WO2015020083A1 - Liquid crystal display device and liquid crystal alignment agent - Google Patents

Liquid crystal display device and liquid crystal alignment agent Download PDF

Info

Publication number
WO2015020083A1
WO2015020083A1 PCT/JP2014/070713 JP2014070713W WO2015020083A1 WO 2015020083 A1 WO2015020083 A1 WO 2015020083A1 JP 2014070713 W JP2014070713 W JP 2014070713W WO 2015020083 A1 WO2015020083 A1 WO 2015020083A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
alignment film
crystal display
display device
polyorganosiloxane
Prior art date
Application number
PCT/JP2014/070713
Other languages
French (fr)
Japanese (ja)
Inventor
博之 箱井
寺岡 優子
中田 正一
拓巳 的場
美智子 石川
Original Assignee
シャープ株式会社
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, Jsr株式会社 filed Critical シャープ株式会社
Publication of WO2015020083A1 publication Critical patent/WO2015020083A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133719Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films with coupling agent molecules, e.g. silane
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Definitions

  • the present invention relates to a liquid crystal display device and a liquid crystal aligning agent. More specifically, the present invention relates to a liquid crystal display device in which an alignment film for controlling the alignment of liquid crystal molecules is formed, and a liquid crystal aligning agent as a material for the alignment film.
  • a liquid crystal display device is a display device that uses a liquid crystal composition for display.
  • a typical display method is to apply a voltage to a liquid crystal composition sealed between a pair of substrates, and apply the applied voltage.
  • the amount of transmitted light is controlled by changing the alignment state of the liquid crystal molecules in the liquid crystal composition according to the above.
  • Such a liquid crystal display device is used in a wide range of fields, taking advantage of its thinness, light weight, and low power consumption.
  • the alignment of liquid crystal molecules is generally controlled by an alignment film formed on the surface of the substrate.
  • This alignment film is subjected to an alignment process for aligning liquid crystal molecules in the vicinity of the alignment film in a predetermined direction.
  • a rubbing method, a photo-alignment method, or the like is known.
  • the rubbing method is a method of imparting a desired alignment regulating force to the alignment film by rubbing the surface of the alignment film with a cloth wound around a roller.
  • the photo-alignment method is a method of imparting a desired alignment regulating force to the alignment film by irradiating (exposure) light such as ultraviolet rays, and alignment having a photosensitive functional group (photo-functional group) as the alignment film material.
  • exposure exposure
  • photo-functional group a photosensitive functional group
  • polyamic acid and polyimide have been frequently used as materials for alignment films (liquid crystal alignment agents).
  • Polyamic acid and polyimide exhibit excellent physical properties in organic resins such as heat resistance, affinity with liquid crystals, and mechanical strength.
  • polyamic acid and polyimide many kinds of polymers having different molecular structures are known.
  • the alignment film is required to have various properties such as the strength and uniformity of the alignment control force, AC image sticking (residual DC), voltage holding ratio, and printability.
  • a technique for improving the overall characteristics of the alignment film by mixing two types of polymers has been proposed (for example, see Patent Documents 1 and 2).
  • the polyamic acid and polyimide described above are materials having excellent heat resistance as described above.
  • an alignment film using a polymer having polyorganosiloxane as a main skeleton has been proposed (for example, see Patent Document 4).
  • Patent Document 4 at least one selected from the group consisting of a polyorganosiloxane having a side chain of a specific structure in a repeating unit, a hydrolyzate thereof and a condensate of the hydrolyzate, a specific compound,
  • a liquid crystal aligning agent containing the reaction product of is disclosed. It is also disclosed that this liquid crystal aligning agent may further contain at least one selected from the group consisting of polyamic acid and polyimide, and that it is used for a liquid crystal display element.
  • the siloxane bond contained in the main skeleton has a strong bond energy 1.25 times that of the carbon-carbon bond that forms the skeleton of many organic compounds. It is a bond. Therefore, a polymer having polyorganosiloxane as a main skeleton exhibits extremely excellent heat resistance and can withstand higher temperatures than a conventional alignment film mainly composed of polyimide and / or polyamic acid.
  • the polymer having a polyorganosiloxane as a main skeleton has not been sufficiently known as a conventional polymer having a polyimide and / or polyamic acid as a main skeleton.
  • the present invention has been made in view of the above situation, and a liquid crystal display device provided with an alignment film excellent in strength / uniformity of alignment regulating force, AC printing, voltage holding ratio, and printability, and such an alignment. It aims at providing the liquid crystal aligning agent which can form a film
  • the inventors of the present invention have studied various structures of side chains introduced into a polymer having polyorganosiloxane as a main skeleton, and phenylene with a cinnamate structure (—C 6 H 4 —CH ⁇ CH—COO—) which is a photofunctional group. Focusing on the introduction of a side chain having a rigid structure such as a group or an ester bond, by using a carboxylic acid compound having such a structure, a strong alignment regulating force can be exhibited, and an AC voltage We found that plastic deformation of the photosensitive side chain accompanying the response of liquid crystal molecules during application can be prevented. Further, according to the side chain introduced by the carboxylic acid compound, it is possible to stably maintain the vertical alignment of the adjacent liquid crystal molecules, so that an alignment film having good ⁇ tilt characteristics and hardly causing AC image sticking can be formed. I came up with it.
  • R 1 represents an alkyl group having 4 to 20 carbon atoms
  • R 2 represents an alicyclic hydrocarbon having 6 to 10 carbon atoms
  • R 3 represents a fluorine-containing group having 1 to 20 carbon atoms.
  • the present inventors have made a polymer component composed of a polymer having polyorganosiloxane as a main skeleton and one or both of polyamic acid and polyimide from the viewpoint of improving the overall properties of the alignment film.
  • a material containing a polymer component hereinafter referred to as “two-layered material”.
  • the polymer in which the carboxylic acid compound of the above formula (1) is introduced into the side chain is used as one polymer component of the two-layered material, between each polymer component contained in the two-layered material, There will be no difference in affinity.
  • the two-layered alignment film using a two-layer material separates the layers depending on the affinity of each polymer component to the substrate. If there is no difference in the affinity of each polymer component to the substrate, sufficient layer separation is achieved. Performance cannot be obtained. Therefore, when the carboxylic acid compound of the above formula (1) is used, it is difficult to stably form a state separated into two layers (in other words, the layer separation performance is lowered).
  • Patent Document 4 discloses a structure of a side chain introduced into a polymer having a large number of polyorganosiloxane as a main skeleton, and includes a carboxylic acid compound of the above formulas (1) and (2). Applicable items are disclosed.
  • the compound represented by the formula (A-1-C8) described on page 25 and page 103 of Patent Document 4 corresponds to the carboxylic acid compound of the above formula (1) and described on page 99.
  • the compound represented by the formula (A-1-C4-2) corresponds to the carboxylic acid compound of the above (2).
  • Patent Document 4 does not consider that the layer separation performance in the two-layered material differs depending on the structure of the side chain introduced into the polymer having polyorganosiloxane as the main skeleton, and the variation in the layer separation state It has not been studied to prevent the occurrence of non-uniform extinction level due to. In addition, it has not been studied to achieve both orientation regulating force and printability.
  • the present inventors introduced the carboxylic acid compound of the above formula (1) and the carboxylic acid compound of the above formula (2) into a polymer having a polyorganosiloxane as a main skeleton as a side chain, Under the influence of the layer separation performance of the carboxylic acid compound of the above formula (2), the carboxylic acid compound of the above formula (1) is also likely to come out on the surface of the alignment film, and the good ⁇ tilt characteristic of each side chain is maintained. They found that they can solve all of the problems such as the occurrence of non-uniform extinction levels, deterioration of voltage holding ratio, and deterioration of printability that cannot be solved individually.
  • the ratio of each polymer component (modification ratio) contained in the two-layered material, the introduction amount of the carboxylic acid compound of the above formula (1) and the carboxylic acid compound of the above formula (2) are appropriately set. It was found that a better voltage holding ratio and printability can be achieved by adjusting to. As described above, the present inventors have conceived that the above problems can be solved brilliantly, and have reached the present invention.
  • one embodiment of the present invention includes a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, and an alignment film disposed between at least one of the pair of substrates and the liquid crystal layer.
  • the alignment film includes a first component and a second component, and the first component includes a polyorganosiloxane having an epoxy group, a compound represented by the following formula (1), and the following: It consists of a reaction product with the compound represented by Formula (2), and the second component is a liquid crystal display device comprising one or both of polyamic acid and polyimide.
  • R 1 R 2 —COO—C 6 H 4 —CH ⁇ CH—COOH
  • R 3 C 6 H 4 —COO—C 6 H 4 —CH ⁇ CH—COOH
  • R 1 represents an alkyl group having 4 to 20 carbon atoms
  • R 2 represents a group formed by losing two hydrogen atoms from an alicyclic hydrocarbon having 6 to 10 carbon atoms
  • R 3 represents a fluorine-containing group having 1 to 20 carbon atoms.
  • Another embodiment of the present invention is a first component comprising a reaction product of a polyorganosiloxane having an epoxy group, a compound represented by the following formula (1) and a compound represented by the following formula (2). And a second component composed of one or both of polyamic acid and polyimide.
  • R 1 represents an alkyl group having 4 to 20 carbon atoms
  • R 2 represents a group formed by losing two hydrogen atoms from an alicyclic hydrocarbon having 6 to 10 carbon atoms.
  • R 3 represents a fluorine-containing group having 1 to 20 carbon atoms.
  • the liquid crystal display device of the present invention includes the alignment film as described above, display unevenness and AC image sticking due to extinction level unevenness and the like are reduced, and high display quality can be realized. Moreover, since the liquid crystal aligning agent of this invention has the above compositions, it is excellent in the intensity
  • FIG. 1 It is the cross-sectional schematic diagram which showed the liquid crystal display panel of embodiment. It is the plane schematic diagram which showed the liquid crystal display panel of embodiment. It is a perspective schematic diagram which shows the relationship between the photo-alignment process direction in the liquid crystal display device of RTN mode, and the pretilt direction of a liquid crystal molecule.
  • A shows the direction of the average liquid crystal director in one pixel (one pixel or one subpixel) and the optical alignment treatment for a pair of substrates (upper and lower substrates) when the RTN mode liquid crystal display device has a monodomain.
  • (b) is a schematic diagram showing an absorption axis direction of a polarizing plate provided in the liquid crystal display device shown in (a).
  • FIG. 4B is a schematic plan view showing a domain division pattern
  • FIG. 4B is a schematic diagram showing an absorption axis direction of a polarizing plate provided in the liquid crystal display device shown in FIG.
  • (A) is the direction of the average liquid crystal director in one pixel (one pixel or one subpixel) and the optical alignment treatment for a pair of substrates (upper and lower substrates) when the liquid crystal display device has another four domains. It is a schematic plan view showing the direction and the division pattern of the domain,
  • (b) is a schematic diagram showing the absorption axis direction of the polarizing plate provided in the liquid crystal display device shown in (a),
  • FIG. 6B is a schematic cross-sectional view taken along line AB in FIG.
  • the liquid crystal display device of the present embodiment includes a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, and an alignment film disposed between at least one of the pair of substrates and the liquid crystal layer.
  • the alignment film includes a first component and a second component, and the first component is a polyorganosiloxane having an epoxy group (hereinafter also referred to as “reactive polyorganosiloxane”).
  • a reaction product of the compound represented by the following formula (1) and the compound represented by the following formula (2) hereinafter also referred to as “liquid crystal alignment polyorganosiloxane”
  • R 1 R 2 —COO—C 6 H 4 —CH ⁇ CH—COOH
  • R 3 C 6 H 4 —COO—C 6 H 4 —CH ⁇ CH—COOH
  • R 1 represents an alkyl group having 4 to 20 carbon atoms
  • R 2 represents a group formed by losing two hydrogen atoms from an alicyclic hydrocarbon having 6 to 10 carbon atoms
  • R 3 represents a fluorine-containing group having 1 to 20 carbon atoms.
  • the liquid crystal display device of this embodiment includes a liquid crystal display panel; an external circuit such as a TCP (tape carrier package) and a PCB (printed wiring board); an optical film such as a viewing angle widening film and a brightness enhancement film; a backlight unit; It is comprised by several members, such as a bezel (frame), and may be integrated in the other member depending on the member.
  • the members excluding the liquid crystal display panel are not particularly limited, and those normally used in the field of liquid crystal display devices can be used, and thus the description thereof is omitted.
  • FIG. 1 is a schematic cross-sectional view showing the liquid crystal display panel of the embodiment
  • FIG. 2 is a schematic plan view showing the liquid crystal display panel of the embodiment.
  • the liquid crystal display device of this embodiment includes a pair of substrates 10 and 20, and a liquid crystal layer 30 is sandwiched between the pair of substrates 10 and 20.
  • An alignment film 40 is interposed between at least one of the pair of substrates 10 and 20 and the liquid crystal layer 30.
  • alignment films 40 are provided between one substrate 10 and the liquid crystal layer 30 and between the other substrate 20 and the liquid crystal layer 30, but only one of them is provided. Also good.
  • the pair of substrates 10 and 20 are bonded together with a sealing material 50.
  • the sealing material 50 is disposed so as to surround the periphery of the liquid crystal layer 30.
  • Polarizing plates 60 are respectively disposed on the outer sides of the liquid crystal display panel, which is opposite to the side on which the alignment film 40 is disposed with respect to the substrates 10 and 20.
  • An optical film such as a retardation film may be disposed between the polarizing plate 60 and the substrates 10 and 20.
  • Examples of the pair of substrates 10 and 20 include a combination of an active matrix substrate and a color filter substrate.
  • the active matrix substrate those normally used in the field of liquid crystal display devices can be used.
  • the configuration includes a plurality of parallel gate signal lines on a transparent substrate; a plurality of sources that extend in a direction perpendicular to the gate signal lines and are parallel to each other. Signal line; thin film transistor arranged corresponding to the intersection of the gate signal line and the source signal line; a configuration in which pixel electrodes arranged in a matrix are provided in a region partitioned by the gate signal line and the source signal line Is mentioned.
  • the structure of the color filter substrate includes a black matrix formed on a transparent substrate, a color filter formed inside the lattice, that is, a pixel, a common electrode formed covering the black matrix and the color filter, and the like. The structure which was made is mentioned.
  • the transparent substrate used for the active matrix substrate and the color filter substrate examples include glass such as float glass and soda glass; plastics such as polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polycarbonate, and alicyclic polyolefin. The thing which becomes.
  • the pixel electrode of the active matrix substrate and the common electrode of the color filter substrate are usually layers that serve as the foundation of the alignment film. Therefore, the printability of the alignment film is improved by increasing the affinity between the surface of the pixel electrode and the common electrode and the material constituting the alignment film.
  • a transparent conductive material such as indium tin oxide (ITO), indium zinc oxide (Indium Zinc Oxide: IZO), or the like can be given.
  • a nematic liquid crystal, a smectic liquid crystal, or the like can be used.
  • a nematic type liquid crystal having positive dielectric anisotropy positive type liquid crystal
  • biphenyl type liquid crystal, phenyl cyclohexane type liquid crystal, Ester liquid crystals, terphenyl liquid crystals, biphenylcyclohexane liquid crystals, pyrimidine liquid crystals, dioxane liquid crystals, bicyclooctane liquid crystals, cubane liquid crystals, and the like are used.
  • liquid crystals examples include cholesteric liquid crystals such as cholestyl chloride, cholesteryl nonate, and cholesteryl carbonate; chiral agents such as those sold as trade names C-15 and CB-15 (manufactured by Merck); p-decyloxybenzylidene- Ferroelectric liquid crystals such as p-amino-2-methylbutyl cinnamate may be further added and used.
  • a nematic type liquid crystal having negative dielectric anisotropy negative type liquid crystal
  • dicyanobenzene liquid crystal dicyanobenzene liquid crystal, pyridazine liquid crystal, Schiff base liquid crystal, azoxy liquid crystal Type liquid crystal, biphenyl type liquid crystal, phenylcyclohexane type liquid crystal and the like are used.
  • the liquid crystal layer 30 includes liquid crystal molecules having negative dielectric anisotropy, and the alignment film 40 is vertical. It is an alignment film.
  • the liquid crystal molecules are aligned substantially perpendicular to the surface (substrate surface) of the alignment film 40.
  • the ON state in which the voltage applied to the liquid crystal layer 30 exceeds the threshold voltage the liquid crystal molecules have a negative dielectric anisotropy, and therefore fall in a direction parallel to the substrate surface according to the applied voltage. . Thereby, the liquid crystal layer 30 exhibits birefringence with respect to the transmitted light.
  • the pretilt angle of the liquid crystal molecules in the vicinity of the alignment film 40 is preferably 86 ° or more and less than 90 °, more preferably 89.5 ° or less.
  • the “pretilt angle” means an angle of inclination of liquid crystal molecules from a direction parallel to the substrate surface, the angle parallel to the substrate surface is 0 °, and the normal angle of the substrate surface is 90 °. It is.
  • the alignment film 40 has a function of controlling the alignment of the liquid crystal molecules in the liquid crystal layer 30. Details will be described later.
  • the sealing material 50 for example, an aluminum resin sphere as a spacer and an epoxy resin containing a curing agent can be used.
  • the polarizing plate 60 include a polarizing plate in which a polarizing film called an “H film” in which polyvinyl alcohol is stretched and oriented while absorbing iodine is sandwiched between cellulose acetate protective films, or a polarizing film made of the H film itself. Can do.
  • the alignment film contains a liquid crystal aligning polyorganosiloxane as the first component and one or both of polyamic acid and polyimide as the second component.
  • the surface of the substrate is often pretreated to be hydrophilic from the viewpoint of improving printability.
  • one of the first component and the second component is hydrophilic and the other is hydrophobic.
  • the first component is mainly contained on the liquid crystal layer side
  • the second component is mainly contained on the substrate side.
  • liquid crystal alignment polyorganosiloxane is composed of a polyorganosiloxane having an epoxy group (reactive polyorganosiloxane) and a compound represented by the above formula (1) ( Hereinafter, it is a reaction product of the “first side chain compound”) and the compound represented by the above formula (2) (hereinafter also referred to as “second side chain compound”).
  • first side chain compound the compound represented by the above formula (1)
  • second side chain compound hereinafter also referred to as “second side chain compound”.
  • the structure derived from the reactive polyorganosiloxane constitutes the main chain
  • the structure derived from the first side chain compound constitutes the structure derived from the second side chain compound Each constitutes a side chain.
  • the liquid crystal aligning polyorganosiloxane has a photoreactive side chain (specific fluorine-containing side chain) containing a fluorine atom derived from the second side chain compound at the tip and fluorine derived from the first side chain compound.
  • a photoreactive side chain specifically fluorine-containing side chain
  • It is a polymer whose main skeleton is a polyorganosiloxane provided with both photoreactive side chains that do not contain atoms (specific fluorine-free side chains).
  • Reactive polyorganosiloxane The reactive polyorganosiloxane is selected from the group consisting of a polysiloxane having a structure represented by the following formula (A-1), a hydrolyzate thereof, and a condensate of the hydrolyzate. At least one kind.
  • X in the above formula (A-1) is not particularly limited as long as it is a group comprising an epoxy group.
  • X-1 a group represented by the following formula (X-1), (X-2) And the group represented.
  • c is an integer of 1 to 10, and “*” indicates that the bond attached thereto is bonded to a silicon atom.
  • the epoxy group in X reacts with the carboxyl group in the first side chain compound and the second side chain compound to produce a liquid crystal aligning polyorganosiloxane.
  • Y in the formula (A-1) is not particularly limited, and examples thereof include a hydroxyl group, an alkoxyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 6 carbon atoms, and an aryl group having 6 to 10 carbon atoms.
  • examples of the hydroxyl group of Y and the alkoxyl group having 1 to 10 carbon atoms include a methoxyl group and an ethoxyl group
  • examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an n-propyl group, and an n-butyl group.
  • Y is preferably a hydroxyl group or an alkoxyl group having 1 to 10 carbon atoms.
  • the reactive polyorganosiloxane preferably has a polystyrene equivalent weight average molecular weight of 500 to 100,000, more preferably 1,000 to 10,000, as measured by gel permeation chromatography (GPC). Further, it is preferably 1,000 to 5,000.
  • the reactive polyorganosiloxane can be obtained as a commercial product, or can be synthesized by appropriately combining organic chemistry methods. Moreover, about the method of manufacturing the said reactive polyorganosiloxane, you may use the manufacturing method disclosed by the said patent document 4. FIG.
  • the first side chain compound has a chemical structure represented by the following formula (1).
  • R 1 represents an alkyl group having 4 to 20 carbon atoms
  • R 2 represents a group formed by losing two hydrogen atoms from an alicyclic hydrocarbon having 6 to 10 carbon atoms. .
  • Examples of the alkyl group having 4 to 20 carbon atoms in R 1 include an n-butyl group, an n-pentyl group, an n-hexyl group, an n-octyl group, an n-decyl group, an n-dodecyl group, and an n-hexadecyl group. , N-octadecyl group, n-eicosyl group and the like.
  • Examples of the alicyclic hydrocarbon having 6 to 10 carbon atoms in R 2 include saturated hydrocarbons (cycloalkanes) such as cyclohexane, cycloheptane and cyclooctane, and unsaturated hydrocarbons such as cycloalkene and cycloalkyne. .
  • the alicyclic hydrocarbon may be monocyclic or polycyclic.
  • Preferable examples of the first side chain compound include compounds represented by the following formula (1-1).
  • R 1 represents an alkyl group having 4 to 20 carbon atoms.
  • the alignment regulating force can be expressed by a photo-alignment method.
  • the first side chain compound can be obtained as a commercial product, or can be synthesized by appropriately combining organic chemistry methods. Moreover, you may use the manufacturing method disclosed by the said patent document 4 about the method of manufacturing said 1st compound for side chains.
  • the compound represented by the above formula (1-1) is, for example, a compound obtained by converting 4-alkylcyclohexylcarboxylic acid having an alkyl group corresponding to R 1 into acid chloride with thionyl chloride in the presence of a suitable base such as potassium carbonate. Can be obtained by reacting with hydroxycinnamic acid at a temperature of 0 ° C. to room temperature.
  • Second side chain compound has a chemical structure represented by the following formula (2).
  • R 3 represents a fluorine-containing group having 1 to 20 carbon atoms.
  • Examples of the fluorine-containing group having 1 to 20 carbon atoms in R 3 include a trifluoromethyl group, a perfluoroethyl group, a 3,3,3-trifluoropropyl group, a 4,4,4-trifluorobutyl group, 4 , 4-5,5,5-pentafluoropentyl group, 4,4-5,5-6,6,6-heptafluorohexyl group and the like.
  • Preferable examples of the second side chain compound include compounds represented by the following formulas (2-1), (2-2), and (2-3).
  • R 4 in the above formulas (2-1), (2-2), and (2-3) represents a fluoroalkyl group having 1 to 20 carbon atoms.
  • the second side chain compound includes a structure represented by —C 6 H 4 —CH ⁇ CH—COO—. Can be expressed.
  • the second side chain compound can be obtained as a commercial product, or can be synthesized by appropriately combining organic chemistry methods. Moreover, about the method of manufacturing the said 2nd compound for side chains, you may use the manufacturing method disclosed by the said patent document 4. FIG.
  • the compound represented by the above formula (2-1) is, for example, a methyl hydroxybenzoate and an alkyl halide having an alkyl group corresponding to R 4 or a tosylated alkyl in the presence of a suitable base such as potassium carbonate at room temperature to After reacting at a temperature of 100 ° C., the mixture is hydrolyzed with an appropriate alkaline aqueous solution such as sodium hydroxide, and further converted into an acid chloride with thionyl chloride, which is then treated with hydroxy in the presence of an appropriate base such as potassium carbonate. It can be obtained by reacting with cinnamic acid at a temperature of 0 ° C. to room temperature.
  • the compound represented by the above formula (2-2) is, for example, a hydroxybenzoic acid and an alkylcarboxylic acid chloride having an alkyl group corresponding to R 4 in the presence of a suitable base such as triethylamine at a temperature of 0 ° C. to room temperature.
  • a suitable base such as triethylamine
  • acid chloride is obtained with thionyl chloride, which can be obtained by reacting with hydroxycinnamic acid in the presence of a suitable base such as potassium carbonate at a temperature of 0 ° C. to room temperature.
  • the compound represented by the above formula (2-3) is, for example, 4-alkylbenzoic acid converted to acid chloride with thionyl chloride, and this is treated with hydroxycinnamic acid in the presence of a suitable base such as potassium carbonate at 0 ° C. to room temperature. It can be obtained by reacting at a temperature.
  • the first side chain compound and the second side chain compound are preferably 0.001 to 1.5 moles, more preferably 0.001 moles per mole of the epoxy group of the reactive polyorganosiloxane. 01 to 1 mol, more preferably 0.05 to 0.9 mol is used.
  • the reactive polyorganosiloxane may be reacted with not only the first side chain compound and the second side chain compound but also other compounds to form side chains. Moreover, only 1 type of compound may be used as said 1st compound for side chains, and multiple types of compounds may be used. Similarly, only one type of compound may be used as the second side chain compound, or a plurality of types of compounds may be used.
  • the formation reaction of the liquid crystal aligning polyorganosiloxane is preferably performed in the presence of a catalyst.
  • a catalyst for example, an organic base or a compound known as a so-called curing accelerator that accelerates the reaction between an epoxy group and a carboxyl group can be used.
  • organic base examples include primary and secondary organic amines such as ethylamine, diethylamine, piperazine, piperidine, pyrrolidine and pyrrole; triethylamine, tri-n-propylamine, tri-n-butylamine, pyridine, 4-dimethylaminopyridine, And tertiary organic amines such as diazabicycloundecene; quaternary organic amines such as tetramethylammonium hydroxide.
  • primary and secondary organic amines such as ethylamine, diethylamine, piperazine, piperidine, pyrrolidine and pyrrole
  • triethylamine tri-n-propylamine
  • tri-n-butylamine pyridine
  • 4-dimethylaminopyridine 4-dimethylaminopyridine
  • tertiary organic amines such as diazabicycloundecene
  • quaternary organic amines such as
  • tertiary organic amines such as triethylamine, tri-n-propylamine, tri-n-butylamine, pyridine and 4-dimethylaminopyridine; quaternary organic amines such as tetramethylammonium hydroxide preferable.
  • the catalyst is used in an amount of preferably 100 parts by weight or less, more preferably 0.01 to 100 parts by weight, and still more preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the reactive polyorganosiloxane. .
  • the reaction temperature in the production reaction is preferably 0 to 200 ° C, more preferably 50 to 150 ° C.
  • the reaction time is preferably 0.1 to 50 hours, more preferably 0.5 to 20 hours.
  • the production reaction can be carried out in the presence of an organic solvent as necessary.
  • the organic solvent include hydrocarbon compounds, ether compounds, ester compounds, ketone compounds, amide compounds, alcohol compounds, and the like. Of these, ether compounds, ester compounds, and ketone compounds are preferred from the viewpoints of solubility of raw materials and products and ease of purification of the products.
  • the solvent has a solid content concentration (ratio in which the total weight of components other than the solvent in the reaction solution occupies the total weight of the solution) is preferably 0.1% by weight or more, more preferably 5 to 50% by weight. used.
  • Second component of alignment film polyamic acid, polyimide
  • the second component of the alignment film contains one or both of polyamic acid and polyimide.
  • the polyamic acid in the second component may be composed of only one type of polyamic acid, or may be composed of two or more types of polyamic acid.
  • the polyimide in the second component may be composed of only one type of polyimide, or may be composed of two or more types of polyimide.
  • Polyamic acid The polyamic acid can be obtained by reacting tetracarboxylic dianhydride with diamine.
  • tetracarboxylic dianhydrides examples include 2,3,5-tricarboxycyclopentylacetic acid dianhydride, butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutane.
  • Tetracarboxylic dianhydride 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 3,5,5 6-tricarboxynorbornane-2-acetic acid dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydro-2, 5-Dioxo-3-furanyl) -naphtho [1,2-c] -furan-1,3-dione, 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydride) -2,5-dioxo-3-furanyl) -8-methyl-naphtho [1,2-c] -furan-1,3-dione, 5- (2,5-dioxotetrahydrofuranyl)
  • tetracarboxylic dianhydride examples include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenylsulfonetetracarboxylic dianhydride, 1,4,5,8- Naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride, 3,3 ′, 4 4′-dimethyldiphenylsilanetetracarboxylic dianhydride, 3,3 ′, 4,4′-tetraphenylsilanetetracarboxylic dianhydride, 1,2,3,4-furantetracarboxylic dianhydride, 4 , 4′-bis (3,4-dicarboxyphenoxy) diphenyl sulfide dianhydride, 4,4′-bis (3,4-dicarboxyphenoxy) dipheny
  • tetracarboxylic dianhydrides can be used alone or in combination of two or more.
  • diamines include aromatic diamines having heteroatoms such as diaminotetraphenylthiophene; metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, hepta Methylene diamine, octamethylene diamine, nonamethylene diamine, 1,4-diaminocyclohexane, isophorone diamine, tetrahydrodicyclopentadienylene diamine, hexahydro-4,7-methanoin danylene dimethyl methylene diamine, tricyclo [6.2.1 .0 2,7] - undecylenate range methyl diamine, 4,4'-methylenebis aliphatic or cycloaliphatic diamine (cyclohexylamine) and the like; be mentioned diamino siloxanes diamino hexamethyldisiloxane, etc. It can be.
  • diamines preferred are p-phenylenediamine, 4,4'-diaminodiphenylmethane, 1,5-diaminonaphthalene, 2,7-diaminofluorene, 4,4'-diaminodiphenyl ether, 4,4'- (P-phenyleneisopropylidene) bisaniline, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoropropane, 2,2-bis [ 4- (4-Amino-2-trifluoromethylphenoxy) phenyl] hexafluoropropane, 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl, 4,4′-bis [(4- Amino-2-trifluoromethyl) phenoxy] -octafluorobiphenyl,
  • diamines can be used alone or in combination of two or more.
  • the ratio of the tetracarboxylic dianhydride and the diamine used for the polyamic acid synthesis reaction is such that the acid anhydride group of the tetracarboxylic dianhydride is 0.2 to 1 equivalent to 1 equivalent of the amino group contained in the diamine.
  • a ratio of 2 equivalents is preferable, and a ratio of 0.3 to 1.2 equivalents is more preferable.
  • the polyamic acid synthesis reaction is preferably carried out in an organic solvent, preferably at a temperature of ⁇ 20 to 150 ° C., more preferably 0 to 100 ° C., preferably 0.5 to 24 hours, more preferably 2 to 10 Done for hours.
  • the organic solvent is not particularly limited as long as it can dissolve the synthesized polyamic acid.
  • the amount (a) of the organic solvent used is such that the total amount (b) of tetracarboxylic dianhydride and diamine compound is preferably 0.1 to 50% by weight, more preferably 5 to 5%, based on the total amount (a + b) of the reaction solution.
  • the amount is 30% by weight.
  • a reaction solution obtained by dissolving polyamic acid is obtained.
  • This reaction solution may be used as it is for the preparation of the liquid crystal aligning agent, may be used for the preparation of the liquid crystal aligning agent after isolating the polyamic acid contained in the reaction solution, or the isolated polyamic acid was purified.
  • Polyamic acid can be isolated by pouring the reaction solution into a large amount of poor solvent to obtain a precipitate, and drying the precipitate under reduced pressure, or by distilling the reaction solution under reduced pressure using an evaporator. it can.
  • the polyamic acid can be purified by a method of dissolving the polyamic acid again in an organic solvent and then precipitating with a poor solvent, or a method of performing the step of distilling off under reduced pressure with an evaporator once or several times.
  • the polyimide can be produced by dehydrating and ring-closing the amic acid structure of the polyamic acid obtained as described above. At this time, all of the amic acid structure may be dehydrated and closed to completely imidize, or only a part of the amic acid structure may be dehydrated and closed to form a partially imidized product in which the amic acid structure and the imide structure coexist. Also good.
  • the alignment film contains one or both of polyamic acid and polyimide as the second component, but has an imide site (imidized site) and an amic acid site (unimided site) in the molecule. Those having both may be classified as either polyamic acid or polyimide depending on the degree of imidization, and are included in the second component.
  • the polyamic acid is dehydrated and closed by (i) a method of heating the polyamic acid, or (ii) dissolving the polyamic acid in an organic solvent, adding a dehydrating agent and a dehydrating ring-closing catalyst to this solution, and heating as necessary.
  • a method of heating the polyamic acid or (ii) dissolving the polyamic acid in an organic solvent, adding a dehydrating agent and a dehydrating ring-closing catalyst to this solution, and heating as necessary.
  • the reaction temperature in the method (i) of heating the polyamic acid is preferably 50 to 200 ° C., more preferably 60 to 170 ° C. When the reaction temperature is less than 50 ° C., the dehydration ring-closing reaction does not proceed sufficiently, and when the reaction temperature exceeds 200 ° C., the molecular weight of the imidized polymer obtained may decrease.
  • the reaction time in the method of heating the polyamic acid is preferably 0.5 to 48 hours, more preferably 2 to 20 hours.
  • the dehydrating agent for example, an acid anhydride such as acetic anhydride, propionic anhydride, or trifluoroacetic anhydride is used. Can do.
  • the amount of the dehydrating agent used is preferably 0.01 to 20 mol with respect to 1 mol of the polyamic acid structural unit.
  • tertiary amines such as a pyridine, a collidine, a lutidine, a triethylamine, can be used, for example. However, it is not limited to these.
  • the amount of the dehydration ring closure catalyst used is preferably 0.01 to 10 moles per mole of the dehydrating agent used.
  • Examples of the organic solvent used in the dehydration ring-closing reaction include the organic solvents exemplified as those used for the synthesis of polyamic acid.
  • the reaction temperature of the dehydration ring closure reaction is preferably 0 to 180 ° C., more preferably 10 to 150 ° C., and the reaction time is preferably 0.5 to 20 hours, more preferably 1 to 8 hours.
  • the polyimide obtained in the above method (i) may be used for the preparation of the liquid crystal aligning agent as it is, or may be used for the preparation of the liquid crystal aligning agent after purifying the obtained polyimide.
  • a reaction solution containing polyimide is obtained. This reaction solution may be used as it is for the preparation of the liquid crystal aligning agent, or may be used for the preparation of the liquid crystal aligning agent after removing the dehydrating agent and the dehydrating ring-closing catalyst from the reaction solution. May be used for the preparation of a liquid crystal aligning agent, or may be used for the preparation of a liquid crystal aligning agent after purifying the isolated polyimide.
  • the isolation and purification of the polyimide can be performed by performing the same operation as described above as the isolation and purification method of the polyamic acid.
  • the alignment film may further contain other components.
  • the alignment film may further contain other components.
  • what originates in the arbitrary components in the liquid crystal aligning agent mentioned later is mentioned.
  • the liquid crystal aligning agent to be the material of the alignment film contains the liquid crystal aligning polyorganosiloxane (first component) and one or both of polyamic acid and polyimide (second component). Other optional components may be contained as necessary.
  • each component is prepared as a solution composition dissolved in an organic solvent.
  • the other optional component examples include, for example, a crosslinking agent (curing agent), a curing catalyst, the liquid crystal alignment polyorganosiloxane, a polymer other than polyamic acid and polyimide, a compound having at least one oxiranyl group in the molecule, and a functional group.
  • a crosslinking agent curing agent
  • a curing catalyst the liquid crystal alignment polyorganosiloxane
  • a polymer other than polyamic acid and polyimide examples include, for example, a crosslinking agent (curing agent), a curing catalyst, the liquid crystal alignment polyorganosiloxane, a polymer other than polyamic acid and polyimide, a compound having at least one oxiranyl group in the molecule, and a functional group.
  • Silane compounds, surfactants and the like are examples of the like.
  • the curing agent and the curing catalyst can be contained in the liquid crystal aligning agent for the purpose of strengthening the cross-linking of the liquid crystal aligning polyorganosiloxane and increasing the strength of the liquid crystal aligning film, respectively.
  • a curing accelerator may be used in combination.
  • curing agent generally used for hardening of the curable composition containing the curable compound which has an epoxy group, or the compound which has an epoxy group can be used.
  • curing agents include polyvalent amines, polyvalent carboxylic acid anhydrides, polyvalent carboxylic acids, polyvalent carboxylic acid esters, and the like.
  • Specific examples of the polyvalent carboxylic acid anhydride include cyclohexane-1,2,4-tricarboxylic acid, cyclohexane-1,3,5-tricarboxylic acid, cyclohexane-1,2,3-tricarboxylic acid and the like.
  • cyclohexanetricarboxylic acid anhydride examples include cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, cyclohexane-1,3,5-tricarboxylic acid-3,5-anhydride, cyclohexane-1 , 2,3-tricarboxylic acid-2,3-acid anhydride, 4-methyltetrahydrophthalic acid anhydride, methyl nadic acid anhydride, dodecenyl succinic acid anhydride, as well as conjugated double bonds such as ⁇ -terpinene and alloocimene Used in the synthesis of Diamic-Alder reaction products of alicyclic compounds with maleic anhydride and their hydrogenated products, succinic anhydride, maleic anhydride, phthalic anhydride, trimellitic anhydride, and polyamic acid
  • tetracarboxylic dianhydride examples include the compounds exemplified above.
  • polyvalent carboxylic acid examples include 1,2-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,3,5-cyclohexanetricarboxylic acid, 1,2,4-cyclohexanetricarboxylic acid.
  • Acid 1,2,4,5-cyclohexanetetracarboxylic acid, phthalic acid, terephthalic acid, isophthalic acid, 4-methylphthalic acid, 4,4-dicarboxydiphenyl ether, 4,4-biphenyldicarboxylic acid, benzophenone-4,4 -Dicarboxylic acid, 1,2,4-benzenetricarboxylic acid, 1,3,5-benzenetricarboxylic acid, trimellitic acid, pyromellitic acid, 1,3,5-tris (4-carboxyphenyl) benzene, etc. .
  • Polymers other than the above-mentioned liquid crystal aligning polyorganosiloxane can be used to further improve the solution characteristics of the liquid crystal aligning agent and the electrical characteristics of the resulting liquid crystal alignment film.
  • the compound having at least one oxiranyl group in the molecule can be contained in the liquid crystal aligning agent from the viewpoint of further improving the adhesion of the formed alignment film to the substrate surface.
  • the said functional silane compound can be used in order to improve the adhesiveness with the board
  • Organic solvents that can be used to prepare the liquid crystal aligning agent include those that dissolve the first component, the second component, and other optional components that are optionally used and do not react with them. preferable.
  • combination of a polyamic acid can be mentioned. These organic solvents can be used alone or in combination of two or more.
  • the solid content concentration of the liquid crystal aligning agent that is, the ratio of the weight of all components other than the solvent in the liquid crystal aligning agent to the total weight of the liquid crystal aligning agent is selected in consideration of viscosity, volatility, etc. It is in the range of 1 to 10% by weight.
  • the liquid crystal aligning agent is applied to the substrate surface to form a coating film that serves as an alignment film. If the solid content concentration is less than 1% by weight, the coating film thickness is too small and good. It may be difficult to obtain an alignment film. On the other hand, when the solid content concentration exceeds 10% by weight, it is difficult to obtain a good alignment film due to excessive film thickness, and the viscosity of the liquid crystal alignment agent increases, resulting in insufficient coating characteristics. There is.
  • the particularly preferable range of the solid content concentration varies depending on the method employed when the liquid crystal aligning agent is applied to the substrate. For example, in the case of the spinner method, the range of 1.5 to 4.5% by weight is particularly preferable. In the case of the printing method, it is particularly preferable that the solid content concentration is in the range of 3 to 9% by weight, and thereby the solution viscosity is in the range of 12 to 50 mPa ⁇ s. In the case of the ink jet method, the solid content concentration is particularly preferably in the range of 1 to 5% by weight, and thereby the solution viscosity is preferably in the range of 3 to 15 mPa ⁇ s.
  • the liquid crystal display panel of this embodiment includes an alignment film formed from the liquid crystal aligning agent as described above.
  • An alignment film can be formed from a liquid crystal aligning agent by applying a liquid crystal aligning agent on a substrate, then heating to form a coating film, and further irradiating the coating film with light to perform an alignment treatment.
  • the coating method include a roll coater method, a spinner method, a printing method, and an ink jet method. The heating may be performed in two stages: preheating (pre-baking) and baking (post-baking).
  • the thickness of the coating film is preferably 0.001 to 1 ⁇ m, more preferably 0.005 to 0.5 ⁇ m.
  • linearly polarized light or non-polarized light can be used.
  • ultraviolet light and visible light including light having a wavelength of 150 nm to 800 nm can be used, and light having a wavelength of 250 nm to 400 nm can be used.
  • Ultraviolet containing light is preferred.
  • irradiation may be performed from a direction perpendicular to the substrate surface, an oblique direction for providing a pretilt angle, or a combination thereof.
  • the direction of irradiation needs to be an oblique direction.
  • a light source to be used for example, a low pressure mercury lamp, a high pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used.
  • the ultraviolet rays in the preferable wavelength region can be obtained by means of using the light source in combination with, for example, a filter or a diffraction grating.
  • the radiation dose is preferably 0.1 mJ / cm 2 or more and less than 1000 mJ / cm 2 , more preferably 1 mJ / cm 2 or more and less than 200 mJ / cm 2 .
  • the display mode of the liquid crystal display device is not particularly limited, for example, it can be applied to a Reverse Twisted Nematic (RTN) mode.
  • RTN Reverse Twisted Nematic
  • FIG. 3 is a schematic perspective view showing the relationship between the photo-alignment processing direction and the pretilt direction of the liquid crystal molecules in the RTN mode liquid crystal display device.
  • FIG. 4A shows the direction of an average liquid crystal director in one pixel (one pixel or one subpixel) and light for a pair of substrates (upper and lower substrates) when the RTN mode liquid crystal display device has a monodomain.
  • FIG. 4B is a schematic diagram showing the absorption axis direction of the polarizing plate provided in the liquid crystal display device shown in FIG. 4A. Note that FIG. 4A shows a state in which the photo-alignment processing direction is orthogonal between the pair of substrates and an AC voltage equal to or higher than the threshold is applied between the pair of substrates.
  • FIG. 4A shows a state in which the photo-alignment processing direction is orthogonal between the pair of substrates and an AC voltage equal to or higher than the threshold is applied between the pair of substrates.
  • FIG. 5 is a schematic cross-sectional view showing a first positional relationship between the substrate and the photomask in the optical alignment processing process for performing alignment division by proximity exposure using an alignment mask.
  • FIG. 6 is a schematic cross-sectional view showing a second arrangement relationship between the substrate and the photomask in a photo-alignment process for performing alignment division by proximity exposure using an alignment mask.
  • FIG. 7A shows an average liquid crystal director direction in one pixel (one pixel or one subpixel) and a photo-alignment process for a pair of substrates (upper and lower substrates) when the liquid crystal display device has four domains.
  • FIG. 7B is a schematic diagram showing the absorption axis direction of the polarizing plate provided in the liquid crystal display device shown in FIG. 7A.
  • FIG. 7A shows a state where an AC voltage equal to or higher than a threshold is applied between a pair of substrates.
  • a solid line arrow indicates a light irradiation direction (photo-alignment processing direction) on the upper substrate (color filter substrate), and a dotted line arrow indicates a light irradiation direction (light) on the lower substrate (drive element substrate). Orientation processing direction).
  • a liquid crystal layer including liquid crystal molecules having negative dielectric anisotropy is sandwiched between a pair of substrates (upper and lower substrates).
  • the pair of substrates includes an insulating transparent substrate made of glass or the like, and a transparent electrode is formed on each surface of the pair of substrates on the side in contact with the liquid crystal layer. Further, the above-described vertical alignment property is provided on the transparent electrode.
  • Each of the alignment films is formed.
  • Each of the pair of substrates corresponds to a driving element substrate (for example, a TFT substrate) in which a driving element (switching element) is formed for each pixel (one pixel or one subpixel), and each pixel of the driving element substrate. And function as a color filter substrate on which a color filter is formed.
  • the transparent electrodes connected to the driving elements and formed in a matrix function as pixel electrodes.
  • the transparent electrode formed uniformly on the entire surface of the display region functions as a counter electrode (common electrode).
  • polarizing plates are disposed, for example, in crossed Nicols on the surfaces of the pair of substrates opposite to the liquid crystal layer, and a cell thickness holder (spacer) for keeping the cell thickness constant between the pair of substrates. ) Is arranged at a predetermined position (non-display area).
  • the material for the substrate and the transparent electrode, the material for the liquid crystal molecules, and the like are not particularly limited.
  • the alignment film 110 is irradiated with ultraviolet rays (UV light, white arrows in FIG. 3) polarized in parallel to the incident surface at an angle of, for example, 40 ° from the normal direction of the substrate surface.
  • the pretilt angle of the liquid crystal molecules 111 can be generated on the light irradiation direction side.
  • the alignment film 110 may be exposed by batch exposure or scan exposure. That is, the alignment film 110 may be irradiated with the substrate and the light source fixed, or the alignment film 110 may be irradiated while scanning the UV light along the light irradiation direction, as indicated by a dotted arrow in FIG. May be.
  • the liquid crystal display device exposes the alignment film and the substrate so that the light irradiation directions on the pair of substrates (upper and lower substrates 112) are substantially orthogonal to each other when the substrates are viewed in plan view. Bonding is performed, and the pretilt angles of the liquid crystal molecules in the vicinity of the alignment films provided on the upper and lower substrates 112 are substantially the same, and a liquid crystal material that does not include a chiral material may be injected into the liquid crystal layer. .
  • the liquid crystal molecules when an AC voltage equal to or higher than the threshold is applied between the upper and lower substrates 112, the liquid crystal molecules have a structure that is twisted by 90 ° in the normal direction of the substrate surface between the upper and lower substrates 112, and the average when the AC voltage is applied.
  • the liquid crystal director direction 117 is a direction that bisects the light irradiation direction with respect to the upper and lower substrates 112 when the substrate is viewed in plan.
  • the absorption axis direction of the polarizing plate (upper polarizing plate) arranged on the upper substrate side coincides with the photo-alignment processing direction of the upper substrate, while arranged on the lower substrate side.
  • the absorption axis direction of the polarizing plate (lower polarizing plate) coincides with the photo-alignment processing direction of the lower substrate.
  • each pixel in the liquid crystal display device is divided in alignment.
  • the light shielding portion 114 having a size that bisects the width of one pixel (one pixel or one subpixel) of the liquid crystal display device.
  • the photomask 113 having the above, an area corresponding to half of one pixel (one pixel or one subpixel) is exposed in one direction (in FIG. 5, from the front to the back of the paper) and the remaining half of the area Is shielded by the light shielding portion 114.
  • FIG. 5 the next step, as shown in FIG.
  • the photomask 113 is shifted by about a half pitch of the pixel (one pixel or one subpixel), and the exposed area is shielded by the shading unit 114 and is not shielded. (An unexposed area that has not been exposed in the step shown in FIG. 5) is exposed in a direction opposite to that in FIG. As a result, regions where the liquid crystal pretilt is generated in opposite directions are formed in stripes so as to divide the width of one pixel (one pixel or one subpixel) of the liquid crystal display device.
  • each pixel (each pixel or each sub-pixel) on each substrate is divided in orientation at an equal pitch so as to be divided into two. Then, when the substrates are viewed in plan, the substrates are arranged (bonded) so that the upper and lower substrates 112 are perpendicular to each other in the dividing direction (photo-alignment processing direction), and further, the liquid crystal material does not contain a chiral material in the liquid crystal layer Inject.
  • the alignment directions of the liquid crystal molecules located near the center in the thickness direction of the liquid crystal layer are different from each other in the four regions (i to iv in FIG. 7A). More specifically, quadrant domains that are substantially orthogonal can be formed.
  • the average liquid crystal director direction 117 when the AC voltage is applied is a direction that bisects the light irradiation direction with respect to the upper and lower substrates 112 in each domain when the substrate is viewed in plan view.
  • the optical alignment processing direction (solid arrow in FIG. 7A) of the upper substrate (color filter substrate) is arranged on the upper substrate side.
  • the direction of the optical alignment treatment of the lower substrate (driving element substrate) is the same as the absorption axis direction 115 of the polarizing plate, and the absorption of the polarizing plate disposed on the lower substrate side.
  • the direction is the same as the axial direction 116.
  • the alignment direction of the liquid crystal molecules on one substrate coincides with the absorption axis direction of the polarizing plate, and the alignment direction of the liquid crystal molecules on the other substrate is substantially perpendicular to the substrate. Yes. Therefore, when the polarizing plates are arranged in crossed Nicols, the domain boundary becomes a dark line (dark line) because light is not transmitted even when a voltage is applied between the substrates.
  • liquid crystal display device of this embodiment when four domains having different alignment directions of liquid crystal molecules (substantially orthogonal) are formed, an excellent viewing angle characteristic, that is, a wide viewing angle is realized. be able to.
  • the domain layout in the liquid crystal display device of the present embodiment is not limited to four divisions as shown in FIG. 7A, but may be a form as shown in FIG.
  • FIG. 8A shows the direction of the average liquid crystal director in one pixel (one pixel or one subpixel) and the light with respect to a pair of substrates (upper and lower substrates) when the liquid crystal display device has another four domains.
  • FIG. 8B is a schematic plan view showing an alignment treatment direction and domain division patterns
  • FIG. 8B is a schematic diagram showing an absorption axis direction of a polarizing plate provided in the liquid crystal display device shown in FIG.
  • FIG. 8C is a schematic cross-sectional view taken along the line AB in FIG.
  • FIG. 8A when an AC voltage equal to or higher than the threshold is applied between the pair of substrates, and shows the alignment direction of the liquid crystal molecules.
  • the dotted arrow indicates the light irradiation direction (photo-alignment processing direction) with respect to the lower substrate (drive element substrate), and the solid line arrow indicates the light irradiation direction (light with respect to the upper substrate (color filter substrate)). Orientation processing direction).
  • a dotted line indicates a domain boundary.
  • each pixel (each pixel or each subpixel) of each substrate is divided in orientation at equal pitches. Then, when the substrates are viewed in plan, by arranging (bonding) both substrates so that the dividing direction (photo-alignment processing direction) is orthogonal to each other on the upper and lower substrates 112, as shown in FIG.
  • the four-domain domains in which the alignment directions of the liquid crystal molecules located near the center in the thickness direction of the liquid crystal layer are different from each other in four regions (i to iv in FIG. 8A), more specifically, substantially orthogonal. Can be formed. That is, as shown in FIG.
  • the average liquid crystal director direction 117 when the AC voltage is applied is a direction that bisects the light irradiation direction with respect to the upper and lower substrates 12 in each domain when the substrate is viewed in plan view.
  • the optical alignment processing direction (solid arrow in FIG. 8A) of the upper substrate (color filter substrate) is It is in the same direction as the absorption axis direction 115 of the polarizing plate arranged on the upper substrate side, and the photo-alignment processing direction of the lower substrate (driving element substrate) (indicated by the dotted arrow in FIG. 8A) is arranged on the lower substrate side.
  • the direction is the same as the absorption axis direction 116 of the polarizing plate.
  • the liquid crystal molecules are aligned in a direction substantially perpendicular to the upper and lower substrates by the alignment regulating force of the alignment film.
  • a voltage higher than the threshold value is applied between the upper and lower substrates, as shown in FIG. 8C, the liquid crystal molecules 111 are twisted by approximately 90 ° between the upper and lower substrates and have four different orientations in four domains. A state will exist.
  • a weight average molecular weight (Mw) is a polystyrene conversion value measured by gel permeation chromatography (Gel Permeation Chromatography: GPC) under the following conditions.
  • GPC Gel Permeation Chromatography
  • the epoxy equivalent was measured according to the “hydrochloric acid-methyl ethyl ketone method” of JIS C2105.
  • Synthesis of reactive polyorganosiloxane (Synthesis Example 1) A reaction vessel equipped with a stirrer, a thermometer, a dropping funnel and a reflux condenser was charged with 100.0 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 500 g of methyl isobutyl ketone and 10.0 g of triethylamine at room temperature. Mixed. Next, 100 g of deionized water was dropped from the dropping funnel over 30 minutes, and the mixture was reacted at 80 ° C. for 6 hours while mixing under reflux.
  • This reactive polyorganosiloxane (A) had an Mw of 2,200 and an epoxy equivalent of 186 g / mol.
  • the “use amount” of the carboxylic acid compound means the ratio of the reactive polyorganosiloxane to the silicon atom.
  • Synthesis of polyamic acid (Synthesis Example B-1) 196 g (1.0 molar equivalent) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride as tetracarboxylic dianhydride and 200 g (1.0 molar equivalent) of 4,4′-diaminodiphenyl ether as diamine -Dissolved in 2,246 g of methyl-2-pyrrolidone, reacted at 40 ° C. for 4 hours, and then added 1,321 g of N-methyl-2-pyrrolidone to contain 10% by weight of polyamic acid (1) About 3,950 g of solution was obtained. The solution viscosity of this polyamic acid solution was 220 mPa ⁇ s.
  • Example 1 Comparative Examples 1 to 3
  • the liquid crystal aligning agent was used in the same manner as in Example 1 except that the type of liquid crystal aligning polyorganosiloxane and the type and amount of polyamic acid were as shown in Table 2 below. Were prepared respectively.
  • Example 5 In Example 1 above, the type of liquid-crystalline orientation polyorganosiloxane and the type and amount of polyamic acid were as shown in Table 2 below, and 100 parts by weight of 1,2,4-benzenetricarboxylic acid was added. Were carried out in the same manner as in Example 1 to prepare a liquid crystal aligning agent.
  • liquid crystal aligning agents prepared in the above examples and comparative examples are all materials for vertical alignment films and can be applied to photo-alignment treatment.
  • the following steps (1) to (12) were performed to manufacture the liquid crystal display devices of Examples 1 to 5 and Comparative Examples 1 to 3.
  • the display mode of the liquid crystal display device is an RTN mode, and each pixel includes a plurality of domains.
  • liquid crystal aligning agents prepared by the above method are applied to a pair of glass substrates (manufactured by Corning, trade name: # 1734) by an inkjet method.
  • An electrode pattern made of indium tin oxide (ITO) is formed on the opposing surfaces of the pair of glass substrates.
  • each substrate is irradiated with linearly polarized ultraviolet light having an extinction ratio of 10: 1 at a wavelength of 313 nm as an alignment treatment at an energy of 20 mJ / cm 2 from a direction inclined by 40 ° from the normal to the substrate. obtain.
  • thermosetting sealant manufactured by Mitsui Chemicals, trade name: HC1413FP
  • HC1413FP thermosetting sealant
  • a 3.5 ⁇ m diameter bead (manufactured by Sekisui Chemical Co., Ltd., trade name: SP-2035) is sprayed on the other substrate.
  • a pair of substrates are arranged so that the irradiation directions of the irradiated ultraviolet rays are orthogonal to each other, and these are bonded together.
  • thermosetting sealant While pressing the bonded substrates at a pressure of 0.5 kgf / cm 2 , the substrate is heated at 200 ° C. for 60 minutes in a nitrogen purged furnace to cure the thermosetting sealant.
  • a negative liquid crystal composition (trade name: MLC-6610, manufactured by Merck & Co., Inc.) is injected under vacuum from the above-mentioned injection port into the cell produced by the above method.
  • An ultraviolet curable resin (trade name: TB3026E, manufactured by Three Bond Co., Ltd.) is applied to the injection port, and the inside of the cell into which the negative liquid crystal composition is injected is sealed by irradiating with ultraviolet rays.
  • the wavelength of ultraviolet rays is 365 nm, and the pixel region of the cell is shielded to remove the influence of ultraviolet rays.
  • liquid crystal cell In order to eliminate the flow alignment of the liquid crystal, the liquid crystal cell is heated at 130 ° C. for 40 minutes to realign the liquid crystal to an isotropic phase, and then cooled to room temperature to obtain a liquid crystal cell.
  • a pair of polarizing plates arranged in crossed Nicols are arranged so that the liquid crystal cell is sandwiched so that the polarization axis thereof is parallel to the irradiation direction of the ultraviolet rays applied to the alignment film, thereby producing a liquid crystal display device.
  • Evaluation results Table 3 below shows the evaluation results of the extinction position unevenness, AC image sticking ( ⁇ tilt), voltage holding ratio, and printability (coating unevenness).
  • Example 4 Comparing the liquid crystal display devices of Examples 3 and 4 with the liquid crystal display devices of Examples 1, 2 and 5, in Example 3, the amount of polyamic acid used for the liquid crystal alignment polyorganosiloxane was as in Examples 1, 2 and In Example 4, the amount of polyamic acid used relative to the liquid crystal-aligning polyorganosiloxane was reduced as compared with Examples 1, 2, and 5.
  • the liquid crystal display devices of Comparative Examples 1 and 2 use the liquid crystal alignment polyorganosiloxane synthesized without using the second side chain compound. "Met. Further, the liquid crystal display device of Comparative Example 1 has an evaluation result of AC printing ( ⁇ tilt) of “good”, whereas the liquid crystal display device of Comparative Example 2 has an evaluation result of AC printing ( ⁇ tilt). “Yes”. Comparing the liquid crystal display device of Comparative Example 1 and the liquid crystal display device of Comparative Example 2, in Comparative Example 2, the amount of the carboxylic acid compound having no specific fluorine-containing group was less than that of Comparative Example 1.
  • the liquid crystal display device of Comparative Example 3 uses a liquid crystal alignment polyorganosiloxane synthesized without using both the first side chain compound and the second side chain compound. Both the evaluation result of ( ⁇ tilt) and the evaluation result of extinction position unevenness were “defective”.
  • FIG. 9 is a graph showing the relationship between the modification ratio of the liquid crystal aligning polyorganosiloxane (first component) to the polyamic acid (second component) in the liquid crystal aligning agent and the voltage holding ratio.
  • a voltage holding ratio of 98% or higher, which is judged as good was obtained within a range where the modification ratio was larger than 1 wt% and smaller than 10 wt%. That is, in the range where the modification ratio is greater than 1% by weight and less than 10% by weight, a liquid crystal display device in which extinction level unevenness does not occur and a good voltage holding ratio can be obtained.
  • the amount of the compound represented by the formula (1) introduced is preferably less than 35 mol% with respect to the epoxy group in the polyorganosiloxane. When it is less than 35 mol%, good voltage holding ratio and good printability can be obtained. Moreover, it is preferable that the introduction amount of the compound represented by the formula (1) is 10 mol% or more with respect to the epoxy group in the polyorganosiloxane. When it is 10 mol% or more, the liquid crystal molecules can be aligned substantially perpendicular to the alignment film surface when no voltage is applied. That is, it can function as a vertical alignment film.
  • the introduction amount is more preferably 12 mol% or more, and further preferably 15 mol% or more.
  • the introduction amount is more preferably less than 32 mol%, and further preferably less than 30 mol%. If it is less than 32 mol%, the printability fall by the excessive introduction
  • the amount of the compound represented by the formula (2) introduced is preferably less than 30 mol% with respect to the epoxy group in the polyorganosiloxane. If it is less than 30 mol%, good printability with a slight unevenness at the edge of the coated area of the substrate can be obtained. Moreover, it is preferable that the introduction amount of the compound represented by the formula (2) is 5 mol% or more with respect to the epoxy group in the polyorganosiloxane. When it is 5 mol% or more, the liquid crystal molecules can be aligned substantially perpendicular to the alignment film surface when no voltage is applied. That is, it can function as a vertical alignment film. The introduction amount is more preferably 10 mol% or more, and further preferably 12 mol% or more.
  • the introduction amount is more preferably less than 28 mol%, and further preferably less than 25 mol%. If it is less than 28 mol%, the deterioration of the printability due to the excessive introduction of the compound of the above formula (2) is further suppressed and the coating unevenness is easily observed in the liquid crystal panel although it remains slightly at the edge of the coating area of the substrate. Even in gradation display, coating unevenness is not visible. If it is less than 25 mol%, the printability is further improved, and the occurrence of coating unevenness is suppressed over the entire coating area of the substrate.
  • the total amount of the compound represented by the formula (1) and the compound represented by the formula (2) is 10 mol% or more and less than 65 mol% with respect to the epoxy group in the polyorganosiloxane. Is preferred. Within this range, good voltage holding ratio and good printability can be obtained.
  • the total introduction amount is more preferably 15 mol% or more, and further preferably 27 mol% or more. If it is 15 mol% or more, a press afterimage can be suppressed. Furthermore, if it is 27 mol% or more, a favorable ⁇ tilt can be obtained. Further, the introduction amount is more preferably less than 60 mol%, and still more preferably less than 55 mol%.
  • the amount of the first component introduced is preferably more than 1 part by weight and less than 10 parts by weight with respect to 100 parts by weight of the second component. As a result of the inventor's investigation, it has been found that if the introduction amount is within the above range, a good voltage holding ratio can be obtained.
  • the amount of the first component introduced relative to 100 parts by weight of the second component is more preferably greater than 1.2 parts by weight, and still more preferably greater than 2 parts by weight. Moreover, it is more preferable that it is less than 9.5 weight part, and it is still more preferable that it is less than 9 weight part.
  • the amount of the first component introduced is more than 1.2 parts by weight and less than 9.5 parts by weight, a good voltage holding ratio of 98.0% or more can be obtained, and further 2 parts by weight.
  • a high level voltage holding ratio of 98.5% or more can be achieved.
  • the alignment film preferably further contains a reaction product of a polyorganosiloxane having an epoxy group and a polyvalent carboxylic acid.
  • a polyvalent carboxylic acid By introducing a polyvalent carboxylic acid into the first component material, an epoxy group in the polyorganosiloxane can react with the polyvalent carboxylic acid to crosslink the polyorganosiloxane. Thereby, it is possible to suppress the impurity ions from passing through the alignment film, and it is possible to suppress a decrease in the voltage holding ratio.
  • polyvalent carboxylic acid examples include 1,2-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,3,5-cyclohexanetricarboxylic acid, 1,2,4-cyclohexane.
  • Tricarboxylic acid 1,2,4,5-cyclohexanetetracarboxylic acid, phthalic acid, terephthalic acid, isophthalic acid, 4-methylphthalic acid, 4,4-dicarboxydiphenyl ether, 4,4-biphenyldicarboxylic acid, benzophenone-4, 4-dicarboxylic acid, 1,2,4-benzenetricarboxylic acid, 1,3,5-benzenetricarboxylic acid, trimellitic acid, pyromellitic acid, 1,3,5-tris (4-carboxyphenyl) benzene, etc. It is done.
  • a component that reacts with an epoxy group other than a polyvalent carboxylic acid may be used.
  • a curable compound having an epoxy group or a curable composition containing a compound having an epoxy group may be used.
  • the curing agent generally used can be used, and specific examples include polyvalent amines, polyvalent carboxylic acid anhydrides, and polyvalent carboxylic acid esters.
  • the alignment film is preferably a vertical alignment film that has been subjected to alignment treatment with polarized ultraviolet light. Since the photofunctional group is a cinnamate group, irradiation with polarized ultraviolet light can effectively cause a dimerization reaction and a cis-trans isomerization reaction. Therefore, the alignment film subjected to the alignment treatment with polarized ultraviolet light can exhibit an excellent alignment regulating force.
  • the polarization degree of polarized ultraviolet light is preferably 3: 1 or more. Moreover, it is preferable that the wavelength of polarized ultraviolet light is 250 nm or more and 400 nm or less.
  • the dimerization reaction and cis-trans isomerization reaction of the cinnamate group can be caused more effectively.
  • the above-mentioned photo-alignment treatment means that the alignment regulating force of the liquid crystal changes due to light irradiation, or the alignment direction of the liquid crystal changes.
  • the vertical alignment film only needs to align liquid crystal molecules in the vicinity of the alignment film in a direction substantially perpendicular to the surface of the alignment film. For example, a pretilt angle of 86.0 ° or more is given. Alignment film to be used.
  • the liquid crystal layer is preferably composed of liquid crystal molecules having negative dielectric anisotropy. Thereby, the liquid crystal molecules can be switched by turning on and off the voltage applied between the upper and lower substrates.
  • a pretilt angle of liquid crystal molecules in the vicinity of the alignment film is preferably 89.5 ° or less. This makes it possible to realize an RTN mode liquid layer display device that is excellent in viewing angle characteristics, responsiveness, and light transmittance.
  • the pretilt angle is preferably 86.5 ° or more. When the angle is 86.5 ° or more, the black luminance when no voltage is applied is sufficiently low (the light leakage is small), so that a good contrast ratio can be obtained.
  • the pretilt angle is more preferably 87.5 ° or more, and further preferably 88.0 ° or more. By setting the pretilt angle to 87.5 or more, the afterimage can be suppressed.
  • the absorption axis of the crossed Nicol polarizing plate is rotated by 45 ° and a voltage of 7.5 V is applied to the liquid crystal layer. It is possible to keep the extinction position within ⁇ 5 °.
  • One of the pair of substrates preferably includes pixel electrodes arranged in a matrix on the liquid crystal layer side, and the other of the pair of substrates preferably includes a common electrode arranged on the liquid crystal layer side.
  • Such a configuration is suitable for active matrix driving.
  • the liquid crystal display device preferably includes pixels arranged in a matrix.
  • the alignment film includes: a first alignment film disposed between one of the pair of substrates and the liquid crystal layer; and a second alignment film disposed between the other of the pair of substrates and the liquid crystal layer.
  • the direction of the alignment treatment light irradiated on the first alignment film and the direction of the alignment treatment light irradiated on the second alignment film are orthogonal to each other. According to such a configuration, an RTN mode liquid crystal display device can be realized.
  • the amount of the compound represented by the formula (1) introduced is preferably less than 35 mol% with respect to the epoxy group in the polyorganosiloxane. When it is less than 35 mol%, good voltage holding ratio and good printability can be obtained. Moreover, it is preferable that the introduction amount of the compound represented by the formula (1) is 10 mol% or more with respect to the epoxy group in the polyorganosiloxane. When it is 10 mol% or more, the liquid crystal molecules can be aligned substantially perpendicular to the alignment film surface when no voltage is applied. That is, it can function as a vertical alignment film.
  • the introduction amount is more preferably 12 mol% or more, and further preferably 15 mol% or more.
  • the introduction amount is more preferably less than 32 mol%, and further preferably less than 30 mol%. If it is less than 32 mol%, the printability fall by the excessive introduction
  • the amount of the compound represented by the formula (2) introduced is preferably less than 30 mol% with respect to the epoxy group in the polyorganosiloxane. If it is less than 30 mol%, good printability with a slight unevenness at the edge of the coated area of the substrate can be obtained. Moreover, it is preferable that the introduction amount of the compound represented by the formula (2) is 5 mol% or more with respect to the epoxy group in the polyorganosiloxane. When it is 5 mol% or more, the liquid crystal molecules can be aligned substantially perpendicular to the alignment film surface when no voltage is applied. That is, it can function as a vertical alignment film. The introduction amount is more preferably 10 mol% or more, and further preferably 12 mol% or more.
  • the introduction amount is more preferably less than 28 mol%, and further preferably less than 25 mol%. If it is less than 28 mol%, the deterioration of the printability due to the excessive introduction of the compound of the above formula (2) is further suppressed and the coating unevenness is easily observed in the liquid crystal panel although it remains slightly at the edge of the coating area of the substrate. Even in gradation display, coating unevenness is not visible. If it is less than 25 mol%, the printability is further improved, and the occurrence of coating unevenness is suppressed over the entire coating area of the substrate.
  • the total amount of the compound represented by the formula (1) and the compound represented by the formula (2) is 10 mol% or more and less than 65 mol% with respect to the epoxy group in the polyorganosiloxane. Is preferred. Within this range, good voltage holding ratio and good printability can be obtained.
  • the total introduction amount is more preferably 15 mol% or more, and further preferably 27 mol% or more. If it is 15 mol% or more, a press afterimage can be suppressed. Furthermore, if it is 27 mol% or more, a favorable ⁇ tilt can be obtained. Further, the introduction amount is more preferably less than 60 mol%, and still more preferably less than 55 mol%.
  • the amount of the first component introduced is preferably more than 1 part by weight and less than 10 parts by weight with respect to 100 parts by weight of the second component. Within this range, a good voltage holding ratio can be obtained.
  • the amount of the first component introduced relative to 100 parts by weight of the second component is more preferably greater than 1.2 parts by weight, and still more preferably greater than 2 parts by weight. Moreover, it is more preferable that it is less than 9.5 weight part, and it is still more preferable that it is less than 9 weight part.
  • a good voltage holding ratio of 98.0% or more can be obtained, and further 2 parts by weight. By setting the amount to more than 9 parts by weight and less than 9 parts by weight, a high level voltage holding ratio of 98.5% or more can be achieved.
  • the liquid crystal aligning agent preferably contains a polyvalent carboxylic acid.
  • a polyvalent carboxylic acid By introducing a polyvalent carboxylic acid into the first component material, an epoxy group in the polyorganosiloxane can react with the polyvalent carboxylic acid to crosslink the polyorganosiloxane. Thereby, it is possible to suppress the impurity ions from passing through the alignment film, and it is possible to suppress a decrease in the voltage holding ratio.
  • the polyvalent carboxylic acid include 1,2-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,3,5-cyclohexanetricarboxylic acid, 1,2,4-cyclohexane.
  • Tricarboxylic acid 1,2,4,5-cyclohexanetetracarboxylic acid, phthalic acid, terephthalic acid, isophthalic acid, 4-methylphthalic acid, 4,4-dicarboxydiphenyl ether, 4,4-biphenyldicarboxylic acid, benzophenone-4, 4-dicarboxylic acid, 1,2,4-benzenetricarboxylic acid, 1,3,5-benzenetricarboxylic acid, trimellitic acid, pyromellitic acid, 1,3,5-tris (4-carboxyphenyl) benzene, etc. It is done.
  • a component that reacts with an epoxy group other than a polyvalent carboxylic acid may be used.
  • a curable compound having an epoxy group or a curable composition containing a compound having an epoxy group may be used.
  • the curing agent generally used can be used, and specific examples include polyvalent amines, polyvalent carboxylic acid anhydrides, and polyvalent carboxylic acid esters.
  • Liquid crystal layer 40 Liquid crystal layer 40: Alignment film 50: Sealing material 60: Polarizing plate 110: Alignment film 111: Liquid crystal molecule 112: Upper and lower substrate 113: Photomask 114: Light shielding part 115: Arranged on the upper substrate side Absorption axis direction 116 of the polarizing plate: Absorption axis direction 117 of the polarizing plate disposed on the lower substrate side 117: Liquid crystal director direction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides a liquid crystal display device provided with an alignment film having excellent strength/uniformity of alignment regulating force and excellent AC sticking, voltage retention rate, and printing properties, and a liquid crystal alignment agent whereby such an alignment film can be formed. This liquid crystal display device has a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, and an alignment film disposed between the liquid crystal layer and at least one of the pair of substrates, the alignment film containing a first component and a second component, the first component comprising a reaction product of a polyorganosiloxane having epoxy groups and a compound represented by formula (1) and a compound represented by formula (2), and the second component comprising a polyamic acid and or a polyamide. (1): R1-R2-COO-C6H4-CH=CH-COOH; (2): R3-C6H4-COO-C6H4-CH=CH-COOH (In formula (1), R1 represents a C4-20 alkyl group, and R2 represents a group obtained when two hydrogen atoms are lost from a C6-10 alicyclic hydrocarbon. In formula (2), R3 represents a C1-20 fluorine-containing group.) 

Description

液晶表示装置及び液晶配向剤Liquid crystal display device and liquid crystal aligning agent
本発明は、液晶表示装置及び液晶配向剤に関する。より詳しくは、液晶分子の配向を制御する配向膜が形成された液晶表示装置、及び、配向膜の材料となる液晶配向剤に関するものである。 The present invention relates to a liquid crystal display device and a liquid crystal aligning agent. More specifically, the present invention relates to a liquid crystal display device in which an alignment film for controlling the alignment of liquid crystal molecules is formed, and a liquid crystal aligning agent as a material for the alignment film.
液晶表示装置は、表示のために液晶組成物を利用する表示装置であり、その代表的な表示方式は、一対の基板間に封入された液晶組成物に対して電圧を印加し、印加した電圧に応じて液晶組成物中の液晶分子の配向状態を変化させることにより、光の透過量を制御するものである。このような液晶表示装置は、薄型、軽量及び低消費電力といった特長を活かし、幅広い分野で用いられている。 A liquid crystal display device is a display device that uses a liquid crystal composition for display. A typical display method is to apply a voltage to a liquid crystal composition sealed between a pair of substrates, and apply the applied voltage. The amount of transmitted light is controlled by changing the alignment state of the liquid crystal molecules in the liquid crystal composition according to the above. Such a liquid crystal display device is used in a wide range of fields, taking advantage of its thinness, light weight, and low power consumption.
電圧が印加されていない状態において、液晶分子の配向は、基板の表面に成膜された配向膜によって制御されるのが一般的である。この配向膜には、配向膜近傍の液晶分子を所定の向きに配向させるための配向処理が施される。配向処理の方法としては、ラビング法、光配向法等が知られている。ラビング法は、ローラに巻き付けられた布で配向膜表面を擦ることによって配向膜に所望の配向規制力を付与する方法である。光配向法は、紫外線等の光を照射(露光)することによって配向膜に所望の配向規制力を付与する方法であり、配向膜材料として、感光性の官能基(光官能基)を有する配向膜、いわゆる光配向膜を用いるものである。 In a state where no voltage is applied, the alignment of liquid crystal molecules is generally controlled by an alignment film formed on the surface of the substrate. This alignment film is subjected to an alignment process for aligning liquid crystal molecules in the vicinity of the alignment film in a predetermined direction. As a method for alignment treatment, a rubbing method, a photo-alignment method, or the like is known. The rubbing method is a method of imparting a desired alignment regulating force to the alignment film by rubbing the surface of the alignment film with a cloth wound around a roller. The photo-alignment method is a method of imparting a desired alignment regulating force to the alignment film by irradiating (exposure) light such as ultraviolet rays, and alignment having a photosensitive functional group (photo-functional group) as the alignment film material. A film, a so-called photo-alignment film is used.
配向膜の材料(液晶配向剤)としては、従来、ポリアミック酸、ポリイミドが多く用いられてきた。ポリアミック酸及びポリイミドは、有機樹脂の中では耐熱性、液晶との親和性、機械的強度等において優れた物性を示す。ここで、ポリアミック酸及びポリイミドはそれぞれ、異なる分子構造をもつ多数種のポリマーが知られている。配向膜には、配向規制力の強度・均一性、AC焼付(残留DC)、電圧保持率、印刷性等の種々の特性が求められるため、1種類のポリマーだけでは全ての特性を充分なものとすることは難しく、2種類のポリマーを混合することで配向膜の総合的な特性を向上させる技術が提案されている(例えば、特許文献1、2参照)。また、2種類のポリマーの混合物を基板に塗布すると、基板との親和性が高いポリマーが下層に、他方のポリマーが上層に移動し、層分離する場合があり、この性質を利用して2層構造の配向膜を形成する技術も提案されている(例えば、特許文献3参照)。 Conventionally, polyamic acid and polyimide have been frequently used as materials for alignment films (liquid crystal alignment agents). Polyamic acid and polyimide exhibit excellent physical properties in organic resins such as heat resistance, affinity with liquid crystals, and mechanical strength. Here, as for polyamic acid and polyimide, many kinds of polymers having different molecular structures are known. The alignment film is required to have various properties such as the strength and uniformity of the alignment control force, AC image sticking (residual DC), voltage holding ratio, and printability. A technique for improving the overall characteristics of the alignment film by mixing two types of polymers has been proposed (for example, see Patent Documents 1 and 2). In addition, when a mixture of two types of polymers is applied to a substrate, the polymer having a high affinity with the substrate may move to the lower layer, and the other polymer may move to the upper layer, resulting in layer separation. A technique for forming an alignment film having a structure has also been proposed (see, for example, Patent Document 3).
上述したポリアミック酸やポリイミドは、上述したように耐熱性に優れた材料であるが、液晶パネルの用途が拡大し、使用環境が多様化したことに伴い、更に優れた耐熱性を有する材料が求められるようになってきた。 そこで、ポリオルガノシロキサンを主骨格とするポリマーを用いた配向膜が提案されている(例えば、特許文献4参照)。例えば、特許文献4には、特定の構造の側鎖を繰り返し単位中に有するポリオルガノシロキサン、その加水分解物及び加水分解物の縮合物よりなる群から選択される少なくとも一種と、特定の化合物との反応生成物を含有する液晶配向剤が開示されている。また、この液晶配向剤が、ポリアミック酸及びポリイミドよりなる群から選択される少なくとも一種を更に含有してよいことや、液晶表示素子に用いられることについても開示されている。 The polyamic acid and polyimide described above are materials having excellent heat resistance as described above. However, as the use of liquid crystal panels has been expanded and the usage environment has been diversified, there is a need for materials having further excellent heat resistance. Has come to be. Therefore, an alignment film using a polymer having polyorganosiloxane as a main skeleton has been proposed (for example, see Patent Document 4). For example, in Patent Document 4, at least one selected from the group consisting of a polyorganosiloxane having a side chain of a specific structure in a repeating unit, a hydrolyzate thereof and a condensate of the hydrolyzate, a specific compound, A liquid crystal aligning agent containing the reaction product of is disclosed. It is also disclosed that this liquid crystal aligning agent may further contain at least one selected from the group consisting of polyamic acid and polyimide, and that it is used for a liquid crystal display element.
特開平8-220541号公報JP-A-8-220541 特開2011-158835号公報JP 2011-158835 A 特開2010-72011号公報JP 2010-72011 A 国際公開第2009/025385号International Publication No. 2009/025385
ポリオルガノシロキサンを主骨格とするポリマーにおいて、主骨格に含まれるシロキサン結合は、多くの有機化合物の骨格を形成している炭素-炭素間結合と比べて1.25倍の結合エネルギーをもつ強固な結合である。そのため、ポリオルガノシロキサンを主骨格とするポリマーは、非常に優れた耐熱性を示し、従来のポリイミド及び/又はポリアミック酸が主成分である配向膜よりも高温に耐えることが可能である。しかしながら、ポリオルガノシロキサンを主骨格とするポリマーについては、従来のポリイミド及び/又はポリアミック酸を主骨格とするポリマーほど充分な知見がなかった。このため、配向規制力の強度・均一性、AC焼付(残留DC)、電圧保持率、印刷性等の配向膜に求められる特性を総合的に優れたものとするためには、未だ検討の余地があった。特に、ポリオルガノシロキサンを主骨格とするポリマーを光配向膜として用いる場合について、配向膜の総合的な特性をより高めることが求められていた。 In a polymer having polyorganosiloxane as the main skeleton, the siloxane bond contained in the main skeleton has a strong bond energy 1.25 times that of the carbon-carbon bond that forms the skeleton of many organic compounds. It is a bond. Therefore, a polymer having polyorganosiloxane as a main skeleton exhibits extremely excellent heat resistance and can withstand higher temperatures than a conventional alignment film mainly composed of polyimide and / or polyamic acid. However, the polymer having a polyorganosiloxane as a main skeleton has not been sufficiently known as a conventional polymer having a polyimide and / or polyamic acid as a main skeleton. For this reason, in order to make the characteristics required for the alignment film, such as the strength / uniformity of the alignment regulating force, AC printing (residual DC), voltage holding ratio, printability, etc. comprehensively, there is still room for investigation. was there. In particular, in the case where a polymer having a polyorganosiloxane as a main skeleton is used as a photo-alignment film, it has been required to further improve the overall characteristics of the alignment film.
本発明は、上記現状に鑑みてなされたものであり、配向規制力の強度・均一性、AC焼付、電圧保持率、印刷性に優れた配向膜を備える液晶表示装置、及び、そのような配向膜を形成できる液晶配向剤を提供することを目的とするものである。 The present invention has been made in view of the above situation, and a liquid crystal display device provided with an alignment film excellent in strength / uniformity of alignment regulating force, AC printing, voltage holding ratio, and printability, and such an alignment. It aims at providing the liquid crystal aligning agent which can form a film | membrane.
本発明者らは、ポリオルガノシロキサンを主骨格とするポリマーに導入する側鎖の構造について種々検討し、光官能基であるシンナメート構造(-C-CH=CH-COO-)とともにフェニレン基やエステル結合等の剛直な構造を持つ側鎖を導入することに着目して、このような構造を有するカルボン酸化合物を用いることで、強力な配向規制力を発揮することができ、AC電圧印加時の液晶分子の応答に伴う感光性側鎖の塑性変形を防ぐことができることを見いだした。そして、上記カルボン酸化合物により導入した側鎖によれば、隣接する液晶分子の垂直配向性を安定的に保つことができるので、Δチルト特性が良くAC焼付が発生し難い配向膜を形成できることに想到した。 The inventors of the present invention have studied various structures of side chains introduced into a polymer having polyorganosiloxane as a main skeleton, and phenylene with a cinnamate structure (—C 6 H 4 —CH═CH—COO—) which is a photofunctional group. Focusing on the introduction of a side chain having a rigid structure such as a group or an ester bond, by using a carboxylic acid compound having such a structure, a strong alignment regulating force can be exhibited, and an AC voltage We found that plastic deformation of the photosensitive side chain accompanying the response of liquid crystal molecules during application can be prevented. Further, according to the side chain introduced by the carboxylic acid compound, it is possible to stably maintain the vertical alignment of the adjacent liquid crystal molecules, so that an alignment film having good Δ tilt characteristics and hardly causing AC image sticking can be formed. I came up with it.
具体的には、例えば、下記式(1)、(2)のような化合物がポリオルガノシロキサンを主骨格とするポリマーに導入する側鎖として好適であることを見いだした。
-R-COO-C-CH=CH-COOH   (1)
-C-COO-C-CH=CH-COOH   (2)
上記式(1)中、Rは、炭素数4~20のアルキル基を表し、Rは、炭素数6~10の脂環式炭化水素を表す。上記式(2)中、Rは、炭素数1~20のフッ素含有基を表す。
Specifically, for example, it has been found that compounds such as the following formulas (1) and (2) are suitable as side chains introduced into a polymer having polyorganosiloxane as the main skeleton.
R 1 —R 2 —COO—C 6 H 4 —CH═CH—COOH (1)
R 3 —C 6 H 4 —COO—C 6 H 4 —CH═CH—COOH (2)
In the above formula (1), R 1 represents an alkyl group having 4 to 20 carbon atoms, and R 2 represents an alicyclic hydrocarbon having 6 to 10 carbon atoms. In the above formula (2), R 3 represents a fluorine-containing group having 1 to 20 carbon atoms.
本発明者らは、更に検討した結果、配向膜の総合的な特性を向上させる観点からは、ポリオルガノシロキサンを主骨格とするポリマーからなるポリマー成分と、ポリアミック酸及びポリイミドの一方又は両方からなるポリマー成分とを含有する材料(以下では「2層化材料」と記載)を用い、配向膜を2層化することに着目した。 As a result of further study, the present inventors have made a polymer component composed of a polymer having polyorganosiloxane as a main skeleton and one or both of polyamic acid and polyimide from the viewpoint of improving the overall properties of the alignment film. Using a material containing a polymer component (hereinafter referred to as “two-layered material”), attention was paid to forming the alignment film into two layers.
しかしながら、上記式(1)のカルボン酸化合物を側鎖に導入したポリマーを2層化材料の一方のポリマー成分として用いた場合には、2層化材料に含まれる各ポリマー成分間で、基板に対する親和性に差がなくなってしまう。2層化材料による配向膜の2層化は、各ポリマー成分の基板に対する親和性の違いによって層分離させており、各ポリマー成分の基板に対する親和性に差がない場合には、充分な層分離性能が得られない。したがって、上記式(1)のカルボン酸化合物を用いると、2層に分離した状態を安定的に形成し難くなり(言い換えれば、層分離性能が低下する)、例えば、配向膜印刷後の仮焼成工程における基板面内の温度ばらつきの影響を受け、基板面内での層分離状態のばらつきを容易に生じてしまうことが分かった。この層分離状態のばらつきは、配向規制力の不均一性につながり、最終的には、消光位ムラ等の表示品位の低下につながる。例えば、Reverse Twisted Nematic(RTN)モードでは、上下基板のチルト角が非対称になり、電圧印加時のバルクの液晶分子の方位角方向がパネル面内でバラツキを持つようになる。この方位角方向のバラツキが、配向ムラ(消光位ムラ)を発生させてしまう。また、消光位ムラを改善するために、多くの側鎖を導入すると、電圧保持率(VHR)及び印刷性が悪化することが分かった。 However, when the polymer in which the carboxylic acid compound of the above formula (1) is introduced into the side chain is used as one polymer component of the two-layered material, between each polymer component contained in the two-layered material, There will be no difference in affinity. The two-layered alignment film using a two-layer material separates the layers depending on the affinity of each polymer component to the substrate. If there is no difference in the affinity of each polymer component to the substrate, sufficient layer separation is achieved. Performance cannot be obtained. Therefore, when the carboxylic acid compound of the above formula (1) is used, it is difficult to stably form a state separated into two layers (in other words, the layer separation performance is lowered). For example, temporary baking after printing an alignment film It was found that variations in the layer separation state within the substrate surface easily occur due to the influence of temperature variations in the substrate surface during the process. This variation in the layer separation state leads to non-uniformity in the orientation regulating force, and ultimately leads to a reduction in display quality such as non-uniform extinction level. For example, in the Reverse Twisted Nematic (RTN) mode, the tilt angles of the upper and lower substrates become asymmetric, and the azimuth direction of the bulk liquid crystal molecules when a voltage is applied varies within the panel surface. This variation in the azimuth direction causes uneven alignment (extinction level unevenness). It was also found that when many side chains were introduced to improve the quenching level unevenness, the voltage holding ratio (VHR) and printability deteriorated.
これに対して、上記式(2)のカルボン酸化合物を側鎖に導入したポリマーを2層化材料の一方のポリマー成分として用いた場合には、2層化材料に含まれる各ポリマー成分間で、基板に対する親和性に充分な差があることから、良好な層分離性能が得られる。そのため、上記式(1)のカルボン酸化合物を用いた場合のような消光位ムラは発生しにくい。しかしながら、充分な配向規制力を得られる側鎖導入量では、側鎖先端に付与されたフッ素のために、配向膜印刷時に配向膜溶液の表面張力が大きくなり過ぎ、印刷性が極端に悪化することが分かった。 On the other hand, when a polymer in which the carboxylic acid compound of the above formula (2) is introduced into the side chain is used as one polymer component of the two-layer material, between the polymer components contained in the two-layer material. Since there is a sufficient difference in affinity for the substrate, good layer separation performance can be obtained. For this reason, the non-uniformity of extinction potential is unlikely to occur as in the case of using the carboxylic acid compound of the above formula (1). However, with the amount of side chain introduced that can obtain sufficient alignment regulation power, the surface tension of the alignment film solution becomes too large during alignment film printing due to the fluorine imparted to the end of the side chain, and the printability is extremely deteriorated. I understood that.
なお、特許文献4は、多数のポリオルガノシロキサンを主骨格とするポリマーに導入する側鎖の構造を開示しており、その中には、上記式(1)、(2)のカルボン酸化合物に該当するものが開示されている。例えば、特許文献4の第25頁及び第103頁に記載された式(A-1-C8)で表される化合物は、上記式(1)のカルボン酸化合物に該当し、第99頁に記載された式(A-1-C4-2)で表される化合物は、上記(2)のカルボン酸化合物に該当する。しかしながら、特許文献4では、ポリオルガノシロキサンを主骨格とするポリマーに導入する側鎖の構造によって、2層化材料における層分離性能に違いが生じることは考慮されておらず、層分離状態のばらつきによる消光位ムラの発生を防止することは検討されていない。また、配向規制力と印刷性を両立することも検討されていない。 Patent Document 4 discloses a structure of a side chain introduced into a polymer having a large number of polyorganosiloxane as a main skeleton, and includes a carboxylic acid compound of the above formulas (1) and (2). Applicable items are disclosed. For example, the compound represented by the formula (A-1-C8) described on page 25 and page 103 of Patent Document 4 corresponds to the carboxylic acid compound of the above formula (1) and described on page 99. The compound represented by the formula (A-1-C4-2) corresponds to the carboxylic acid compound of the above (2). However, Patent Document 4 does not consider that the layer separation performance in the two-layered material differs depending on the structure of the side chain introduced into the polymer having polyorganosiloxane as the main skeleton, and the variation in the layer separation state It has not been studied to prevent the occurrence of non-uniform extinction level due to. In addition, it has not been studied to achieve both orientation regulating force and printability.
以上のように、ポリオルガノシロキサンを主骨格とするポリマーに導入する側鎖として好適な化合物のうち、上記式(1)のカルボン酸化合物を2層化材料の一方のポリマー成分として用いた場合、及び、上記式(2)のカルボン酸化合物を2層化材料の一方のポリマー成分として用いた場合のいずれであっても配向膜の特性を改善する余地があった。 As described above, among the compounds suitable as side chains to be introduced into the polymer having polyorganosiloxane as the main skeleton, when the carboxylic acid compound of the above formula (1) is used as one polymer component of the two-layer material, In addition, there is room for improving the properties of the alignment film in any case where the carboxylic acid compound of the above formula (2) is used as one polymer component of the two-layer material.
これに対して、本発明者らは、上記式(1)のカルボン酸化合物及び上記式(2)のカルボン酸化合物をともに側鎖としてポリオルガノシロキサンを主骨格とするポリマーに導入することで、上記式(2)のカルボン酸化合物の層分離性能の影響を受け、上記式(1)のカルボン酸化合物も配向膜表面に出易くなり、各側鎖が持つ良好なΔチルト特性を維持したまま、それぞれ単独では解決できない消光位ムラの発生や、電圧保持率の悪化、印刷性の悪化といった課題をすべて解決することができることを見いだした。また、検討を進める中で、2層化材料に含まれる各ポリマー成分の比率(変性比率)や、上記式(1)のカルボン酸化合物及び上記式(2)のカルボン酸化合物の導入量を適切に調整することで、より良い電圧保持率や印刷性を達成することができることを見いだした。以上のようにして、本発明者らは、上記課題をみごとに解決することができることに想到し、本発明に到達した。 On the other hand, the present inventors introduced the carboxylic acid compound of the above formula (1) and the carboxylic acid compound of the above formula (2) into a polymer having a polyorganosiloxane as a main skeleton as a side chain, Under the influence of the layer separation performance of the carboxylic acid compound of the above formula (2), the carboxylic acid compound of the above formula (1) is also likely to come out on the surface of the alignment film, and the good Δ tilt characteristic of each side chain is maintained. They found that they can solve all of the problems such as the occurrence of non-uniform extinction levels, deterioration of voltage holding ratio, and deterioration of printability that cannot be solved individually. Further, as the study proceeds, the ratio of each polymer component (modification ratio) contained in the two-layered material, the introduction amount of the carboxylic acid compound of the above formula (1) and the carboxylic acid compound of the above formula (2) are appropriately set. It was found that a better voltage holding ratio and printability can be achieved by adjusting to. As described above, the present inventors have conceived that the above problems can be solved brilliantly, and have reached the present invention.
すなわち、本発明の一態様は、一対の基板と、上記一対の基板間に挟持された液晶層と、上記一対の基板の少なくとも一方と上記液晶層との間に配置された配向膜と、を有する液晶表示装置であって、上記配向膜は、第一成分及び第二成分を含有し、上記第一成分は、エポキシ基を有するポリオルガノシロキサンと下記式(1)で表される化合物及び下記式(2)で表される化合物との反応生成物からなり、上記第二成分は、ポリアミック酸及びポリイミドの一方又は両方からなる液晶表示装置である。
-R-COO-C-CH=CH-COOH   (1)
-C-COO-C-CH=CH-COOH   (2)
(上記式(1)中、Rは、炭素数4~20のアルキル基を表し、Rは、炭素数6~10の脂環式炭化水素から2つの水素原子が失われて生じる基を表す。上記式(2)中、Rは、炭素数1~20のフッ素含有基を表す。)
That is, one embodiment of the present invention includes a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, and an alignment film disposed between at least one of the pair of substrates and the liquid crystal layer. The alignment film includes a first component and a second component, and the first component includes a polyorganosiloxane having an epoxy group, a compound represented by the following formula (1), and the following: It consists of a reaction product with the compound represented by Formula (2), and the second component is a liquid crystal display device comprising one or both of polyamic acid and polyimide.
R 1 —R 2 —COO—C 6 H 4 —CH═CH—COOH (1)
R 3 —C 6 H 4 —COO—C 6 H 4 —CH═CH—COOH (2)
(In the above formula (1), R 1 represents an alkyl group having 4 to 20 carbon atoms, and R 2 represents a group formed by losing two hydrogen atoms from an alicyclic hydrocarbon having 6 to 10 carbon atoms. In the above formula (2), R 3 represents a fluorine-containing group having 1 to 20 carbon atoms.)
また、本発明の別の一態様は、エポキシ基を有するポリオルガノシロキサンと下記式(1)で表される化合物及び下記式(2)で表される化合物との反応生成物からなる第一成分と、ポリアミック酸及びポリイミドの一方又は両方からなる第二成分とを含有する液晶配向剤である。
-R-COO-C-CH=CH-COOH   (1)
-C-COO-C-CH=CH-COOH   (2)
(上記式(1)中、Rは、炭素数4~20のアルキル基を表し、Rは、炭素数6~10の脂環式炭化水素から2つの水素原子が失われて生じる基を表す。上記式(2)中、Rは、炭素数1~20のフッ素含有基を表す。)
Another embodiment of the present invention is a first component comprising a reaction product of a polyorganosiloxane having an epoxy group, a compound represented by the following formula (1) and a compound represented by the following formula (2). And a second component composed of one or both of polyamic acid and polyimide.
R 1 —R 2 —COO—C 6 H 4 —CH═CH—COOH (1)
R 3 —C 6 H 4 —COO—C 6 H 4 —CH═CH—COOH (2)
(In the above formula (1), R 1 represents an alkyl group having 4 to 20 carbon atoms, and R 2 represents a group formed by losing two hydrogen atoms from an alicyclic hydrocarbon having 6 to 10 carbon atoms. In the above formula (2), R 3 represents a fluorine-containing group having 1 to 20 carbon atoms.)
本発明の液晶表示装置は、上述のような配向膜を備えるので、消光位ムラ等による表示ムラやAC焼付が低減されており、高い表示品位を実現することができる。また、本発明の液晶配向剤は、上述のような組成を有するので、配向規制力の強度・均一性、AC焼付、電圧保持率及び印刷性に優れている。 Since the liquid crystal display device of the present invention includes the alignment film as described above, display unevenness and AC image sticking due to extinction level unevenness and the like are reduced, and high display quality can be realized. Moreover, since the liquid crystal aligning agent of this invention has the above compositions, it is excellent in the intensity | strength and uniformity of alignment control force, AC baking, a voltage holding ratio, and printability.
実施形態の液晶表示パネルを示した断面模式図である。It is the cross-sectional schematic diagram which showed the liquid crystal display panel of embodiment. 実施形態の液晶表示パネルを示した平面模式図である。It is the plane schematic diagram which showed the liquid crystal display panel of embodiment. RTNモードの液晶表示装置における光配向処理方向と液晶分子のプレチルト方向との関係を示す斜視模式図である。It is a perspective schematic diagram which shows the relationship between the photo-alignment process direction in the liquid crystal display device of RTN mode, and the pretilt direction of a liquid crystal molecule. (a)は、RTNモードの液晶表示装置がモノドメインを有する場合における、一画素(1ピクセル又は1サブピクセル)内の平均の液晶ダイレクターの方向と一対の基板(上下基板)に対する光配向処理方向とを示す平面模式図であり、(b)は、(a)で示した液晶表示装置に設けられる偏光板の吸収軸方向を示す模式図である。(A) shows the direction of the average liquid crystal director in one pixel (one pixel or one subpixel) and the optical alignment treatment for a pair of substrates (upper and lower substrates) when the RTN mode liquid crystal display device has a monodomain. And (b) is a schematic diagram showing an absorption axis direction of a polarizing plate provided in the liquid crystal display device shown in (a). アライメントマスクを用いるプロキシミティ露光法によって配向分割を行うための光配向処理プロセスにおける基板及びフォトマスクの第一の配置関係を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 1st arrangement | positioning relationship of the board | substrate and photomask in the photo-alignment processing process for performing alignment division by the proximity exposure method using an alignment mask. アライメントマスクを用いるプロキシミティ露光法によって配向分割を行うための光配向処理プロセスにおける基板及びフォトマスクの第二の配置関係を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 2nd arrangement | positioning relationship of the board | substrate and photomask in the photo-alignment process for performing alignment division by the proximity exposure method using an alignment mask. (a)は、液晶表示装置が4ドメインを有する場合における、一画素(1ピクセル又は1サブピクセル)内の平均の液晶ダイレクターの方向と、一対の基板(上下基板)に対する光配向処理方向と、ドメインの分割パターンとを示す平面模式図であり、(b)は、(a)で示した液晶表示装置に設けられる偏光板の吸収軸方向を示す模式図である。(A) is the direction of the average liquid crystal director within one pixel (one pixel or one subpixel) and the photo-alignment processing direction for a pair of substrates (upper and lower substrates) when the liquid crystal display device has four domains. FIG. 4B is a schematic plan view showing a domain division pattern, and FIG. 4B is a schematic diagram showing an absorption axis direction of a polarizing plate provided in the liquid crystal display device shown in FIG. (a)は、液晶表示装置が別の4ドメインを有する場合における、一画素(1ピクセル又は1サブピクセル)内の平均の液晶ダイレクターの方向と、一対の基板(上下基板)に対する光配向処理方向と、ドメインの分割パターンとを示す平面模式図であり、(b)は、(a)で示した液晶表示装置に設けられる偏光板の吸収軸方向を示す模式図であり、(c)は、一対の基板の間に閾値以上のAC電圧が印加された時の(a)のA-B線における断面模式図であり、液晶分子の配向方向を示す。(A) is the direction of the average liquid crystal director in one pixel (one pixel or one subpixel) and the optical alignment treatment for a pair of substrates (upper and lower substrates) when the liquid crystal display device has another four domains. It is a schematic plan view showing the direction and the division pattern of the domain, (b) is a schematic diagram showing the absorption axis direction of the polarizing plate provided in the liquid crystal display device shown in (a), (c) FIG. 6B is a schematic cross-sectional view taken along line AB in FIG. 6A when an AC voltage equal to or higher than a threshold is applied between a pair of substrates, and shows the alignment direction of liquid crystal molecules. 液晶配向剤中のポリアミック酸(第二成分)に対する液晶配向性ポリオルガノシロキサン(第一成分)の変性比率と電圧保持率との関係を示したグラフである。It is the graph which showed the relationship between the modification ratio of the liquid crystal aligning polyorganosiloxane (1st component) with respect to the polyamic acid (2nd component) in a liquid crystal aligning agent, and a voltage holding ratio.
以下、本発明の実施形態について説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の構成を充足する範囲内で、適宜設計変更を行うことが可能である。 Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the following embodiments, and it is possible to appropriately change the design within a range that satisfies the configuration of the present invention.
本実施形態の液晶表示装置は、一対の基板と、上記一対の基板間に挟持された液晶層と、上記一対の基板の少なくとも一方と上記液晶層との間に配置された配向膜と、を有する液晶表示装置であって、上記配向膜は、第一成分及び第二成分を含有し、上記第一成分は、エポキシ基を有するポリオルガノシロキサン(以下、「反応性ポリオルガノシロキサン」ともいう)と下記式(1)で表される化合物及び下記式(2)で表される化合物との反応生成物(以下、「液晶配向性ポリオルガノシロキサン」ともいう)からなり、上記第二成分は、ポリアミック酸及びポリイミドの一方又は両方からなる。
-R-COO-C-CH=CH-COOH   (1)
-C-COO-C-CH=CH-COOH   (2)
(上記式(1)中、Rは、炭素数4~20のアルキル基を表し、Rは、炭素数6~10の脂環式炭化水素から2つの水素原子が失われて生じる基を表す。上記式(2)中、Rは、炭素数1~20のフッ素含有基を表す。)
The liquid crystal display device of the present embodiment includes a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, and an alignment film disposed between at least one of the pair of substrates and the liquid crystal layer. The alignment film includes a first component and a second component, and the first component is a polyorganosiloxane having an epoxy group (hereinafter also referred to as “reactive polyorganosiloxane”). And a reaction product of the compound represented by the following formula (1) and the compound represented by the following formula (2) (hereinafter also referred to as “liquid crystal alignment polyorganosiloxane”), It consists of one or both of polyamic acid and polyimide.
R 1 —R 2 —COO—C 6 H 4 —CH═CH—COOH (1)
R 3 —C 6 H 4 —COO—C 6 H 4 —CH═CH—COOH (2)
(In the above formula (1), R 1 represents an alkyl group having 4 to 20 carbon atoms, and R 2 represents a group formed by losing two hydrogen atoms from an alicyclic hydrocarbon having 6 to 10 carbon atoms. In the above formula (2), R 3 represents a fluorine-containing group having 1 to 20 carbon atoms.)
[液晶表示装置の構成]
本実施形態の液晶表示装置は、液晶表示パネル;TCP(テープ・キャリア・パッケージ)、PCB(プリント配線基板)等の外部回路;視野角拡大フィルム、輝度向上フィルム等の光学フィルム;バックライトユニット;ベゼル(フレーム)等の複数の部材により構成されるものであり、部材によっては、他の部材に組み込まれていてもよい。液晶表示パネルを除く部材については特に限定されず、液晶表示装置の分野において通常使用されるものを用いることができるので、説明を省略する。
[Configuration of liquid crystal display device]
The liquid crystal display device of this embodiment includes a liquid crystal display panel; an external circuit such as a TCP (tape carrier package) and a PCB (printed wiring board); an optical film such as a viewing angle widening film and a brightness enhancement film; a backlight unit; It is comprised by several members, such as a bezel (frame), and may be integrated in the other member depending on the member. The members excluding the liquid crystal display panel are not particularly limited, and those normally used in the field of liquid crystal display devices can be used, and thus the description thereof is omitted.
図1は、実施形態の液晶表示パネルを示した断面模式図であり、図2は、実施形態の液晶表示パネルを示した平面模式図である。図1に示したように、本実施形態の液晶表示装置は、一対の基板10、20を有し、一対の基板10、20の間には液晶層30が挟持されている。一対の基板10、20の少なくとも一方と液晶層30との間には、配向膜40が介在している。図1においては、一方の基板10と液晶層30との間、及び、他方の基板20と液晶層30との間の両方に配向膜40が設けられているが、いずれか一方のみであってもよい。 FIG. 1 is a schematic cross-sectional view showing the liquid crystal display panel of the embodiment, and FIG. 2 is a schematic plan view showing the liquid crystal display panel of the embodiment. As shown in FIG. 1, the liquid crystal display device of this embodiment includes a pair of substrates 10 and 20, and a liquid crystal layer 30 is sandwiched between the pair of substrates 10 and 20. An alignment film 40 is interposed between at least one of the pair of substrates 10 and 20 and the liquid crystal layer 30. In FIG. 1, alignment films 40 are provided between one substrate 10 and the liquid crystal layer 30 and between the other substrate 20 and the liquid crystal layer 30, but only one of them is provided. Also good.
一対の基板10、20は、シール材50によって貼り合わされている。図2に示したように、シール材50は、液晶層30の周囲を囲むように配置されている。基板10、20を基準にして配向膜40が配置された側とは反対側である液晶表示パネルの外側には、それぞれ偏光板60が配置されている。偏光板60と基板10、20の間には、位相差フィルム等の光学フィルムが配置されていてもよい。 The pair of substrates 10 and 20 are bonded together with a sealing material 50. As shown in FIG. 2, the sealing material 50 is disposed so as to surround the periphery of the liquid crystal layer 30. Polarizing plates 60 are respectively disposed on the outer sides of the liquid crystal display panel, which is opposite to the side on which the alignment film 40 is disposed with respect to the substrates 10 and 20. An optical film such as a retardation film may be disposed between the polarizing plate 60 and the substrates 10 and 20.
一対の基板10、20としては、例えば、アクティブマトリックス基板及びカラーフィルタ基板の組み合わせが挙げられる。アクティブマトリックス基板としては、液晶表示装置の分野において通常使用されるものを用いることができる。アクティブマトリックス基板を平面視したときの構成としては、透明基板上に、複数本の平行なゲート信号線;ゲート信号線に対して直交する方向に伸び、かつ互いに平行に形成された複数本のソース信号線;ゲート信号線とソース信号線との交点に対応して配置された薄膜トランジスタ;ゲート信号線とソース信号線とによって区画された領域にマトリックス状に配置された画素電極等が設けられた構成が挙げられる。 Examples of the pair of substrates 10 and 20 include a combination of an active matrix substrate and a color filter substrate. As the active matrix substrate, those normally used in the field of liquid crystal display devices can be used. When the active matrix substrate is viewed in plan, the configuration includes a plurality of parallel gate signal lines on a transparent substrate; a plurality of sources that extend in a direction perpendicular to the gate signal lines and are parallel to each other. Signal line; thin film transistor arranged corresponding to the intersection of the gate signal line and the source signal line; a configuration in which pixel electrodes arranged in a matrix are provided in a region partitioned by the gate signal line and the source signal line Is mentioned.
上記カラーフィルタ基板としては、液晶表示装置の分野において通常使用されるものを用いることができる。カラーフィルタ基板の構成としては、透明基板上に、格子状に形成されたブラックマトリックス、格子すなわち画素の内側に形成されたカラーフィルタ、ブラックマトリックス及びカラーフィルタを覆って形成された共通電極等が設けられた構成が挙げられる。 As the color filter substrate, those usually used in the field of liquid crystal display devices can be used. The structure of the color filter substrate includes a black matrix formed on a transparent substrate, a color filter formed inside the lattice, that is, a pixel, a common electrode formed covering the black matrix and the color filter, and the like. The structure which was made is mentioned.
上記アクティブマトリックス基板及び上記カラーフィルタ基板に用いられる透明基板としては、例えば、フロートガラス、ソーダガラス等のガラス;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、脂環式ポリオレフィン等のプラスチック等からなるものが挙げられる。 Examples of the transparent substrate used for the active matrix substrate and the color filter substrate include glass such as float glass and soda glass; plastics such as polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polycarbonate, and alicyclic polyolefin. The thing which becomes.
上記アクティブマトリックス基板の画素電極及び上記カラーフィルタ基板の共通電極は、通常、配向膜の下地となる層である。したがって、画素電極及び共通電極の表面と配向膜を構成する材料の親和性を高めることによって配向膜の印刷性が向上する。画素電極及び共通電極を構成する材料としては、酸化インジウム錫(Indium Tin Oxide:ITO)、酸化インジウム亜鉛(Indium Zinc Oxide:IZO)等の透明導電材料が挙げられる。 The pixel electrode of the active matrix substrate and the common electrode of the color filter substrate are usually layers that serve as the foundation of the alignment film. Therefore, the printability of the alignment film is improved by increasing the affinity between the surface of the pixel electrode and the common electrode and the material constituting the alignment film. As a material constituting the pixel electrode and the common electrode, a transparent conductive material such as indium tin oxide (ITO), indium zinc oxide (Indium Zinc Oxide: IZO), or the like can be given.
液晶層30には、例えば、ネマティック型液晶、スメクティック型液晶等を用いることができる。TN型液晶セル又はSTN型液晶セルを有する液晶表示装置の場合、ネマティック型液晶のうち正の誘電異方性を有するもの(ポジ型の液晶)が好ましく、例えばビフェニル系液晶、フェニルシクロヘキサン系液晶、エステル系液晶、ターフェニル系液晶、ビフェニルシクロヘキサン系液晶、ピリミジン系液晶、ジオキサン系液晶、ビシクロオクタン系液晶、キュバン系液晶等が用いられる。これら液晶に、例えばコレスチルクロライド、コレステリルノナエート、コレステリルカーボネート等のコレステリック液晶;商品名C-15、CB-15(メルク社製)として販売されているようなカイラル剤;p-デシロキシベンジリデン-p-アミノ-2-メチルブチルシンナメート等の強誘電性液晶等を、更に添加して使用してもよい。一方、垂直配向型液晶セルの場合には、ネマティック型液晶のうち負の誘電異方性を有するもの(ネガ型の液晶)が好ましく、例えばジシアノベンゼン系液晶、ピリダジン系液晶、シッフベース系液晶、アゾキシ系液晶、ビフェニル系液晶、フェニルシクロヘキサン系液晶等が用いられる。 For the liquid crystal layer 30, for example, a nematic liquid crystal, a smectic liquid crystal, or the like can be used. In the case of a liquid crystal display device having a TN type liquid crystal cell or an STN type liquid crystal cell, a nematic type liquid crystal having positive dielectric anisotropy (positive type liquid crystal) is preferable. For example, biphenyl type liquid crystal, phenyl cyclohexane type liquid crystal, Ester liquid crystals, terphenyl liquid crystals, biphenylcyclohexane liquid crystals, pyrimidine liquid crystals, dioxane liquid crystals, bicyclooctane liquid crystals, cubane liquid crystals, and the like are used. Examples of these liquid crystals include cholesteric liquid crystals such as cholestyl chloride, cholesteryl nonate, and cholesteryl carbonate; chiral agents such as those sold as trade names C-15 and CB-15 (manufactured by Merck); p-decyloxybenzylidene- Ferroelectric liquid crystals such as p-amino-2-methylbutyl cinnamate may be further added and used. On the other hand, in the case of a vertical alignment type liquid crystal cell, a nematic type liquid crystal having negative dielectric anisotropy (negative type liquid crystal) is preferable. For example, dicyanobenzene liquid crystal, pyridazine liquid crystal, Schiff base liquid crystal, azoxy liquid crystal Type liquid crystal, biphenyl type liquid crystal, phenylcyclohexane type liquid crystal and the like are used.
液晶表示装置の表示モードが垂直配向(Vertical Alignment:VA)モードである場合を例に取ると、液晶層30は、負の誘電率異方性を有する液晶分子を含み、配向膜40は、垂直配向膜である。液晶層30に印加される電圧が閾値電圧未満のオフ状態では、液晶分子は、配向膜40の表面(基板面)に対してほぼ垂直に配向する。そして、液晶層30に印加される電圧が閾値電圧を超えたオン状態では、液晶分子は、負の誘電率異方性を有することから、印加電圧に応じて基板面に対して平行方向に倒れる。これにより、液晶層30は、透過光に対して複屈折性を示すことになる。配向膜40近傍の液晶分子のプレチルト角は、86°以上、90°未満であることが好ましく、より好ましくは89.5°以下である。なお、本明細書において「プレチルト角」とは、基板面と平行な方向からの液晶分子の傾きの角度を表し、基板面と平行な角度が0°、基板面の法線の角度が90°である。 Taking the case where the display mode of the liquid crystal display device is a vertical alignment (VA) mode as an example, the liquid crystal layer 30 includes liquid crystal molecules having negative dielectric anisotropy, and the alignment film 40 is vertical. It is an alignment film. In the off state in which the voltage applied to the liquid crystal layer 30 is less than the threshold voltage, the liquid crystal molecules are aligned substantially perpendicular to the surface (substrate surface) of the alignment film 40. In the ON state in which the voltage applied to the liquid crystal layer 30 exceeds the threshold voltage, the liquid crystal molecules have a negative dielectric anisotropy, and therefore fall in a direction parallel to the substrate surface according to the applied voltage. . Thereby, the liquid crystal layer 30 exhibits birefringence with respect to the transmitted light. The pretilt angle of the liquid crystal molecules in the vicinity of the alignment film 40 is preferably 86 ° or more and less than 90 °, more preferably 89.5 ° or less. In the present specification, the “pretilt angle” means an angle of inclination of liquid crystal molecules from a direction parallel to the substrate surface, the angle parallel to the substrate surface is 0 °, and the normal angle of the substrate surface is 90 °. It is.
配向膜40は、液晶層30中の液晶分子の配向を制御する機能を有するものである。詳細については、後で詳しく説明する。シール材50としては、例えばスペーサーとしての酸化アルミニウム球及び硬化剤を含有するエポキシ樹脂等を用いることができる。偏光板60としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と呼ばれる偏光膜を酢酸セルロース保護膜で挟んだ偏光板、又は、H膜そのものからなる偏光板等を挙げることができる。 The alignment film 40 has a function of controlling the alignment of the liquid crystal molecules in the liquid crystal layer 30. Details will be described later. As the sealing material 50, for example, an aluminum resin sphere as a spacer and an epoxy resin containing a curing agent can be used. Examples of the polarizing plate 60 include a polarizing plate in which a polarizing film called an “H film” in which polyvinyl alcohol is stretched and oriented while absorbing iodine is sandwiched between cellulose acetate protective films, or a polarizing film made of the H film itself. Can do.
[配向膜の構成]
上記配向膜は、第一成分としての液晶配向性ポリオルガノシロキサン、及び、第二成分としてのポリアミック酸及びポリイミドの一方又は両方を含有するものである。一般的に液晶パネルの製造時の配向膜の印刷工程において、印刷性向上の観点から、基板の表面は親水性に前処理されていることが多い。配向膜の総合的な特性を向上させる観点から、配向膜の2層化を図る場合、第一成分及び第二成分のうち、一方が親水性であり、もう一方が疎水性であることが好ましい。配向膜は、第一成分が液晶層側に主に含有され、第二成分が基板側に主に含有されることが好ましく、液晶配向性ポリオルガノシロキサンからなる上層と、ポリアミック酸及びポリイミドの一方又は両方からなる下層と、を備える2層構造であることが好ましい。
[Configuration of alignment film]
The alignment film contains a liquid crystal aligning polyorganosiloxane as the first component and one or both of polyamic acid and polyimide as the second component. In general, in the printing process of the alignment film at the time of manufacturing the liquid crystal panel, the surface of the substrate is often pretreated to be hydrophilic from the viewpoint of improving printability. From the viewpoint of improving the overall properties of the alignment film, when the alignment film is formed into two layers, it is preferable that one of the first component and the second component is hydrophilic and the other is hydrophobic. . In the alignment film, it is preferable that the first component is mainly contained on the liquid crystal layer side, and the second component is mainly contained on the substrate side. An upper layer made of a liquid crystal aligning polyorganosiloxane, and one of polyamic acid and polyimide Or it is preferable that it is a 2 layer structure provided with the lower layer which consists of both.
A)配向膜の第一成分:液晶配向性ポリオルガノシロキサン
上記液晶配向性ポリオルガノシロキサンは、エポキシ基を有するポリオルガノシロキサン(反応性ポリオルガノシロキサン)と上記式(1)で表される化合物(以下、「第一の側鎖用化合物」ともいう)及び上記式(2)で表される化合物(以下、「第二の側鎖用化合物」ともいう)との反応生成物である。液晶配向性ポリオルガノシロキサンにおいては、反応性ポリオルガノシロキサンに由来する構造が主鎖を構成し、第一の側鎖用化合物に由来する構造、及び、第二の側鎖用化合物に由来する構造がそれぞれ側鎖を構成することになる。すなわち、液晶配向性ポリオルガノシロキサンは、先端部に第二の側鎖用化合物由来のフッ素原子を含んだ光反応性側鎖(特定フッ素含有側鎖)と第一の側鎖用化合物由来のフッ素原子を含まない光反応性側鎖(特定フッ素非含有側鎖)の両方を付与されたポリオルガノシロキサンを主骨格とするポリマーである。これにより、特定フッ素非含有側鎖が持つ配向規制力と特定フッ素含有側鎖の層分離性能の相乗効果により、少ない側鎖導入量で良好なAC焼付特性を維持できるために材料コストを削減できるほか、印刷性の悪化や、電圧保持率の低下の課題を解決することができる。
A) First component of alignment film: Liquid crystal alignment polyorganosiloxane The liquid crystal alignment polyorganosiloxane is composed of a polyorganosiloxane having an epoxy group (reactive polyorganosiloxane) and a compound represented by the above formula (1) ( Hereinafter, it is a reaction product of the “first side chain compound”) and the compound represented by the above formula (2) (hereinafter also referred to as “second side chain compound”). In the liquid crystal alignment polyorganosiloxane, the structure derived from the reactive polyorganosiloxane constitutes the main chain, the structure derived from the first side chain compound, and the structure derived from the second side chain compound Each constitutes a side chain. That is, the liquid crystal aligning polyorganosiloxane has a photoreactive side chain (specific fluorine-containing side chain) containing a fluorine atom derived from the second side chain compound at the tip and fluorine derived from the first side chain compound. It is a polymer whose main skeleton is a polyorganosiloxane provided with both photoreactive side chains that do not contain atoms (specific fluorine-free side chains). As a result, due to the synergistic effect of the orientation regulating force of the specific fluorine-free side chain and the layer separation performance of the specific fluorine-containing side chain, it is possible to reduce the material cost because it can maintain good AC baking characteristics with a small amount of side chain introduction. In addition, it is possible to solve the problems of printability deterioration and voltage holding ratio reduction.
1.反応性ポリオルガノシロキサン
上記反応性ポリオルガノシロキサンとしては、下記式(A-1)で表される構造を有するポリシロキサン、その加水分解物、及び、加水分解物の縮合物よりなる群から選択される少なくとも一種が挙げられる。
1. Reactive polyorganosiloxane The reactive polyorganosiloxane is selected from the group consisting of a polysiloxane having a structure represented by the following formula (A-1), a hydrolyzate thereof, and a condensate of the hydrolyzate. At least one kind.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
上記式(A-1)中のXは、エポキシ基を含んで構成される基であれば特に限定されず、例えば、下記式(X-1)で表される基、(X-2)で表される基が挙げられる。下記式(X-1)及び(X-2)中のcは1~10の整数であり、「*」は、それぞれ、これを付した結合手がケイ素原子と結合することを示す。上記X中のエポキシ基が、上記第一の側鎖用化合物及び上記第二の側鎖用化合物中のカルボキシル基と反応することにより、液晶配向性ポリオルガノシロキサンが生成される。 X in the above formula (A-1) is not particularly limited as long as it is a group comprising an epoxy group. For example, in the group represented by the following formula (X-1), (X-2) And the group represented. In the following formulas (X-1) and (X-2), c is an integer of 1 to 10, and “*” indicates that the bond attached thereto is bonded to a silicon atom. The epoxy group in X reacts with the carboxyl group in the first side chain compound and the second side chain compound to produce a liquid crystal aligning polyorganosiloxane.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
上記式(A-1)中のYとしては特に限定されず、例えば、水酸基、炭素数1~10のアルコキシル基、炭素数1~6のアルキル基、炭素数6~10のアリール基が挙げられる。Yの水酸基、炭素数1~10のアルコキシル基としては、例えばメトキシル基、エトキシル基等を;炭素数1~6のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基等を;炭素数6~10のアリール基としては、例えばフェニル基等を、それぞれ挙げることができる。Yとして好ましくは水酸基又は炭素数1~10のアルコキシル基である。 Y in the formula (A-1) is not particularly limited, and examples thereof include a hydroxyl group, an alkoxyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 6 carbon atoms, and an aryl group having 6 to 10 carbon atoms. . Examples of the hydroxyl group of Y and the alkoxyl group having 1 to 10 carbon atoms include a methoxyl group and an ethoxyl group; examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an n-propyl group, and an n-butyl group. Group, n-pentyl group, n-hexyl group and the like; examples of the aryl group having 6 to 10 carbon atoms include a phenyl group and the like. Y is preferably a hydroxyl group or an alkoxyl group having 1 to 10 carbon atoms.
上記反応性ポリオルガノシロキサンは、ゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量が500~100,000であることが好ましく、1,000~10,000であることがより好ましく、さらに1,000~5,000であることが好ましい。 The reactive polyorganosiloxane preferably has a polystyrene equivalent weight average molecular weight of 500 to 100,000, more preferably 1,000 to 10,000, as measured by gel permeation chromatography (GPC). Further, it is preferably 1,000 to 5,000.
上記反応性ポリオルガノシロキサンは、市販品として入手することができるか、あるいは有機化学の定法を適宜に組み合わせることにより合成することができる。また、上記反応性ポリオルガノシロキサンを製造する方法については、上記特許文献4に開示された製法を用いてもよい。 The reactive polyorganosiloxane can be obtained as a commercial product, or can be synthesized by appropriately combining organic chemistry methods. Moreover, about the method of manufacturing the said reactive polyorganosiloxane, you may use the manufacturing method disclosed by the said patent document 4. FIG.
2.第一の側鎖用化合物
上記第一の側鎖用化合物は、下記式(1)で表される化学構造を有する。
-R-COO-C-CH=CH-COOH   (1)
上記式(1)中、Rは、炭素数4~20のアルキル基を表し、Rは、炭素数6~10の脂環式炭化水素から2つの水素原子が失われて生じる基を表す。
2. First side chain compound The first side chain compound has a chemical structure represented by the following formula (1).
R 1 —R 2 —COO—C 6 H 4 —CH═CH—COOH (1)
In the above formula (1), R 1 represents an alkyl group having 4 to 20 carbon atoms, and R 2 represents a group formed by losing two hydrogen atoms from an alicyclic hydrocarbon having 6 to 10 carbon atoms. .
上記Rにおける炭素数4~20のアルキル基としては、例えばn-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基、n-ドデシル基、n-ヘキサデシル基、n-オクタデシル基、n-エイコシル基等が挙げられる。 Examples of the alkyl group having 4 to 20 carbon atoms in R 1 include an n-butyl group, an n-pentyl group, an n-hexyl group, an n-octyl group, an n-decyl group, an n-dodecyl group, and an n-hexadecyl group. , N-octadecyl group, n-eicosyl group and the like.
上記Rにおける炭素数6~10の脂環式炭化水素としては、シクロヘキサン、シクロへプタン、シクロオクタン等の飽和炭化水素(シクロアルカン)、シクロアルケン、シクロアルキン等の不飽和炭化水素が挙げられる。また、脂環式炭化水素は、単環性であってもよく、多環性であってもよい。 Examples of the alicyclic hydrocarbon having 6 to 10 carbon atoms in R 2 include saturated hydrocarbons (cycloalkanes) such as cyclohexane, cycloheptane and cyclooctane, and unsaturated hydrocarbons such as cycloalkene and cycloalkyne. . The alicyclic hydrocarbon may be monocyclic or polycyclic.
上記第一の側鎖用化合物の好適な例としては、下記式(1-1)で表される化合物が挙げられる。 Preferable examples of the first side chain compound include compounds represented by the following formula (1-1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
上記式(1-1)中、Rは、炭素数4~20のアルキル基を表す。 In the above formula (1-1), R 1 represents an alkyl group having 4 to 20 carbon atoms.
上記第一の側鎖用化合物は、-C-CH=CH-COO-で表される構造を含むので、光配向法によって配向規制力を発現させることができる。 Since the first side chain compound includes a structure represented by —C 6 H 4 —CH═CH—COO—, the alignment regulating force can be expressed by a photo-alignment method.
上記第一の側鎖用化合物は、市販品として入手することができるか、あるいは有機化学の定法を適宜に組み合わせることにより合成することができる。また、上記第一の側鎖用化合物を製造する方法については、上記特許文献4に開示された製法を用いてもよい。 The first side chain compound can be obtained as a commercial product, or can be synthesized by appropriately combining organic chemistry methods. Moreover, you may use the manufacturing method disclosed by the said patent document 4 about the method of manufacturing said 1st compound for side chains.
上記式(1-1)で表される化合物は、例えばRに相当するアルキル基を有する4-アルキルシクロヘキシルカルボン酸を塩化チオニルにより酸クロリドとしたものを、炭酸カリウム等の適当な塩基存在下でヒドロキシ桂皮酸と0℃~室温の温度で反応させることにより得ることができる。 The compound represented by the above formula (1-1) is, for example, a compound obtained by converting 4-alkylcyclohexylcarboxylic acid having an alkyl group corresponding to R 1 into acid chloride with thionyl chloride in the presence of a suitable base such as potassium carbonate. Can be obtained by reacting with hydroxycinnamic acid at a temperature of 0 ° C. to room temperature.
3.第二の側鎖用化合物
上記第二の側鎖用化合物は、下記式(2)で表される化学構造を有する。
-C-COO-C-CH=CH-COOH   (2)
上記式(2)中、Rは、炭素数1~20のフッ素含有基を表す。
3. Second side chain compound The second side chain compound has a chemical structure represented by the following formula (2).
R 3 —C 6 H 4 —COO—C 6 H 4 —CH═CH—COOH (2)
In the above formula (2), R 3 represents a fluorine-containing group having 1 to 20 carbon atoms.
上記Rにおける炭素数1~20のフッ素含有基としては、例えばトリフルオロメチル基、パーフルオロエチル基、3,3,3-トリフルオロプロピル基、4,4,4-トリフルオロブチル基、4,4-5,5,5-ペンタフルオロペンチル基、4,4-5,5-6,6,6-ヘプタフルオロヘキシル基等のフルオロアルキル基が挙げられる。 Examples of the fluorine-containing group having 1 to 20 carbon atoms in R 3 include a trifluoromethyl group, a perfluoroethyl group, a 3,3,3-trifluoropropyl group, a 4,4,4-trifluorobutyl group, 4 , 4-5,5,5-pentafluoropentyl group, 4,4-5,5-6,6,6-heptafluorohexyl group and the like.
上記第二の側鎖用化合物の好適な例としては、下記式(2-1)、(2-2)、(2-3)で表される化合物が挙げられる。 Preferable examples of the second side chain compound include compounds represented by the following formulas (2-1), (2-2), and (2-3).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
上記式(2-1)、(2-2)、(2-3)中のRは、炭素数1~20のフルオロアルキル基を表す。 R 4 in the above formulas (2-1), (2-2), and (2-3) represents a fluoroalkyl group having 1 to 20 carbon atoms.
上記第二の側鎖用化合物は、上記第一の側鎖用化合物と同様に、-C-CH=CH-COO-で表される構造を含むので、光配向法によって配向規制力を発現させることができる。 Similar to the first side chain compound, the second side chain compound includes a structure represented by —C 6 H 4 —CH═CH—COO—. Can be expressed.
上記第二の側鎖用化合物は、市販品として入手することができるか、あるいは有機化学の定法を適宜に組み合わせることにより合成することができる。また、上記第二の側鎖用化合物を製造する方法については、上記特許文献4に開示された製法を用いてもよい。 The second side chain compound can be obtained as a commercial product, or can be synthesized by appropriately combining organic chemistry methods. Moreover, about the method of manufacturing the said 2nd compound for side chains, you may use the manufacturing method disclosed by the said patent document 4. FIG.
上記式(2-1)で表される化合物は、例えばヒドロキシ安息香酸メチルとRに相当するアルキル基を有するハロゲン化アルキル又はトシル化アルキルとを炭酸カリウム等の適当な塩基存在下で室温~100℃の温度で反応させた後、水酸化ナトリウム等の適当なアルカリ水溶液で加水分解し、さらにこれを塩化チオニルにより酸クロリドとした後、これを炭酸カリウム等の適当な塩基の存在下でヒドロキシ桂皮酸と0℃~室温の温度で反応させることにより得ることができる。 The compound represented by the above formula (2-1) is, for example, a methyl hydroxybenzoate and an alkyl halide having an alkyl group corresponding to R 4 or a tosylated alkyl in the presence of a suitable base such as potassium carbonate at room temperature to After reacting at a temperature of 100 ° C., the mixture is hydrolyzed with an appropriate alkaline aqueous solution such as sodium hydroxide, and further converted into an acid chloride with thionyl chloride, which is then treated with hydroxy in the presence of an appropriate base such as potassium carbonate. It can be obtained by reacting with cinnamic acid at a temperature of 0 ° C. to room temperature.
上記式(2-2)で表される化合物は、例えばヒドロキシ安息香酸とRに相当するアルキル基を有するアルキルカルボン酸クロリドとをトリエチルアミン等の適当な塩基存在下で0℃~室温の温度で反応させた後、塩化チオニルにより酸クロリドとし、これを炭酸カリウム等の適当な塩基の存在下でヒドロキシ桂皮酸と0℃~室温の温度で反応させることにより得ることができる。 The compound represented by the above formula (2-2) is, for example, a hydroxybenzoic acid and an alkylcarboxylic acid chloride having an alkyl group corresponding to R 4 in the presence of a suitable base such as triethylamine at a temperature of 0 ° C. to room temperature. After the reaction, acid chloride is obtained with thionyl chloride, which can be obtained by reacting with hydroxycinnamic acid in the presence of a suitable base such as potassium carbonate at a temperature of 0 ° C. to room temperature.
上記式(2-3)で表される化合物は、例えば4-アルキル安息香酸を塩化チオニルにより酸クロリドとし、これを炭酸カリウム等の適当な塩基の存在下でヒドロキシ桂皮酸と0℃~室温の温度で反応させることにより得ることができる。 The compound represented by the above formula (2-3) is, for example, 4-alkylbenzoic acid converted to acid chloride with thionyl chloride, and this is treated with hydroxycinnamic acid in the presence of a suitable base such as potassium carbonate at 0 ° C. to room temperature. It can be obtained by reacting at a temperature.
4.液晶配向性ポリオルガノシロキサンの生成反応
エポキシ基を有するポリオルガノシロキサン(反応性ポリオルガノシロキサン)と上記式(1)で表される化合物(第一の側鎖用化合物)及び上記式(2)で表される化合物(第二の側鎖用化合物)とを反応させることにより、上記液晶配向性ポリオルガノシロキサンが得られる。
4). Formation reaction of liquid crystal alignment polyorganosiloxane Polyorganosiloxane having an epoxy group (reactive polyorganosiloxane), compound represented by the above formula (1) (first side chain compound) and the above formula (2) The liquid crystal aligning polyorganosiloxane is obtained by reacting the compound (second side chain compound) represented.
上記第一の側鎖用化合物及び上記第二の側鎖用化合物は、上記反応性ポリオルガノシロキサンの有するエポキシ基1モルに対して好ましくは0.001~1.5モル、より好ましくは0.01~1モル、更に好ましくは0.05~0.9モル使用される。 The first side chain compound and the second side chain compound are preferably 0.001 to 1.5 moles, more preferably 0.001 moles per mole of the epoxy group of the reactive polyorganosiloxane. 01 to 1 mol, more preferably 0.05 to 0.9 mol is used.
なお、上記反応性ポリオルガノシロキサンには、上記第一の側鎖用化合物及び上記第二の側鎖用化合物だけでなく、その他の化合物を反応させて側鎖を形成してもよい。また、上記第一の側鎖用化合物として、1種の化合物のみが用いられてもよいし、複数種の化合物が用いられてもよい。同様に、上記第二の側鎖用化合物として、1種の化合物のみが用いられてもよいし、複数種の化合物が用いられてもよい。 The reactive polyorganosiloxane may be reacted with not only the first side chain compound and the second side chain compound but also other compounds to form side chains. Moreover, only 1 type of compound may be used as said 1st compound for side chains, and multiple types of compounds may be used. Similarly, only one type of compound may be used as the second side chain compound, or a plurality of types of compounds may be used.
上記液晶配向性ポリオルガノシロキサンの生成反応は、触媒の存在下で行うことが好ましい。触媒としては、例えば有機塩基、又はエポキシ基とカルボキシル基との反応を促進するいわゆる硬化促進剤として公知の化合物を用いることができる。 The formation reaction of the liquid crystal aligning polyorganosiloxane is preferably performed in the presence of a catalyst. As the catalyst, for example, an organic base or a compound known as a so-called curing accelerator that accelerates the reaction between an epoxy group and a carboxyl group can be used.
上記有機塩基としては、例えばエチルアミン、ジエチルアミン、ピペラジン、ピペリジン、ピロリジン、ピロールの如き1~2級有機アミン;トリエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、ピリジン、4-ジメチルアミノピリジン、ジアザビシクロウンデセンの如き3級の有機アミン;テトラメチルアンモニウムヒドロキシドの如き4級の有機アミン等を挙げることができる。これらの有機塩基のうち、トリエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、ピリジン、4-ジメチルアミノピリジンの如き3級の有機アミン;テトラメチルアンモニウムヒドロキシドの如き4級の有機アミンが好ましい。 Examples of the organic base include primary and secondary organic amines such as ethylamine, diethylamine, piperazine, piperidine, pyrrolidine and pyrrole; triethylamine, tri-n-propylamine, tri-n-butylamine, pyridine, 4-dimethylaminopyridine, And tertiary organic amines such as diazabicycloundecene; quaternary organic amines such as tetramethylammonium hydroxide. Among these organic bases, tertiary organic amines such as triethylamine, tri-n-propylamine, tri-n-butylamine, pyridine and 4-dimethylaminopyridine; quaternary organic amines such as tetramethylammonium hydroxide preferable.
上記触媒は、反応性ポリオルガノシロキサン100重量部に対して、好ましくは100重量部以下、より好ましくは0.01~100重量部、更に好ましくは0.1~20重量部の割合で使用される。 The catalyst is used in an amount of preferably 100 parts by weight or less, more preferably 0.01 to 100 parts by weight, and still more preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the reactive polyorganosiloxane. .
上記生成反応における反応温度は、好ましくは0~200℃、より好ましくは50~150℃である。反応時間は、好ましくは0.1~50時間、より好ましくは0.5~20時間である。 The reaction temperature in the production reaction is preferably 0 to 200 ° C, more preferably 50 to 150 ° C. The reaction time is preferably 0.1 to 50 hours, more preferably 0.5 to 20 hours.
上記生成反応は、必要に応じて有機溶剤の存在下に行うことができる。かかる有機溶媒としては、例えば炭化水素化合物、エーテル化合物、エステル化合物、ケトン化合物、アミド化合物、アルコール化合物等が挙げられる。これらのうち、エーテル化合物、エステル化合物、ケトン化合物が、原料及び生成物の溶解性並びに生成物の精製のし易さの観点から好ましい。溶媒は、固形分濃度(反応溶液中の溶媒以外の成分の合計重量が溶液の全重量に占める割合)が、好ましくは0.1重量%以上、より好ましくは5~50重量%となる割合で使用される。 The production reaction can be carried out in the presence of an organic solvent as necessary. Examples of the organic solvent include hydrocarbon compounds, ether compounds, ester compounds, ketone compounds, amide compounds, alcohol compounds, and the like. Of these, ether compounds, ester compounds, and ketone compounds are preferred from the viewpoints of solubility of raw materials and products and ease of purification of the products. The solvent has a solid content concentration (ratio in which the total weight of components other than the solvent in the reaction solution occupies the total weight of the solution) is preferably 0.1% by weight or more, more preferably 5 to 50% by weight. used.
B)配向膜の第二成分:ポリアミック酸、ポリイミド
上記配向膜の第二成分は、ポリアミック酸及びポリイミドの一方又は両方を含有するものである。上記第二成分におけるポリアミック酸は、1種のポリアミック酸のみで構成されてもよいし、2種以上のポリアミック酸で構成されてもよい。同様に、上記第二成分におけるポリイミドは、1種のポリイミドのみで構成されてもよいし、2種以上のポリイミドで構成されてもよい。
B) Second component of alignment film: polyamic acid, polyimide The second component of the alignment film contains one or both of polyamic acid and polyimide. The polyamic acid in the second component may be composed of only one type of polyamic acid, or may be composed of two or more types of polyamic acid. Similarly, the polyimide in the second component may be composed of only one type of polyimide, or may be composed of two or more types of polyimide.
1.ポリアミック酸
上記ポリアミック酸は、テトラカルボン酸二無水物とジアミンとを反応させることにより得ることができる。
1. Polyamic acid The polyamic acid can be obtained by reacting tetracarboxylic dianhydride with diamine.
ポリアミック酸の合成に用いることのできるテトラカルボン酸二無水物としては、例えば2,3,5-トリカルボキシシクロペンチル酢酸二無水物、ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、3,5,6-トリカルボキシノルボルナン-2-酢酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]-フラン-1,3-ジオン、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-8-メチル-ナフト[1,2-c]-フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、ビシクロ[2.2.2]-オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、下記式(B-1)~(B-4)のそれぞれで表されるテトラカルボン酸二無水物等の脂肪族又は脂環式テトラカルボン酸二無水物が挙げられる。 Examples of tetracarboxylic dianhydrides that can be used in the synthesis of polyamic acid include 2,3,5-tricarboxycyclopentylacetic acid dianhydride, butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutane. Tetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 3,5,5 6-tricarboxynorbornane-2-acetic acid dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydro-2, 5-Dioxo-3-furanyl) -naphtho [1,2-c] -furan-1,3-dione, 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydride) -2,5-dioxo-3-furanyl) -8-methyl-naphtho [1,2-c] -furan-1,3-dione, 5- (2,5-dioxotetrahydrofuranyl) -3-methyl- 3-cyclohexene-1,2-dicarboxylic anhydride, bicyclo [2.2.2] -oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, the following formula (B-1) And aliphatic or alicyclic tetracarboxylic dianhydrides, such as tetracarboxylic dianhydrides represented by each of (B-4).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
また、上記テトラカルボン酸二無水物の他の例としては、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジメチルジフェニルシランテトラカルボン酸二無水物、3,3’,4,4’-テトラフェニルシランテトラカルボン酸二無水物、1,2,3,4-フランテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’-パーフルオロイソプロピリデンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、p-フェニレン-ビス(トリフェニルフタル酸)二無水物、m-フェニレン-ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルエーテル二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルメタン二無水物、下記式(B-5)~(B-8)のそれぞれで表されるテトラカルボン酸二無水物等の芳香族テトラカルボン酸二無水物等を挙げることができる。 Other examples of the tetracarboxylic dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenylsulfonetetracarboxylic dianhydride, 1,4,5,8- Naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride, 3,3 ′, 4 4′-dimethyldiphenylsilanetetracarboxylic dianhydride, 3,3 ′, 4,4′-tetraphenylsilanetetracarboxylic dianhydride, 1,2,3,4-furantetracarboxylic dianhydride, 4 , 4′-bis (3,4-dicarboxyphenoxy) diphenyl sulfide dianhydride, 4,4′-bis (3,4-dicarboxyphenoxy) diphenylsulfone dianhydride, 4,4′-bis (3 -Dicarboxyphenoxy) diphenylpropane dianhydride, 3,3 ', 4,4'-perfluoroisopropylidenetetracarboxylic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, Bis (phthalic acid) phenylphosphine oxide dianhydride, p-phenylene-bis (triphenylphthalic acid) dianhydride, m-phenylene-bis (triphenylphthalic acid) dianhydride, bis (triphenylphthalic acid)- 4,4′-diphenyl ether dianhydride, bis (triphenylphthalic acid) -4,4′-diphenylmethane dianhydride, tetracarboxylic acid represented by each of the following formulas (B-5) to (B-8) Examples thereof include aromatic tetracarboxylic dianhydrides such as dianhydrides.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
テトラカルボン酸二無水物の上記例のうち好ましいものとして、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]-フラン-1,3-ジオン、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-8-メチル-ナフト[1,2-c]-フラン-1,3-ジオン、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、ブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物ならびに上記式(B-1)、(B-2)及び(B-5)~(B-8)のそれぞれで表されるテトラカルボン酸二無水物を挙げることができる。 Of the above examples of tetracarboxylic dianhydrides, 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2, -C] -furan-1,3-dione, 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -8-methyl-naphtho [1, 2-c] -furan-1,3-dione, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, butanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutane Tetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, pyromellitic dianhydride, 3,3 ′, 4,4′-biphenylsulfone tetracarboxylic dianhydride, 1 , 4, 5, -Naphthalene tetracarboxylic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyl ether tetracarboxylic dianhydride and the above formula (B-1 ), (B-2) and tetracarboxylic dianhydrides represented by (B-5) to (B-8), respectively.
これらテトラカルボン酸二無水物は単独で又は二種以上を組み合わせて使用できる。 These tetracarboxylic dianhydrides can be used alone or in combination of two or more.
上記ポリアミック酸の合成に用いることのできるジアミンとしては、例えばp-フェニレンジアミン、m-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエタン、4,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルホン、3,3’-ジメチル-4,4’-ジアミノビフェニル、4,4’-ジアミノベンズアニリド、4,4’-ジアミノジフェニルエーテル、1,5-ジアミノナフタレン、3,3-ジメチル-4,4’-ジアミノビフェニル、5-アミノ-1-(4’-アミノフェニル)-1,3,3-トリメチルインダン、6-アミノ-1-(4’-アミノフェニル)-1,3,3-トリメチルインダン、3,4’-ジアミノジフェニルエーテル、2,2-ビス(4-アミノフェノキシ)プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]スルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、9,9-ビス(4-アミノフェニル)-10-ヒドロアントラセン、2,7-ジアミノフルオレン、9,9-ビス(4-アミノフェニル)フルオレン、4,4’-メチレン-ビス(2-クロロアニリン)、2,2’,5,5’-テトラクロロ-4,4’-ジアミノビフェニル、2,2’-ジクロロ-4,4’-ジアミノ-5,5’-ジメトキシビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、4,4’-(p-フェニレンイソプロピリデン)ビスアニリン、4,4’-(m-フェニレンイソプロピリデン)ビスアニリン、2,2-ビス[4-(4-アミノ-2-トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、4,4’-ビス[(4-アミノ-2-トリフルオロメチル)フェノキシ]-オクタフルオロビフェニル、6-(4-カルコニルオキシ)ヘキシルオキシ(2,4-ジアミノベンゼン)、6-(4’-フルオロ-4-カルコニルオキシ)ヘキシルオキシ(2,4-ジアミノベンゼン)、8-(4-カルコニルオキシ)オクチルオキシ(2,4-ジアミノベンゼン)、8-(4’-フルオロ-4-カルコニルオキシ)オクチルオキシ(2,4-ジアミノベンゼン)、1-ドデシルオキシ-2,4-ジアミノベンゼン、1-テトラデシルオキシ-2,4-ジアミノベンゼン、1-ペンタデシルオキシ-2,4-ジアミノベンゼン、1-ヘキサデシルオキシ-2,4-ジアミノベンゼン、1-オクタデシルオキシ-2,4-ジアミノベンゼン、1-コレステリルオキシ-2,4-ジアミノベンゼン、1-コレスタニルオキシ-2,4-ジアミノベンゼン、ドデシルオキシ(3,5-ジアミノベンゾイル)、テトラデシルオキシ(3,5-ジアミノベンゾイル)、ペンタデシルオキシ(3,5-ジアミノベンゾイル)、ヘキサデシルオキシ(3,5-ジアミノベンゾイル)、オクタデシルオキシ(3,5-ジアミノベンゾイル)、コレステリルオキシ(3,5-ジアミノベンゾイル)、コレスタニルオキシ(3,5-ジアミノベンゾイル)、(2,4-ジアミノフェノキシ)パルミテート、(2,4-ジアミノフェノキシ)ステアリレート、(2,4-ジアミノフェノキシ)-4-トリフルオロメチルベンゾエート、下記式(B-9)~(B-13)(式(B-12)におけるyは2~12の整数であり、式(B-13)におけるzは1~5の整数である。)のそれぞれで表される化合物等の芳香族ジアミン等を挙げることができる。 Examples of diamines that can be used for the synthesis of the polyamic acid include p-phenylenediamine, m-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylethane, and 4,4′-diaminodiphenyl sulfide. 4,4′-diaminodiphenyl sulfone, 3,3′-dimethyl-4,4′-diaminobiphenyl, 4,4′-diaminobenzanilide, 4,4′-diaminodiphenyl ether, 1,5-diaminonaphthalene, 3, , 3-Dimethyl-4,4′-diaminobiphenyl, 5-amino-1- (4′-aminophenyl) -1,3,3-trimethylindane, 6-amino-1- (4′-aminophenyl)- 1,3,3-trimethylindane, 3,4'-diaminodiphenyl ether, 2,2-bis (4 Aminophenoxy) propane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis (4 -Aminophenyl) hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) phenyl] sulfone, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) Benzene, 1,3-bis (3-aminophenoxy) benzene, 9,9-bis (4-aminophenyl) -10-hydroanthracene, 2,7-diaminofluorene, 9,9-bis (4-aminophenyl) Fluorene, 4,4'-methylene-bis (2-chloroaniline), 2,2 ', 5,5'-tetrachloro-4,4'-diaminobifu Nyl, 2,2′-dichloro-4,4′-diamino-5,5′-dimethoxybiphenyl, 3,3′-dimethoxy-4,4′-diaminobiphenyl, 4,4 ′-(p-phenyleneisopropylidene ) Bisaniline, 4,4 ′-(m-phenyleneisopropylidene) bisaniline, 2,2-bis [4- (4-amino-2-trifluoromethylphenoxy) phenyl] hexafluoropropane, 4,4′-diamino- 2,2′-bis (trifluoromethyl) biphenyl, 4,4′-bis [(4-amino-2-trifluoromethyl) phenoxy] -octafluorobiphenyl, 6- (4-chalconyloxy) hexyloxy ( 2,4-diaminobenzene), 6- (4′-fluoro-4-chalconyloxy) hexyloxy (2,4-diaminobenzene) 8- (4-Calconyloxy) octyloxy (2,4-diaminobenzene), 8- (4′-fluoro-4-calconyloxy) octyloxy (2,4-diaminobenzene), 1-dodecyloxy -2,4-diaminobenzene, 1-tetradecyloxy-2,4-diaminobenzene, 1-pentadecyloxy-2,4-diaminobenzene, 1-hexadecyloxy-2,4-diaminobenzene, 1-octadecyl Oxy-2,4-diaminobenzene, 1-cholesteryloxy-2,4-diaminobenzene, 1-cholestanyloxy-2,4-diaminobenzene, dodecyloxy (3,5-diaminobenzoyl), tetradecyloxy (3 , 5-diaminobenzoyl), pentadecyloxy (3,5-diaminobenzoyl), hexadecyl Xyl (3,5-diaminobenzoyl), octadecyloxy (3,5-diaminobenzoyl), cholesteryloxy (3,5-diaminobenzoyl), cholestanyloxy (3,5-diaminobenzoyl), (2,4-diamino) Phenoxy) palmitate, (2,4-diaminophenoxy) stearate, (2,4-diaminophenoxy) -4-trifluoromethylbenzoate, the following formulas (B-9) to (B-13) (formula (B-12 ) Is an integer of 2 to 12, and z in the formula (B-13) is an integer of 1 to 5. And aromatic diamines such as compounds represented by each of the above.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
また、上記ジアミンの他の例としては、ジアミノテトラフェニルチオフェン等のヘテロ原子を有する芳香族ジアミン;メタキシリレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、1,4-ジアミノシクロヘキサン、イソホロンジアミン、テトラヒドロジシクロペンタジエニレンジアミン、ヘキサヒドロ-4,7-メタノインダニレンジメチレンジアミン、トリシクロ[6.2.1.02,7]-ウンデシレンジメチルジアミン、4,4’-メチレンビス(シクロヘキシルアミン)等の脂肪族又は脂環式ジアミン;ジアミノヘキサメチルジシロキサン等のジアミノシロキサン等を挙げることができる。 Other examples of the diamine include aromatic diamines having heteroatoms such as diaminotetraphenylthiophene; metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, hepta Methylene diamine, octamethylene diamine, nonamethylene diamine, 1,4-diaminocyclohexane, isophorone diamine, tetrahydrodicyclopentadienylene diamine, hexahydro-4,7-methanoin danylene dimethyl methylene diamine, tricyclo [6.2.1 .0 2,7] - undecylenate range methyl diamine, 4,4'-methylenebis aliphatic or cycloaliphatic diamine (cyclohexylamine) and the like; be mentioned diamino siloxanes diamino hexamethyldisiloxane, etc. It can be.
ジアミンの上記例のうち好ましいものとして、p-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、1,5-ジアミノナフタレン、2,7-ジアミノフルオレン、4,4’-ジアミノジフェニルエーテル、4,4’-(p-フェニレンイソプロピリデン)ビスアニリン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノ-2-トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、4,4’-ビス[(4-アミノ-2-トリフルオロメチル)フェノキシ]-オクタフルオロビフェニル、1-ヘキサデシルオキシ-2,4-ジアミノベンゼン、1-オクタデシルオキシ-2,4-ジアミノベンゼン、1-コレステリルオキシ-2,4-ジアミノベンゼン、1-コレスタニルオキシ-2,4-ジアミノベンゼン、ヘキサデシルオキシ(3,5-ジアミノベンゾイル)、オクタデシルオキシ(3,5-ジアミノベンゾイル)、コレステリルオキシ(3,5-ジアミノベンゾイル)、コレスタニルオキシ(3,5-ジアミノベンゾイル)及び上記式(B-9)~(B-13)のそれぞれで表されるジアミンを挙げることができる。 Among the above examples of diamines, preferred are p-phenylenediamine, 4,4'-diaminodiphenylmethane, 1,5-diaminonaphthalene, 2,7-diaminofluorene, 4,4'-diaminodiphenyl ether, 4,4'- (P-phenyleneisopropylidene) bisaniline, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoropropane, 2,2-bis [ 4- (4-Amino-2-trifluoromethylphenoxy) phenyl] hexafluoropropane, 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl, 4,4′-bis [(4- Amino-2-trifluoromethyl) phenoxy] -octafluorobiphenyl, 1-hexadecyl Xyl-2,4-diaminobenzene, 1-octadecyloxy-2,4-diaminobenzene, 1-cholesteryloxy-2,4-diaminobenzene, 1-cholestanyloxy-2,4-diaminobenzene, hexadecyloxy ( 3,5-diaminobenzoyl), octadecyloxy (3,5-diaminobenzoyl), cholesteryloxy (3,5-diaminobenzoyl), cholestanyloxy (3,5-diaminobenzoyl) and the above formula (B-9) to Examples thereof include diamines represented by (B-13).
これらジアミンは単独で又は二種以上を組み合わせて使用できる。 These diamines can be used alone or in combination of two or more.
ポリアミック酸の合成反応に供されるテトラカルボン酸二無水物とジアミンの使用割合は、ジアミンに含まれるアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.2~2当量となる割合が好ましく、さらに好ましくは0.3~1.2当量となる割合である。 The ratio of the tetracarboxylic dianhydride and the diamine used for the polyamic acid synthesis reaction is such that the acid anhydride group of the tetracarboxylic dianhydride is 0.2 to 1 equivalent to 1 equivalent of the amino group contained in the diamine. A ratio of 2 equivalents is preferable, and a ratio of 0.3 to 1.2 equivalents is more preferable.
ポリアミック酸の合成反応は、好ましくは有機溶媒中において、好ましくは-20~150℃、より好ましくは0~100℃の温度条件下において、好ましくは0.5~24時間、より好ましくは2~10時間行われる。ここで、有機溶媒としては、合成されるポリアミック酸を溶解できるものであれば特に制限はなく、例えばN-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジメチルイミダゾリジノン、ジメチルスルホキシド、γ-ブチロラクトン、テトラメチル尿素、ヘキサメチルホスホルトリアミド等の非プロトン系極性溶媒;m-クレゾール、キシレノール、フェノール、ハロゲン化フェノール等のフェノール系溶媒を挙げることができる。有機溶媒の使用量(a)は、テトラカルボン酸二無水物及びジアミン化合物の総量(b)が反応溶液の全量(a+b)に対して好ましくは0.1~50重量%、より好ましくは5~30重量%となるような量である。 The polyamic acid synthesis reaction is preferably carried out in an organic solvent, preferably at a temperature of −20 to 150 ° C., more preferably 0 to 100 ° C., preferably 0.5 to 24 hours, more preferably 2 to 10 Done for hours. Here, the organic solvent is not particularly limited as long as it can dissolve the synthesized polyamic acid. For example, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N, Aprotic polar solvents such as N-dimethylimidazolidinone, dimethyl sulfoxide, γ-butyrolactone, tetramethylurea, hexamethylphosphoric triamide; and phenolic solvents such as m-cresol, xylenol, phenol, halogenated phenol, etc. Can do. The amount (a) of the organic solvent used is such that the total amount (b) of tetracarboxylic dianhydride and diamine compound is preferably 0.1 to 50% by weight, more preferably 5 to 5%, based on the total amount (a + b) of the reaction solution. The amount is 30% by weight.
以上のようにして、ポリアミック酸を溶解してなる反応溶液が得られる。この反応溶液はそのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸を単離したうえで液晶配向剤の調製に供してもよく、又は単離したポリアミック酸を精製したうえで液晶配向剤の調製に供してもよい。ポリアミック酸の単離は、上記反応溶液を大量の貧溶媒中に注いで析出物を得、この析出物を減圧下乾燥する方法、あるいは、反応溶液をエバポレーターで減圧留去する方法により行うことができる。また、このポリアミック酸を再び有機溶媒に溶解し、次いで貧溶媒で析出させる方法、あるいは、エバポレーターで減圧留去する工程を1回又は数回行う方法により、ポリアミック酸を精製することができる。 As described above, a reaction solution obtained by dissolving polyamic acid is obtained. This reaction solution may be used as it is for the preparation of the liquid crystal aligning agent, may be used for the preparation of the liquid crystal aligning agent after isolating the polyamic acid contained in the reaction solution, or the isolated polyamic acid was purified. You may use for preparation of a liquid crystal aligning agent. Polyamic acid can be isolated by pouring the reaction solution into a large amount of poor solvent to obtain a precipitate, and drying the precipitate under reduced pressure, or by distilling the reaction solution under reduced pressure using an evaporator. it can. The polyamic acid can be purified by a method of dissolving the polyamic acid again in an organic solvent and then precipitating with a poor solvent, or a method of performing the step of distilling off under reduced pressure with an evaporator once or several times.
2.ポリイミド
上記ポリイミドは、上記の如くして得られたポリアミック酸の有するアミック酸構造を脱水閉環することにより製造することができる。このとき、アミック酸構造の全部を脱水閉環して完全にイミド化してもよく、あるいはアミック酸構造のうちの一部のみを脱水閉環してアミック酸構造とイミド構造とが併存する部分イミド化物としてもよい。上記配向膜は、第二成分としてポリアミック酸及びポリイミドの一方又は両方を含有するものであるが、分子内にイミド部位(イミド化された部位)とアミック酸部位(イミド化されていない部位)の両方を有するものは、そのイミド化の程度によってポリアミック酸及びポリイミドのいずれかに分類すればよく、第二成分に含まれるものである。
2. Polyimide The polyimide can be produced by dehydrating and ring-closing the amic acid structure of the polyamic acid obtained as described above. At this time, all of the amic acid structure may be dehydrated and closed to completely imidize, or only a part of the amic acid structure may be dehydrated and closed to form a partially imidized product in which the amic acid structure and the imide structure coexist. Also good. The alignment film contains one or both of polyamic acid and polyimide as the second component, but has an imide site (imidized site) and an amic acid site (unimided site) in the molecule. Those having both may be classified as either polyamic acid or polyimide depending on the degree of imidization, and are included in the second component.
ポリアミック酸の脱水閉環は、(i)ポリアミック酸を加熱する方法により、又は(ii)ポリアミック酸を有機溶媒に溶解し、この溶液中に脱水剤及び脱水閉環触媒を添加し必要に応じて加熱する方法により行われる。 The polyamic acid is dehydrated and closed by (i) a method of heating the polyamic acid, or (ii) dissolving the polyamic acid in an organic solvent, adding a dehydrating agent and a dehydrating ring-closing catalyst to this solution, and heating as necessary. By the method.
上記(i)のポリアミック酸を加熱する方法における反応温度は、好ましくは50~200℃であり、より好ましくは60~170℃である。反応温度が50℃未満では脱水閉環反応が十分に進行せず、反応温度が200℃を超えると得られるイミド化重合体の分子量が低下する場合がある。ポリアミック酸を加熱する方法における反応時間は、好ましくは0.5~48時間であり、より好ましくは2~20時間である。 The reaction temperature in the method (i) of heating the polyamic acid is preferably 50 to 200 ° C., more preferably 60 to 170 ° C. When the reaction temperature is less than 50 ° C., the dehydration ring-closing reaction does not proceed sufficiently, and when the reaction temperature exceeds 200 ° C., the molecular weight of the imidized polymer obtained may decrease. The reaction time in the method of heating the polyamic acid is preferably 0.5 to 48 hours, more preferably 2 to 20 hours.
一方、上記(ii)のポリアミック酸の溶液中に脱水剤及び脱水閉環触媒を添加する方法において、脱水剤としては、例えば無水酢酸、無水プロピオン酸、無水トリフルオロ酢酸等の酸無水物を用いることができる。脱水剤の使用量は、ポリアミック酸構造単位の1モルに対して0.01~20モルとするのが好ましい。また、脱水閉環触媒としては、例えばピリジン、コリジン、ルチジン、トリエチルアミン等の3級アミンを用いることができる。しかし、これらに限定されるものではない。脱水閉環触媒の使用量は、使用する脱水剤1モルに対して0.01~10モルとするのが好ましい。脱水閉環反応に用いられる有機溶媒としては、ポリアミック酸の合成に用いられるものとして例示した有機溶媒を挙げることができる。脱水閉環反応の反応温度は好ましくは0~180℃、より好ましくは10~150℃であり、反応時間は好ましくは0.5~20時間であり、より好ましくは1~8時間である。 On the other hand, in the method (ii) of adding a dehydrating agent and a dehydrating ring-closing catalyst to the polyamic acid solution, as the dehydrating agent, for example, an acid anhydride such as acetic anhydride, propionic anhydride, or trifluoroacetic anhydride is used. Can do. The amount of the dehydrating agent used is preferably 0.01 to 20 mol with respect to 1 mol of the polyamic acid structural unit. Moreover, as a dehydration ring closure catalyst, tertiary amines, such as a pyridine, a collidine, a lutidine, a triethylamine, can be used, for example. However, it is not limited to these. The amount of the dehydration ring closure catalyst used is preferably 0.01 to 10 moles per mole of the dehydrating agent used. Examples of the organic solvent used in the dehydration ring-closing reaction include the organic solvents exemplified as those used for the synthesis of polyamic acid. The reaction temperature of the dehydration ring closure reaction is preferably 0 to 180 ° C., more preferably 10 to 150 ° C., and the reaction time is preferably 0.5 to 20 hours, more preferably 1 to 8 hours.
上記方法(i)において得られるポリイミドは、これをそのまま液晶配向剤の調製に供してもよく、あるいは得られるポリイミドを精製したうえで液晶配向剤の調製に供してもよい。一方、上記方法(ii)においてはポリイミドを含有する反応溶液が得られる。この反応溶液は、これをそのまま液晶配向剤の調製に供してもよく、反応溶液から脱水剤及び脱水閉環触媒を除いたうえで液晶配向剤の調製に供してもよく、ポリイミドを単離したうえで液晶配向剤の調製に供してもよく、又は単離したポリイミドを精製したうえで液晶配向剤の調製に供してもよい。反応溶液から脱水剤及び脱水閉環触媒を除くには、例えば溶媒置換等の方法を適用することができる。ポリイミドの単離、精製は、ポリアミック酸の単離、精製方法として上記したのと同様の操作を行うことにより行うことができる。 The polyimide obtained in the above method (i) may be used for the preparation of the liquid crystal aligning agent as it is, or may be used for the preparation of the liquid crystal aligning agent after purifying the obtained polyimide. On the other hand, in the above method (ii), a reaction solution containing polyimide is obtained. This reaction solution may be used as it is for the preparation of the liquid crystal aligning agent, or may be used for the preparation of the liquid crystal aligning agent after removing the dehydrating agent and the dehydrating ring-closing catalyst from the reaction solution. May be used for the preparation of a liquid crystal aligning agent, or may be used for the preparation of a liquid crystal aligning agent after purifying the isolated polyimide. In order to remove the dehydrating agent and the dehydration ring closure catalyst from the reaction solution, for example, a method such as solvent replacement can be applied. The isolation and purification of the polyimide can be performed by performing the same operation as described above as the isolation and purification method of the polyamic acid.
C)配向膜の他の成分
上記配向膜は、上記第一成分及び上記第二成分のほかに、さらに他の成分を含有していてもよい。他の成分としては、後述する液晶配向剤中の任意成分に由来するものが挙げられる。
C) Other components of alignment film In addition to the first component and the second component, the alignment film may further contain other components. As another component, what originates in the arbitrary components in the liquid crystal aligning agent mentioned later is mentioned.
[液晶配向剤]
配向膜の材料となる液晶配向剤は、上述の通り、上記液晶配向性ポリオルガノシロキサン(第一成分)と、ポリアミック酸及びポリイミドの一方又は両方(第二成分)を含有するものであるが、必要に応じて他の任意成分を含有してもよく、好ましくは各成分が有機溶媒に溶解された溶液状の組成物として調製される。
[Liquid crystal aligning agent]
As described above, the liquid crystal aligning agent to be the material of the alignment film contains the liquid crystal aligning polyorganosiloxane (first component) and one or both of polyamic acid and polyimide (second component). Other optional components may be contained as necessary. Preferably, each component is prepared as a solution composition dissolved in an organic solvent.
上記他の任意成分としては、例えば、架橋剤(硬化剤)、硬化触媒、上記液晶配向性ポリオルガノシロキサン、ポリアミック酸及びポリイミド以外の重合体、分子内に少なくとも一つのオキシラニル基を有する化合物、官能性シラン化合物、界面活性剤等を挙げることができる。 Examples of the other optional component include, for example, a crosslinking agent (curing agent), a curing catalyst, the liquid crystal alignment polyorganosiloxane, a polymer other than polyamic acid and polyimide, a compound having at least one oxiranyl group in the molecule, and a functional group. Silane compounds, surfactants and the like.
上記硬化剤及び硬化触媒は、それぞれ、液晶配向性ポリオルガノシロキサンの架橋をより強固とし、液晶配向膜の強度をより高める目的で液晶配向剤に含有されることができる。液晶配向剤が硬化剤を含有する場合には、さらに硬化促進剤を併用してもよい。 The curing agent and the curing catalyst can be contained in the liquid crystal aligning agent for the purpose of strengthening the cross-linking of the liquid crystal aligning polyorganosiloxane and increasing the strength of the liquid crystal aligning film, respectively. When the liquid crystal aligning agent contains a curing agent, a curing accelerator may be used in combination.
上記硬化剤としては、エポキシ基を有する硬化性化合物又はエポキシ基を有する化合物を含有する硬化性組成物の硬化用として一般に用いられている硬化剤を用いることができる。このような硬化剤の例としては、例えば、多価アミン、多価カルボン酸無水物、多価カルボン酸、多価カルボン酸エステル等が挙げられる。多価カルボン酸無水物の具体例としてはシクロヘキサン-1,2,4-トリカルボン酸、シクロヘキサン-1,3,5-トリカルボン酸、シクロヘキサン-1,2,3-トリカルボン酸等が挙げられる。また、シクロヘキサントリカルボン酸無水物としては、例えばシクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物、シクロヘキサン-1,3,5-トリカルボン酸-3,5-無水物、シクロヘキサン-1,2,3-トリカルボン酸-2,3-酸無水物、4-メチルテトラヒドロフタル酸無水物、メチルナジック酸無水物、ドデセニルコハク酸無水物のほか、α-テルピネン、アロオシメン等の共役二重結合を有する脂環式化合物と無水マレイン酸とのディールス・アルダー反応生成物やこれらの水素添加物、無水こはく酸、無水マレイン酸、無水フタル酸、無水トリメリット酸のほか、ポリアミック酸の合成に用いられるテトラカルボン酸二無水物として上記に例示した化合物等を挙げることができる。多価カルボン酸としては、例えば1,2-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,3,5-シクロヘキサントリカルボン酸、1,2,4-シクロヘキサントリカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、フタル酸、テレフタル酸、イソフタル酸、4-メチルフタル酸、4,4-ジカルボキシジフェニルエーテル、4,4-ビフェニルジカルボン酸、ベンゾフェノン-4,4-ジカルボン酸、1,2,4-ベンゼントリカルボン酸、1,3,5-ベンゼントリカルボン酸、トリメリット酸、ピロメリット酸、1,3,5-トリス(4-カルボキシフェニル)ベンゼン等が挙げられる。 As said hardening | curing agent, the hardening | curing agent generally used for hardening of the curable composition containing the curable compound which has an epoxy group, or the compound which has an epoxy group can be used. Examples of such curing agents include polyvalent amines, polyvalent carboxylic acid anhydrides, polyvalent carboxylic acids, polyvalent carboxylic acid esters, and the like. Specific examples of the polyvalent carboxylic acid anhydride include cyclohexane-1,2,4-tricarboxylic acid, cyclohexane-1,3,5-tricarboxylic acid, cyclohexane-1,2,3-tricarboxylic acid and the like. Examples of the cyclohexanetricarboxylic acid anhydride include cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, cyclohexane-1,3,5-tricarboxylic acid-3,5-anhydride, cyclohexane-1 , 2,3-tricarboxylic acid-2,3-acid anhydride, 4-methyltetrahydrophthalic acid anhydride, methyl nadic acid anhydride, dodecenyl succinic acid anhydride, as well as conjugated double bonds such as α-terpinene and alloocimene Used in the synthesis of Diamic-Alder reaction products of alicyclic compounds with maleic anhydride and their hydrogenated products, succinic anhydride, maleic anhydride, phthalic anhydride, trimellitic anhydride, and polyamic acid Examples of the tetracarboxylic dianhydride include the compounds exemplified above. Examples of the polyvalent carboxylic acid include 1,2-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,3,5-cyclohexanetricarboxylic acid, 1,2,4-cyclohexanetricarboxylic acid. Acid, 1,2,4,5-cyclohexanetetracarboxylic acid, phthalic acid, terephthalic acid, isophthalic acid, 4-methylphthalic acid, 4,4-dicarboxydiphenyl ether, 4,4-biphenyldicarboxylic acid, benzophenone-4,4 -Dicarboxylic acid, 1,2,4-benzenetricarboxylic acid, 1,3,5-benzenetricarboxylic acid, trimellitic acid, pyromellitic acid, 1,3,5-tris (4-carboxyphenyl) benzene, etc. .
上記液晶配向性ポリオルガノシロキサン以外の重合体は、液晶配向剤の溶液特性及び得られる液晶配向膜の電気特性をより改善するために使用することができる。 Polymers other than the above-mentioned liquid crystal aligning polyorganosiloxane can be used to further improve the solution characteristics of the liquid crystal aligning agent and the electrical characteristics of the resulting liquid crystal alignment film.
上記分子内に少なくとも一つのオキシラニル基を有する化合物は、形成される配向膜の基板表面に対する接着性をより向上する観点から、液晶配向剤に含有されることができる。 The compound having at least one oxiranyl group in the molecule can be contained in the liquid crystal aligning agent from the viewpoint of further improving the adhesion of the formed alignment film to the substrate surface.
上記官能性シラン化合物は、得られる液晶配向膜の基板との接着性を向上する目的で使用することができる。 The said functional silane compound can be used in order to improve the adhesiveness with the board | substrate of the liquid crystal aligning film obtained.
上記液晶配向剤を調製するために使用することのできる有機溶媒としては、上記第一成分、上記第二成分、及び任意的に使用される他の任意成分を溶解し、これらと反応しないものが好ましい。好ましい有機溶媒としては、ポリアミック酸の合成に用いられるものとして上記に例示した有機溶媒を挙げることができる。これら有機溶媒は、単独で又は二種以上組み合わせて使用することができる。 Organic solvents that can be used to prepare the liquid crystal aligning agent include those that dissolve the first component, the second component, and other optional components that are optionally used and do not react with them. preferable. As a preferable organic solvent, the organic solvent illustrated above as what is used for the synthesis | combination of a polyamic acid can be mentioned. These organic solvents can be used alone or in combination of two or more.
上記液晶配向剤の固形分濃度、すなわち液晶配向剤中の溶媒以外の全成分の重量が液晶配向剤の全重量に占める割合は、粘性、揮発性等を考慮して選択されるが、好ましくは1~10重量%の範囲である。上記液晶配向剤は、基板表面に塗布され、配向膜となる塗膜を形成するが、固形分濃度が1重量%未満である場合には、この塗膜の膜厚が過小となって良好な配向膜を得難い場合がある。一方、固形分濃度が10重量%を超える場合には、塗膜の膜厚が過大となって良好な配向膜を得難く、また、液晶配向剤の粘性が増大して塗布特性が不足する場合がある。特に好ましい固形分濃度の範囲は、基板に液晶配向剤を塗布する際に採用する方法によって異なる。例えばスピンナー法による場合には1.5~4.5重量%の範囲が特に好ましい。印刷法による場合には、固形分濃度を3~9重量%の範囲とし、それによって溶液粘度を12~50mPa・sの範囲とするのが特に好ましい。インクジェット法による場合には、固形分濃度を1~5重量%の範囲とし、それによって溶液粘度を3~15mPa・sの範囲とするのが特に好ましい。 The solid content concentration of the liquid crystal aligning agent, that is, the ratio of the weight of all components other than the solvent in the liquid crystal aligning agent to the total weight of the liquid crystal aligning agent is selected in consideration of viscosity, volatility, etc. It is in the range of 1 to 10% by weight. The liquid crystal aligning agent is applied to the substrate surface to form a coating film that serves as an alignment film. If the solid content concentration is less than 1% by weight, the coating film thickness is too small and good. It may be difficult to obtain an alignment film. On the other hand, when the solid content concentration exceeds 10% by weight, it is difficult to obtain a good alignment film due to excessive film thickness, and the viscosity of the liquid crystal alignment agent increases, resulting in insufficient coating characteristics. There is. The particularly preferable range of the solid content concentration varies depending on the method employed when the liquid crystal aligning agent is applied to the substrate. For example, in the case of the spinner method, the range of 1.5 to 4.5% by weight is particularly preferable. In the case of the printing method, it is particularly preferable that the solid content concentration is in the range of 3 to 9% by weight, and thereby the solution viscosity is in the range of 12 to 50 mPa · s. In the case of the ink jet method, the solid content concentration is particularly preferably in the range of 1 to 5% by weight, and thereby the solution viscosity is preferably in the range of 3 to 15 mPa · s.
[配向膜の成膜方法]
本実施形態の液晶表示パネルは、上記のような液晶配向剤から形成された配向膜を具備する。液晶配向剤を基板上に塗付し、次いで加熱して塗膜を形成し、更に塗膜上に光を照射して配向処理することにより、液晶配向剤から配向膜を形成することができる。上記塗布の方法としては、ロールコーター法、スピンナー法、印刷法、インクジェット法等が挙げられる。上記加熱は、予備加熱(プレベーク)、焼成(ポストベーク)の2段階で行ってもよい。上記塗膜の膜厚は、好ましくは0.001~1μmであり、より好ましくは0.005~0.5μmである。
[Method of forming alignment film]
The liquid crystal display panel of this embodiment includes an alignment film formed from the liquid crystal aligning agent as described above. An alignment film can be formed from a liquid crystal aligning agent by applying a liquid crystal aligning agent on a substrate, then heating to form a coating film, and further irradiating the coating film with light to perform an alignment treatment. Examples of the coating method include a roll coater method, a spinner method, a printing method, and an ink jet method. The heating may be performed in two stages: preheating (pre-baking) and baking (post-baking). The thickness of the coating film is preferably 0.001 to 1 μm, more preferably 0.005 to 0.5 μm.
上記配向処理に利用される光としては、直線偏光、無偏光を使用することができ、例えば150nm~800nmの波長の光を含む紫外線及び可視光線を用いることができるが、250nm~400nmの波長の光を含む紫外線が好ましい。直線偏光を用いる場合には、照射は基板面に垂直の方向から行っても、プレチルト角を付与するために斜め方向から行ってもよく、また、これらを組み合わせて行ってもよい。無偏光を照射する場合には、照射の方向は斜め方向である必要がある。 As the light used for the alignment treatment, linearly polarized light or non-polarized light can be used. For example, ultraviolet light and visible light including light having a wavelength of 150 nm to 800 nm can be used, and light having a wavelength of 250 nm to 400 nm can be used. Ultraviolet containing light is preferred. In the case of using linearly polarized light, irradiation may be performed from a direction perpendicular to the substrate surface, an oblique direction for providing a pretilt angle, or a combination thereof. When irradiating non-polarized light, the direction of irradiation needs to be an oblique direction.
使用する光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマーレーザー等を使用することができる。前記の好ましい波長領域の紫外線は、前記光源を、例えばフィルタ、回折格子等と併用する手段等により得ることができる。 As a light source to be used, for example, a low pressure mercury lamp, a high pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used. The ultraviolet rays in the preferable wavelength region can be obtained by means of using the light source in combination with, for example, a filter or a diffraction grating.
放射線の照射量としては、好ましくは0.1mJ/cm以上、1000mJ/cm未満であり、より好ましくは1mJ/cm以上、200mJ/cm未満である。 The radiation dose is preferably 0.1 mJ / cm 2 or more and less than 1000 mJ / cm 2 , more preferably 1 mJ / cm 2 or more and less than 200 mJ / cm 2 .
[変形例]
上記液晶表示装置の表示モードは特に限定されないが、例えば、Reverse Twisted Nematic(RTN)モードに適用することができる。以下に、RTNモードの液晶表示装置について、図3~図7を参照しながら説明する。
[Modification]
Although the display mode of the liquid crystal display device is not particularly limited, for example, it can be applied to a Reverse Twisted Nematic (RTN) mode. Hereinafter, an RTN mode liquid crystal display device will be described with reference to FIGS.
図3は、RTNモードの液晶表示装置における光配向処理方向と液晶分子のプレチルト方向との関係を示す斜視模式図である。図4(a)は、RTNモードの液晶表示装置がモノドメインを有する場合における、一画素(1ピクセル又は1サブピクセル)内の平均の液晶ダイレクターの方向と一対の基板(上下基板)に対する光配向処理方向との関係を示す平面模式図であり、図4(b)は、図4(a)で示した液晶表示装置に設けられる偏光板の吸収軸方向を示す模式図である。なお、図4(a)は、光配向処理方向が一対の基板の間で直交し、かつ一対の基板の間に閾値以上のAC電圧が印加された状態を示す。また、図4(a)中、実線矢印は、上基板に対する光照射方向(光配向処理方向)を示し、点線矢印は、下基板に対する光照射方向(光配向処理方向)を示す。図5は、アライメントマスクを用いるプロキシミティ露光法によって配向分割を行うための光配向処理プロセスにおける基板及びフォトマスクの第一の配置関係を示す断面模式図である。図6は、アライメントマスクを用いるプロキシミティ露光法によって配向分割を行うための光配向処理プロセスにおける基板及びフォトマスクの第二の配置関係を示す断面模式図である。図7(a)は、液晶表示装置が4ドメインを有する場合における、一画素(1ピクセル又は1サブピクセル)内の平均の液晶ダイレクターの方向と、一対の基板(上下基板)に対する光配向処理方向と、ドメインの分割パターンとを示す平面模式図であり、図7(b)は、図7(a)で示した液晶表示装置に設けられる偏光板の吸収軸方向を示す模式図である。なお、図7(a)は、一対の基板の間に閾値以上のAC電圧が印加された状態を示す。また、図7(a)中、実線矢印は、上基板(カラーフィルタ基板)に対する光照射方向(光配向処理方向)を示し、点線矢印は、下基板(駆動素子基板)に対する光照射方向(光配向処理方向)を示す。 FIG. 3 is a schematic perspective view showing the relationship between the photo-alignment processing direction and the pretilt direction of the liquid crystal molecules in the RTN mode liquid crystal display device. FIG. 4A shows the direction of an average liquid crystal director in one pixel (one pixel or one subpixel) and light for a pair of substrates (upper and lower substrates) when the RTN mode liquid crystal display device has a monodomain. FIG. 4B is a schematic diagram showing the absorption axis direction of the polarizing plate provided in the liquid crystal display device shown in FIG. 4A. Note that FIG. 4A shows a state in which the photo-alignment processing direction is orthogonal between the pair of substrates and an AC voltage equal to or higher than the threshold is applied between the pair of substrates. In FIG. 4A, the solid arrow indicates the light irradiation direction (photo-alignment processing direction) with respect to the upper substrate, and the dotted arrow indicates the light irradiation direction (photo-alignment processing direction) with respect to the lower substrate. FIG. 5 is a schematic cross-sectional view showing a first positional relationship between the substrate and the photomask in the optical alignment processing process for performing alignment division by proximity exposure using an alignment mask. FIG. 6 is a schematic cross-sectional view showing a second arrangement relationship between the substrate and the photomask in a photo-alignment process for performing alignment division by proximity exposure using an alignment mask. FIG. 7A shows an average liquid crystal director direction in one pixel (one pixel or one subpixel) and a photo-alignment process for a pair of substrates (upper and lower substrates) when the liquid crystal display device has four domains. FIG. 7B is a schematic diagram showing the absorption axis direction of the polarizing plate provided in the liquid crystal display device shown in FIG. 7A. FIG. 7A shows a state where an AC voltage equal to or higher than a threshold is applied between a pair of substrates. In FIG. 7A, a solid line arrow indicates a light irradiation direction (photo-alignment processing direction) on the upper substrate (color filter substrate), and a dotted line arrow indicates a light irradiation direction (light) on the lower substrate (drive element substrate). Orientation processing direction).
RTNモードの液晶表示装置は、一対の基板(上下基板)の間に、誘電率異方性が負の液晶分子を含む液晶層が挟持されている。一対の基板は、ガラス等からなる絶縁性の透明基板を有し、一対の基板の液晶層に接する側の面にそれぞれ透明電極が形成され、更に、透明電極上には垂直配向性を示す上述の配向膜がそれぞれ形成されている。また、一対の基板はそれぞれ、一画素(1ピクセル又は1サブピクセル)毎に駆動素子(スイッチング素子)が形成された駆動素子基板(例えば、TFT基板)と、駆動素子基板の各画素に対応してカラーフィルタが形成されたカラーフィルタ基板として機能する。 In an RTN mode liquid crystal display device, a liquid crystal layer including liquid crystal molecules having negative dielectric anisotropy is sandwiched between a pair of substrates (upper and lower substrates). The pair of substrates includes an insulating transparent substrate made of glass or the like, and a transparent electrode is formed on each surface of the pair of substrates on the side in contact with the liquid crystal layer. Further, the above-described vertical alignment property is provided on the transparent electrode. Each of the alignment films is formed. Each of the pair of substrates corresponds to a driving element substrate (for example, a TFT substrate) in which a driving element (switching element) is formed for each pixel (one pixel or one subpixel), and each pixel of the driving element substrate. And function as a color filter substrate on which a color filter is formed.
また、駆動素子基板において、駆動素子に接続され、マトリクス状に形成された透明電極は、画素電極として機能する。一方、カラーフィルタ基板において、表示領域の全面に一様に形成された透明電極は、対向電極(共通電極)として機能する。更に、一対の基板の液晶層と反対側の面にはそれぞれ偏光板が例えばクロスニコルに配置されるとともに、一対の基板の間には、セル厚を一定に保つためのセル厚保持体(スペーサ)が所定の位置(非表示領域)に配置されている。なお、基板及び透明電極の材質、液晶分子の材料等としては特に限定されない。 In the driving element substrate, the transparent electrodes connected to the driving elements and formed in a matrix function as pixel electrodes. On the other hand, in the color filter substrate, the transparent electrode formed uniformly on the entire surface of the display region functions as a counter electrode (common electrode). Further, polarizing plates are disposed, for example, in crossed Nicols on the surfaces of the pair of substrates opposite to the liquid crystal layer, and a cell thickness holder (spacer) for keeping the cell thickness constant between the pair of substrates. ) Is arranged at a predetermined position (non-display area). The material for the substrate and the transparent electrode, the material for the liquid crystal molecules, and the like are not particularly limited.
配向膜110は、図3に示すように、入射面に平行に偏光した紫外線(UV光、図3中の白抜き矢印)が基板面法線方向から、例えば40°傾けて照射されると、その光照射方向側に液晶分子111のプレチルト角を発生することができる。なお、配向膜110の露光は、一括露光により行われてもよいし、スキャン露光により行われてもよい。すなわち、基板及び光源を固定した状態で配向膜110を照射してもよいし、図3中の点線矢印に示すように、UV光を光照射方向に沿って走査しながら配向膜110を照射してもよい。 As shown in FIG. 3, the alignment film 110 is irradiated with ultraviolet rays (UV light, white arrows in FIG. 3) polarized in parallel to the incident surface at an angle of, for example, 40 ° from the normal direction of the substrate surface. The pretilt angle of the liquid crystal molecules 111 can be generated on the light irradiation direction side. Note that the alignment film 110 may be exposed by batch exposure or scan exposure. That is, the alignment film 110 may be irradiated with the substrate and the light source fixed, or the alignment film 110 may be irradiated while scanning the UV light along the light irradiation direction, as indicated by a dotted arrow in FIG. May be.
液晶表示装置は、図4(a)に示すように、一対の基板(上下基板112)に対する光線照射方向が、基板を平面視したときに、それぞれ略直交するように配向膜の露光と基板の貼り合わせとが行われ、また、上下基板112それぞれに設けられた配向膜近傍の液晶分子のプレチルト角が略同一であり、更に、液晶層にカイラル材を含まない液晶材料が注入されてもよい。この場合、上下基板112の間に閾値以上のAC電圧が印加されると、液晶分子は上下基板112間の基板面法線方向において90°ねじれた構造を有するとともに、AC電圧印加時の平均の液晶ダイレクター方向117は、図4に示すように、基板を平面視したときに、上下基板112に対する光照射方向を二分する向きとなる。また、図4(b)に示すように、上基板側に配置された偏光板(上偏光板)の吸収軸方向は、上基板の光配向処理方向と一致し、一方、下基板側に配置された偏光板(下偏光板)の吸収軸方向は、下基板の光配向処理方向と一致している。 As shown in FIG. 4A, the liquid crystal display device exposes the alignment film and the substrate so that the light irradiation directions on the pair of substrates (upper and lower substrates 112) are substantially orthogonal to each other when the substrates are viewed in plan view. Bonding is performed, and the pretilt angles of the liquid crystal molecules in the vicinity of the alignment films provided on the upper and lower substrates 112 are substantially the same, and a liquid crystal material that does not include a chiral material may be injected into the liquid crystal layer. . In this case, when an AC voltage equal to or higher than the threshold is applied between the upper and lower substrates 112, the liquid crystal molecules have a structure that is twisted by 90 ° in the normal direction of the substrate surface between the upper and lower substrates 112, and the average when the AC voltage is applied. As shown in FIG. 4, the liquid crystal director direction 117 is a direction that bisects the light irradiation direction with respect to the upper and lower substrates 112 when the substrate is viewed in plan. Further, as shown in FIG. 4B, the absorption axis direction of the polarizing plate (upper polarizing plate) arranged on the upper substrate side coincides with the photo-alignment processing direction of the upper substrate, while arranged on the lower substrate side. The absorption axis direction of the polarizing plate (lower polarizing plate) coincides with the photo-alignment processing direction of the lower substrate.
次に、図7に示すように、液晶表示装置における各画素が配向分割された場合について説明する。液晶表示装置に4ドメインを形成するための露光工程においては、まず、図5に示すように、液晶表示装置の1画素(1ピクセル又は1サブピクセル)の幅を二分する大きさの遮光部114を有するフォトマスク113を用いて、1画素(1ピクセル又は1サブピクセル)の半分に相当する領域を一方向(図5中、紙面手前から奥の方向)に露光するとともに、残りの半分の領域を遮光部114によって遮光する。次のステップでは、図6に示すように、フォトマスク113を画素(1ピクセル又は1サブピクセル)の半ピッチ程ずらして、露光済みの領域を遮光部114で遮光して、遮光していないところ(図5で示したステップにおいて露光されなかった未露光領域)を図5とは逆方向(図6中、紙面奥から手前の方向)に露光する。これにより、液晶表示装置の1画素(1ピクセル又は1サブピクセル)の幅を二分するように、互いに逆方向に液晶プレチルトを発現する領域がストライプ状に形成されることになる。 Next, as shown in FIG. 7, a case where each pixel in the liquid crystal display device is divided in alignment will be described. In the exposure process for forming four domains in the liquid crystal display device, first, as shown in FIG. 5, the light shielding portion 114 having a size that bisects the width of one pixel (one pixel or one subpixel) of the liquid crystal display device. Using the photomask 113 having the above, an area corresponding to half of one pixel (one pixel or one subpixel) is exposed in one direction (in FIG. 5, from the front to the back of the paper) and the remaining half of the area Is shielded by the light shielding portion 114. In the next step, as shown in FIG. 6, the photomask 113 is shifted by about a half pitch of the pixel (one pixel or one subpixel), and the exposed area is shielded by the shading unit 114 and is not shielded. (An unexposed area that has not been exposed in the step shown in FIG. 5) is exposed in a direction opposite to that in FIG. As a result, regions where the liquid crystal pretilt is generated in opposite directions are formed in stripes so as to divide the width of one pixel (one pixel or one subpixel) of the liquid crystal display device.
上述のように、それぞれの基板の各画素(各ピクセル又は各サブピクセル)を二分割するように等ピッチで配向分割しておく。そして、基板を平面視したときに、上下基板112で分割方向(光配向処理方向)が互いに直交するように両基板を配置し(貼り合わせ)、更に、液晶層にカイラル材を含まない液晶材料を注入する。これにより、図7(a)に示すように、液晶層の厚み方向における中央付近に位置する液晶分子の配向方向が、4つの領域(図7(a)中、i~iv)において、互いに異なる、より具体的には略直交する四分割ドメインを形成することができる。すなわち、AC電圧印加時の平均の液晶ダイレクター方向117は、図7(a)に示すように、基板を平面視したときに、各ドメインにおいて、上下基板112に対する光照射方向を二分する向きとなる。また、図7(b)に示すように、基板を平面視したときに、上基板(カラーフィルタ基板)の光配向処理方向(図7(a)中、実線矢印)は、上基板側に配置された偏光板の吸収軸方向115と同一方向となり、下基板(駆動素子基板)の光配向処理方向(図7(a)中、点線矢印)は、下基板側に配置された偏光板の吸収軸方向116と同一方向となっている。 As described above, each pixel (each pixel or each sub-pixel) on each substrate is divided in orientation at an equal pitch so as to be divided into two. Then, when the substrates are viewed in plan, the substrates are arranged (bonded) so that the upper and lower substrates 112 are perpendicular to each other in the dividing direction (photo-alignment processing direction), and further, the liquid crystal material does not contain a chiral material in the liquid crystal layer Inject. As a result, as shown in FIG. 7A, the alignment directions of the liquid crystal molecules located near the center in the thickness direction of the liquid crystal layer are different from each other in the four regions (i to iv in FIG. 7A). More specifically, quadrant domains that are substantially orthogonal can be formed. That is, as shown in FIG. 7A, the average liquid crystal director direction 117 when the AC voltage is applied is a direction that bisects the light irradiation direction with respect to the upper and lower substrates 112 in each domain when the substrate is viewed in plan view. Become. Further, as shown in FIG. 7B, when the substrate is viewed in plan, the optical alignment processing direction (solid arrow in FIG. 7A) of the upper substrate (color filter substrate) is arranged on the upper substrate side. The direction of the optical alignment treatment of the lower substrate (driving element substrate) (indicated by a dotted line in FIG. 7A) is the same as the absorption axis direction 115 of the polarizing plate, and the absorption of the polarizing plate disposed on the lower substrate side. The direction is the same as the axial direction 116.
なお、それぞれのドメイン境界においては、一方の基板上の液晶分子の配向方向が偏光板の吸収軸方向と一致し、他方の基板上の液晶分子の配向方向は基板に対してほぼ垂直となっている。したがって、ドメイン境界は、偏光板をクロスニコルに配置した場合、基板間に電圧を印加したときにおいても光を透過しないので暗線(暗い線)となる。 At each domain boundary, the alignment direction of the liquid crystal molecules on one substrate coincides with the absorption axis direction of the polarizing plate, and the alignment direction of the liquid crystal molecules on the other substrate is substantially perpendicular to the substrate. Yes. Therefore, when the polarizing plates are arranged in crossed Nicols, the domain boundary becomes a dark line (dark line) because light is not transmitted even when a voltage is applied between the substrates.
以上説明したように、本実施形態の液晶表示装置において、液晶分子の配向方向が互いに異なる(略直交する)4つのドメインを形成した場合には、優れた視角特性、すなわち広視野角を実現することができる。 As described above, in the liquid crystal display device of this embodiment, when four domains having different alignment directions of liquid crystal molecules (substantially orthogonal) are formed, an excellent viewing angle characteristic, that is, a wide viewing angle is realized. be able to.
なお、本実施形態の液晶表示装置におけるドメインのレイアウトは、図7(a)に示したような四分割に限らず、図8(a)に示すような形態であってもよい。図8(a)は、液晶表示装置が別の4ドメインを有する場合における、一画素(1ピクセル又は1サブピクセル)内の平均の液晶ダイレクターの方向と、一対の基板(上下基板)に対する光配向処理方向と、ドメインの分割パターンとを示す平面模式図であり、図8(b)は、図8(a)で示した液晶表示装置に設けられる偏光板の吸収軸方向を示す模式図であり、図8(c)は、一対の基板の間に閾値以上のAC電圧が印加された時の図8(a)のA-B線における断面模式図であり、液晶分子の配向方向を示す。なお、図8(a)中、点線矢印は、下基板(駆動素子基板)に対する光照射方向(光配向処理方向)を示し、実線矢印は、上基板(カラーフィルタ基板)に対する光照射方向(光配向処理方向)を示す。また、図8(c)中、点線は、ドメイン境界を示す。 The domain layout in the liquid crystal display device of the present embodiment is not limited to four divisions as shown in FIG. 7A, but may be a form as shown in FIG. FIG. 8A shows the direction of the average liquid crystal director in one pixel (one pixel or one subpixel) and the light with respect to a pair of substrates (upper and lower substrates) when the liquid crystal display device has another four domains. FIG. 8B is a schematic plan view showing an alignment treatment direction and domain division patterns, and FIG. 8B is a schematic diagram showing an absorption axis direction of a polarizing plate provided in the liquid crystal display device shown in FIG. FIG. 8C is a schematic cross-sectional view taken along the line AB in FIG. 8A when an AC voltage equal to or higher than the threshold is applied between the pair of substrates, and shows the alignment direction of the liquid crystal molecules. . In FIG. 8A, the dotted arrow indicates the light irradiation direction (photo-alignment processing direction) with respect to the lower substrate (drive element substrate), and the solid line arrow indicates the light irradiation direction (light with respect to the upper substrate (color filter substrate)). Orientation processing direction). In FIG. 8C, a dotted line indicates a domain boundary.
この形態の作製方法としては、まず、図8(a)に示すように、それぞれの基板の各画素(各ピクセル又は各サブピクセル)を二分割するように等ピッチで配向分割しておく。そして、基板を平面視したときに、上下基板112で分割方向(光配向処理方向)を互いに直交するように両基板を配置する(貼り合わせる)ことによって、図8(a)に示すように、液晶層の厚み方向における中央付近に位置する液晶分子の配向方向が、4つの領域(図8(a)中、i~iv)において、互いに異なる、より具体的には略直交する四分割ドメインを形成することができる。すなわち、AC電圧印加時の平均の液晶ダイレクター方向117は、図8(a)に示すように、基板を平面視したときに、各ドメインにおいて、上下基板12に対する光照射方向を二分する向きとなる。また、図8(b)に示すように、この形態においては、基板を平面視したときに、上基板(カラーフィルタ基板)の光配向処理方向(図8(a)中、実線矢印)は、上基板側に配置された偏光板の吸収軸方向115と同一方向となり、下基板(駆動素子基板)の光配向処理方向(図8(a)中、点線矢印)は、下基板側に配置された偏光板の吸収軸方向116と同一方向となっている。そして、上下基板の間に電圧が印加されない時には、液晶分子は、配向膜の配向規制力によって、上下基板に略垂直な方向に配向している。一方、上下基板の間に閾値以上の電圧を印加した時には、図8(c)に示すように、液晶分子111は、上下基板間でほぼ90°ツイストし、かつ4つのドメインで異なる4つの配向状態が存在することになる。 As a manufacturing method of this form, first, as shown in FIG. 8A, each pixel (each pixel or each subpixel) of each substrate is divided in orientation at equal pitches. Then, when the substrates are viewed in plan, by arranging (bonding) both substrates so that the dividing direction (photo-alignment processing direction) is orthogonal to each other on the upper and lower substrates 112, as shown in FIG. The four-domain domains in which the alignment directions of the liquid crystal molecules located near the center in the thickness direction of the liquid crystal layer are different from each other in four regions (i to iv in FIG. 8A), more specifically, substantially orthogonal. Can be formed. That is, as shown in FIG. 8A, the average liquid crystal director direction 117 when the AC voltage is applied is a direction that bisects the light irradiation direction with respect to the upper and lower substrates 12 in each domain when the substrate is viewed in plan view. Become. In addition, as shown in FIG. 8B, in this embodiment, when the substrate is viewed in plan, the optical alignment processing direction (solid arrow in FIG. 8A) of the upper substrate (color filter substrate) is It is in the same direction as the absorption axis direction 115 of the polarizing plate arranged on the upper substrate side, and the photo-alignment processing direction of the lower substrate (driving element substrate) (indicated by the dotted arrow in FIG. 8A) is arranged on the lower substrate side. The direction is the same as the absorption axis direction 116 of the polarizing plate. When no voltage is applied between the upper and lower substrates, the liquid crystal molecules are aligned in a direction substantially perpendicular to the upper and lower substrates by the alignment regulating force of the alignment film. On the other hand, when a voltage higher than the threshold value is applied between the upper and lower substrates, as shown in FIG. 8C, the liquid crystal molecules 111 are twisted by approximately 90 ° between the upper and lower substrates and have four different orientations in four domains. A state will exist.
以上、本発明の実施形態について説明したが、上記実施形態に関する説明として記載された個々の事項は、すべて本発明全般に関する好ましい形態の説明を兼ねるものであり、図面に記載された本発明の一形態に限るものではない。 The embodiment of the present invention has been described above. However, each item described as the description regarding the above-mentioned embodiment also serves as a description of a preferable embodiment related to the present invention in general, and one embodiment of the present invention described in the drawings. It is not limited to form.
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。 The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.
[実施例中の用語の説明]
重量平均分子量(Mw)は、以下の条件におけるゲル浸透クロマトグラフィー(Gel Permeation Chromatography:GPC)により測定したポリスチレン換算値である。
カラム:東ソー社製、TSKgelGRCXLII
溶剤:テトラヒドロフラン
温度:40℃
圧力:68kgf/cm
[Explanation of terms in the examples]
A weight average molecular weight (Mw) is a polystyrene conversion value measured by gel permeation chromatography (Gel Permeation Chromatography: GPC) under the following conditions.
Column: manufactured by Tosoh Corporation, TSKgelGRCXLII
Solvent: Tetrahydrofuran Temperature: 40 ° C
Pressure: 68 kgf / cm 2
エポキシ当量は、JIS C2105の「塩酸-メチルエチルケトン法」に準じて測定した。 The epoxy equivalent was measured according to the “hydrochloric acid-methyl ethyl ketone method” of JIS C2105.
[実施例で使用した材料の調製]
実施例で使用した材料の調製方法を以下に「合成例」として示す。なお、以下の合成例は、必要に応じて下記の合成スケールで繰り返されることにより、後続の合成例及び実施例で使用する必要量の生成物を確保した。
[Preparation of materials used in Examples]
The method for preparing the materials used in the examples is shown as “Synthesis Examples” below. In addition, the following synthesis examples were repeated with the following synthesis scale as needed, and the required amount of product used in a subsequent synthesis example and an Example was ensured.
1.反応性ポリオルガノシロキサンの合成
(合成例1)
撹拌機、温度計、滴下漏斗及び還流冷却管を備えた反応容器に、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン100.0g、メチルイソブチルケトン500g及びトリエチルアミン10.0gを仕込み、室温で混合した。次いで、脱イオン水100gを滴下漏斗より30分かけて滴下した後、還流下で混合しつつ、80℃で6時間反応させた。反応終了後、有機層を取り出し、0.2重量%硝酸アンモニウム水溶液により洗浄後の水が中性になるまで洗浄した後、減圧下で溶媒及び水を留去することにより、エポキシ基を有する反応性ポリオルガノシロキサン(A)を粘調な透明液体として得た。
1. Synthesis of reactive polyorganosiloxane (Synthesis Example 1)
A reaction vessel equipped with a stirrer, a thermometer, a dropping funnel and a reflux condenser was charged with 100.0 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 500 g of methyl isobutyl ketone and 10.0 g of triethylamine at room temperature. Mixed. Next, 100 g of deionized water was dropped from the dropping funnel over 30 minutes, and the mixture was reacted at 80 ° C. for 6 hours while mixing under reflux. After completion of the reaction, the organic layer is taken out and washed with a 0.2 wt% ammonium nitrate aqueous solution until the water after washing becomes neutral, and then the solvent and water are distilled off under reduced pressure to react with an epoxy group. Polyorganosiloxane (A) was obtained as a viscous transparent liquid.
この反応性ポリオルガノシロキサン(A)について、1H-NMR分析を行なったところ、化学シフト(δ)=3.2ppm付近にエポキシ基に基づくピークが理論強度どおりに得られ、反応中にエポキシ基の副反応が起こっていないことが確認された。この反応性ポリオルガノシロキサン(A)のMwは2,200であり、エポキシ当量は186g/モルであった。 As a result of 1H-NMR analysis of this reactive polyorganosiloxane (A), a peak based on the epoxy group was obtained in the vicinity of the chemical shift (δ) = 3.2 ppm in accordance with the theoretical intensity. It was confirmed that no side reaction occurred. This reactive polyorganosiloxane (A) had an Mw of 2,200 and an epoxy equivalent of 186 g / mol.
2.特定フッ素含有基を有さないカルボン酸化合物の合成
(合成例2)
下記スキームに従って、上記式(1)で表される化合物の一種であるカルボン酸化合物(B)を合成した。
2. Synthesis of carboxylic acid compound having no specific fluorine-containing group (Synthesis Example 2)
According to the following scheme, a carboxylic acid compound (B), which is a kind of the compound represented by the above formula (1), was synthesized.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
まず、4-ペンチル-トランスシクロヘキシルカルボン酸99.1gを反応容器にとり、これに塩化チオニル1L及びN,N-ジメチルホルムアミド770μLを加えて80℃で1時間撹拌した。次に、減圧下で塩化チオニルを留去し、塩化メチレンを加えて炭酸水素ナトリウム水溶液で洗浄し、硫酸マグネシウムで乾燥し、濃縮を行った後、テトラヒドロフランを加えて溶液とした。 First, 99.1 g of 4-pentyl-transcyclohexylcarboxylic acid was placed in a reaction vessel, 1 L of thionyl chloride and 770 μL of N, N-dimethylformamide were added thereto, and the mixture was stirred at 80 ° C. for 1 hour. Next, thionyl chloride was distilled off under reduced pressure, methylene chloride was added, washed with an aqueous sodium hydrogen carbonate solution, dried over magnesium sulfate, concentrated, and then tetrahydrofuran was added to form a solution.
次に、上記反応容器とは別の5Lの三口フラスコに4-ヒドロキシ桂皮酸74g、炭酸カリウム138g、テトラブチルアンモニウム4.8g、テトラヒドロフラン500mL及び水1Lを仕込んだ。この水溶液を氷冷し、上記のテトラヒドロフラン溶液をゆっくり滴下し、さらに2時間撹拌下に反応を行った。反応終了後、反応混合物に塩酸を加えて中和し、酢酸エチルで抽出した後、抽出液を硫酸マグネシウムで乾燥し、濃縮を行った後、エタノールで再結晶することにより、カルボン酸化合物(B)の白色結晶130gを得た。 Next, 74 g of 4-hydroxycinnamic acid, 138 g of potassium carbonate, 4.8 g of tetrabutylammonium, 500 mL of tetrahydrofuran and 1 L of water were charged into a 5 L three-necked flask separate from the reaction vessel. This aqueous solution was ice-cooled, and the above tetrahydrofuran solution was slowly added dropwise, and the reaction was further performed with stirring for 2 hours. After completion of the reaction, the reaction mixture was neutralized by adding hydrochloric acid, extracted with ethyl acetate, the extract was dried over magnesium sulfate, concentrated, and recrystallized with ethanol to give a carboxylic acid compound (B ) 130 g of white crystals were obtained.
3.特定フッ素含有基を有するカルボン酸化合物の合成
(合成例3)
下記スキームに従って、上記式(2)で表される化合物の一種であるカルボン酸化合物(C)を合成した。
3. Synthesis of carboxylic acid compound having specific fluorine-containing group (Synthesis Example 3)
According to the following scheme, a carboxylic acid compound (C), which is one of the compounds represented by the above formula (2), was synthesized.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
まず、1Lのナス型フラスコに4-ヒドロキシ安息香酸メチル82g、炭酸カリウム166g及びN,N-ジメチルアセトアミド400mLを仕込み、室温で1時間撹拌を行った後、4,4,4-トリフルオロ-1-ヨードブタン95gを加え室温で5時間撹拌下に反応を行った。反応終了後、水で再沈殿を行った。次に、この沈殿物に水酸化ナトリウム32g及び水400mLを加えて4時間還流して加水分解反応を行った。反応終了後、塩酸で中和し、生じた沈殿物をエタノールで再結晶することにより化合物(C’)の白色結晶を80g得た。 First, 82 g of methyl 4-hydroxybenzoate, 166 g of potassium carbonate and 400 mL of N, N-dimethylacetamide were charged into a 1 L eggplant-shaped flask and stirred at room temperature for 1 hour, and then 4,4,4-trifluoro-1 -95 g of iodobutane was added and the reaction was carried out at room temperature with stirring for 5 hours. After completion of the reaction, reprecipitation was performed with water. Next, 32 g of sodium hydroxide and 400 mL of water were added to the precipitate and refluxed for 4 hours to perform a hydrolysis reaction. After completion of the reaction, the reaction mixture was neutralized with hydrochloric acid, and the resulting precipitate was recrystallized with ethanol to obtain 80 g of white crystals of the compound (C ′).
この化合物(C’)のうちの46.4gを反応容器にとり、これに塩化チオニル200mL及びN,N-ジメチルホルムアミド0.2mLを加えて80℃で1時間撹拌した。次に、減圧下で塩化チオニルを留去し、塩化メチレンを加えて炭酸水素ナトリウム水溶液で洗浄し、硫酸マグネシウムで乾燥し、濃縮を行った後、テトラヒドロフランを加えて溶液とした。 46.4 g of this compound (C ′) was placed in a reaction vessel, and 200 mL of thionyl chloride and 0.2 mL of N, N-dimethylformamide were added thereto, followed by stirring at 80 ° C. for 1 hour. Next, thionyl chloride was distilled off under reduced pressure, methylene chloride was added, washed with an aqueous sodium hydrogen carbonate solution, dried over magnesium sulfate, concentrated, and then tetrahydrofuran was added to form a solution.
次に、上記反応容器とは別の2Lの三口フラスコに4-ヒドロキシ桂皮酸36g、炭酸カリウム55g、テトラブチルアンモニウム2.4g、テトラヒドロフラン200mL及び水400mLを仕込んだ。この水溶液を氷冷し、上記の化合物(C’)と塩化チオニルとの反応物を含有するテトラヒドロフラン溶液をゆっくり滴下し、さらに2時間撹拌下に反応を行った。反応終了後、反応混合物に塩酸を加えて中和し、酢酸エチルで抽出した後、抽出液を硫酸マグネシウムで乾燥し、濃縮を行った後、エタノールで再結晶することにより、カルボン酸化合物(C)の白色結晶を39g得た。 Next, 36 g of 4-hydroxycinnamic acid, 55 g of potassium carbonate, 2.4 g of tetrabutylammonium, 200 mL of tetrahydrofuran and 400 mL of water were charged into a 2 L three-necked flask separate from the reaction vessel. This aqueous solution was ice-cooled, and a tetrahydrofuran solution containing a reaction product of the above compound (C ′) and thionyl chloride was slowly added dropwise, and the reaction was further performed with stirring for 2 hours. After completion of the reaction, the reaction mixture was neutralized by adding hydrochloric acid, extracted with ethyl acetate, the extract was dried over magnesium sulfate, concentrated, and recrystallized with ethanol to obtain a carboxylic acid compound (C 39 g of white crystals were obtained.
4.液晶配向性ポリオルガノシロキサンの合成
(合成例A-1)
200mLの三口フラスコに、上記合成例1で得た反応性ポリオルガノシロキサン(A)の5.0g、メチルイソブチルケトン46.4g、カルボン酸化合物として上記合成例2で得た化合物(B)2.32g(上記反応性ポリオルガノシロキサン(A)の有するケイ素原子に対し25モル%)及び上記合成例3で得た化合物(C)2.12g(上記反応性ポリオルガノシロキサン(A)の有するケイ素原子に対し20モル%)、並びに、4級アミン塩(サンアプロ社製のUCAT18X(商品名))0.10gを仕込み、80℃で8時間撹拌下に反応を実施した。反応終了後、メタノールで再沈殿を行い、沈殿物を酢酸エチルに溶解して溶液を得、該溶液を3回水洗した後、溶剤を留去することにより、液晶配向性ポリオルガノシロキサン(1)を白色粉末として得た。液晶配向性ポリオルガノシロキサン(1)のMwは19,800であった。
4). Synthesis of liquid crystal alignment polyorganosiloxane (Synthesis Example A-1)
In a 200 mL three-necked flask, 5.0 g of the reactive polyorganosiloxane (A) obtained in Synthesis Example 1 above, 46.4 g of methyl isobutyl ketone, and 2. Compound (B) obtained in Synthesis Example 2 above as a carboxylic acid compound. 32 g (25 mol% with respect to the silicon atom of the reactive polyorganosiloxane (A)) and 2.12 g of the compound (C) obtained in Synthesis Example 3 (silicon atom of the reactive polyorganosiloxane (A)) 20 mol%) and quaternary amine salt (UCAT18X (trade name) manufactured by Sun Apro) were charged in an amount of 0.10 g, and the reaction was carried out at 80 ° C. with stirring for 8 hours. After completion of the reaction, reprecipitation with methanol was performed, and the precipitate was dissolved in ethyl acetate to obtain a solution. The solution was washed with water three times, and then the solvent was distilled off to obtain a liquid crystal alignment polyorganosiloxane (1). Was obtained as a white powder. Mw of liquid crystal orientation polyorganosiloxane (1) was 19,800.
(合成例A-2、比較合成例1及び2)
上記合成例A-1において、反応性ポリオルガノシロキサンの種類及びカルボン酸化合物の種類及び使用量を、それぞれ下記表1に記載のとおりとしたほかは、上記合成例A-1と同様にして実施して、液晶配向性ポリオルガノシロキサン(2)、(1’)及び(2’)を、それぞれ合成した。これら液晶配向性ポリオルガノシロキサンのMwを、表1に併せて示した。
(Synthesis Example A-2, Comparative Synthesis Examples 1 and 2)
The same procedure as in Synthesis Example A-1 except that the type of reactive polyorganosiloxane and the type and amount of carboxylic acid compound were as shown in Table 1 below in Synthesis Example A-1. Then, liquid crystal aligning polyorganosiloxanes (2), (1 ′) and (2 ′) were respectively synthesized. The Mw of these liquid crystal orientation polyorganosiloxanes are also shown in Table 1.
また、表1において、カルボン酸化合物の「使用量」は、反応性ポリオルガノシロキサンの有するケイ素原子に対する割合を意味する。 Further, in Table 1, the “use amount” of the carboxylic acid compound means the ratio of the reactive polyorganosiloxane to the silicon atom.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
(比較合成例3)
上記合成例A-1において、カルボン酸化合物(B)2.32g及びカルボン酸化合物(C)2.12gに換えて、(2E)-3-(4’-ペンチル-1,1‘-ビシクロヘキシル-4-イル)フェニル-2-プロペン酸 2.57g(上記反応性ポリオルガノシロキサン(A)の有するケイ素原子に対し25モル%)を用いたほかは、上記合成例A-1と同様にして実施し、液晶配向性ポリオルガノシロキサン(3’)を合成した。液晶配向性ポリオルガノシロキサン(3’)のMwは、14,200であった。
(Comparative Synthesis Example 3)
In Synthesis Example A-1, instead of 2.32 g of the carboxylic acid compound (B) and 2.12 g of the carboxylic acid compound (C), (2E) -3- (4′-pentyl-1,1′-bicyclohexyl) -4-yl) phenyl-2-propenoic acid In the same manner as in Synthesis Example A-1, except that 2.57 g (25 mol% with respect to the silicon atom of the reactive polyorganosiloxane (A)) was used. The liquid crystal alignment polyorganosiloxane (3 ′) was synthesized. Mw of liquid crystal aligning polyorganosiloxane (3 ′) was 14,200.
5.ポリアミック酸の合成
(合成例B-1)
テトラカルボン酸二無水物として1,2,3,4-シクロブタンテトラカルボン酸二無水物196g(1.0モル当量)及びジアミンとして4,4’-ジアミノジフェニルエーテル200g(1.0モル当量)をN-メチル-2-ピロリドン2,246gに溶解し、40℃で4時間反応させた後、N-メチル-2-ピロリドン1,321gを追加することにより、ポリアミック酸(1)を10重量%含有する溶液約3,950gを得た。このポリアミック酸溶液の溶液粘度は220mPa・sであった。
5. Synthesis of polyamic acid (Synthesis Example B-1)
196 g (1.0 molar equivalent) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride as tetracarboxylic dianhydride and 200 g (1.0 molar equivalent) of 4,4′-diaminodiphenyl ether as diamine -Dissolved in 2,246 g of methyl-2-pyrrolidone, reacted at 40 ° C. for 4 hours, and then added 1,321 g of N-methyl-2-pyrrolidone to contain 10% by weight of polyamic acid (1) About 3,950 g of solution was obtained. The solution viscosity of this polyamic acid solution was 220 mPa · s.
(合成例B-2)
テトラカルボン酸二無水物として、2,3,5-トリカルボキシシクロペンチル酢酸二無水物20.9g(0.093モル当量)、ジアミンとしてp-フェニレンジアミン9.2g(0.085モル当量)及び下記式(D)で表される化合物4.9g(0.009モル当量)を、N-メチル-2-ピロリドン140gに溶解し、60℃で4時間反応させることにより、ポリアミック酸(2)を20重量%含有する溶液約175gを得た。得られたポリアミック酸溶液を少量分取し、N-メチル-2-ピロリドンを加えて重合体濃度10重量%の溶液として溶液粘度を測定したところ、126mPa・sであった。
(Synthesis Example B-2)
As tetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentyl acetic acid dianhydride 20.9 g (0.093 mol equivalent), p-phenylenediamine 9.2 g (0.085 mol equivalent) as diamine and By dissolving 4.9 g (0.009 molar equivalent) of the compound represented by the formula (D) in 140 g of N-methyl-2-pyrrolidone and reacting at 60 ° C. for 4 hours, 20% of polyamic acid (2) is obtained. About 175 g of a solution containing% by weight was obtained. A small amount of the obtained polyamic acid solution was collected, and N-methyl-2-pyrrolidone was added to measure the solution viscosity as a solution having a polymer concentration of 10% by weight. As a result, it was 126 mPa · s.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(合成例B-3)
テトラカルボン酸二無水物として2,3,5-トリカルボキシシクロペンチル酢酸二無水物18.8g(0.084モル当量)、ジアミンとしてp-フェニレンジアミン7.4g(0.068モル当量)及び上記式(D)で表される化合物8.9g(0.017モル当量)を、N-メチル-2-ピロリドン140gに溶解し、60℃で4時間反応させることにより、ポリアミック酸(3)を20重量%含有する溶液約175gを得た。得られたポリアミック酸溶液を少量分取し、N-メチル-2-ピロリドンを加えて重合体濃度10重量%の溶液として溶液粘度を測定したところ、110mPa・sであった。
(Synthesis Example B-3)
1,8.8 g (0.084 mole equivalent) of 2,3,5-tricarboxycyclopentylacetic acid dianhydride as tetracarboxylic dianhydride, 7.4 g (0.068 mole equivalent) of p-phenylenediamine as diamine, and the above formula 8.9 g (0.017 molar equivalent) of the compound represented by (D) is dissolved in 140 g of N-methyl-2-pyrrolidone and reacted at 60 ° C. for 4 hours, whereby 20 wt.% Of polyamic acid (3) is obtained. About 175 g of a solution containing% was obtained. A small amount of the resulting polyamic acid solution was collected, and N-methyl-2-pyrrolidone was added to measure the solution viscosity as a solution having a polymer concentration of 10% by weight. As a result, it was 110 mPa · s.
6.液晶配向剤の調製
(実施例1)
上記合成例A-1で得た液晶配向性ポリオルガノシロキサン(1)の100重量部と、上記合成例B-2で得たポリアミック酸(2)を含有する溶液の、ポリアミック酸(2)に換算して2,000重量部に相当する量とを合わせ、これに1-メチル-2-ピロリドン及びブチルセロソルブを加え、溶媒組成が1-メチル-2-ピロリドン:ブチルセロソルブ=50:50(重量比)、固形分濃度が3.0重量%の溶液とした。この溶液を孔径1μmのフィルタで濾過することにより、液晶配向剤を調製した。
6). Preparation of liquid crystal aligning agent (Example 1)
A solution containing 100 parts by weight of the liquid crystal-aligning polyorganosiloxane (1) obtained in Synthesis Example A-1 and the polyamic acid (2) obtained in Synthesis Example B-2 was added to the polyamic acid (2). 1-methyl-2-pyrrolidone and butyl cellosolve are added to this, and the solvent composition is 1-methyl-2-pyrrolidone: butyl cellosolve = 50: 50 (weight ratio). A solution having a solid content concentration of 3.0% by weight was obtained. A liquid crystal aligning agent was prepared by filtering this solution through a filter having a pore diameter of 1 μm.
(実施例2~4、比較例1~3)
上記実施例1において、液晶配向性ポリオルガノシロキサンの種類及びポリアミック酸の種類及び量を、それぞれ下記表2に記載のとおりとしたほかは、上記実施例1と同様に実施して、液晶配向剤をそれぞれ調製した。
(Examples 2 to 4, Comparative Examples 1 to 3)
In Example 1, the liquid crystal aligning agent was used in the same manner as in Example 1 except that the type of liquid crystal aligning polyorganosiloxane and the type and amount of polyamic acid were as shown in Table 2 below. Were prepared respectively.
(実施例5)
上記実施例1において、液晶配向性ポリオルガノシロキサンの種類及びポリアミック酸の種類及び量を、それぞれ下記表2に記載のとおりとし、更に1,2,4-ベンゼントリカルボン酸を100重量部加えたほかは、上記実施例1と同様に実施して、液晶配向剤を調製した。
(Example 5)
In Example 1 above, the type of liquid-crystalline orientation polyorganosiloxane and the type and amount of polyamic acid were as shown in Table 2 below, and 100 parts by weight of 1,2,4-benzenetricarboxylic acid was added. Were carried out in the same manner as in Example 1 to prepare a liquid crystal aligning agent.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
上記の実施例及び比較例で調製された液晶配向剤は、すべて、垂直配向膜用の材料であり、光配向処理に適用可能なものであった。 The liquid crystal aligning agents prepared in the above examples and comparative examples are all materials for vertical alignment films and can be applied to photo-alignment treatment.
7.液晶表示装置の作製方法
以下の工程(1)~(12)を行い、実施例1~5及び比較例1~3の液晶表示装置を作製した。液晶表示装置の表示モードは、RTNモードであり、各画素は複数のドメインを含んで構成されるものであった。
7). Manufacturing Method of Liquid Crystal Display Device The following steps (1) to (12) were performed to manufacture the liquid crystal display devices of Examples 1 to 5 and Comparative Examples 1 to 3. The display mode of the liquid crystal display device is an RTN mode, and each pixel includes a plurality of domains.
(1)上記方法で調製した各種液晶配向剤を、一対のガラス基板(コーニング社製、商品名:♯1734)にインクジェット法で塗布する。一対のガラス基板の対向し合う面には、それぞれ、酸化インジウム錫(Indium Tin Oxide:ITO)製の電極のパターンが形成されている。 (1) Various liquid crystal aligning agents prepared by the above method are applied to a pair of glass substrates (manufactured by Corning, trade name: # 1734) by an inkjet method. An electrode pattern made of indium tin oxide (ITO) is formed on the opposing surfaces of the pair of glass substrates.
(2)90℃で1分間仮乾燥を行う。 (2) Temporary drying is performed at 90 ° C. for 1 minute.
(3)窒素雰囲気下にて200℃で40分間焼成し、その後室温まで冷却し、膜厚100nmの塗膜を作製する。主に上記焼成において、液晶配向剤中のポリアミック酸がイミド化し、ポリイミドとなる。 (3) Bake at 200 ° C. for 40 minutes in a nitrogen atmosphere, and then cool to room temperature to prepare a coating film having a thickness of 100 nm. Mainly in the above baking, the polyamic acid in the liquid crystal aligning agent is imidized to become polyimide.
(4)各基板の表面に対し、配向処理として波長313nmの消光比10:1の直線偏光紫外線を基板法線から40°傾いた方向から20mJ/cmのエネルギーにて照射し、配向膜を得る。 (4) The surface of each substrate is irradiated with linearly polarized ultraviolet light having an extinction ratio of 10: 1 at a wavelength of 313 nm as an alignment treatment at an energy of 20 mJ / cm 2 from a direction inclined by 40 ° from the normal to the substrate. obtain.
(5)一方の基板に、スクリーン版を使用して熱硬化性シール剤(三井化学社製、商品名:HC1413FP)を印刷する。このとき、熱硬化性シール剤は、後に液晶を所望の領域に保持させることができるように、液晶の注入口となる部分を残しつつ、その所望の領域を囲むパターンとなるように配置する。 (5) A thermosetting sealant (manufactured by Mitsui Chemicals, trade name: HC1413FP) is printed on one substrate using a screen plate. At this time, the thermosetting sealant is disposed so as to form a pattern surrounding the desired region while leaving a portion serving as a liquid crystal injection port so that the liquid crystal can be held in the desired region later.
(6)もう一方の基板上に、3.5μm径のビーズ(積水化学社製、商品名:SP-2035)を散布する。 (6) A 3.5 μm diameter bead (manufactured by Sekisui Chemical Co., Ltd., trade name: SP-2035) is sprayed on the other substrate.
(7)照射された紫外線の照射方向が直交するように一対の基板を配置し、これらを貼り合わせる。 (7) A pair of substrates are arranged so that the irradiation directions of the irradiated ultraviolet rays are orthogonal to each other, and these are bonded together.
(8)貼り合せた基板を0.5kgf/cmの圧力で加圧しながら、窒素パージした炉内で200℃、60分間加熱し、上記熱硬化性シール剤を硬化させる。 (8) While pressing the bonded substrates at a pressure of 0.5 kgf / cm 2 , the substrate is heated at 200 ° C. for 60 minutes in a nitrogen purged furnace to cure the thermosetting sealant.
(9)以上の方法で作製したセル内に、上記注入口から、ネガ型液晶組成物(メルク社製、商品名:MLC-6610)を真空下にて注入する。 (9) A negative liquid crystal composition (trade name: MLC-6610, manufactured by Merck & Co., Inc.) is injected under vacuum from the above-mentioned injection port into the cell produced by the above method.
(10)上記注入口に、紫外線硬化樹脂(スリーボンド社製、商品名:TB3026E)を塗布し、紫外線を照射することで、上記ネガ型液晶組成物が注入されたセル内を封止する。紫外線の波長は365nmであり、セルの画素領域は遮光して紫外線の影響を取り除くようにする。 (10) An ultraviolet curable resin (trade name: TB3026E, manufactured by Three Bond Co., Ltd.) is applied to the injection port, and the inside of the cell into which the negative liquid crystal composition is injected is sealed by irradiating with ultraviolet rays. The wavelength of ultraviolet rays is 365 nm, and the pixel region of the cell is shielded to remove the influence of ultraviolet rays.
(11)液晶の流動配向を消すために、液晶セルを130℃で40分間加熱し、液晶を等方相にする再配向処理を行い、その後室温まで冷却し液晶セルを得る。 (11) In order to eliminate the flow alignment of the liquid crystal, the liquid crystal cell is heated at 130 ° C. for 40 minutes to realign the liquid crystal to an isotropic phase, and then cooled to room temperature to obtain a liquid crystal cell.
(12)液晶セルを挟みこむように、クロスニコルに配置された一対の偏光板をその偏光軸が配向膜に照射された紫外線の照射方向と平行になるように配置し、液晶表示装置を作製する。 (12) A pair of polarizing plates arranged in crossed Nicols are arranged so that the liquid crystal cell is sandwiched so that the polarization axis thereof is parallel to the irradiation direction of the ultraviolet rays applied to the alignment film, thereby producing a liquid crystal display device. .
8.評価試験
以上のようにして作製した実施例1~5及び比較例1~3の液晶表示装置について、以下の評価試験を行った。
8). Evaluation Test The liquid crystal display devices of Examples 1 to 5 and Comparative Examples 1 to 3 manufactured as described above were subjected to the following evaluation tests.
(1)消光位ムラ
AC電圧(30Hz、7.0V)を印加する。AC電圧を印加した状態で、液晶表示装置のみを約45°回転させ、消光位ムラの有無を目視により確認した。消光位ムラがなく均一であった場合を良、消光位ムラが見られた場合を不良と判定した。
(1) An extinction level unevenness AC voltage (30 Hz, 7.0 V) is applied. With the AC voltage applied, only the liquid crystal display device was rotated by about 45 °, and the presence or absence of extinction level was visually confirmed. The case where there was no extinction level unevenness and it was uniform was judged as good, and the case where extinction level unevenness was seen was judged as bad.
(2)AC焼付(Δチルト)
幅15μmの微細なスリットにより、ITO製の画素電極が2つに分割された液晶表示装置を作製し、評価に使用した。2つに分割された画素電極のうち、半分(通電部)にのみAC電圧(30Hz、7V)を20時間印加し、残りの半分(非通電部)は通電しなかった。20時間後、画素電極全体にAC電圧(30Hz、3V)を印加し、液晶表示装置を表示状態とし、その際に発生する通電部と非通電部の輝度差を確認した。この輝度差が、小さいほどΔチルトが良いということになる。輝度差の確認は、液晶表示装置をバックライト上に置き、20%減光(Neutral Density:ND)フィルタ及び10%減光フィルタを目の前に配置した状態で、正面方向から液晶セルから30cmの距離で目視により評価し、20%NDフィルタにて輝度差が確認されない場合を良、20%NDフィルタにて輝度差が確認されるが、10%NDフィルタでは輝度差が確認されない場合を可、10%NDフィルタにて輝度差が確認される場合を不良と判定した。
(2) AC printing (Δtilt)
A liquid crystal display device in which a pixel electrode made of ITO was divided into two by a fine slit having a width of 15 μm was used for evaluation. Of the pixel electrodes divided into two, the AC voltage (30 Hz, 7 V) was applied to only half (the energized portion) for 20 hours, and the other half (non-energized portion) was not energized. After 20 hours, an AC voltage (30 Hz, 3 V) was applied to the entire pixel electrode to bring the liquid crystal display into a display state, and a luminance difference between the energized portion and the non-energized portion that occurred at that time was confirmed. The smaller this luminance difference, the better the Δ tilt. To check the brightness difference, place the liquid crystal display device on the backlight and place a 20% neutral density (ND) filter and a 10% dark filter in front of you, 30 cm from the liquid crystal cell. When the 20% ND filter does not confirm the brightness difference, the 20% ND filter confirms the brightness difference, but the 10% ND filter does not confirm the brightness difference. A case where a luminance difference was confirmed with a 10% ND filter was determined to be defective.
(3)電圧保持率:VHR
70℃の恒温槽にて液晶表示装置を加熱した状態で、東陽テクニカ社製のVHR-1を使用して、電圧保持率を測定した。測定条件は、印加電圧を1V、印加時間を60μs、保持時間を16.7msとした。電圧保持率が98%以上を良、98%未満を不良と判定した。不良と判定された電圧保持率が98%未満の液晶表示装置は、充電電荷の減衰による輝度低下が起こり、この輝度低下が表示の一部又は全体で表示のムラとして観察された。
(3) Voltage holding ratio: VHR
With the liquid crystal display device heated in a constant temperature bath at 70 ° C., voltage holding ratio was measured using VHR-1 manufactured by Toyo Technica. The measurement conditions were an applied voltage of 1 V, an application time of 60 μs, and a holding time of 16.7 ms. A voltage holding ratio of 98% or more was judged good and less than 98% judged bad. In a liquid crystal display device having a voltage holding ratio determined to be defective and less than 98%, a decrease in luminance due to charge charge attenuation occurred, and this decrease in luminance was observed as a display unevenness in a part or the whole of the display.
(4)印刷性(塗布ムラ)
仮乾燥後の配向膜表面を目視により観察することで、塗布ムラの有無を確認した。塗布ムラは、塗布方向の筋状のムラや塗布領域端部の段差として観察される。塗布ムラが観察できなかったものを良、塗布ムラが観察できたものを不良と判定した。
(4) Printability (coating unevenness)
The presence or absence of coating unevenness was confirmed by visually observing the alignment film surface after temporary drying. The coating unevenness is observed as streaky unevenness in the coating direction or a step at the end of the coating region. Those in which the coating unevenness could not be observed were judged as good, and those in which the coating unevenness could be observed were judged as bad.
9.評価結果
消光位ムラ、AC焼付(Δチルト)、電圧保持率及び印刷性(塗布ムラ)の評価結果を下記表3に示した。
9. Evaluation results Table 3 below shows the evaluation results of the extinction position unevenness, AC image sticking (Δ tilt), voltage holding ratio, and printability (coating unevenness).
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
表3に示したように、実施例1~5の液晶表示装置はいずれも、消光位ムラ、AC焼付(Δチルト)及び印刷性(塗布ムラ)の評価結果が「良」であった。なお、実施例1、2及び5の液晶表示装置は、電圧保持率の評価結果が「良」であったのに対し、実施例3及び4の液晶表示装置は、いずれも電圧保持率の評価結果が「不良」であった。実施例3及び4の液晶表示装置と実施例1、2及び5の液晶表示装置とを比べると、実施例3では、液晶配向性ポリオルガノシロキサンに対するポリアミック酸の使用量が実施例1、2及び5と比較して多くされ、実施例4では、液晶配向性ポリオルガノシロキサンに対するポリアミック酸の使用量が実施例1、2及び5と比較して少なくされた。 As shown in Table 3, in all of the liquid crystal display devices of Examples 1 to 5, the evaluation results of the extinction level unevenness, AC image sticking (Δtilt), and printability (application unevenness) were “good”. In addition, the liquid crystal display devices of Examples 1, 2, and 5 were “good” in the evaluation result of the voltage holding ratio, whereas the liquid crystal display devices of Examples 3 and 4 were all evaluated in the voltage holding ratio. The result was “bad”. Comparing the liquid crystal display devices of Examples 3 and 4 with the liquid crystal display devices of Examples 1, 2 and 5, in Example 3, the amount of polyamic acid used for the liquid crystal alignment polyorganosiloxane was as in Examples 1, 2 and In Example 4, the amount of polyamic acid used relative to the liquid crystal-aligning polyorganosiloxane was reduced as compared with Examples 1, 2, and 5.
比較例1及び2の液晶表示装置は、第二の側鎖用化合物を用いずに合成された液晶配向性ポリオルガノシロキサンを用いたものであるが、いずれも消光位ムラの評価結果が「不良」であった。更に、比較例1の液晶表示装置は、AC焼付(Δチルト)の評価結果が「良」であったのに対し、比較例2の液晶表示装置は、AC焼付(Δチルト)の評価結果が「可」であった。比較例1の液晶表示装置と比較例2の液晶表示装置とを比べると、比較例2では、特定フッ素含有基を有さないカルボン酸化合物の使用量が比較例1よりも少なくされた。 The liquid crystal display devices of Comparative Examples 1 and 2 use the liquid crystal alignment polyorganosiloxane synthesized without using the second side chain compound. "Met. Further, the liquid crystal display device of Comparative Example 1 has an evaluation result of AC printing (Δ tilt) of “good”, whereas the liquid crystal display device of Comparative Example 2 has an evaluation result of AC printing (Δ tilt). “Yes”. Comparing the liquid crystal display device of Comparative Example 1 and the liquid crystal display device of Comparative Example 2, in Comparative Example 2, the amount of the carboxylic acid compound having no specific fluorine-containing group was less than that of Comparative Example 1.
比較例3の液晶表示装置は、第一の側鎖用化合物及び第二の側鎖用化合物の両方を用いずに合成された液晶配向性ポリオルガノシロキサンを用いたものであるが、AC焼付(Δチルト)の評価結果及び消光位ムラの評価結果の両方が「不良」であった。 The liquid crystal display device of Comparative Example 3 uses a liquid crystal alignment polyorganosiloxane synthesized without using both the first side chain compound and the second side chain compound. Both the evaluation result of (Δtilt) and the evaluation result of extinction position unevenness were “defective”.
10.液晶配向剤の組成と電圧保持率との相関確認
液晶配向剤中の液晶配向性ポリオルガノシロキサン(第一成分、上層ポリマー)とポリアミック酸(第二成分、下層ポリマー)の重量比率(変性比率)と電圧保持率の関係を調べた。具体的には、実施例1、3及び4と同様に、液晶配向性ポリオルガノシロキサンとして、上記合成例A-1で得た液晶配向性ポリオルガノシロキサン(1)を用い、ポリアミック酸として、上記合成例B-2で得たポリアミック酸(2)を用いた。そして、液晶配向性ポリオルガノシロキサン(1)とポリアミック酸(2)の変性比率を変更して複数の液晶配向剤を調製し、各液晶配向剤を用いたときの電圧保持率を測定した。電圧保持率の測定方法は、上述したとおりである。図9は、液晶配向剤中のポリアミック酸(第二成分)に対する液晶配向性ポリオルガノシロキサン(第一成分)の変性比率と電圧保持率との関係を示したグラフである。図9から分かるように、変性比率が1重量%よりも大きく10重量%未満である範囲内において、良判定とされる98%以上の電圧保持率が得られた。すなわち、変性比率が1重量%よりも大きく10重量%未満である範囲内において、消光位ムラが発生せず、かつ良好な電圧保持率を有する液晶表示装置を得ることができた。
10. Confirmation of correlation between composition of liquid crystal aligning agent and voltage holding ratio Weight ratio (modification ratio) of liquid crystal aligning polyorganosiloxane (first component, upper layer polymer) and polyamic acid (second component, lower layer polymer) in liquid crystal aligning agent And the voltage holding ratio were investigated. Specifically, as in Examples 1, 3, and 4, the liquid crystal aligning polyorganosiloxane (1) obtained in Synthesis Example A-1 was used as the liquid crystal aligning polyorganosiloxane, and the polyamic acid was used as the polyamic acid. The polyamic acid (2) obtained in Synthesis Example B-2 was used. And the modification ratio of liquid crystal aligning polyorganosiloxane (1) and polyamic acid (2) was changed, the several liquid crystal aligning agent was prepared, and the voltage holding rate when using each liquid crystal aligning agent was measured. The method for measuring the voltage holding ratio is as described above. FIG. 9 is a graph showing the relationship between the modification ratio of the liquid crystal aligning polyorganosiloxane (first component) to the polyamic acid (second component) in the liquid crystal aligning agent and the voltage holding ratio. As can be seen from FIG. 9, a voltage holding ratio of 98% or higher, which is judged as good, was obtained within a range where the modification ratio was larger than 1 wt% and smaller than 10 wt%. That is, in the range where the modification ratio is greater than 1% by weight and less than 10% by weight, a liquid crystal display device in which extinction level unevenness does not occur and a good voltage holding ratio can be obtained.
[付記]
以下に、本発明に係る液晶表示装置の好適な態様の例を挙げる。各例は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
[Appendix]
Examples of preferred embodiments of the liquid crystal display device according to the present invention will be given below. Each example may be appropriately combined without departing from the scope of the present invention.
上記式(1)で表される化合物の導入量は、上記ポリオルガノシロキサン中のエポキシ基に対して、35モル%未満であることが好ましい。35モル%未満であると、良好な電圧保持率、及び、良好な印刷性が得られる。また、上記式(1)で表される化合物の導入量は、上記ポリオルガノシロキサン中のエポキシ基に対して、10モル%以上であることが好ましい。10モル%以上であると、電圧無印加時に、液晶分子を配向膜表面に対して略垂直に配向させることができる。すなわち垂直配向膜として機能することが可能となる。上記導入量は、12モル%以上であることがより好ましく、15モル%以上であることが更に好ましい。12モル%以上であれば、表示面を押圧したときに発生する残像(押圧残像)を抑制することができる。更に、15モル%以上であれば、良好なΔチルトが得られる。また、上記導入量は、32モル%未満であることがより好ましく、30モル%未満であることが更に好ましい。32モル%未満であれば、上記式(1)の化合物の過剰導入による印刷性の低下が更に抑えられ、30モル%未満であれば、更に良好な電圧保持率が得られる。 The amount of the compound represented by the formula (1) introduced is preferably less than 35 mol% with respect to the epoxy group in the polyorganosiloxane. When it is less than 35 mol%, good voltage holding ratio and good printability can be obtained. Moreover, it is preferable that the introduction amount of the compound represented by the formula (1) is 10 mol% or more with respect to the epoxy group in the polyorganosiloxane. When it is 10 mol% or more, the liquid crystal molecules can be aligned substantially perpendicular to the alignment film surface when no voltage is applied. That is, it can function as a vertical alignment film. The introduction amount is more preferably 12 mol% or more, and further preferably 15 mol% or more. If it is 12 mol% or more, an afterimage (pressing afterimage) generated when the display surface is pressed can be suppressed. Furthermore, if it is 15 mol% or more, a favorable Δ tilt can be obtained. Further, the introduction amount is more preferably less than 32 mol%, and further preferably less than 30 mol%. If it is less than 32 mol%, the printability fall by the excessive introduction | transduction of the compound of said Formula (1) is further suppressed, and if it is less than 30 mol%, a still more favorable voltage holding rate will be obtained.
上記式(2)で表される化合物の導入量は、上記ポリオルガノシロキサン中のエポキシ基に対して、30モル%未満であることが好ましい。30モル%未満であると、基板の塗布エリア端部にわずかにムラがある程度の良好な印刷性が得られる。また、上記式(2)で表される化合物の導入量は、上記ポリオルガノシロキサン中のエポキシ基に対して、5モル%以上であることが好ましい。5モル%以上であると、電圧無印加時に、液晶分子を配向膜表面に対して略垂直に配向させることができる。すなわち垂直配向膜として機能することが可能となる。上記導入量は、10モル%以上であることがより好ましく、12モル%以上であることが更に好ましい。10モル%以上であれば、押圧残像を抑制することができる。更に、12モル%以上であれば、良好なΔチルトが得られる。また、上記導入量は、28モル%未満であることがより好ましく、25モル%未満であることが更に好ましい。28モル%未満であれば、上記式(2)の化合物の過剰導入による印刷性の低下が更に抑えられ、基板の塗布エリア端部にわずかに残るものの、液晶パネルにおいて塗布ムラが観測され易い低階調表示でも塗布ムラは見えない。25モル%未満であれば、更に印刷性が改善され、基板の塗布エリア全面で塗布ムラの発生が抑えられる。 The amount of the compound represented by the formula (2) introduced is preferably less than 30 mol% with respect to the epoxy group in the polyorganosiloxane. If it is less than 30 mol%, good printability with a slight unevenness at the edge of the coated area of the substrate can be obtained. Moreover, it is preferable that the introduction amount of the compound represented by the formula (2) is 5 mol% or more with respect to the epoxy group in the polyorganosiloxane. When it is 5 mol% or more, the liquid crystal molecules can be aligned substantially perpendicular to the alignment film surface when no voltage is applied. That is, it can function as a vertical alignment film. The introduction amount is more preferably 10 mol% or more, and further preferably 12 mol% or more. If it is 10 mol% or more, a press afterimage can be suppressed. Furthermore, if it is 12 mol% or more, good Δtilt can be obtained. Further, the introduction amount is more preferably less than 28 mol%, and further preferably less than 25 mol%. If it is less than 28 mol%, the deterioration of the printability due to the excessive introduction of the compound of the above formula (2) is further suppressed and the coating unevenness is easily observed in the liquid crystal panel although it remains slightly at the edge of the coating area of the substrate. Even in gradation display, coating unevenness is not visible. If it is less than 25 mol%, the printability is further improved, and the occurrence of coating unevenness is suppressed over the entire coating area of the substrate.
上記式(1)で表される化合物と上記式(2)で表される化合物の合計導入量は、上記ポリオルガノシロキサン中のエポキシ基に対して、10モル%以上65モル%未満であることが好ましい。この範囲であると、良好な電圧保持率、及び、良好な印刷性が得られる。上記合計導入量は、15モル%以上であることがより好ましく、27モル%以上であることが更に好ましい。15モル%以上であれば、押圧残像が抑制することができる。更に、27モル%以上であれば、良好なΔチルトが得られる。また、上記導入量は、60モル%未満であることがより好ましく、55モル%未満であることが更に好ましい。60モル%未満であれば、上記式(1)の過剰導入による電圧保持率の低下、及び、上記式(2)の化合物の過剰導入による印刷性の悪化を抑えられる。更に、55モル%未満であれば、更に良好な電圧保持率と印刷性が得られる。 The total amount of the compound represented by the formula (1) and the compound represented by the formula (2) is 10 mol% or more and less than 65 mol% with respect to the epoxy group in the polyorganosiloxane. Is preferred. Within this range, good voltage holding ratio and good printability can be obtained. The total introduction amount is more preferably 15 mol% or more, and further preferably 27 mol% or more. If it is 15 mol% or more, a press afterimage can be suppressed. Furthermore, if it is 27 mol% or more, a favorable Δ tilt can be obtained. Further, the introduction amount is more preferably less than 60 mol%, and still more preferably less than 55 mol%. If it is less than 60 mol%, a decrease in voltage holding ratio due to excessive introduction of the above formula (1) and a deterioration in printability due to excessive introduction of the compound of the above formula (2) can be suppressed. Furthermore, if it is less than 55 mol%, a better voltage holding ratio and printability can be obtained.
上記第一成分の導入量は、上記第二成分100重量部に対して、1重量部を超えて10重量部未満であることが好ましい。発明者の検討の結果、導入量を上記範囲にすれば、良好な電圧保持率が得られることが分かった。上記第二成分100重量部に対する上記第一成分の導入量は、1.2重量部を超えることがより好ましく、2重量部を超えることが更に好ましい。また、9.5重量部未満であることがより好ましく、9重量部未満であることが更に好ましい。上記第一成分の導入量を、1.2重量部を超えて9.5重量部未満とすることで、98.0%以上の良好な電圧保持率とすることが可能であり、更に2重量部を超えて9重量部未満とすることで、98.5%以上の高水準な電圧保持率を達成できる。 The amount of the first component introduced is preferably more than 1 part by weight and less than 10 parts by weight with respect to 100 parts by weight of the second component. As a result of the inventor's investigation, it has been found that if the introduction amount is within the above range, a good voltage holding ratio can be obtained. The amount of the first component introduced relative to 100 parts by weight of the second component is more preferably greater than 1.2 parts by weight, and still more preferably greater than 2 parts by weight. Moreover, it is more preferable that it is less than 9.5 weight part, and it is still more preferable that it is less than 9 weight part. When the amount of the first component introduced is more than 1.2 parts by weight and less than 9.5 parts by weight, a good voltage holding ratio of 98.0% or more can be obtained, and further 2 parts by weight. By setting the amount to more than 9 parts by weight and less than 9 parts by weight, a high level voltage holding ratio of 98.5% or more can be achieved.
上記配向膜は、更に、エポキシ基を有するポリオルガノシロキサンと多価カルボン酸との反応生成物を含むことが好ましい。上記第一成分の材料に多価カルボン酸を導入することにより、ポリオルガノシロキサン中のエポキシ基と多価カルボン酸を反応させ、上記ポリオルガノシロキサンを架橋させることができる。このことにより、不純物イオンが配向膜を透過することが抑制され、電圧保持率の低下を抑えることが可能となる。多価カルボン酸としては、例えば、1,2-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,3,5-シクロヘキサントリカルボン酸、1,2,4-シクロヘキサントリカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、フタル酸、テレフタル酸、イソフタル酸、4-メチルフタル酸、4,4-ジカルボキシジフェニルエーテル、4,4-ビフェニルジカルボン酸、ベンゾフェノン-4,4-ジカルボン酸、1,2,4-ベンゼントリカルボン酸、1,3,5-ベンゼントリカルボン酸、トリメリット酸、ピロメリット酸、1,3,5-トリス(4-カルボキシフェニル)ベンゼン等が挙げられる。また、同様の目的で、多価カルボン酸以外のエポキシ基と反応する成分を用いてもよく、例えば、エポキシ基を有する硬化性化合物又はエポキシ基を有する化合物を含有する硬化性組成物の硬化用として一般に用いられている硬化剤を用いることができ、具体的には、多価アミン、多価カルボン酸無水物、多価カルボン酸エステル等が挙げられる。 The alignment film preferably further contains a reaction product of a polyorganosiloxane having an epoxy group and a polyvalent carboxylic acid. By introducing a polyvalent carboxylic acid into the first component material, an epoxy group in the polyorganosiloxane can react with the polyvalent carboxylic acid to crosslink the polyorganosiloxane. Thereby, it is possible to suppress the impurity ions from passing through the alignment film, and it is possible to suppress a decrease in the voltage holding ratio. Examples of the polyvalent carboxylic acid include 1,2-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,3,5-cyclohexanetricarboxylic acid, 1,2,4-cyclohexane. Tricarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, phthalic acid, terephthalic acid, isophthalic acid, 4-methylphthalic acid, 4,4-dicarboxydiphenyl ether, 4,4-biphenyldicarboxylic acid, benzophenone-4, 4-dicarboxylic acid, 1,2,4-benzenetricarboxylic acid, 1,3,5-benzenetricarboxylic acid, trimellitic acid, pyromellitic acid, 1,3,5-tris (4-carboxyphenyl) benzene, etc. It is done. In addition, for the same purpose, a component that reacts with an epoxy group other than a polyvalent carboxylic acid may be used. For example, a curable compound having an epoxy group or a curable composition containing a compound having an epoxy group may be used. The curing agent generally used can be used, and specific examples include polyvalent amines, polyvalent carboxylic acid anhydrides, and polyvalent carboxylic acid esters.
上記配向膜は、偏光紫外光により配向処理をされた垂直配向膜であることが好ましい。光官能基がシンナメート基であるため、偏光紫外光を照射することで、二量化反応及びシス-トランス異性化反応を効果的に引き起こすことができる。そのため、偏光紫外光により配向処理された配向膜は、優れた配向規制力を発揮することができる。偏光紫外光の偏光度は、3:1以上であることが好ましい。また、偏光紫外光の波長は、250nm以上、400nm以下であることが好ましい。偏光度を3:1以上、偏光紫外光の波長を250nm以上、400nm以下とすることで、上記シンナメート基の二量化反応及びシス-トランス異性化反応をより効果的に引き起こすことができる。上記光配向処理とは、光の照射によって液晶の配向規制力が変化すること、又は、液晶の配向方向が変化することを意味する。また、上記垂直配向膜とは、配向膜近傍の液晶分子を、配向膜の表面に対して実質的に垂直方向に配向させるものであればよく、例えば、86.0°以上のプレチルト角を付与する配向膜が挙げられる。 The alignment film is preferably a vertical alignment film that has been subjected to alignment treatment with polarized ultraviolet light. Since the photofunctional group is a cinnamate group, irradiation with polarized ultraviolet light can effectively cause a dimerization reaction and a cis-trans isomerization reaction. Therefore, the alignment film subjected to the alignment treatment with polarized ultraviolet light can exhibit an excellent alignment regulating force. The polarization degree of polarized ultraviolet light is preferably 3: 1 or more. Moreover, it is preferable that the wavelength of polarized ultraviolet light is 250 nm or more and 400 nm or less. By setting the degree of polarization to 3: 1 or more and the wavelength of polarized ultraviolet light to 250 nm or more and 400 nm or less, the dimerization reaction and cis-trans isomerization reaction of the cinnamate group can be caused more effectively. The above-mentioned photo-alignment treatment means that the alignment regulating force of the liquid crystal changes due to light irradiation, or the alignment direction of the liquid crystal changes. The vertical alignment film only needs to align liquid crystal molecules in the vicinity of the alignment film in a direction substantially perpendicular to the surface of the alignment film. For example, a pretilt angle of 86.0 ° or more is given. Alignment film to be used.
上記液晶層は、負の誘電率異方性の液晶分子により構成されることが好ましい。これにより、上下基板間に印加する電圧をオン、オフすることで、液晶分子をスイッチングすることが可能となる。 The liquid crystal layer is preferably composed of liquid crystal molecules having negative dielectric anisotropy. Thereby, the liquid crystal molecules can be switched by turning on and off the voltage applied between the upper and lower substrates.
上記液晶表示装置は、上記配向膜近傍の液晶分子のプレチルト角が89.5°以下であることが好ましい。これにより、視野角特性、応答性及び光透過率に優れたRTNモードの液層表示装置を実現することが可能となる。また、プレチルト角は、86.5°以上であることが好ましい。86.5°以上であると、電圧無印加時の黒輝度が充分に低い(光漏れが少ない)ため、良好なコントラスト比を得ることができる。上記プレチルト角は、87.5°以上であることがより好ましく、88.0°以上であることが更に好ましい。上記プレチルト角を87.5以上とすることで、押圧残像を抑制することができる。更に88.0°以上とすることで、上下基板のプレチルト角に差があった場合でも、クロスニコル偏光板の吸収軸を45°回転し、かつ液晶層に電圧7.5Vを印加したときの消光位置を±5°以内に収めることが可能となる。 In the liquid crystal display device, a pretilt angle of liquid crystal molecules in the vicinity of the alignment film is preferably 89.5 ° or less. This makes it possible to realize an RTN mode liquid layer display device that is excellent in viewing angle characteristics, responsiveness, and light transmittance. The pretilt angle is preferably 86.5 ° or more. When the angle is 86.5 ° or more, the black luminance when no voltage is applied is sufficiently low (the light leakage is small), so that a good contrast ratio can be obtained. The pretilt angle is more preferably 87.5 ° or more, and further preferably 88.0 ° or more. By setting the pretilt angle to 87.5 or more, the afterimage can be suppressed. Further, when the angle is 88.0 ° or more, even when there is a difference in the pretilt angle between the upper and lower substrates, the absorption axis of the crossed Nicol polarizing plate is rotated by 45 ° and a voltage of 7.5 V is applied to the liquid crystal layer. It is possible to keep the extinction position within ± 5 °.
上記一対の基板の一方は、液晶層側にマトリクス状に配置された画素電極を備え、上記一対の基板の他方は、液晶層側に配置された共通電極を備えることが好ましい。このような構成は、アクティブマトリクス駆動に適したものである。上記液晶表示装置は、マトリクス状に配置された画素を有することが好ましい。 One of the pair of substrates preferably includes pixel electrodes arranged in a matrix on the liquid crystal layer side, and the other of the pair of substrates preferably includes a common electrode arranged on the liquid crystal layer side. Such a configuration is suitable for active matrix driving. The liquid crystal display device preferably includes pixels arranged in a matrix.
上記配向膜は、上記一対の基板の一方と上記液晶層との間に配置された第一配向膜と、上記一対の基板の他方と上記液晶層との間に配置された第二配向膜を含み、上記第一配向膜に照射された配向処理用の光の方向と上記第二配向膜に照射された配向処理用の光の方向が、互いに直交することが好ましい。このような構成によれば、RTNモードの液晶表示装置を実現することができる。 The alignment film includes: a first alignment film disposed between one of the pair of substrates and the liquid crystal layer; and a second alignment film disposed between the other of the pair of substrates and the liquid crystal layer. In addition, it is preferable that the direction of the alignment treatment light irradiated on the first alignment film and the direction of the alignment treatment light irradiated on the second alignment film are orthogonal to each other. According to such a configuration, an RTN mode liquid crystal display device can be realized.
以下に、本発明に係る液晶配向剤の好適な態様の例を挙げる。各例は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。 Below, the example of the suitable aspect of the liquid crystal aligning agent which concerns on this invention is given. Each example may be appropriately combined without departing from the scope of the present invention.
上記式(1)で表される化合物の導入量は、上記ポリオルガノシロキサン中のエポキシ基に対して、35モル%未満であることが好ましい。35モル%未満であると、良好な電圧保持率、及び、良好な印刷性が得られる。また、上記式(1)で表される化合物の導入量は、上記ポリオルガノシロキサン中のエポキシ基に対して、10モル%以上であることが好ましい。10モル%以上であると、電圧無印加時に、液晶分子を配向膜表面に対して略垂直に配向させることができる。すなわち垂直配向膜として機能することが可能となる。上記導入量は、12モル%以上であることがより好ましく、15モル%以上であることが更に好ましい。12モル%以上であれば、表示面を押圧したときに発生する残像(押圧残像)を抑制することができる。更に、15モル%以上であれば、良好なΔチルトが得られる。また、上記導入量は、32モル%未満であることがより好ましく、30モル%未満であることが更に好ましい。32モル%未満であれば、上記式(1)の化合物の過剰導入による印刷性の低下が更に抑えられ、30モル%未満であれば、更に良好な電圧保持率が得られる。 The amount of the compound represented by the formula (1) introduced is preferably less than 35 mol% with respect to the epoxy group in the polyorganosiloxane. When it is less than 35 mol%, good voltage holding ratio and good printability can be obtained. Moreover, it is preferable that the introduction amount of the compound represented by the formula (1) is 10 mol% or more with respect to the epoxy group in the polyorganosiloxane. When it is 10 mol% or more, the liquid crystal molecules can be aligned substantially perpendicular to the alignment film surface when no voltage is applied. That is, it can function as a vertical alignment film. The introduction amount is more preferably 12 mol% or more, and further preferably 15 mol% or more. If it is 12 mol% or more, an afterimage (pressing afterimage) generated when the display surface is pressed can be suppressed. Furthermore, if it is 15 mol% or more, a favorable Δ tilt can be obtained. Further, the introduction amount is more preferably less than 32 mol%, and further preferably less than 30 mol%. If it is less than 32 mol%, the printability fall by the excessive introduction | transduction of the compound of said Formula (1) is further suppressed, and if it is less than 30 mol%, a still more favorable voltage holding rate will be obtained.
上記式(2)で表される化合物の導入量は、上記ポリオルガノシロキサン中のエポキシ基に対して、30モル%未満であることが好ましい。30モル%未満であると、基板の塗布エリア端部にわずかにムラがある程度の良好な印刷性が得られる。また、上記式(2)で表される化合物の導入量は、上記ポリオルガノシロキサン中のエポキシ基に対して、5モル%以上であることが好ましい。5モル%以上であると、電圧無印加時に、液晶分子を配向膜表面に対して略垂直に配向させることができる。すなわち垂直配向膜として機能することが可能となる。上記導入量は、10モル%以上であることがより好ましく、12モル%以上であることが更に好ましい。10モル%以上であれば、表示面を押圧したときに発生する残像(押圧残像)を抑制することができる。更に、12モル%以上であれば、良好なΔチルトが得られる。また、上記導入量は、28モル%未満であることがより好ましく、25モル%未満であることが更に好ましい。28モル%未満であれば、上記式(2)の化合物の過剰導入による印刷性の低下が更に抑えられ、基板の塗布エリア端部にわずかに残るものの、液晶パネルにおいて塗布ムラが観測され易い低階調表示でも塗布ムラは見えない。25モル%未満であれば、更に印刷性が改善され、基板の塗布エリア全面で塗布ムラの発生が抑えられる。 The amount of the compound represented by the formula (2) introduced is preferably less than 30 mol% with respect to the epoxy group in the polyorganosiloxane. If it is less than 30 mol%, good printability with a slight unevenness at the edge of the coated area of the substrate can be obtained. Moreover, it is preferable that the introduction amount of the compound represented by the formula (2) is 5 mol% or more with respect to the epoxy group in the polyorganosiloxane. When it is 5 mol% or more, the liquid crystal molecules can be aligned substantially perpendicular to the alignment film surface when no voltage is applied. That is, it can function as a vertical alignment film. The introduction amount is more preferably 10 mol% or more, and further preferably 12 mol% or more. If it is 10 mol% or more, an afterimage (pressing afterimage) generated when the display surface is pressed can be suppressed. Furthermore, if it is 12 mol% or more, good Δtilt can be obtained. Further, the introduction amount is more preferably less than 28 mol%, and further preferably less than 25 mol%. If it is less than 28 mol%, the deterioration of the printability due to the excessive introduction of the compound of the above formula (2) is further suppressed and the coating unevenness is easily observed in the liquid crystal panel although it remains slightly at the edge of the coating area of the substrate. Even in gradation display, coating unevenness is not visible. If it is less than 25 mol%, the printability is further improved, and the occurrence of coating unevenness is suppressed over the entire coating area of the substrate.
上記式(1)で表される化合物と上記式(2)で表される化合物の合計導入量は、上記ポリオルガノシロキサン中のエポキシ基に対して、10モル%以上65モル%未満であることが好ましい。この範囲であると、良好な電圧保持率、及び、良好な印刷性が得られる。上記合計導入量は、15モル%以上であることがより好ましく、27モル%以上であることが更に好ましい。15モル%以上であれば、押圧残像が抑制することができる。更に、27モル%以上であれば、良好なΔチルトが得られる。また、上記導入量は、60モル%未満であることがより好ましく、55モル%未満であることが更に好ましい。60モル%未満であれば、上記式(1)の過剰導入による電圧保持率の低下、及び、上記式(2)の化合物の過剰導入による印刷性の悪化を抑えられる。更に、55モル%未満であれば、更に良好な電圧保持率と印刷性が得られる。 The total amount of the compound represented by the formula (1) and the compound represented by the formula (2) is 10 mol% or more and less than 65 mol% with respect to the epoxy group in the polyorganosiloxane. Is preferred. Within this range, good voltage holding ratio and good printability can be obtained. The total introduction amount is more preferably 15 mol% or more, and further preferably 27 mol% or more. If it is 15 mol% or more, a press afterimage can be suppressed. Furthermore, if it is 27 mol% or more, a favorable Δ tilt can be obtained. Further, the introduction amount is more preferably less than 60 mol%, and still more preferably less than 55 mol%. If it is less than 60 mol%, a decrease in voltage holding ratio due to excessive introduction of the above formula (1) and a deterioration in printability due to excessive introduction of the compound of the above formula (2) can be suppressed. Furthermore, if it is less than 55 mol%, a better voltage holding ratio and printability can be obtained.
上記第一成分の導入量は、上記第二成分100重量部に対して、1重量部を超えて10重量部未満であることが好ましい。この範囲であると、良好な電圧保持率が得られる。上記第二成分100重量部に対する上記第一成分の導入量は、1.2重量部を超えることがより好ましく、2重量部を超えることが更に好ましい。また、9.5重量部未満であることがより好ましく、9重量部未満であることが更に好ましい。上記第一成分の導入量を、1.2重量部を超えて9.5重量部未満とすることで、98.0%以上の良好な電圧保持率とすることが可能であり、更に2重量部を超えて9重量部未満とすることで、98.5%以上の高水準な電圧保持率を達成できる。 The amount of the first component introduced is preferably more than 1 part by weight and less than 10 parts by weight with respect to 100 parts by weight of the second component. Within this range, a good voltage holding ratio can be obtained. The amount of the first component introduced relative to 100 parts by weight of the second component is more preferably greater than 1.2 parts by weight, and still more preferably greater than 2 parts by weight. Moreover, it is more preferable that it is less than 9.5 weight part, and it is still more preferable that it is less than 9 weight part. When the amount of the first component introduced is more than 1.2 parts by weight and less than 9.5 parts by weight, a good voltage holding ratio of 98.0% or more can be obtained, and further 2 parts by weight. By setting the amount to more than 9 parts by weight and less than 9 parts by weight, a high level voltage holding ratio of 98.5% or more can be achieved.
上記液晶配向剤は、多価カルボン酸を含むことが好ましい。上記第一成分の材料に多価カルボン酸を導入することにより、ポリオルガノシロキサン中のエポキシ基と多価カルボン酸を反応させ、上記ポリオルガノシロキサンを架橋させることができる。このことにより、不純物イオンが配向膜を透過することが抑制され、電圧保持率の低下を抑えることが可能となる。多価カルボン酸としては、例えば、1,2-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,3,5-シクロヘキサントリカルボン酸、1,2,4-シクロヘキサントリカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、フタル酸、テレフタル酸、イソフタル酸、4-メチルフタル酸、4,4-ジカルボキシジフェニルエーテル、4,4-ビフェニルジカルボン酸、ベンゾフェノン-4,4-ジカルボン酸、1,2,4-ベンゼントリカルボン酸、1,3,5-ベンゼントリカルボン酸、トリメリット酸、ピロメリット酸、1,3,5-トリス(4-カルボキシフェニル)ベンゼン等が挙げられる。また、同様の目的で、多価カルボン酸以外のエポキシ基と反応する成分を用いてもよく、例えば、エポキシ基を有する硬化性化合物又はエポキシ基を有する化合物を含有する硬化性組成物の硬化用として一般に用いられている硬化剤を用いることができ、具体的には、多価アミン、多価カルボン酸無水物、多価カルボン酸エステル等が挙げられる。 The liquid crystal aligning agent preferably contains a polyvalent carboxylic acid. By introducing a polyvalent carboxylic acid into the first component material, an epoxy group in the polyorganosiloxane can react with the polyvalent carboxylic acid to crosslink the polyorganosiloxane. Thereby, it is possible to suppress the impurity ions from passing through the alignment film, and it is possible to suppress a decrease in the voltage holding ratio. Examples of the polyvalent carboxylic acid include 1,2-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,3,5-cyclohexanetricarboxylic acid, 1,2,4-cyclohexane. Tricarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, phthalic acid, terephthalic acid, isophthalic acid, 4-methylphthalic acid, 4,4-dicarboxydiphenyl ether, 4,4-biphenyldicarboxylic acid, benzophenone-4, 4-dicarboxylic acid, 1,2,4-benzenetricarboxylic acid, 1,3,5-benzenetricarboxylic acid, trimellitic acid, pyromellitic acid, 1,3,5-tris (4-carboxyphenyl) benzene, etc. It is done. In addition, for the same purpose, a component that reacts with an epoxy group other than a polyvalent carboxylic acid may be used. For example, a curable compound having an epoxy group or a curable composition containing a compound having an epoxy group may be used. The curing agent generally used can be used, and specific examples include polyvalent amines, polyvalent carboxylic acid anhydrides, and polyvalent carboxylic acid esters.
10、20:基板
30:液晶層
40:配向膜
50:シール材
60:偏光板
110:配向膜
111:液晶分子
112:上下基板
113:フォトマスク
114:遮光部
115:上基板側に配置された偏光板の吸収軸方向
116:下基板側に配置された偏光板の吸収軸方向
117:液晶ダイレクター方向
 
10, 20: Substrate 30: Liquid crystal layer 40: Alignment film 50: Sealing material 60: Polarizing plate 110: Alignment film 111: Liquid crystal molecule 112: Upper and lower substrate 113: Photomask 114: Light shielding part 115: Arranged on the upper substrate side Absorption axis direction 116 of the polarizing plate: Absorption axis direction 117 of the polarizing plate disposed on the lower substrate side 117: Liquid crystal director direction

Claims (17)

  1. 一対の基板と、前記一対の基板間に挟持された液晶層と、前記一対の基板の少なくとも一方と前記液晶層との間に配置された配向膜と、を有する液晶表示装置であって、
    前記配向膜は、第一成分及び第二成分を含有し、
    前記第一成分は、エポキシ基を有するポリオルガノシロキサンと下記式(1)で表される化合物及び下記式(2)で表される化合物との反応生成物からなり、
    前記第二成分は、ポリアミック酸及びポリイミドの一方又は両方からなることを特徴とする液晶表示装置。
    -R-COO-C-CH=CH-COOH   (1)
    -C-COO-C-CH=CH-COOH   (2)
    (前記式(1)中、Rは、炭素数4~20のアルキル基を表し、Rは、炭素数6~10の脂環式炭化水素から2つの水素原子が失われて生じる基を表す。前記式(2)中、Rは、炭素数1~20のフッ素含有基を表す。)
    A liquid crystal display device having a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, and an alignment film disposed between at least one of the pair of substrates and the liquid crystal layer,
    The alignment film contains a first component and a second component,
    The first component comprises a reaction product of a polyorganosiloxane having an epoxy group, a compound represented by the following formula (1) and a compound represented by the following formula (2),
    The liquid crystal display device, wherein the second component comprises one or both of polyamic acid and polyimide.
    R 1 —R 2 —COO—C 6 H 4 —CH═CH—COOH (1)
    R 3 —C 6 H 4 —COO—C 6 H 4 —CH═CH—COOH (2)
    (In the formula (1), R 1 represents an alkyl group having 4 to 20 carbon atoms, and R 2 represents a group formed by losing two hydrogen atoms from an alicyclic hydrocarbon having 6 to 10 carbon atoms. In the formula (2), R 3 represents a fluorine-containing group having 1 to 20 carbon atoms.)
  2. 前記式(1)で表される化合物の導入量は、前記ポリオルガノシロキサン中のエポキシ基に対して、35モル%未満であることを特徴とする請求項1に記載の液晶表示装置。 2. The liquid crystal display device according to claim 1, wherein the amount of the compound represented by the formula (1) is less than 35 mol% with respect to the epoxy group in the polyorganosiloxane.
  3. 前記式(2)で表される化合物の導入量は、前記ポリオルガノシロキサン中のエポキシ基に対して、30モル%未満であることを特徴とする請求項1又は2に記載の液晶表示装置。 3. The liquid crystal display device according to claim 1, wherein an introduction amount of the compound represented by the formula (2) is less than 30 mol% with respect to an epoxy group in the polyorganosiloxane.
  4. 前記式(1)で表される化合物と前記式(2)で表される化合物の合計導入量は、前記ポリオルガノシロキサン中のエポキシ基に対して、10モル%以上65モル%未満であることを特徴とする請求項1~3のいずれかに記載の液晶表示装置。 The total amount of the compound represented by the formula (1) and the compound represented by the formula (2) is 10 mol% or more and less than 65 mol% with respect to the epoxy group in the polyorganosiloxane. The liquid crystal display device according to any one of claims 1 to 3, wherein:
  5. 前記第一成分の導入量は、前記第二成分100重量部に対して、1重量部を超えて10重量部未満であることを特徴とする請求項1~4のいずれかに記載の液晶表示装置。 5. The liquid crystal display according to claim 1, wherein the amount of the first component introduced is more than 1 part by weight and less than 10 parts by weight with respect to 100 parts by weight of the second component. apparatus.
  6. 前記配向膜は、更に、エポキシ基を有するポリオルガノシロキサンと多価カルボン酸との反応生成物を含むことを特徴とする請求項1~5のいずれかにに記載の液晶表示装置。 6. The liquid crystal display device according to claim 1, wherein the alignment film further contains a reaction product of a polyorganosiloxane having an epoxy group and a polyvalent carboxylic acid.
  7. 前記配向膜は、偏光紫外光により配向処理をされた垂直配向膜であることを特徴とする請求項1~6のいずれかに記載の液晶表示装置。 7. The liquid crystal display device according to claim 1, wherein the alignment film is a vertical alignment film that has been subjected to alignment treatment with polarized ultraviolet light.
  8. 前記液晶層は、負の誘電率異方性の液晶分子により構成されることを特徴とする請求項1~7のいずれかに記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 7, wherein the liquid crystal layer is composed of liquid crystal molecules having negative dielectric anisotropy.
  9. 前記液晶表示装置は、前記配向膜近傍の液晶分子のプレチルト角が89.5°以下であることを特徴とする請求項1~8のいずれかに記載の液晶表示装置。 9. The liquid crystal display device according to claim 1, wherein a pretilt angle of liquid crystal molecules in the vicinity of the alignment film is 89.5 ° or less.
  10. 前記一対の基板の一方は、液晶層側にマトリクス状に配置された画素電極を備え、前記一対の基板の他方は、液晶層側に配置された共通電極を備えることを特徴とする請求項1~9のいずれかに記載の液晶表示装置。 2. One of the pair of substrates includes pixel electrodes arranged in a matrix on the liquid crystal layer side, and the other of the pair of substrates includes a common electrode disposed on the liquid crystal layer side. 10. A liquid crystal display device according to any one of items 9 to 9.
  11. 前記配向膜は、前記一対の基板の一方と前記液晶層との間に配置された第一配向膜と、前記一対の基板の他方と前記液晶層との間に配置された第二配向膜を含み、
    前記第一配向膜に照射された配向処理用の光の方向と前記第二配向膜に照射された配向処理用の光の方向が、互いに直交することを特徴とする請求項1~10のいずれかに記載の液晶表示装置。
    The alignment film includes: a first alignment film disposed between one of the pair of substrates and the liquid crystal layer; and a second alignment film disposed between the other of the pair of substrates and the liquid crystal layer. Including
    11. The direction of light for alignment treatment irradiated on the first alignment film and the direction of light for alignment treatment irradiated on the second alignment film are orthogonal to each other. A liquid crystal display device according to claim 1.
  12. エポキシ基を有するポリオルガノシロキサンと下記式(1)で表される化合物及び下記式(2)で表される化合物との反応生成物からなる第一成分と、
    ポリアミック酸及びポリイミドの一方又は両方からなる第二成分と、を含有することを特徴とする液晶配向剤。
    -R-COO-C-CH=CH-COOH   (1)
    -C-COO-C-CH=CH-COOH   (2)
    (前記式(1)中、Rは、炭素数4~20のアルキル基を表し、Rは、炭素数6~10の脂環式炭化水素から2つの水素原子が失われて生じる基を表す。前記式(2)中、Rは、炭素数1~20のフッ素含有基を表す。)
    A first component comprising a reaction product of a polyorganosiloxane having an epoxy group, a compound represented by the following formula (1) and a compound represented by the following formula (2);
    And a second component comprising one or both of polyamic acid and polyimide.
    R 1 —R 2 —COO—C 6 H 4 —CH═CH—COOH (1)
    R 3 —C 6 H 4 —COO—C 6 H 4 —CH═CH—COOH (2)
    (In the formula (1), R 1 represents an alkyl group having 4 to 20 carbon atoms, and R 2 represents a group formed by losing two hydrogen atoms from an alicyclic hydrocarbon having 6 to 10 carbon atoms. In the formula (2), R 3 represents a fluorine-containing group having 1 to 20 carbon atoms.)
  13. 前記式(1)で表される化合物の導入量は、前記ポリオルガノシロキサン中のエポキシ基に対して、35モル%未満であることを特徴とする請求項12に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 12, wherein the amount of the compound represented by the formula (1) is less than 35 mol% with respect to the epoxy group in the polyorganosiloxane.
  14. 前記式(2)で表される化合物の導入量は、前記ポリオルガノシロキサン中のエポキシ基に対して、30モル%未満であることを特徴とする請求項12又は13に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 12 or 13, wherein the amount of the compound represented by the formula (2) is less than 30 mol% with respect to the epoxy group in the polyorganosiloxane.
  15. 前記式(1)で表される化合物と前記式(2)で表される化合物の合計導入量は、前記ポリオルガノシロキサン中のエポキシ基に対して、10モル%以上65モル%未満であることを特徴とする請求項12~14のいずれかに記載の液晶配向剤。 The total amount of the compound represented by the formula (1) and the compound represented by the formula (2) is 10 mol% or more and less than 65 mol% with respect to the epoxy group in the polyorganosiloxane. The liquid crystal aligning agent according to any one of claims 12 to 14, wherein
  16. 前記第一成分の導入量は、前記第二成分100重量部に対して、1重量部を超えて10重量部未満であることを特徴とする請求項12~15のいずれかに記載の液晶配向剤。 The liquid crystal alignment according to any one of claims 12 to 15, wherein the introduction amount of the first component is more than 1 part by weight and less than 10 parts by weight with respect to 100 parts by weight of the second component. Agent.
  17. 更に、多価カルボン酸を含むことを特徴とする請求項12~16のいずれかに記載の液晶配向剤。
     
    The liquid crystal aligning agent according to any one of claims 12 to 16, further comprising a polyvalent carboxylic acid.
PCT/JP2014/070713 2013-08-07 2014-08-06 Liquid crystal display device and liquid crystal alignment agent WO2015020083A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-164553 2013-08-07
JP2013164553A JP2016173380A (en) 2013-08-07 2013-08-07 Liquid crystal display device and liquid crystal aligning agent

Publications (1)

Publication Number Publication Date
WO2015020083A1 true WO2015020083A1 (en) 2015-02-12

Family

ID=52461414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070713 WO2015020083A1 (en) 2013-08-07 2014-08-06 Liquid crystal display device and liquid crystal alignment agent

Country Status (2)

Country Link
JP (1) JP2016173380A (en)
WO (1) WO2015020083A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017063301A1 (en) * 2015-10-13 2017-04-20 深圳市华星光电技术有限公司 Liquid crystal panel and manufacturing method therefor
WO2017094490A1 (en) * 2015-12-01 2017-06-08 富士フイルム株式会社 Liquid crystal display apparatus and manufacturing method for liquid crystal display apparatus
WO2018008485A1 (en) * 2016-07-05 2018-01-11 シャープ株式会社 Photo-alignment treatment device for liquid crystal display panel substrate, and liquid crystal display panel manufacturing method
WO2018216769A1 (en) * 2017-05-25 2018-11-29 シャープ株式会社 Composition and liquid crystal display device
CN110998425A (en) * 2017-08-22 2020-04-10 夏普株式会社 Liquid crystal display panel and method for manufacturing liquid crystal display panel
WO2023224114A1 (en) * 2022-05-20 2023-11-23 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7177396B2 (en) * 2017-03-27 2022-11-24 日産化学株式会社 Cured film-forming composition, alignment material and retardation material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140010A (en) * 2008-11-17 2010-06-24 Jsr Corp Liquid crystal-aligning agent, liquid crystal alignment layer, method for forming the same, and liquid crystal display element
WO2012056947A1 (en) * 2010-10-26 2012-05-03 シャープ株式会社 Liquid crystal display panel, liquid crystal display, and polymer for alignment film material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140010A (en) * 2008-11-17 2010-06-24 Jsr Corp Liquid crystal-aligning agent, liquid crystal alignment layer, method for forming the same, and liquid crystal display element
WO2012056947A1 (en) * 2010-10-26 2012-05-03 シャープ株式会社 Liquid crystal display panel, liquid crystal display, and polymer for alignment film material

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017063301A1 (en) * 2015-10-13 2017-04-20 深圳市华星光电技术有限公司 Liquid crystal panel and manufacturing method therefor
WO2017094490A1 (en) * 2015-12-01 2017-06-08 富士フイルム株式会社 Liquid crystal display apparatus and manufacturing method for liquid crystal display apparatus
JP2017102258A (en) * 2015-12-01 2017-06-08 富士フイルム株式会社 Liquid crystal display device and method for manufacturing liquid crystal display device
TWI703373B (en) * 2015-12-01 2020-09-01 日商富士軟片股份有限公司 Liquid crystal display device and method for manufacturing liquid crystal display device
CN108351558A (en) * 2015-12-01 2018-07-31 富士胶片株式会社 The manufacturing method of liquid crystal display device and liquid crystal display device
KR102061587B1 (en) 2015-12-01 2020-01-02 후지필름 가부시키가이샤 Liquid crystal display device and liquid crystal display device manufacturing method
US20190324302A1 (en) * 2016-07-05 2019-10-24 Sharp Kabushiki Kaisha Photo-alignment treatment device for liquid crystal display panel substrate, and liquid crystal display panel manufacturing method
WO2018008485A1 (en) * 2016-07-05 2018-01-11 シャープ株式会社 Photo-alignment treatment device for liquid crystal display panel substrate, and liquid crystal display panel manufacturing method
US10884269B2 (en) 2016-07-05 2021-01-05 Sharp Kabushiki Kaisha Method for manufacturing a liquid crystal display panel comprising performing a photo-alignment treatment using a photo-alignment treatment device having a light irradiation mechanism and a rotation adjustment mechanism
WO2018216769A1 (en) * 2017-05-25 2018-11-29 シャープ株式会社 Composition and liquid crystal display device
CN110662807A (en) * 2017-05-25 2020-01-07 夏普株式会社 Composition and liquid crystal display device
US11634637B2 (en) 2017-05-25 2023-04-25 Sharp Kabushiki Kaisha Composition and liquid crystal display device
CN110998425A (en) * 2017-08-22 2020-04-10 夏普株式会社 Liquid crystal display panel and method for manufacturing liquid crystal display panel
WO2023224114A1 (en) * 2022-05-20 2023-11-23 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Also Published As

Publication number Publication date
JP2016173380A (en) 2016-09-29

Similar Documents

Publication Publication Date Title
JP5492516B2 (en) Liquid crystal display
WO2015020083A1 (en) Liquid crystal display device and liquid crystal alignment agent
TWI434111B (en) Liquid crystal aligning agent and liquid crystal display element
JP4944217B2 (en) Liquid crystal display
TWI457666B (en) Liquid crystal aligning agent and liquid crystal display element
JP5477572B2 (en) Liquid crystal aligning agent and method for forming liquid crystal aligning film
TWI567109B (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display device, phase difference film and manufacturing method thereof, polymer and compound
JP5773116B2 (en) Liquid crystal aligning agent and liquid crystal display element
TWI582503B (en) Liquid crystal alignment agent, liquid crystal alignment film and method for producing the same, liquid crystal display device
WO2011155413A1 (en) Liquid crystal display device
TWI541270B (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element and method for producing liquid crystal alignment film
WO2012029591A1 (en) Liquid crystal display panel, liquid crystal display device, and polymer for alignment film material
JP6507937B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and method for manufacturing the same, liquid crystal display device, retardation film and method for manufacturing the same
KR102025168B1 (en) Liquid crystal display device and method of manufacturing the same
TWI633375B (en) Liquid crystal alignment agent, liquid crystal alignment film and method for manufacturing the same, liquid crystal display device, phase difference film and method for manufacturing the same, polymer and compound
JP6492509B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element
JP2016004271A (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display device
TWI488950B (en) Composition for forming liquid crystal display alignment film, liquid crystal display alignment film and liquid crystal display element
WO2012029589A1 (en) Liquid crystal display panel, liquid crystal display device, and polymer for alignment layer material
JP5041157B2 (en) Vertical alignment type liquid crystal aligning agent and vertical alignment type liquid crystal display element
JP5879861B2 (en) Method for forming liquid crystal alignment film
WO2012056947A1 (en) Liquid crystal display panel, liquid crystal display, and polymer for alignment film material
JP5181066B2 (en) Orientation control film
CN106947498B (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal element, and method for producing liquid crystal alignment film and liquid crystal element
TW201607990A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14833851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14833851

Country of ref document: EP

Kind code of ref document: A1