WO2017094260A1 - 脊椎動物の脂肪組織由来間葉系細胞株の製造方法 - Google Patents

脊椎動物の脂肪組織由来間葉系細胞株の製造方法 Download PDF

Info

Publication number
WO2017094260A1
WO2017094260A1 PCT/JP2016/005016 JP2016005016W WO2017094260A1 WO 2017094260 A1 WO2017094260 A1 WO 2017094260A1 JP 2016005016 W JP2016005016 W JP 2016005016W WO 2017094260 A1 WO2017094260 A1 WO 2017094260A1
Authority
WO
WIPO (PCT)
Prior art keywords
adipose tissue
cells
cell line
vertebrate
mesenchymal cell
Prior art date
Application number
PCT/JP2016/005016
Other languages
English (en)
French (fr)
Inventor
由美子 松原
池田 康夫
圭一 戸澤
秀行 佐谷
博行 信末
Original Assignee
学校法人 慶應義塾
公益財団法人神奈川科学技術アカデミー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 慶應義塾, 公益財団法人神奈川科学技術アカデミー filed Critical 学校法人 慶應義塾
Priority to EP16870201.7A priority Critical patent/EP3385372B1/en
Priority to JP2017553631A priority patent/JP6714932B2/ja
Priority to US15/779,578 priority patent/US11518982B2/en
Publication of WO2017094260A1 publication Critical patent/WO2017094260A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0653Adipocytes; Adipose tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/35Fat tissue; Adipocytes; Stromal cells; Connective tissues
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0667Adipose-derived stem cells [ADSC]; Adipose stromal stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1346Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells
    • C12N2506/1384Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells from adipose-derived stem cells [ADSC], from adipose stromal stem cells

Definitions

  • the present invention relates to a method for producing a vertebrate adipose tissue-derived mesenchymal cell line, a vertebrate adipose tissue-derived mesenchymal cell line produced by the production method, and the like.
  • Platelet transfusion is the only treatment for thrombocytopenia caused by bleeding in the event of accidents or the use of anticancer drugs, and the platelet preparations used at that time are currently 100% dependent on bona fide donation. Platelets are very fragile and there is no method to date that allows long-term storage of platelets for therapeutic purposes. Actually, the shelf life of platelets is 4 days at the latest medical institutions, but considering the time required for testing and shipping, the actual shelf life at clinical sites including clinics is about 3 days. Is done. In this way, many blood banks have always had the difficulty of keeping and storing platelets fresh, and the supply of platelet products that depend on blood donation has decreased blood donors and suffered from viral infections. The situation is easily affected by the increase in blood donors.
  • Non-patent Document 1 Non-patent Document 1
  • hematopoietic stem cells umbilical cord blood stem cells
  • ES embryonic stem
  • Non-patent Document 2 a technique for producing mature megakaryocytes and platelets from human ES cells has already been reported (Non-patent Document 2).
  • the production efficiency of platelets is poor, and tens of thousands of petri dishes are required to produce a single blood transfusion preparation.
  • refractory platelet transfusion is a problem.
  • HLA human leukocyte antigen
  • platelets having human leukocyte antigen (HLA) different from that of the patient can be used, but by repeating the transfusion, a specific antibody against this HLA is produced in the patient, and as a result, the transfused platelets are rapidly Rejected.
  • platelets also have a human blood alloantigen (HPA), which is a unique blood type, and transfusion refractory due to this compatible type difference is also observed.
  • HPA human blood alloantigen
  • iPS human induced pluripotent stem
  • Non-Patent Document 4 a method for producing platelets from fibroblasts by a technique called direct reprogramming. According to this technique, the period until the production of platelets can be greatly shortened and the platelet production can be achieved in about 14 days as compared with the method using iPS cells.
  • gene transfer is required for direct reprogramming using fibroblasts, and there is concern about the impact on safety caused by the mixture of vectors for gene transfer.
  • MKLI medium megakaryocyte lineage induction medium
  • MKLI medium megakaryocyte lineage induction medium
  • the MKLI medium was prepared by adding Ismoff-modified Dulbecco medium (IMDM) to 2 mM L-glutamine, 100 U / mL penicillin-streptomycin solution, 0.5% bovine serum albumin, 4 ⁇ g / mL LDL cholesterol, 200 ⁇ g / mL pig iron saturated transferrin (iron binding).
  • IMDM Ismoff-modified Dulbecco medium
  • Type transferrin a medium supplemented with 10 ⁇ g / mL insulin, 50 ⁇ M 2- ⁇ -mercaptoethanol, nucleotides (ATP, UTP, GTP and CTP each 20 ⁇ M), and 50 ng / mL thrombopoietin (TPO) (non-patented) Reference 5).
  • the present inventors have been conducting research on techniques for inducing differentiation from cells other than hematopoietic stem cells into megakaryocytes and platelets.
  • Patent Document 1 adipose precursor cells derived from human subcutaneous adipose tissue (non-facial cells) It has been found that Patent Documents 5 and 6) and mouse-derived adipose precursor cells (Non-Patent Documents 5 and 7) can be differentiated into megakaryocytes and platelets. The present inventors have further studied and found a better method capable of producing megakaryocytes and / or platelets (Patent Document 1). The production method of Patent Document 1 is characterized in that mesenchymal cells are cultured in a basic medium for mesenchymal cell culture containing iron ions and an iron transporter, and megakaryocytes and / or platelets are collected from the culture.
  • megakaryocytes having the ability to produce platelets and / or platelets having the ability to form thrombus can be obtained from mesenchymal cells such as preadipocytes without adding TPO or the like to the medium. It is possible to manufacture in vitro in a simple and large amount, and at a lower cost or more efficiently in vitro.
  • Patent Document 1 is an excellent production method that eliminates the disadvantages of the conventional production method of platelets using hematopoietic stem cells, ES cells, or iPS cells.
  • Patent Document 1 discloses that a preadipocyte cell line is used as one type of mesenchymal cells before differentiation into megakaryocytes or platelets.
  • Adipose precursor cell lines are commercially available and can be established from adipose tissue.
  • the adipose tissue is treated with collagenase to separate adipocytes, the cell suspension containing adipocytes is centrifuged, and the mature adipocytes in the supernatant are collected.
  • An object of the present invention is to provide a method for producing a vertebrate adipose tissue-derived mesenchymal cell line, a vertebrate adipose tissue-derived mesenchymal cell line produced by the production method, and the like. More specifically, a method for producing a vertebrate adipose tissue-derived mesenchymal cell line more easily, in a shorter period, and more efficiently, and a vertebrate adipose tissue-derived cell line produced by the production method It is to provide leaf cell lines and the like.
  • a suspension containing a cell population obtained by treating vertebrate adipose tissue with an enzyme capable of dispersing vertebrate adipose tissue cells is highly efficient.
  • a vertebrate adipose tissue-derived mesenchymal cell line can be produced more simply, in a shorter period of time, and more efficiently, and the present invention has been completed.
  • the method for producing a vertebrate adipose tissue-derived mesenchymal cell line of the present invention requires half the time required for establishment of the cell line as compared with the method for producing a preadipocyte cell line from adipose tissue in Patent Document 2.
  • the amount of cell lines that can be established from the same amount of adipose tissue was about 10 to 15 times.
  • the present inventors have been able to perform long-term subculture of the vertebrate adipose tissue-derived mesenchymal cell line obtained as described above, and proliferate ability and mesoderm after long-term subculture. It has been found that the differentiation potential into the system cells is maintained, and the present invention has been completed.
  • the present invention (1) A method for producing a vertebrate adipose tissue-derived mesenchymal cell line, comprising the following steps (A) and (B): (A) a step of inducing differentiation of one or more cells selected from a stromal vascular cell group including mesenchymal stem cells, adipose precursor cells, and stromal cells of vertebrate adipose tissue into mature adipocytes; (B) dedifferentiating the mature adipocytes obtained in step (A) to obtain a vertebrate adipose tissue-derived mesenchymal cell line; (2) One or more cells are obtained by removing mature adipocytes from a cell population obtained by treating vertebrate adipose tissue with an enzyme capable of dispersing vertebrate adipose tissue cells.
  • a method for producing adipose tissue-derived mesenchymal cell line (4)
  • the step of inducing differentiation of one or more cells in step (A) into mature adipocytes is one or more selected from the group consisting of dexamethasone, isobutylmethylxanthine, insulin and serum Any one of the above (1) to (3), which is a step of culturing the one or more types of cells in a basic culture solution for culturing mesenchymal cells containing an adipocyte differentiation inducer
  • the vertebrate according to any one of (1) to (4) above, wherein the induction of dedifferentiation of mature adipocytes in step (B) is ceiling culture of mature adipocytes
  • the present invention also provides: (9) A vertebrate adipose tissue-derived mesenchymal cell line produced by the production method according to any one of (1) to (8) above, (10) The ability to differentiate into one or more selected from the group consisting of megakaryocytes / platelets, osteoblasts, cartilage and adipocytes Vertebrate adipose tissue-derived mesenchymal cell lines, (11) One or two or more kinds of surface markers selected from the following surface markers of blood cells that express one or more kinds of surface markers selected from the group of surface markers of mesenchymal cells The vertebrate adipose tissue-derived mesenchymal cell line according to (9) or (10) above, wherein the surface marker of at least one species is not expressed; Surface marker group of mesenchymal cells: CD13, CD29, CD44, CD71, CD73, CD90, CD105, CD166, HLA-ABC; Blood cell surface marker group: CD11b, CD14, CD19, CD34, CD41,
  • the present invention provides (13) having a step of obtaining mesoderm cells by inducing differentiation of the vertebrate adipose tissue-derived mesenchymal cell line described in any of (9) to (12) above into mesodermal cells.
  • a method for producing mesodermal cells characterized by (14) The method for producing mesodermal cells according to (13) above, wherein the mesodermal cells are megakaryocytes / platelets, osteoblasts, cartilage or adipocytes.
  • a method for producing a vertebrate adipose tissue-derived mesenchymal cell line, a vertebrate adipose tissue-derived mesenchymal cell line produced by the production method, and the like can be provided. More specifically, a method for producing a vertebrate adipose tissue-derived mesenchymal cell line more easily, in a shorter period, and more efficiently, and a vertebrate adipose tissue-derived cell line produced by the production method Leaf cell lines and the like can be provided.
  • mesenchymal cell lines maintain semi-permanent differentiation ability and proliferation ability, "Merit of being able to obtain a larger amount of mesodermal cell material” or "Freeze storage of mesenchymal cell lines If you want, you can start production of mesodermal cells immediately when you need mesodermal cells such as megakaryocytes, platelets, osteoblasts, cartilage, fat cells, etc. . Therefore, if the mesenchymal cell line derived from vertebrate adipose tissue according to the present invention is used, mesodermal cells can be obtained in a shorter period and in a larger amount. The significance of the present invention to the field is great.
  • FIG. 1 It is a figure showing the result of having observed the human adipose tissue origin mesenchymal cell line manufactured in Example 1 with the phase-contrast microscope image.
  • the bar in FIG. 1 represents 100 ⁇ m.
  • the results of examining whether the human adipose tissue-derived mesenchymal cell line produced in Example 1 has the ability to differentiate into osteoblasts, to differentiate into adipocytes, or to differentiate into chondrocytes.
  • FIG. 1 It is a figure showing the result of having analyzed the expression of the surface marker of the mesenchymal cell and the blood cell in the human adipose tissue origin mesenchymal cell line manufactured in Example 1 by the flow cytometry method.
  • the top 9 panels represent the results for mesenchymal cell surface markers (CD13, CD29, CD44, CD71, CD73, CD90, CD105, CD166, HLA-ABC) and the bottom 9 panels represent blood cells Of the surface markers (CD11b, CD14, CD19, CD34, CD41, CD42b, CD45, CD56, HLA-DR).
  • Each of the nine panels in the upper row has two signal peaks mainly.
  • Each left peak represents the result using a negative control antibody, and each right peak used an anti-surface marker antibody.
  • a cell population obtained by culturing a human adipose tissue-derived mesenchymal cell line in MKLI culture medium for 7 days is labeled with a fluorescence-labeled CD41 antibody and a fluorescence-labeled anti-CD42b antibody, and fluorescence is obtained using a flow cytometry method. It is a figure which shows the measurement result.
  • the horizontal axis represents the fluorescence intensity of the fluorescently labeled CD41 antibody, and the vertical axis represents the fluorescence intensity of the fluorescently labeled anti-CD42b antibody.
  • FIG. 6 shows the result of measuring the fluorescence using a flow cytometry method after labeling a cell population obtained by culturing a human adipose tissue-derived mesenchymal cell line for 7 days in an MKLI culture solution with a fluorescently labeled anti-fibrinogen antibody. It is a figure (the peak on the right of the figure). This figure also shows the result of measuring the fluorescence using a flow cytometry method after labeling a human adipose tissue-derived mesenchymal cell line with a fluorescently labeled anti-fibrinogen antibody (left peak in the figure).
  • the horizontal axis represents fluorescence intensity
  • the vertical axis represents the number of cells.
  • Results obtained by labeling a cell population obtained by culturing a human adipose tissue-derived mesenchymal cell line for 7 days in an MKLI culture solution with a fluorescently labeled anti-PAC-1 antibody and measuring the fluorescence using a flow cytometry method (The peak on the right side of the figure).
  • This figure also shows the results of measuring the fluorescence using a flow cytometry method after labeling a human adipose tissue-derived mesenchymal cell line with a fluorescently labeled anti-PAC-1 antibody (left peak in the figure).
  • the horizontal axis represents fluorescence intensity, and the vertical axis represents the number of cells.
  • ⁇ Method for producing mesenchymal cell line derived from vertebrate adipose tissue As a method for producing a vertebrate adipose tissue-derived mesenchymal cell line of the present invention (hereinafter simply referred to as “the method of producing the cell line of the present invention”), (A) a step of inducing differentiation of one or more cells selected from a stromal vascular cell group including mesenchymal stem cells, adipose precursor cells, and stromal cells of vertebrate adipose tissue into mature adipocytes; And (B) obtaining the vertebrate adipose tissue-derived mesenchymal cell line by inducing dedifferentiation of the mature adipocytes obtained in step (A); As long as it is a method having The mature adipocytes obtained by the differentiation induction in the step (A) are more likely to undergo dedifferentiation than mature adipocytes present in vertebrate adipose
  • a vertebrate adipose tissue-derived mesenchymal cell line can be produced more easily, in a shorter period of time, and more efficiently by inducing dedifferentiation in the step (B) ( It is thought that it can be established.
  • this manufacturing method can be made in vitro (ex vivo) or in vitro.
  • step (A) one or more cells selected from a group of stromal vascular cells including mesenchymal stem cells, adipose precursor cells, and stromal cells of vertebrate adipose tissue (hereinafter referred to as the present specification) In the document, it is also indicated as “mesenchymal stem cell etc.”) as long as it is a step of inducing differentiation into mature adipocytes.
  • a differentiation inducing step is a step of inducing differentiation in vitro (ex vivo) or in vitro.
  • the biological species from which the adipose tissue is derived is not particularly limited as long as it is a vertebrate, and may include mammals, birds, reptiles, amphibians, fish, etc., among them, humans, mice, rats, guinea pigs, rabbits, Preferred examples include mammals such as cats, dogs, horses, cows, monkeys, sheep, goats, and pigs, with human beings being particularly preferred.
  • adipose tissue-derived mesenchymal cell line produced by the method for producing a cell line of the present invention or a mesodermal cell induced to differentiate from the cell line to a target vertebrate it is preferable to use the adipose tissue of the target vertebrate in the method for producing a cell line of the present invention.
  • the “adipose tissue” in the present specification is not particularly limited as long as it is a tissue containing fat, and includes subcutaneous adipose tissue, adipose tissue in bone marrow, visceral adipose tissue, etc. Subcutaneous adipose tissue is preferable because it is relatively low in invasiveness and relatively easy to collect.
  • the “stromal vascular cell group” means cells other than mature adipocytes among vertebrate adipose tissue cells.
  • the stromal vascular cell group usually includes cells such as mesenchymal stem cells, preadipocytes, stromal cells, vascular endothelial cells, blood cells, smooth muscle cells, fibroblasts, and the like.
  • Such “stromal vascular cell group” can be obtained by removing mature adipocytes from a cell population obtained by treating vertebrate adipose tissue with an enzyme capable of dispersing vertebrate adipose tissue cells.
  • the above-mentioned “one or more cells selected from a group of stromal vascular cells including mesenchymal stem cells, adipose precursor cells and stromal cells of vertebrate adipose tissue” include vertebrate adipose tissue One or more selected from mesenchymal stem cells (mesenchymal stem cells), adipose precursor cells (preadipocytes or adipose progenitor) cells), and stromal vascular cells (stromal vascular fraction) including stromal cells (stromal cells)
  • mesenchymal stem cells mesenchymal stem cells
  • adipose precursor cells preadipocytes or adipose progenitor
  • stromal vascular cells stromal vascular fraction
  • the adipose precursor cells and the mesenchymal cells than the cell population that contains only adipose precursor cells are used.
  • It is preferably a cell population containing at least stem cells and / or stromal cells, more preferably a cell population containing at least adipose precursor cells, mesenchymal stem cells and stromal cells. Since it is convenient, and more preferably a stromal vascular cell groups of the cell population.
  • the spine One or two or more types of cells selected from a group of mesenchymal stem cells, adipose precursor cells, and stromal vascular cells including stromal cells obtained by dispersing cells of adipose tissue of animals can be mentioned.
  • a cell population (cell population A) obtained by removing mature adipocytes from a cell population obtained by treating vertebrate adipose tissue with an enzyme capable of dispersing animal adipose tissue cells is preferred.
  • a cell population obtained by further removing vascular endothelial cells and / or cells related to blood from the cell population A may be used.
  • Cells obtained by removing mature adipocytes and the like from the cell population obtained by treating the vertebrate adipose tissue with an enzyme capable of dispersing the vertebrate adipose tissue cells are interstitial blood vessels.
  • a cell population of a group of cells which typically includes mesenchymal stem cells, adipose precursor cells, stromal cells, vascular endothelial cells, blood cells, smooth muscle cells, fibers of vertebrate adipose tissue Cells such as blasts are included.
  • enzyme capable of dispersing vertebrate adipose tissue cells is not particularly limited as long as it is an enzyme capable of dispersing vertebrate adipose tissue cells by acting on vertebrate adipose tissue.
  • examples include one or more enzymes selected from the group consisting of collagenase, trypsin, caseinase, clostripain, trypsin-EDTA, dispase, thermolysin, pronase, hyaluronidase, pancreatin, elastase, and papain.
  • One or more enzymes selected from the group consisting of trypsin, caseinase and clostripain are preferably mentioned, and commercially available collagenase (type I) and collagenase (type II) are more preferred. Collagenase (type II) Preferably mentioned. Moreover, it is preferable that at least collagenase is contained in the “enzyme capable of dispersing vertebrate adipose tissue cells”.
  • the above-mentioned method of “removing mature adipocytes from a cell population obtained by treating vertebrate adipose tissue with an enzyme capable of dispersing vertebrate adipose tissue cells” includes removing mature adipocytes from such a cell population.
  • a method of recovering a cell population (cell pellet) that precipitates when the suspension containing the cell population is centrifuged is preferably mentioned.
  • Mature fat cells contain a lot of fat, so the specific gravity is light and floats at the top of the supernatant when centrifuged.If the cell pellet precipitated by such centrifugation is collected, mature fat cells can be removed. it can.
  • the method is not particularly limited as long as it is a method capable of removing those cells from the cell population. For example, selecting a CD31 negative cell known as a surface marker for vascular endothelial cells (or a cell positive for CD31) To remove vascular endothelial cells from the cell population.
  • CD45 surface marker for hematopoietic cells other than erythrocytes and platelets
  • Ter119 surface marker of erythrocytes and their progenitor cells
  • CD45 positive and Ter119 positive By removing the cells and a method of removing a cell associated from the cell population to the blood.
  • 7-amino-actinomycin D (7-AAD) as an index because dead cells contained in vertebrate adipose tissue can be excluded. 7-AAD intercalates into the dead cell DNA strand and emits red fluorescence upon excitation at 488 nm.
  • the precipitated cell pellet (cell population A) is a cell of the stromal vascular cell group.
  • the stromal vascular cell group usually includes mesenchymal stem cells, adipose precursor cells, stromal cells (stromal cells), blood vessels. Endothelial cells, smooth muscle cells, fibroblasts, and the like are included, but mesenchymal stem cells, preadipocytes, and stromal cells can differentiate into mature adipocytes. Therefore, before performing differentiation induction into mature adipocytes, and the like, the method further includes a step of removing any one type, two or more types or all types of cells other than these three types from the precipitated cell pellet.
  • Vascular endothelial cells, smooth muscle cells, fibroblasts, etc., together with mesenchymal stem cells, etc. do not differentiate into mature adipocytes, even when subjected to differentiation induction into mature adipocytes, and mesenchymal stem cells, etc. It does not interfere with the differentiation into mature adipocytes.
  • one or more cells selected from a stromal vascular cell group including mesenchymal stem cells, adipose precursor cells and stromal cells of vertebrate adipose tissue are differentiated into mature adipocytes.
  • an adipocyte differentiation inducing substance selected from a stromal vascular cell group including mesenchymal stem cells, adipose precursor cells and stromal cells of vertebrate adipose tissue
  • a method of culturing in a basic culture solution for culturing mesenchymal cells containing As a method for culturing mesenchymal stem cells and the like in a basic culture solution for culturing mesenchymal cells containing an adipocyte differentiation inducer, as long as the mesenchymal cells can be induced to differentiate into mature adipocytes by such culture,
  • a normal method for inducing differentiation of preadipocytes into mature adipocytes that is, culturing the starting cells in a basic medium for mesenchymal cell culture containing an adipocyte differentiation inducer The method can be used.
  • the conditions for culturing mesenchymal stem cells and the like in a basic culture solution for culturing mesenchymal cells containing an adipocyte differentiation inducer are, for example, in a culture vessel coated with an extracellular matrix.
  • the culture temperature is usually within a range of 12 to 45 ° C., preferably within a range of 15 to 37 ° C.
  • the culture period is a mesenchyme derived from a vertebrate adipose tissue.
  • mesenchymal stem cells and the like may not be passaged, but may be passaged.
  • the extracellular matrix include one or more components selected from collagen, fibronectin, proteoglycan, laminin, and BD-Matrigel (registered trademark) (manufactured by BD Biosciences) containing such components. Can also be used.
  • the adipocyte differentiation inducer is not particularly limited as long as it has an action of differentiating cells that can be induced to mature adipocytes into mature adipocytes or an action that assists the action.
  • dexamethasone One or two or more types selected from the group consisting of isobutylmethylxanthine, insulin and serum can be mentioned, and from the viewpoint of obtaining better differentiation induction efficiency into mature adipocytes, among them, “a combination of serum and dexamethasone”, Preferred examples include ⁇ combination of adipocyte differentiation inducer containing at least serum and dexamethasone '', ⁇ combination of serum and isobutylmethylxanthine '', and ⁇ combination of adipocyte differentiation inducer containing at least serum and isobutylmethylxanthine ''.
  • “Combination of serum, dexamethasone and insulin” "Serum and dexamethas A combination of an adipocyte differentiation-inducing substance containing at least insulin and insulin "," a combination of serum, isobutylmethylxanthine and insulin ",” a combination of serum, an adipocyte differentiation-inducing substance containing at least isobutylmethylxanthine and insulin "," serum and More preferably mentioned is ⁇ a combination of dexamethasone and isobutylmethylxanthine '', ⁇ a combination of serum, dexamethasone and isobutylmethylxanthine containing adipocyte differentiation inducer '', among them, ⁇ a combination of serum, dexamethasone, isobutylmethylxanthine and insulin '', “Combination of adipocyte differentiation-inducing substances containing at least serum, dexamethasone, isobutylmethylxanthine and insulin” is more prefer
  • adipocyte differentiation-inducing substance and the basic culture medium for culturing mesenchymal cells containing the substance commercially available ones may be used.
  • a culture solution prepared by adding a cell differentiation inducer may be used.
  • a culture solution containing an adipocyte differentiation inducer Adipocyte® Differentiation® Medium culture solution (manufactured by Cell Applications) is preferably mentioned.
  • rosiglitazone, pioglitazone, indomethacin, etc. are mentioned as substances other than the above-listed adipocyte differentiation-inducing substances and having an action of assisting differentiation into mature adipocytes.
  • the concentration of the adipocyte differentiation inducer in the culture solution is not particularly limited as long as it can induce differentiation of mesenchymal stem cells and the like into mature adipocytes.
  • the concentration of dexamethasone is within the range of 0.1 to 10 ⁇ M.
  • the isobutylmethylxanthine concentration is preferably in the range of 10 to 1000 ⁇ M, preferably 250 to 750 ⁇ M, and the insulin concentration is 0.1 to 2.5 ⁇ M.
  • the range is 10 ⁇ M, preferably 0.5 to 2.5 ⁇ M, and the serum concentration is 1 to 20% by weight, preferably 5 to 15% by weight, more preferably 7 to Within the range of 13% by weight.
  • the “basic culture solution for culturing mesenchymal cells” in the present specification is particularly a culture solution that can proliferate the mesenchymal cells by culturing at least one mesenchymal cell with the culture solution.
  • a chemically synthesized culture solution is preferable from the viewpoint of easy preparation and prevention of variation from lot to lot.
  • One or two or more types of sugar (s), one or two or more types of inorganic salts (s), 1 or Preferably, it comprises two or more amino acid (s), one or more vitamin (s), and optionally one or more other components.
  • saccharide examples include monosaccharides such as glucose, mannose, fructose, and galactose, and disaccharides such as sucrose, maltose, and lactose.
  • glucose is particularly preferable.
  • two or more can be added in combination.
  • the inorganic salts include calcium chloride, calcium nitrate, copper sulfate pentahydrate, iron (III) nitrate nonahydrate, iron (II) sulfate heptahydrate, magnesium chloride hexahydrate.
  • Mention may be made of one or more inorganic salts (s) selected from sodium dihydrate, sodium selenite pentahydrate and zinc sulfate heptahydrate.
  • amino acids include alanine, arginine, asparagine, aspartic acid, cystine, cysteine, glutamine, glycine, histidine, glutamic acid, hydroxyproline, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine.
  • amino acid (s) selected from, tryptophan, tyrosine, valine, etc., preferably L-amino acids and their derivatives and their salts and their hydrates Can do.
  • the arginine include arginine derivatives such as L-arginine hydrochloride and L-arginine monohydrochloride.
  • aspartic acid examples include L-aspartic acid sodium salt monohydrate, L-asparagine.
  • Derivatives of aspartic acid such as acid monohydrate, potassium L-aspartate, magnesium L-aspartate, and the like
  • cysteine examples include L-cysteine dihydrochloride and L-cysteine hydrochloride monohydrate
  • Derivatives of cysteine such as L-lysine hydrochloride and derivatives of lysine such as L-lysine hydrochloride
  • glutamic acid can include derivatives of glutamine such as L-glutamic acid monosodium salt
  • asparagine examples include derivatives of asparagine such as L-asparagine monohydrate.
  • tyrosine examples include derivatives of tyrosine such as L-tyrosine disodium dihydrate
  • histidine examples include derivatives of histidine such as histidine hydrochloride and histidine hydrochloride monohydrate.
  • the lysine examples include lysine derivatives such as L-lysine hydrochloride.
  • vitamins include one or two selected from biotin, choline, folic acid, inositol, niacin, pantothenic acid, pyridoxine, riboflavin, thiamine, vitamin B12, paraaminobenzoic acid (PABA), and ascorbic acid. Mention may be made of more than one type of vitamin (s) and derivatives of each of these components and their salts and their hydrates.
  • examples of the choline include choline derivatives such as choline chloride
  • examples of niacin include niacin derivatives such as nicotinic acid, nicotinic acid amide, and nicotinic alcohol, and pantothenic acid.
  • Can include derivatives of pantothenic acid such as calcium pantothenate, sodium pantothenate, and panthenol.
  • pyridoxine include derivatives of pyridoxine such as pyridoxine hydrochloride, pyridoxal hydrochloride, pyridoxal phosphate, and pyridoxamine.
  • thiamine examples include thiamine hydrochloride, thiamine nitrate, bis-thiamine nitrate, thiamine dicetyl sulfate, thulamine derivatives such as fursultiamine hydrochloride, octothiamine, benfotiamine and the like, and ascorbic acid Ascorbic acid 2-phosphate ester, ascorbic acid magnesium phosphate, sodium ascorbate sulfate, sodium ascorbyl sulfate, ascorbyl aminopropyl phosphate, sodium ascorbate phosphate, etc. be able to.
  • Examples of the other components include buffers such as HEPES, antibiotics such as penicillin and streptomycin, pyruvic acid, derivatives thereof and salts thereof, derivatives such as hydrates thereof, and phenol red.
  • Preferred examples of the antibiotic derivative include penicillin G sodium, streptomycin sulfate, and a penicillin-streptomycin solution.
  • Preferred examples of the pyruvate derivative include sodium pyruvate.
  • the basic culture medium for mesenchymal cell culture include commercially available Dulbecco's modified Eagle medium (DMEM), Iskov's modified Dulbecco medium (IMDM), RPMI 1640 medium, minimum essential medium (MEM), and Eagle. Any of these culture solutions such as a known chemical synthesis culture solution such as a basic culture solution (BME), an F12 culture solution, or a DMEM / F12 culture solution (a culture solution in which DMEM and F12 culture solution are mixed at 1: 1).
  • DMEM Dulbecco's modified Eagle medium
  • IMDM Iskov's modified Dulbecco medium
  • RPMI 1640 medium minimum essential medium
  • MEM minimum essential medium
  • Eagle any of these culture solutions such as a known chemical synthesis culture solution such as a basic culture solution (BME), an F12 culture solution, or a DMEM / F12 culture solution (a culture solution in which DMEM and F12 culture solution are mixed at 1: 1).
  • a culture solution to which one or more kinds of substances are further added can be preferably mentioned, and in particular, a DMEM, IMDM, or RPMI-1640 culture solution. More preferably, a culture solution in which an antibiotic (preferably penicillin G sodium, streptomycin sulfate, or penicillin-streptomycin solution) is further added can be mentioned. Among them, antibiotics (preferably penicillin G sodium, streptomycin sulfate, or A culture solution to which a penicillin-streptomycin solution) is further added is particularly preferred.
  • a particularly preferred basic culture solution for mesenchymal cell culture in the present invention is a culture solution obtained by adding 100 U / mL (final concentration) penicillin-streptomycin solution to DMEM having the composition described below (hereinafter referred to as “the present invention”).
  • the concentration of each component in the particularly preferable basic culture solution in the present invention is within a range of 70% to 130% independently for each component.
  • concentration can be mentioned.
  • DMEM composition 200 mg / L anhydrous calcium chloride, 0.1mg / L Fe (NO 3 ) 3 ⁇ 9H 2 O, 200mg / L potassium chloride, 97.67mg / L anhydrous magnesium sulfate, 6400mg / L of sodium chloride, 3700mg / L sodium bicarbonate 125 mg / L sodium dihydrogen phosphate monohydrate, 4500 mg / L D-glucose, 15 mg / L phenol red, 110 mg / L sodium pyruvate, 84 mg / L L-arginine hydrochloride, 63 mg / L L-cystine dihydrochloride Salt, 584 mg / L L-glutamine, 30 mg / L glycine, 42 mg / L L-histidine hydrochloride monohydrate, 105 mg / L L-isoleucine, 105 mg / L L-leucine, 146 mg / L L-lysine hydrochloride,
  • Mature adipocytes obtained by the above step (A) are easily dedifferentiated mature adipocytes (that is, easily degenerated) when dedifferentiation is relatively induced.
  • An easily dedifferentiated mature adipocyte population comprising differentiated mature adipocytes).
  • the “easily dedifferentiated mature adipocyte population” in the present specification is compared with a mature adipocyte population collected from vertebrate adipose tissue as in the conventional method (Patent Document 2; Japanese Patent No. 5055611).
  • a mature adipocyte population in which the cell line yield ratio is 1.5 times or more, preferably 2 times or more, more preferably 4 times or more, still more preferably 6 times or more, more preferably 10 times or more, More preferably, it includes a mature adipocyte population that is 15 times or more.
  • the above-mentioned “ratio at which a cell line is obtained” represents the ratio of a cell line obtained from a specific amount of a mature adipocyte population, such as “weight of a mature adipocyte used for dedifferentiation induction”.
  • step (B) is a step of obtaining a vertebrate adipose tissue-derived mesenchymal cell line by inducing dedifferentiation of the mature adipocytes (easily dedifferentiated mature adipocytes) obtained in step (A).
  • a process is an ex vivo or in vitro process.
  • the mature adipocytes used in the step (B) are mature adipocytes obtained by induction of differentiation in the step (A). Such mature adipocytes can be obtained, for example, by centrifuging the culture suspension of step (A) and collecting cells floating on the upper part of the supernatant. This is because mature adipocytes contain a large amount of fat and thus have a low specific gravity and float at the top of the supernatant when centrifuged.
  • step (B) the method of obtaining the vertebrate adipose tissue-derived mesenchymal cell line by inducing dedifferentiation of the mature adipocytes (easy dedifferentiated mature adipocytes) obtained in step (A),
  • the method is not particularly limited as long as it is a method of inducing dedifferentiation of such mature adipocytes to obtain a vertebrate adipose tissue-derived mesenchymal cell line, but a method of so-called ceiling culture of such mature adipocytes is preferred.
  • Ceiling culture is a method of culturing cells by adhering or floating (preferably adhering) cells to the inner upper surface (ceiling surface) of a culture vessel (preferably a culture flask) filled with a culture solution, and contains a large amount of fat. Therefore, it is a method of culturing the cells by utilizing the property of mature adipocytes that are light in specific gravity and float in the culture solution.
  • Examples of the culture medium used for dedifferentiation-inducing culture of mature adipocytes include a basic culture medium for mesenchymal cell culture that includes an extracellular matrix.
  • Examples of such extracellular matrix include collagen, fibronectin, proteoglycan, laminin, and serum. 1 type or 2 or more types of components selected from (FBS etc.) are mentioned, BD * Matrigel (trademark) (made by BD * Biosciences) etc. containing such a component can also be used.
  • Serum such as FBS in the culture medium when dedifferentiation induction culture of mature adipocytes may be used only as an adhesion factor for adhering mature adipocytes to the ceiling surface of the culture vessel, or only as an adhesion factor therefor It may not be used.
  • the culture medium for dedifferentiation induction culture of mature adipocytes may not contain serum such as FBS, from the viewpoint of more efficiently producing a vertebrate adipose tissue-derived mesenchymal cell line, It is preferable to contain serum such as FBS together with an extracellular matrix other than serum or without an extracellular matrix other than serum.
  • the serum concentration in the case where such a culture solution contains serum such as FBS is not particularly limited as long as a vertebrate adipose tissue-derived mesenchymal cell line is obtained, but may be within the range of 3 to 30% by weight. 7 to 25% by weight is preferable, and 7 to 13% by weight is more preferable.
  • the vertebrate adipose tissue-derived mesenchymal cell line may or may not be isolated from the culture medium in which the ceiling culture is performed in the above step (B), but it is preferably isolated.
  • the established adipose tissue-derived mesenchymal cell line actively proliferates, and mature adipocytes gradually decrease, so that a cell population rich in adipose tissue-derived mesenchymal cell line is obtained.
  • the ceiling culture is continued for about 14 days, a cell population containing an extremely large amount of adipose tissue-derived mesenchymal cell line can be obtained.
  • the adhesive surface is Although it is included for the sake of convenience to place the culture container so as to be under the culture container and continue the culture, the mature adipocytes obtained in step (A) (easily dedifferentiated mature fat cells) are on the ceiling of the culture container.
  • the adipose tissue-derived mesenchymal cell line may be obtained without culturing in such a manner that the culture is continued in a state of being adhered to the surface, and the culture vessel is arranged so that the adhesive surface is below the culture solution.
  • the vertebrate adipose tissue-derived mesenchymal cell line of the present invention is not particularly limited as long as it is a vertebrate adipose tissue-derived mesenchymal cell line produced by the production method of the cell line of the present invention.
  • the vertebrate adipose tissue-derived mesenchymal cell line of the present invention does not undergo spontaneous differentiation when cultured in a normal culture medium for normal mesenchymal cell culture that does not have differentiation-inducing action, and is subjected to long-term subculture.
  • mesodermal cells one or more selected from the group consisting of megakaryocytes, platelets, osteoblasts, cartilage and adipocytes
  • mesodermal cells one or more selected from the group consisting of megakaryocytes, platelets, osteoblasts, cartilage and adipocytes
  • the adipose tissue-derived mesenchymal cell line of the present invention produced from human subcutaneous adipose tissue maintains growth ability even in the 20th generation, and it has been observed that the doubling time is 23 hours. .
  • the vertebrate adipose tissue-derived mesenchymal cell line of the present invention is more mesodermal cell (preferably than the adipose tissue-derived mesenchymal cell line prepared by the conventional method (Patent Document 2; Japanese Patent No. 5055611)). Has a remarkably high differentiation induction efficiency into megakaryocytes / platelets). Therefore, the vertebrate adipose tissue-derived mesenchymal cell line of the present invention can also be said to be an adipose tissue-derived mesenchymal cell line that is easily induced to differentiate into mesodermal cells (an easily differentiated adipose tissue-derived mesenchymal cell line). .
  • the “differentiated differentiation adipose tissue-derived mesenchymal cell line” is any one than the adipose tissue-derived mesenchymal cell line prepared by the conventional method (Patent Document 2; Japanese Patent No. 5055611). It means an adipose tissue-derived mesenchymal cell line having a differentiation induction efficiency into one kind of mesodermal cells (preferably megakaryocytes / platelets) of 1.5 times or more, preferably 2 times or more, more preferably 2 A mesenchymal cell line derived from adipose tissue that is 5 times or more, more preferably 3 times or more is included.
  • mesodermal cells preferably megakaryocytes / platelets
  • the vertebrate adipose tissue-derived mesenchymal cell line of the present invention is one or more selected from the following surface marker group of mesenchymal cells (preferably 3 or more, more preferably 5 or more, More preferably, 7 or more, more preferably 8 or 9 and most preferably 9) surface markers are expressed, and one or two types selected from the following surface marker group of blood cells It is preferable that the above (preferably 3 or more types, more preferably 5 or more types, still more preferably 7 or more types, more preferably 8 or 9 types, most preferably 9 types) surface markers are not expressed.
  • Leaf cell surface marker group CD13, CD29, CD44, CD71, CD73, CD90, CD105, CD166, HLA-ABC; Blood cell surface markers: CD11b, CD14, CD19, CD34, CD41, CD42b, CD45, CD56, HLA-DR;
  • mesenchymal stem cells as (A) adherent cells, (B) capable of differentiating into bone, cartilage and fat, and (C) expressing mesenchymal cell surface markers. And the condition that the surface marker of blood cells is not expressed.
  • the cell lines of preferred embodiments satisfy these conditions (A), (B), and (C).
  • the method for producing mesodermal cells of the present invention includes the step of obtaining mesodermal cells by inducing differentiation of the vertebrate adipose tissue-derived mesenchymal cell line of the present invention into mesodermal cells.
  • mesodermal cells include megakaryocytes and / or platelets (megakaryocytes / platelets), osteoblasts, cartilage, adipocytes and the like.
  • a method for inducing differentiation of the vertebrate adipose tissue-derived mesenchymal cell line of the present invention into mesodermal cells a known method for inducing differentiation of mesenchymal cells into mesodermal cells can be used.
  • the mesenchymal cell line derived from the vertebrate adipose tissue of the present invention is cultured in a basic culture solution for culturing mesenchymal cells containing a substance known to induce differentiation into each type of germ cell. A method can be mentioned.
  • Examples of the culture medium having an action of inducing differentiation into megakaryocytes and platelets include MKLI culture medium (megakaryocyte lineage induction ⁇ medium) (Non-patent Document 5) and basic culture solutions for mesenchymal cell culture containing iron ions and iron transporters.
  • Patent Document 1 Preferably, basic culture solution for mesenchymal cell culture containing iron-binding transferrin; Patent Document 1).
  • Examples of the culture medium having an action of inducing differentiation into osteoblasts include a basic culture medium for mesenchymal cell culture (International Publication No. 2012/029863) containing hydrocortisone, dexamethasone and serum, and commercially available osteoblasts.
  • Examples of the differentiation-inducing culture medium include Osteoblast® Differentiation® Medium manufactured by cell® applications.
  • Examples of the culture medium having an effect of inducing differentiation into cartilage include basic culture medium for mesenchymal cell culture containing transforming growth factor ⁇ 3 (TGF- ⁇ 3), dexamethasone and serum.
  • Examples of the liquid include hMSC, Mesenchymal, Stem, Cell, Chondrocyte, Differentiation, and Medium manufactured by lonza.
  • the culture solution having an action of inducing differentiation into adipocytes includes one or more adipocyte differentiation inducers selected from the group consisting of dexamethasone, isobutylmethylxanthine, insulin, and serum. Examples include a basic culture solution for culturing mesenchymal cells, and a commercially available adipocyte differentiation-inducing culture solution includes Adipocyte Differentiationenti Medium manufactured by cell applications.
  • adipose tissue-derived mesenchymal cell line After isolating a subcutaneous fat tissue fragment from human, collagenase (collagenase type II; manufactured by sigma) was added and incubated at 37 ° C. for 1 hour to obtain a cell suspension. When this cell suspension was centrifuged, mature adipocytes having a light specific gravity floated in the supernatant, and other types of cells precipitated as cell pellets.
  • the cell pellet contains mesenchymal stem cells, adipose precursor cells, stromal cells (stromal cells), vascular endothelial cells, smooth muscle cells, fibroblasts, and the like. In subsequent experiments, cells in the cell pellet were used.
  • the cells of the aforementioned cell pellet were cultured for 10 days under conditions of 37 ° C. and 5% CO 2 concentration.
  • the cultured cells are rich in mature adipocytes (easily dedifferentiated mature adipocytes) induced to differentiate from stromal vascular cell groups including mesenchymal stem cells, adipose precursor cells, and stromal cells.
  • the cultured cells are peeled off from the culture dish using trypsin, and trypsin and DMEM culture medium (Dulbecco's Modified Eagle's Medium, manufactured by Life Technologies) are added to the cells.
  • trypsin and DMEM culture medium Dulbecco's Modified Eagle's Medium, manufactured by Life Technologies
  • Adipocytes (easy dedifferentiated mature adipocytes) were collected.
  • the aforementioned easily dedifferentiated matured adipocytes are added to a culture flask containing a sufficient amount of DMEM culture solution containing 20% FBS, and the cells are suspended and attached to the upper surface inside the culture flask filled with the culture solution. (So-called “ceiling culture”).
  • Such ceiling culture was carried out for 7 days under conditions of 37 ° C. and 5% CO 2 concentration.
  • a human adipose tissue-derived mesenchymal cell line was obtained. The results of observing this human adipose tissue-derived mesenchymal cell line with a phase contrast microscope image are shown in FIG.
  • this cell line has a fibroblast-like morphology and was shown to adhere and proliferate on the culture dish.
  • the International Society for Cell Therapy defines mesenchymal stem cells as (A) adherent cells, (B) capable of differentiating into bone, cartilage and fat, and (C) expressing mesenchymal cell surface markers. And the condition that the surface marker of blood cells is not expressed. From the results of FIG. 1, it was shown that the human adipose tissue-derived mesenchymal cell line in the present invention satisfies (A) among the above-defined conditions of mesenchymal stem cells.
  • Patent Document 2 In the conventional method (Patent Document 2), it took more than two months to produce a preadipocyte cell line from the collection of adipose tissue. However, in this method of the present invention, adipose tissue is collected. Thus, a large amount of adipose tissue-derived mesenchymal cell line could be produced in less than one month.
  • the obtained human adipose tissue-derived mesenchymal cell line was subcultured in a DMEM culture solution (basic culture solution for preadipocyte culture) containing 10% FBS.
  • the amount (number of cells) of the cell line obtained per the same production period is determined according to the present invention.
  • Method a method of preparing easily dedifferentiated mature adipocytes and then culturing the cells by ceiling culture
  • a conventional method method of culturing mature adipocytes collected from adipose tissue by ceiling culture ( As compared with Patent Document 2; Japanese Patent No. 5055611)
  • the method of the present invention yielded about 15 times more cell lines than the conventional method.
  • the production method (establishment method) of the vertebrate adipose tissue-derived mesenchymal cell line of the present invention can produce the mesenchymal cell line remarkably efficiently from the vertebrate adipose tissue.
  • the obtained human adipose tissue-derived mesenchymal cell line maintains the proliferation ability even in the 20th generation, and it has been observed that the doubling time is 23 hours.
  • Example 1 human subcutaneous adipose tissue is used.
  • the present inventors also obtained an adipose tissue-derived mesenchymal cell line by the same method when using mouse subcutaneous adipose tissue. It was confirmed that
  • the human adipose tissue-derived mesenchymal cell line obtained in Example 1 above was cultured in an osteoblast differentiation-inducing culture solution (manufactured by Cell Applications) in a culture dish at 37 ° C. with a CO 2 concentration of 5%. The cells were cultured for 21 days.
  • an osteoblast differentiation-inducing culture solution manufactured by Cell Applications
  • the cells were cultured for 21 days.
  • the alkaline phosphatase activity of the obtained cells was confirmed by adding its substrate, bromochloroindolyl phosphate / nitro blue tetrazolium, a blue-violet coloration (however, it was expressed as a blackish color in the drawing) was observed. (Right panel in the first row from the top in FIG. 2). This confirmed the differentiation into osteoblasts.
  • the vertebrate adipose tissue-derived mesenchymal cell line produced by the production method of the present invention has the ability to differentiate into osteoblasts.
  • Example 2 a human adipose tissue-derived mesenchymal cell line is used, but the present inventors also differentiated into osteoblasts when using a mouse adipose tissue-derived mesenchymal cell line. It was confirmed that the
  • the human adipose tissue-derived mesenchymal cell line obtained in Example 1 above was cultured in an Adipocyte Differentiation Medium culture medium (manufactured by Cell Applications) in a culture dish at 37 ° C. and a CO 2 concentration of 5%. Cultured for 7 days.
  • Adipocyte Differentiation Medium culture medium manufactured by Cell Applications
  • red coloration was recognized (third stage from the top in FIG. 2).
  • Right panel This confirmed the differentiation into mature adipocytes. From this, it was confirmed that the vertebrate adipose tissue-derived mesenchymal cell line produced by the production method of the present invention has the ability to differentiate into adipocytes.
  • Example 3 a human adipose tissue-derived mesenchymal cell line is used, but the present inventors also have the ability to differentiate into adipocytes even when a mouse adipose tissue-derived mesenchymal cell line is used. It was confirmed that it has.
  • the human adipose tissue-derived mesenchymal cell line obtained in Example 1 above was cultured in a Chrondrogenic Differentiation medium culture solution (PromoCell) in a culture dish at 37 ° C. under a CO 2 concentration of 5%. Cultured for days. The obtained cells were stained with Alicia Blue to confirm the presence or absence of an extracellular matrix characteristic of chondrocytes, and blue coloration (however, it was expressed as a blackish color in the drawing) was observed (FIG. 2). The third panel from the top right panel). From this, differentiation into chondrocytes was confirmed. From this, it was confirmed that the vertebrate adipose tissue-derived mesenchymal cell line produced by the production method of the present invention has the ability to differentiate into chondrocytes.
  • the human adipose tissue-derived mesenchymal cell line obtained in Example 1 above is the “(B) bone, cartilage, It was found that the condition of being able to differentiate into fat was met.
  • the human adipose tissue-derived mesenchymal cell line obtained in Example 1 above expresses the surface marker of “(C) mesenchymal cells” in the definition of mesenchymal stem cells in the International Cell Therapy Society, and In order to examine whether or not the condition of “not expressing surface marker” is satisfied, surface markers of mesenchymal cells (CD13, CD29, CD44, CD71, CD73, CD90, CD105, CD166, HLA-ABC), blood Using an antibody that specifically recognizes cell surface markers (CD11b, CD14, CD19, CD34, CD41, CD42b, CD45, CD56, HLA-DR), the expression of each surface marker in the aforementioned cells is determined by flow cytometry.
  • the human adipose tissue-derived mesenchymal cell line obtained in Example 1 above is the definition of mesenchymal stem cells in the International Society for Cell Therapy. It meets all three conditions: (B) can differentiate into bone, cartilage, and fat; (C) expresses a surface marker of mesenchymal cells and does not express a surface marker of blood cells It was shown that.
  • a culture dish was coated with collagen, and a culture medium was added thereto.
  • an MKLI culture medium megakaryocyte lineage induction medium
  • a medium capable of inducing differentiation of hematopoietic stem cells into megakaryocytes and platelets was used.
  • the MKLI medium was prepared by adding IMDM medium (Iscove's Modified Dulbecco's Medium, Life Technology), 2 mM L-glutamine (Life Technology), 100 U / mL penicillin-streptomycin solution (Life Technology), 0.5% BSA (manufactured by Sigma), 4 ⁇ g / mL LDL cholesterol (manufactured by Sigma), 200 ⁇ g / mL iron-saturated transferrin (manufactured by Sigma), 10 ⁇ g / mL insulin (manufactured by Sigma), 50 ⁇ M 2- ⁇ -mercaptoethanol (life technology) And 20 ⁇ M each nucleotide (ATP, UTP, GTP, and CTP) (Life Technologies) and 50 ng / mL human thrombopoietin (TPO, Stem Cell Technologies) were added.
  • IMDM medium Iscove's Modified Dulbecco's Medium, Life Technology
  • 2 mM L-glutamine
  • the human adipose tissue-derived mesenchymal cell line obtained in Example 1 was cultured for 7 days in the above-described MKLI medium at 37 ° C. under a CO 2 concentration of 5%. After sorting the cultured cell population, the proportion (%) of positive cells of CD41 and CD42b (specific markers for megakaryocytes and platelets) in the cell population was measured. The result is shown in FIG. Such a measurement was performed by directly labeling with FITC (fluorescein isothiocyanate) -labeled anti-CD41 antibody or APC (allophycocyanin) -labeled anti-CD42b antibody and using a flow cytometry method. The percentage of CD41 positive cells in this cell population was 70.4 ⁇ 3.9%, and the percentage of CD41 positive and CD42b positive cells was 23.6 ⁇ 2.4%.
  • FITC fluorescein isothiocyanate
  • APC allophycocyanin
  • Fibrinogen contributes to actions such as blood coagulation in platelets
  • PAC-1 is a platelet activation marker. Confirm whether the cell population obtained by culturing a human adipose tissue-derived mesenchymal cell line in MKLI culture medium at 37 ° C. for 7 days under a CO 2 concentration of 5% has a platelet function Therefore, the expression of fibrinogen and PAC-1 was measured. Such measurement was performed by directly labeling with FITC (fluorescein isothiocyanate) -labeled anti-fibrinogen antibody or FITC-labeled anti-PAC-1 antibody and using a flow cytometry method.
  • FITC fluorescein isothiocyanate
  • FIG. 6 shows the results of flow cytometry using FITC-labeled anti-fibrinogen antibody
  • FIG. 7 shows the results of flow cytometry using FITC-labeled anti-PAC-1 antibody.
  • Example 6 a human adipose tissue-derived mesenchymal cell line is used. However, the present inventors also applied megakaryocytes and platelets to a mouse adipose tissue-derived mesenchymal cell line. It was confirmed that they have differentiation potential.
  • Patent Document 2 a human adipose tissue-derived mesenchymal cell line (hereinafter referred to as “adipose tissue-derived mesenchymal cell line by a conventional method”) was prepared.
  • the human adipose tissue-derived mesenchymal cell line prepared in Example 1 (hereinafter referred to as “adipose tissue-derived mesenchymal cell line according to the present invention”) was prepared.
  • These two types of adipose tissue-derived mesenchymal cell lines were fractionated in the same amount and cultured in MKLI culture medium (medium) at 37 ° C.
  • CD41 and CD42b specific markers for megakaryocytes and platelets
  • the adipose tissue-derived mesenchymal cell line according to the present invention is a cell line that has three times higher induction efficiency to megakaryocytes and platelets than the adipose tissue-derived mesenchymal cell line by the conventional method. It has been shown.
  • a method for producing a vertebrate adipose tissue-derived mesenchymal cell line, a vertebrate adipose tissue-derived mesenchymal cell line produced by the production method, and the like can be provided. More specifically, a method for producing a vertebrate adipose tissue-derived mesenchymal cell line more easily, in a shorter period, and more efficiently, and a vertebrate adipose tissue-derived cell line produced by the production method Leaf cell lines and the like can be provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Rheumatology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Epidemiology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本発明は、脊椎動物の脂肪組織由来間葉系細胞株の製造方法や、該製造方法により製造される脊椎動物の脂肪組織由来間葉系細胞株等を提供することにある。より詳細には、脊椎動物の脂肪組織由来間葉系細胞株を、より簡便、より短期間、かつ、より効率的に製造する方法や、該製造方法により製造される脊椎動物の脂肪組織由来間葉系細胞株等を提供することを目的とする。 本発明における脊椎動物の脂肪組織由来間葉系細胞株の製造方法は、以下の工程(A)及び工程(B)を有する方法である; (A)脊椎動物の脂肪組織の間葉系幹細胞、脂肪前駆細胞及び間質細胞を含む間質血管細胞群から選択される1種又は2種以上の細胞を成熟脂肪細胞に分化誘導する工程;及び、(B)工程(A)で得られた成熟脂肪細胞を脱分化誘導して、脊椎動物の脂肪組織由来間葉系細胞株を得る工程;

Description

脊椎動物の脂肪組織由来間葉系細胞株の製造方法
 本発明は、脊椎動物の脂肪組織由来間葉系細胞株の製造方法や、該製造方法により製造される脊椎動物の脂肪組織由来間葉系細胞株等に関する。
 血小板輸血は、事故に伴う出血や抗がん剤使用時などで起こる血小板減少の唯一の治療法であり、その際に用いられる血小板製剤は現在のところ善意の献血に100%依存している。血小板は非常に脆く、これまでに治療を目的とした血小板の長期保存を可能にする方法は存在しない。実際には、血小板の保管寿命は、最新の医療機関において4日間とされるが、検査ならびに出荷に要する時間を考慮すると、診療所を含む臨床現場での実質的な保管寿命は約3日とされる。このように、多くの血液バンクは常に、血小板を新鮮に維持し貯蔵する難点を抱えており、さらに、献血に依存する血小板製剤の供給量は、献血者の減少や、ウイルス感染症を患った献血者の増加による影響を受けやすい状況にある。
 そこで、近年、このような問題を抱えた献血に代わる、新たな血小板供給源の開発が注目されている(非特許文献1)。例えば、体性幹細胞である造血幹細胞(臍帯血幹細胞)を利用して血小板を体外で大量に生産する技術開発がある。しかしながら、造血幹細胞自体を体外で増幅する方法が未だ確立されていないことから実用化には至っていない。一方、多能性幹細胞である胚性幹(ES)細胞は、体外で無限に増殖させることができるという利点があり、血小板を含む血液細胞を産生する供給源として注目されてきた。この点については、ヒトES細胞から成熟巨核球及び血小板を産生する技術が既に報告されている(非特許文献2)。しかし、この方法では血小板の産生効率が悪く、1回の輸血製剤をつくるのに、シャーレが何万枚も必要となるなど、実用性は不十分であった。
 血小板の輸血においては、血小板輸血不応が問題点としてあげられる。輸血初回時は、患者のものと異なるヒト白血球抗原(HLA)を有する血小板を使用できるが、輸血を繰り返すことで患者体内にこのHLAに対する特異的抗体が産生され、その結果、輸血した血小板が迅速に拒絶される。あるいは、血小板は独自の血液型であるヒト同種抗原(HPA)も有しており、この適合型の相違による輸血不応も認められる。この点の問題を解消し得る技術として、ヒト人工多能性幹(iPS)細胞から巨核球及び血小板を産生する技術が報告されている(非特許文献3)。例えば、患者由来のiPS細胞を用いて血小板を誘導すれば、理論上、拒絶を受けることのないオーダーメイドの血小板製剤を調製することが可能となる。しかし、iPS細胞からの血小板産生は線維芽細胞から血小板産生に至るまでに約50日も要するため(非特許文献3)、実用性は不十分であった。一方、線維芽細胞からダイレクトリプログラミングと呼ばれる手法により血小板を産生させる方法が知られている(非特許文献4)。この手法によれば、iPS細胞を経由させる方法よりも、血小板産生に至るまでの期間を大幅に短縮することができ、約14日で血小板産生に至るという利点を持つ。しかしながら、線維芽細胞を用いたダイレクトリプログラミングには遺伝子導入が必要であり、遺伝子導入用ベクターの混在による安全性への影響が懸念される。
 ところで、造血幹細胞を巨核球、血小板へと分化誘導し得る培養液として、MKLI培地(megakaryocyte lineage induction medium)が知られている。該MKLI培地は、イスコフ改変ダルベッコ培地(IMDM)に、2mM L-グルタミン、100U/mL ペニシリン-ストレプトマイシン溶液、0.5%ウシ血清アルブミン、4μg/mL LDLコレステロール、200μg/mL 鉄飽和トランスフェリン(鉄結合型トランスフェリン)、10μg/mL インスリン、50μM 2-β-メルカプトエタノール、ヌクレオチド(ATP、UTP、GTP及びCTPを各20μM)、及び50ng/mL トロンボポエチン(thrombopoietin:TPO)を添加した培地である(非特許文献5)。本発明者らはこれまでに、造血幹細胞以外の細胞から巨核球、血小板へと分化誘導する技術について研究を進めており、上記MKLI培地にて、ヒトの皮下脂肪組織由来の脂肪前駆細胞(非特許文献5、6)や、マウス由来の脂肪前駆細胞(非特許文献5、7)を培養すると巨核球、血小板へと分化し得ることを見いだしている。本発明者らはさらに研究を進め、巨核球及び/又は血小板を製造し得るより優れた方法を見いだしている(特許文献1)。この特許文献1の製造方法は、間葉系細胞を、鉄イオン及び鉄輸送体を含む間葉系細胞培養用基本培地で培養し、培養物から巨核球及び/又は血小板を採取することを特徴とする製造方法である。特許文献1の製造方法は、TPO等を培地に添加しなくとも、脂肪前駆細胞等の間葉系細胞から、血小板産生能を有する巨核球及び/又は血栓形成能を有する血小板を、比較的短期間で簡便かつ多量に、しかもより低コスト或いはより効率的に生体外で製造することが可能である。
 このように特許文献1の製造方法は、造血幹細胞、ES細胞又はiPS細胞を用いた血小板の従来の製造方法の欠点を解消した優れた製造方法である。特許文献1には、巨核球や血小板へ分化誘導する前の間葉系細胞の1種として、脂肪前駆細胞株を用いることが開示されている。脂肪前駆細胞株は市販されており、また、脂肪組織から樹立することもできる。脂肪組織から脂肪前駆細胞株を樹立する方法としては、脂肪組織をコラゲナーゼ処理して脂肪細胞を分離し、脂肪細胞を含む細胞懸濁液を遠心分離して、上清の成熟脂肪細胞を回収し、かかる成熟脂肪細胞を、血清を含む培養液で天井培養して株化する方法が知られている(特許文献2)。しかしこの株化方法は、株化に約2ヶ月強もの期間を必要とする上、技術的にも熟練した操作が必要となるなど、実用上の課題が残されていた。
国際公開第2014/208100号パンフレット 日本特許第5055611号公報
Reems JA, Pineault N, Sun S. In vitro megakaryocyte production and platelet biogenesis: state of the art. Transfus Med Rev. 2010; 24 (1): 33-43. Takayama N, Nishikii H, Usui J, et al. Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors. Blood. 2008; 111 (11): 5298-5306. Nakamura S, Takayama N, Hirata S, et al. Expandable Megakaryocyte Cell Lines Enable Clinically Applicable Generation of Platelets from HumanInduced Pluripotent Stem Cells. Cell Stem Cell. 2014 Feb 12.pii: S1934-5909(14)00012-5. doi: 10.1016/j.stem.2014.01.011. Ono Y, Wang Y, Suzuki H, et al. Induction of functional platelets from mouse and human fibroblasts by p45NF-E2/Maf. Blood. 2012; 120: 3812-3821. Matsubara Y, Murata M, Ikeda Y.Culture of megakaryocytes andplatelets from subcutaneous adipose tissue and a preadipocyte cell line. MethodsMol Biol. 2012; 788: 249-258. Matsubara Y, Saito E, Suzuki H, Watanabe N, Murata M, et al.Generation of megakaryocytes and platelets from human subcutaneous adipose tissues. Biochem Biophys Res Commun. 2009; 378: 716-720. Matsubara Y, Suzuki H, Ikeda Y, Murata M. Generation of megakaryocytes and platelets from preadipocyte cell line 3T3-L1, but not the parent cell line 3T3, in vitro. Biochem Biophys Res Commun. 2010; 402: 796-800.
 本発明の課題は、脊椎動物の脂肪組織由来間葉系細胞株の製造方法や、該製造方法により製造される脊椎動物の脂肪組織由来間葉系細胞株等を提供することにある。より詳細には、脊椎動物の脂肪組織由来間葉系細胞株を、より簡便、より短期間、かつ、より効率的に製造する方法や、該製造方法により製造される脊椎動物の脂肪組織由来間葉系細胞株等を提供することにある。
 本発明者らは、上記課題を解決するために鋭意研究を行ったところ、脊椎動物の脂肪組織細胞を分散し得る酵素で、脊椎動物の脂肪組織を処理して得られる細胞集団を含む懸濁液を遠心分離した際の上清の細胞集団(成熟脂肪細胞)ではなく、沈殿した細胞集団を成熟脂肪細胞に分化誘導して得られた成熟脂肪細胞について脱分化誘導を行うと、高い効率で脱分化が生じ、脊椎動物の脂肪組織由来間葉系細胞株をより簡便、より短期間、かつ、より効率的に製造できることを見いだし、本発明を完成するに至った。なお、本発明の脊椎動物の脂肪組織由来間葉系細胞株の製造方法は、特許文献2における脂肪組織からの脂肪前駆細胞株の製造方法と比較して、細胞株の樹立に要する期間は半分以下であり、同一量の脂肪組織から樹立できる細胞株の量は10~15倍程度であった。
 また、本発明者らは、このようにして得られた脊椎動物の脂肪組織由来間葉系細胞株が、長期継代培養が可能であり、かつ、長期継代培養後も増殖能及び中胚葉系細胞への分化能を維持していることを見いだし、本発明を完成するに至った。
 すなわち、本発明は、
(1)以下の工程(A)及び(B)を有することを特徴とする、脊椎動物の脂肪組織由来間葉系細胞株の製造方法;
(A)脊椎動物の脂肪組織の間葉系幹細胞、脂肪前駆細胞及び間質細胞を含む間質血管細胞群から選択される1種又は2種以上の細胞を成熟脂肪細胞に分化誘導する工程;
(B)工程(A)で得られた成熟脂肪細胞を脱分化誘導して、脊椎動物の脂肪組織由来間葉系細胞株を得る工程;や、
(2)1種又は2種以上の細胞が、脊椎動物の脂肪組織細胞を分散し得る酵素で、脊椎動物の脂肪組織を処理して得られる細胞集団から、成熟脂肪細胞を除去することにより得られる細胞であることを特徴とする上記(1)に記載の脊椎動物の脂肪組織由来間葉系細胞株の製造方法や、
(3)脊椎動物の脂肪組織細胞を分散し得る酵素で、脊椎動物の脂肪組織を処理して得られる細胞集団から、成熟脂肪細胞を除去することにより得られる細胞が、脊椎動物の脂肪組織細胞を分散し得る酵素で、脊椎動物の脂肪組織を処理して得られる細胞集団を含む懸濁液を遠心分離した際に沈殿する細胞であることを特徴とする上記(2)に記載の脊椎動物の脂肪組織由来間葉系細胞株の製造方法や、
(4)工程(A)における1種又は2種以上の細胞を成熟脂肪細胞へ分化誘導する工程が、デキサメタゾン、イソブチルメチルキサンチン、インスリン及び血清からなる群から選択される1種又は2種以上の脂肪細胞分化誘導物質を含む間葉系細胞培養用基本培養液中で、前記1種又は2種以上の細胞を培養する工程であることを特徴とする上記(1)~(3)のいずれかに記載の脊椎動物の脂肪組織由来間葉系細胞株の製造方法や、
(5)工程(B)における成熟脂肪細胞を脱分化誘導することが、成熟脂肪細胞を天井培養することであることを特徴とする上記(1)~(4)のいずれかに記載の脊椎動物の脂肪組織由来間葉系細胞株の製造方法や、
(6)脊椎動物の脂肪組織細胞を分散し得る酵素が、コラゲナーゼ、トリプシン、カゼイナーゼ、クロストリパイン、トリプシン-EDTA、ディスパーゼ、サーモリシン、プロナーゼ、ヒアルロニダーゼ、パンクレアチン、エラスターゼ及びパパインからなる群から選択される1種又は2種以上の酵素であることを特徴とする上記(2)~(5)のいずれかに記載の脊椎動物の脂肪組織由来間葉系細胞株の製造方法や、
(7)脊椎動物が哺乳動物であることを特徴とする上記(1)~(6)のいずれかに記載の脊椎動物の脂肪組織由来間葉系細胞株の製造方法や、
(8)脂肪組織が皮下脂肪組織であることを特徴とする上記(1)~(7)のいずれかに記載の脊椎動物の脂肪組織由来間葉系細胞株の製造方法に関する。
 また、本発明は、
(9)上記(1)~(8)のいずれかに記載の製造方法により製造される脊椎動物の脂肪組織由来間葉系細胞株や、
(10)巨核球・血小板、骨芽細胞、軟骨及び脂肪細胞からなる群から選択される1種又は2種以上への分化能を有していることを特徴とする上記(9)に記載の脊椎動物の脂肪組織由来間葉系細胞株や、
(11)以下の間葉系細胞の表面マーカー群から選択される1種又は2種以上の表面マーカーを発現しており、かつ、以下の血液細胞の表面マーカー群から選択される1種又は2種以上の表面マーカーを発現していないことを特徴とする上記(9)又は(10)に記載の脊椎動物の脂肪組織由来間葉系細胞株;
間葉系細胞の表面マーカー群:CD13、CD29、CD44、CD71、CD73、CD90、CD105、CD166、HLA-ABC;
血液細胞の表面マーカー群:CD11b、CD14、CD19、CD34、CD41、CD42b、CD45、CD56、HLA-DR;や、
(12)脊椎動物の脂肪組織から採取した成熟脂肪細胞を脱分化誘導して得られた脊椎動物の脂肪組織由来間葉系細胞株と比較して、中胚葉系細胞への分化誘導効率が、1.5倍以上であることを特徴とする上記(9)~(11)のいずれかに記載の脊椎動物の脂肪組織由来間葉系細胞株に関する。
 さらに、本発明は、
(13)上記(9)~(12)のいずれかに記載の脊椎動物の脂肪組織由来間葉系細胞株を、中胚葉系細胞に分化誘導して、中胚葉系細胞を得る工程を有することを特徴とする中胚葉系細胞の製造方法や、
(14)中胚葉系細胞が、巨核球・血小板、骨芽細胞、軟骨又は脂肪細胞であることを特徴とする上記(13)に記載の中胚葉系細胞の製造方法に関する。
 本発明によれば、脊椎動物の脂肪組織由来間葉系細胞株の製造方法や、該製造方法により製造される脊椎動物の脂肪組織由来間葉系細胞株等を提供することができる。より詳細には、脊椎動物の脂肪組織由来間葉系細胞株を、より簡便、より短期間、かつ、より効率的に製造する方法や、該製造方法により製造される脊椎動物の脂肪組織由来間葉系細胞株等を提供することができる。
 かかる間葉系細胞株は分化能及び増殖能が半永久的に維持されるため、「中胚葉系細胞の材料をより多量に得ることができるというメリット」や、「間葉系細胞株を冷凍保存などしておけば、巨核球、血小板、骨芽細胞、軟骨、脂肪細胞等の中胚葉系細胞が必要なときに、すぐに中胚葉系細胞の製造に着手することができるというメリット」がある。そのため、本発明による脊椎動物の脂肪組織由来間葉系細胞株を用いれば、中胚葉系細胞をより短期間、かつ、より多量に得ることができるため、中胚葉系細胞を用いた細胞医療の分野への本発明の意義は大きい。
実施例1で製造したヒト脂肪組織由来間葉系細胞株を、位相差顕微鏡像で観察した結果を表す図である。図1中のバーは100μmを表す。 実施例1で製造したヒト脂肪組織由来間葉系細胞株が、骨芽細胞への分化能や、脂肪細胞への分化能や、軟骨細胞への分化能を有しているかを調べた結果を表す図である。図2上から1段目の両パネル:ヒト脂肪組織由来間葉系細胞株を21日間、骨芽細胞へ分化誘導培養した細胞(Day 21)、又は、分化誘導前のヒト脂肪組織由来間葉系細胞株(Day 0)が、骨芽細胞の特徴の1つであるアルカリフォスファターゼ活性を有しているかを、該活性の基質(ブロモクロロインドリルリン酸・ニトロブルーテトラゾリウム)を添加して確認した結果を表す図である。Day 0(左パネル)では、アルカリフォスファターゼ活性を表す発色(実際は青紫色であるが、図面では黒っぽい色として表れる)は、ほとんど認められないが、Day 21(右パネル)では、その発色がDay 0よりも強く認められる。図2上から2段目の両パネル:ヒト脂肪組織由来間葉系細胞株を21日間、骨芽細胞へ分化誘導培養した細胞(Day 21)、又は、分化誘導前のヒト脂肪組織由来間葉系細胞株(Day 0)に、骨芽細胞の特徴の1つである細胞の石灰化が認められるかを、アリザリンレッドで染色して確認した結果を表す図である。Day 0(左パネル)では、細胞の石灰化を表す発色(実際は赤色であるが、図面では黒っぽい色として表れる)は、ほとんど認められないが、Day 21(右パネル)では、その発色がDay 0よりも強く認められる。図2上から3段目の両パネル:ヒト脂肪組織由来間葉系細胞株を21日間、脂肪細胞へ分化誘導培養した細胞(Day 21)、又は、分化誘導前のヒト脂肪組織由来間葉系細胞株(Day 0)に、脂肪細胞の特徴の1つである脂肪球の存在が認められるかを、オイルレッドOで染色して確認した結果を表す図である。Day 0(左パネル)では、脂肪球を表す発色(実際は赤色であるが、図面では黒っぽい色として表れる)は、あまり認められないが、Day 21(右パネル)では、その発色がDay 0よりも強く認められる。図2最下段の両パネル:ヒト脂肪組織由来間葉系細胞株を21日間、軟骨細胞へ分化誘導培養した細胞(Day 21)、又は、分化誘導前のヒト脂肪組織由来間葉系細胞株(Day 0)に、軟骨細胞に特徴的な細胞外マトリクスの存在が認められるかを、アリシアンブルーで染色して確認した結果を表す図である。Day 0(左パネル)では、軟骨細胞に特徴的な細胞外マトリクスの存在を表す発色(実際は青色であるが、図面では黒っぽい色として表れる)は、あまり認められないが、Day 21(右パネル)では、その発色がDay 0よりも強く認められる。 実施例1で製造したヒト脂肪組織由来間葉系細胞株における間葉系細胞や血液細胞の表面マーカーの発現をフローサイトメトリー法で解析した結果を表す図である。上段の9つのパネルは、間葉系細胞の表面マーカー(CD13、CD29、CD44、CD71、CD73、CD90、CD105、CD166、HLA-ABC)についての結果を表し、下段の9つのパネルは、血液細胞の表面マーカー(CD11b、CD14、CD19、CD34、CD41、CD42b、CD45、CD56、HLA-DR)の結果を表す。なお、上段の9つの各パネルには、それぞれ主に2つずつシグナルピークがあるが、それぞれ左側のピークはネガティブコントロール抗体を用いた結果を表し、それぞれ右側のピークは抗表面マーカー抗体を用いた結果を表す。 ヒト脂肪組織由来間葉系細胞株をMKLI培養液にて7日間培養して得られた細胞集団を、蛍光標識CD41抗体及び蛍光標識抗CD42b抗体でラベルし、フローサイトメトリー法を用いて蛍光を測定した結果を示す図である。横軸は、蛍光標識CD41抗体の蛍光強度を表し、縦軸は、蛍光標識抗CD42b抗体の蛍光強度を表す。 ヒト脂肪組織由来間葉系細胞株をMKLI培養液にて7日間培養して得られた細胞集団の核をプロピジウムイオダイド(PI)で染色した後、フローサイトメトリーで各細胞のPIの蛍光強度を測定した結果を示す図である。横軸はPIの蛍光強度を表し、縦軸は細胞数を表す。 ヒト脂肪組織由来間葉系細胞株をMKLI培養液にて7日間培養して得られた細胞集団を、蛍光標識抗フィブリノーゲン抗体でラベルし、フローサイトメトリー法を用いて蛍光を測定した結果を示す図である(図の右のピーク)。また、この図には、ヒト脂肪組織由来間葉系細胞株を蛍光標識抗フィブリノーゲン抗体でラベルし、フローサイトメトリー法を用いて蛍光を測定した結果も示す(図の左のピーク)。横軸は蛍光強度を表し、縦軸は細胞数を表す。 ヒト脂肪組織由来間葉系細胞株をMKLI培養液にて7日間培養して得られた細胞集団を、蛍光標識抗PAC-1抗体でラベルし、フローサイトメトリー法を用いて蛍光を測定した結果を示す図である(図の右のピーク)。また、この図には、ヒト脂肪組織由来間葉系細胞株を蛍光標識抗PAC-1抗体でラベルし、フローサイトメトリー法を用いて蛍光を測定した結果も示す(図の左のピーク)。横軸は蛍光強度を表し、縦軸は細胞数を表す。
<脊椎動物の脂肪組織由来間葉系細胞株の製造方法>
 本発明の脊椎動物の脂肪組織由来間葉系細胞株の製造方法(以下、単に「本発明の細胞株の製造方法」と表示する。)としては、
(A)脊椎動物の脂肪組織の間葉系幹細胞、脂肪前駆細胞及び間質細胞を含む間質血管細胞群から選択される1種又は2種以上の細胞を成熟脂肪細胞に分化誘導する工程;及び
(B)工程(A)で得られた成熟脂肪細胞を脱分化誘導して、脊椎動物の脂肪組織由来間葉系細胞株を得る工程;
を有する方法である限り特に制限されない。
工程(A)の分化誘導により得られる成熟脂肪細胞は、脊椎動物の脂肪組織に存在していた成熟脂肪細胞よりも、脱分化を生じ易い成熟脂肪細胞(以下、本明細書において「易脱分化成熟脂肪細胞」とも表示する。)であるため、工程(B)における脱分化誘導によって、より簡便、より短期間、かつ、より効率的に脊椎動物の脂肪組織由来間葉系細胞株を製造(樹立)することができると考えられる。なお、かかる製造方法は、生体外(ex vivo)又はin vitroでの製造方法とすることができる。
(工程A)
 上記工程(A)としては、脊椎動物の脂肪組織の間葉系幹細胞、脂肪前駆細胞及び間質細胞を含む間質血管細胞群から選択される1種又は2種以上の細胞(以下、本明細書において「間葉系幹細胞等」とも表示する。)を成熟脂肪細胞に分化誘導する工程である限り特に制限されない。かかる分化誘導の工程は、生体外(ex vivo)又はin vitroでの分化誘導の工程である。
 脂肪組織の由来となる生物種としては、脊椎動物である限り特に制限されず、哺乳動物、鳥類、爬虫類、両生類、魚類等を挙げることができ、中でも、ヒト、マウス、ラット、モルモット、ウサギ、ネコ、イヌ、ウマ、ウシ、サル、ヒツジ、ヤギ、ブタ等の哺乳動物を好ましく挙げることができ、中でもヒトを特に好ましく挙げることができる。また、本発明の細胞株の製造方法により製造した脊椎動物の脂肪組織由来間葉系細胞株又は該細胞株から分化誘導した中胚葉系細胞を対象脊椎動物に投与又は移植等する場合は、拒絶反応等を回避する観点から、その対象脊椎動物の脂肪組織を本発明の細胞株の製造方法に用いることが好ましい。
 本明細書における「脂肪組織」とは、脂肪を含む組織である限り特に制限されず、皮下脂肪組織、骨髄中の脂肪組織、内臓脂肪組織等が挙げられるが、脂肪組織を供給する脊椎動物に対する侵襲性が比較的低く、採取も比較的容易である点で、皮下脂肪組織が好ましく挙げられる。
 本明細書における「間質血管細胞群」とは、脊椎動物の脂肪組織の細胞のうち、成熟脂肪細胞以外の細胞を意味する。間質血管細胞群には、通常、間葉系幹細胞、脂肪前駆細胞、間質細胞、血管内皮細胞、血液に関する細胞、平滑筋細胞、線維芽細胞などの細胞が含まれる。かかる「間質血管細胞群」は、脊椎動物の脂肪組織細胞を分散し得る酵素で脊椎動物の脂肪組織を処理して得られる細胞集団から、成熟脂肪細胞を除去することによって得ることができる。
 上記の「脊椎動物の脂肪組織の間葉系幹細胞、脂肪前駆細胞及び間質細胞を含む間質血管細胞群から選択される1種又は2種以上の細胞」としては、脊椎動物の脂肪組織の間葉系幹細胞(mesenchymal stem cell)、脂肪前駆細胞(preadipocytesあるいはadipose progenitor cells)及び間質細胞(stromal cell)を含む間質血管細胞群(stromal vascular fraction)から選択される1種又は2種以上の細胞である限り特に制限されないが、脊椎動物の脂肪組織由来間葉系細胞株をより効率的に製造する観点から、脂肪前駆細胞のみである細胞集団よりも、脂肪前駆細胞と、間葉系幹細胞及び/又は間質細胞とを少なくとも含む細胞集団であることが好ましく、脂肪前駆細胞、間葉系幹細胞及び間質細胞を少なくとも含む細胞集団であることがより好ましく、さらに調製が簡便であることから、間質血管細胞群の細胞集団であることがさらに好ましい。
 また、上記の「脊椎動物の脂肪組織の間葉系幹細胞、脂肪前駆細胞及び間質細胞を含む間質血管細胞群から選択される1種又は2種以上の細胞」の好適な態様として、脊椎動物の脂肪組織の細胞を分散して得られる間葉系幹細胞、脂肪前駆細胞及び間質細胞を含む間質血管細胞群から選択される1種又は2種以上の細胞が挙げられ、中でも、脊椎動物の脂肪組織細胞を分散し得る酵素で脊椎動物の脂肪組織を処理して得られる細胞集団から、成熟脂肪細胞を除去することにより得られる細胞集団(細胞集団A)が好ましく挙げられる。かかる細胞集団Aから、血管内皮細胞、及び/又は、血液に関する細胞をさらに除去することにより得られる細胞集団を用いてもよい。前述の脊椎動物の脂肪組織細胞を分散し得る酵素で脊椎動物の脂肪組織を処理して得られる細胞集団から成熟脂肪細胞等を除去することにより得られる細胞(細胞集団A)は、間質血管細胞群の細胞集団であり、間質血管細胞群には、通常、脊椎動物の脂肪組織の間葉系幹細胞、脂肪前駆細胞、間質細胞、血管内皮細胞、血液に関する細胞、平滑筋細胞、線維芽細胞などの細胞が含まれている。
 上記の「脊椎動物の脂肪組織細胞を分散し得る酵素で脊椎動物の脂肪組織を処理する」方法としては、例えば、該酵素を含む溶液に脊椎動物の脂肪組織を浸漬して、例えば30分間~3時間程度インキュベートする方法が挙げられる。
 上記の「脊椎動物の脂肪組織細胞を分散し得る酵素」としては、脊椎動物の脂肪組織に作用させることによって、脊椎動物の脂肪組織の細胞を分散できる酵素である限り特に制限されず、例えば、コラゲナーゼ、トリプシン、カゼイナーゼ、クロストリパイン、トリプシン-EDTA、ディスパーゼ、サーモリシン、プロナーゼ、ヒアルロニダーゼ、パンクレアチン、エラスターゼ及びパパインからなる群から選択される1種又は2種以上の酵素が挙げられ、中でも、コラゲナーゼ、トリプシン、カゼイナーゼ及びクロストリパインからなる群から選択される1種又は2種以上の酵素が好ましく挙げられ、市販されているコラゲナーゼ(タイプI)や、コラゲナーゼ(タイプII)がより好ましく挙げられ、コラゲナーゼ(タイプII)がさらに好ましく挙げられる。また、上記の「脊椎動物の脂肪組織細胞を分散し得る酵素」には、少なくともコラゲナーゼが含まれていることが好ましい。
 上記の「脊椎動物の脂肪組織細胞を分散し得る酵素で脊椎動物の脂肪組織を処理して得られる細胞集団から、成熟脂肪細胞を除去する」方法としては、かかる細胞集団から成熟脂肪細胞を除去することができる方法である限り特に制限されないが、前述の細胞集団を含む懸濁液を遠心分離した際に沈殿する細胞集団(細胞ペレット)を回収する方法が好ましく挙げられる。成熟脂肪細胞は脂肪を多く含んでいるため比重が軽く、遠心分離した際に上清の上部に浮遊するので、かかる遠心分離で沈殿した細胞ペレットを回収すれば、成熟脂肪細胞を除去することができる。また、脊椎動物の脂肪組織細胞を分散し得る酵素で脊椎動物の脂肪組織を処理して得られる細胞集団から、血管内皮細胞や、平滑筋細胞や、線維芽細胞を除去する方法としては、かかる細胞集団からそれらの細胞を除去することができる方法である限り特に制限されないが、例えば血管内皮細胞の表面マーカーとして知られているCD31が陰性の細胞を選択すること(又は、CD31が陽性の細胞を除去すること)により、細胞集団から血管内皮細胞を除去する方法が挙げられ、細胞集団から血液に関連する細胞を除去する方法としては、CD45(赤血球及び血小板以外の造血細胞の表面マーカー)陰性及びTer119(赤血球やその前駆細胞の表面マーカー)陰性の細胞を選択すること(又は、CD45陽性及びTer119陽性の細胞を除去すること)により、細胞集団から血液に関連する細胞を除去する方法が挙げられる。また、細胞表面マーカーではないが、7-アミノ-アクチノマイシンD(7-AAD)が陰性であることを指標にすると、脊椎動物の脂肪組織に含まれていた死細胞を排除できるため好ましい。7-AADは、死細胞のDNA鎖にインターカレートし、488nmの励起光により赤色蛍光を発する。
 上記の沈殿した細胞ペレット(細胞集団A)は間質血管細胞群の細胞であり、間質血管細胞群には、通常、間葉系幹細胞、脂肪前駆細胞、間質細胞(ストローマ細胞)、血管内皮細胞、平滑筋細胞、線維芽細胞などが含まれているが、成熟脂肪細胞に分化し得るのは、間葉系幹細胞、脂肪前駆細胞、間質細胞である。したがって、成熟脂肪細胞への分化誘導を行う前などに、上記の沈殿した細胞ペレットから、これら3種以外の細胞のいずれか1種又は2種以上又はすべての種類を除去する工程をさらに有していてもよいが、有していなくてもよく、操作の簡便性の観点から、かかる工程を有していないことが好ましい。血管内皮細胞、平滑筋細胞、線維芽細胞は、間葉系幹細胞等と共に、成熟脂肪細胞への分化誘導に供したとしても、成熟脂肪細胞に分化することはなく、また、間葉系幹細胞等の成熟脂肪細胞への分化を妨げることもない。
 上記工程(A)において、脊椎動物の脂肪組織の間葉系幹細胞、脂肪前駆細胞及び間質細胞を含む間質血管細胞群から選択される1種又は2種以上の細胞を成熟脂肪細胞に分化誘導する方法としては、脊椎動物の脂肪組織の間葉系幹細胞、脂肪前駆細胞及び間質細胞を含む間質血管細胞群から選択される1種又は2種以上の細胞を、脂肪細胞分化誘導物質を含む間葉系細胞培養用基本培養液中で培養する方法が好ましく挙げられる。間葉系幹細胞等を、脂肪細胞分化誘導物質を含む間葉系細胞培養用基本培養液中で培養する方法としては、かかる培養により、間葉系細胞を成熟脂肪細胞へ分化誘導し得る限り特に制限されず、例えば脂肪前駆細胞を成熟脂肪細胞へ分化誘導する通常の方法等と同様の方法、すなわち、脂肪細胞分化誘導物質を含む間葉系細胞培養用基本培養液中で出発細胞を培養する方法を用いることができる。
 上記工程(A)において、間葉系幹細胞等を、脂肪細胞分化誘導物質を含む間葉系細胞培養用基本培養液中で培養する条件等としては、例えば細胞外マトリックスでコーティングされた培養容器内で接着培養する方法を挙げることができ、培養温度として通常12~45℃の範囲内、好ましくは15~37℃の範囲内を挙げることができ、培養期間として、脊椎動物の脂肪組織由来間葉系細胞株をより効率的に製造することと、より短期間で製造することとのバランスの観点から、5~16日間の範囲内、好ましくは7~14日間の範囲内、より好ましくは8~12日間の範囲内、さらに好ましくは9~11日間の範囲内、より好ましくは10日間を挙げることができる。なお、かかる培養において、間葉系幹細胞等は継代しなくてもよいが、継代してもよい。また、上記の細胞外マトリックスとしては、コラーゲン、フィブロネクチン、プロテオグリカン、ラミニンから選択される1種又は2種以上の成分が挙げられ、かかる成分を含むBD Matrigel(登録商標)(BD Biosciences社製)などを用いることもできる。
 上記の脂肪細胞分化誘導物質としては、成熟脂肪細胞に分化誘導し得る細胞を、成熟脂肪細胞に分化させる作用又はその作用を補助する作用を有している限り特に制限されず、例えば、デキサメタゾン、イソブチルメチルキサンチン、インスリン及び血清からなる群から選択される1種又は2種以上が挙げられ、成熟脂肪細胞へのより優れた分化誘導効率を得る観点から、中でも、「血清とデキサメタゾンの組合せ」、「血清とデキサメタゾンを少なくとも含む脂肪細胞分化誘導物質の組合せ」、「血清とイソブチルメチルキサンチンの組合せ」、「血清とイソブチルメチルキサンチンを少なくとも含む脂肪細胞分化誘導物質の組合せ」が好ましく挙げられ、中でも、「血清とデキサメタゾンとインスリンの組合せ」、「血清とデキサメタゾンとインスリンを少なくとも含む脂肪細胞分化誘導物質の組合せ」、「血清とイソブチルメチルキサンチンとインスリンの組合せ」、「血清とイソブチルメチルキサンチンとインスリンを少なくとも含む脂肪細胞分化誘導物質の組合せ」、「血清とデキサメタゾンとイソブチルメチルキサンチンの組合せ」、「血清とデキサメタゾンとイソブチルメチルキサンチンを少なくとも含む脂肪細胞分化誘導物質の組合せ」がより好ましく挙げられ、中でも、「血清とデキサメタゾンとイソブチルメチルキサンチンとインスリンの組合せ」、「血清とデキサメタゾンとイソブチルメチルキサンチンとインスリンを少なくとも含む脂肪細胞分化誘導物質の組合せ」がさらに好ましく挙げられる。脂肪細胞分化誘導物質や、該物質を含む間葉系細胞培養用基本培養液は、市販されているものを用いてもよいし、かかる培養液は、間葉系細胞培養用基本培養液に脂肪細胞分化誘導物質を添加して調製した培養液を用いてもよい。脂肪細胞分化誘導物質を含む市販の培養液としては、Adipocyte Differentiation Medium培養液(Cell Applications社製)が好ましく挙げられる。なお、上に列挙した脂肪細胞分化誘導物質以外の物質であって、成熟脂肪細胞に分化させる作用を補助する作用を有する物質として、ロシグリタゾン、ピオグリタゾン、インドメタシン等が挙げられる。
 上記の脂肪細胞分化誘導物質の培養液中の濃度としては、間葉系幹細胞等を成熟脂肪細胞に分化誘導し得る限り特に制限されないが、通常、デキサメタゾン濃度として、0.1~10μMの範囲内、好ましくは0.5~2.5μMの範囲内が挙げられ、イソブチルメチルキサンチン濃度として、10~1000μMの範囲内、好ましくは250~750μMの範囲内が挙げられ、インスリン濃度として、0.1~10μMの範囲内、好ましくは0.5~2.5μMの範囲内が挙げられ、血清濃度として、1~20重量%の範囲内、好ましくは5~15重量%の範囲内、より好ましくは7~13重量%の範囲内が挙げられる。
 本明細書における「間葉系細胞培養用基本培養液」としては、その培養液で少なくとも1種の間葉系細胞を培養することにより、その間葉系細胞を増殖し得る培養液であれば特に制限されないが、調製が容易であり、ロットごとのばらつきを防ぐ点から化学合成培養液が好ましく、1又は2種類以上の糖(類)、1又は2種類以上の無機塩(類)、1又は2種類以上のアミノ酸(類)、及び1又は2種類以上のビタミン(類)、及び、任意で1又は2種類以上のその他成分を含むことが好ましい。
 上記糖類としては、具体的には、グルコース、マンノース、フルクトース、ガラクトース等の単糖類や、スクロース、マルトース、ラクトース等の二糖類を挙げることができるが、中でもグルコースが特に好ましく、これら糖類は、1又は2以上組み合わせて添加することもできる。
 上記無機塩類としては、具体的には、塩化カルシウム、硝酸カルシウム、硫酸銅五水和物、硝酸鉄(III)九水和物、硫酸鉄(II)七水和物、塩化マグネシウム六水和物、硫酸マグネシウム、塩化カリウム、塩化ナトリウム、炭酸水素ナトリウム、リン酸水素二ナトリウム、リン酸水素二ナトリウム二水和物、リン酸二水素ナトリウム、リン酸二水素ナトリウム一水和物、リン酸二水素ナトリウム二水和物、亜セレン酸ナトリウム五水和物、硫酸亜鉛七水和物から選ばれる1種又は2種以上の無機塩(類)を挙げることができる。
 上記アミノ酸類としては、具体的には、アラニン、アルギニン、アスパラギン、アスパラギン酸、シスチン、システイン、グルタミン、グリシン、ヒスチジン、グルタミン酸、ヒドロキシプロリン、イソロイシン、ロイシン、リジン、メチオニン、フェニルアラニン、プロリン、セリン、スレオニン、トリプトファン、チロシン、バリン等から選ばれる1種又は2種以上のアミノ酸(類)、好ましくはL-体のアミノ酸とそれらの誘導体及びそれらの塩並びにそれらの水和物などの派生物を挙げることができる。例えば、上記アルギニンとしては、L-塩酸アルギニン、L-アルギニン一塩酸塩等のアルギニンの派生物を挙げることができ、上記アスパラギン酸としては、L-アスパラギン酸ナトリウム塩一水和物、L-アスパラギン酸一水和物、L-アスパラギン酸カリウム、L-アスパラギン酸マグネシウム等のアスパラギン酸の派生物を挙げることができ、上記システインとしては、L-システイン二塩酸塩、L-システイン塩酸塩一水和物等のシステインの派生物や、L-リジン塩酸塩等のリジンの派生物を挙げることができ、上記グルタミン酸としては、L-グルタミン酸一ナトリウム塩等のグルタミンの派生物を挙げることができ、上記アスパラギンとしては、L-アスパラギン一水和物等のアスパラギンの派生物を挙げることができ、上記チロシンとしては、L-チロシン二ナトリウム二水和物等のチロシンの派生物を挙げることができ、上記ヒスチジンとしては、ヒスチジン塩酸塩、ヒスチジン塩酸塩一水和物等のヒスチジンの派生物を挙げることができ、上記リジンとしては、L-リジン塩酸塩等のリジンの派生物を挙げることができる。
 上記ビタミン類としては、具体的には、ビオチン、コリン、葉酸、イノシトール、ナイアシン、パントテン酸、ピリドキシン、リボフラビン、チアミン、ビタミンB12、パラアミノ安息香酸(PABA)、アスコルビン酸から選択される1種又は2種以上のビタミン(類)と、これらの成分各々の誘導体及びそれらの塩並びにそれらの水和物などの派生物を挙げることができる。例えば、上記コリンとしては、塩化コリン等のコリンの派生物を挙げることができ、ナイアシンとしては、ニコチン酸、ニコチン酸アミド、ニコチニックアルコール等のナイアシンの派生物を挙げることができ、パントテン酸としては、パントテン酸カルシウム、パントテン酸ナトリウム、パンテノール等のパントテン酸の派生物を挙げることができ、ピリドキシンとしては、ピリドキシン塩酸塩、ピリドキサール塩酸塩、リン酸ピリドキサール、ピリドキサミン等のピリドキシンの派生物を挙げることができ、チアミンとしては、塩酸チアミン、硝酸チアミン、硝酸ビスチアミン、チアミンジセチル硫酸エステル塩、塩酸フルスルチアミン、オクトチアミン、ベンフォチアミン等のチアミンの派生物等を挙げることができ、アスコルビン酸としては、アスコルビン酸2-リン酸エステル(Ascorbic acid 2-phosphate)、アスコルビン酸リン酸マグネシウム、アスコルビン酸硫酸ナトリウム、リン酸アスコルビルアミノプロピル、アスコルビン酸リン酸ナトリウム等のアスコルビン酸の派生物を挙げることができる。
 上記その他成分としては、HEPES等の緩衝剤、ペニシリンやストレプトマイシン等の抗生物質、ピルビン酸、及びその誘導体及びそれらの塩並びにそれらの水和物などの派生物、フェノールレッドなどを挙げることができ、上記抗生物質の派生物としては、ペニシリンGナトリウムや硫酸ストレプトマイシン、あるいは、ペニシリン-ストレプトマイシン溶液を好ましく挙げることができ、ピルビン酸の派生物としてはピルビン酸ナトリウムを好ましく挙げることができる。
 上記間葉系細胞培養用基本培養液の具体例としては、市販のダルベッコ改変イーグル培養液(DMEM)、イスコフ改変ダルベッコ培養液(IMDM)、RPMI 1640培養液、最小必須培養液(MEM)、イーグル基礎培養液(BME)、F12培養液等の公知の化学合成培養液や、DMEM/F12培養液(DMEMとF12培養液を1:1で混合した培養液)等のこれらの培養液のいずれか2以上を適当な割合で混合した培養液や、これらのいずれかの培養液に、ペニシリンやストレプトマイシン等の抗生物質;及び、追加のアミノ酸(好ましくは非必須アミノ酸);からなる群から選択される1種又は2種以上の物質をさらに添加した培養液を好ましく挙げることができ、特にDMEMやIMDMやRPMI 1640培養液に抗生物質(好ましくはペニシリンGナトリウム、硫酸ストレプトマイシン、あるいは、ペニシリン-ストレプトマイシン溶液)をさらに添加した培養液をより好ましく挙げることができ、中でも、DMEMに抗生物質(好ましくはペニシリンGナトリウム、硫酸ストレプトマイシン、あるいは、ペニシリン-ストレプトマイシン溶液)をさらに添加した培養液を特に好ましく挙げることができる。
 本発明において特に好適な間葉系細胞培養用基本培養液としては、後述の組成のDMEMに対して、100U/mL(最終濃度)のペニシリン-ストレプトマイシン溶液を添加した培養液(以下、「本発明における特に好適な基本培養液」と表示する。)や、本発明における特に好適な基本培養液における各成分の濃度に対して、各成分ごとに独立に70%~130%の範囲内の割合の濃度の各成分を含む培養液を挙げることができる。
(DMEMの組成)
 200mg/L 無水塩化カルシウム、0.1mg/L Fe(NO・9HO、200mg/L 塩化カリウム、97.67mg/L 無水硫酸マグネシウム、6400mg/L 塩化ナトリウム、3700mg/L 炭酸水素ナトリウム、125mg/L リン酸二水素ナトリウム一水和物、4500mg/L D-グルコース、15mg/L フェノールレッド、110mg/L ピルビン酸ナトリウム、84mg/L L-塩酸アルギニン、63mg/L L-シスチン二塩酸塩、584mg/L L-グルタミン、30mg/Lグリシン、42mg/L L-ヒスチジン塩酸塩一水和物、105mg/L L-イソロイシン、105mg/L L-ロイシン、146mg/L L-リジン塩酸塩、30mg/LL-メチオニン、66mg/L L-フェニルアラニン、42mg/L L-セリン、95mg/L L-スレオニン、16mg/L L-トリプトファン、104mg/L L-チロシン二ナトリウム二水和物、94mg/L L-バリン、4mg/L D-パントテン酸カルシウム、4mg/L 塩化コリン、4mg/L 葉酸、7.2mg/L i-イノシトール、4mg/L ニコチン酸アミド、4mg/L ピリドキシン塩酸塩、0.4mg/L リボフラビン、4mg/L 塩酸チアミン。
 上記工程(A)により得られる成熟脂肪細胞(すなわち、成熟脂肪細胞を含む成熟脂肪細胞集団)は、脱分化誘導した場合に脱分化が比較的生じ易い易脱分化成熟脂肪細胞(すなわち、易脱分化成熟脂肪細胞を含む易脱分化成熟脂肪細胞集団)である。本明細書における「易脱分化成熟脂肪細胞集団」とは、従来法(特許文献2;日本特許第5055611号公報)のように、脊椎動物の脂肪組織から採取した成熟脂肪細胞集団と比較して、細胞株が得られる割合が1.5倍以上である成熟脂肪細胞集団を意味し、好ましくは2倍以上、より好ましくは4倍以上、さらに好ましくは6倍以上、より好ましくは10倍以上、さらに好ましくは15倍以上である成熟脂肪細胞集団を含む。なお、上記の「細胞株が得られる割合」とは、特定量の成熟脂肪細胞集団から得られる細胞株の割合を表し、かかる割合には、例えば、「脱分化誘導に用いる成熟脂肪細胞の重量」に対する「得られる細胞株の重量」の割合(比率)が好ましく含まれる。
(工程B)
 上記工程(B)としては、工程(A)で得られた成熟脂肪細胞(易脱分化成熟脂肪細胞)を脱分化誘導して、脊椎動物の脂肪組織由来間葉系細胞株を得る工程である限り特に制限されない。かかる工程は、生体外(ex vivo)又はin vitroでの工程である。
 工程(B)で用いる成熟脂肪細胞は、工程(A)での分化誘導により得られた成熟脂肪細胞である。かかる成熟脂肪細胞は、例えば、工程(A)の培養懸濁液を遠心分離して、上清の上部に浮遊する細胞を回収することにより得ることができる。成熟脂肪細胞は脂肪を多く含んでいるため比重が軽く、遠心分離した際に上清の上部に浮遊するからである。
 上記工程(B)において、工程(A)で得られた成熟脂肪細胞(易脱分化成熟脂肪細胞)を脱分化誘導して、脊椎動物の脂肪組織由来間葉系細胞株を得る方法としては、かかる成熟脂肪細胞を脱分化誘導して、脊椎動物の脂肪組織由来間葉系細胞株を得る方法である限り特に制限されないが、かかる成熟脂肪細胞をいわゆる天井培養する方法が好ましく挙げられる。天井培養とは、培養液が充満した培養容器(好ましくは培養フラスコ)の内側上面(天井面)に細胞を接着又は浮遊させて(好ましくは接着させて)培養する方法であり、脂肪を多く含んでいるため比重が軽く、培養液中で浮遊するという成熟脂肪細胞の性質を利用して、該細胞を培養する方法である。
 成熟脂肪細胞を脱分化誘導培養する際の培養液としては、細胞外マトリックスを含む間葉系細胞培養用基本培養液が挙げられ、かかる細胞外マトリックスとしては、コラーゲン、フィブロネクチン、プロテオグリカン、ラミニン、血清(FBS等)から選択される1種又は2種以上の成分が挙げられ、かかる成分を含むBD Matrigel(登録商標)(BD Biosciences社製)などを用いることもできる。成熟脂肪細胞を脱分化誘導培養する際の培養液におけるFBS等の血清は、成熟脂肪細胞を培養容器の天井面に接着させるための接着因子としてのみ用いてもよいし、そのための接着因子としてのみ用いなくてもよい。成熟脂肪細胞を脱分化誘導培養する際の培養液は、FBS等の血清を含んでいなくてもよいが、脊椎動物の脂肪組織由来間葉系細胞株をより効率的に製造する観点から、血清以外の細胞外マトリックスと共に、又は、血清以外の細胞外マトリックスを伴わずに、FBS等の血清を含んでいることが好ましい。かかる培養液がFBS等の血清を含んでいる場合の血清濃度としては、脊椎動物の脂肪組織由来間葉系細胞株が得られる限り特に制限されないが、3~30重量%の範囲内が挙げられ、7~25重量%の範囲内が好ましく挙げられ、7~13重量%の範囲内がより好ましく挙げられる。
 上記工程(B)において、成熟脂肪細胞を、細胞外マトリックスを含む間葉系細胞培養用基本培養液中で培養する条件等のうち、天井培養以外の条件等について述べると、培養温度として通常12~45℃の範囲内、好ましくは15~37℃の範囲内を挙げることができ、培養期間として、脊椎動物の脂肪組織由来間葉系細胞株をより効率的に製造することと、より短期間で製造することとのバランスの観点から、2~28日間の範囲内、好ましくは4~21日間の範囲内、より好ましくは5~14日間の範囲内、さらに好ましくは6~10日間の範囲内、より好ましくは7日間を挙げることができる。なお、かかる培養において、成熟脂肪細胞等は継代しなくてもよいが、継代してもよい。
 上記工程(B)において天井培養を行った培養液から、脊椎動物の脂肪組織由来間葉系細胞株を単離してもよいし、単離しなくてもよいが、単離することが好ましい。かかる天井培養を継続すると、株化した脂肪組織由来間葉系細胞株は活発に増殖する一方で、成熟脂肪細胞は次第に減少するので、脂肪組織由来間葉系細胞株を多く含む細胞集団を得ることができるし、例えば、天井培養を14日間くらい継続すると、脂肪組織由来間葉系細胞株をきわめて多く含む細胞集団を得ることができる。
 なお、上記工程(B)において天井培養を行うことには、工程(A)で得られた成熟脂肪細胞(易脱分化成熟脂肪細胞)が培養容器の天井面に接着した後、その接着面が培養容器の下側となるように培養容器を配置して培養を継続することも便宜上含まれるが、工程(A)で得られた成熟脂肪細胞(易脱分化成熟脂肪細胞)が培養容器の天井面に接着した状態で培養を継続し、その接着面が培養液の下側となるように培養容器を配置した培養を行わずに脂肪組織由来間葉系細胞株を得てもよい。
<脊椎動物の脂肪組織由来間葉系細胞株>
 本発明の脊椎動物の脂肪組織由来間葉系細胞株としては、本発明の細胞株の製造方法により製造される脊椎動物の脂肪組織由来間葉系細胞株である限り特に制限されない。本発明の脊椎動物の脂肪組織由来間葉系細胞株は、分化誘導作用を持たない通常の間葉系細胞培養用基本培養液で培養したときに自発的な分化を起こさず、長期継代培養が可能であり、かつ、長期継代培養後も増殖能及び中胚葉系細胞(巨核球・血小板、骨芽細胞、軟骨及び脂肪細胞からなる群から選択される1種又は2種以上)への分化能を維持している。例えば、ヒトの皮下脂肪組織から製造した本発明の脂肪組織由来間葉系細胞株は、20代目においても増殖能を維持しており、また、ダブリングタイムは23時間であることが観察されている。
 本発明の脊椎動物の脂肪組織由来間葉系細胞株は、従来法(特許文献2;日本特許第5055611号公報)で作製した脂肪組織由来間葉系細胞株よりも、中胚葉系細胞(好ましくは巨核球・血小板)への分化誘導効率が顕著に高い。よって、本発明の脊椎動物の脂肪組織由来間葉系細胞株は、中胚葉系細胞へ分化誘導し易い脂肪組織由来間葉系細胞株(易分化誘導脂肪組織由来間葉系細胞株)とも言える。本明細書における「易分化誘導脂肪組織由来間葉系細胞株」とは、従来法(特許文献2;日本特許第5055611号公報)で作製した脂肪組織由来間葉系細胞株よりも、いずれか1種の中胚葉系細胞(好ましくは巨核球・血小板)への分化誘導効率が1.5倍以上である脂肪組織由来間葉系細胞株を意味し、好ましくは2倍以上、より好ましくは2.5倍以上、さらに好ましくは3倍以上である脂肪組織由来間葉系細胞株が含まれる。
 本発明の脊椎動物の脂肪組織由来間葉系細胞株は、以下の間葉系細胞の表面マーカー群から選択される1種又は2種以上(好ましくは3種以上、より好ましくは5種以上、さらに好ましくは7種以上、より好ましくは8種又は9種、最も好ましくは9種)の表面マーカーを発現しており、かつ、以下の血液細胞の表面マーカー群から選択される1種又は2種以上(好ましくは3種以上、より好ましくは5種以上、さらに好ましくは7種以上、より好ましくは8種又は9種、最も好ましくは9種)の表面マーカーを発現していないことが好ましい。
葉系細胞の表面マーカー群:CD13、CD29、CD44、CD71、CD73、CD90、CD105、CD166、HLA-ABC;
血液細胞の表面マーカー群:CD11b、CD14、CD19、CD34、CD41、CD42b、CD45、CD56、HLA-DR;
 国際細胞治療学会では間葉系幹細胞の定義として、(A)付着細胞であること、(B)骨、軟骨、脂肪に分化することができること、(C)間葉系細胞の表面マーカーを発現し、血液細胞の表面マーカーを発現しないこと、の条件を挙げている。本発明の脊椎動物の脂肪組織由来間葉系細胞株のうち、好ましい態様の細胞株は、これら(A)、(B)及び(C)の条件を充たしている。
<中胚葉系細胞の製造方法>
 本発明の中胚葉系細胞の製造方法としては、本発明の脊椎動物の脂肪組織由来間葉系細胞株を中胚葉系細胞に分化誘導して、中胚葉系細胞を得る工程を有している限り特に制限されない。かかる中胚葉系細胞としては、巨核球及び/又は血小板(巨核球・血小板)、骨芽細胞、軟骨、脂肪細胞などが挙げられる。
 本発明の脊椎動物の脂肪組織由来間葉系細胞株を中胚葉系細胞に分化誘導する方法としては、間葉系細胞を中胚葉系細胞に分化誘導する公知の方法を用いることができ、中胚葉系細胞のそれぞれの種類の細胞に分化誘導する作用が知られている物質を含む間葉系細胞培養用基本培養液において、本発明の脊椎動物の脂肪組織由来間葉系細胞株を培養する方法を挙げることができる。
 巨核球・血小板に分化誘導する作用を有する培養液としては、MKLI培養液(megakaryocyte lineage induction medium)(非特許文献5)や、鉄イオン及び鉄輸送体を含む間葉系細胞培養用基本培養液(特許文献1)(好ましくは、鉄結合型トランスフェリンを含む間葉系細胞培養用基本培養液;特許文献1)が挙げられる。また、骨芽細胞に分化誘導する作用を有する培養液としては、ヒドロコルチゾン、デキサメタゾン及び血清を含む間葉系細胞培養用基本培養液(国際公開2012/029863号)が挙げられ、市販の骨芽細胞分化誘導培養液として、cell applications社製のOsteoblast Differentiation Mediumが挙げられる。また、軟骨に分化誘導する作用を有する培養液としては、トランスフォーミング増殖因子β3(TGF-β3)、デキサメタゾン及び血清を含む間葉系細胞培養用基本培養液が挙げられ、市販の軟骨分化誘導培養液として、lonza社製のhMSC Mesenchymal Stem Cell Chondrocyte Differentiation Mediumが挙げられる。また、脂肪細胞に分化誘導する作用を有する培養液としては、前述したように、デキサメタゾン、イソブチルメチルキサンチン、インスリン及び血清からなる群から選択される1種又は2種以上の脂肪細胞分化誘導物質を含む間葉系細胞培養用基本培養液が挙げられ、市販の脂肪細胞分化誘導培養液として、cell applications社製のAdipocyte Differentiation Mediumが挙げられる。
 以下に実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の実施例の記載における培地成分の濃度はいずれも、培地における最終濃度を表す。
[脂肪組織由来間葉系細胞株の作製]
 ヒトから皮下脂肪組織片を単離後、コラゲナーゼ(collagenase type II; sigma社製
)を加え37℃1時間インキュベーションし、細胞懸濁液を得た。かかる細胞懸濁液を遠心分離したところ、比重の軽い成熟脂肪細胞は上清に浮遊し、それ以外の種類の細胞は細胞ペレットとして沈殿した。細胞ペレットには、間葉系幹細胞、脂肪前駆細胞、間質細胞(ストローマ細胞)、血管内皮細胞、平滑筋細胞、線維芽細胞などが含まれている。この後の実験には細胞ペレットの細胞を用いた。培養ディッシュに入れたAdipocyte Differentiation Medium培養液(Cell Applications社製)にて、前述の細胞ペレットの細胞を37℃、CO濃度5%条件下で10日間培養した。培養後の細胞には、間葉系幹細胞、脂肪前駆細胞、間質細胞を含む間質血管細胞群から分化誘導された成熟脂肪細胞(易脱分化成熟脂肪細胞)が多く含まれている。培養後の細胞を、トリプシンを用いて培養ディッシュからはがし、その細胞にトリプシン及びDMEM培養液(Dulbecco's Modified Eagle's Medium、ライフテクノロジー社製)を加えて遠心分離器にかけ、その上清に浮いてくる成熟脂肪細胞(易脱分化成熟脂肪細胞)を回収した。20%FBSを含むDMEM培養液を十分量入れた培養フラスコに、前述の易脱分化成熟脂肪細胞を加え、その細胞を、培養液が充満した培養フラスコの内側の上面に浮遊、付着させて培養した(いわゆる「天井培養」)。かかる天井培養は、37℃、CO濃度5%条件下で7日間行った。このように培養することにより、ヒト脂肪組織由来間葉系細胞株が得られた。このヒト脂肪組織由来間葉系細胞株を位相差顕微鏡像で観察した結果を図1に示す。図1から分かるように、かかる細胞株は、繊維芽細胞様の形態を有しており、培養ディッシュ上に付着増殖することが示された。国際細胞治療学会では間葉系幹細胞の定義として、(A)付着細胞であること、(B)骨、軟骨、脂肪に分化することができること、(C)間葉系細胞の表面マーカーを発現し、血液細胞の表面マーカーを発現しないこと、の条件を挙げている。図1の結果から、本発明におけるヒト脂肪組織由来間葉系細胞株は、間葉系幹細胞の上記定義の条件のうち、(A)を充たしていることが示された。
 なお、従来法(特許文献2)では、脂肪組織の採取から脂肪前駆細胞株を作製するのに2ヶ月強の期間を要していたが、本発明のこの方法では、脂肪組織を採取してから1ヶ月弱で多くの量の脂肪組織由来間葉系細胞株を作製することができた。なお、得られたヒト脂肪組織由来間葉系細胞株は、10%FBSを含むDMEM培養液(脂肪前駆細胞培養用基本培養液)で継代培養を行った。
 なお、同じ大きさの皮下脂肪組織片(1cm平方)から脂肪前駆細胞株を作製した場合に、同じ作製期間(例えば2ヶ月間)当たりに得られる細胞株の量(細胞数)を、本発明の方法(易脱分化成熟脂肪細胞を作製してから、該細胞を天井培養して株化する方法)と、従来法(脂肪組織から採取した成熟脂肪細胞を天井培養して株化する方法(特許文献2;日本特許第5055611号公報))とで比較したところ、本発明の方法では従来法と比較して約15倍もの細胞株が得られた。このことは、本発明の脊椎動物の脂肪組織由来間葉系細胞株の製造方法(樹立方法)が、脊椎動物の脂肪組織から間葉系細胞株を顕著に効率的に製造できることを示している。また、得られたヒト脂肪組織由来間葉系細胞株は、20代目においても増殖能を維持しており、また、ダブリングタイムは23時間であることが観察されている。
 なお、実施例1では、ヒトの皮下脂肪組織を用いているが、本発明者らは、マウスの皮下脂肪組織を用いた場合にも、同様の方法で脂肪組織由来間葉系細胞株が得られることを確認した。
[脂肪組織由来間葉系細胞株の骨芽細胞への分化誘導]
 上記の実施例1で得られたヒト脂肪組織由来間葉系細胞株を、培養ディッシュに入れた骨芽細胞分化誘導培養液(Cell Applications社製)にて、37℃、CO濃度5%条件下で21日間培養した。得られた細胞のアルカリフォスファターゼ活性を、その基質であるブロモクロロインドリルリン酸・ニトロブルーテトラゾリウムを添加して確認したところ、青紫色の発色(ただし、図面では黒っぽい色として表される)が認められた(図2の上から1段目の右パネル)。このことから、骨芽細胞への分化が確認された。
 また、前述の培養後の細胞をアリザリンレッドで染色して、細胞の石灰化を確認したところ、赤色の発色(ただし、図面では黒っぽい色として表される)が認められた(図2の上から2段目の右パネル)。このことから、骨芽細胞における石灰化が確認された。
 以上のことから、本発明の製造方法により製造された脊椎動物の脂肪組織由来間葉系細胞株は、骨芽細胞への分化能を有していることが確認された。
 なお、実施例2では、ヒト脂肪組織由来間葉系細胞株を用いているが、本発明者らは、マウス脂肪組織由来間葉系細胞株を用いた場合にも、骨芽細胞への分化能を有していることを確認した。
[脂肪組織由来間葉系細胞株の脂肪細胞への分化誘導]
 上記の実施例1で得られたヒト脂肪組織由来間葉系細胞株を、培養ディッシュに入れたAdipocyte Differentiation Medium培養液(Cell Applications社製)にて、37℃、CO濃度5%条件下で7日間培養した。得られた細胞をオイルレッドOで染色して、脂肪球の有無を確認したところ、赤色の発色(ただし、図面では黒っぽい色として表される)が認められた(図2の上から3段目の右パネル)。このことから、成熟脂肪細胞への分化が確認された。このことから、本発明の製造方法により製造された脊椎動物の脂肪組織由来間葉系細胞株は、脂肪細胞への分化能を有していることが確認された。
 なお、実施例3では、ヒト脂肪組織由来間葉系細胞株を用いているが、本発明者らは、マウス脂肪組織由来間葉系細胞株を用いた場合にも、脂肪細胞への分化能を有していることを確認した。
[脂肪組織由来間葉系細胞株の軟骨細胞への分化誘導]
 上記の実施例1で得られたヒト脂肪組織由来間葉系細胞株を、培養ディッシュに入れたChondrogenic Differentiation medium培養液(PromoCell社製)にて、37℃、CO濃度5%条件下で7日間培養した。得られた細胞をアリシアンブルーで染色して、軟骨細胞に特徴的な細胞外マトリクスの有無を確認したところ、青色の発色(ただし、図面では黒っぽい色として表される)が認められた(図2の上から3段目の右パネル)。このことから、軟骨細胞への分化が確認された。このことから、本発明の製造方法により製造された脊椎動物の脂肪組織由来間葉系細胞株は、軟骨細胞への分化能を有していることが確認された。
 上記実施例3及び4の結果から、上記の実施例1で得られたヒト脂肪組織由来間葉系細胞株は、国際細胞治療学会における間葉系幹細胞の定義の「(B)骨、軟骨、脂肪に分化することができること」という条件を充たしていることが分かった。
[脂肪組織由来間葉系細胞株における間葉系細胞や血液細胞の表面マーカーの発現]
 上記の実施例1で得られたヒト脂肪組織由来間葉系細胞株が、国際細胞治療学会における間葉系幹細胞の定義の「(C)間葉系細胞の表面マーカーを発現し、血液細胞の表面マーカーを発現しないこと」という条件を充たしているかどうかを調べるために、間葉系細胞の表面マーカー(CD13、CD29、CD44、CD71、CD73、CD90、CD105、CD166、HLA-ABC)や、血液細胞の表面マーカー(CD11b、CD14、CD19、CD34、CD41、CD42b、CD45、CD56、HLA-DR)を特異的に認識する抗体を用いて、前述の細胞における各表面マーカーの発現をフローサイトメトリー法にて解析した。また、ネガティブコントロールとして、アイソタイプコントロール抗体を用いて、同様のフローサイトメトリー法を行った。なお、表面マーカーを特異的に認識する抗体のうち、抗CD29抗体、抗CD42b抗体、抗CD71抗体については、BDファーミンジェン社製のものを用い、抗CD105抗体については、ベックマンコールター社製のものを用い、他の抗表面マーカー抗体についてはバイオレジェンド社製のものを用いた。前述のフローサイトメトリーの結果を、図3に示す。
 図3の下段の各パネルに示されるように、血液細胞の表面マーカーについては、表面マーカー抗体を用いた場合とアイソタイプコントロール抗体を用いた場合でシグナルの差は見られなかった。一方、図3の上段の各パネルに示されるように、間葉系細胞の表面マーカーについては、表面マーカー抗体を用いた場合は、アイソタイプコントロール抗体を用いた場合と比較して、強い蛍光シグナルが確認された。これらの結果から、上記の実施例1で得られたヒト脂肪組織由来間葉系細胞株は、国際細胞治療学会における間葉系幹細胞の定義の「(C)間葉系細胞の表面マーカーを発現し、血液細胞の表面マーカーを発現しないこと」という条件を充たしていることが分かった。
 上記実施例1~5の結果から、上記の実施例1で得られたヒト脂肪組織由来間葉系細胞株は、国際細胞治療学会における間葉系幹細胞の定義である、(A)付着細胞であること、(B)骨、軟骨、脂肪に分化することができること、(C)間葉系細胞の表面マーカーを発現し、血液細胞の表面マーカーを発現しないこと、の3条件をすべて充たしていることが示された。
[脂肪組織由来間葉系細胞株の巨核球及び/又は血小板への分化誘導]
 培養ディッシュにコラーゲンをコーティングし、そこに培養培地を添加した。培養培地としては、造血幹細胞を巨核球、血小板へと分化誘導し得る培地として知られているMKLI培養液(megakaryocyte lineage induction medium)を用いた。該MKLI培地は、IMDM培養液(Iscove's Modified Dulbecco's Medium、ライフテクノロジー社製)に、2mM L-グルタミン(ライフテクノロジー社製)、100U/mL ペニシリン-ストレプトマイシン溶液(ライフテクノロジー社製)、0.5% BSA(シグマ社製)、4μg/mL LDLコレステロール(シグマ社製)、200μg/mL 鉄飽和トランスフェリン(シグマ社製)、10μg/mL インスリン(シグマ社製)、50μM 2-β-メルカプトエタノール(ライフテクノロジー社製)、20μM 各ヌクレオチド(ATP、UTP、GTP、及びCTP)(ライフテクノロジー社製)、及び50ng/mL ヒトトロンボポエチン(TPO、Stem Cell Technologies製)を添加し作製した。
(特異的マーカーCD41及びCD42bの確認)
 上記の実施例1で得られたヒト脂肪組織由来間葉系細胞株を、上記のMKLI培養液にて、37℃、CO濃度5%条件下で7日間培養した。培養後の細胞集団を分取した後、該細胞集団におけるCD41及びCD42b(巨核球や血小板の特異的マーカー)の陽性細胞の割合(%)を測定した。その結果を図4に示す。かかる測定は、FITC(フルオレセイン・イソチオシアネート)標識抗CD41抗体又は、APC(アロフィコシアニン)標識抗CD42b抗体で直接ラベルし、フローサイトメトリー法を用いて行った。かかる細胞集団におけるCD41陽性細胞の割合は70.4±3.9%であり、CD41陽性かつCD42b陽性の細胞の割合は23.6±2.4%であった。
(核の倍数性の確認)
 巨核球は分化が進んでくると、核の倍数性が増加することが知られている。そこで、ヒト脂肪組織由来間葉系細胞株をMKLI培養液にて、37℃、CO濃度5%条件下で7日間培養して得られた細胞集団の核の倍数性(DNA Ploidy)を、萩原らの方法(Exp.Hematol.,26,228~235,1998)により測定した。すなわち、前述の細胞集団の細胞の核をプロピジウムイオダイド(PI)で染色した後、フローサイトメトリーで各細胞のPIの蛍光強度を測定し、各細胞におけるDNA Ploidyを算出した。その結果を図5に示す。図5から分かるように、4Nや8Nなどの多倍体化した細胞が認められた。
(刺激による血小板機能の確認)
 血小板においてフィブリノーゲンは、血液凝固等の作用に寄与しており、また、PAC-1は、血小板活性化マーカーである。ヒト脂肪組織由来間葉系細胞株をMKLI培養液にて、37℃、CO濃度5%条件下で7日間培養して得られた細胞集団が、血小板の機能を有しているかを確認するために、フィブリノーゲン及びPAC-1の発現を測定した。かかる測定は、FITC(フルオレセイン・イソチオシアネート)標識抗フィブリノーゲン抗体又はFITC標識抗PAC-1抗体で直接ラベルし、フローサイトメトリー法を用いて行った。また、コントロールとして、MKLI培養液で培養を開始する前のヒト脂肪組織由来間葉系細胞株についても同様のフローサイトメトリー法を行った。FITC標識抗フィブリノーゲン抗体を用いたフローサイトメトリー法の結果を図6に示し、FITC標識抗PAC-1抗体を用いたフローサイトメトリー法の結果を図7に示す。図6及び図7から分かるように、ヒト脂肪組織由来間葉系細胞株をMKLI培養液で培養して得られた細胞集団では、フィブリノーゲン及びPAC-1の発現の亢進が確認された。
 以上のことから、ヒト脂肪組織由来間葉系細胞株から巨核球・血小板への分化が確認された。このことから、本発明の製造方法により製造されたヒト脂肪組織由来間葉系細胞株は、巨核球・血小板への分化能を有していることが確認された。
 なお、実施例6では、ヒト脂肪組織由来間葉系細胞株を用いているが、本発明者らは、マウス脂肪組織由来間葉系細胞株を用いた場合にも、巨核球・血小板への分化能を有していることを確認した。
[従来法(特許文献2)との収量等の比較]
 特許文献2記載の方法にしたがって、ヒト脂肪組織由来間葉系細胞株(以下、「従来法による脂肪組織由来間葉系細胞株」と表示する。)を作製した。一方、実施例1で作製したヒト脂肪組織由来間葉系細胞株(以下、「本発明による脂肪組織由来間葉系細胞株」と表示する。)を用意した。これら2種の脂肪組織由来間葉系細胞株を同量ずつ分取し、それぞれ、MKLI培養液(培地)にて37℃、CO濃度5%条件下で7日間培養して、巨核球・血小板への分化誘導を行った。培養後の細胞集団を分取した後、該細胞集団におけるCD41及びCD42b(巨核球や血小板の特異的マーカー)の陽性細胞の割合(%)を測定した。その結果、本発明による脂肪組織由来間葉系細胞株を用いると、従来法による脂肪組織由来間葉系細胞株を同量用いた場合と比較して、CD41及びCD42b(巨核球や血小板の特異的マーカー)の陽性細胞が3倍量得られた。この結果から、本発明による脂肪組織由来間葉系細胞株は、従来法による脂肪組織由来間葉系細胞株と比較して、巨核球・血小板への誘導効率が3倍高い細胞株であることが示された。
 本発明によれば、脊椎動物の脂肪組織由来間葉系細胞株の製造方法や、該製造方法により製造される脊椎動物の脂肪組織由来間葉系細胞株等を提供することができる。より詳細には、脊椎動物の脂肪組織由来間葉系細胞株を、より簡便、より短期間、かつ、より効率的に製造する方法や、該製造方法により製造される脊椎動物の脂肪組織由来間葉系細胞株等を提供することができる。

Claims (14)

  1.  以下の工程(A)及び(B)を有することを特徴とする、脊椎動物の脂肪組織由来間葉系細胞株の製造方法。
    (A)脊椎動物の脂肪組織の間葉系幹細胞、脂肪前駆細胞及び間質細胞を含む間質血管細胞群から選択される1種又は2種以上の細胞を成熟脂肪細胞に分化誘導する工程;
    (B)工程(A)で得られた成熟脂肪細胞を脱分化誘導して、脊椎動物の脂肪組織由来間葉系細胞株を得る工程;
  2.  1種又は2種以上の細胞が、脊椎動物の脂肪組織細胞を分散し得る酵素で、脊椎動物の脂肪組織を処理して得られる細胞集団から、成熟脂肪細胞を除去することにより得られる細胞であることを特徴とする請求項1に記載の脊椎動物の脂肪組織由来間葉系細胞株の製造方法。
  3.  脊椎動物の脂肪組織細胞を分散し得る酵素で、脊椎動物の脂肪組織を処理して得られる細胞集団から、成熟脂肪細胞を除去することにより得られる細胞が、脊椎動物の脂肪組織細胞を分散し得る酵素で、脊椎動物の脂肪組織を処理して得られる細胞集団を含む懸濁液を遠心分離した際に沈殿する細胞であることを特徴とする請求項2に記載の脊椎動物の脂肪組織由来間葉系細胞株の製造方法。
  4.  工程(A)における1種又は2種以上の細胞を成熟脂肪細胞へ分化誘導する工程が、デキサメタゾン、イソブチルメチルキサンチン、インスリン及び血清からなる群から選択される1種又は2種以上の脂肪細胞分化誘導物質を含む間葉系細胞培養用基本培養液中で、前記1種又は2種以上の細胞を培養する工程であることを特徴とする請求項1~3のいずれかに記載の脊椎動物の脂肪組織由来間葉系細胞株の製造方法。
  5.  工程(B)における成熟脂肪細胞を脱分化誘導することが、成熟脂肪細胞を天井培養することであることを特徴とする請求項1~4のいずれかに記載の脊椎動物の脂肪組織由来間葉系細胞株の製造方法。
  6.  脊椎動物の脂肪組織細胞を分散し得る酵素が、コラゲナーゼ、トリプシン、カゼイナーゼ、クロストリパイン、トリプシン-EDTA、ディスパーゼ、サーモリシン、プロナーゼ、ヒアルロニダーゼ、パンクレアチン、エラスターゼ及びパパインからなる群から選択される1種又は2種以上の酵素であることを特徴とする請求項2~5のいずれかに記載の脊椎動物の脂肪組織由来間葉系細胞株の製造方法。
  7.  脊椎動物が哺乳動物であることを特徴とする請求項1~6のいずれかに記載の脊椎動物の脂肪組織由来間葉系細胞株の製造方法。
  8.  脂肪組織が皮下脂肪組織であることを特徴とする請求項1~7のいずれかに記載の脊椎動物の脂肪組織由来間葉系細胞株の製造方法。
  9.  請求項1~8のいずれかに記載の製造方法により製造される脊椎動物の脂肪組織由来間葉系細胞株。
  10.  巨核球・血小板、骨芽細胞、軟骨及び脂肪細胞からなる群から選択される1種又は2種以上への分化能を有していることを特徴とする請求項9に記載の脊椎動物の脂肪組織由来間葉系細胞株。
  11.  以下の間葉系細胞の表面マーカー群から選択される1種又は2種以上の表面マーカーを発現しており、かつ、以下の血液細胞の表面マーカー群から選択される1種又は2種以上の表面マーカーを発現していないことを特徴とする請求項9又は10に記載の脊椎動物の脂肪組織由来間葉系細胞株。
    間葉系細胞の表面マーカー群:CD13、CD29、CD44、CD71、CD73、CD90、CD105、CD166、HLA-ABC;
    血液細胞の表面マーカー群:CD11b、CD14、CD19、CD34、CD41、CD42b、CD45、CD56、HLA-DR;
  12.  脊椎動物の脂肪組織から採取した成熟脂肪細胞を脱分化誘導して得られた脊椎動物の脂肪組織由来間葉系細胞株と比較して、中胚葉系細胞への分化誘導効率が、1.5倍以上であることを特徴とする請求項9~11のいずれかに記載の脊椎動物の脂肪組織由来間葉系細胞株。
  13.  請求項9~12のいずれかに記載の脊椎動物の脂肪組織由来間葉系細胞株を、中胚葉系細胞に分化誘導して、中胚葉系細胞を得る工程を有することを特徴とする中胚葉系細胞の製造方法。
  14.  中胚葉系細胞が、巨核球・血小板、骨芽細胞、軟骨又は脂肪細胞であることを特徴とする請求項13に記載の中胚葉系細胞の製造方法。
PCT/JP2016/005016 2015-12-01 2016-11-30 脊椎動物の脂肪組織由来間葉系細胞株の製造方法 WO2017094260A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16870201.7A EP3385372B1 (en) 2015-12-01 2016-11-30 Method for manufacturing mesenchymal cell line derived from vertebrate animal adipose tissue
JP2017553631A JP6714932B2 (ja) 2015-12-01 2016-11-30 脊椎動物の脂肪組織由来間葉系細胞株の製造方法
US15/779,578 US11518982B2 (en) 2015-12-01 2016-11-30 Method for manufacturing mesenchymal cell line derived from vertebrate animal adipose tissue

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015234836 2015-12-01
JP2015-234836 2015-12-01

Publications (1)

Publication Number Publication Date
WO2017094260A1 true WO2017094260A1 (ja) 2017-06-08

Family

ID=58796696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/005016 WO2017094260A1 (ja) 2015-12-01 2016-11-30 脊椎動物の脂肪組織由来間葉系細胞株の製造方法

Country Status (4)

Country Link
US (1) US11518982B2 (ja)
EP (1) EP3385372B1 (ja)
JP (1) JP6714932B2 (ja)
WO (1) WO2017094260A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019009419A1 (ja) * 2017-07-07 2019-01-10 学校法人慶應義塾 脱分化誘導剤及びその使用
CN110846273A (zh) * 2019-11-19 2020-02-28 山东省齐鲁细胞治疗工程技术有限公司 一种脂肪组织来源的间充质干细胞培养及三系分化诱导方法
WO2023085219A1 (ja) 2021-11-11 2023-05-19 慶應義塾 脂肪組織由来間葉系幹細胞株を用いた変形性膝関節症の治療
WO2023112942A1 (ja) * 2021-12-16 2023-06-22 慶應義塾 脂肪組織由来間葉系幹細胞株を用いた肝障害の治療

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113073078B (zh) * 2021-04-23 2023-04-25 个体化细胞治疗技术国家地方联合工程实验室(深圳) 脐带来源间充质干细胞制备的通用型血小板制剂及方法
CN113416694A (zh) * 2021-07-21 2021-09-21 江苏瑞思坦生物科技有限公司 一种从微量脂肪中高效获得脂肪间充质干细胞的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000083656A (ja) * 1998-09-09 2000-03-28 Meiji Milk Prod Co Ltd 前駆脂肪細胞株
JP2009527221A (ja) * 2005-11-16 2009-07-30 アールエヌエル バイオ カンパニー リミテッド ヒト脂肪組織由来の多能性幹細胞及びそれを含む細胞治療剤
WO2014208100A1 (ja) * 2013-06-28 2014-12-31 学校法人慶應義塾 間葉系細胞を利用した巨核球、血小板及び/又はトロンボポエチンの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001277539A1 (en) 2000-07-18 2002-01-30 Societe Des Produits Nestle S.A. Pre-adipose cell lines
ES2313805B1 (es) * 2004-10-04 2009-12-23 Cellerix, S.L. Identificacion y aislamiento de celulas multipotentes de tejido mesenquimal no osteocondral.
US8835165B2 (en) * 2010-12-01 2014-09-16 Universita Degli Studi del Piemonte Orientale “Armedeo Avogadro” Spontaneously immortalized multiponent mesenchymal cell-line derived from mouse subcutaneous adipose tissue: tool for regenerative medicine and bioactive molecules and/or drugs screening
CN106573017B (zh) * 2014-06-30 2021-06-11 泰根尼克斯独资有限公司 用于治疗脓毒症的间充质基质细胞

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000083656A (ja) * 1998-09-09 2000-03-28 Meiji Milk Prod Co Ltd 前駆脂肪細胞株
JP2009527221A (ja) * 2005-11-16 2009-07-30 アールエヌエル バイオ カンパニー リミテッド ヒト脂肪組織由来の多能性幹細胞及びそれを含む細胞治療剤
WO2014208100A1 (ja) * 2013-06-28 2014-12-31 学校法人慶應義塾 間葉系細胞を利用した巨核球、血小板及び/又はトロンボポエチンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3385372A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019009419A1 (ja) * 2017-07-07 2019-01-10 学校法人慶應義塾 脱分化誘導剤及びその使用
CN110846273A (zh) * 2019-11-19 2020-02-28 山东省齐鲁细胞治疗工程技术有限公司 一种脂肪组织来源的间充质干细胞培养及三系分化诱导方法
WO2023085219A1 (ja) 2021-11-11 2023-05-19 慶應義塾 脂肪組織由来間葉系幹細胞株を用いた変形性膝関節症の治療
WO2023112942A1 (ja) * 2021-12-16 2023-06-22 慶應義塾 脂肪組織由来間葉系幹細胞株を用いた肝障害の治療

Also Published As

Publication number Publication date
EP3385372A4 (en) 2019-05-22
US11518982B2 (en) 2022-12-06
EP3385372A1 (en) 2018-10-10
JPWO2017094260A1 (ja) 2018-08-30
EP3385372B1 (en) 2023-08-09
US20200190474A1 (en) 2020-06-18
JP6714932B2 (ja) 2020-07-01

Similar Documents

Publication Publication Date Title
JP6714932B2 (ja) 脊椎動物の脂肪組織由来間葉系細胞株の製造方法
Trivedi et al. Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells
Han et al. Optimization of human umbilical cord mesenchymal stem cell isolation and culture methods
JP6348848B2 (ja) 間葉系幹細胞の増殖
Yang et al. High efficient isolation and systematic identification of human adipose-derived mesenchymal stem cells
Kotobuki et al. Viability and osteogenic potential of cryopreserved human bone marrow-derived mesenchymal cells
Mimuma et al. Growth factor-defined culture medium for human mesenchymal stem cells
CN103060264B (zh) 一种干细胞培养基及其应用和干细胞培养方法
CN106459922B (zh) Cd82阳性心肌前体细胞
US20170296585A1 (en) Identification and isolation of multipotent cells from non-osteochondral mesenchymal tissue
TWI720333B (zh) 多能性幹細胞的製備方法、使用該製備方法而製備出多能性幹細胞、改善劑、以及該多能性幹細胞之分化誘導方法
JP6425308B2 (ja) 間葉系細胞を利用した巨核球、血小板及び/又はトロンボポエチンの製造方法
WO2012117333A1 (en) Isolation and expansion of adult stem cells, their therapeutic composition and uses thereof
Sreejit et al. Generation of mesenchymal stem cell lines from murine bone marrow
US20190071637A1 (en) Colony forming medium and use thereof
CA2756938A1 (en) Isolation of human umbilical cord blood-derived mesenchymal stem cells
Bakhtina et al. Characterization and differentiation potential of rabbit mesenchymal stem cells for translational regenerative medicine
JPWO2014208100A6 (ja) 間葉系細胞を利用した巨核球、血小板及び/又はトロンボポエチンの製造方法
CA3103769A1 (en) Method for producing dental pulp-derived cells
JP2022517784A (ja) 線維芽細胞再生細胞
Martinelli et al. A humanized system to expand in vitro amniotic fluid-derived stem cells intended for clinical application
US20150329827A1 (en) Muse cells isolation and expansion
Seyedi et al. Suspension culture alters insulin secretion in induced human umbilical cord matrix-derived mesenchymal cells
Ma et al. Cryopreservation and multipotential characteristics evaluation of a novel type of mesenchymal stem cells derived from Small Tailed Han Sheep fetal lung tissue
AU2017305066A1 (en) Method for inducing differentiation of pluripotent stem cells in vitro

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870201

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2017553631

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016870201

Country of ref document: EP