WO2017094255A1 - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
WO2017094255A1
WO2017094255A1 PCT/JP2016/005000 JP2016005000W WO2017094255A1 WO 2017094255 A1 WO2017094255 A1 WO 2017094255A1 JP 2016005000 W JP2016005000 W JP 2016005000W WO 2017094255 A1 WO2017094255 A1 WO 2017094255A1
Authority
WO
WIPO (PCT)
Prior art keywords
stirring
raw material
sintered
sintering
speed
Prior art date
Application number
PCT/JP2016/005000
Other languages
French (fr)
Japanese (ja)
Inventor
健太 竹原
山本 哲也
寿幸 廣澤
隆英 樋口
大山 伸幸
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201680068855.5A priority Critical patent/CN108291270B/en
Priority to KR1020187014808A priority patent/KR102157943B1/en
Priority to JP2017553627A priority patent/JP6468367B2/en
Publication of WO2017094255A1 publication Critical patent/WO2017094255A1/en
Priority to PH12018550044A priority patent/PH12018550044A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/12Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic in rotating drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/28Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic using special binding agents

Definitions

  • the present invention relates to a method for producing a sintered ore that is sintered using a Dwight-Lloyd type sintering machine or the like.
  • Sinter ore is generally manufactured in the following three steps.
  • Sintering raw materials contain moisture, and aggregate together to form pseudo particles during granulation. And when this pseudo-particle-ized sintering raw material is inserted in the pallet of a sintering machine, it helps to ensure good air permeability of the charging layer, and promotes the sintering reaction smoothly.
  • powder iron ore for sintering has been lowered in quality due to depletion of high-quality iron ore. That is, in the powdered iron ore for sintering, the proportion of fine iron ore increases as the slag component increases. An increase in the content of alumina, which is one of the slag components in the sintered iron ore, and the ratio of the fine iron ore causes a decrease in the granulation properties of the sintered iron ore.
  • a sintered ore used in a blast furnace a low-slag ratio, high reducibility and high-strength sintered ore are required from the viewpoint of reducing hot metal production cost in the blast furnace and reducing CO 2 generation amount. ing.
  • HPS method Hybrid Pelletized Sinter method
  • the HPS method is a method using a drum mixer and a disk pelletizer in a granulation process of a sintered raw material.
  • Patent Documents 1 to 5 describe a sintered blended raw material containing a large amount of fine iron ore with a high iron content as a drum mixer. It is disclosed that a sintered ore having a low slag ratio and a high reducibility is produced by granulation using a slag and a disk pelletizer.
  • Patent Literature 6 discloses a method of conditioning and mixing with a high-speed rotary mixer before the granulation step of the sintered raw material powder.
  • Patent Literature 7 discloses a fine powder before the granulation step.
  • a method of premixing iron ore and ironmaking dust with a stirring mixer is disclosed, and
  • Patent Document 8 discloses a method of premixing fine iron ore with an Eirich mixer and then granulating with a drum mixer. Has been.
  • Japanese Patent Publication No.2-4658 Japanese Patent Publication No. 6-21297 Japanese Patent Publication No. 6-21298 Japanese Patent Publication No. 6-21299 Japanese Patent Publication No. 6-60358 JP 60-52534 A JP-A-1-312036 JP-A-7-331342
  • the particle size becomes uneven, and the granulated particles with weak bond strength are merely aggregates of fine iron ores. It becomes easy to be granulated.
  • the charging layer becomes a dense deposit structure and the bulk density increases, and the air permeability in the charging layer increases. Gets worse.
  • the particles are easily broken and pulverized by applying a load (compression force) to the particles.
  • the gap to be formed is reduced and the porosity is lowered.
  • the air permeability in the charging layer is deteriorated.
  • the deterioration of the permeability of the charging layer extends the sintering time of the sintered raw material, and thus reduces the productivity of the sintered ore.
  • the formation of coarse pseudo-particles in the sintered raw material causes a decrease in the productivity of the sintered ore.
  • the present invention has been made in view of the above-described problems of the prior art, and its purpose is to use coarse materials contained in the sintered raw material using a high-speed stirring device when using the sintered raw material containing fine iron ore.
  • An object of the present invention is to provide a method for producing a sintered ore, in which simple pseudo particles are pulverized in advance before granulation to improve productivity in a sintering machine.
  • a method for producing a sintered ore which is a high-speed stirring device having a rotating cylindrical container and a stirring blade rotating in the cylindrical container, so that the sintering raw material is satisfied so as to satisfy the following formula (1)
  • v peripheral speed (m / s) of the bottom plate of the cylindrical container
  • u peripheral speed (m / s) at the tip of the stirring blade
  • t time (s) during which the sintered raw material is stirred by a high-speed stirring device
  • L the length of the circumference drawn by the tip of the stirring blade (m)
  • S Area (m 2 ) obtained by removing the area of a circle drawn by the tip of the stirring blade from the projected area of the cylindrical container projected from the rotation axis direction of the stirring blade.
  • the sintered raw material contains 10 to 50% by mass of fine iron ore having a particle size of 0.125 mm or less, and the Al 2 O 3 concentration of the sintered ore obtained by sintering the sintered raw material with the sintering machine Is 1.6 mass% or more, The manufacturing method of the sintered ore as described in [1].
  • FIG. 1 is a plan view of a high speed stirring device 10. It is a figure explaining L and S in high-speed stirring apparatus 10.
  • 6 is a graph showing the relationship between Experimental Examples 1 to 4 and the production rate improvement effect. It is a graph which shows the relationship between a stirring speed and a sintering production rate improvement effect. It is a graph which shows the relationship between the average particle diameter after a stirring process, and a sintering production rate improvement effect. It is a figure which shows the relationship between the water
  • the present invention preliminarily crushes coarse pseudo-particles generated by agglomeration of fine iron ore by agitation treatment using a high-speed agitator before granulating the sintered raw material containing fine iron ore. To do. First, the characteristic of the sintering raw material containing the fine iron ore which produces
  • FIG. 1 is a graph showing a difference in particle size distribution of pseudo particles with and without pellet feed.
  • the black plot shows the particle size distribution of iron ore not containing a pellet feed that is fine iron ore.
  • the white plot has shown the particle size distribution of what mix
  • the particle size distribution shown in the black plot became the particle size distribution shown in the white plot. That is, by mixing 40% by mass of the pellet feed, not only fine particles (less than 0.5 mm) but also coarse (greater than 10 mm) pseudo particles were generated. If the fine iron ore has the same wettability, the finer particles have a larger specific surface area and therefore absorb more moisture, so that more moisture is retained between the powders. For this reason, the fine iron ore preferentially absorbs moisture with respect to other iron ores that are not fine iron ore.
  • the particle size and mass ratio are determined by dividing the raw material into each particle size by sieving using an open sieve according to JIS Z 8801, measuring the mass of each particle size, The mass ratio of each particle size is calculated from the total mass.
  • mixing 40% by mass of a pellet feed having a particle size of 0.125 mm or less means that a pellet feed that has passed through a sieve having a nominal aperture of 125 ⁇ m according to JIS Z 8801 has a ratio of 40 to the total mass of iron ore. It means blending so that it becomes mass%.
  • FIG. 2 (a) is a graph showing the difference in the particle size distribution of the granulated particles with and without pellet feed.
  • FIG. 2B is a graph showing the distribution of pellet feed in the granulated particles.
  • FIG.2 (c) is a graph which shows the dispersion
  • the amount of pellet feed contained in the coarse particles was as high as about 75% by mass with respect to the total amount of the pellet feed that was input, and most of the pellet feed was unevenly distributed in the coarse particles. From this, it was found that the coarse particles contained in the granulated particles are formed by pseudo particles in which pellet feeds are aggregated.
  • the coarse particles contained in the granulated particles contained a lot of moisture.
  • the pellet feed preferentially absorbs moisture with respect to other iron ores and forms coarse particles in the granulated particles.
  • coarse particles containing a large amount of moisture are not easily bound by a binder or the like, and the bond strength of the coarse particles is weakened.
  • the grain size becomes uneven and coarse grains with weak bond strength are granulated.
  • granulated particles containing such coarse particles are charged into a pallet of a sintering machine, fine particles enter between the coarse particles to form a dense deposit structure, and a charged layer having a low porosity and a high bulk density is formed. It is formed.
  • the coarse particles are easily broken and powdered by applying a load (compression force), and the porosity of the charge layer is further increased. Reduce. As a result, as shown in FIG.
  • the air permeability of the charging layer is deteriorated, and as a result, the sintering time of the sintered raw material is extended and the productivity of the sintered ore is lowered.
  • the arrows indicate the air passages in the charging layer.
  • FIG. 4 is an internal perspective view of the high-speed stirring device 10.
  • FIG. 5 is a plan view of the high-speed stirring device 10.
  • the high-speed stirring device 10 is a device that stirs the sintered raw material 40.
  • the high-speed stirring device 10 includes a cylindrical container 20 in which the sintering raw material 40 is charged, a stirring blade 30, and a weir 36.
  • the weir 36 is preferably provided for scraping the sintered raw material, but may not be provided.
  • the cylindrical container 20 includes a cylindrical cylinder 22 and a circular bottom plate 24.
  • the cylindrical container 20 is provided with openings (not shown) for supplying and discharging the sintering raw material 40.
  • the bottom plate 24 is provided integrally with the cylinder 22, and the bottom plate 24 receives the driving force and rotates together with the cylinder 22.
  • the cylindrical container 20 may include a top plate that seals the upper side of the cylindrical container 20.
  • the sintering raw material 40 includes fine iron ore, limestone, and solid fuel such as powder coke, and further, auxiliary raw material powder such as quartzite and serpentine, dust, scale, return mineral, and the like. Other raw material powders, and a binder may be included.
  • the fine iron ore in the sintering raw material 40 is a fine iron ore having a particle size of 0.125 mm or less.
  • the stirring blade 30 includes a rotating shaft 32 and a plurality of stirring plates 34.
  • the rotating shaft 32 is a position eccentric from the center of the cylindrical container 20, and the stirring blade 30 rotates by receiving a driving force from a driving unit (not shown) provided on the upper side of the cylindrical container 20. Therefore, the stirring blade 30 and the bottom plate 24 can rotate independently of each other.
  • the rotation shaft 32 may be provided at the center of the cylindrical container 20.
  • the stirring plate 34 is provided to project radially outward from the rotary shaft 32.
  • the stirring plate 34 is provided in six directions at 60 ° intervals at two locations in the vertical direction of the rotating shaft 32. Therefore, the stirring blade 30 is provided with a total of 12 stirring plates 34.
  • the number of stirring plates 34 is not limited to 12, and may be arbitrarily set according to the shape of the stirring plate 34, the number of rotations of the stirring blade 30, the number of rotations of the bottom plate 24, or the like.
  • 8 to 16 stirring plates 34 may be provided at 4 to 8 positions in the vertical direction of the stirring shaft 32.
  • the angle and height interval of the stirring plate 34 may be set arbitrarily.
  • the bottom plate 24 rotates, for example, clockwise, and the stirring blade 30 rotates counterclockwise.
  • the sintering raw material 40 charged in the cylindrical container 20 rotates clockwise along the rotation direction of the bottom plate 24.
  • the sintering raw material 40 rotated clockwise is stirred by colliding with the stirring blade 30 rotated counterclockwise.
  • the rotation direction of the bottom plate 24 and the stirring blade 30 may be clockwise or counterclockwise. Further, the rotation directions of the bottom plate 24 and the stirring blade 30 may be different from each other or the same.
  • FIGS. 4 and 5 show an example in which the high-speed stirring device 10 stirs the sintered raw material 40 in a horizontally installed state, but the high-speed stirring device 10 may be tilted and used. Further, the stirring blade 30 may be supported while being supported in the vertical direction, and only the cylindrical container 20 may be tilted.
  • the sintering raw material 40 contains fine iron ore
  • the fine iron ore aggregates to generate coarse pseudo particles.
  • the sintered raw material 40 is preliminarily stirred to break up coarse pseudo particles, and fine iron ore can be dispersed in the sintered raw material 40.
  • the stirring conditions of the high-speed stirring device 10 will be described.
  • the sintering raw material 40 is processed and granulated for a predetermined time using a drum mixer.
  • coarse pseudo particles contained in the sintering raw material 40 are crushed using the high-speed stirring device 10. This is because coarse particles are granulated in the drum mixer by crushing fine iron ore that is easy to retain moisture and adhere, before granulating with a drum mixer and reducing coarse pseudo particles. It is for suppressing.
  • the drum mixer is an example of a granulating apparatus, and a general granulator, particularly a rolling granulator may be used.
  • the sintering raw material 40 in the cylindrical container 20 collides with the tip of the stirring plate 34 and the tip of the stirring plate 34 in the stirring blade 30 is drawn. It was found that even if it entered the inside of the circle, it could only enter up to half the length of the blade. From this, it is considered that the sintering raw material 40 is stirred on the circumference drawn by the tip of the stirring plate 34. Therefore, when the circumferential length L drawn by the tip of the stirring plate 34 is increased, the cylindrical container 20 is baked. Since the kneading
  • the length L of the circumference drawn by the tip of the stirring plate 34 is referred to as “effective blade length”.
  • the area excluding the area of the circle drawn by the tip of the stirring blade 30 from the area of the bottom plate 24 is S (m 2 ).
  • the sintering raw material 40 exists in the S region. Since the sintering raw material 40 existing in the region S does not come into contact with the stirring plate 34 unless it reaches the circumference drawn by the tip of the stirring plate 34, the stirring efficiency of the high-speed stirring device 10 decreases as S increases. .
  • the area S obtained by subtracting the area of the circle drawn by the tip of the stirring blade 30 from the area of the bottom plate 24 is referred to as “effective area”.
  • the stirring shaft 32 is provided to be inclined with respect to the bottom plate 24
  • the area calculated by the difference from the area of the circle drawn by the tip of the can be the effective area.
  • FIG. 6 is a diagram for explaining the effective blade length L and the effective area S in the high-speed stirring device 10.
  • L is the circumference of a circle 50 drawn by the tip of the stirring plate 34 of the stirring blade 30 in FIG.
  • S is a region 52 indicated by hatching in FIG. This is an area obtained by subtracting the area occupied by the movement of the stirring blade 30 from the projected area of the container from the rotation axis direction of the stirring blade 30.
  • the effective blade length L is the total of the circumferences drawn by the tips of the stirring plates 34 in the plurality of stirring blades 30.
  • the effective area S is the sum of circles drawn by the tips of the stirring plates 34 in the plurality of stirring blades 30 from the projected area of the cylindrical container 20 from the direction of the rotation axis 32 of the stirring blade 30. It becomes the area excluding the area.
  • the efficiency of stirring by the rotation of the bottom plate 24 is related to the transport speed of the sintering raw material 40 that is transported to the stirring blade 30 by the rotation of the bottom plate 24. Since the sintering raw material 40 moves with the rotation of the bottom plate 24, the transport speed for transporting the sintering raw material 40 to the stirring blade 30 is related to the peripheral speed v (m / s) of the bottom plate 24. Therefore, the peripheral speed v (m / s) of the bottom plate 24 is set as one index indicating the efficiency of stirring in the high-speed stirring device 10.
  • the peripheral speed of the bottom plate 24 can be calculated by the product of the circumferential length (m) of the bottom plate 24 and the rotational speed (rpm) of the bottom plate 24.
  • the efficiency of stirring by the rotation of the stirring blade 30 is related to the amount of movement of the tip of the stirring plate 34 that moves in the time during which the sintering raw material 40 is stirred in the high-speed stirring device 10. Therefore, the tip of the stirring plate 34 is the product of the time t (s) during which the sintered raw material 40 is stirred by the high-speed stirring device 10 and the peripheral speed u (m / s) that is the speed of the tip of the stirring plate 34.
  • the moving distance “u ⁇ t” (m) was set as one of the indexes indicating the efficiency of stirring in the high-speed stirring device 10.
  • the following formula (2) which is a product of “L / S”, “v”, and “u ⁇ t”, which is an index indicating the above-described stirring efficiency, shows the stirring efficiency of the high-speed stirring device It was found that it can be evaluated.
  • the value calculated by following Numerical formula (2) be stirring speed (m / sec).
  • the high-speed stirring device 10 is provided with the weir 36. However, since the movement of the sintering raw material 40 in the cylindrical container 20 does not change greatly with or without the weir 36, the high-speed stirring device with or without the weir 36 is used.
  • the following numerical formula (2) for evaluating the efficiency of stirring of 10 does not change.
  • the stirring speed is preferably 3000 m / s or less. This is because even if the stirring speed is higher than 3000 m / s, only the electric power is used and there is almost no effect of improving the production rate of the sintered ore. This is considered to be because most of the coarse pseudo particles contained in the sintered raw material 40 were crushed by setting the stirring speed to 3000 m / s.
  • the peripheral speed v of the stirring blades 30 is the sum of the peripheral speeds v of the plurality of stirring blades 30.
  • a simple average divided by the number may be used.
  • the effective area S may be a value obtained by subtracting the sum of the areas occupied by the movement of all the stirring blades 30 from the area of the bottom plate 24.
  • the effective stirring blade length L may be the sum of the effective stirring blade lengths L of the respective stirring blades 30, and v, u, t, L, and S are set so that these values are 500 m / s or more. As a result, a high effect of improving the production rate of sintered ore can be obtained.
  • Fine iron ore is defined as particles having a particle size of 0.125 mm or less, and a sintered raw material to which fine iron ore made of hematite ore having a particle size of 0.125 mm or less is added, is included in the sintering raw material.
  • the sample which changed the content rate of the fine iron ore mentioned above was created.
  • the sintering raw material contains 67% by mass of iron ore, 15% by mass of return ore, 5% by mass of carbonaceous material, 11% by mass of limestone as an auxiliary material, and 2% by mass of quick lime.
  • the product mass (t) is measured for each sample, the product quality quantity (t) is divided by the sintering time (h) and the cross-sectional area (m 2 ) of the test pan, and the sintering production rate (t / (m 2 ⁇ h)) was calculated.
  • content of a fine iron ore is the value which calculated the ratio of the iron ore of 0.125 mm or less in advance, and calculated from the compounding quantity.
  • the moisture content of the sample is an inner value relative to the amount of the sintering raw material, and is a value calculated from the dry basis raw material and added moisture.
  • FIG. 7 is a graph showing the relationship between the content of fine iron ore having a particle size of 0.125 mm or less and the sintering production rate.
  • the sintering production rate is rapidly decreased. From this, it is considered that when the proportion of fine iron ore exceeds 10% by mass, coarse pseudo particles having low bonding strength are formed, and as a result, the sintering production rate is rapidly reduced.
  • the ratio of fine iron ore exceeds 50 mass%, granulation with a drum mixer becomes difficult.
  • the condition for forming coarse pseudo-particles in the sintered raw material is when the fine iron ore of 0.125 mm or less is contained in the range of 10 to 50% by mass.
  • the sintering raw material having a particle size of 0.125 mm or less increased the adhesion force representing the adhesion between particles in the powder to which moisture was added, and exhibited different behavior in the granulation property of the sintering raw material.
  • the particle size threshold of iron ore was 0.125 mm.
  • the influence of the concentration of Al 2 O 3 in the sintering raw material will be described.
  • the Al 2 O 3 concentration of the sintered raw material 40 is high, there is a problem that the viscosity of the melt that becomes a factor for improving the strength of the sintered ore during the production of the sintered ore becomes high.
  • ores containing a large amount of Al 2 O 3 are classified as clay-type ores that easily aggregate. Therefore, when a sintering raw material having a high Al 2 O 3 ratio is used, the ore containing a large amount of Al 2 O 3 agglomerates, so that the viscosity of the melt generated during sintering is increased, and the sintered ore is increased.
  • the melt is not dispersed in the charging layer, and the strength of the sintered ore is reduced.
  • the sintering material 40 has a high Al 2 O 3 concentration
  • the increase in the viscosity of the melt due to Al 2 O 3 during the sintering is suppressed, and the melt generated during the production of the sinter can be dispersed in the sintering raw material 40, so that the strength of the sinter is increased. Will improve.
  • high-speed advantage of improved strength of the sintered ore by stirring treatment of stirrer 10 the concentration of Al 2 O 3 sintered ore is sintered by a sintering machine to 1.6 mass% In the case of.
  • the stirring process when the stirring process is performed using the high-speed stirring device 10, the stirring process may be performed including at least one of the binder, the carbonaceous material, and the limestone contained in the sintering raw material 40.
  • the productivity of the sintered ore can be improved as compared with the case where the stirring process is not performed.
  • the binder that is originally added before granulation by the drum mixer is added to the sintering raw material 40 before the stirring treatment, and the stirring treatment is performed using the high-speed stirring device 10, so that A binder that easily aggregates can be dispersed in the sintering material 40. Since the drum mixer hardens the binder and granulates the particles, if the binder can be dispersed, it is possible to suppress variations in the bonding strength of the granulated particles. Thereby, it can suppress that the particle
  • the granulated particles with weak bond strength are destroyed by impact when supplying the granulated particles to the pallet of the sintering machine, and fine powder is generated by the destruction.
  • the fine powder generated by the destruction hinders the air permeability of the charging layer and decreases the productivity of the sintered ore. Since the binder is stirred together with the sintering raw material 40 using the high-speed agitator 10 and the binder is dispersed in the sintering raw material 40, it is possible to suppress granulation of particles having low bonding strength.
  • the productivity of the sintered ore can be improved as compared with the case where the stirring device 10 does not perform the stirring treatment.
  • the carbonaceous material can be dispersed in the sintered raw material by stirring the carbonaceous material using the high-speed stirring device 10. If the sintered material is sintered in a state where the carbon material cannot be dispersed in the sintered material and is contained non-uniformly, uneven burning occurs. Uneven burning causes insufficient sintering and reduces the strength of the sintered ore. For this reason, since the above-mentioned uneven burning can be suppressed by stirring the carbonaceous material together with the sintering raw material 40 by using the high-speed stirring device 10 to disperse the carbonaceous material, the high-speed stirring device 10 does not perform the stirring treatment. As a result, the productivity of sintered ore can be improved.
  • the limestone addition time “before stirring” means that limestone is included in the sintered raw material before stirring with the high-speed stirring device 10.
  • the limestone addition time “after stirring” means that the limestone is included in the sintered raw material after stirring using the high-speed stirring device 10.
  • the high speed stirring device 10 in which the diameter of the stirring blade 30 is 0.35 m and the diameter of the cylindrical container 20 is 0.75 m, the rotational speed of the stirring blade 30 is 500 rpm, and the rotational speed of the bottom plate 24 is 28 rpm. And stirred.
  • the sintering raw material 40 in each sample was adjusted to include 15% by mass of fine iron ore having a particle size of 0.125 mm or less.
  • the sintering raw material contains 67% by mass of iron ore, 15% by mass of return ore, 5% by mass of carbonaceous material, 11% by mass of limestone as an auxiliary material, and 2% by mass of quick lime.
  • moisture content at the time of stirring by the high-speed stirring apparatus 10 was 5.5 mass%.
  • water was added so that the water content was 7.5% by mass, and granulation was performed for 300 seconds.
  • the granulated granule was baked using the iron test pot, the sinter cake was manufactured, and the sintering production rate was computed.
  • not only stirring treatment was performed, but granulated particles granulated under the same other conditions were also fired using a similar iron test pan to produce a sinter cake, and the sintering production rate was calculated.
  • FIG. 8 is a graph showing the relationship between Experimental Examples 1 to 4 and the production rate improvement effect.
  • the production rate improvement effect is calculated by taking the difference between the sintering production rate when the stirring process by the high-speed stirring device 10 is performed and the sintering production rate when the stirring process by the high-speed stirring device 10 is not performed. did.
  • Experimental Example 3 in which the proportion of Al 2 O 3 is lower than 1.6% by mass
  • Experimental Example 1 and Experimental Example 2 in which the proportion of Al 2 O 3 is 1.6% by mass or more are better. It can be seen that the production rate improvement effect is greater. From the above results, it has been clarified that the effect of the present invention is further enhanced when the concentration of Al 2 O 3 is 1.6% by mass or more.
  • a sintered iron ore containing 15% by mass of fine iron ore having a particle size of 0.125 mm or less and the concentration of Al 2 O 3 in the sintered ore is 1.6% by mass or more. Even if it was a ligation raw material, it turned out that productivity of a sintered ore can be improved more by granulating with a drum mixer after stirring with the high-speed stirring apparatus 10, and manufacturing a sintered ore.
  • quick lime (CaO) is used as a binder, but slaked lime (Ca (OH) 2 ), a thickening organic binder, and an inorganic binder, which are binders that increase the granulation property in a drum mixer, are used. May be. Since quicklime is cheap, sintered ore can be manufactured at low cost by using quicklime as a binder.
  • the sintering raw material 40 containing fine iron ore was stirred using the high-speed stirring device 10, and then the productivity improvement effect of the sintered ore was confirmed using the granulated particles granulated using a drum mixer.
  • Sintering raw material 40 includes 15% by mass of fine iron ore having a particle size of 0.125 mm or less and an iron ore raw material having an Al 2 O 3 concentration of 1.6% by mass in the sintered ore. Was used.
  • the sintering raw material contains 67% by mass of iron ore, 15% by mass of return ore, 5% by mass of carbonaceous material, 11% by mass of limestone as an auxiliary material, and 2% by mass of quick lime.
  • moisture content at the time of stirring by the high-speed stirring apparatus 10 was 5.5 mass%. Furthermore, water was added so that the water content was 7.5% by mass, and granulation was performed using a drum mixer for 300 seconds, followed by sintering to produce a sintered ore, and the effect of improving the sintering production rate was calculated. .
  • Table 2 stirring conditions of the stirring blade 30 of the high-speed stirring device 10 in Examples 1 to 7 of the present invention and Comparative Examples 1 and 2, rotation conditions of the bottom plate 24, stirring time, effective blade length, effective area, stirring speed and The production rate improvement effect is shown.
  • FIG. 9 is a graph showing the relationship between the stirring speed and the effect of improving the sintering production rate.
  • FIG. 9 is a graph plotting Invention Examples 1 to 7 and Comparative Examples 1 and 2 in Table 2 when the vertical axis is the production rate improvement effect and the horizontal axis is the stirring speed. From FIG. 9, it was found that the effect of improving the production rate of high sintered ore can be obtained when the stirring speed is higher than 500 m / s. On the other hand, it was found that even if the stirring speed was higher than 3000 m / s, the effect of improving the production rate of sintered ore was not changed. Note that FIG. 9 indicates that the stirring speed is more preferably 700 m / s or more, and more preferably 1300 m / s or more.
  • the average particle size is determined by collecting 1 kg of the powder sample after the stirring treatment, drying, and then using a sieve having openings of 0.25, 0.5, 1, 2.8, 4.75, and 8 mm. The powder samples were sieved in order of wide opening, the mass ratio of each particle size was measured, and the particle diameter using the mass ratio was calculated by weighted averaging.
  • FIG. 10 is a graph showing the relationship between the average particle diameter after the stirring treatment and the effect of improving the sintering production rate.
  • FIG. 10 shows that the effect of improving the production rate of sintered ore is great when the average particle size after stirring with the high-speed stirring device 10 is 3 mm or less. That is, the sintering raw material 40 is agitated with the high-speed agitator 10 to break up coarse pseudo particles in the sintering raw material 40, thereby reducing the average particle diameter of the sintering raw material 40 to 3 mm or less. The effect of improving the production rate of the ore could be enhanced.
  • FIG. 10 shows that the average particle diameter after stirring with the high-speed stirring device 10 is more preferably 2.5 mm or less, and further preferably 2 mm or less.
  • the amount of water during stirring was measured such that the average particle size after stirring using the high-speed stirring device 10 was 3 mm or less.
  • the entire amount of the sintered raw material 40 was charged into the high-speed stirring device 10 and stirred, and the average particle size after stirring was measured.
  • the sintered material 40, the ratio is 15 mass% of iron ore fines, percentage 55% by weight of the core particles, the ratio of Al 2 O 3 is used a sintered material 40 of 1.6 wt%.
  • the sintering raw material contains 67% by mass of iron ore, 15% by mass of return ore, 5% by mass of carbonaceous material, 11% by mass of limestone as an auxiliary material, and 2% by mass of quick lime.
  • the diameter of the cylindrical container 20 in the high-speed stirring device 10 is 0.75 m, and the diameter of the stirring blade 30 is 0.35 m. Moreover, the rotation speed of the bottom plate 24 in the cylindrical container 20 is 28 rpm, and the rotation speed of the stirring blade 30 is 500 rpm. Sintering raw materials 40 having different moisture contents were prepared, and the stirring treatment was performed under the above conditions, and the average particle diameter after the stirring treatment at each moisture content was measured.
  • FIG. 11 is a diagram showing the relationship between moisture during the stirring process and average particles after the stirring process. It can be seen from FIG. 11 that by making the water content during stirring 7% by mass or less, the average particle size after the stirring process becomes 3 mm or less, and the effect of improving the production rate of sintered ore by performing the stirring process increases. . In addition, it turns out that it is more preferable to make the moisture content at the time of stirring into 6 mass% or less from FIG. 11, and it is still more preferable to make the moisture content at the time of stirring into 4 mass% or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

The formation of coarse pseudo-particles in sintering raw materials containing fine iron ore reduces the productivity of sintered ore. Provided is a method for producing sintered ore, wherein, by using a high-speed stirrer which has a rotating cylindrical container and stirring blades that rotate inside the cylindrical container, sintering raw materials are stirred so as to satisfy equation (1) below; after being stirred, the sintering raw materials are granulated using a granulator; and after being granulated, the sintering raw materials are sintered using a sintering machine to produce sintered ore. In equation (1) below, v denotes the peripheral speed (m/s) of the bottom plate of the cylindrical container, u denotes the peripheral speed (m/s) of the tips of the stirring blades, t denotes the time (s) during which the sintering raw materials are stirred by the high-speed stirrer, L denotes the length (m) of the circumference traced by the tips of the stirring blades, and S denotes the projected area (m2) of the cylindrical container as projected in the direction of the rotation axis of the stirring blades, excluding the area of the circle traced by the tips of the stirring blades.

Description

焼結鉱の製造方法Method for producing sintered ore
 本発明は、ドワイト・ロイド式焼結機などを用いて焼結される焼結鉱の製造方法に関する。 The present invention relates to a method for producing a sintered ore that is sintered using a Dwight-Lloyd type sintering machine or the like.
 焼結鉱は、概ね次の3つの工程で製造される。 Sinter ore is generally manufactured in the following three steps.
 (1)複数銘柄の粉鉄鉱石(シンターフィード、コンセントレートおよびペレットフィードと呼ばれているものなど)に、石灰石や珪石、蛇紋岩等の副原料粉と、ダスト、スケール、返鉱等の雑原料粉と、粉コークス等の固体燃料とを適量ずつ配合して焼結原料とする。 (1) Multiple brands of powdered iron ore (such as those called sinter feed, concentrate and pellet feed), auxiliaries such as limestone, silica, and serpentine, and other types of dust, scales, return minerals, etc. An appropriate amount of raw material powder and solid fuel such as powdered coke are blended to obtain a sintered raw material.
 (2)焼結原料に水分を添加した後に造粒する。 (2) Granulate after adding moisture to the sintering raw material.
 (3)造粒後の焼結原料を焼結機に装入して焼結する。 (3) The sintered raw material after granulation is charged into a sintering machine and sintered.
 焼結原料は、水分を含むことで造粒時に互いに凝集して擬似粒子となる。そして、この擬似粒子化した焼結原料は、焼結機のパレットに装入されたとき、装入層の良好な通気性を確保するのに役立ち、焼結反応を円滑に進める。 Sintering raw materials contain moisture, and aggregate together to form pseudo particles during granulation. And when this pseudo-particle-ized sintering raw material is inserted in the pallet of a sintering machine, it helps to ensure good air permeability of the charging layer, and promotes the sintering reaction smoothly.
 焼結用粉鉄鉱石は、近年、高品質鉄鉱石の枯渇によって低品位化している。即ち、焼結用粉鉄鉱石は、スラグ成分が増加するとともに微粉鉄鉱石の割合が多くなってきている。焼結用粉鉄鉱石におけるスラグ成分の1つであるアルミナの含有量および微粉鉄鉱石の比率の増大は、焼結用粉鉄鉱石の造粒性を低下させる原因になる。その一方で、高炉で使用する焼結鉱としては、高炉での溶銑製造コストの低減やCO発生量の低減という観点から低スラグ比、高被還元性および高強度の焼結鉱が求められている。 In recent years, powder iron ore for sintering has been lowered in quality due to depletion of high-quality iron ore. That is, in the powdered iron ore for sintering, the proportion of fine iron ore increases as the slag component increases. An increase in the content of alumina, which is one of the slag components in the sintered iron ore, and the ratio of the fine iron ore causes a decrease in the granulation properties of the sintered iron ore. On the other hand, as a sintered ore used in a blast furnace, a low-slag ratio, high reducibility and high-strength sintered ore are required from the viewpoint of reducing hot metal production cost in the blast furnace and reducing CO 2 generation amount. ing.
 焼結用粉鉄鉱石を取り巻くこのような環境の中、難造粒性である微粉鉄鉱石を使って、高品質の焼結鉱を製造するための技術が提案されている。例えば、こうした技術の1つに、Hybrid Pelletized Sinter法(以下、「HPS法」という)がある。HPS法とは、焼結原料の造粒工程でドラムミキサーとディスクペレタイザーとを用いる方法であり、特許文献1~5には、鉄分の高い微粉鉄鉱石を多量に含む焼結配合原料をドラムミキサーとディスクペレタイザーとを使って造粒することで、低スラグ比・高被還元性の焼結鉱を製造することが開示されている。その他、特許文献6には、焼結原料粉の造粒工程の前に、高速回転ミキサーにて調湿混合する方法が開示されており、特許文献7には、造粒工程の前に、微粉鉄鉱石と製鉄ダストとを撹拌混合機で予め混合する方法が開示されており、特許文献8には、微粉鉄鉱石をアイリッヒミキサーで予め混合処理したのちドラムミキサーにて造粒する方法が開示されている。 In such an environment surrounding powdered iron ore for sintering, a technique for producing high-quality sintered ore using finely divided iron ore that is difficult to granulate has been proposed. For example, one of such techniques is the Hybrid Pelletized Sinter method (hereinafter referred to as “HPS method”). The HPS method is a method using a drum mixer and a disk pelletizer in a granulation process of a sintered raw material. Patent Documents 1 to 5 describe a sintered blended raw material containing a large amount of fine iron ore with a high iron content as a drum mixer. It is disclosed that a sintered ore having a low slag ratio and a high reducibility is produced by granulation using a slag and a disk pelletizer. In addition, Patent Literature 6 discloses a method of conditioning and mixing with a high-speed rotary mixer before the granulation step of the sintered raw material powder. Patent Literature 7 discloses a fine powder before the granulation step. A method of premixing iron ore and ironmaking dust with a stirring mixer is disclosed, and Patent Document 8 discloses a method of premixing fine iron ore with an Eirich mixer and then granulating with a drum mixer. Has been.
特公平2-4658号公報Japanese Patent Publication No.2-4658 特公平6-21297号公報Japanese Patent Publication No. 6-21297 特公平6-21298号公報Japanese Patent Publication No. 6-21298 特公平6-21299号公報Japanese Patent Publication No. 6-21299 特公平6-60358号公報Japanese Patent Publication No. 6-60358 特開昭60-52534号公報JP 60-52534 A 特開平1-312036号公報JP-A-1-312036 特開平7-331342号公報JP-A-7-331342
 粒径0.125mm以下のペレットフィードなどの微粉鉄鉱石を多量に含む焼結原料は、凝集して粗大な擬似粒子を形成する。粗大な擬似粒子が形成された焼結原料を、造粒装置を用いて造粒すると、粒径が不揃いになると共に、微粉鉄鉱石同士が単に凝集したにすぎない結合強度の弱い造粒粒子が造粒されやすくなる。 Sintering raw material containing a large amount of fine iron ore such as pellet feed having a particle size of 0.125 mm or less aggregates to form coarse pseudo particles. When granulating the sintered raw material on which coarse pseudo-particles are formed using a granulator, the particle size becomes uneven, and the granulated particles with weak bond strength are merely aggregates of fine iron ores. It becomes easy to be granulated.
 このような造粒粒子を、焼結機のパレットに装入して装入層を形成させると、装入層は、緻密な堆積構造となってかさ密度が大きくなり、装入層における通気性が悪化する。さらには、このような粒子を焼結機のパレットに一定の層厚で造粒粒子を堆積させると、当該粒子に荷重(圧縮力)が加わることで容易に壊れて粉化し、装入層を形成する間隙が小さくなり空隙率を低下させる。この空隙率が低下すると装入層における通気性が悪化する。装入層の通気性の悪化は、焼結原料の焼結時間を延長させるので、焼結鉱の生産性を低下させる。このように、焼結原料中における粗大な擬似粒子の形成は、焼結鉱の生産性を低下させる原因になる。 When such granulated particles are charged into a pallet of a sintering machine to form a charging layer, the charging layer becomes a dense deposit structure and the bulk density increases, and the air permeability in the charging layer increases. Gets worse. Furthermore, when such particles are deposited on a pallet of a sintering machine with a certain layer thickness, the particles are easily broken and pulverized by applying a load (compression force) to the particles. The gap to be formed is reduced and the porosity is lowered. When this porosity is lowered, the air permeability in the charging layer is deteriorated. The deterioration of the permeability of the charging layer extends the sintering time of the sintered raw material, and thus reduces the productivity of the sintered ore. As described above, the formation of coarse pseudo-particles in the sintered raw material causes a decrease in the productivity of the sintered ore.
 特許文献1~5に記載されているようなHPS法を用いて造粒する方法では、焼結原料に含まれる粗大な擬似粒子を解砕できない。また、特許文献6~8に記載されている高速撹拌機を使って予め混合処理する方法を用いても、焼結原料に含まれる粗大な擬似粒子を十分に解砕できず焼結鉱の生産性が低下する、という課題があった。 In the method of granulating using the HPS method as described in Patent Documents 1 to 5, coarse pseudo particles contained in the sintering raw material cannot be crushed. In addition, even if the method of premixing using a high-speed stirrer described in Patent Documents 6 to 8 is used, coarse pseudo particles contained in the sintering raw material cannot be sufficiently crushed, and the production of sintered ore There was a problem that the property was lowered.
 本発明は、従来技術が抱える上記課題を鑑みてなされたものであり、その目的は、微粉鉄鉱石を含む焼結原料を使用する場合に、高速撹拌装置を用いて焼結原料に含まれる粗大な擬似粒子を予め造粒前に解砕して焼結機での生産性を向上させる焼結鉱の製造方法を提供することにある。 The present invention has been made in view of the above-described problems of the prior art, and its purpose is to use coarse materials contained in the sintered raw material using a high-speed stirring device when using the sintered raw material containing fine iron ore. An object of the present invention is to provide a method for producing a sintered ore, in which simple pseudo particles are pulverized in advance before granulation to improve productivity in a sintering machine.
 このような課題を解決するための本発明の特徴は、以下の通りである。 The features of the present invention for solving such problems are as follows.
 [1]焼結鉱の製造方法であって、回転する円筒容器と、前記円筒容器内で回転する撹拌羽根と、を有する高速撹拌装置で、下記数式(1)を満たすように焼結原料を撹拌処理し、撹拌処理後の焼結原料を造粒装置を用いて造粒し、造粒後の焼結原料を焼結機を用いて焼結して、焼結鉱を製造する焼結鉱の製造方法。 [1] A method for producing a sintered ore, which is a high-speed stirring device having a rotating cylindrical container and a stirring blade rotating in the cylindrical container, so that the sintering raw material is satisfied so as to satisfy the following formula (1) A sintered ore that produces a sintered ore by agitation processing, granulating the sintered raw material after the agitation treatment using a granulator, and sintering the granulated sintered raw material using a sintering machine Manufacturing method.
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000001
 
 但し、上記数式(1)において、
 v:前記円筒容器の底板の周速(m/s)、
 u:前記撹拌羽根の先端の周速(m/s)、
 t:前記焼結原料が高速撹拌装置によって撹拌される時間(s)、
 L:前記撹拌羽根の先端が描く円周の長さ(m)、
 S:前記撹拌羽根の回転軸方向から投影した円筒容器の投影面積から前記撹拌羽根の先端が描く円の面積を除いた面積(m)、である。
However, in the above formula (1),
v: peripheral speed (m / s) of the bottom plate of the cylindrical container,
u: peripheral speed (m / s) at the tip of the stirring blade,
t: time (s) during which the sintered raw material is stirred by a high-speed stirring device;
L: the length of the circumference drawn by the tip of the stirring blade (m),
S: Area (m 2 ) obtained by removing the area of a circle drawn by the tip of the stirring blade from the projected area of the cylindrical container projected from the rotation axis direction of the stirring blade.
 [2]前記焼結原料は、粒径0.125mm以下である微粉鉄鉱石を10~50質量%含み、かつ前記焼結機で焼結原料を焼結した焼結鉱のAl濃度が1.6質量%以上である[1]に記載の焼結鉱の製造方法。 [2] The sintered raw material contains 10 to 50% by mass of fine iron ore having a particle size of 0.125 mm or less, and the Al 2 O 3 concentration of the sintered ore obtained by sintering the sintered raw material with the sintering machine Is 1.6 mass% or more, The manufacturing method of the sintered ore as described in [1].
 [3]前記焼結原料は、さらに、バインダーを含む[1]または[2]に記載の焼結鉱の製造方法。 [3] The method for producing a sintered ore according to [1] or [2], wherein the sintering raw material further includes a binder.
 [4]前記バインダーは、生石灰である[3]に記載の焼結鉱の製造方法。 [4] The method for producing a sintered ore according to [3], wherein the binder is quicklime.
 [5]前記高速撹拌装置で撹拌処理した後の前記焼結原料の平均粒子径は、3mm以下である[1]から[4]のいずれか1つに記載の焼結鉱の製造方法。 [5] The method for producing a sintered ore according to any one of [1] to [4], wherein an average particle diameter of the sintered raw material after stirring with the high-speed stirring device is 3 mm or less.
 [6]前記高速撹拌装置で撹拌処理する前の前記焼結原料は、7質量%以下の水分を含む[5]に記載の焼結鉱の製造方法。 [6] The method for producing a sintered ore according to [5], wherein the sintering raw material before the stirring treatment with the high-speed stirring device includes 7% by mass or less of moisture.
 微粉鉄鉱石を含む焼結原料であっても、本発明の焼結鉱の製造方法よって製造することによって、造粒前に粗大な擬似粒子を解砕できる。これにより、その後に造粒された焼結原料を焼結機のパレットに装入して装入層を形成しても、当該装入層の通気性は悪化しない。これにより、従来、通気性が悪い状態で焼結原料を焼結するために必要とされていた焼結時間は短縮されるので、焼結機における焼結鉱の生産性を向上できる。 Even if it is a sintering raw material containing fine iron ore, coarse pseudo-particles can be crushed before granulation by being produced by the method for producing sintered ore of the present invention. Thereby, even if it inserts the sintering raw material granulated after that to the pallet of a sintering machine, and forms a charging layer, the air permeability of the said charging layer does not deteriorate. Thereby, since the sintering time conventionally required for sintering a sintering raw material in a state with poor air permeability is shortened, productivity of sintered ore in a sintering machine can be improved.
ペレットフィードの有無における擬似粒子の粒度分布の差を示すグラフである。It is a graph which shows the difference in the particle size distribution of the pseudo particle in the presence or absence of pellet feed. (a)は、ペレットフィードの有無における造粒粒子の粒度分布の差を示すグラフであり、(b)は、造粒粒子中におけるペレットフィードの分布を示すグラフであり、(c)は、造粒粒子中における水分の分散状況を示すグラフである。(A) is a graph showing the difference in particle size distribution of the granulated particles with and without pellet feed, (b) is a graph showing the distribution of pellet feed in the granulated particles, and (c) It is a graph which shows the dispersion | distribution condition of the water | moisture content in a particle. (a)は、従来の造粒粒子の装入層の断面図を示し、(b)は、本発明の造粒粒子の装入層の断面図である。(A) shows sectional drawing of the charging layer of the conventional granulated particle, (b) is sectional drawing of the charging layer of the granulated particle of this invention. 高速撹拌装置10の内部斜視図である。3 is an internal perspective view of the high-speed stirring device 10. FIG. 高速撹拌装置10の平面図である。1 is a plan view of a high speed stirring device 10. 高速撹拌装置10におけるLおよびSを説明する図である。It is a figure explaining L and S in high-speed stirring apparatus 10. 粒径0.125mm以下の微粉鉄鉱石の含有量と、焼結生産率との関係を示すグラフである。It is a graph which shows the relationship between content of fine iron ore with a particle size of 0.125 mm or less, and a sintering production rate. 実験例1~4と生産率向上効果との関係を示すグラフである。6 is a graph showing the relationship between Experimental Examples 1 to 4 and the production rate improvement effect. 撹拌速度と焼結生産率向上効果との関係を示すグラフである。It is a graph which shows the relationship between a stirring speed and a sintering production rate improvement effect. 撹拌処理後の平均粒子径と、焼結生産率向上効果との関係を示すグラフである。It is a graph which shows the relationship between the average particle diameter after a stirring process, and a sintering production rate improvement effect. 撹拌処理時の水分と、撹拌処理後の平均粒子の関係を示す図である。It is a figure which shows the relationship between the water | moisture content at the time of a stirring process, and the average particle after a stirring process.
 本発明は、微粉鉄鉱石を含む焼結原料に対して、造粒する前に、高速撹拌装置を用いて撹拌処理することで、微粉鉄鉱石の凝集によって生成した粗大な擬似粒子を予め解砕するものである。まず、粗大な擬似粒子を生成する微粉鉄鉱石を含む焼結原料の特性について説明する。 The present invention preliminarily crushes coarse pseudo-particles generated by agglomeration of fine iron ore by agitation treatment using a high-speed agitator before granulating the sintered raw material containing fine iron ore. To do. First, the characteristic of the sintering raw material containing the fine iron ore which produces | generates a coarse pseudo particle is demonstrated.
 図1は、ペレットフィードの有無における擬似粒子の粒度分布の差を示すグラフである。
図1において黒プロットは、微粉鉄鉱石であるペレットフィードが配合されていない鉄鉱石の粒度分布を示している。また、白プロットは、黒プロットで粒度分布が示された鉄鉱石にペレットフィードを40質量%配合したものの粒度分布を示している。
FIG. 1 is a graph showing a difference in particle size distribution of pseudo particles with and without pellet feed.
In FIG. 1, the black plot shows the particle size distribution of iron ore not containing a pellet feed that is fine iron ore. Moreover, the white plot has shown the particle size distribution of what mix | blended 40 mass% of pellet feed with the iron ore which the particle size distribution was shown by the black plot.
 図1に示すように粒径0.125mm以下のペレットフィードを40質量%配合して混合させると、黒プロットで示されていた粒度分布は、白プロットで示した粒度分布になった。すなわち、ペレットフィードを40質量%混合させることで、細粒(0.5mm未満)のみならず、粗大(10mm超)な擬似粒子が生成した。微粉鉄鉱石は、濡れ性が同じであれば細粒ほど比表面積が大きいのでより水分を吸収するので、粉体間に多くの水分を保持する。このため、微粉鉄鉱石は、微粉鉄鉱石ではない他の鉄鉱石に対して優先的に水分を吸収する。そして、水分を吸収するとともに微粉鉄鉱石同士が凝集して、単に微粉鉄鉱石が凝集した細かい擬似粒子や、核粒子のまわりに微粉鉄鉱石が付着した粗大な擬似粒子が生成するので、粒径が不揃いになる。本実施形態において、粒径および質量割合は、JIS Z 8801に準拠した目開きの篩いを用いて篩うことで原料を各粒度に分け、各粒度の質量をそれぞれ測定し、各粒度の質量と全体の質量から、各粒度の質量割合を算出している。例えば、「粒径0.125mm以下のペレットフィードを40質量%配合する」とは、JIS Z 8801に準拠した公称目開き125μmの篩を通過したペレットフィードを、鉄鉱石全体の質量に対する割合が40質量%になるように配合することをいう。 As shown in FIG. 1, when 40% by mass of pellet feed having a particle size of 0.125 mm or less was mixed and mixed, the particle size distribution shown in the black plot became the particle size distribution shown in the white plot. That is, by mixing 40% by mass of the pellet feed, not only fine particles (less than 0.5 mm) but also coarse (greater than 10 mm) pseudo particles were generated. If the fine iron ore has the same wettability, the finer particles have a larger specific surface area and therefore absorb more moisture, so that more moisture is retained between the powders. For this reason, the fine iron ore preferentially absorbs moisture with respect to other iron ores that are not fine iron ore. And, as the fine iron ore agglomerates with each other while absorbing moisture, fine pseudo-particles simply agglomerated fine iron ores and coarse pseudo-particles with fine iron ore attached around the core particles are generated. Becomes irregular. In the present embodiment, the particle size and mass ratio are determined by dividing the raw material into each particle size by sieving using an open sieve according to JIS Z 8801, measuring the mass of each particle size, The mass ratio of each particle size is calculated from the total mass. For example, “mixing 40% by mass of a pellet feed having a particle size of 0.125 mm or less” means that a pellet feed that has passed through a sieve having a nominal aperture of 125 μm according to JIS Z 8801 has a ratio of 40 to the total mass of iron ore. It means blending so that it becomes mass%.
 次に、図1で示した粗大な擬似粒子を含む焼結原料を、ドラムミキサーを用いて造粒した造粒粒子について説明する。粒径0.125mm以下のペレットフィードを40質量%配合した粉鉱石とペレットフィードを含まない粉鉱石とにそれぞれ水分を加えてドラムミキサーを用いて造粒し、それぞれの造粒粒子の粒度分布を計測した。 Next, granulated particles obtained by granulating the sintering raw material containing coarse pseudo particles shown in FIG. 1 using a drum mixer will be described. Water is added to the powdered ore containing 40% by mass of pellet feed having a particle size of 0.125 mm or less and the powdered ore not including pellet feed, and granulated using a drum mixer, and the particle size distribution of each granulated particle is determined. Measured.
 図2(a)は、ペレットフィードの有無における造粒粒子の粒度分布の差を示すグラフである。図2(b)は、造粒粒子中におけるペレットフィードの分布を示すグラフである。図2(c)は、造粒粒子中における水分の分散状況を示すグラフである。 FIG. 2 (a) is a graph showing the difference in the particle size distribution of the granulated particles with and without pellet feed. FIG. 2B is a graph showing the distribution of pellet feed in the granulated particles. FIG.2 (c) is a graph which shows the dispersion | distribution condition of the water | moisture content in granulated particle.
 図2(a)に示すように、鉄鉱石中にペレットフィードを40質量%含む焼結原料を造粒すると、ペレットフィードを含まない焼結原料に比べて、造粒粒子中に含まれる粗粒(8mm超)の割合が高くなった。粗粒の含有割合は、焼結原料の全量に対して75質量%程度に達した。また、図2(b)に示すように、造粒粒子中におけるペレットフィードは、造粒粒子の粒度分布と同じく、粗粒に多く分布していた。すなわち、粗粒に含まれるペレットフィードの量は、投入したペレットフィード全体の量に対して75質量%程度と高く、ペレットフィードの多くが当該粗粒に偏在していることがわかった。このことから、造粒粒子中に含まれる粗粒は、ペレットフィード同士が凝集した擬似粒子によって形成されていることがわかった。 As shown in FIG. 2 (a), when a sintered raw material containing 40% by mass of pellet feed in the iron ore is granulated, the coarse particles contained in the granulated particles as compared with the sintered raw material not containing the pellet feed. The ratio of (over 8 mm) became high. The content ratio of the coarse particles reached about 75% by mass with respect to the total amount of the sintering raw material. In addition, as shown in FIG. 2 (b), the pellet feed in the granulated particles was distributed in a large amount in the coarse particles in the same manner as the particle size distribution of the granulated particles. That is, it was found that the amount of pellet feed contained in the coarse particles was as high as about 75% by mass with respect to the total amount of the pellet feed that was input, and most of the pellet feed was unevenly distributed in the coarse particles. From this, it was found that the coarse particles contained in the granulated particles are formed by pseudo particles in which pellet feeds are aggregated.
 さらに、図2(c)に示すように、造粒粒子中に含まれる粗粒は、水分を多く含むことがわかった。ペレットフィードは、他の鉄鉱石に対して水分を優先的に吸収し、造粒粒子中で粗粒を形成する。このように、多くの水分を含む粗粒は、バインダー等で結着されにくく当該粗粒の結合強度は弱くなる。 Furthermore, as shown in FIG. 2 (c), it was found that the coarse particles contained in the granulated particles contained a lot of moisture. The pellet feed preferentially absorbs moisture with respect to other iron ores and forms coarse particles in the granulated particles. Thus, coarse particles containing a large amount of moisture are not easily bound by a binder or the like, and the bond strength of the coarse particles is weakened.
 このように微粉鉄鉱石を含む焼結原料を造粒すると、粒径が不揃いになるとともに結合強度の弱い粗粒が造粒される。このような粗粒を含む造粒粒子を焼結機のパレットに装入すると、粗粒の間に微粒が入りこんで緻密な堆積構造となり、空隙率が低く、且つかさ密度の高い装入層が形成される。しかも、このような粗粒を焼結機のパレットに一定の層厚で堆積させると、当該粗粒に荷重(圧縮力)が加わることで容易に壊れて粉化し、さらに装入層の空隙率を低下させる。この結果、図3(a)に示すように、装入層の通気性が悪化し、この結果、焼結原料の焼結時間が延長して焼結鉱の生産性が低下する。なお、図3において、矢印は装入層における通気路を示す。 When the sintering raw material containing fine iron ore is granulated in this way, the grain size becomes uneven and coarse grains with weak bond strength are granulated. When granulated particles containing such coarse particles are charged into a pallet of a sintering machine, fine particles enter between the coarse particles to form a dense deposit structure, and a charged layer having a low porosity and a high bulk density is formed. It is formed. Moreover, when such coarse particles are deposited on a pallet of a sintering machine with a certain layer thickness, the coarse particles are easily broken and powdered by applying a load (compression force), and the porosity of the charge layer is further increased. Reduce. As a result, as shown in FIG. 3A, the air permeability of the charging layer is deteriorated, and as a result, the sintering time of the sintered raw material is extended and the productivity of the sintered ore is lowered. In FIG. 3, the arrows indicate the air passages in the charging layer.
 このような微粉鉄鉱石を含む焼結原料であっても、造粒前に、高速撹拌装置を用いて、特定の条件で撹拌処理することによって粗大な擬似粒子を十分に解砕でき、これにより、その後の造粒工程において粒径が不揃いであって結合強度の弱い粗粒が造粒されることを抑制できることを見出して本発明を完成させた。そして、このように造粒された造粒粒子を焼結機のパレットに装入すると、図3(b)に示すように装入層の通気性は良化し、この結果、焼結鉱の生産性を向上させることができる。 Even if it is a sintering raw material containing such fine iron ore, coarse granulated particles can be sufficiently crushed by stirring under specific conditions using a high-speed stirrer before granulation. The present invention has been completed by finding that it is possible to suppress the formation of coarse particles having uneven particle sizes and weak bond strength in the subsequent granulation step. Then, when the granulated particles thus granulated are charged into the pallet of the sintering machine, the permeability of the charging layer is improved as shown in FIG. Can be improved.
 次に、粗大な擬似粒子を解砕する高速撹拌装置10の構成について説明する。図4は、高速撹拌装置10の内部斜視図である。また、図5は、高速撹拌装置10の平面図である。高速撹拌装置10は、焼結原料40を撹拌処理する装置である。高速撹拌装置10は、焼結原料40が装入される円筒容器20と、撹拌羽根30と、堰36とを有する。なお、堰36は、焼結原料をかき取るために設けることが好ましいが、なくてもよい。円筒容器20は、円筒形状の円筒22と、円形状の底板24とを備える。また、円筒容器20には焼結原料40の供給および排出のための開口(不図示)が設けられている。底板24は、円筒22と一体的に設けられており、底板24は、駆動力を受けて円筒22とともに回転する。なお、円筒容器20は、円筒容器20の上側を封止する天板を備えていてもよい。 Next, the configuration of the high-speed stirring device 10 for crushing coarse pseudo particles will be described. FIG. 4 is an internal perspective view of the high-speed stirring device 10. FIG. 5 is a plan view of the high-speed stirring device 10. The high-speed stirring device 10 is a device that stirs the sintered raw material 40. The high-speed stirring device 10 includes a cylindrical container 20 in which the sintering raw material 40 is charged, a stirring blade 30, and a weir 36. The weir 36 is preferably provided for scraping the sintered raw material, but may not be provided. The cylindrical container 20 includes a cylindrical cylinder 22 and a circular bottom plate 24. The cylindrical container 20 is provided with openings (not shown) for supplying and discharging the sintering raw material 40. The bottom plate 24 is provided integrally with the cylinder 22, and the bottom plate 24 receives the driving force and rotates together with the cylinder 22. The cylindrical container 20 may include a top plate that seals the upper side of the cylindrical container 20.
 また、本実施形態において、焼結原料40は、微粉鉄鉱石と、石灰石と、粉コークス等の固体燃料とを含み、更に、珪石、蛇紋岩等の副原料粉、ダスト、スケール、返鉱等の雑原料粉、およびバインダーを含んでもよい。なお、焼結原料40における微粉鉄鉱石は、粒径0.125mm以下の粉鉄鉱石である。 In the present embodiment, the sintering raw material 40 includes fine iron ore, limestone, and solid fuel such as powder coke, and further, auxiliary raw material powder such as quartzite and serpentine, dust, scale, return mineral, and the like. Other raw material powders, and a binder may be included. In addition, the fine iron ore in the sintering raw material 40 is a fine iron ore having a particle size of 0.125 mm or less.
 撹拌羽根30は、回転軸32と、複数の撹拌板34とを備える。回転軸32は、円筒容器20の中心から偏心した位置であって、撹拌羽根30は、円筒容器20の上側に設けられた不図示の駆動部から駆動力を受けて回転する。そのため、撹拌羽根30と底板24とは、それぞれ独立して回転できる。なお、回転軸32は、円筒容器20の中心に設けられていてもよい。 The stirring blade 30 includes a rotating shaft 32 and a plurality of stirring plates 34. The rotating shaft 32 is a position eccentric from the center of the cylindrical container 20, and the stirring blade 30 rotates by receiving a driving force from a driving unit (not shown) provided on the upper side of the cylindrical container 20. Therefore, the stirring blade 30 and the bottom plate 24 can rotate independently of each other. The rotation shaft 32 may be provided at the center of the cylindrical container 20.
 撹拌板34は、回転軸32から放射状に外側に突出して設けられている。撹拌板34は、回転軸32における上下方向の2箇所において、60°間隔で6方向に設けられている。したがって、撹拌羽根30には合計で12本の撹拌板34が設けられている。なお、撹拌板34の枚数は、12枚に限られず、撹拌板34の形状、撹拌羽根30の回転数または底板24の回転数等に応じて任意に設定してよい。例えば、撹拌板34は、撹拌軸32の上下方向の4~8箇所に8~16枚設けられていてもよい。また、撹拌板34の角度および高さの間隔も任意に設定してよい。 The stirring plate 34 is provided to project radially outward from the rotary shaft 32. The stirring plate 34 is provided in six directions at 60 ° intervals at two locations in the vertical direction of the rotating shaft 32. Therefore, the stirring blade 30 is provided with a total of 12 stirring plates 34. The number of stirring plates 34 is not limited to 12, and may be arbitrarily set according to the shape of the stirring plate 34, the number of rotations of the stirring blade 30, the number of rotations of the bottom plate 24, or the like. For example, 8 to 16 stirring plates 34 may be provided at 4 to 8 positions in the vertical direction of the stirring shaft 32. Further, the angle and height interval of the stirring plate 34 may be set arbitrarily.
 円筒容器20に焼結原料40が装入された状態で、底板24は、例えば、右周りに回転し、撹拌羽根30は、左周りに回転する。底板24が右周りに回転することで、円筒容器20内に装入された焼結原料40は、底板24の回転方向に沿って右周りに回転する。右周りに回転された焼結原料40は、左周りに回転した撹拌羽根30に衝突することによって撹拌される。なお、底板24および撹拌羽根30の回転方向は、右周りであっても左回りであってもよい。また、底板24および撹拌羽根30の回転方向は、互いに異なっていてもよく、同じであってもよい。 In the state where the sintering raw material 40 is charged in the cylindrical container 20, the bottom plate 24 rotates, for example, clockwise, and the stirring blade 30 rotates counterclockwise. As the bottom plate 24 rotates clockwise, the sintering raw material 40 charged in the cylindrical container 20 rotates clockwise along the rotation direction of the bottom plate 24. The sintering raw material 40 rotated clockwise is stirred by colliding with the stirring blade 30 rotated counterclockwise. The rotation direction of the bottom plate 24 and the stirring blade 30 may be clockwise or counterclockwise. Further, the rotation directions of the bottom plate 24 and the stirring blade 30 may be different from each other or the same.
 また、図4および図5では、高速撹拌装置10は、水平に設置した状態で焼結原料40を撹拌処理する例を示したが、高速撹拌装置10を傾けて使用してもよい。また、撹拌羽根30は、鉛直方向に軸支させたままにし、円筒容器20のみを傾けて使用してもよい。 4 and 5 show an example in which the high-speed stirring device 10 stirs the sintered raw material 40 in a horizontally installed state, but the high-speed stirring device 10 may be tilted and used. Further, the stirring blade 30 may be supported while being supported in the vertical direction, and only the cylindrical container 20 may be tilted.
 上述したように、焼結原料40が微粉鉄鉱石を含む場合に、当該微粉鉄鉱石が凝集して粗大な擬似粒子を生成する。上述した高速撹拌装置10を用いて、当該焼結原料40を予め撹拌処理することで粗大な擬似粒子を解砕して、微粉鉄鉱石を焼結原料40中に分散できる。 As described above, when the sintering raw material 40 contains fine iron ore, the fine iron ore aggregates to generate coarse pseudo particles. By using the high-speed stirrer 10 described above, the sintered raw material 40 is preliminarily stirred to break up coarse pseudo particles, and fine iron ore can be dispersed in the sintered raw material 40.
 続いて、高速撹拌装置10の撹拌条件について説明する。焼結機で焼結鉱を製造する前に、焼結原料40は、ドラムミキサーを用いて、予め定められた時間処理されて造粒される。ドラムミキサーで造粒される前に、高速撹拌装置10を用いて、焼結原料40中に含まれる粗大な擬似粒子を解砕する。これは、水分を保持しやすく、付着しやすい微粉鉄鉱石をドラムミキサーで造粒する前に解砕し、粗大な擬似粒子を減少させることで、ドラムミキサー内において粗粒が造粒されることを抑制するためである。なお、ドラムミキサーは、造粒装置の一例であり、一般的な造粒機、特に転動造粒機を用いてもよい。 Subsequently, the stirring conditions of the high-speed stirring device 10 will be described. Before producing the sintered ore with the sintering machine, the sintering raw material 40 is processed and granulated for a predetermined time using a drum mixer. Prior to granulation by the drum mixer, coarse pseudo particles contained in the sintering raw material 40 are crushed using the high-speed stirring device 10. This is because coarse particles are granulated in the drum mixer by crushing fine iron ore that is easy to retain moisture and adhere, before granulating with a drum mixer and reducing coarse pseudo particles. It is for suppressing. The drum mixer is an example of a granulating apparatus, and a general granulator, particularly a rolling granulator may be used.
 高速撹拌装置10内における焼結原料40の粒子運動を解析したところ、円筒容器20内の焼結原料40は、撹拌板34の先端部に衝突し、撹拌羽根30における撹拌板34の先端が描く円の内側には入っても羽根の長さの半分までしか入らないことがわかった。このことから、撹拌板34の先端が描く円周上で焼結原料40が撹拌されると考えられるので、撹拌板34の先端が描く円周の長さLが長くなると、円筒容器20の焼結原料40をより撹拌できるので高速撹拌装置10の撹拌効率は高くなる。以後、撹拌板34の先端が描く円周の長さLを「有効羽根長さ」と称する。 When the particle motion of the sintering raw material 40 in the high-speed stirring apparatus 10 is analyzed, the sintering raw material 40 in the cylindrical container 20 collides with the tip of the stirring plate 34 and the tip of the stirring plate 34 in the stirring blade 30 is drawn. It was found that even if it entered the inside of the circle, it could only enter up to half the length of the blade. From this, it is considered that the sintering raw material 40 is stirred on the circumference drawn by the tip of the stirring plate 34. Therefore, when the circumferential length L drawn by the tip of the stirring plate 34 is increased, the cylindrical container 20 is baked. Since the kneading | mixing raw material 40 can be stirred more, the stirring efficiency of the high-speed stirring apparatus 10 becomes high. Hereinafter, the length L of the circumference drawn by the tip of the stirring plate 34 is referred to as “effective blade length”.
 また、底板24に対して撹拌羽根30の撹拌軸32が垂直に設けられた場合において、底板24の面積から撹拌羽根30の先端が描く円の面積を除いた面積をS(m)とすると、焼結原料40は、Sの領域に存在する。Sの領域に存在する焼結原料40は、撹拌板34の先端が描く円周上に到達しない限り撹拌板34に接触しないので、Sが大きくなると逆に高速撹拌装置10の撹拌効率は低くなる。以後、底板24の面積から撹拌羽根30の先端が描く円の面積を除いた面積Sを「有効面積」と称する。なお、底板24に対して撹拌軸32が傾斜されて設けられた場合においては、回転軸32の方向から投影した底板24の、撹拌軸32に垂直となる平面に投影した面積と、撹拌羽根30の先端が描く円の面積との差で算出される面積を有効面積としてよい。 Further, in the case where the stirring shaft 32 of the stirring blade 30 is provided perpendicular to the bottom plate 24, the area excluding the area of the circle drawn by the tip of the stirring blade 30 from the area of the bottom plate 24 is S (m 2 ). The sintering raw material 40 exists in the S region. Since the sintering raw material 40 existing in the region S does not come into contact with the stirring plate 34 unless it reaches the circumference drawn by the tip of the stirring plate 34, the stirring efficiency of the high-speed stirring device 10 decreases as S increases. . Hereinafter, the area S obtained by subtracting the area of the circle drawn by the tip of the stirring blade 30 from the area of the bottom plate 24 is referred to as “effective area”. In the case where the stirring shaft 32 is provided to be inclined with respect to the bottom plate 24, the area projected on the plane perpendicular to the stirring shaft 32 of the bottom plate 24 projected from the direction of the rotation shaft 32 and the stirring blade 30. The area calculated by the difference from the area of the circle drawn by the tip of the can be the effective area.
 上述したように、有効羽根長さLが長くなると撹拌効率は高くなり、有効面積Sが大きくなると、撹拌効率は低くなる。このことから、LをSで除した値である「L/S」を高速撹拌装置10の構造上の撹拌効率を示す指標とした。 As described above, when the effective blade length L is increased, the stirring efficiency is increased, and when the effective area S is increased, the stirring efficiency is decreased. Therefore, “L / S”, which is a value obtained by dividing L by S, was used as an index indicating the stirring efficiency on the structure of the high-speed stirring device 10.
 図6は、高速撹拌装置10における有効羽根長さLおよび有効面積Sを説明する図である。Lは、図6における撹拌羽根30の撹拌板34の先端が描く円50の円周の長さである。Sは、図6において斜線で示した領域52である。これは、撹拌羽根30の回転軸方向からの容器の投影面積から撹拌羽根30の運動により占有される面積を引いた面積である。 FIG. 6 is a diagram for explaining the effective blade length L and the effective area S in the high-speed stirring device 10. L is the circumference of a circle 50 drawn by the tip of the stirring plate 34 of the stirring blade 30 in FIG. S is a region 52 indicated by hatching in FIG. This is an area obtained by subtracting the area occupied by the movement of the stirring blade 30 from the projected area of the container from the rotation axis direction of the stirring blade 30.
 なお、撹拌羽根30が複数ある場合には、有効羽根長さLは、それぞれ複数の撹拌羽根30における撹拌板34の先端が描く円周の長さの合計になる。また、撹拌羽根30が複数ある場合には、有効面積Sは、撹拌羽根30の回転軸32方向からの円筒容器20の投影面積から複数の撹拌羽根30における撹拌板34の先端が描く円の合計面積を除いた面積になる。 When there are a plurality of stirring blades 30, the effective blade length L is the total of the circumferences drawn by the tips of the stirring plates 34 in the plurality of stirring blades 30. When there are a plurality of stirring blades 30, the effective area S is the sum of circles drawn by the tips of the stirring plates 34 in the plurality of stirring blades 30 from the projected area of the cylindrical container 20 from the direction of the rotation axis 32 of the stirring blade 30. It becomes the area excluding the area.
 また、高速撹拌装置10において、底板24の回転による撹拌の効率は、底板24の回転で撹拌羽根30へ輸送する焼結原料40の輸送速度に関連する。焼結原料40は、底板24の回転に伴って移動するので、撹拌羽根30へ焼結原料40を輸送する輸送速度は、底板24の周速v(m/s)に関連する。そのため、底板24の周速v(m/s)を高速撹拌装置10における撹拌の効率を示す指標の一つとした。なお、底板24の周速は、底板24の円周の長さ(m)と底板24の回転数(rpm)との積で算出できる。 In the high-speed stirring apparatus 10, the efficiency of stirring by the rotation of the bottom plate 24 is related to the transport speed of the sintering raw material 40 that is transported to the stirring blade 30 by the rotation of the bottom plate 24. Since the sintering raw material 40 moves with the rotation of the bottom plate 24, the transport speed for transporting the sintering raw material 40 to the stirring blade 30 is related to the peripheral speed v (m / s) of the bottom plate 24. Therefore, the peripheral speed v (m / s) of the bottom plate 24 is set as one index indicating the efficiency of stirring in the high-speed stirring device 10. The peripheral speed of the bottom plate 24 can be calculated by the product of the circumferential length (m) of the bottom plate 24 and the rotational speed (rpm) of the bottom plate 24.
 さらに、高速撹拌装置10において、撹拌羽根30の回転による撹拌の効率は、焼結原料40が高速撹拌装置10内で撹拌される時間で移動する撹拌板34の先端の移動量に関連する。そのため、焼結原料40が高速撹拌装置10で撹拌される時間t(s)と、撹拌板34の先端の速度である周速u(m/s)との積である撹拌板34の先端の移動距離「u×t」(m)を、高速撹拌装置10における撹拌の効率を示す指標の一つとした。 Furthermore, in the high-speed stirring device 10, the efficiency of stirring by the rotation of the stirring blade 30 is related to the amount of movement of the tip of the stirring plate 34 that moves in the time during which the sintering raw material 40 is stirred in the high-speed stirring device 10. Therefore, the tip of the stirring plate 34 is the product of the time t (s) during which the sintered raw material 40 is stirred by the high-speed stirring device 10 and the peripheral speed u (m / s) that is the speed of the tip of the stirring plate 34. The moving distance “u × t” (m) was set as one of the indexes indicating the efficiency of stirring in the high-speed stirring device 10.
 高速撹拌装置10において、上述した撹拌の効率を示す指標である「L/S」、「v」および「u×t」の積である下記数式(2)で、高速撹拌装置の撹拌の効率を評価できることを見出した。なお、下記数式(2)で算出される値を、撹拌速度(m/sec)とする。なお、高速撹拌装置10には、堰36が設けられているが、堰36の有無で、円筒容器20内における焼結原料40の動きは大きく変化しないので、堰36の有無で、高速撹拌装置10の撹拌の効率を評価する下記数式(2)は変わらない。 In the high-speed stirring device 10, the following formula (2), which is a product of “L / S”, “v”, and “u × t”, which is an index indicating the above-described stirring efficiency, shows the stirring efficiency of the high-speed stirring device It was found that it can be evaluated. In addition, let the value calculated by following Numerical formula (2) be stirring speed (m / sec). The high-speed stirring device 10 is provided with the weir 36. However, since the movement of the sintering raw material 40 in the cylindrical container 20 does not change greatly with or without the weir 36, the high-speed stirring device with or without the weir 36 is used. The following numerical formula (2) for evaluating the efficiency of stirring of 10 does not change.
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000002
 
 そして、上記数式(2)で算出される撹拌速度が下記数式(1)を満足する場合に、焼結機において高い焼結鉱の生産率向上効果が得られることがわかった。すなわち、後述する図9に示されているように、撹拌速度が500m/s以下であると、撹拌羽根30による撹拌の効果がなく、焼結原料40の含まれる粗大な擬似粒子を解砕できないことが原因であると考えられる。 And when the stirring speed computed by the said Numerical formula (2) satisfies following Numerical formula (1), it turned out that the production rate improvement effect of a high sintered ore is acquired in a sintering machine. That is, as shown in FIG. 9 to be described later, when the stirring speed is 500 m / s or less, there is no effect of stirring by the stirring blade 30 and coarse pseudo particles contained in the sintered raw material 40 cannot be crushed. This is considered to be the cause.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 また、撹拌速度は、3000m/s以下にすることが好ましい。撹拌速度を3000m/sより高速にしても電力を使用するだけで、焼結鉱の生産率向上効果がほとんどないからである。これは、撹拌速度を3000m/sにすることで、焼結原料40に含まれる粗大な擬似粒子のほとんどが解砕されたためであると考えられる。 The stirring speed is preferably 3000 m / s or less. This is because even if the stirring speed is higher than 3000 m / s, only the electric power is used and there is almost no effect of improving the production rate of the sintered ore. This is considered to be because most of the coarse pseudo particles contained in the sintered raw material 40 were crushed by setting the stirring speed to 3000 m / s.
 なお、高速撹拌装置10では、複数の撹拌羽根30を有する場合も想定され、その際には、撹拌羽根30の周速vは、複数の撹拌羽根30の周速vの和を撹拌羽根30の本数で割った単純平均としてよい。また、有効面積Sは、底板24の面積から、全撹拌羽根30の運動により占有される面積の和を引いた値としてよい。さらに、有効撹拌羽根長さLは、各撹拌羽根30の有効撹拌羽根長さLの和としてよく、これらの値が500m/s以上となるようにv、u、t、L、Sを設定することにより、高い焼結鉱の生産率向上効果を得ることができる。 In addition, in the high-speed stirring apparatus 10, the case where it has a plurality of stirring blades 30 is assumed, and in this case, the peripheral speed v of the stirring blades 30 is the sum of the peripheral speeds v of the plurality of stirring blades 30. A simple average divided by the number may be used. The effective area S may be a value obtained by subtracting the sum of the areas occupied by the movement of all the stirring blades 30 from the area of the bottom plate 24. Further, the effective stirring blade length L may be the sum of the effective stirring blade lengths L of the respective stirring blades 30, and v, u, t, L, and S are set so that these values are 500 m / s or more. As a result, a high effect of improving the production rate of sintered ore can be obtained.
 次に、焼結原料における微粉鉄鉱石の含有量の影響について説明する。微粉鉄鉱石を粒径0.125mm以下である粒子と定義し、粒径が0.125mm以下であるヘマタイト鉱石からなる微粉鉄鉱石を加えた焼結原料を用いて、当該焼結原料に含まれる上述した微粉鉄鉱石の含有割合を変えたサンプルを作成した。ここで、焼結原料は、鉄鉱石67質量%、返鉱15質量%、炭材5質量%、副原料である石灰石11質量%、生石灰を2質量%含んでいる。なお、それぞれのサンプルにおいて微粉鉄鉱石を添加し、微粉鉄鉱石含有量の変動分は鉄鉱石の粒径0.125mm超のものと振替えた。そして、当該サンプルに対して7.5質量%となる水分を添加してドラムミキサーで造粒後、鉄製試験鍋を用いて造粒粒子を焼成してシンターケーキ(焼結物)を製造した。製造したシンターケーキを、2mの高さから1回落とし、粒径が10mm以上のものを成品とした。それぞれのサンプルで製品質量(t)を測定し、当該成品質量(t)を焼結時間(h)および試験鍋の断面積(m)で除して、焼結生産率(t/(m×h))を算出した。なお、微粉鉄鉱石の含有量は、0.125mm以下の鉄鉱石の割合を事前に測定し、配合量から計算した値である。また、サンプルの水分は、焼結原料の量に対して内掛けでの値であり、乾燥基準の原料と添加水分から計算した値である。 Next, the influence of the content of fine iron ore in the sintered raw material will be described. Fine iron ore is defined as particles having a particle size of 0.125 mm or less, and a sintered raw material to which fine iron ore made of hematite ore having a particle size of 0.125 mm or less is added, is included in the sintering raw material. The sample which changed the content rate of the fine iron ore mentioned above was created. Here, the sintering raw material contains 67% by mass of iron ore, 15% by mass of return ore, 5% by mass of carbonaceous material, 11% by mass of limestone as an auxiliary material, and 2% by mass of quick lime. In each sample, fine iron ore was added, and the change in the fine iron ore content was changed to one with a particle size of iron ore exceeding 0.125 mm. And the water | moisture content which becomes 7.5 mass% with respect to the said sample was added, and it granulated with the drum mixer, Then, the granulated particle was baked using the iron test pan, and the sinter cake (sintered material) was manufactured. The produced sinter cake was dropped once from a height of 2 m, and a product having a particle size of 10 mm or more was obtained. The product mass (t) is measured for each sample, the product quality quantity (t) is divided by the sintering time (h) and the cross-sectional area (m 2 ) of the test pan, and the sintering production rate (t / (m 2 × h)) was calculated. In addition, content of a fine iron ore is the value which calculated the ratio of the iron ore of 0.125 mm or less in advance, and calculated from the compounding quantity. Further, the moisture content of the sample is an inner value relative to the amount of the sintering raw material, and is a value calculated from the dry basis raw material and added moisture.
 図7は、粒径0.125mm以下の微粉鉄鉱石の含有量と、焼結生産率との関係を示すグラフである。グラフからわかるように、焼結原料に含まれる粒径0.125mm以下の微粉鉄鉱石の割合が10質量%を超えた場合に、焼結生産率が急激に減少している。このことから、微粉鉄鉱石の割合が10質量%を超えると、結合強度の弱い粗大な擬似粒子が形成され、その結果、焼結生産率が急激に減少したと考えられる。また、微粉鉄鉱石の割合が50質量%を超えた場合、ドラムミキサーでの造粒が困難になる。このため、焼結原料における粗大な擬似粒子が形成される条件は、0.125mm以下の微粉鉄鉱石を10~50質量%の範囲内で含む場合であるといえる。なお、粒径0.125mm以下の焼結原料は、水分を添加した粉体における粒子間の接着性を表す付着力が増加し、焼結原料の造粒性が異なる挙動を示したので、微粉鉄鉱石の粒径の閾値を0.125mmとした。 FIG. 7 is a graph showing the relationship between the content of fine iron ore having a particle size of 0.125 mm or less and the sintering production rate. As can be seen from the graph, when the proportion of fine iron ore having a particle size of 0.125 mm or less contained in the sintering raw material exceeds 10% by mass, the sintering production rate is rapidly decreased. From this, it is considered that when the proportion of fine iron ore exceeds 10% by mass, coarse pseudo particles having low bonding strength are formed, and as a result, the sintering production rate is rapidly reduced. Moreover, when the ratio of fine iron ore exceeds 50 mass%, granulation with a drum mixer becomes difficult. For this reason, it can be said that the condition for forming coarse pseudo-particles in the sintered raw material is when the fine iron ore of 0.125 mm or less is contained in the range of 10 to 50% by mass. In addition, the sintering raw material having a particle size of 0.125 mm or less increased the adhesion force representing the adhesion between particles in the powder to which moisture was added, and exhibited different behavior in the granulation property of the sintering raw material. The particle size threshold of iron ore was 0.125 mm.
 次に、焼結原料におけるAlの濃度の影響について説明する。焼結原料40のAl濃度が高い場合、焼結鉱製造中の焼結鉱の強度向上の要因となる融液の粘度が高くなるという問題がある。また、Alを多量に含む鉱石は、凝集しやすい粘土系鉱石に分類される。そのため、Al割合が高い焼結原料を用いた際には、Alを多量に含む鉱石が凝集することによって、焼結時に生成する融液の粘度が高められ、焼結鉱製造中に融液が装入層に分散されず、焼結鉱の強度は低下する。 Next, the influence of the concentration of Al 2 O 3 in the sintering raw material will be described. When the Al 2 O 3 concentration of the sintered raw material 40 is high, there is a problem that the viscosity of the melt that becomes a factor for improving the strength of the sintered ore during the production of the sintered ore becomes high. In addition, ores containing a large amount of Al 2 O 3 are classified as clay-type ores that easily aggregate. Therefore, when a sintering raw material having a high Al 2 O 3 ratio is used, the ore containing a large amount of Al 2 O 3 agglomerates, so that the viscosity of the melt generated during sintering is increased, and the sintered ore is increased. During the production, the melt is not dispersed in the charging layer, and the strength of the sintered ore is reduced.
 そのため、焼結原料40のAl濃度が高い場合に、焼結原料40を、高速撹拌装置10を用いて撹拌処理して、Alを多く含む鉄鉱石を分散させることが好ましい。これにより、焼結中におけるAlによる融液の粘性増加は抑制され、焼結鉱製造中に生成された融液を焼結原料40に分散させることができるので、焼結鉱の強度は向上する。なお、詳細は後述するが、高速撹拌装置10の撹拌処理による焼結鉱の強度向上効果は、焼結機によって焼結される焼結鉱のAlの濃度が1.6質量%以上の場合に大きくなる。 Therefore, when the sintering material 40 has a high Al 2 O 3 concentration, it is preferable to disperse the iron ore containing a large amount of Al 2 O 3 by stirring the sintering material 40 using the high-speed stirring device 10. . Thereby, the increase in the viscosity of the melt due to Al 2 O 3 during the sintering is suppressed, and the melt generated during the production of the sinter can be dispersed in the sintering raw material 40, so that the strength of the sinter is increased. Will improve. Although the details will be described later, high-speed advantage of improved strength of the sintered ore by stirring treatment of stirrer 10, the concentration of Al 2 O 3 sintered ore is sintered by a sintering machine to 1.6 mass% In the case of.
 また、高速撹拌装置10を用いて撹拌処理する場合に、焼結原料40に含まれるバインダー、炭材および石灰石の少なくともいずれか1つを含めて撹拌処理してもよい。石灰石は、水分の添加により凝集する。石灰石が凝集すると融液中に溶けにくくなり、総融液量が減少する。これにより、焼結鉱の強度は低下する。このため、焼結原料40とともに石灰石を、高速撹拌装置10を用いて撹拌処理することで、水分を含む焼結原料40において凝集しやすい石灰石を分散できる。石灰石を分散させることで、石灰石は融液中に溶けやすくなり、総融液量が増加する。総融液量を増加させることで、焼結鉱の強度は向上するので、その結果、焼結鉱の歩留が高まり、焼結鉱の生産性が向上する。このように、高速撹拌装置10で撹拌処理することで、撹拌処理しない場合よりも焼結鉱の生産性を向上させることができる。 Further, when the stirring process is performed using the high-speed stirring device 10, the stirring process may be performed including at least one of the binder, the carbonaceous material, and the limestone contained in the sintering raw material 40. Limestone aggregates with the addition of moisture. When limestone aggregates, it becomes difficult to dissolve in the melt, and the total amount of melt decreases. Thereby, the intensity | strength of a sintered ore falls. For this reason, the limestone which agglomerates in the sintering raw material 40 containing a water | moisture content can be disperse | distributed by stirring the limestone with the sintering raw material 40 using the high-speed stirring apparatus 10. FIG. By dispersing the limestone, the limestone is easily dissolved in the melt and the total melt amount is increased. By increasing the total melt amount, the strength of the sintered ore is improved. As a result, the yield of the sintered ore is increased and the productivity of the sintered ore is improved. Thus, by performing the stirring process with the high-speed stirring device 10, the productivity of the sintered ore can be improved as compared with the case where the stirring process is not performed.
 また、本来、ドラムミキサーで造粒する前に添加されるバインダーを、撹拌処理を行なう前に焼結原料40に添加し、高速撹拌装置10を用いて撹拌処理することで、焼結原料中で凝集しやすいバインダーを焼結原料40中に分散できる。ドラムミキサーは、バインダーを硬化させて粒子を造粒するので、バインダーを分散させることができれば、造粒される粒子の結合強度のばらつきを抑制できる。これにより、結合強度の弱い粒子がドラムミキサーによって造粒されることを抑制できる。 In addition, the binder that is originally added before granulation by the drum mixer is added to the sintering raw material 40 before the stirring treatment, and the stirring treatment is performed using the high-speed stirring device 10, so that A binder that easily aggregates can be dispersed in the sintering material 40. Since the drum mixer hardens the binder and granulates the particles, if the binder can be dispersed, it is possible to suppress variations in the bonding strength of the granulated particles. Thereby, it can suppress that the particle | grains with weak bond strength are granulated by a drum mixer.
 結合強度の弱い造粒粒子は、焼結機のパレットへ造粒粒子を供給する際の衝撃によって破壊され、当該破壊により微粉が生じる。破壊により生じた微粉により、装入層の通気性が阻害され、焼結鉱の生産性が低下する。焼結原料40とともにバインダーを、高速撹拌装置10を用いて撹拌処理して、バインダーを焼結原料40中に分散させることで、結合強度の弱い粒子が造粒されることを抑制できるので、高速撹拌装置10で撹拌処理しない場合よりも焼結鉱の生産性を向上させることができる。 The granulated particles with weak bond strength are destroyed by impact when supplying the granulated particles to the pallet of the sintering machine, and fine powder is generated by the destruction. The fine powder generated by the destruction hinders the air permeability of the charging layer and decreases the productivity of the sintered ore. Since the binder is stirred together with the sintering raw material 40 using the high-speed agitator 10 and the binder is dispersed in the sintering raw material 40, it is possible to suppress granulation of particles having low bonding strength. The productivity of the sintered ore can be improved as compared with the case where the stirring device 10 does not perform the stirring treatment.
 また、炭材を、高速撹拌装置10を用いて撹拌処理することで、炭材を焼結原料中に分散できる。炭材が焼結原料中に分散できず不均一に含まれる状態で焼結原料を焼結するとムラ焼けが発生する。ムラ焼けは、焼結が不十分であり焼結鉱の強度を低下させる原因になる。このため、焼結原料40とともに炭材を、高速撹拌装置10を用いて撹拌処理して炭材を分散させることで、上記ムラ焼けの発生を抑制できるので、高速撹拌装置10で撹拌処理しない場合よりも焼結鉱の生産性を向上させることができる。 Further, the carbonaceous material can be dispersed in the sintered raw material by stirring the carbonaceous material using the high-speed stirring device 10. If the sintered material is sintered in a state where the carbon material cannot be dispersed in the sintered material and is contained non-uniformly, uneven burning occurs. Uneven burning causes insufficient sintering and reduces the strength of the sintered ore. For this reason, since the above-mentioned uneven burning can be suppressed by stirring the carbonaceous material together with the sintering raw material 40 by using the high-speed stirring device 10 to disperse the carbonaceous material, the high-speed stirring device 10 does not perform the stirring treatment. As a result, the productivity of sintered ore can be improved.
 次に、Alの含有量と、石灰石の添加時期について説明する。Alの含有量および石灰添加時期を変えたサンプルを作成して、それぞれのサンプルを用いて、焼結鉱の生産率向上効果を確認する実験を行なった。表1は、各実験例に対応する条件を示す。なお、石灰石添加時期が「撹拌前」とは、高速撹拌装置10を用いて撹拌処理する前に、焼結原料に石灰石を含めることを意味する。また、石灰石添加時期が「撹拌後」とは、高速撹拌装置10を用いて撹拌処理した後に、焼結原料に石灰石含めることを意味する。 Next, the content of Al 2 O 3 and the timing of adding limestone will be described. Create a sample content and for changing the lime addition timing of al 2 O 3, using each of the samples, an experiment was conducted to confirm the production rate enhancing effect of the sinter. Table 1 shows the conditions corresponding to each experimental example. The limestone addition time “before stirring” means that limestone is included in the sintered raw material before stirring with the high-speed stirring device 10. The limestone addition time “after stirring” means that the limestone is included in the sintered raw material after stirring using the high-speed stirring device 10.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 これらのサンプルを、撹拌羽根30の直径が0.35m、円筒容器20の直径が0.75mである高速撹拌装置10を用いて、撹拌羽根30の回転数を500rpm、底板24の回転数を28rpmとして撹拌処理した。また、各サンプルにおける焼結原料40は、粒径0.125mm以下の微粉鉄鉱石を15質量%含むように調節した。ここで、焼結原料は、鉄鉱石67質量%、返鉱15質量%、炭材5質量%、副原料である石灰石11質量%、生石灰を2質量%含んでいる。また、高速撹拌装置10による撹拌時の水分は5.5質量%とした。また、ドラムミキサーを用いて水分含有量が7.5質量%になるように水を加えて300秒間、造粒を行なった。そして、造粒した造粒粒子を、鉄製試験鍋を用いて焼成してシンターケーキを製造し、焼結生産率を算出した。また、撹拌処理のみ行なわず、他の条件を同じにして造粒した造粒粒子についても同様の鉄製試験鍋を用いて焼成してシンターケーキを製造し、焼結生産率を算出した。 Using these samples, the high speed stirring device 10 in which the diameter of the stirring blade 30 is 0.35 m and the diameter of the cylindrical container 20 is 0.75 m, the rotational speed of the stirring blade 30 is 500 rpm, and the rotational speed of the bottom plate 24 is 28 rpm. And stirred. Moreover, the sintering raw material 40 in each sample was adjusted to include 15% by mass of fine iron ore having a particle size of 0.125 mm or less. Here, the sintering raw material contains 67% by mass of iron ore, 15% by mass of return ore, 5% by mass of carbonaceous material, 11% by mass of limestone as an auxiliary material, and 2% by mass of quick lime. Moreover, the water | moisture content at the time of stirring by the high-speed stirring apparatus 10 was 5.5 mass%. Moreover, using a drum mixer, water was added so that the water content was 7.5% by mass, and granulation was performed for 300 seconds. And the granulated granule was baked using the iron test pot, the sinter cake was manufactured, and the sintering production rate was computed. Further, not only stirring treatment was performed, but granulated particles granulated under the same other conditions were also fired using a similar iron test pan to produce a sinter cake, and the sintering production rate was calculated.
 図8は、実験例1~4と生産率向上効果との関係を示すグラフである。なお、生産率向上効果は、高速撹拌装置10による撹拌処理を行った場合の焼結生産率と、高速撹拌装置10による撹拌処理を行わない場合の焼結生産率との差をとることによって算出した。この結果、Alの割合が1.6質量%よりも低い実験例3と比較して、Alの割合が1.6質量%以上の実験例1および実験例2の方が、生産率向上効果がより大きいことがわかる。以上の結果から、Alの濃度が1.6質量%以上の場合に本発明の効果がより大きくなることが明らかとなった。 FIG. 8 is a graph showing the relationship between Experimental Examples 1 to 4 and the production rate improvement effect. The production rate improvement effect is calculated by taking the difference between the sintering production rate when the stirring process by the high-speed stirring device 10 is performed and the sintering production rate when the stirring process by the high-speed stirring device 10 is not performed. did. As a result, compared with Experimental Example 3 in which the proportion of Al 2 O 3 is lower than 1.6% by mass, Experimental Example 1 and Experimental Example 2 in which the proportion of Al 2 O 3 is 1.6% by mass or more are better. It can be seen that the production rate improvement effect is greater. From the above results, it has been clarified that the effect of the present invention is further enhanced when the concentration of Al 2 O 3 is 1.6% by mass or more.
 また、石灰石添加時期で比較すると、高速撹拌装置10で撹拌処理した後であって、ドラムミキサーで造粒する前に石灰石を添加した実験例4よりも、高速撹拌装置10で撹拌処理する前に石灰石を添加した実験例2の方が、焼結生産率の向上効果が大きいことがわかる。石灰石を含む焼結原料40を高速撹拌装置10で撹拌処理することで、融液の粘性を高めるAlに加え、融液量を増加させる石灰石を焼結原料40に分散できる。これにより、未反応の石灰石を減少させて融液を増加させることができるので、焼結鉱の強度がより向上し、この結果、焼結生産率がより向上したと考えられる。 Moreover, when compared with the limestone addition time, after stirring with the high-speed stirrer 10 and before stirring with the high-speed stirrer 10 than in Experimental Example 4 in which limestone was added before granulating with the drum mixer, It can be seen that Experimental Example 2 to which limestone is added has a greater effect of improving the sintering production rate. By stirring the sintering raw material 40 containing limestone with the high-speed stirring device 10, limestone that increases the melt amount can be dispersed in the sintering raw material 40 in addition to Al 2 O 3 that increases the viscosity of the melt. Thereby, since unreacted limestone can be reduced and a melt can be increased, the intensity | strength of a sintered ore improves more and it is thought that the sintering production rate improved more as a result.
 以上の結果より、焼結鉱の製造方法において、粒径0.125mm以下の微粉鉄鉱石を15質量%含み、かつ焼結鉱のAlの濃度が1.6質量%以上である焼結原料であっても、高速撹拌装置10で撹拌処理した後にドラムミキサーで造粒を行い、焼結鉱を製造することで、焼結鉱の生産性をより向上できることがわかった。 From the above results, in the method for producing sintered ore, a sintered iron ore containing 15% by mass of fine iron ore having a particle size of 0.125 mm or less and the concentration of Al 2 O 3 in the sintered ore is 1.6% by mass or more. Even if it was a ligation raw material, it turned out that productivity of a sintered ore can be improved more by granulating with a drum mixer after stirring with the high-speed stirring apparatus 10, and manufacturing a sintered ore.
 なお、本実施形態において、バインダーとして生石灰(CaO)を用いたが、ドラムミキサーでの造粒性を増加させるバインダーである消石灰(Ca(OH))、増粘性の有機バインダー、無機バインダーを用いてもよい。生石灰は安価であるので、バインダーとして生石灰を用いることで、安価に焼結鉱を製造できる。 In this embodiment, quick lime (CaO) is used as a binder, but slaked lime (Ca (OH) 2 ), a thickening organic binder, and an inorganic binder, which are binders that increase the granulation property in a drum mixer, are used. May be. Since quicklime is cheap, sintered ore can be manufactured at low cost by using quicklime as a binder.
 以上、本発明を実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。 The present invention has been described above with reference to the embodiments. However, the present invention is not limited to the configurations described in the above embodiments, and the scope of matters described in the claims. Other embodiments and modifications conceivable in the above are also included.
 微粉鉄鉱石を含む焼結原料40を、高速撹拌装置10を用いて撹拌処理し、その後、ドラムミキサーを用いて造粒した造粒粒子を用いて焼結鉱の生産性向上効果を確認した。焼結原料40としては、粒径0.125mm以下の微粉鉄鉱石を15質量%と、焼結鉱のAl濃度が1.6質量%である鉄鉱石原料と、を含む焼結原料を用いた。ここで、焼結原料は、鉄鉱石67質量%、返鉱15質量%、炭材5質量%、副原料である石灰石11質量%、生石灰を2質量%含んでいる。また、高速撹拌装置10による撹拌時の水分は5.5質量%とした。さらに、水分含有量が7.5質量%になるように水を加え、300秒間ドラムミキサーを用いて造粒した後に焼結して焼結鉱を製造し、焼結生産率向上効果を算出した。下記表2に、本発明例1~7および比較例1、2における高速撹拌装置10の撹拌羽根30の撹拌条件、底板24の回転条件、撹拌時間、有効羽根長さ、有効面積、撹拌速度および生産率向上効果を示す。 The sintering raw material 40 containing fine iron ore was stirred using the high-speed stirring device 10, and then the productivity improvement effect of the sintered ore was confirmed using the granulated particles granulated using a drum mixer. Sintering raw material 40 includes 15% by mass of fine iron ore having a particle size of 0.125 mm or less and an iron ore raw material having an Al 2 O 3 concentration of 1.6% by mass in the sintered ore. Was used. Here, the sintering raw material contains 67% by mass of iron ore, 15% by mass of return ore, 5% by mass of carbonaceous material, 11% by mass of limestone as an auxiliary material, and 2% by mass of quick lime. Moreover, the water | moisture content at the time of stirring by the high-speed stirring apparatus 10 was 5.5 mass%. Furthermore, water was added so that the water content was 7.5% by mass, and granulation was performed using a drum mixer for 300 seconds, followed by sintering to produce a sintered ore, and the effect of improving the sintering production rate was calculated. . In Table 2 below, stirring conditions of the stirring blade 30 of the high-speed stirring device 10 in Examples 1 to 7 of the present invention and Comparative Examples 1 and 2, rotation conditions of the bottom plate 24, stirring time, effective blade length, effective area, stirring speed and The production rate improvement effect is shown.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 図9は、撹拌速度と焼結生産率向上効果との関係を示すグラフである。図9は、縦軸を生産率向上効果とし、横軸を撹拌速度とした場合における表2の本発明例1~7および比較例1、2をそれぞれプロットしたグラフである。図9から撹拌速度が500m/sより高速にすることで高い焼結鉱の生産率向上効果が得られることがわかった。一方、撹拌速度を3000m/sより高速にしても焼結鉱の生産率向上効果は変わらないことがわかった。なお、図9から、撹拌速度を700m/s以上にすることがより好ましく、1300m/s以上にすることがさらに好ましいことがわかる。 FIG. 9 is a graph showing the relationship between the stirring speed and the effect of improving the sintering production rate. FIG. 9 is a graph plotting Invention Examples 1 to 7 and Comparative Examples 1 and 2 in Table 2 when the vertical axis is the production rate improvement effect and the horizontal axis is the stirring speed. From FIG. 9, it was found that the effect of improving the production rate of high sintered ore can be obtained when the stirring speed is higher than 500 m / s. On the other hand, it was found that even if the stirring speed was higher than 3000 m / s, the effect of improving the production rate of sintered ore was not changed. Note that FIG. 9 indicates that the stirring speed is more preferably 700 m / s or more, and more preferably 1300 m / s or more.
 続いて、表2の条件において、粗大な擬似粒子が高速撹拌装置10により解砕されているかを確認するために、撹拌後の平均粒子径と生産率向上効果の関係を確認した。ここで、平均粒子径は、撹拌処理後の粉体サンプルを1kg採取し、乾燥後、目開き0.25、0.5、1、2.8、4.75、8mmの篩いを用いて目開きの広い順で当該粉体サンプルを篩い、各粒度の質量割合を測定し、その質量割合を用いた粒子径を加重平均することで算出した。 Subsequently, in order to confirm whether coarse pseudo-particles were crushed by the high-speed stirring device 10 under the conditions shown in Table 2, the relationship between the average particle diameter after stirring and the production rate improvement effect was confirmed. Here, the average particle size is determined by collecting 1 kg of the powder sample after the stirring treatment, drying, and then using a sieve having openings of 0.25, 0.5, 1, 2.8, 4.75, and 8 mm. The powder samples were sieved in order of wide opening, the mass ratio of each particle size was measured, and the particle diameter using the mass ratio was calculated by weighted averaging.
 図10は、撹拌処理後の平均粒子径と、焼結生産率向上効果との関係を示すグラフである。図10から高速撹拌装置10で撹拌処理した後の平均粒子径が3mm以下の場合に焼結鉱の生産率向上効果が大きいことがわかる。すなわち、高速撹拌装置10で焼結原料40を撹拌処理して、焼結原料40中の粗大な擬似粒子を解砕し、焼結原料40の平均粒子径を3mm以下にすることで、焼結鉱の生産率向上効果を高めることができた。なお、図10から、高速撹拌装置10で撹拌処理した後の平均粒子径を2.5mm以下にすることがより好ましく、2mm以下にすることがさらに好ましいことがわかる。 FIG. 10 is a graph showing the relationship between the average particle diameter after the stirring treatment and the effect of improving the sintering production rate. FIG. 10 shows that the effect of improving the production rate of sintered ore is great when the average particle size after stirring with the high-speed stirring device 10 is 3 mm or less. That is, the sintering raw material 40 is agitated with the high-speed agitator 10 to break up coarse pseudo particles in the sintering raw material 40, thereby reducing the average particle diameter of the sintering raw material 40 to 3 mm or less. The effect of improving the production rate of the ore could be enhanced. In addition, FIG. 10 shows that the average particle diameter after stirring with the high-speed stirring device 10 is more preferably 2.5 mm or less, and further preferably 2 mm or less.
 続いて、高速撹拌装置10を用いて撹拌処理した後の平均粒子径が3mm以下になるような撹拌時の水分量を測定した。焼結原料40を高速撹拌装置10に全量装入し、撹拌処理して、撹拌処理した後の平均粒子径を測定した。焼結原料40としては、微粉鉄鉱石の割合が15質量%、核粒子の割合が55質量%、Alの割合が1.6質量%の焼結原料40を用いた。ここで、焼結原料は、鉄鉱石67質量%、返鉱15質量%、炭材5質量%、副原料である石灰石11質量%、生石灰を2質量%含んでいる。高速撹拌装置10における円筒容器20の直径は0.75mであり、撹拌羽根30の直径は0.35mである。また、円筒容器20における底板24の回転数は、28rpmであり、撹拌羽根30の回転数は、500rpmである。水分含有量を変えた焼結原料40を準備し、上記条件で撹拌処理を行い、各水分含有量における撹拌処理後の平均粒子径を測定した。 Subsequently, the amount of water during stirring was measured such that the average particle size after stirring using the high-speed stirring device 10 was 3 mm or less. The entire amount of the sintered raw material 40 was charged into the high-speed stirring device 10 and stirred, and the average particle size after stirring was measured. The sintered material 40, the ratio is 15 mass% of iron ore fines, percentage 55% by weight of the core particles, the ratio of Al 2 O 3 is used a sintered material 40 of 1.6 wt%. Here, the sintering raw material contains 67% by mass of iron ore, 15% by mass of return ore, 5% by mass of carbonaceous material, 11% by mass of limestone as an auxiliary material, and 2% by mass of quick lime. The diameter of the cylindrical container 20 in the high-speed stirring device 10 is 0.75 m, and the diameter of the stirring blade 30 is 0.35 m. Moreover, the rotation speed of the bottom plate 24 in the cylindrical container 20 is 28 rpm, and the rotation speed of the stirring blade 30 is 500 rpm. Sintering raw materials 40 having different moisture contents were prepared, and the stirring treatment was performed under the above conditions, and the average particle diameter after the stirring treatment at each moisture content was measured.
 図11は、撹拌処理時の水分と、撹拌処理後の平均粒子の関係を示す図である。図11から撹拌時の水分を7質量%以下にすることによって、撹拌処理後の平均粒子径は3mm以下になり、撹拌処理を行なうことによる焼結鉱の生産率向上効果が大きくなることがわかる。なお、図11から、撹拌時の水分量を6質量%以下にすることがより好ましく、撹拌時の水分量を4質量%以下にすることがさらに好ましいことがわかる。 FIG. 11 is a diagram showing the relationship between moisture during the stirring process and average particles after the stirring process. It can be seen from FIG. 11 that by making the water content during stirring 7% by mass or less, the average particle size after the stirring process becomes 3 mm or less, and the effect of improving the production rate of sintered ore by performing the stirring process increases. . In addition, it turns out that it is more preferable to make the moisture content at the time of stirring into 6 mass% or less from FIG. 11, and it is still more preferable to make the moisture content at the time of stirring into 4 mass% or less.
 10  高速撹拌装置
 20  円筒容器
 22  円筒
 24  底板
 30  撹拌羽根
 32  回転軸
 34  撹拌板
 36  堰
 40  焼結原料
 50  円
 52  領域
DESCRIPTION OF SYMBOLS 10 High-speed stirring apparatus 20 Cylindrical container 22 Cylinder 24 Bottom plate 30 Stirring blade 32 Rotating shaft 34 Stirring plate 36 Weir 40 Sintering raw material 50 yen 52 area | region

Claims (6)

  1.  焼結鉱の製造方法であって、
     回転する円筒容器と、前記円筒容器内で回転する撹拌羽根と、を有する高速撹拌装置で、下記数式(1)を満たすように焼結原料を撹拌処理し、
     撹拌処理後の焼結原料を造粒装置を用いて造粒し、
     造粒後の焼結原料を焼結機を用いて焼結して、焼結鉱を製造する焼結鉱の製造方法。
    Figure JPOXMLDOC01-appb-M000004
     但し、上記数式(1)において、
     v:前記円筒容器の底板の周速(m/s)、
     u:前記撹拌羽根の先端の周速(m/s)、
     t:前記焼結原料が高速撹拌装置によって撹拌される時間(s)、
     L:前記撹拌羽根の先端が描く円周の長さ(m)、
     S:前記撹拌羽根の回転軸方向から投影した円筒容器の投影面積から前記撹拌羽根の先端が描く円の面積を除いた面積(m)、
     である。
    A method for producing sintered ore, comprising:
    In a high-speed stirring device having a rotating cylindrical container and a stirring blade rotating in the cylindrical container, the sintering raw material is stirred so as to satisfy the following formula (1),
    The sintered raw material after the stirring treatment is granulated using a granulator,
    A method for producing sintered ore, in which a sintered raw material after granulation is sintered using a sintering machine to produce sintered ore.
    Figure JPOXMLDOC01-appb-M000004
    However, in the above formula (1),
    v: peripheral speed (m / s) of the bottom plate of the cylindrical container,
    u: peripheral speed (m / s) at the tip of the stirring blade,
    t: time (s) during which the sintered raw material is stirred by a high-speed stirring device;
    L: the length of the circumference drawn by the tip of the stirring blade (m),
    S: Area (m 2 ) obtained by removing the area of the circle drawn by the tip of the stirring blade from the projected area of the cylindrical container projected from the rotation axis direction of the stirring blade.
    It is.
  2.  前記焼結原料は、粒径0.125mm以下である微粉鉄鉱石を10~50質量%含み、かつ前記焼結機で焼結原料を焼結した焼結鉱のAl濃度が1.6質量%以上である請求項1に記載の焼結鉱の製造方法。 The sintered raw material contains 10 to 50% by mass of fine iron ore having a particle size of 0.125 mm or less, and the Al 2 O 3 concentration of the sintered ore obtained by sintering the sintered raw material with the sintering machine is 1. It is 6 mass% or more, The manufacturing method of the sintered ore of Claim 1.
  3.  前記焼結原料は、さらに、バインダーを含む請求項1または請求項2に記載の焼結鉱の製造方法。 The method for producing sintered ore according to claim 1 or 2, wherein the sintering raw material further contains a binder.
  4.  前記バインダーは、生石灰である請求項3に記載の焼結鉱の製造方法。 The method for producing a sintered ore according to claim 3, wherein the binder is quicklime.
  5.  前記高速撹拌装置で撹拌処理した後の前記焼結原料の平均粒子径は、3mm以下である請求項1から請求項4のいずれか一項に記載の焼結鉱の製造方法。 The method for producing a sintered ore according to any one of claims 1 to 4, wherein an average particle size of the sintered raw material after being stirred by the high-speed stirring device is 3 mm or less.
  6.  前記高速撹拌装置で撹拌処理する前の前記焼結原料は、7質量%以下の水分を含む請求項5に記載の焼結鉱の製造方法。 The method for producing a sintered ore according to claim 5, wherein the sintering raw material before stirring with the high-speed stirring device contains 7% by mass or less of moisture.
PCT/JP2016/005000 2015-11-30 2016-11-29 Method for producing sintered ore WO2017094255A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680068855.5A CN108291270B (en) 2015-11-30 2016-11-29 Method for producing sintered ore
KR1020187014808A KR102157943B1 (en) 2015-11-30 2016-11-29 Manufacturing method of sintered ore
JP2017553627A JP6468367B2 (en) 2015-11-30 2016-11-29 Method for producing sintered ore
PH12018550044A PH12018550044A1 (en) 2015-11-30 2018-04-11 Method for manufacturing sintered ore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015232617 2015-11-30
JP2015-232617 2015-11-30

Publications (1)

Publication Number Publication Date
WO2017094255A1 true WO2017094255A1 (en) 2017-06-08

Family

ID=58796730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/005000 WO2017094255A1 (en) 2015-11-30 2016-11-29 Method for producing sintered ore

Country Status (5)

Country Link
JP (1) JP6468367B2 (en)
KR (1) KR102157943B1 (en)
CN (1) CN108291270B (en)
PH (1) PH12018550044A1 (en)
WO (1) WO2017094255A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111151195A (en) * 2019-12-30 2020-05-15 中冶长天国际工程有限责任公司 Forced granulator adopting three-way cross excitation type disturbance method
WO2023233871A1 (en) * 2022-06-03 2023-12-07 Jfeスチール株式会社 Method for producing granulated starting material for sintering, and method for producing sintered ore

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101263A (en) * 2006-10-20 2008-05-01 Nippon Steel Corp Method for granulating raw material to be sintered
WO2013175601A1 (en) * 2012-05-24 2013-11-28 Jfeスチール株式会社 Method for manufacturing granulating raw material for sintering, device for manufacturing same, and method for manufacturing sintered ore for blast furnace
JP2014084468A (en) * 2012-10-19 2014-05-12 Nisshin Steel Co Ltd Advance granulation method for sintering raw material
JP2015160961A (en) * 2014-02-26 2015-09-07 Jfeスチール株式会社 Method of and device for producing sintering material

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052534A (en) 1983-09-01 1985-03-25 Nippon Steel Corp Granulating method of sintering raw material
JPH01312036A (en) 1988-06-13 1989-12-15 Kawasaki Steel Corp Manufacture of raw material for sintering from dust from iron manufacture and fine iron ore
JPH0621298A (en) 1991-10-04 1994-01-28 Hitachi Ltd Mold
JPH0660358A (en) 1991-10-11 1994-03-04 Tdk Corp Floating magnetic head
JPH0621299A (en) 1992-06-30 1994-01-28 Nippon Steel Corp Semiconductor manufacturing device
JPH0621297A (en) 1992-07-03 1994-01-28 Dainippon Printing Co Ltd Lead frame
JP2953308B2 (en) 1994-06-06 1999-09-27 住友金属工業株式会社 Sinter production method
JP3067617B2 (en) * 1995-12-15 2000-07-17 住友金属工業株式会社 Method of charging raw material into mixer and raw material charging device
CN101671776B (en) * 2003-10-09 2012-11-28 杰富意钢铁株式会社 Sintered ore
JP5146572B1 (en) * 2010-07-30 2013-02-20 Jfeスチール株式会社 Method for manufacturing raw materials for sintering
JP5928731B2 (en) * 2013-07-08 2016-06-01 Jfeスチール株式会社 Manufacturing method and apparatus for granulating raw material for sintering

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101263A (en) * 2006-10-20 2008-05-01 Nippon Steel Corp Method for granulating raw material to be sintered
WO2013175601A1 (en) * 2012-05-24 2013-11-28 Jfeスチール株式会社 Method for manufacturing granulating raw material for sintering, device for manufacturing same, and method for manufacturing sintered ore for blast furnace
JP2014084468A (en) * 2012-10-19 2014-05-12 Nisshin Steel Co Ltd Advance granulation method for sintering raw material
JP2015160961A (en) * 2014-02-26 2015-09-07 Jfeスチール株式会社 Method of and device for producing sintering material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111151195A (en) * 2019-12-30 2020-05-15 中冶长天国际工程有限责任公司 Forced granulator adopting three-way cross excitation type disturbance method
CN111151195B (en) * 2019-12-30 2022-04-12 中冶长天国际工程有限责任公司 Forced granulator adopting three-way cross excitation type disturbance method
WO2023233871A1 (en) * 2022-06-03 2023-12-07 Jfeスチール株式会社 Method for producing granulated starting material for sintering, and method for producing sintered ore

Also Published As

Publication number Publication date
JPWO2017094255A1 (en) 2018-02-22
CN108291270A (en) 2018-07-17
KR20180072810A (en) 2018-06-29
JP6468367B2 (en) 2019-02-13
CN108291270B (en) 2020-03-20
KR102157943B1 (en) 2020-09-18
PH12018550044A1 (en) 2018-10-15

Similar Documents

Publication Publication Date Title
JP5569658B2 (en) Method for producing granulated raw material for sintering, apparatus for producing the same, and method for producing sintered ore for blast furnace
KR20180110034A (en) Method for producing sintered ores
JP6132114B2 (en) Method for producing granulated raw material for sintering
JP6468367B2 (en) Method for producing sintered ore
JP2016191122A (en) Method for producing sintered ore
TWI596213B (en) Sinter manufacturing method
JP5482684B2 (en) Pretreatment method of sintering raw materials
JP6256728B2 (en) Production equipment for granulating raw materials for sintering
JP5846402B1 (en) Production equipment for granulating raw materials for sintering
JP6020823B2 (en) Method for producing granulated raw material for sintering
JP5928731B2 (en) Manufacturing method and apparatus for granulating raw material for sintering
JP2002317228A (en) Method for treating iron ore powder hard to be granulated
KR102498593B1 (en) Granulated product, manufacturing method of granulated product, and manufacturing method of sintered ore
JP2009287122A (en) Method for pelletizing fine-powdery raw material
JP5835099B2 (en) Pretreatment method of sintering raw material
JP6954236B2 (en) Manufacturing method and manufacturing equipment for coal interior sintered ore
JP2017013026A (en) Powder agitation device, powder treatment mixer, powder treatment method and production method of sintering raw material
JP2020012163A (en) Manufacturing method of sintered ore
JP2020015963A (en) Method for granulating sintering raw material
TW201348453A (en) Method for producing granulation material for sintering, producing apparatus thereof, and method for producing sinter ore for blast furnace
JP2007262454A (en) Method for pelletizing raw material fines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870196

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017553627

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12018550044

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 20187014808

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870196

Country of ref document: EP

Kind code of ref document: A1