社製)により斜め切削を行い、断面を露出させた。
 露出させた断面について、上述した測定装置および条件により、配向性基に由来するフラグメントの質量分析の強度ELq、および、強度ESubを測定し、これらの強度比(強度ELq/強度ESub)を測定し、以下の基準で評価した。結果を下記第2表に示す。なお、同様の試験を、後述する表示装置を作製した後に配向保護層に対して行ったが、結果は同様であった。
 A:強度比が10倍以上または強度Esubが測定限界以下
 B:強度比が8倍以上~10倍未満
 C:強度比が5倍以上~8倍未満
 D:強度比が2倍以上~5倍未満
 E:強度比が2倍未満
 F:フラグメントピークなし
[Examples 1 to 24 and Comparative Examples 1 to 6]
Each component shown in Table 2 below is dissolved and mixed in a solvent (PGMEA) until the solid content is 18% by mass, filtered through a polytetrafluoroethylene filter having a diameter of 0.2 μm, and each example and comparative example. A resin composition was prepared. In addition, the addition amount in a table | surface represents the addition amount in solid content of each component, and a unit is a mass part.
The obtained resin composition was applied onto a glass substrate by a spin coat method, pre-dried on a hot plate at 80 ° C. for 1 minute, and then baked in a clean oven at 230 ° C. for 60 minutes to give a 3 μm overcoat. A cured film of layers was formed.
The formed cured film was subjected to oblique cutting with a surface / interface cutting device (DN-20S type, manufactured by Daipura Wintes) to expose the cross section.
For the exposed cross section, the intensity ELq and the intensity ESsub of the mass analysis of the fragment derived from the orientation group were measured using the measurement apparatus and conditions described above, and the intensity ratio (intensity ELq / intensity ESub) was measured. The evaluation was based on the following criteria. The results are shown in Table 2 below. In addition, although the same test was done with respect to the orientation protective layer after producing the display apparatus mentioned later, the result was the same.
A: The intensity ratio is 10 times or more or the intensity Esub is below the measurement limit. B: The intensity ratio is 8 times to less than 10 times. C: The intensity ratio is 5 times to less than 8 times. D: The intensity ratio is 2 times to 5 times. Less than E: Intensity ratio is less than 2 times F: No fragment peak
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
 〔評価〕
 <配向性>
 無アルカリガラス基板上に、調製した各樹脂組成物をスピンコーター(スピンナー)により塗布した後、100℃のホットプレート上で2分間プレベークすることにより膜厚4.0μmの塗膜を形成した。
 次いで、得られた塗膜に高圧水銀ランプを用いて露光量1000J/mとして放射線照射を行い次いで、オーブン中で230℃の硬化温度および30分間の硬化時間でポストベークすることにより保護層を形成した。
 形成した保護層に対して紫外線偏光露光装置(HC-2150PUFM、ランテクニカルサービス(株)製)を用いて、偏向光を750mJ/cmを照射し光配向処理を施し、配向保護層を形成した。
 その後、水平配向液晶を塗布し、配向状態を偏光顕微鏡で倍率20倍にて観察した。場所を変え、5つの視野(約1平方μm)にて観察し、以下の基準にて評価した。結果を下記第3表に示す。
 A:問題なし。
 B:濃淡が認められるが、実用上問題がないレベル。
 C:欠陥あり、輝点が観察される。
 D:全く配向しない。
[Evaluation]
<Orientation>
Each prepared resin composition was applied onto an alkali-free glass substrate by a spin coater (spinner), and then prebaked on a hot plate at 100 ° C. for 2 minutes to form a coating film having a thickness of 4.0 μm.
Next, the obtained coating film was irradiated with radiation at an exposure amount of 1000 J / m 2 using a high-pressure mercury lamp, and then post-baked in an oven at a curing temperature of 230 ° C. and a curing time of 30 minutes. Formed.
The formed protective layer was irradiated with 750 mJ / cm 2 of polarized light using an ultraviolet polarized light exposure apparatus (HC-2150PUFM, manufactured by Run Technical Service Co., Ltd.) to form an alignment protective layer. .
Thereafter, a horizontally aligned liquid crystal was applied, and the alignment state was observed with a polarizing microscope at a magnification of 20 times. The place was changed, and it observed in five visual fields (about 1 square micrometer), and evaluated with the following references | standards. The results are shown in Table 3 below.
A: No problem.
B: A level in which shading is observed but has no practical problem.
C: Defects and bright spots are observed.
D: Not oriented at all.
 <レターデーション(Rth)>
 無アルカリガラス基板上に、調製した各樹脂組成物をスピンコーターにより塗布した後、100℃のホットプレート上で2分間プレベークすることにより膜厚4.0μmの塗膜を形成した。
 次いで、得られた塗膜に高圧水銀ランプを用いて露光量1000J/mとして放射線照射を行い次いで、オーブン中で230℃の硬化温度および30分間の硬化時間でポストベークすることにより保護層を形成した。
 この保護層に対して位相差測定装置KOBRA-WFD(王子計測機器株式会社社製)を用いて複屈折を評価した。結果を第3表に示す。なお、複屈折は表示の角度ズレに起因するため、30nmを超えなければ実用上問題がないが、低い数値が好ましい。
<Retardation (Rth)>
Each prepared resin composition was applied onto an alkali-free glass substrate by a spin coater, and then prebaked on a hot plate at 100 ° C. for 2 minutes to form a coating film having a thickness of 4.0 μm.
Next, the obtained coating film was irradiated with radiation at an exposure amount of 1000 J / m 2 using a high-pressure mercury lamp, and then post-baked in an oven at a curing temperature of 230 ° C. and a curing time of 30 minutes. Formed.
The birefringence of the protective layer was evaluated using a phase difference measuring device KOBRA-WFD (manufactured by Oji Scientific Instruments). The results are shown in Table 3. In addition, since birefringence is caused by a display angle shift, there is no practical problem unless it exceeds 30 nm, but a low numerical value is preferable.
 <平坦性>
 高さ1μm、幅10μmのL/Sパターン(L/S幅の比が1:1)を作成し、その上から樹脂組成物をスピンコーターで塗布し、90℃/120秒でプリベーク後、オーブンにて230℃/30分で熱硬化させ、2μmの硬化膜を得た。
 得られた硬化膜の平坦性を下記式で定義し、算出した。結果を下記第3表に示す。なお、平坦性は、数値が100に近いほど平坦化能力が高く、実用上は70%以上が求められる。
 平坦性(%)=(1-Δd/H)×100
 ここで、上記式中、Δdは、L/Sパターン上部の硬化膜の膜厚と硬化膜の膜厚(2μm)の差分(μm)を意味し、Hは、下地のL/Sパターンの膜厚(μm)を意味する。
<Flatness>
Create an L / S pattern with a height of 1 μm and a width of 10 μm (L / S width ratio is 1: 1), apply the resin composition on it with a spin coater, pre-bake at 90 ° C./120 seconds, And cured at 230 ° C./30 minutes to obtain a cured film of 2 μm.
The flatness of the obtained cured film was defined by the following formula and calculated. The results are shown in Table 3 below. As the flatness, the closer the value is to 100, the higher the flattening ability, and 70% or more is required for practical use.
Flatness (%) = (1−Δd / H) × 100
Here, in the above formula, Δd means the difference (μm) between the thickness of the cured film above the L / S pattern and the thickness of the cured film (2 μm), and H is the film of the underlying L / S pattern Thickness (μm) is meant.
 <表示特性>
(1)アレイ基板の製造
 国際公開(WO)2009/025386号パンフレットの実施例42の記載に従って、アレイ基板上にコンタクトホールの形成された絶縁膜を形成した。
 次いで、絶縁膜が形成された基板に対し、スパッタリング法を用いて、絶縁膜の上にITOからなる透明導電層を形成した。次に、フォトリソグラフィ法を利用して透明導電層をエッチングして、絶縁膜上に共通電極を形成した。
 その後、スパッタリング法を用いて、SiNの絶縁層を形成した。次にフォトリソグラフィ法を利用してSiN層をエッチングして、共通電極の形成された基板の表面にパターニングされたSiNの絶縁膜を形成した。
 次に、スパッタリング法を用いて、層間絶縁膜の上に、ITOからなる透明導電層を形成した。次いで、フォトリソグラフィ法を利用してこの透明導電層をエッチングし、無機絶縁膜の上に櫛歯形状の画素電極を形成した。
 以上のようにして、本実施例のアレイ基板を製造した。得られた本実施例のアレイ基板では、絶縁膜の所望の位置に所望のサイズのコンタクトホールが形成されており、画素電極と能動素子のソース-ドレイン電極との電気的な接続が実現されていた。
 アレイ基板の透明電極の上に、光配向性基を有する感放射線性重合体を含む液晶配向剤として、国際公開(WO)2009/025386号パンフレットの実施例6に記載の液晶配向剤A-1をスピンナにより塗布する。次いで、80℃のホットプレートで1分間プレベークを行った後、内部を窒素置換したオーブンにて、180℃で1時間加熱して膜厚80nmの塗膜を形成した。次いで、この塗膜表面に、Hg-Xeランプおよびグランテーラープリズムを用いて313nmの輝線を含む偏光紫外線200J/mを、基板表面に垂直な方向に対して40°傾いた方向から照射し、液晶配向膜を有するアレイ基板を製造した。
<Display characteristics>
(1) Manufacture of Array Substrate According to the description of Example 42 of International Publication (WO) 2009/025386, an insulating film having contact holes formed thereon was formed on the array substrate.
Next, a transparent conductive layer made of ITO was formed on the insulating film by sputtering on the substrate on which the insulating film was formed. Next, the transparent conductive layer was etched using a photolithography method to form a common electrode on the insulating film.
Thereafter, a SiN insulating layer was formed by sputtering. Next, the SiN layer was etched using a photolithography method to form a patterned SiN insulating film on the surface of the substrate on which the common electrode was formed.
Next, a transparent conductive layer made of ITO was formed on the interlayer insulating film using a sputtering method. Next, the transparent conductive layer was etched using a photolithography method, and a comb-like pixel electrode was formed on the inorganic insulating film.
As described above, the array substrate of this example was manufactured. In the obtained array substrate of this embodiment, a contact hole of a desired size is formed at a desired position of the insulating film, and electrical connection between the pixel electrode and the source-drain electrode of the active element is realized. It was.
A liquid crystal aligning agent A-1 described in Example 6 of International Publication (WO) 2009/025386 pamphlet as a liquid crystal aligning agent including a radiation-sensitive polymer having a photo-alignable group on the transparent electrode of the array substrate. Is applied with a spinner. Next, after pre-baking for 1 minute on an 80 ° C. hot plate, it was heated at 180 ° C. for 1 hour in an oven in which the inside was replaced with nitrogen to form a coating film having a thickness of 80 nm. Then, the surface of the coating film, polarized ultraviolet rays 200 J / m 2, including a bright line of 313nm using a Hg-Xe lamp and Gran Taylor prism, irradiated from 40 ° inclined direction with respect to the direction perpendicular to the substrate surface, An array substrate having a liquid crystal alignment film was manufactured.
(2)対向基板の製造
 まず、公知の方法により製造されたカラーフィルター基板を準備した。このカラーフィルター基板は、透明基板上に、赤色、緑色および青色の3色の微小な着色パターンと、ブラックマトリクスとが格子状に配置されている。次に、カラーフィルター基板の着色パターンとブラックマトリクスの上に、上記第2表に示す実施例1~24および比較例1~6の樹脂組成物を用いて塗膜を形成し、90℃/120秒でプリベークした後、オーブンにて230℃/30分で熱硬化させ、保護膜を作製した。次いで、保護膜に対して、紫外線偏光露光装置(HC-2150PUFM、ランテクニカルサービス(株)製)を用いて、偏向光を750mJ/cmを照射する光配向処理を施し、2μmの配向保護膜を形成し、対向基板を製造した。
(2) Production of counter substrate First, a color filter substrate produced by a known method was prepared. In this color filter substrate, fine coloring patterns of three colors of red, green, and blue and a black matrix are arranged in a lattice pattern on a transparent substrate. Next, a coating film was formed on the color pattern of the color filter substrate and the black matrix using the resin compositions of Examples 1 to 24 and Comparative Examples 1 to 6 shown in Table 2 above, and the coating was formed at 90 ° C./120 After pre-baking for 2 seconds, it was thermally cured in an oven at 230 ° C./30 minutes to produce a protective film. Next, the protective film was subjected to a photo-alignment treatment by irradiating polarized light with 750 mJ / cm 2 using an ultraviolet polarized light exposure apparatus (HC-2150PUFM, manufactured by Run Technical Service Co., Ltd.), and a 2 μm alignment protective film. The counter substrate was manufactured.
(3)表示装置の製造
 得られた配向保護膜付き対向基板と、アレイ基板とによって、液晶層を挟持してカラー液晶表示素子を製造した。液晶層としては、ネマチック液晶からなり、基板面に平行に配向するものを用いた。これらの液晶表示素子について表示特性と信頼性を評価した。
(3) Manufacture of display device A liquid crystal layer was sandwiched between the obtained counter substrate with an alignment protective film and the array substrate to manufacture a color liquid crystal display element. As the liquid crystal layer, a layer made of nematic liquid crystal and aligned parallel to the substrate surface was used. The display characteristics and reliability of these liquid crystal display elements were evaluated.
(4)評価
 液晶表示素子を温度60℃/湿度90%のオーブンに1週間静置し、再び駆動させる評価を行った。結果を下記第3表に示す。
 A:全く表示不良が起こらなかったもの
 B:画素の1%以上~10%未満に表示不良が生じたが、実用上は問題がないもの。
 C:画素の10%以上に表示不良が生じたもの
 D:製造直後にも表示できなかったもの
(4) Evaluation The liquid crystal display element was allowed to stand in an oven at a temperature of 60 ° C./humidity of 90% for one week and evaluated to be driven again. The results are shown in Table 3 below.
A: No display failure occurred B: Display failure occurred in 1% to less than 10% of the pixels, but no problem in practical use.
C: Display failure occurred in 10% or more of pixels D: Display failed even immediately after manufacture
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
 第1表~第3表に示す結果から、配向保護層が、配向性基を有していない場合には、配向性基に由来するフラグメントが検出されず、作製直後の液晶表示素子であっても表示特性が劣ることが分かった(比較例1~2)。
 また、比較例3および4では、配向保護層の配向性基に由来するフラグメントの強度ELqが強度ESubの2倍以上であったが、共有結合を介して互いに連結した配向性基および架橋構造を有していないため、高温高湿下に晒され後の表示特性が劣ることが分かった(比較例3~4)。
 更に、配向性基を偏在させるための偏在性基を有していない重合体を用いた場合は、形成される配向保護層の配向性基に由来するフラグメントの強度ELqが強度ESubの2倍未満となり、作製直後の液晶表示素子であっても表示特性が劣ることが分かった(比較例5~6)。
From the results shown in Tables 1 to 3, when the alignment protective layer does not have an orientation group, a fragment derived from the orientation group is not detected, It was also found that the display characteristics were inferior (Comparative Examples 1 and 2).
In Comparative Examples 3 and 4, the strength ELq of the fragment derived from the orientation group of the orientation protective layer was twice or more the strength ESsub. However, the orientation group and the crosslinked structure linked to each other through a covalent bond It was found that the display characteristics after exposure to high temperature and high humidity were inferior (Comparative Examples 3 to 4).
Further, when a polymer that does not have an ubiquitous group for unevenly distributing the orientation group is used, the strength ELq of the fragment derived from the orientation group of the formed orientation protective layer is less than twice the strength ESsub. Thus, it was found that even the liquid crystal display element immediately after fabrication was inferior in display characteristics (Comparative Examples 5 to 6).
 一方、構成単位s1および構成単位a2などを有する重合体、ならびに、構成単位s1を有さず、構成単位a3などを有する重合体を用いた場合は、形成される配向保護層が、共有結合を介して互いに連結した配向性基および架橋構造を有し、また、配向性基に由来するフラグメントの質量分析の強度ELqおよび強度ESubの強度比(強度ELq/強度ESub)が所定の条件を満たしていると、優れた平坦性を維持し、かつ、高温高湿下に晒された場合にも表示性能が良好であることが分かった(実施例1~24)。
 特に、実施例1と実施例24との対比から、分子量5000以下の架橋剤Bを配合すると、平坦性が向上し、また、表示性能もより良好となることが分かった。
On the other hand, when the polymer having the structural unit s1, the structural unit a2, and the like, and the polymer having the structural unit s1, but not the structural unit s1, are used, the formed alignment protective layer has a covalent bond. And an intensity ratio (strength ELq / strength ESub) of mass analysis intensity ELq and intensity ESub of the fragment derived from the orientation group satisfies a predetermined condition. As a result, it was found that excellent flatness was maintained and display performance was good even when exposed to high temperature and high humidity (Examples 1 to 24).
In particular, from the comparison between Example 1 and Example 24, it was found that when the crosslinking agent B having a molecular weight of 5000 or less was blended, the flatness was improved and the display performance was also improved.
 10:液晶表示装置
 12:バックライトユニット
 14,15:基材
 16:薄膜トランジスタ
 17:硬化膜
 18:コンタクトホール
 19:ITO透明電極
 20:液晶層
 21:配向保護層
 22:カラーフィルター
 23:配向膜
 30:第1の基板
 40:第2の基板
DESCRIPTION OF SYMBOLS 10: Liquid crystal display device 12: Backlight unit 14,15: Base material 16: Thin film transistor 17: Cured film 18: Contact hole 19: ITO transparent electrode 20: Liquid crystal layer 21: Orientation protective layer 22: Color filter 23: Orientation film 30 : First substrate 40: Second substrate

Claims (14)

  1.  視認側から、第1の基板と、液晶層と、第2の基板とをこの順に有する液晶表示装置であって、
     前記第1の基板が、基材と、配向保護層とを具備し、
     前記第2の基板が、基材と、薄膜トランジスタと、表示電極と、配向膜とを具備し、
     前記配向保護層が、前記液晶層と接する面を有し、
     前記配向保護層が、共有結合を介して互いに連結した配向性基および架橋構造を有し、
     飛行時間型二次イオン質量分析法で検出される前記配向性基に由来するフラグメントについて、前記配向保護層の前記液晶層に接する面における前記配向性基に由来するフラグメントの質量分析の強度ELqと、前記配向保護層の前記基材側の面における前記配向性基に由来するフラグメントの質量分析の強度ESubとが、下記条件1または2を満たし、
     前記架橋構造が、下記式(A-1)~(A-3)で表されるいずれかの構造を含む、液晶表示装置。
     条件1:強度ELqが強度ESubの2倍~20倍である。
     条件2:強度ELqが有意に測定され、強度ESubが測定限界以下である。
    Figure JPOXMLDOC01-appb-C000001

     ここで、前記式(A-1)~(A-3)中、*は結合位置を表し、前記式(A-3)中、R1は、水素原子または炭素数1~6のアルキル基を表す。
    A liquid crystal display device having a first substrate, a liquid crystal layer, and a second substrate in this order from the viewing side,
    The first substrate comprises a base material and an orientation protective layer,
    The second substrate comprises a base material, a thin film transistor, a display electrode, and an alignment film,
    The alignment protective layer has a surface in contact with the liquid crystal layer;
    The alignment protective layer has an alignment group and a crosslinked structure linked to each other through a covalent bond;
    For the fragment derived from the orientation group detected by time-of-flight secondary ion mass spectrometry, the intensity ELq of the mass analysis of the fragment derived from the orientation group on the surface of the orientation protective layer in contact with the liquid crystal layer; The strength ESsub of the mass spectrometry of the fragment derived from the orientation group on the substrate side surface of the orientation protective layer satisfies the following condition 1 or 2:
    A liquid crystal display device, wherein the crosslinked structure includes any one of structures represented by the following formulas (A-1) to (A-3).
    Condition 1: The intensity ELq is 2 to 20 times the intensity ESub.
    Condition 2: The intensity ELq is significantly measured and the intensity ESub is below the measurement limit.
    Figure JPOXMLDOC01-appb-C000001

    In the formulas (A-1) to (A-3), * represents a bonding position, and in the formula (A-3), R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. To express.
  2.  前記強度ELqが、前記強度ESubの5倍~20倍である、請求項1に記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the intensity ELq is 5 to 20 times the intensity ESsub.
  3.  前記配向性基が、光配向性基を光反応させてなる基である、請求項1または2に記載の液晶表示装置。 3. The liquid crystal display device according to claim 1, wherein the orientation group is a group obtained by photoreaction of a photo-alignment group.
  4.  前記配向保護層の膜厚が1~4μmである、請求項1~3のいずれか1項に記載の液晶表示装置。 4. The liquid crystal display device according to claim 1, wherein the thickness of the alignment protective layer is 1 to 4 μm.
  5.  前記液晶層を構成する液晶が、水平配向液晶である、請求項1~4のいずれか1項に記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 4, wherein the liquid crystal constituting the liquid crystal layer is a horizontally aligned liquid crystal.
  6.  前記配向性基に由来するフラグメントが、シンナメート基およびカルコン基からなる群から選択される少なくとも1種の光配向性基に由来するフラグメントである、請求項1~5のいずれか1項に記載の液晶表示装置。 The fragment derived from the orientation group is a fragment derived from at least one photoalignment group selected from the group consisting of a cinnamate group and a chalcone group. Liquid crystal display device.
  7.  基材上に、配向性基を有する構成単位を含む重合体Pと、配向性基を有する構成単位を含まない重合体Aとを含有する配向保護層形成用組成物を用いて保護層を形成した後に、前記保護層に対して配向処理を施して配向保護層を形成し、第1の基板を作製する第1工程と、
     基材、薄膜トランジスタ、表示電極および配向膜を具備する第2の基板と、前記第1の基板とを張り合わせて液晶を封入し、前記第1の基板と前記第2の基板との間に液晶層を形成し、液晶表示装置を作製する第2工程と、を有する液晶表示装置の製造方法。
    A protective layer is formed on a base material using a composition for forming an orientation protective layer containing a polymer P containing a structural unit having an orientation group and a polymer A not containing a structural unit having an orientation group. After that, a first step of performing an alignment treatment on the protective layer to form an alignment protective layer and producing a first substrate;
    A liquid crystal is sealed by bonding a second substrate having a base material, a thin film transistor, a display electrode, and an alignment film together with the first substrate, and a liquid crystal layer is interposed between the first substrate and the second substrate. Forming a liquid crystal display device, and manufacturing the liquid crystal display device.
  8.  前記重合体Pが、前記配向性基を有する構成単位として下記s1に示される構成単位を含み、
     前記重合体Pおよび前記重合体Aが、下記条件3または4を満たす、請求項7に記載の液晶表示装置の製造方法。
     s1:フッ素置換炭化水素基、シロキサン骨格および炭素数10~30のアルキル基からなる群より選択される少なくとも1つの部分構造を有する構成単位、ならびに、光配向性基を有する構成単位
     条件3:前記重合体Pが、架橋性基を有する構成単位a2を含み、かつ、前記重合体Aが、酸基を有する構成単位a3を含む。
     条件4:前記重合体Pが、酸基を有する構成単位a3を含み、かつ、前記重合体Aが、架橋性基を有する構成単位a2を含む。
    The polymer P includes a structural unit represented by s1 below as a structural unit having the orientation group,
    The method for manufacturing a liquid crystal display device according to claim 7, wherein the polymer P and the polymer A satisfy the following condition 3 or 4.
    s1: a structural unit having at least one partial structure selected from the group consisting of a fluorine-substituted hydrocarbon group, a siloxane skeleton and an alkyl group having 10 to 30 carbon atoms, and a structural unit having a photoalignment group Condition 3: The polymer P includes a structural unit a2 having a crosslinkable group, and the polymer A includes a structural unit a3 having an acid group.
    Condition 4: The polymer P includes a structural unit a3 having an acid group, and the polymer A includes a structural unit a2 having a crosslinkable group.
  9.  前記架橋性基が、オキシラニル基、3,4-エポキシシクロヘキシル基、および、オキセタニル基からなる群から選択される少なくとも1種である、請求項8に記載の液表示装置の製造方法。 The method for producing a liquid display device according to claim 8, wherein the crosslinkable group is at least one selected from the group consisting of an oxiranyl group, a 3,4-epoxycyclohexyl group, and an oxetanyl group.
  10.  前記重合体Pおよび前記重合体Aの合計質量に対する前記重合体Pの質量割合が10質量%未満である、請求項7~9のいずれか1項に記載の液晶表示装置の製造方法。 10. The method for producing a liquid crystal display device according to claim 7, wherein a mass ratio of the polymer P to a total mass of the polymer P and the polymer A is less than 10% by mass.
  11.  前記配向保護層形成用組成物が、更に、分子量5000以下の架橋剤Bを含有する、請求項7~10のいずれか1項に記載の液晶表示装置の製造方法。 The method for producing a liquid crystal display device according to any one of claims 7 to 10, wherein the composition for forming an alignment protective layer further contains a crosslinking agent B having a molecular weight of 5000 or less.
  12.  前記架橋剤Bが、エポキシ基を有する架橋剤を含み、
     前記架橋剤B、前記重合体Pおよび前記重合体Aの合計質量に対する前記架橋剤Bの質量割合が30質量%以下である、請求項11に記載の液晶表示装置の製造方法。
    The crosslinking agent B includes a crosslinking agent having an epoxy group,
    The manufacturing method of the liquid crystal display device of Claim 11 whose mass ratio of the said crosslinking agent B with respect to the total mass of the said crosslinking agent B, the said polymer P, and the said polymer A is 30 mass% or less.
  13.  前記配向性基が、光配向性基であり、
     前記配向処理が、波長365nm以下の光を用いる光配向処理である、請求項7~12のいずれか1項に記載の液晶表示装置の製造方法。
    The alignment group is a photo-alignment group;
    The method for manufacturing a liquid crystal display device according to any one of claims 7 to 12, wherein the alignment treatment is a photo-alignment treatment using light having a wavelength of 365 nm or less.
  14.  前記第1工程が、前記配向処理の前または後に、熱処理を施す工程を含む、請求項7~13のいずれか1項に記載の液晶表示装置の製造方法。 The method for manufacturing a liquid crystal display device according to any one of claims 7 to 13, wherein the first step includes a step of performing a heat treatment before or after the alignment treatment.
PCT/JP2016/083761 2015-12-01 2016-11-15 Liquid crystal display apparatus and manufacturing method for liquid crystal display apparatus WO2017094490A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680064694.2A CN108351558A (en) 2015-12-01 2016-11-15 The manufacturing method of liquid crystal display device and liquid crystal display device
KR1020187013001A KR102061587B1 (en) 2015-12-01 2016-11-15 Liquid crystal display device and liquid crystal display device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015235070A JP6518184B2 (en) 2015-12-01 2015-12-01 Liquid crystal display device and method of manufacturing liquid crystal display device
JP2015-235070 2015-12-01

Publications (1)

Publication Number Publication Date
WO2017094490A1 true WO2017094490A1 (en) 2017-06-08

Family

ID=58797152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083761 WO2017094490A1 (en) 2015-12-01 2016-11-15 Liquid crystal display apparatus and manufacturing method for liquid crystal display apparatus

Country Status (5)

Country Link
JP (1) JP6518184B2 (en)
KR (1) KR102061587B1 (en)
CN (1) CN108351558A (en)
TW (1) TWI703373B (en)
WO (1) WO2017094490A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181350A1 (en) * 2017-03-27 2018-10-04 日産化学株式会社 Cured film–forming composition, alignment material, and phase difference material
WO2019220970A1 (en) * 2018-05-18 2019-11-21 富士フイルム株式会社 Photo-alignable copolymer, photo-alignment film, and optical laminate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018173727A1 (en) * 2017-03-24 2019-11-07 富士フイルム株式会社 Photo-alignable copolymer, photo-alignment film and optical laminate
JP7135328B2 (en) * 2018-01-31 2022-09-13 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
US20200081398A1 (en) * 2018-09-06 2020-03-12 Facebook Technologies, Llc Photosensitive polymers for volume holography

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173792A (en) * 2008-01-25 2009-08-06 Chisso Corp Alignment film, liquid crystal display element having the same, and composition for alignment layer
WO2015020083A1 (en) * 2013-08-07 2015-02-12 シャープ株式会社 Liquid crystal display device and liquid crystal alignment agent
WO2015060358A1 (en) * 2013-10-23 2015-04-30 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569221B2 (en) * 2004-08-18 2010-10-27 チッソ株式会社 Tetracarboxylic dianhydrides, polymers made from them, varnishes using these, alignment films, and liquid crystal display elements
WO2010106915A1 (en) * 2009-03-17 2010-09-23 シャープ株式会社 Liquid crystal display apparatus and manufacturing method thereof
KR101642786B1 (en) * 2009-11-26 2016-07-26 제이에스알 가부시끼가이샤 Composition for organic semiconductor alignment, organic semiconductor alignment film, and organic semiconductor device and manufacturing method thereof
JP2013177561A (en) 2012-02-03 2013-09-09 Jnc Corp Polymer composition having photo-orientable group, liquid crystal oriented film formed from the polymer composition, and liquid crystal display device including retardation film formed from the liquid crystal oriented film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173792A (en) * 2008-01-25 2009-08-06 Chisso Corp Alignment film, liquid crystal display element having the same, and composition for alignment layer
WO2015020083A1 (en) * 2013-08-07 2015-02-12 シャープ株式会社 Liquid crystal display device and liquid crystal alignment agent
WO2015060358A1 (en) * 2013-10-23 2015-04-30 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181350A1 (en) * 2017-03-27 2018-10-04 日産化学株式会社 Cured film–forming composition, alignment material, and phase difference material
WO2019220970A1 (en) * 2018-05-18 2019-11-21 富士フイルム株式会社 Photo-alignable copolymer, photo-alignment film, and optical laminate

Also Published As

Publication number Publication date
CN108351558A (en) 2018-07-31
JP2017102258A (en) 2017-06-08
KR102061587B1 (en) 2020-01-02
TW201728977A (en) 2017-08-16
JP6518184B2 (en) 2019-05-22
KR20180067588A (en) 2018-06-20
TWI703373B (en) 2020-09-01

Similar Documents

Publication Publication Date Title
JP6437955B2 (en) Photosensitive resin composition, method for producing cured film, cured film, and liquid crystal display device
WO2017094490A1 (en) Liquid crystal display apparatus and manufacturing method for liquid crystal display apparatus
WO2014003111A1 (en) Photosensitive resin composition, cured product, method for producing cured product, method for producing resin pattern, cured film, liquid crystal display device, organic el display device, and touch panel display device
WO2014126033A1 (en) Method for producing cured film, cured film, liquid crystal display device, organic el display device, and touch panel display device
WO2016009894A1 (en) Photosensitive composition, method for producing curable film, curable film, touch panel, touch panel display device, liquid crystal display device, and organic el display device
TWI688823B (en) Photosensitive composition, method for manufacturing cured film, cured film and application thereof
JP6093876B2 (en) Curable composition, method for producing cured film, cured film, and display device
JP2013242511A (en) Photosensitive resin composition, method for forming curable film, curable film, organic electroluminescence display device, and liquid crystal display device
JP5883928B2 (en) Photosensitive resin composition, method for forming cured film, cured film, organic EL display device, and liquid crystal display device
TWI676080B (en) Curable composition, cured film, organic electroluminescence display device, liquid crystal display device, and touch panel display device
KR102351163B1 (en) Photosensitive resin composition, cured product, interlayer insulating film, TFT active matrix substrate, and image display device
WO2013191155A1 (en) Photosensitive resin composition, method for manufacturing cured film, cured film, organic el display device, and liquid crystal display device
JP6470204B2 (en) Manufacturing method of liquid crystal display panel
JP5218195B2 (en) Thermosetting resin composition for forming protective film, protective film, and method for forming protective film
JP6499595B2 (en) Photosensitive resin composition, method for producing cured film, cured film, touch panel, and display device
TW202010769A (en) Thermosetting compositions, cured film, and color filter
JP6333753B2 (en) Photosensitive composition, method for producing cured product, cured product, cured film, touch panel, and display device
CN110857371A (en) Thermosetting composition, cured film and color filter
JP2009203345A (en) Thermosetting resin composition, method for producing color filter protective film, and color filter protective film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187013001

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870429

Country of ref document: EP

Kind code of ref document: A1