JP2009287122A - Method for pelletizing fine-powdery raw material - Google Patents

Method for pelletizing fine-powdery raw material Download PDF

Info

Publication number
JP2009287122A
JP2009287122A JP2009201918A JP2009201918A JP2009287122A JP 2009287122 A JP2009287122 A JP 2009287122A JP 2009201918 A JP2009201918 A JP 2009201918A JP 2009201918 A JP2009201918 A JP 2009201918A JP 2009287122 A JP2009287122 A JP 2009287122A
Authority
JP
Japan
Prior art keywords
raw material
drum mixer
mass
granulated product
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009201918A
Other languages
Japanese (ja)
Other versions
JP4677040B2 (en
Inventor
Kenichi Yatsugayo
健一 八ケ代
Akira Gushima
昭 具島
Tsuneo Ikeda
恒男 池田
Yoichi Abe
安部  洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009201918A priority Critical patent/JP4677040B2/en
Publication of JP2009287122A publication Critical patent/JP2009287122A/en
Application granted granted Critical
Publication of JP4677040B2 publication Critical patent/JP4677040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glanulating (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for pelletizing fine powdery raw material which is suitable to the pelletization of sintering raw material mainly containing the fine powder, and can produce the pellet produced with the intended size distribution and can improve the yield as higher in comparison with the conventional method. <P>SOLUTION: The method produces the pellet by pelletizing the sintering raw material 10 containing ≥60 mass% powder having ≤250 μm particle diameter, with a drum-mixer 12 having smooth inner surface 11. Under stational state of the drum-mixer 12, a lamination thickness h1 of the sintering raw material 10 stored on the bottom part 13 in the drum-mixer 12 is made to be ≤30 mm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、微粉を主体とする焼結原料(鉄鉱石原料を主体)の造粒に適し、目標とする粒度分布を備えた造粒物を製造可能な微粉原料の造粒方法に関する。 The present invention relates to a granulation method of a fine powder material that is suitable for granulation of a sintered raw material mainly composed of fine powder (mainly iron ore raw material) and that can produce a granulated product having a target particle size distribution.

高炉原料用焼結鉱(以下、単に焼結鉱ともいう)は、各種鉄鉱石に、例えば、石灰と石炭を配合した焼結原料を、焼結機に装入しながら積層してその上部に点火した後、積層した焼結原料の下方へ空気を吸引して焼結原料中を通気させ、焼結原料を焼成することで得られる。
従来、この焼成の際に焼結原料中の通気性を良好に保ち、焼結機による焼結鉱の生産性を高く保つ目的で、焼結原料の造粒を事前に行っている。この造粒は、一般的に、円筒状のドラムミキサーを使用し、微粉から粗粒物までの幅広い粒度分布を有する焼結原料を一括して転動させ、核となる粗粒物の周囲に微粉を付着させる方法を用いている。そこで、従来から、このような転動造粒を良好に確保するための操作条件が検討されてきた。
例えば、特許文献1には、ドラムミキサーでの原料の占積率を8〜18%に保つことで、また特許文献2には、占積率を9%以上、フルード数を12.8×10-3以上とすることで、焼結原料の転動状態を良好に確保できることが開示されている。
Blast furnace raw material sintered ore (hereinafter also referred to simply as “sintered ore”) is laminated on various iron ores with, for example, a sintering raw material containing lime and coal mixed in a sintering machine. After ignition, it is obtained by sucking air below the laminated sintered raw material to ventilate the sintered raw material and firing the sintered raw material.
Conventionally, the sintering raw material is granulated in advance for the purpose of maintaining good air permeability in the sintering raw material during the firing and maintaining high productivity of the sintered ore by the sintering machine. This granulation is generally performed by using a cylindrical drum mixer and rolling together a sintered raw material having a wide particle size distribution from fine powder to coarse particles around the coarse particles that become the core. A method of attaching fine powder is used. Therefore, conventionally, operation conditions for ensuring such rolling granulation have been studied.
For example, in Patent Document 1, the space factor of the raw material in the drum mixer is kept at 8 to 18%, and in Patent Document 2, the space factor is 9% or more and the fluid number is 12.8 × 10. It is disclosed that the rolling state of the sintered raw material can be secured satisfactorily by setting it to −3 or more.

ここで、占積率とは、ドラムミキサーの断面積に占める焼結原料の面積割合を示した数値である。また、フルード数とは、焼結原料に作用する慣性力と重力の比であり、ドラムミキサーの回転によって原料に与えられる掻き上げ力と、掻き上げられた焼結原料を下方へ導く重力のバランスで、ドラムミキサー内での焼結原料の転動状態が決定されることを表す指標である。なお、ドラムミキサーの直径(内径)をD、ドラムミキサーの回転周速をu、ドラムミキサーの回転数をN、焼結原料の重力加速度をgとした場合、フルード数Frは、次式で表される。
Fr=u2/D/g=D×N2/g
また、特許文献1、2には、ドラムミキサーの焼結原料の占積率を正常転動域内に調整することで、焼結原料の転動状態が良好になるのに対し、占積率がこれより小さくなれば(スリップ域)、ドラムミキサーの内面に対して焼結原料がスリップを起こし、一方占積率が大きくなれば(飛び跳ね域)、ドラムミキサー内の焼結原料が飛び跳ね状態となって、良好な造粒ができないことが示されている。
Here, the space factor is a numerical value indicating the area ratio of the sintered raw material in the cross-sectional area of the drum mixer. The fluid number is the ratio of the inertial force acting on the sintering raw material and the gravity, and the balance between the scraping force applied to the raw material by the rotation of the drum mixer and the gravity that guides the sintered sintering raw material downward. Thus, it is an index representing that the rolling state of the sintering raw material in the drum mixer is determined. In addition, when the diameter (inner diameter) of the drum mixer is D, the rotational peripheral speed of the drum mixer is u, the rotational speed of the drum mixer is N, and the gravitational acceleration of the sintering raw material is g, the Froude number Fr is expressed by the following equation. Is done.
Fr = u 2 / D / g = D × N 2 / g
Further, in Patent Documents 1 and 2, by adjusting the space factor of the sintered raw material of the drum mixer within the normal rolling region, the rolling state of the sintered raw material becomes good, whereas the space factor is If it is smaller than this (slip area), the sintering raw material will slip against the inner surface of the drum mixer, while if the space factor is large (jumping area), the sintering raw material in the drum mixer will jump. Thus, it is shown that good granulation cannot be performed.

特開昭52−101602号公報Japanese Patent Laid-Open No. 52-101602 特開昭53−141104号公報JP-A-53-141104

しかしながら、前記従来の造粒条件は、前記したように、核となる粗粒物とその周囲に付着する微粉が、同重量割合程度に混合された焼結原料において適用できるものである。このため、近年のように、従来使用してきた良質な鉄鉱石原料の枯渇が進み、結晶水含有率が高く微粉を多く含む鉄鉱石原料の割合が増加してきている状況下では、前記した方法を適用できない。これは、微粉を多量に含む焼結原料が、核となる粗粒物が少ないため転動し難く、また微粉主体のため比表面積が大きく、造粒に多くの水分が必要になり、焼結原料同士の付着性が強くなって、焼結原料が転動しにくい条件となることに起因する。
このように、本願発明の対象とする微粉を主体とする焼結原料では、従来の適正条件においても、焼結原料がスリップ現象を引き起し、安定な転動を確保できないことが判明した。即ち、微粉を主体とする焼結原料の転動現象は、従来の転動現象と大きく異なることが判明し、その結果、微粉を主体とする焼結原料を安定に転動させて造粒する新たな造粒技術を確立する必要が生じた。
However, as described above, the conventional granulation conditions can be applied to a sintering raw material in which coarse particles as a core and fine powder adhering to the periphery thereof are mixed in the same weight ratio. For this reason, as described above, in the situation where the high-quality iron ore raw materials that have been used in the past have been depleted and the ratio of the iron ore raw materials having a high crystallization water content and a large amount of fine powder has increased, Not applicable. This is because the sintering raw material containing a large amount of fine powder is difficult to roll because there are few coarse particles as the core, and the specific surface area is large because it is mainly fine powder, and a large amount of moisture is required for granulation. This is due to the fact that the adhesion between the raw materials becomes strong, and the sintered raw material becomes difficult to roll.
As described above, it has been found that the sintered raw material mainly composed of the fine powder as the subject of the present invention causes the slip phenomenon to cause the slip phenomenon even under the conventional appropriate conditions, and the stable rolling cannot be ensured. That is, the rolling phenomenon of the sintering raw material mainly composed of fine powder was found to be significantly different from the conventional rolling phenomenon, and as a result, the sintering raw material mainly composed of fine powder was stably rolled and granulated. The need to establish new granulation technology has arisen.

本発明はかかる事情に鑑みてなされたもので、微粉を主体とする焼結原料の造粒に適しており、目標とする粒度分布を備えた造粒物を製造でき、しかもその収率(歩留り)を従来よりも向上できる微粉原料の造粒方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is suitable for granulation of a sintering raw material mainly composed of fine powder, and can produce a granulated product having a target particle size distribution, and its yield (yield). It is an object of the present invention to provide a method for granulating a fine powder raw material that can be improved over conventional methods.

前記目的に沿う第1の発明に係る微粉原料の造粒方法は、一方側から投入された焼結原料を転動させて造粒し、製造された造粒物を他方側へ移動させて排出することにより、焼結原料を連続的に造粒処理するドラムミキサーを用い、粒径250μm以下の粒子を60質量%以上含む焼結原料を、内面が平滑な前記ドラムミキサーで造粒して造粒物を製造する方法であって、
前記ドラムミキサーの静止状態で、該ドラムミキサー内の底部に溜まった前記焼結原料の積層厚みを30mm以下にする。
The granulation method of the fine powder raw material according to the first invention that meets the above-mentioned object rolls and granulates the sintered raw material charged from one side, moves the produced granulated material to the other side, and discharges it. By using a drum mixer that continuously granulates the sintered raw material, a sintered raw material containing 60% by mass or more of particles having a particle size of 250 μm or less is granulated with the drum mixer having a smooth inner surface. A method for producing a granule, comprising:
When the drum mixer is in a stationary state, the lamination thickness of the sintering raw material accumulated at the bottom of the drum mixer is set to 30 mm or less.

前記目的に沿う第2の発明に係る微粉原料の造粒方法は、一方側から投入された焼結原料を転動させて造粒し、製造された造粒物を他方側へ移動させて排出することにより、焼結原料を連続的に造粒処理するドラムミキサーを用い、焼結原料の滑りを抑制する複数の滑り抑制部材を前記ドラムミキサーの内面から突出させて設け、粒径250μm以下の粒子を60質量%以上含む焼結原料を前記ドラムミキサーで造粒して造粒物を製造する方法であって、
前記ドラムミキサーの前記内面からの前記滑り抑制部材の突出高さを30mm以下とし、前記ドラムミキサーの静止状態で、該ドラムミキサー内の底部に溜まった前記焼結原料の積層厚みを、前記滑り抑制部材の突出高さを超え300mm以下にする。
The granulation method of the fine powder raw material according to the second invention that meets the above-mentioned object rolls and granulates the sintered raw material charged from one side, moves the produced granulated material to the other side, and discharges it. By using a drum mixer that continuously granulates the sintering raw material, a plurality of slip suppression members that suppress the sliding of the sintering raw material are provided so as to protrude from the inner surface of the drum mixer, and the particle size is 250 μm or less. A method for producing a granulated product by granulating a sintering raw material containing 60% by mass or more of particles with the drum mixer,
The protrusion height of the slip suppression member from the inner surface of the drum mixer is set to 30 mm or less, and the lamination thickness of the sintered raw material accumulated at the bottom of the drum mixer in the stationary state of the drum mixer is set to the slip suppression. The protrusion height of the member is exceeded and is 300 mm or less.

第1、第2の発明に係る微粉原料の造粒方法において、前記造粒物の水分含有量を8質量%以上11質量%以下の範囲にすることが好ましい。 In the granulation method of the fine powder raw material according to the first and second inventions, it is preferable that the water content of the granulated product is in the range of 8 mass% to 11 mass%.

請求項1〜3記載の微粉原料の造粒方法は、ドラムミキサー内に入れる微粉を主体とする焼結原料の積層厚みを規定するので、ドラムミキサーを使用して焼結原料を造粒する際に、ドラムミキサーの内面に対する焼結原料の滑り現象と焼結原料の飛び跳ね現象を抑制でき、必要とする粒度を備えた造粒物を効率的に製造できる。また、この造粒物の収率も、従来よりも向上できる。
請求項2及びこれに従属する請求項3記載の微粉原料の造粒方法は、ドラムミキサーの内面に、微粉の焼結原料の滑りを抑制する滑り抑制部材を設け、しかもこの滑り抑制部材の突出高さを規定しているので、滑り抑制部材が無い場合よりも多くの焼結原料を造粒処理でき、造粒物の生産性を向上できる。
特に、請求項3記載の微粉原料の造粒方法は、製造する造粒物の水分含有量を規定するので、造粒物の水分含有量を焼結原料の造粒に適した量に調整でき、必要とする粒度を備えた造粒物の収率を更に向上できる。
Since the granulation method of the fine raw material according to claims 1 to 3 prescribes the lamination thickness of the sintered raw material mainly composed of the fine powder to be put in the drum mixer, when granulating the sintered raw material using the drum mixer In addition, it is possible to suppress the sliding phenomenon of the sintering raw material and the jumping phenomenon of the sintering raw material with respect to the inner surface of the drum mixer, and it is possible to efficiently produce a granulated product having a required particle size. Moreover, the yield of this granulated material can also be improved compared with the past.
The granulation method of the fine powder raw material according to claim 2 and claim 3 dependent thereon is provided with a slip suppression member for suppressing the slip of the fine powder sintering raw material on the inner surface of the drum mixer, and the protrusion of the slip suppression member Since the height is regulated, more sintering raw materials can be granulated than when there is no slip suppression member, and the productivity of the granulated product can be improved.
In particular, the granulation method of the fine powder raw material according to claim 3 regulates the moisture content of the granulated product to be produced, so that the moisture content of the granulated product can be adjusted to an amount suitable for the granulation of the sintered raw material. The yield of the granulated product having the required particle size can be further improved.

本発明の一実施の形態に係る微粉原料の造粒方法に使用するドラムミキサーの正断面図である。It is a front sectional view of the drum mixer used for the granulation method of the fine powder raw material concerning one embodiment of the present invention. 従来技術における造粒条件と造粒状況との関係を示す説明図である。It is explanatory drawing which shows the relationship between the granulation conditions and granulation condition in a prior art. (A)は粗粒物と微粉が混在する原料の転動状態を示す説明図、(B)は微粉を主体とする原料の転動状態を示す説明図である。(A) is explanatory drawing which shows the rolling state of the raw material in which a coarse particle and fine powder are mixed, (B) is explanatory drawing which shows the rolling state of the raw material which has fine powder as a main body. 鉄鉱石原料の積層厚み及びドラムミキサーの直径と目標粒度の造粒物の収率との関係を示す説明図である。It is explanatory drawing which shows the relationship between the lamination thickness of an iron ore raw material, the diameter of a drum mixer, and the yield of the granulated material of a target particle size. ドラムミキサー内の鉄鉱石原料の積層状態を示す説明図である。It is explanatory drawing which shows the lamination | stacking state of the iron ore raw material in a drum mixer. ドラムミキサー内の鉄鉱石原料の積層厚みと原料の造粒性との関係を示す説明図である。It is explanatory drawing which shows the relationship between the lamination thickness of the iron ore raw material in a drum mixer, and the granulation property of a raw material. 本発明の他の実施の形態に係る微粉原料の造粒方法に使用するドラムミキサーの正断面図である。It is a front sectional view of a drum mixer used for a granulation method of a fine powder raw material according to another embodiment of the present invention. リフター高さ及び鉄鉱石原料の積層厚みと目標粒度の造粒物の収率との関係を示す説明図である。It is explanatory drawing which shows the relationship between the lifter height and the lamination thickness of an iron ore raw material, and the yield of the granulated material of a target particle size.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1に示すように、本発明の一実施の形態に係る微粉原料の造粒方法は、粒径250μm以下の粒子を60質量%以上含む焼結原料10を、内面11が平滑な円筒状のドラムミキサー12で造粒して造粒物を製造する方法であり、ドラムミキサー12の静止状態で、ドラムミキサー12内の底部13に溜まった焼結原料10の積層厚みh1を適正範囲に設定する。ここで、ドラムミキサー12の内面11が平滑とは、円筒の内面に凹凸がなく滑らかな状態をいう。また、焼結原料10の積層厚みh1とは、ドラムミキサー12の静止状態、即ち焼結原料10をドラムミキサー12の底部13に、その上面が平坦となるようにした場合に、焼結原料10の積層厚みが最も厚くなる部分を意味する。この積層厚みh1は、ドラムミキサー12の長手方向の積層厚みの平均値である。以下、詳しく説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIG. 1, the method for granulating a fine raw material according to an embodiment of the present invention includes a sintering raw material 10 containing 60% by mass or more of particles having a particle size of 250 μm or less, and a cylindrical inner surface 11 that is smooth. This is a method for producing a granulated product by granulating with a drum mixer 12, and setting the lamination thickness h <b> 1 of the sintering raw material 10 accumulated on the bottom 13 in the drum mixer 12 to an appropriate range when the drum mixer 12 is stationary. . Here, the inner surface 11 of the drum mixer 12 being smooth means that the inner surface of the cylinder is smooth without any irregularities. The laminated thickness h1 of the sintered raw material 10 is the static state of the drum mixer 12, that is, when the sintered raw material 10 is placed on the bottom 13 of the drum mixer 12 so that the upper surface is flat. It means the part where the lamination thickness becomes the thickest. This lamination thickness h1 is an average value of the lamination thicknesses in the longitudinal direction of the drum mixer 12. This will be described in detail below.

まず、ドラムミキサー12に焼結原料10を入れ、更に水とバインダーを入れて、これらを造粒処理する。
ここで、焼結原料10は、粒径250μm以下の粒子を60質量%以上含むものであり、鉄鉱石原料を主体(例えば、焼結原料の50質量%を超え、更に好ましくは60質量%〜70質量%程度である)とし、例えば、焼結鉱の微粉部分を再度焼結原料として使用する返鉱(約20質量%程度)、粉コークス等の燃料(5質量%弱、約4質量%程度)、生石灰及び蛇紋岩を含む副原料(約10質量%程度)を含むものである。
また、焼結原料を構成する鉄鉱石原料は、焼結原料と同様、粒径250μm以下の粒子を60質量%以上含むものであり、例えば、微粉を多量に含む原料、篩選別により前記構成に調整した原料、微粉のみを篩選別により分離した原料、更には粉砕した原料を使用できる。
この鉄鉱石原料は、例えば、褐鉄鉱(Fe23・nH2O)、磁鉄鉱(Fe34)、及び赤鉄鉱(Fe23)のいずれか1又は2以上である。なお、褐鉄鉱としては、例えば、マラマンバ鉱石(産地銘柄:ウエストアンジェラス)、ピソライト鉱石(産地銘柄:ヤンディー、ローブリバー)、及び高燐ブロックマン鉱石がある。なお、鉄鉱石原料の構成としては、例えば、塊状鉱石を篩った後の篩下粉と、微粉が多い輸入鉄鉱石(例えば、マラマンバ鉱石)とを、1対6の比率に配合したものがある。
First, the sintering raw material 10 is put into the drum mixer 12, and water and a binder are further put therein, and these are granulated.
Here, the sintered raw material 10 contains 60% by mass or more of particles having a particle size of 250 μm or less, and mainly comprises an iron ore raw material (for example, more than 50% by mass of the sintered raw material, more preferably 60% by mass to For example, return ore (about 20% by mass), which uses the fine powder portion of sintered ore as a sintering raw material again, fuel such as fine coke (less than 5% by mass, about 4% by mass) Degree), and auxiliary materials (about 10% by mass) including quicklime and serpentinite.
Further, the iron ore raw material constituting the sintered raw material contains 60% by mass or more of particles having a particle size of 250 μm or less, as in the case of the sintered raw material. An adjusted raw material, a raw material obtained by separating only fine powder by sieve screening, and a pulverized raw material can be used.
This iron ore raw material is, for example, one or more of limonite (Fe 2 O 3 .nH 2 O), magnetite (Fe 3 O 4 ), and hematite (Fe 2 O 3 ). Examples of limonite include maramamba ore (local brand: West Angelus), pisolite ore (local brand: Yandhi, Loeb River), and high phosphorus block man ore. In addition, as composition of an iron ore raw material, what mix | blended the sieving powder after sieving a block ore and the imported iron ore (for example, maramamba ore) with many fine powders in the ratio of 1: 6, for example. is there.

焼結原料として、粒径が0μmを超え250μm以下の粒子を60質量%以上含む原料を対象としたのは、このような構成の原料を従来の方法で造粒する場合、前記したように、造粒が不完全となるためである。
このことから、本実施の形態では、粒径250μm以下、好ましくは220μm以下、更に好ましくは200μm以下の粒子を、60質量%以上、好ましくは70質量%以上、更に好ましくは80質量%以上含む焼結原料を混練の対象とする。なお、微粉の粒子量の上限を規定していないのは、全て微粉であってもよいためであり、焼結原料は、例えば、粒径が1mm以下の粒子が100質量%であってもよい。
このように、本実施の形態では、微粉を主体とする焼結原料を対象としているため、焼結原料に更に微粉の含鉄原料を含ませることもできる。この含鉄原料は、例えば、ダスト(混練ダスト又は粉塵ダスト)及びペレット原料(ペレットフィードともいう)のいずれか1又は2を使用できる。このダストの粒径は100μm以下程度であり、ペレット原料の粒径は250μm以下程度である。
As the sintering raw material, the raw material containing 60% by mass or more of particles having a particle size of more than 0 μm and not more than 250 μm was targeted when the raw material having such a structure was granulated by a conventional method, as described above. This is because granulation becomes incomplete.
From this, in the present embodiment, a firing containing particles having a particle size of 250 μm or less, preferably 220 μm or less, more preferably 200 μm or less is 60% by mass or more, preferably 70% by mass or more, and more preferably 80% by mass or more. The kneading material is the target of kneading. Note that the upper limit of the amount of fine powder is not specified because all fine powder may be used, and the sintering raw material may be, for example, 100% by mass of particles having a particle size of 1 mm or less. .
As described above, in the present embodiment, since the sintering raw material mainly composed of fine powder is used, the sintering raw material can further include a fine-iron-containing raw material. As this iron-containing raw material, for example, any one or two of dust (kneaded dust or dust dust) and pellet raw material (also referred to as pellet feed) can be used. The particle size of the dust is about 100 μm or less, and the particle size of the pellet raw material is about 250 μm or less.

バインダーは、造粒物の強度向上に寄与させるため、従来から使用している例えば、生石灰又は石灰岩のような無機系バインダーを使用できる。また、バインダーとして、例えば、パルプ廃液又はコーンスターチ(水溶液又はコロイド状になったもの)を含む有機系バインダー、及び固体架橋を促進する分散剤(分散剤を添加した水溶液又はコロイドを含む)のいずれか1又は2を使用することが好ましいが、これと無機系バインダーを併用してもよい。なお、バインダーの添加量は、焼結原料量に対し外掛けで1質量%以下程度でよい。
前記した焼結原料を、ドラムミキサー12を使用して単に造粒しても、焼結機(図示しない)への供給に適した目標とする粒度分布3mm以上10mm以下(以下、単に目標粒度ともいう)の造粒物を高い収率(本実施の形態では50質量%以上)で得ることができない。そこで、目標粒度の造粒物を高い収率で得るため、以下の検討を行った。
Since the binder contributes to improving the strength of the granulated product, an inorganic binder such as quick lime or limestone that has been conventionally used can be used. In addition, as the binder, for example, any one of an organic binder containing pulp waste liquid or corn starch (aqueous solution or colloidal form) and a dispersing agent (including an aqueous solution or colloid added with a dispersing agent) that promotes solid crosslinking Although 1 or 2 is preferably used, this and an inorganic binder may be used in combination. In addition, the addition amount of a binder may be about 1 mass% or less on the outside with respect to the amount of sintering raw materials.
Even if the above-described sintered raw material is simply granulated using the drum mixer 12, the target particle size distribution suitable for supply to a sintering machine (not shown) is 3 mm or more and 10 mm or less (hereinafter simply referred to as the target particle size). )) Cannot be obtained in a high yield (in this embodiment, 50% by mass or more). Therefore, in order to obtain a granulated product having a target particle size with a high yield, the following examination was performed.

図1に示すように、ドラムミキサー12においては、焼結原料10を連続的に造粒処理するため、ドラムミキサー12の一方側から焼結原料10を投入し、回転するドラムミキサー12内で転動させて造粒し、製造した造粒物を他方側へ移動させて排出している。ここで、ドラムミキサー12内の焼結原料10の積層厚みh1は、ドラムミキサー12への焼結原料10の投入速度(供給速度)と、ドラムミキサー12内での焼結原料10の滞留時間(ドラムミキサー12の回転周速とドラムミキサー12の入口から出口への傾斜角度により設定)により決まる。 As shown in FIG. 1, in the drum mixer 12, in order to continuously granulate the sintered raw material 10, the sintered raw material 10 is introduced from one side of the drum mixer 12, and is rotated in the rotating drum mixer 12. The granulated product is moved and granulated, and the produced granulated product is moved to the other side and discharged. Here, the lamination thickness h1 of the sintered raw material 10 in the drum mixer 12 is determined based on the feeding speed (supply speed) of the sintered raw material 10 to the drum mixer 12 and the residence time of the sintered raw material 10 in the drum mixer 12 ( It is determined by the rotational peripheral speed of the drum mixer 12 and the inclination angle from the inlet to the outlet of the drum mixer 12).

このとき、ドラムミキサー12の断面積に対する焼結原料10の占める面積割合が占積率となる。なお、ドラムミキサーの傾斜角度は小さいため(例えば、5度以下)、焼結原料の占積率は、ドラムミキサーの長手方向のいずれの場所においても、略同程度である。
この占積率は、ドラムミキサーによる造粒物の生産性を高くする場合、可能な限り大きくすることが好ましいが、良好な造粒を行うために、焼結原料の正常な転動を確保できる領域、即ち正常転動域に設定する必要がある。なお、この正常転動域は、従来の粗粒物から微粉までが混在した焼結原料の造粒操作では、占積率が8〜18%程度の範囲に相当する。
At this time, the area ratio of the sintered raw material 10 to the cross-sectional area of the drum mixer 12 is the space factor. In addition, since the inclination angle of the drum mixer is small (for example, 5 degrees or less), the space factor of the sintering raw material is substantially the same at any location in the longitudinal direction of the drum mixer.
This space factor is preferably as high as possible when increasing the productivity of the granulated product by the drum mixer, but in order to perform good granulation, normal rolling of the sintered raw material can be ensured. It is necessary to set the region, that is, the normal rolling region. In addition, this normal rolling area is equivalent to the range of a space factor of about 8 to 18% in the granulating operation of the sintered raw material in which conventional coarse particles to fine powder are mixed.

この占積率は、図2に示すように、正常転動域より過小になると、原料が転動せずドラムミキサーの内面を滑る状態となり、一方、過大になると、原料が飛び跳ねる状況になることが知られていた。
本願発明においては、微粉を主体とする焼結原料を用いることから、その影響で転動状況がどのように変化するかを実験用ドラムミキサーを用いて詳細に調査した。その結果、内面が平滑なドラムミキサーを用い、焼結原料の占積率が正常転動域になるように、ドラムミキサー内に焼結原料を積層した場合、焼結原料が転動せず、積層されたままドラムミキサーの内面を滑る状態となった。
このことから、ドラムミキサー内で微粉を主体とする焼結原料を転動させるためには、占積率を従来技術よりかなり低減する必要があった。これは、微粉を主体とした焼結原料を造粒するため、造粒に必要な水分レベルを従来より上げる必要があるが、これによって粉体の付着性が増し粉体層の凝集力が強くなるため、この粉体層を解砕して転動させるには、従来より大きな力を要することから推定される。
As shown in FIG. 2, when the space factor is less than the normal rolling region, the raw material does not roll and the inner surface of the drum mixer is slid. On the other hand, when the raw material is excessive, the raw material jumps. Was known.
In this invention, since the sintering raw material which uses fine powder as a main component is used, it investigated in detail using the drum mixer for experiment how the rolling condition changed under the influence. As a result, using a drum mixer with a smooth inner surface, when the sintering raw material is laminated in the drum mixer so that the space factor of the sintering raw material is in the normal rolling region, the sintering raw material does not roll, The inner surface of the drum mixer was slid while being laminated.
For this reason, in order to roll the sintering raw material mainly composed of fine powder in the drum mixer, the space factor has to be considerably reduced as compared with the prior art. This is because granulation of a sintering raw material mainly composed of fine powder, it is necessary to increase the moisture level necessary for granulation as compared with the conventional method, but this increases the adhesion of the powder and increases the cohesion of the powder layer. Therefore, it is presumed that a larger force is required than before in order to break up and roll the powder layer.

ここで、原料の粒度構成とドラムミキサー内での原料の転動性のイメージについて、図3(A)、(B)を参照しながら説明する。なお、図3(A)は、粗粒物と微粉(細粒)が混在した原料の転動イメージであり、図3(B)は微粉を主体とする原料の転動イメージである。
図3(A)に示すように、粗粒物と微粉が混在する原料の場合、粗粒物がドラムミキサーの内面からせん断力を受けて活発に転動することで、微粉も含めた粉体層全体の流動性が確保されるため、比較的大きな占積率でも原料の転動性を確保できると考えられる。
一方、図3(B)に示すように、微粉を主体とする原料の場合、ドラムミキサーの内面近傍の粒子は、せん断力を受けるため転動するものの、粒子個々の慣性力が小さいため、層全体へ転動力が伝わりにくくなる。また一方で、比表面積が相対的に大きいことから、原料の表面を湿潤させるのに要する水分量が多くなるため、原料同士の付着性が増し、団塊化し易くなり、一層転動しにくい条件になると考えられる。
Here, the particle size constitution of the raw material and the image of the rolling property of the raw material in the drum mixer will be described with reference to FIGS. 3 (A) and 3 (B). 3A is a rolling image of a raw material in which coarse particles and fine powder (fine particles) are mixed, and FIG. 3B is a rolling image of a raw material mainly composed of fine powder.
As shown in FIG. 3A, in the case of a raw material in which coarse particles and fine powder are mixed, the coarse particles are actively rolled by receiving a shearing force from the inner surface of the drum mixer, so that the powder including fine particles is also included. Since the fluidity of the whole bed is secured, it is considered that the rolling property of the raw material can be secured even with a relatively large space factor.
On the other hand, as shown in FIG. 3B, in the case of a raw material mainly composed of fine powder, the particles in the vicinity of the inner surface of the drum mixer roll because they receive a shearing force, but since the inertial force of each particle is small, The rolling power is difficult to be transmitted to the whole. On the other hand, since the specific surface area is relatively large, the amount of water required to wet the surface of the raw material increases, so that the adhesion between the raw materials increases, it becomes easier to agglomerate, and it is more difficult to roll. It is considered to be.

以上のことから、原料の微粉化と水分量の上昇に伴い、原料同士の付着性が増加したことに対し、原料の転動を確保するためには、ドラムミキサー内での原料の積層厚みを低減することで、微粉で構成される原料層に対する転動力を相対的に強化して、原料層を解砕する必要があると考えられる。なお、このとき、ドラムミキサーの回転周速(回転数)を上げること、即ちFr数を大きくすることで、原料の積層厚みを若干厚くできる傾向にある。
また、ここで、原料の転動に及ぼすドラムミキサーの規模の影響を調査した結果を、図4を参照しながら説明する。なお、焼結原料はその主成分が鉄鉱石原料であり、その粒度分布は同様であるため、原料として鉄鉱石原料を使用し調査した(以下に示す図5、図6、及び図8についても同様)。また、ドラムミキサーとしては、直径0.55m(●)と直径1m(△)のものを使用した。ここで、ドラムミキサーの直径が0.55mの場合、その回転数を35rpm、造粒処理時間を2分とし、またドラムミキサーの直径が1mの場合、その回転数を20rpmとし、造粒処理時間を2分として、ドラムミキサーへの鉄鉱石原料の投入速度を種々変更することで、鉄鉱石原料の積層厚みh1を変え、水分含有量が9.5質量%の造粒物をそれぞれ製造した。また、評価は、最終的に得られる目標粒度を備えた造粒物の収率(目標値:50質量%)で行った。
From the above, in order to ensure the rolling of the raw material, the stacking thickness of the raw material in the drum mixer is reduced in contrast to the increase in the adhesion between the raw materials with the pulverization of the raw material and the increase in the water content. By reducing, it is thought that it is necessary to relatively strengthen the rolling force for the raw material layer composed of fine powder and to pulverize the raw material layer. At this time, the laminated thickness of the raw materials tends to be slightly increased by increasing the rotational peripheral speed (number of rotations) of the drum mixer, that is, by increasing the Fr number.
Here, the result of investigating the influence of the scale of the drum mixer on the rolling of the raw material will be described with reference to FIG. In addition, since the main component of the sintered raw material is an iron ore raw material and the particle size distribution thereof is the same, the investigation was performed using the iron ore raw material as the raw material (FIGS. 5, 6, and 8 shown below also). The same). A drum mixer having a diameter of 0.55 m (●) and a diameter of 1 m (Δ) was used. Here, when the diameter of the drum mixer is 0.55 m, the rotation speed is 35 rpm and the granulation processing time is 2 minutes. When the diameter of the drum mixer is 1 m, the rotation speed is 20 rpm and the granulation processing time is For 2 minutes, by changing the charging speed of the iron ore raw material to the drum mixer variously, the laminated thickness h1 of the iron ore raw material was changed, and the granulated material having a water content of 9.5% by mass was produced. Moreover, evaluation was performed with the yield (target value: 50 mass%) of the granulated material provided with the target particle size finally obtained.

図4から明らかなように、造粒物の収率は、ドラムミキサーの大きさに関係なく、鉄鉱石原料の積層厚みh1が20mmを超えると急激に低下した。これは、ドラムミキサーの内面に対して鉄鉱石原料のスリップが発生し、特に鉄鉱石原料の積層厚みh1が30mmを超える場合に、スリップの発生が顕著になり、鉄鉱石原料の正常な転動が確保できなくなったことに起因する。
ここで、焼結原料の代わりに使用した鉄鉱石原料の積層厚みh1が、ドラムミキサーの直径に関係なく決定される根拠を、図5、図6を参照しながら説明する。
図5は、ドラムミキサー12が停止した状態での鉄鉱石原料(焼結原料10)の積層状態を示しており、鉄鉱石原料の転動力は、鉄鉱石原料が接触するドラムミキサー12の内面11の面積Sから、体積Vの鉄鉱石原料に対して与えられると考えることができる。即ち、SとVのバランスを示す(V/S)が、鉄鉱石原料の転動状態(原料の造粒性)を決定すると考えられ、(V/S)が大きくなることで鉄鉱石原料の転動力が不足し、スリップ状態になると想定される。
As apparent from FIG. 4, the yield of the granulated product was drastically reduced when the stacking thickness h1 of the iron ore raw material exceeded 20 mm regardless of the size of the drum mixer. This is because the iron ore raw material slip occurs on the inner surface of the drum mixer, and particularly when the lamination thickness h1 of the iron ore raw material exceeds 30 mm, the occurrence of the slip becomes remarkable, and the normal rolling of the iron ore raw material occurs. This is due to the fact that it cannot be secured.
Here, the grounds for determining the lamination thickness h1 of the iron ore raw material used instead of the sintered raw material regardless of the diameter of the drum mixer will be described with reference to FIGS.
FIG. 5 shows a laminated state of the iron ore raw material (sintered raw material 10) in a state where the drum mixer 12 is stopped, and the turning power of the iron ore raw material is the inner surface 11 of the drum mixer 12 with which the iron ore raw material comes into contact. From the area S, it can be considered that it is given to the iron ore raw material of volume V. That is, (V / S) indicating the balance between S and V is considered to determine the rolling state of the iron ore raw material (granulating property of the raw material). By increasing (V / S), the iron ore raw material It is assumed that there will be insufficient rolling power and a slip state will occur.

また、図6から、SとVのバランス(V/S)は、鉄鉱石原料の積層厚みh1が厚くなるに伴って大きくなることが明らかであり、ある限界値以上で鉄鉱石原料がスリップ領域に入ることが推測される。また、ドラムミキサーの直径が異なっても、鉄鉱石原料の積層厚みh1に対する(V/S)はほぼ同じであることから、スリップ限界となる積層厚みh1は、ドラムミキサーの直径によらないことも説明される。
以上のことから、内面11が平滑なドラムミキサー12を使用し、焼結原料10を造粒して造粒物を製造する場合、ドラムミキサー12の静止状態で、ドラムミキサー12内の底部13に溜まった焼結原料10の積層厚みh1を30mm以下にする。なお、最終的に得られる粒度3mm以上10mm以下の造粒物の収率を更に向上させるためには、積層厚みh1を25mm以下、更には20mm以下にすることが好ましい。一方、焼結原料の積層厚みh1が小さくなるに伴って、前記した造粒物の収率を向上できるため、下限値については規定していないが、造粒物の生産性を考慮すれば、焼結原料の積層厚みh1を5mm以上、更には10mm以上にすることが好ましい。
Moreover, it is clear from FIG. 6 that the balance between S and V (V / S) increases as the lamination thickness h1 of the iron ore raw material increases, and the iron ore raw material slips above a certain limit value. It is guessed that it enters. Further, even if the diameter of the drum mixer is different, the (V / S) with respect to the stacking thickness h1 of the iron ore raw material is substantially the same, so the stacking thickness h1 that becomes the slip limit may not depend on the diameter of the drum mixer. Explained.
From the above, when using a drum mixer 12 having a smooth inner surface 11 and granulating the sintered raw material 10 to produce a granulated product, the drum mixer 12 is stationary and placed on the bottom 13 in the drum mixer 12. The accumulated thickness h1 of the accumulated sintering raw material 10 is set to 30 mm or less. In addition, in order to further improve the yield of a granulated product having a particle size of 3 mm or more and 10 mm or less finally obtained, the lamination thickness h1 is preferably 25 mm or less, and more preferably 20 mm or less. On the other hand, as the lamination thickness h1 of the sintering raw material becomes smaller, the yield of the granulated product can be improved, so the lower limit is not specified, but considering the productivity of the granulated product, The lamination thickness h1 of the sintering raw material is preferably 5 mm or more, more preferably 10 mm or more.

このように、焼結原料の積層厚みh1を、従来よりも薄くすることで、微粉を主体とする焼結原料の転動を良好に実施し、目標粒度の造粒物の収率を向上できるが、造粒物の生産性の観点からみると、ドラムミキサーでの処理量を更に向上させることが好ましい。なお、造粒物の生産性を上げるには、ドラムミキサーを大型化すればよいが、ドラムミキサーの内面が平滑な場合、ドラムミキサーを大型化しても焼結原料の積層厚みh1が30mm以下程度に抑えられるため、生産性を大きく向上させることができない。また、造粒物の生産性を上げるためには、前記したように、焼結原料の占積率を上げる手段が必要になるが、占積率を上げて(V/S)を上げても、焼結原料のスリップを回避するために、ドラムミキサーの内面と焼結原料間の摩擦抵抗を上げる必要がある。
そこで、図7に示すように、ドラムミキサー15の内面16に設け、焼結原料10の滑りを抑制する複数のリフター(滑り抑制部材の一例)17を活用した。
Thus, by making the lamination thickness h1 of the sintering raw material thinner than before, the rolling of the sintering raw material mainly composed of fine powder can be carried out well, and the yield of the granulated product with the target particle size can be improved. However, from the viewpoint of the productivity of the granulated product, it is preferable to further improve the processing amount in the drum mixer. In order to increase the productivity of the granulated material, the drum mixer may be enlarged. However, when the inner surface of the drum mixer is smooth, even if the drum mixer is enlarged, the lamination thickness h1 of the sintered raw material is about 30 mm or less. Therefore, productivity cannot be greatly improved. Further, in order to increase the productivity of the granulated product, as described above, means for increasing the space factor of the sintered raw material is required, but even if the space factor is increased and (V / S) is increased. In order to avoid the slip of the sintering material, it is necessary to increase the frictional resistance between the inner surface of the drum mixer and the sintering material.
Therefore, as shown in FIG. 7, a plurality of lifters (an example of a slip suppression member) 17 that is provided on the inner surface 16 of the drum mixer 15 and suppresses the sliding of the sintering raw material 10 is used.

このリフター17は、薄板状のものであり、ドラムミキサー15の中央に向かって突出させて設けられ、しかもドラムミキサー15の内面16に対して垂直に設けられている。なお、リフターの形状は、これに限定されるものではなく、断面形状を例えば凹状とし、この底部分をドラムミキサー15にボルト止めしてもよい。また、リフターは、ドラムミキサーの内面に対して傾斜させて設けてもよい。
このリフター17は、ドラムミキサー15の内側に、周方向に等間隔(等角度)に複数個、例えば、ドラムミキサー15の規模に応じて4個以上12以下(ここでは、8個)程度設けられ、しかもドラムミキサー15の長手方向に渡って直線的かつ連続的に設けられている。なお、リフターは、ドラムミキサーの軸心を中心として螺旋状に設けてもよく、また、ドラムミキサーの長手方向に渡って断続的に設けてもよい。
The lifter 17 has a thin plate shape, is provided so as to protrude toward the center of the drum mixer 15, and is provided perpendicular to the inner surface 16 of the drum mixer 15. The shape of the lifter is not limited to this, and the cross-sectional shape may be a concave shape, for example, and the bottom portion may be bolted to the drum mixer 15. The lifter may be provided to be inclined with respect to the inner surface of the drum mixer.
A plurality of lifters 17 are provided on the inner side of the drum mixer 15 at equal intervals (equal angles) in the circumferential direction, for example, four to twelve (eight in this case) according to the scale of the drum mixer 15. Moreover, they are provided linearly and continuously over the longitudinal direction of the drum mixer 15. The lifter may be provided in a spiral shape around the axis of the drum mixer, or may be provided intermittently over the longitudinal direction of the drum mixer.

このように、ドラムミキサー15の内面16にリフター17を設ける場合、焼結原料10を強制的に掻き上げるのに十分な高さを確保する必要があるが、ドラムミキサー15の底部18であって、ドラムミキサー15の内面16からリフター17の上端19までに存在する焼結原料10は、リフター17に阻まれて転動できない。このため、隣り合うリフター17の間にある焼結原料10は、焼結原料10の造粒性に寄与し難いと考えられることから、リフター17の突出高さ(リフター高さともいう)Hを適正範囲に設定する必要がある。
ここで、リフター17の突出高さHと鉄鉱石原料の積層厚みh2による目標粒度の造粒物の収率の変化を調査した結果を、図8を参照しながら説明する。なお、ここでは、ドラムミキサーとして、直径が1.0mのものを使用し、その回転数を20rpm、造粒処理時間を2分として、鉄鉱石原料の投入速度を種々変更することで、鉄鉱石原料の積層厚みh2を変え、水分含有量が9.5質量%の造粒物を製造した。
As described above, when the lifter 17 is provided on the inner surface 16 of the drum mixer 15, it is necessary to ensure a sufficient height to forcibly scrape the sintering raw material 10. The sintered raw material 10 existing from the inner surface 16 of the drum mixer 15 to the upper end 19 of the lifter 17 is blocked by the lifter 17 and cannot roll. For this reason, since the sintering raw material 10 between the adjacent lifters 17 is unlikely to contribute to the granulation properties of the sintering raw material 10, the protrusion height (also referred to as lifter height) H of the lifter 17 is set. It is necessary to set the proper range.
Here, the result of investigating the change in the yield of the granulated product with the target particle size according to the protrusion height H of the lifter 17 and the laminated thickness h2 of the iron ore raw material will be described with reference to FIG. Here, a drum mixer having a diameter of 1.0 m is used as the drum mixer, the rotation speed is 20 rpm, the granulation treatment time is 2 minutes, and the iron ore raw material charging speed is variously changed, so that the iron ore is changed. The raw material laminate thickness h2 was changed to produce a granulated product having a water content of 9.5% by mass.

図8に示すように、目標粒度の造粒物の収率は、リフターを設けることで高められ、その突出高さHが10mm以上30mm以下の範囲では、リフターの突出高さHが高くなるに伴って低下する傾向がある。このことから、リフターの突出高さHが30mmを超えると、前記した掻き上げ作用が過剰となって造粒物の収率が更に低下すること、また鉄鉱石原料の積層厚みh2が過剰に大きくなると、目標粒度の造粒物の収率が更に低下することが分かる。なお、リフターの突出高さHが30mmの場合、鉄鉱石原料の積層厚みh2が300mmまで、目標粒度の造粒物の収率を50質量%以上確保できた。
以上のことから、内面16に複数のリフター17が設けられたドラムミキサー15を使用し、焼結原料10を造粒して造粒物を製造する場合、リフター17の突出高さHを30mm以下とし、ドラムミキサー15の静止状態で、ドラムミキサー15内の底部18に溜まった焼結原料10の積層厚みh2を300mm以下にする。
As shown in FIG. 8, the yield of the granulated product having the target particle size is increased by providing a lifter, and the protrusion height H of the lifter is increased when the protrusion height H is in the range of 10 mm to 30 mm. There is a tendency to decrease with it. From this, when the protrusion height H of the lifter exceeds 30 mm, the above-described scraping action becomes excessive and the yield of the granulated product is further reduced, and the stacking thickness h2 of the iron ore raw material is excessively large. As a result, it can be seen that the yield of the granulated product having the target particle size further decreases. In addition, when the protrusion height H of the lifter was 30 mm, the yield of the granulated product with the target particle size could be secured by 50% by mass or more until the laminated thickness h2 of the iron ore raw material was 300 mm.
From the above, when using the drum mixer 15 provided with the plurality of lifters 17 on the inner surface 16 and granulating the sintered raw material 10 to produce a granulated product, the protrusion height H of the lifter 17 is 30 mm or less. In the stationary state of the drum mixer 15, the lamination thickness h2 of the sintering raw material 10 accumulated on the bottom 18 in the drum mixer 15 is set to 300 mm or less.

なお、最終的に得られる粒度3mm以上10mm以下の造粒物の収率を更に向上させるためには、リフターの突出高さHを25mm以下、更には20mm以下にすることが好ましい。一方、リフターが無くても、前記したように、焼結原料の積層厚みh2を調整すれば、目標粒度の造粒物を収率よく製造できるため、下限値については規定していないが、リフターによる効果を顕著にするには、リフターの突出高さHを5mm以上、更には10mm以上にすることが好ましい。
また、目標粒度の造粒物の収率を更に向上させるためには、焼結原料の積層厚みh2を250mm以下、更には230mm以下にすることが好ましい。一方、焼結原料の積層厚みh2の下限値は、前記したように、ドラムミキサーの底部であって、ドラムミキサーの内面からリフターの上端までに存在する焼結原料が、リフターに阻まれて転動できないため、リフターの突出高さHよりも高くした。なお、目標粒度の造粒物を安定に製造し、しかもその収率を更に向上させるためには、焼結原料の積層厚みh2を、{(リフターの突出高さH)+20}mm以上、更には、100mm以上にすることが好ましい。
In order to further improve the yield of the granulated product having a particle size of 3 mm or more and 10 mm or less finally obtained, the protrusion height H of the lifter is preferably 25 mm or less, more preferably 20 mm or less. On the other hand, even if there is no lifter, as described above, if the laminated thickness h2 of the sintering raw material is adjusted, a granulated product with a target particle size can be produced with high yield. In order to make the effect of the above remarkable, it is preferable to set the protrusion height H of the lifter to 5 mm or more, more preferably 10 mm or more.
In order to further improve the yield of the granulated product having the target particle size, it is preferable to set the lamination thickness h2 of the sintering raw material to 250 mm or less, and further to 230 mm or less. On the other hand, the lower limit value of the lamination thickness h2 of the sintering raw material is the bottom of the drum mixer as described above, and the sintering raw material existing from the inner surface of the drum mixer to the upper end of the lifter is blocked by the lifter. Since it cannot move, it was made higher than the protrusion height H of the lifter. In addition, in order to stably produce a granulated product having a target particle size and further improve the yield, the lamination thickness h2 of the sintering raw material is set to {(lifter protrusion height H) +20} mm or more, Is preferably 100 mm or more.

このように、微粉を主体とした焼結原料10を、ドラムミキサー12(15も同様)により造粒する場合、造粒性に及ぼす水分の影響が非常に大きい。そこで、本実施の形態における条件では、造粒物の水分含有量が8質量%以上11質量%以下の範囲になるように、焼結原料10に水を添加した。
ここで、造粒物の水分含有量が8質量%未満の場合、水分不足に起因して造粒不足となり、一方、12質量%を超える場合、例えば、造粒過剰となって粗大粒が増加したり、またドラムミキサーの内面へ原料が付着する恐れがあるため、造粒性を保つことが困難となる。
Thus, when the sintering raw material 10 mainly composed of fine powder is granulated by the drum mixer 12 (same for 15), the influence of moisture on the granulation property is very large. Therefore, under the conditions in the present embodiment, water was added to the sintering raw material 10 so that the water content of the granulated product was in the range of 8 mass% to 11 mass%.
Here, when the moisture content of the granulated product is less than 8% by mass, the granulation is insufficient due to insufficient moisture. On the other hand, when it exceeds 12% by mass, for example, the granulation becomes excessive and coarse particles increase. In addition, since the raw material may adhere to the inner surface of the drum mixer, it is difficult to maintain the granulation property.

そこで、更に品質を高めた造粒物の収率を向上させるため、造粒物の水分含有量の下限値を、8.5質量%、更には9質量%とすることが好ましく、また、上限値を、10.5質量%とすることが好ましい。
以上の結果に基づき、ドラムミキサー12を使用して、焼結原料10を、例えば1分以上(上限は特にないが5分程度)造粒処理することにより、粒度分布3mm以上10mm以下の造粒物の収率を50質量%以上にできる。なお、製造した造粒物は、必要に応じて篩選別機で篩分けされた後、更に乾燥機(図示しない)で乾燥処理され、焼結機へ供給される。
Therefore, in order to improve the yield of the granulated product with further improved quality, the lower limit of the moisture content of the granulated product is preferably 8.5% by mass, more preferably 9% by mass, The value is preferably 10.5% by mass.
Based on the above results, granulation with a particle size distribution of 3 mm or more and 10 mm or less is performed by granulating the sintering raw material 10 using the drum mixer 12 for, for example, 1 minute or more (there is no particular upper limit, but about 5 minutes). The yield of the product can be 50% by mass or more. The produced granulated product is sieved with a sieve sorter as necessary, and further dried with a dryer (not shown) and supplied to a sintering machine.

次に、本発明の作用効果を確認するために行った実施例について説明する。
ここでは、直径1mの実験用ドラムミキサーを使用して、(1)原料の積層厚みと目標粒度(3mm以上10mm以下)の造粒物の収率(目標50質量%以上)との関係、(2)リフターの突出高さ及び原料の積層厚みと目標粒度の造粒物の収率との関係を検討した結果と、この検討結果に基づき、実機用ドラムミキサーを使用して、前記(1)、(2)の関係を検討した結果について説明する。なお、実機用ドラムミキサーとしては、直径が、例えば、2m以上4m以下のものがあるが、ここでは、3mのものについて検討した。
まず、直径1mの実験用ドラムミキサーを使用し、その回転数を20rpm、造粒処理時間を2分として、原料の投入速度を種々変更することで、原料の積層厚みを変え、水分含有量が9.5質量%の造粒物を製造した結果について、表1を参照しながら説明する。なお、前記したように、焼結原料はその主成分が鉄鉱石原料であり、その粒度分布は鉄鉱石原料と同様であるため、原料として、粒径250μm以下の粒子を60質量%含む鉄鉱石原料を使用した。
Next, examples carried out for confirming the effects of the present invention will be described.
Here, using a laboratory drum mixer having a diameter of 1 m, (1) the relationship between the lamination thickness of the raw materials and the yield of the granulated product with a target particle size (3 mm or more and 10 mm or less) (target 50 mass% or more); 2) Based on the results of studying the relationship between the protrusion height of the lifter and the raw material stacking thickness and the yield of the granulated product of the target particle size, based on the results of this study, using the actual drum mixer, the above (1) The results of studying the relationship (2) will be described. The actual drum mixer has a diameter of, for example, not less than 2 m and not more than 4 m.
First, using a laboratory drum mixer with a diameter of 1 m, changing the raw material stacking speed by changing the feed rate of the raw material by changing the rotational speed to 20 rpm and the granulation treatment time to 2 minutes, the moisture content is The result of producing a 9.5 mass% granulated product will be described with reference to Table 1. As described above, since the sintering raw material is mainly composed of iron ore and the particle size distribution is the same as that of iron ore, the raw material is iron ore containing 60% by mass of particles having a particle size of 250 μm or less. The raw material was used.

Figure 2009287122
Figure 2009287122

表1に示すように、リフターを備えていない内面が平滑なドラムミキサーを使用した場合、鉄鉱石原料の積層厚みが、10mm以上30mm以下の範囲で、目標粒度の造粒物の収率が比較的高くなった。しかし、積層厚みを100mm以上にすると、ドラムミキサーの内面での鉄鉱石原料のスリップが生じ、造粒不良となった。
一方、内面にリフターを備えたドラムミキサーを使用した場合、リフター高さが5mm以上30mm以下の範囲においては、鉄鉱石原料の積層厚みをリフター高さよりも高くすることで、目標粒度の造粒物の収率を従来よりも向上でき、特に100mm以上300mm以下までの範囲で、目標収率50質量%以上を得ることができた。しかし、鉄鉱石原料の積層厚みを400mmまで上昇させると、鉄鉱石原料の転動状態が悪化して造粒物の収率が低下した。また、リフター高さを30mmまで高くすると、鉄鉱石原料の掻き上げ傾向が顕著となって、目標粒度の造粒物の収率が低下する傾向が見られたが、目標収率50質量%以上は確保できた。
As shown in Table 1, when using a drum mixer with a smooth inner surface that is not equipped with a lifter, the yield of the granulated product with the target particle size is compared in the range where the thickness of the iron ore raw material is 10 mm or more and 30 mm or less. It became high. However, when the lamination thickness was 100 mm or more, the iron ore raw material slipped on the inner surface of the drum mixer, resulting in poor granulation.
On the other hand, when a drum mixer equipped with a lifter on the inner surface is used, in the range where the height of the lifter is 5 mm or more and 30 mm or less, the laminated thickness of the iron ore raw material is made higher than the lifter height, so that the granulated product of the target particle size The target yield was 50% by mass or more, particularly in the range from 100 mm to 300 mm. However, when the lamination thickness of the iron ore raw material was increased to 400 mm, the rolling state of the iron ore raw material was deteriorated and the yield of the granulated product was reduced. Moreover, when the lifter height was increased to 30 mm, the scraping tendency of the iron ore raw material became prominent and the yield of the granulated product having the target particle size tended to decrease, but the target yield was 50% by mass or more. Was secured.

以上のことから、リフター無しのドラムミキサーを使用する場合、鉄鉱石原料の積層厚みを30mm以下にし、またリフター有りのドラムミキサーを使用する場合、リフター高さを30mm以下とし、鉄鉱石原料の積層厚みを、リフター高さを超え、特に100mm以上300mm以下にすることで、目標粒度の造粒物の収率を、50質量%以上にできる知見が得られた。
次に、この知見に基づいて、直径3mの実機用ドラムミキサーを使用し、その回転数を6.5rpm、造粒処理時間を2分として、鉄鉱石原料の投入速度を種々変更することで、鉄鉱石原料の積層厚みを変え、水分含有量が9.5質量%の造粒物を製造した結果について、表2を参照しながら説明する。なお、ここでは、従来方法との比較のため、ドラムミキサーの断面積に占める鉄鉱石原料の面積割合を示した数値、即ち占積率を併記した。
From the above, when using a drum mixer without a lifter, the lamination thickness of the iron ore raw material should be 30 mm or less, and when using a drum mixer with a lifter, the lifter height should be 30 mm or less, The knowledge which can make the yield of the granulated material of a target particle size 50 mass% or more was obtained by making thickness exceed lifter height, especially 100 mm or more and 300 mm or less.
Next, based on this knowledge, using an actual drum mixer with a diameter of 3 m, changing the rotational speed to 6.5 rpm and the granulation treatment time to 2 minutes, variously changing the input speed of the iron ore raw material, The results of producing a granulated product having a moisture content of 9.5% by mass by changing the thickness of the iron ore raw material will be described with reference to Table 2. Here, for comparison with the conventional method, a numerical value indicating the area ratio of the iron ore raw material in the cross-sectional area of the drum mixer, that is, a space factor is also shown.

Figure 2009287122
Figure 2009287122

表2から明らかなように、直径3mの実機用ドラムミキサーについても、前記した実験用ドラムミキサーと同様の結果が得られた。
また、表2において、リフター無しのドラムミキサーを使用した場合、積層厚みが30mm以下で目標粒度の造粒物の収率は高められるが、鉄鉱石原料の占積率が1%未満であり、造粒物の生産性の観点からは好ましくなかった。しかし、リフター有りのドラムミキサーを使用することで、鉄鉱石原料の積層厚みを300mm(特に好ましくは230mm)、即ち占積率で5質量%程度(特に好ましくは3.5%)まで上昇させても、目標粒度の造粒物の収率50質量%を確保することができ、造粒物の生産性を向上できることを確認できた。
As is apparent from Table 2, the same results as those of the experimental drum mixer described above were obtained for the actual drum mixer having a diameter of 3 m.
Moreover, in Table 2, when a drum mixer without a lifter is used, the yield of the granulated material having a target particle size is increased when the lamination thickness is 30 mm or less, but the space factor of the iron ore raw material is less than 1%, This was not preferable from the viewpoint of the productivity of the granulated product. However, by using a drum mixer with a lifter, the lamination thickness of the iron ore raw material is increased to 300 mm (particularly preferably 230 mm), that is, the space factor is increased to about 5% by mass (particularly preferably 3.5%). In addition, it was possible to secure a yield of 50% by mass of the granulated product having the target particle size, and to confirm that the productivity of the granulated product could be improved.

ここで、粒径250μm以下の粒子量を70質量%まで増加させた鉄鉱石原料を使用した場合の結果についても説明する。
まず、リフター無しのドラムミキサーを使用し、積層厚み30mmと100mmにおける目標粒度の造粒物の収率を比較した。表2に示すように、微粉の粒子を60質量%含む鉄鉱石原料を使用した場合、積層厚みを100mmから30mmへと変えることで、目標粒度の造粒物の収率が12質量%から59質量%へと5倍程度増加した。一方、微粉の粒子を70質量%含む鉄鉱石原料を使用した場合、目標粒度の造粒物の収率が9質量%から65質量%へと7倍以上増加した。
Here, the result in the case of using an iron ore raw material in which the amount of particles having a particle size of 250 μm or less is increased to 70% by mass will be described.
First, a drum mixer without a lifter was used, and the yields of the granulated products having the target particle sizes at a lamination thickness of 30 mm and 100 mm were compared. As shown in Table 2, when an iron ore raw material containing 60% by mass of fine particles is used, the yield of the granulated product having a target particle size is increased from 12% by mass to 59% by changing the lamination thickness from 100 mm to 30 mm. It increased about 5 times to mass%. On the other hand, when the iron ore raw material containing 70% by mass of fine powder particles was used, the yield of the granulated product having the target particle size increased 7 times or more from 9% by mass to 65% by mass.

次に、高さ20mmのリフターを備えたドラムミキサーを使用し、積層厚み20mmと30mmにおける目標粒度の造粒物の収率を比較した。表2に示すように、微粉の粒子を60質量%含む鉄鉱石原料を使用した場合、積層厚みを20mmから30mmへと変えることで、目標粒度の造粒物の収率が3質量%から29質量%へと10倍程度増加した。一方、微粉の粒子を70質量%含む鉄鉱石原料を使用した場合、目標粒度の造粒物の収率が3質量%から36質量%へと12倍程度増加した。
このことから、本願発明の微粉原料の造粒方法は、微粉割合が増加するほど、その効果が顕著に現れることを確認できた。
Next, using a drum mixer equipped with a lifter having a height of 20 mm, the yields of the granulated products having a target particle size at a lamination thickness of 20 mm and 30 mm were compared. As shown in Table 2, when an iron ore raw material containing 60% by mass of fine particles is used, the yield of the granulated product having the target particle size is increased from 3% by mass to 29% by changing the lamination thickness from 20 mm to 30 mm. It increased about 10 times to mass%. On the other hand, when the iron ore raw material containing 70% by mass of fine particles was used, the yield of the granulated product having the target particle size increased from 3% by mass to 36% by mass by about 12 times.
From this, it was confirmed that the effect of the granulation method of the fine powder raw material of the present invention becomes more remarkable as the fine powder ratio increases.

続いて、直径3mの実機用ドラムミキサーを使用して製造した造粒物の水分含有量について検討した結果について、表3、表4を参照しながら説明する。なお、表3はリフター無しのドラムミキサーを使用して鉄鉱石原料の積層厚みを20mm(占積率:0.09%)に設定した場合の結果であり、表4は高さ10mmのリフターが設けられたドラムミキサーを使用して鉄鉱石原料の積層厚みを200mm(占積率:2.9%)に設定した場合の結果である。 Then, the result of having examined about the water content of the granulated material manufactured using the drum mixer for actual machines of diameter 3m is demonstrated, referring Table 3 and Table 4. FIG. Table 3 shows the results when the thickness of the iron ore raw material is set to 20 mm (space factor: 0.09%) using a drum mixer without a lifter, and Table 4 shows a lifter with a height of 10 mm. It is a result at the time of setting the lamination thickness of an iron ore raw material to 200 mm (space factor: 2.9%) using the provided drum mixer.

Figure 2009287122
Figure 2009287122

Figure 2009287122
Figure 2009287122

表3、表4から明らかなように、リフターの有無に関わらず、造粒物の水分含有量が8質量%未満の場合(7質量%)は、水分不足のため造粒不足による微粉分が増加し、目標粒度の造粒物の収率が低下する傾向がみられた。一方、造粒物の水分含有量が11質量%を超える場合(11.5質量%)は、鉄鉱石原料同士の付着力が過剰となり、造粒物の直径が目標粒度以上に大きくなり、目標粒度の造粒物の収率が低下する傾向がみられた。
このことから、目標粒度の造粒物の収率の更なる向上を図るには、造粒物の水分含有量を8質量%以上11質量%以下の範囲に設定することが好ましい。
以上の結果から、本願発明の微粉原料の造粒方法を使用することで、微粉を主体とする焼結原料から、目標とする粒度分布を備えた造粒物を、収率よく製造できることを確認できた。
As is clear from Tables 3 and 4, when the moisture content of the granulated product is less than 8% by mass (7% by mass) regardless of the presence or absence of a lifter, the fine powder content due to insufficient granulation is due to insufficient moisture. There was a tendency that the yield of the granulated product with the target particle size decreased and decreased. On the other hand, when the water content of the granulated product exceeds 11% by mass (11.5% by mass), the adhesion between the iron ore raw materials becomes excessive, and the diameter of the granulated product becomes larger than the target particle size. There was a tendency for the yield of granulated particles to decrease.
From this, in order to further improve the yield of the granulated product having the target particle size, it is preferable to set the water content of the granulated product in the range of 8% by mass to 11% by mass.
From the above results, it was confirmed that by using the granulation method of the fine powder raw material of the present invention, a granulated product having a target particle size distribution can be produced with high yield from the sintered raw material mainly composed of fine powder. did it.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の微粉原料の造粒方法を構成する場合も本発明の権利範囲に含まれる。 As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, the right scope of the present invention also includes a case where the granulation method for a fine powder material of the present invention is configured by combining some or all of the above-described embodiments and modifications.

10:焼結原料、11:内面、12:ドラムミキサー、13:底部、15:ドラムミキサー、16:内面、17:リフター(滑り抑制部材)、18:底部、19:上端 10: Sintering raw material, 11: Inner surface, 12: Drum mixer, 13: Bottom, 15: Drum mixer, 16: Inner surface, 17: Lifter (slip suppression member), 18: Bottom, 19: Upper end

Claims (3)

一方側から投入された焼結原料を転動させて造粒し、製造された造粒物を他方側へ移動させて排出することにより、焼結原料を連続的に造粒処理するドラムミキサーを用い、粒径250μm以下の粒子を60質量%以上含む焼結原料を、内面が平滑な前記ドラムミキサーで造粒して造粒物を製造する方法であって、
前記ドラムミキサーの静止状態で、該ドラムミキサー内の底部に溜まった前記焼結原料の積層厚みを30mm以下にすることを特徴とする微粉原料の造粒方法。
A drum mixer that continuously granulates the sintered raw material by rolling and granulating the sintered raw material charged from one side and moving the produced granulated product to the other side and discharging it. A method for producing a granulated product by granulating a sintered raw material containing particles having a particle diameter of 250 μm or less in an amount of 60% by mass or more with the drum mixer having a smooth inner surface,
A granulation method of a fine powder raw material, wherein the lamination thickness of the sintered raw material accumulated at the bottom of the drum mixer is 30 mm or less when the drum mixer is stationary.
一方側から投入された焼結原料を転動させて造粒し、製造された造粒物を他方側へ移動させて排出することにより、焼結原料を連続的に造粒処理するドラムミキサーを用い、焼結原料の滑りを抑制する複数の滑り抑制部材を前記ドラムミキサーの内面から突出させて設け、粒径250μm以下の粒子を60質量%以上含む焼結原料を前記ドラムミキサーで造粒して造粒物を製造する方法であって、
前記ドラムミキサーの前記内面からの前記滑り抑制部材の突出高さを30mm以下とし、前記ドラムミキサーの静止状態で、該ドラムミキサー内の底部に溜まった前記焼結原料の積層厚みを、前記滑り抑制部材の突出高さを超え300mm以下にすることを特徴とする微粉原料の造粒方法。
A drum mixer that continuously granulates the sintered raw material by rolling and granulating the sintered raw material charged from one side and moving the produced granulated product to the other side and discharging it. And a plurality of slip suppression members that suppress the slip of the sintering raw material are provided so as to protrude from the inner surface of the drum mixer, and a sintering raw material containing 60% by mass or more of particles having a particle size of 250 μm or less is granulated by the drum mixer. A method for producing a granulated product,
The protrusion height of the slip suppression member from the inner surface of the drum mixer is set to 30 mm or less, and the lamination thickness of the sintered raw material accumulated at the bottom of the drum mixer in the stationary state of the drum mixer is set to the slip suppression. A method for granulating a raw material for fine powder, characterized in that the protruding height of the member is made to be 300 mm or less.
請求項1及び2のいずれか1項に記載の微粉原料の造粒方法において、前記造粒物の水分含有量を8質量%以上11質量%以下の範囲にすることを特徴とする微粉原料の造粒方法。 The granulation method of the fine powder raw material according to any one of claims 1 and 2, wherein the water content of the granulated product is in the range of 8 mass% to 11 mass%. Granulation method.
JP2009201918A 2009-09-01 2009-09-01 Granulation method of fine powder raw material Active JP4677040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009201918A JP4677040B2 (en) 2009-09-01 2009-09-01 Granulation method of fine powder raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009201918A JP4677040B2 (en) 2009-09-01 2009-09-01 Granulation method of fine powder raw material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006086089A Division JP4497419B2 (en) 2006-03-27 2006-03-27 Granulation method of fine powder raw material

Publications (2)

Publication Number Publication Date
JP2009287122A true JP2009287122A (en) 2009-12-10
JP4677040B2 JP4677040B2 (en) 2011-04-27

Family

ID=41456614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009201918A Active JP4677040B2 (en) 2009-09-01 2009-09-01 Granulation method of fine powder raw material

Country Status (1)

Country Link
JP (1) JP4677040B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012086130A (en) * 2010-10-18 2012-05-10 Kobe Steel Ltd Drum type granulator
WO2013014926A1 (en) * 2011-07-28 2013-01-31 Jfeスチール株式会社 Method for manufacturing sintered ore and manufacturing equipment for same, and apparatus for projecting powdered raw material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314822A (en) * 1986-07-07 1988-01-22 Kobe Steel Ltd Drum mixer for powder raw material for sintered ore
JPH06306495A (en) * 1993-04-16 1994-11-01 Kawasaki Steel Corp Method for granulating raw material for sintering
JPH06327960A (en) * 1993-05-24 1994-11-29 Kawasaki Steel Corp Constant control method for occupying volume pate of mixer for sintering material
JP2005350770A (en) * 2004-05-13 2005-12-22 Nippon Steel Corp Method for pretreating raw material for sintering

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314822A (en) * 1986-07-07 1988-01-22 Kobe Steel Ltd Drum mixer for powder raw material for sintered ore
JPH06306495A (en) * 1993-04-16 1994-11-01 Kawasaki Steel Corp Method for granulating raw material for sintering
JPH06327960A (en) * 1993-05-24 1994-11-29 Kawasaki Steel Corp Constant control method for occupying volume pate of mixer for sintering material
JP2005350770A (en) * 2004-05-13 2005-12-22 Nippon Steel Corp Method for pretreating raw material for sintering

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012086130A (en) * 2010-10-18 2012-05-10 Kobe Steel Ltd Drum type granulator
WO2013014926A1 (en) * 2011-07-28 2013-01-31 Jfeスチール株式会社 Method for manufacturing sintered ore and manufacturing equipment for same, and apparatus for projecting powdered raw material
JP2013047376A (en) * 2011-07-28 2013-03-07 Jfe Steel Corp Method for manufacturing sintered ore and manufacturing equipment for the same, and apparatus for projecting powdered raw material

Also Published As

Publication number Publication date
JP4677040B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
JP3902629B2 (en) Pretreatment method of sintering raw materials
JP4568243B2 (en) Method of kneading fine powder material
KR101171455B1 (en) Method for production of carbon composite metal oxide briquette
JP5326592B2 (en) Granulation method of sintering raw material
JP4746410B2 (en) Method for producing sintered ore
RU2675883C2 (en) Method and device for producing granulates
JP4786508B2 (en) Pretreatment method of sintering raw material
JP4677040B2 (en) Granulation method of fine powder raw material
KR102085054B1 (en) Method for producing sintered ore
JP4786760B2 (en) Pretreatment method of sintering raw material
JP6468367B2 (en) Method for producing sintered ore
JP4497419B2 (en) Granulation method of fine powder raw material
JP4795484B2 (en) Iron ore raw material grinding method
JP6036295B2 (en) Pretreatment method of sintering raw materials
JP5828305B2 (en) Pretreatment method of sintering raw material
JP5846402B1 (en) Production equipment for granulating raw materials for sintering
WO2015152112A1 (en) Device for manufacturing pelletized sinter feed
JP6020823B2 (en) Method for producing granulated raw material for sintering
JP2004204332A (en) Method for producing sintering material
JP2006312786A (en) Method for pretreating raw material for sintering
JP7024649B2 (en) Granulation method of raw material for sintering
JP5979382B2 (en) Manufacturing method and apparatus for granulating raw material for sintering
JP5835099B2 (en) Pretreatment method of sintering raw material
JP6888387B2 (en) Granulation method for sintered raw materials
JP2015014039A (en) Method and apparatus for production of granulation raw material for sintering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4677040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350