WO2017092745A1 - Drehmomentsteuerung einer elektromaschine zum starten eine brennkraftmaschine in einem antriebstrang eines kraftfahrzeuges - Google Patents

Drehmomentsteuerung einer elektromaschine zum starten eine brennkraftmaschine in einem antriebstrang eines kraftfahrzeuges Download PDF

Info

Publication number
WO2017092745A1
WO2017092745A1 PCT/DE2016/200531 DE2016200531W WO2017092745A1 WO 2017092745 A1 WO2017092745 A1 WO 2017092745A1 DE 2016200531 W DE2016200531 W DE 2016200531W WO 2017092745 A1 WO2017092745 A1 WO 2017092745A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric machine
internal combustion
combustion engine
drive train
crankshaft
Prior art date
Application number
PCT/DE2016/200531
Other languages
English (en)
French (fr)
Inventor
Marco Grethel
Markus Baehr
Hyung Wook Choi
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to US15/778,031 priority Critical patent/US10738752B2/en
Priority to CN201680068690.1A priority patent/CN108291520B/zh
Priority to DE112016005505.6T priority patent/DE112016005505A5/de
Publication of WO2017092745A1 publication Critical patent/WO2017092745A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/006Starting of engines by means of electric motors using a plurality of electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/298Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature and field supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/008Arrangements for controlling electric generators for the purpose of obtaining a desired output wherein the generator is controlled by the requirements of the prime mover
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/08Control of generator circuit during starting or stopping of driving means, e.g. for initiating excitation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2400/00Control systems adapted for specific engine types; Special features of engine control systems not otherwise provided for; Power supply, connectors or cabling for engine control systems
    • F02D2400/02Four-stroke combustion engines with electronic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0888DC/DC converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/022Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/10Control related aspects of engine starting characterised by the control output, i.e. means or parameters used as a control output or target
    • F02N2300/104Control of the starter motor torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses

Definitions

  • the invention relates to a drive train for a motor vehicle with a working according to a predetermined operating principle internal combustion engine with a crankshaft, a predetermined number of cylinders and a predetermined by the operating principle and the number of cylinders main vibration order with an exciter frequency, one of the internal combustion engine by rotational drive of the crankshaft in one Speed range of the exciting frequency starting starting device with an electric machine with a torque characteristic over the speed and a crankshaft downstream, designed for the main vibration order of the engine vibration isolation device with a resonance characteristic below an idle speed of the internal combustion engine in a first speed range occurring resonance range, the resonance range at coupled electric machine is shifted to a second, lower speed range.
  • the resonance points of such vibration isolation devices are preferably designed for speeds below the idling speed of the internal combustion engine in order to largely prevent disturbances during normal operation of the drive train.
  • such resonance points must be overcome each time the internal combustion engine is started up, with the vibration isolation devices making it difficult to start the internal combustion engine and even being under high load
  • a device in which the vibration insulation device in the form of a dual mass flywheel during the start of the internal combustion engine is disabled by means of a locking device.
  • the object of the invention is the advantageous development of a drive train with a starting device for starting the internal combustion engine and a vibration isolation system.
  • an object of the invention is to improve a start of the internal combustion engine in terms of design due to higher resonances of shifting oscillations of the vibration isolation device.
  • object of the invention to provide a drive train in which a design-related resonance shift of the vibration isolation device is compensated to higher frequencies by designing the starting device.
  • the proposed powertrain for a motor vehicle has an internal combustion engine with a crankshaft operating according to a given operating principle, for example the four-stroke principle of an Otto or Diesel engine or the two-stroke principle on.
  • the internal combustion engine has a predetermined number of cylinders, for example one to eight cylinders.
  • the internal combustion engine may have a predetermined number of deactivatable cylinders, in particular during the start or in operating states requiring little power. With or without this cylinder deactivation, preferably one, two or three cylinders may be active during the start.
  • the internal combustion engine is due to its operating principle, for example, by selective torque pulses igniting cylinder torsional vibration, which generate a predetermined main vibration order with an exciter frequency by the working principle and the number of cylinders.
  • a starting device which starts it by rotational drive of the crankshaft in a speed range of the excitation frequency.
  • the starting device includes an electric machine with a predetermined torque characteristic.
  • the electric machine may be an electric motor, whose rotor is toothed with a rotational lock, for example, via a starter ring gear with the crankshaft.
  • the starting device may include a separate starter with at least one electric motor or a starter generator or a hybrid electric machine integrated into the drive train.
  • the crankshaft is an effective on the speed of the internal combustion engine vibration isolation device, preferably a dual-mass flywheel, a flywheel, a centrifugal pendulum or the like and optionally downstream of their combination, which is designed in a preferred manner to the main vibration order of the internal combustion engine.
  • the resonance characteristic of the vibration isolation device is preferably effective at speeds less than the idling speed. In this case, the resonance range can occur in a first speed range when the electric machine is decoupled, wherein the resonance range when the electric machine is coupled into a second, lower speed control. can be relocated richly. To improve the resonant characteristics during startup, the electric machine provides an effective torque extended beyond the second speed range. Although this moment can be zero, but avoids negative moments, for example, to form a generator operation of the starting device.
  • the provided moment can be damped by means of a damping means.
  • a damping means This means that both the mass or the mass moment of inertia of the rotor of the electric machine and a damping means remain intact until the resonance curve has subsided to a degree which only marginally disturbs the starting process.
  • the optionally damping effect of the electric machine is maintained until at least the maximum of the resonance curve damped by the electric machine has been exceeded.
  • a corresponding security surcharge can be provided.
  • the starting device is provided as a damping means for the drive strssen, as long as it is rotationally connected to the crankshaft of the internal combustion engine.
  • the torque characteristic of the electric machine can be designed so that they provide over rotational speeds, which are decisive for the resonance behavior, for example, at least over the second and possibly beyond the first speed range addition of a residual torque, wherein the falling over the speed torque of the electric machine, the damping effect achieved and can be virtually equated with a viscous damper.
  • this can for example be designed as a pinion starter without freewheel, which is spouted out later, for example, by a corresponding control.
  • the pinion starter can do this by means of a clutch, such as a switching or Be controlled friction clutch.
  • a starter generator or a hybrid electric machine can accordingly be connected as a generator later.
  • the proposed drive train may be provided by the damping effect of the starting device during the start of the internal combustion engine with an internal combustion engine, which requires by their properties a vibration isolation device whose resonance curve is shifted to higher speeds.
  • an internal combustion engine can be operated, for example, by means of the four-stroke principle, which has one to three cylinders or in which less than four cylinders are activated during the start.
  • the object is achieved in particular by the fact that the torque characteristic of the starting device or of the electric machine is extended to larger rotational speeds.
  • the damped or undamped starting device therefore provides a torque at higher rotational speeds than a maximum of the resonance maximum of the vibration isolation device and thus remains coupled to the drive train until the maximum and possibly a safety margin are exceeded.
  • the electric machine can be connected to the crankshaft in a rotationally locking manner at least until the second speed range has passed through in both directions of rotation.
  • a rotational lock between the rotor of the electric machine and the crankshaft can be designed as a helical tooth.
  • a diode in the circuit between the power supply device such as a lead-acid battery, a starter battery or the like may be connected.
  • the torque characteristic can be expanded to higher speeds by the starting device comprises two parallel-connected electric motors of different motor constants.
  • a power supply device which increases the voltage supply during the starting process of the internal combustion engine may be provided, so that the torque characteristic of the electric machine can be expanded to higher rotational speeds because of the operating voltage of the electric machine increasing with increasing rotational speed.
  • the operating voltage can be increased, for example, by means of a DC / DC converter switched on in the circuit.
  • a separately excited DC motor can be provided, in which the motor constant can be lowered by means of a field weakening. As a result, the voltage increases with decreasing motor constant, which overall while on the speed smaller, but at higher speeds extended engine torques can be achieved.
  • the electric machine may be designed as a series-wound motor with a rotational connection with respect to the crankshaft remaining beyond the second rotational speed range.
  • the electric machine may be designed as a DC motor or as a synchronous three-phase motor with frequency converter.
  • the electric machine can be designed as an asynchronous motor with frequency converter.
  • the torque characteristic of an electric machine must have a residual torque ready due to the predetermined or over the operating time resulting damping up to higher speeds that sufficient damping is ensured in the entire resonance range with rotationally connected to the crankshaft starting device.
  • the release of the connection between the starter and crankshaft therefore takes place only at speeds above the resonance range of the drive train without coupled mass of the starter.
  • the torsional strength of the starting device is designed accordingly.
  • the tracking can be done either via a control logic, which evaluates the current speed of the internal combustion engine, a timing of the startup process and / or the like.
  • the coupling of the starting device to the crankshaft for vibration damping or resonance influencing can sometimes lead to high torque at the rotational connection, for example toothing at the higher speeds. It may therefore be useful to provide the starting and decoupling of the starting device instead of an axial displacement of a pinion corresponding to a pinion starter by means of a dog clutch. As a result, the input and output can be made more dynamic, since less way is required. In addition, the claw geometry can be selected so that a mark under high load or high torque is possible.
  • a start-up procedure can be carried out, for example, by the driver or a control unit requesting the start of the internal combustion engine.
  • the starter pinion spins in as usual.
  • a straight or preferably helical pinion could be permanentlyLespurt and connected via a jaw clutch with the electric machine.
  • the rotor of the electric machine starts to turn to initiate the starting process.
  • the torque characteristic of the starting device is designed such that it is possible to To support the starting process through all occurring critical situations such as non-uniformities or resonances. This means that the torque characteristic is "long enough" relative to the speed.
  • This required torque characteristic can - as described above and in the figures - ben interpreted and implemented in various ways. In this case, it is provided that the starting device, regardless of the start signal, supports the starting process until it is completely completed.
  • FIG. 1 shows a resonance behavior of a drive train during the starting phase of the internal combustion engine
  • FIG. 2 shows a simplified circuit diagram of a starting device
  • Figure 3 is a diagram of the torque characteristic of the starting device of Figure 1
  • Figure 4 is a simplified circuit diagram of a comparison with the starting device
  • Figure 5 is a diagram of the torque characteristic of the starting device of Figure 4
  • Figure 6 is a simplified circuit diagram of one with respect to the starting device
  • FIG. 7 shows a diagram of the torque characteristic of the starting device of FIG. 6
  • FIG. 8 shows a simplified circuit diagram of a starting device with a two-part electric machine
  • FIG. 9 shows a diagram of the torque characteristic of the starting device of FIG. 8
  • FIG. 10 shows a simplified circuit diagram of a starting device with a series-connected motor
  • FIG. 11 is a graph of the torque characteristic of the starting device of FIG. 10;
  • FIG. 12 shows a simplified circuit diagram of a starting device with a separately excited DC motor motor,
  • FIG. 13 shows a diagram of the torque characteristic of the starting device of FIG. 12
  • FIG. 14 shows a simplified circuit diagram of a starting device with a synchronously controlled three-phase motor
  • Figure 15 is a diagram of the torque characteristic of the starting device of Figure 14
  • Figure 16 is a simplified circuit diagram of a starting device with an asynchronous controlled three-phase motor
  • FIG. 17 shows a diagram of the torque characteristic of the starting device of FIG. 16.
  • FIG. 1 shows the diagram 100 with the resonance behavior R, for example, a moment of the internal combustion engine to be transmitted to the remaining drive train superimposed torque peaks over the speed n of the crankshaft during a starting process of the internal combustion engine by means of a starting device.
  • the resonance characteristics 101, 102, 103 represent the resonance behavior of the drive train with vibration isolation device under different conditions.
  • the vibration isolation device is designed for example as a dual-mass flywheel whose resonance is below the idle speed nL.
  • the resonance characteristic 101 reproduces the resonance behavior of the drive train without the influence of the starting device.
  • the maximum of the resonance characteristic 101 shifts over a limited by the speed n- ⁇ limited speed range ⁇ out to higher speeds in which a torque curve of a conven- lent starting device is no longer sufficient, a safe Start to perform because their freewheel is already rolled over within the speed range ⁇ - ⁇ .
  • the resonance characteristic 102 shows the behavior of the drive train with the starting device still connected. Due to the mass or the moment of inertia of the rotor or all rotating components of the starting device, the resonance tuning of the vibration isolation device is detuned and shifted to lower speeds, so that the maximum of the resonance characteristic 102 remains in the speed range ⁇ - ⁇ . However, the resonance characteristic curve 102 transitions into the resonance characteristic 101 as soon as the starting device is decoupled by overrunning the freewheel.
  • the resonance characteristic 103 shows the resonance behavior of the drive train in the case of a damping device damped by a damping device. Due to the attenuation, which can be caused or increased by increasing operating time, the maximum of the resonance characteristic 103 is reduced and widens, with its maximum being shifted to higher rotational speeds.
  • the range of action of the starting device is extended to the speed range ⁇ 2 .
  • Figures 2, 4, 6, 8, 10, 12, 14, 16 respectively show schematically advantageous starting devices 1, 1 a, 1 b, 1 c, 1 d, 1 e, 1f, 1 g, which extended one to higher speeds Have torque characteristic.
  • Figures 3, 5, 7, 9, 1 1, 13, 15, 17 show the corresponding diagrams whose torque characteristics on the speed of the crankshaft during a startup.
  • the starting devices 1 a, 1 b, 1 c, 1 d, 1 e, 1 f, 1 g of Figures 4, 6, 8, 10, 12, 14, 16 each have the rotational speeds ni and optionally n 2 extended residual moments, so that they provide due to the falling over the speed torque viscous dampers corresponding damping means on the Drivetrain act damping, as long as the respective starting device 1 a, 1 b, 1 c, 1 d, 1 e, 1f, 1 g is rotationally connected to the crankshaft.
  • the starting device 1 shows a schematic representation of the starting device 1 with the electric machine 2, which is designed as a permanently excited electric motor 3 in a conventional manner.
  • the electric motor 3 is rotationally connected beyond the rotational speed n 2 , for example by means of straight or helical gearing, to the crankshaft, for example to a starter ring gear of the vibration isolation device, such as a dual mass flywheel.
  • the starting device can then be operated as a generator or separated, for example by means of a clutch from the crankshaft to avoid their damage in the absence of design for high speeds.
  • the diode 5 is connected in the supply line 4 of the starting device 1 between the power supply device 6 with the voltage U, which serves as an electrical freewheel prevention of a generator effect of the electric motor 3.
  • the starting device 1a of FIG. 4 is provided with the electric machine 2a, whose permanently excited electric motor 3a has a lower motor resistance with a lowered resistance. At the same starting torque, this leads to a higher starting current and to a higher idle speed.
  • the higher power leads according to the diagram 106 with the torque curve 107 of Figure 5 to residual torque between the speeds ni , n 2 , so that a safe start is guaranteed.
  • the starting device 1 b of Figure 6 between the power supply device 6b and the electric machine 2b in otherwise similar electric motor 3b with the switched into the leads 4b DC / DC converter 7b provided.
  • the DC / DC converter 7b compensates for the voltage drop across the electric motor 3b during the startup operation, so that higher idling speeds are achieved.
  • the torque curve 109 shows the original behavior of the electric motor 3b. With increasing, impressed by the DC / DC converter 7b voltage idling speeds of the electric motor 3b - as shown in the torque characteristics 1 10, 1 1 1 - increased until it exceeds the speed n- ⁇ in the torque curve 1 1 1.
  • the starting device 1 c is shown, which is a two-part electric machine 2c with the two crankshaft together, that is, for example, on a common rotor shaft driving, permanently excited electric motors 3ci and 3c 2 is formed.
  • the two electric motors 3ci, 3c2 differ in their motor constant, so that different starting torques and idle speeds result.
  • 9 shows the diagram 1 12 with the moment characteristic 1 13 of the starting device 1 c of FIG. 8.
  • the torque characteristic 1 13 is formed in two stages, wherein the electric motor with the higher starting torque drives the internal combustion engine Substantially starts and the electric motor with the higher idle speed causes the extension of the torque characteristic beyond the speed ni addition.
  • the rotationally coupled coupling of the starting device 1 c on the speed n 2 addition the starting behavior of the internal combustion engine is further improved.
  • FIG. 10 shows the starting device 1d, whose electric machine 2d is designed as an electric motor in the form of the series-wound motor 3d.
  • the series-wound motor 3d has a high starting torque.
  • 1 1 shows the diagram 1 14 with the torque characteristic 1 15 of the series motor 3d.
  • the torque characteristic curve 1 15, which continuously drops across the speed n has a residual torque which, with a corresponding design of the series motor 3 d, extends over the rotational speeds ⁇ 1, n 2 , so that a reliable starting behavior of the internal combustion engine is achieved with the starting device 1 d ,
  • FIG. 12 shows the starting device 1e in a schematic representation.
  • the electric machine 2e contains the externally excited DC motor 3e whose motor constant is controlled by the field weakening device 8e controlled by controlling the voltage UA of the voltage supply device is lowered to the excited voltage UE. Due to the field weakening a residual torque is achieved at higher speeds.
  • the diagram 1 16 with the torque characteristic 1 17, 1 18, 1 19, 120 of Figure 13 shows the behavior of the DC motor depending on its external excitation.
  • the torque characteristic 1 17 shows the undisturbed behavior. With increasing disturbance takes the excited voltage, so on the torque characteristics 1 18, 1 19, 120 are increasingly achieved over the speeds ni, n 2 remaining moments are achieved.
  • FIG. 14 shows the starting device 1f, in which the electric machine 2f contains the synchronous three-phase motor 3f.
  • the synchronous three-phase motor 3 f for example, an electronically commutated electric motor is commutated by means of the DC / AC converter 7 f.
  • FIG. 15 shows the diagram 121 with the corresponding torque characteristics 122, 123, 124, 125 of the synchronous three-phase motor 3f.
  • the torque characteristic 122 shows the undisturbed commutation.
  • the torque characteristics 123, 124, 125 show the development of the torque with increasing pre-commutation with increasing residual torque over the rotational speeds n- 1 , n 2 addition.
  • FIG. 16 shows the starting device 1 g, in which the electric machine 2g contains the asynchronous three-phase motor 3g.
  • the electric machine 2g contains the asynchronous three-phase motor 3g.
  • a power-limited engine map can be generated, which provides a residual torque at higher speeds.
  • FIG. 17 shows the diagram 126 with the torque characteristic 127 with a residual torque formed beyond the rotational speeds ni, n 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)

Abstract

Die Erfindung betrifft einen Antriebsstrang für ein Kraftfahrzeug mit einer nach einem vorgegebenen Arbeitsprinzip arbeitenden Brennkraftmaschine mit einer Kurbelwelle, einer vorgegebenen Anzahl von Zylindern und einer durch das Arbeitsprinzip und die Anzahl der Zylinder vorgegebenen Hauptschwingungsordnung mit einer Anregerfrequenz, einer die Brennkraftmaschine durch Drehantrieb der Kurbelwelle in einem Drehzahlbereich der Anregerfrequenz startenden Starteinrichtung (1) mit einer Elektromaschine (2) mit einer Momentenkennlinie über die Drehzahl und einer der Kurbelwelle nachgeschalteten, auf die Hauptschwingungsordnung der Brennkraftmaschine ausgelegten Schwingungsisolationseinrichtung mit einer Resonanzkennlinie unterhalb einer Leerlaufdrehzahl der Brennkraftmaschine in einem ersten Drehzahlbereich (Δn2) auftretenden Resonanzbereich, wobei der Resonanzbereich bei angekoppelter Elektromaschine (2) in einen zweiten, niedrigeren Drehzahlbereich (Δn1) verlagert ist. Um Startschwierigkeiten insbesondere bei zu höheren Frequenzen verlagerten Resonanzen der Schwingungsisolationseinrichtung zu vermeiden, stellt die Elektromaschine (2) ein über den zweiten Drehzahlbereich (Δn1) hinaus wirksam erstrecktes Moment bereit.

Description

DREHMOMENTSTEUERUNG EINER ELEKTROMASCHINE ZUM STARTEN EINE BRENNKRAFTMASCHINE IN EINEM ANTRIEBSTRANG EINES
KRAFTFAHRZEUGES
Die Erfindung betrifft einen Antriebsstrang für ein Kraftfahrzeug mit einer nach einem vorgegebenen Arbeitsprinzip arbeitenden Brennkraftmaschine mit einer Kurbelwelle, einer vorgegebenen Anzahl von Zylindern und einer durch das Arbeitsprinzip und die Anzahl der Zylinder vorgegebenen Hauptschwingungsordnung mit einer Anregerfrequenz, einer die Brennkraftmaschine durch Drehantrieb der Kurbelwelle in einem Drehzahlbereich der Anregerfrequenz startenden Starteinrichtung mit einer Elektro- maschine mit einer Momentenkennlinie über die Drehzahl und einer der Kurbelwelle nachgeschalteten, auf die Hauptschwingungsordnung der Brennkraftmaschine ausgelegten Schwingungsisolationseinrichtung mit einer Resonanzkennlinie unterhalb einer Leerlaufdrehzahl der Brennkraftmaschine in einem ersten Drehzahlbereich auftreten- den Resonanzbereich, wobei der Resonanzbereich bei angekoppelter Elektromaschi- ne in einen zweiten, niedrigeren Drehzahlbereich verlagert ist. Antriebsstränge mit Brennkraftmaschinen, die mittels eines Anlassers wie Starters gestartet werden, sind seit langem bekannt. Beispielsweise werden zum Start der Brennkraftmaschine sogenannte Ritzelstarter mit einem permanent erregten Elektro- motor verwendet, bei denen ein Ritzel in einen mit der Kurbelwelle drehschlüssig verbundenen Anlasserzahnkranz einspurt, wobei zwischen dem Rotor des Elektromotors der Kurbelwelle ein Freilauf angeordnet ist, um nach dem Start der Brennkraftmaschine hohe Drehzahlen des Elektromotors und einen Generatorbetrieb zu vermeiden. Weiterhin sind Schwingungsisolationseinrichtungen zur Schwingungsisolation von Drehschwingungen der Brennkraftmaschine, beispielsweise Drehschwingungsdämpfer wie beispielsweise Zweimassenschwungräder, Drehschwingungstilger wie bei- spielsweise Fliehkraftpendel oder dergleichen sowie deren Kombinationen bekannt. Die Resonanzstellen derartiger Schwingungsisolationseinrichtungen werden in bevorzugter Weise auf Drehzahlen unterhalb der Leerlaufdrehzahl der Brennkraftmaschine ausgelegt, um Störungen während des regulären Betriebs des Antriebsstrangs weit- gehend zu unterbinden. Allerdings müssen derartige Resonanzstellen bei jedem Start der Brennkraftmaschine überwunden werden, wobei die Schwingungsisolationsein- richtungen den Start der Brennkraftmaschine erschweren können und selbst unter hoher Belastung stehen
Aus der DE 10 201 1 1 17 395 A1 ist eine Vorrichtung bekannt, bei der die Schwin- gungsisolationseinrichtung in Form eines Zweimassenschwungrads während des Starts der Brennkraftmaschine mittels einer Verriegelungseinrichtung außer Kraft gesetzt ist.
Aufgabe der Erfindung ist die vorteilhafte Weiterbildung eines Antriebsstrangs mit einer Starteinrichtung zum Start der Brennkraftmaschine und einem Schwingungsisola- tionssystem. Insbesondere ist Aufgabe der Erfindung, einen Start der Brennkraftmaschine bei sich bauartbedingt zu höheren Resonanzen verschiebender Schwingungen der Schwingungsisolationseinrichtung zu verbessern. Insbesondere ist Aufgabe der Erfindung, einen Antriebsstrang vorzuschlagen, bei dem eine bauartbedingte Resonanzverschiebung der Schwingungsisolationseinrichtung zu höheren Frequenzen durch Ausgestaltung der Starteinrichtung kompensiert wird.
Die Aufgabe wird durch den Gegenstand des Anspruchs 1 gelöst. Die von diesem abhängigen Ansprüche geben vorteilhafte Ausführungsformen des Gegenstands des Anspruchs 1 wieder.
Der vorgeschlagene Antriebsstrang für ein Kraftfahrzeug weist eine nach einem vor- gegebenen Arbeitsprinzip, beispielsweise dem Viertaktprinzip eines Otto- oder Diesel- Motors oder dem Zweitaktprinzip arbeitende Brennkraftmaschine mit einer Kurbelwelle auf. Die Brennkraftmaschine weist eine vorgegebene Anzahl von Zylindern, beispielsweise einen bis acht Zylinder auf. Die Brennkraftmaschine kann insbesondere während des Starts oder in wenig Leistung erfordernden Betriebszuständen eine vorgegebene Anzahl abschaltbarer Zylinder aufweisen. Mit oder ohne diese Zylinderabschal- tung können während des Starts bevorzugt ein, zwei oder drei Zylinder aktiv sein. Die Brennkraftmaschine ist bedingt durch ihr Arbeitsprinzip, beispielsweise durch punktuelle Momentenstöße zündender Zylinder drehschwingungsbehaftet, die durch das Arbeitsprinzip und die Anzahl der Zylinder eine vorgegebene Hauptschwingungsordnung mit einer Anregerfrequenz erzeugen.
Zum Start der Brennkraftmaschine ist eine Starteinrichtung vorgesehen, die diese durch Drehantrieb der Kurbelwelle in einem Drehzahlbereich der Anregerfrequenz startet. Die Starteinrichtung enthält eine Elektromaschine mit einer vorgegebenen Momentenkennlinie. Die Elektromaschine kann ein Elektromotor sein, dessen Rotor beispielsweise über einen Anlasserzahnkranz mit der Kurbelwelle drehschlüssig ver- zahnt ist. Die Starteinrichtung kann einen separaten Anlasser mit zumindest einem Elektromotor oder einen Startergenerator oder eine hybridisch in den Antriebsstrang eingebundene Elektromaschine enthalten.
Der Kurbelwelle ist eine über die Drehzahl der Brennkraftmaschine wirksame Schwin- gungsisolationseinrichtung, in bevorzugter Weise ein Zweimassenschwungrad, ein Einmassenschwungrad, ein Fliehkraftpendel oder dergleichen sowie gegebenenfalls deren Kombination nachgeschaltet, die in bevorzugter Weise auf die Hauptschwingungsordnung der Brennkraftmaschine ausgelegt ist. Die Resonanzkennlinie der Schwingungsisolationseinrichtung ist bevorzugt bei Drehzahlen kleiner als die Leerlaufdrehzahl wirksam. Hierbei kann der Resonanzbereich in einem ersten Drehzahlbe- reich auftreten, wenn die Elektromaschine abgekoppelt ist, wobei der Resonanzbereich bei angekoppelter Elektromaschine in einen zweiten, niedrigeren Drehzahlbe- reich verlagert sein kann. Zur Verbesserung der Resonanzeigenschaften während des Starts stellt die Elektromaschine ein über den zweiten Drehzahlbereich hinaus wirksam erstrecktes Moment bereit. Dieses Moment kann zwar Null sein, vermeidet aber negative Momente beispielsweise zur Ausbildung eines Generatorbetriebs der Start- einrichtung.
Das bereitgestellte Moment kann mittels eines Dämpfungsmittels bedämpft sein. Dies bedeutet, dass sowohl die Masse beziehungsweise das Massenträgheitsmoment des Rotors der Elektromaschine und ein Dämpfungsmittel solange erhalten bleiben, bis die Resonanzkurve auf ein den Startvorgang nur noch unwesentlich störendes Maß abgeklungen ist. Beispielsweise kann vorgesehen sein, dass die gegebenenfalls dämpfende Wirkung der Elektromaschine solange aufrechterhalten wird, bis zumindest das Maximum der durch die Elektromaschine bedämpften Resonanzkurve überschritten ist. Ein entsprechender Sicherheitszuschlag kann vorgesehen sein.
In vorteilhafter Weise wird die Starteinrichtung als Dämpfungsmittel für den Antriebs- sträng vorgesehen, solange diese mit der Kurbelwelle der Brennkraftmaschine drehschlüssig verbunden ist. Hierzu kann die Momentenkennlinie der Elektromaschine so ausgelegt sein, dass diese über Drehzahlen, die maßgeblich für das Resonanzverhalten sind, beispielsweise zumindest über den zweiten und gegebenenfalls über den ersten Drehzahlbereich hinaus ein Restmoment bereitstellen, wobei das über die Drehzahl abfallende Moment der Elektromaschine die dämpfende Wirkung erzielt und quasi mit einem viskosen Dämpfer gleichgestellt werden kann.
Zur in beide Drehrichtungen drehschlüssigen Verbindung der Starteinrichtung mit der Kurbelwelle kann diese beispielsweise als Ritzelstarter ohne Freilauf ausgebildet sein, der beispielsweise von einer entsprechenden Steuerung später ausgespurt wird. Der Ritzelstarter kann hierzu mittels einer Kupplung, beispielsweise einer Schalt- oder Reibungskupplung gesteuert sein. Ein Startergenerator oder eine hybridische Elekt- romaschine können entsprechend später generatorisch geschaltet sein.
Der vorgeschlagene Antriebsstrang kann durch die dämpfende Wirkung der Starteinrichtung während des Starts der Brennkraftmaschine mit einer Brennkraftmaschine versehen sein, die durch ihre Eigenschaften eine Schwingungsisolationseinrichtung erfordert, deren Resonanzkurve zu größeren Drehzahlen verlagert ist. Eine derartige Brennkraftmaschine kann beispielsweise mittels des Viertaktprinzips betrieben sein, die ein bis drei Zylinder aufweist oder bei der während des Starts weniger als vier Zylinder aktiviert sind.
Die Aufgabe wird insbesondere dadurch gelöst, dass die Momentenkennlinie der Starteinrichtung beziehungsweise der Elektromaschine zu größeren Drehzahlen ausgedehnt ist. Die bedämpfte oder unbedämpfte Starteinrichtung stellt daher bei größeren Drehzahlen als ein Maximum des Resonanzmaximums der Schwingungsisolati- onseinrichtung ein Moment zu Verfügung und bleibt damit dem Antriebsstrang solan- ge gekoppelt, bis das Maximum und gegebenenfalls ein Sicherheitszuschlag überschritten ist.
Gemäß einer vorteilhaften Ausführungsform des vorgeschlagenen Antriebsstrangs kann die Elektromaschine zumindest bis zum Durchschreiten des zweiten Drehzahlbereichs in beide Drehrichtungen drehschlüssig mit der Kurbelwelle verbunden sein. Ein Drehschluss zwischen dem Rotor der Elektromaschine und der Kurbelwelle kann als Schräg- der Geradverzahnung ausgebildet sein. Hierdurch bleiben die Masse des Rotors und der mit diesem drehenden Bauteile als Masse über den relevanten Teil der Resonanzkurve wirksam, die Momentenkennlinie wird zu größeren Drehzahlen verlängert.
Beispielsweise zur Bereitstellung eines elektrischen Freilaufs kann ein Stromfluss von der Elektromaschine in eine die Stromversorgungseinrichtung der Elektromaschine und damit ein schädlicher generatorischer Betrieb der Elektromaschine unterbunden sein. Beispielsweise kann hierzu eine Diode in den Stromkreis zwischen Stromversorgungseinrichtung, beispielsweise einen Bleiakkumulator, eine Starterbatterie oder dergleichen geschaltet sein.
Gemäß einer weiteren Ausführungsform des Antriebsstrangs kann die Momentenkennlinie zu größeren Drehzahlen erweitert werden, indem die Starteinrichtung zwei parallel geschaltete Elektromotoren unterschiedlicher Motorkonstanten aufweist.
Gemäß einer weiteren Ausführungsform kann eine die Spannungsversorgung während des Startvorgangs der Brennkraftmaschine steigernde Stromversorgungseinrich- tung vorgesehen sein, so dass sich die Momentenkennlinie der Elektromaschine wegen der mit zunehmender Drehzahl steigenden Betriebsspannung der Elektromaschine hin zu größeren Drehzahlen erweitern lässt. Die Betriebsspannung kann beispielsweise mittels eines in den Stromkreis eingeschalteten DC/DC-Wandlers erhöht werden. Alternativ oder zusätzlich kann ein fremderregter Gleichstrommotor vorgesehen sein, bei dem die Motorkonstante mittels einer Feldschwächung abgesenkt werden kann. Hierdurch steigt die Spannung bei fallender Motorkonstante, wodurch insgesamt zwar über die Drehzahl kleinere, jedoch zu größeren Drehzahlen erweiterte Motormomente erzielt werden.
Alternativ oder zusätzlich kann die Elektromaschine als Reihenschlussmotor mit ei- nem über den zweiten Drehzahlbereich hinaus verbleibenden Drehschluss gegenüber der Kurbelwelle ausgebildet sein.
Gemäß einer vorteilhaften Ausführungsform kann die Elektromaschine als Gleichstrommotor oder als Synchrondrehstrommotor mit Frequenzwandler ausgebildet sein. Alternativ kann die Elektromaschine als Asynchronmotor mit Frequenzumrichter aus- gebildet sein. Mit anderen Worten muss die Momentenkennlinie einer Elektromaschine wegen der vorgegebenen oder sich über die Betriebszeit ergebenden Dämpfung bis zu höheren Drehzahlen ein Restmoment bereithalten, dass im gesamten Resonanzbereich bei drehschlüssig mit der Kurbelwelle verbundener Starteinrichtung eine ausreichende Dämpfung gesichert ist. Das Lösen der Verbindung zwischen Starteinrichtung und Kurbelwelle erfolgt daher erst bei Drehzahlen oberhalb des Resonanzbereichs des Antriebsstrangs ohne angekoppelte Masse der Starteinrichtung. Die Drehfestigkeit der Starteinrichtung wird hierzu entsprechend ausgelegt. Das Ausspuren kann entweder über eine Steuerlogik erfolgen, die die aktuelle Drehzahl der Brennkraftmaschine, ei- nen zeitlichen Ablauf des Startvorgangs und/oder dergleichen auswertet.
Das Ankoppeln der Starteinrichtung an die Kurbelwelle zur Schwingungsdämpfung beziehungsweise Resonanzbeeinflussung kann bei den höheren Drehzahlen zum Teil zu hohen Momenten an der drehschlüssigen Verbindung, beispielsweise Verzahnung führen. Es kann daher sinnvoll sein, das An- und Abkoppeln der Starteinrichtung an- statt einer axialen Verschiebung eines Ritzels entsprechend einem Ritzelstarter mittels einer Klauenkupplung vorzusehen. Hierdurch kann das Ein-und Ausspuren dynamischer erfolgen, da weniger Weg erforderlich ist. Zudem kann die Klauengeometrie so gewählt werden, dass auch ein Ausspuren unter hoher Last beziehungsweise hohem Moment möglich ist.
Ein Startvorgang kann beispielsweise erfolgen, indem der Fahrer oder ein Steuergerät den Start der Brennkraftmaschine anfordert. Im Fall eines sogenannten Ritzelstarters spurt das Anlasserritzel wie üblich ein. Alternativ hierzu könnte ein gerad- oder bevorzugt schrägverzahntes Ritzel permanent eingespurt sein und über eine Klauenkupplung mit der Elektromaschine verbunden werden.
Der Rotor der Elektromaschine beginnt zu drehen, um den Startvorgang einzuleiten. Die Momentenkennlinie der Starteinrichtung ist derart ausgelegt, dass es möglich ist, den Startvorgang durch alle auftretenden kritischen Situationen wie Ungleichförmig- keiten oder Resonanzen zu unterstützen. Das heißt, die Momentenkennlinie ist bezogen auf die Drehzahl„lang genug".
Diese erforderliche Momentenkennlinie kann - wie oben und in den Figuren beschrie- ben - auf verschiedene Art und Weise ausgelegt und umgesetzt werden. Hierbei ist vorgesehen, dass die Starteinrichtung unabhängig vom Startsignal so lange den Startvorgang unterstützt, bis dieser vollständig abgeschlossen ist.
Die Erfindung wird anhand der in den Figuren 1 bis17 dargestellten Ausführungsbeispiele näher erläutert. Dabei zeigen:
Figur 1 ein Resonanzverhalten eines Antriebsstrangs während der Startphase der Brennkraftmaschine,
Figur 2 ein vereinfachtes Schaltbild einer Starteinrichtung,
Figur 3 ein Diagramm der Momentenkennlinie der Starteinrichtung der Figur 1 , Figur 4 ein vereinfachtes Schaltbild einer gegenüber der Starteinrichtung
der Figur 1 erweiterten Starteinrichtung,
Figur 5 ein Diagramm der Momentenkennlinie der Starteinrichtung der Figur 4, Figur 6 ein vereinfachtes Schaltbild einer gegenüber der Starteinrichtung
der Figuren 1 und 2 mit ansteigender Spannung betriebenen Starteinrichtung,
Figur 7 ein Diagramm der Momentenkennlinie der Starteinrichtung der Figur 6, Figur 8 ein vereinfachtes Schaltbild einer Starteinrichtung mit einer zweigeteilten Elektromaschine,
Figur 9 ein Diagramm der Momentenkennlinie der Starteinrichtung der Figur 8, Figur 10 ein vereinfachtes Schaltbild einer Starteinrichtung mit einem Reihen- schlussmotor,
Figur 1 1 ein Diagramm der Momentenkennlinie der Starteinrichtung der Figur 10, Figur 12 ein vereinfachtes Schaltbild einer Starteinrichtung mit einem fremderregten Gleichstrommotorschlussmotor,
Figur 13 ein Diagramm der Momentenkennlinie der Starteinrichtung der Figur 12, Figur 14 ein vereinfachtes Schaltbild einer Starteinrichtung mit einem synchron- gesteuerten Drehstrommotor,
Figur 15 ein Diagramm der Momentenkennlinie der Starteinrichtung der Figur 14, Figur 16 ein vereinfachtes Schaltbild einer Starteinrichtung mit einem asynchrongesteuerten Drehstrommotor
und
Figur 17 ein Diagramm der Momentenkennlinie der Starteinrichtung der Figur 16.
Die Figur 1 zeigt das Diagramm 100 mit dem Resonanzverhalten R, beispielsweise einem zu übertragenden Moment der Brennkraftmaschine auf den restlichen Antriebsstrang überlagerte Drehmomentspitzen über die Drehzahl n der Kurbelwelle während eines Startvorgangs der Brennkraftmaschine mittels einer Starteinrichtung. Die Resonanzkennlinien 101 , 102, 103 geben das Resonanzverhalten des Antriebsstrangs mit Schwingungsisolationseinrichtung bei unterschiedlichen Bedingungen wieder. Die Schwingungsisolationseinrichtung ist beispielsweise als Zweimassenschwungrad ausgebildet, dessen Resonanz unterhalb der Leerlaufdrehzahl nL liegt. Die Resonanz- kennlinie 101 gibt das Resonanzverhalten des Antriebsstrangs ohne den Einfluss der Starteinrichtung wieder. Insbesondere bei nach dem Viertaktprinzip betriebenen Brennkraftmaschinen mit weniger als vier Zylindern verlagert sich das Maximum der Resonanzkennlinie 101 über einen durch die Drehzahl n-ι begrenzten Drehzahlbereich Δηι hinaus zu größeren Drehzahlen, in dem eine Momentenkennlinie einer herkömm- liehen Starteinrichtung nicht mehr ausreicht, einen sicheren Start durchzuführen, da deren Freilauf bereits innerhalb des Drehzahlbereichs Δη-ι überrollt wird. Die Resonanzkennlinie 102 zeigt das Verhalten des Antriebsstrangs bei noch angekoppelter Starteinrichtung. Durch die Masse beziehungsweise das Trägheitsmoment des Rotors beziehungsweise aller drehenden Bauteile der Starteinrichtung wird die Resonanzabstimmung der Schwingungsisolationseinrichtung verstimmt und zu niedri- geren Drehzahlen verschoben, so dass das Maximum der Resonanzkennlinie 102 im Drehzahlbereich Δη-ι verbleibt. Allerdings geht die Resonanzkennlinie 102 in die Resonanzkennlinie 101 über, sobald die Starteinrichtung durch Überrollen des Freilaufs abgekoppelt wird.
Die Resonanzkennlinie 103 zeigt das Resonanzverhalten des Antriebsstrangs bei mit- tels eines Dämpfungsmittels bedämpft angekoppelter Starteinrichtung. Durch die Dämpfung, die durch zunehmende Betriebsdauer verursacht oder verstärkt werden kann, erniedrigt sich das Maximum der Resonanzkennlinie 103 und verbreitert sich, wobei dessen Maximum zu höheren Drehzahlen verschoben wird.
Um alle diese Einflüsse auf das Startverhalten zu vermeiden oder zu vermindern, ist der Wirkungsbereich der Starteinrichtung bis in den Drehzahlbereich Δη2 verlängert. Dies bedeutet, dass eine Momentenkennlinie der vorgeschlagenen Starteinrichtung gegenüber herkömmlichen Starteinrichtungen, die bereits im Drehzahlbereich Δηι von der Kurbelwelle beispielsweise durch den mechanischen Freilauf zwischen Rotor und Kurbelwelle abkoppeln, ein Moment bis in den ersten Drehzahlbereich Δη2 oder noch höheren Drehzahlen bereitstellt beziehungsweise an die Kurbelwelle angekoppelt bleibt, ohne in den Generatorbetrieb zu wechseln.
Die Figuren 2, 4, 6, 8, 10, 12, 14, 16 zeigen jeweils schematisch vorteilhafte Starteinrichtungen 1 , 1 a, 1 b, 1 c, 1 d, 1 e, 1f, 1 g, die eine zu höheren Drehzahlen verlängerte Momentkennlinie aufweisen. Die Figuren 3, 5, 7, 9, 1 1 , 13, 15, 17 zeigen dabei die entsprechenden Diagramme deren Momentenkennlinien über die Drehzahl der Kurbelwelle während eines Startvorgangs. Die Starteinrichtungen 1 a, 1 b, 1 c, 1 d, 1 e, 1f, 1 g der Figuren 4, 6, 8, 10, 12, 14, 16 weisen jeweils über die Drehzahlen ni und gegebenenfalls n2 erweiterte Restmomente auf, so dass diese aufgrund des über die Drehzahl abfallenden Moments viskosen Dämpfern entsprechende Dämpfungsmittel bereitstellen, die auf den Antriebsstrang dämpfend wirken, solange die jeweilige Starteinrichtung 1 a, 1 b, 1 c, 1 d, 1 e, 1f, 1 g drehschlüssig mit der Kurbelwelle verbunden ist.
Die Figur 2 zeigt in schematischer Darstellung die Starteinrichtung 1 mit der Elektro- maschine 2, die als permanent erregter Elektromotor 3 in herkömmlicher Weise ausgebildet ist. Im Unterschied zu herkömmlichen Ritzelstartern ist der Elektromotor 3 bis über die Drehzahl n2 hinaus drehschlüssig beispielsweise mittels einer Gerad- oder Schrägverzahnung mit der Kurbelwelle, beispielsweise mit einem Anlasserzahnkranz der Schwingungsisolationseinrichtung wie Zweimassenschwungrad verbunden. Die Starteinrichtung kann anschließend als Generator betrieben werden oder beispielsweise mittels einer Schaltkupplung von der Kurbelwelle getrennt werden, um deren Schädigung bei fehlender Auslegung für hohe Drehzahlen zu vermeiden. Um den Generatorbetrieb bei startender Brennkraftmaschine zu verhindern, ist in der Zuleitung 4 der Starteinrichtung 1 zwischen der Stromversorgungseinrichtung 6 mit der Spannung U die Diode 5 geschaltet, die sozusagen als elektrischer Freilauf der Verhinderung einer Generatorwirkung des Elektromotors 3 dient.
Das Diagramm 104 der Figur 3 zeigt die Momentenkennlinie 105 des Moments der Starteinrichtung 1 der Figur 2 über die Drehzahl n. Durch den über die Drehzahlen n-i und n2 hinausgehende drehschlüssige Ankoppelung der Starteinrichtung 1 bleibt die Masse des Rotors des Elektromotors 3 an die Kurbelwelle und damit die Schwin- gungsisolationseinrichtung gekoppelt, so dass das Maximum des Resonanzverhaltens des Antriebsstrangs bei geringeren Drehzahlen verbleibt und daher trotz früh abfallendem Moment M des Elektromotors 3 ein sicherer Start der Brennkraftmaschine gewährleistet ist. Durch Einbau einer Dämpfung, beispielsweise eines Dämpfungsmittels wie viskose Reibung und dergleichen, kann das Maximum des Resonanzverhaltens zudem erniedrigt werden.
In Abänderung zu der Starteinrichtung 1 der Figur 2 ist die Starteinrichtung 1 a der Fi- gur 4 mit der Elektromaschine 2a versehen, deren permanent erregter Elektromotor 3a einen geringeren Motorwiderstand mit abgesenktem Widerstand aufweist. Dies führt bei gleichem Anlaufmoment zu einem höheren Anlaufstrom und zu einer höheren Leerlaufdrehzahl. Die höhere Leistung führt entsprechend dem Diagramm 106 mit der Momentenkennlinie 107 der Figur 5 zu Restmomenten zwischen den Drehzahlen n-i, n2, so dass ein sicherer Start gewährleistet ist.
In Abänderung zu den Starteinrichtungen 1 , 1 a der Figuren 2 und 4 ist die Starteinrichtung 1 b der Figur 6 zwischen der Stromversorgungseinrichtung 6b und der Elektromaschine 2b bei ansonsten ähnlichem Elektromotor 3b mit dem in die Zuleitungen 4b geschalteten DC/DC-Wandler 7b versehen. Der DC/DC-Wandler 7b kompensiert den Spannungsabfall an dem Elektromotor 3b während des Startbetriebs, so dass höhere Leerlaufdrehzahlen erzielt werden.
Die Figur 7 zeigt das Diagramm 108 mit den Momentenkennlinien 109, 1 10, 1 1 1 der Starteinrichtung 1 b der Figur 6. Die Momentenkennlinie 109 zeigt das ursprüngliche Verhalten des Elektromotors 3b. Mit zunehmender, durch den DC/DC-Wandler 7b aufgeprägter Spannung werden die Leerlaufdrehzahlen des Elektromotors 3b - wie in den Momentenkennlinien 1 10, 1 1 1 gezeigt - erhöht, bis diese in der Momentenkennlinie 1 1 1 die Drehzahl n-ι überschreitet.
In der Figur 8 ist die Starteinrichtung 1 c gezeigt, welche eine zweigeteilte Elektromaschine 2c mit den beiden die Kurbelwelle gemeinsam, das heißt beispielsweise auf ei- ner gemeinsamen Rotorwelle antreibenden, permanent erregten Elektromotoren 3ci und 3c2 gebildet ist. Hierbei sind die Zuleitungen 4c beider Elektromotoren 3ci, 3c2 mit Dioden 5 versehen. Die beiden Elektromotoren 3ci, 3c2 unterscheiden sich in ihrer Motorkonstante, so dass unterschiedliche Anlaufmomente und Leerlaufdrehzahlen resultieren. Hierzu zeigt die Figur 9 das Diagramm 1 12 mit der Momentenkennlinie 1 13 der Starteinrichtung 1 c der Figur 8. Aufgrund der unterschiedlichen Motorkonstanten der Elektromotoren 3ci, 3c2 ist die Momentenkennlinie 1 13 zweistufig ausgebildet, wobei der Elektromotor mit dem höheren Anlaufmoment die Brennkraftmaschine im Wesentlichen startet und der Elektromotor mit der höheren Leerlaufzahl die Erweiterung der Momentenkennlinie über die Drehzahl ni hinaus bewirkt. Durch die drehschlüssige Ankoppelung der Starteinrichtung 1 c über die Drehzahl n2 hinaus wird das Startverhalten der Brennkraftmaschine weiter verbessert.
Die Figur 10 zeigt die Starteinrichtung 1 d, deren Elektromaschine 2d als Elektromotor in Form des Reihenschlussmotors 3d ausgebildet ist. Der Reihenschlussmotor 3d weist ein hohes Anlaufmoment auf. Die Figur 1 1 zeigt das Diagramm 1 14 mit der Momentenkennlinie 1 15 des Reihenschlussmotors 3d. Die kontinuierlich über die Dreh- zahl n abfallende Momentenkennlinie 1 15 weist ein Restmoment auf, welches bei entsprechender Auslegung des Reihenschlussmotors 3d über die Drehzahlen η-ι, n2 erstreckt ist, so dass mit der Starteinrichtung 1 d ein sicheres Startverhalten der Brennkraftmaschine erzielt wird.
Die Figur 12 zeigt die Starteinrichtung 1 e in schematischer Darstellung. Die Elektro- maschine 2e enthält den fremderregten Gleichstrommotor 3e, dessen Motorkonstante mittels der Feldschwächungseinrichtung 8e gesteuert durch Steuerung der Spannung UA der Spannungsversorgungseinrichtung auf die erregte Spannung UE abgesenkt wird. Durch die Feldschwächung wird ein Restmoment bei größeren Drehzahlen erzielt. Das Diagramm 1 16 mit den Momentenkennlinie 1 17, 1 18, 1 19, 120 der Figur 13 zeigt das Verhalten des Gleichstrommotors abhängig von dessen Fremderregung. Die Momentenkennlinie 1 17 zeigt das ungestörte Verhalten. Mit zunehmender Störung nimmt die erregte Spannung ab, so über die Momentenkennlinien 1 18, 1 19, 120 zunehmend über die Drehzahlen n-i, n2 hinausgehende Restmomente erzielt werden. Die Figur 14 zeigt die Starteinrichtung 1f, bei der die Elektromaschine 2f den Synchrondrehstrommotor 3f enthält. Der Synchrondrehstrommotor 3f, beispielsweise ein elektronisch kommutierter Elektromotor wird mittels des DC/AC-Wandlers 7f kommu- tiert. Durch entsprechende drehzahlabhängige Verschiebung der Kommutierung wie Vorkommutierung kann eine einer Feldschwächung entsprechende Wirkung bei höheren Drehzahlen erzielt werden. Die Figur 15 zeigt hierzu das Diagramm 121 mit den entsprechenden Momentenkennlinien 122, 123, 124, 125 des Synchrondrehstrommo- tors 3f. Die Momentenkennlinie 122 zeigt die ungestörte Kommutierung. Die Momentenkennlinien 123, 124, 125 zeigen die Entwicklung des Moments bei zunehmender Vorkommutierung mit zunehmendem Restmoment über die Drehzahlen n-ι, n2 hinaus. Die Figur 16 zeigt die Starteinrichtung 1 g, bei der die Elektromaschine 2g den Asynchrondrehstrommotor 3g enthält. Durch entsprechende Ansteuerung der Dreh- Stromamplituden und der Frequenz mittels des DC/AC-Wandlers 7g kann ein leis- tungsbegrenztes Motorkennfeld erzeugt werden, welches bei größeren Drehzahlen ein Restmoment bereitstellt. Die Figur 17 zeigt hierzu das Diagramm 126 mit der Momentenkennlinie 127 mit einem über die Drehzahlen n-i, n2 hinaus ausgebildeten Restmoment.
Bezugszeichenliste Starteinrichtung
a Starteinrichtung
b Starteinrichtung
c Starteinrichtung
d Starteinrichtung
e Starteinrichtung
f Starteinrichtung
g Starteinrichtung
Elektromaschine
a Elektromaschine
b Elektromaschine
c Elektromaschine
d Elektromaschine
e Elektromaschine
f Elektromaschine
g Elektromaschine
Elektromotor
a Elektromotor
b Elektromotor
ci Elektromotor
c2 Elektromotor
d Reihenschlussmotor
e Gleichstrommotor
f Synchrondrehstrommotor
g Asynchrondrehstrommotor
Zuleitung
b Zuleitung
c Zuleitung
Diode
Stromversorgungseinrichtung
b Stromversorgungseinrichtung
b DC/DC-Wandler 7f DC/AC-Wandler
7g DC-AC-Wandler
8e Feldschwächungseinrichtung
100 Diagramm
101 Resonanzkennlinie
102 Resonanzkennlinie
103 Resonanzkennlinie
104 Diagramm
105 Momentenkennlinie
106 Diagramm
107 Momentenkennlinie
108 Diagramm
109 Momentenkennlinie
1 10 Momentenkennlinie
1 1 1 Momentenkennlinie
1 12 Diagramm
1 13 Momentenkennlinie
1 14 Diagramm
1 15 Momentenkennlinie
1 16 Diagramm
1 17 Momentenkennlinie
1 18 Momentenkennlinie
1 19 Momentenkennlinie
120 Momentenkennlinie
121 Diagramm
122 Momentenkennlinie
123 Momentenkennlinie
124 Momentenkennlinie
125 Momentenkennlinie
126 Diagramm
127 Momentenkennlinie M Moment
n Drehzahl
ni Drehzahl n2 Drehzahl nL Leerlaufdrehzahl
R Resonanzverhalten
U Spannung
UA Spannung
UE Spannung
Δη-ι Drehzahlbereich
Δη2 Drehzahlbereich

Claims

Patentansprüche
Antriebsstrang für ein Kraftfahrzeug mit einer nach einem vorgegebenen Arbeitsprinzip arbeitenden Brennkraftmaschine mit einer Kurbelwelle, einer vorgegebenen Anzahl von Zylindern und einer durch das Arbeitsprinzip und die Anzahl der Zylinder vorgegebenen Hauptschwingungsordnung mit einer Anregerfrequenz, einer die Brennkraftmaschine durch Drehantrieb der Kurbelwelle in einem Drehzahlbereich der Anregerfrequenz startenden Starteinrichtung (1 , 1 a, 1 b, 1 c, 1 d, 1 e, 1f, 1 g) mit einer Elektromaschine (2, 2a, 2b, 2c, 2d, 2e, 2f, 2g) mit einer Momentenkennlinie (105, 107, 109, 1 10, 1 1 1 , 1 13, 1 15, 1 17, 1 18, 1 19, 120, 122, 123, 124, 125, 127) über die Drehzahl (n) und einer der Kurbelwelle nachgeschalteten, auf die Hauptschwingungsordnung der Brennkraftmaschine ausgelegten Schwingungsisolationseinrichtung mit einer Resonanzkennlinie (101 , 102, 103) unterhalb einer Leerlaufdrehzahl (nL) der Brennkraftmaschine in einem ersten Drehzahlbereich (Δη2) auftretenden Resonanzbereich, wobei der Resonanzbereich bei angekoppelter Elektromaschine (2, 2a, 2b, 2c, 2d, 2e, 2f, 2g) in einen zweiten, niedrigeren Drehzahlbereich (Δη-ι) verlagert ist, dadurch gekennzeichnet, dass die Elektromaschine (2, 2a, 2b, 2c, 2d, 2e, 2f, 2g) ein über den zweiten Drehzahlbereich (Δη-ι) hinaus wirksam erstrecktes Moment bereitstellt.
Antriebsstrang nach Anspruch 1 , dadurch gekennzeichnet, dass die
Starteinrichtung (1 a, 1 b, 1 c, 1 d, 1 e, 1f, 1 g) zumindest in dem zweiten
Drehzahlbereich (Δη-ι) als Dämpfungsmittel wirksam ist.
Antriebsstrang nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine mittels des Viertaktprinzips betriebene Brennkraftmaschine mit zumindest während des Starts mit weniger als vier betriebenen Zylindern vorgesehen ist.
Antriebsstrang nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Elektromaschine (2, 2a, 2b, 2c, 2d, 2e, 2f, 2g) zumindest bis zum Durchschreiten des ersten Drehzahlbereichs (Δη2) in beide Drehrichtungen drehschlüssig mit der Kurbelwelle verbunden ist.
5. Antriebsstrang nach Anspruch 4, dadurch gekennzeichnet, dass ein Stromfluss von der Elektromaschine (2, 2a, 2c) in eine die Stromversorgungseinrichtung (6, 6b) der Elektromaschine (2, 2a, 2c) unterbunden ist.
6. Antriebsstrang nach Anspruch 5, dadurch gekennzeichnet, dass die Starteinrichtung (1 c) zwei parallel geschaltete Elektromotoren (3ci, 3c2) unterschiedlicher Motorkonstanten aufweist.
7. Antriebsstrang nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zur Spannungsversorgung der Elektromaschine eine eine abfallende Spannung während des Startvorgangs der Brennkraftmaschine zumindest kompensierende Vorrichtung vorgesehen ist.
8. Antriebstrang nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Elektromaschine (2d) als Reihenschlussmotor (3d) mit einem über den ersten Drehzahlbereich (Δη2) hinaus verbleibenden Drehschluss gegenüber der Kurbelwelle ausgebildet ist.
9. Antriebsstrang nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Elektromaschine (2e) mit einer mittels einer Feldschwächungseinrichtung (8e) veränderbaren Motorkonstante ausgebildet ist.
10. Antriebsstrang nach Anspruch 9, dadurch gekennzeichnet, dass die Elektromaschine (2e, 2f) als Gleichstrommotor (3e), als Synchrondrehstrommotor (3f) mit Frequenzwandler oder als Asynchrondrehstrommotor (3g) mit
Frequenzumrichter ausgebildet ist.
PCT/DE2016/200531 2015-12-02 2016-11-22 Drehmomentsteuerung einer elektromaschine zum starten eine brennkraftmaschine in einem antriebstrang eines kraftfahrzeuges WO2017092745A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/778,031 US10738752B2 (en) 2015-12-02 2016-11-22 Drive train
CN201680068690.1A CN108291520B (zh) 2015-12-02 2016-11-22 用于在机动车的驱动系中起动内燃机的电机的扭矩控制
DE112016005505.6T DE112016005505A5 (de) 2015-12-02 2016-11-22 Drehmomentsteuerung einer elektromaschine zum starten eine brennkraftmaschine in einem antriebstrang eines kraftfahrzeuges

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015224102.5 2015-12-02
DE102015224102.5A DE102015224102A1 (de) 2015-12-02 2015-12-02 Antriebsstrang

Publications (1)

Publication Number Publication Date
WO2017092745A1 true WO2017092745A1 (de) 2017-06-08

Family

ID=57737527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2016/200531 WO2017092745A1 (de) 2015-12-02 2016-11-22 Drehmomentsteuerung einer elektromaschine zum starten eine brennkraftmaschine in einem antriebstrang eines kraftfahrzeuges

Country Status (4)

Country Link
US (1) US10738752B2 (de)
CN (1) CN108291520B (de)
DE (2) DE102015224102A1 (de)
WO (1) WO2017092745A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019100968A1 (de) * 2019-01-16 2020-07-16 Schaeffler Technologies AG & Co. KG Verfahren zur aktiven Dämpfung einer Startresonanz eines Torsionsdämpfers beim Start eines Verbrennungsmotors
DE102019202475A1 (de) * 2019-02-25 2020-08-27 Robert Bosch Gmbh Verfahren und Anordnung zur Unterstützung eines Startvorgangs eines Verbrennungsmotors
DE102019111481A1 (de) * 2019-05-03 2020-11-05 Bayerische Motoren Werke Aktiengesellschaft Steuervorrichtung und Verfahren zum Betrieb eines Hybridantriebs
DE102019125740B3 (de) * 2019-09-25 2021-01-28 Schaeffler Technologies AG & Co. KG Verfahren zum Bewerten eines akustischen Resonanzrisikos eines Elektromotors

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2811943A1 (fr) * 2000-07-21 2002-01-25 Mannesmann Sachs Ag Procede et dispositif pour reduire les oscillations d'alternance de charge dans la ligne de transmission d'un vehicule automobile
DE10110671A1 (de) * 2001-03-06 2002-09-12 Zf Sachs Ag Verfahren zum Ermitteln wenigstens einer für die Betriebscharakteristik einer Schwingungsdämpfungseinrichtung relevanten Größe
US20060166783A1 (en) * 2005-01-26 2006-07-27 Goro Tamai Engine spin-up control with natural torque smoothing
US20090025992A1 (en) * 2006-02-28 2009-01-29 Toyota Jidosha Kabushiki Kaisha Vehicle and Vehicle Control Method
US20110193504A1 (en) * 2010-02-08 2011-08-11 Mitsubishi Electric Corporation Power converter control apparatus
DE102012205792A1 (de) * 2011-06-07 2012-12-13 Zf Friedrichshafen Ag Antriebssystem für ein Fahrzeug
DE102011117395A1 (de) 2011-10-11 2013-04-11 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Zweimassenschwungrad
US20140076259A1 (en) * 2011-09-07 2014-03-20 Mitsubishi Electric Corporation Vehicle starting apparatus
DE102014201726A1 (de) * 2014-01-31 2015-08-06 Schaeffler Technologies AG & Co. KG Vorrichtung und Verfahren zum Starten einer Brennkraftmaschine
DE102014205770A1 (de) * 2014-03-27 2015-10-01 Schaeffler Technologies AG & Co. KG Verfahren zur Verstellung von Steuerzeiten einer Brennkraftmaschine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5303681A (en) * 1992-08-28 1994-04-19 Cummins Engine Company, Inc. Torsional tunable coupling for a diesel engine drive shaft
DE19981672D2 (de) * 1998-09-09 2001-01-18 Luk Lamellen & Kupplungsbau Antriebsstrang
JP2006315510A (ja) * 2005-05-12 2006-11-24 Toyota Motor Corp 動力出力装置およびその制御方法並びに自動車
JP4640236B2 (ja) * 2006-04-05 2011-03-02 日産自動車株式会社 内燃機関の始動装置
JP4733714B2 (ja) * 2008-03-07 2011-07-27 本田技研工業株式会社 能動型防振支持装置
JPWO2012063309A1 (ja) * 2010-11-08 2014-05-12 トヨタ自動車株式会社 エンジン始動装置
DE102012205793A1 (de) * 2011-06-07 2012-12-13 Zf Friedrichshafen Ag Antriebssystem für ein Fahrzeug
US10023197B2 (en) * 2015-01-27 2018-07-17 Mazda Motor Corporation Control device for four-wheel drive vehicle

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2811943A1 (fr) * 2000-07-21 2002-01-25 Mannesmann Sachs Ag Procede et dispositif pour reduire les oscillations d'alternance de charge dans la ligne de transmission d'un vehicule automobile
DE10110671A1 (de) * 2001-03-06 2002-09-12 Zf Sachs Ag Verfahren zum Ermitteln wenigstens einer für die Betriebscharakteristik einer Schwingungsdämpfungseinrichtung relevanten Größe
US20060166783A1 (en) * 2005-01-26 2006-07-27 Goro Tamai Engine spin-up control with natural torque smoothing
US20090025992A1 (en) * 2006-02-28 2009-01-29 Toyota Jidosha Kabushiki Kaisha Vehicle and Vehicle Control Method
US20110193504A1 (en) * 2010-02-08 2011-08-11 Mitsubishi Electric Corporation Power converter control apparatus
DE102012205792A1 (de) * 2011-06-07 2012-12-13 Zf Friedrichshafen Ag Antriebssystem für ein Fahrzeug
US20140076259A1 (en) * 2011-09-07 2014-03-20 Mitsubishi Electric Corporation Vehicle starting apparatus
DE102011117395A1 (de) 2011-10-11 2013-04-11 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Zweimassenschwungrad
DE102014201726A1 (de) * 2014-01-31 2015-08-06 Schaeffler Technologies AG & Co. KG Vorrichtung und Verfahren zum Starten einer Brennkraftmaschine
DE102014205770A1 (de) * 2014-03-27 2015-10-01 Schaeffler Technologies AG & Co. KG Verfahren zur Verstellung von Steuerzeiten einer Brennkraftmaschine

Also Published As

Publication number Publication date
US20180335006A1 (en) 2018-11-22
CN108291520B (zh) 2021-02-02
DE102015224102A1 (de) 2017-06-08
DE112016005505A5 (de) 2018-10-04
US10738752B2 (en) 2020-08-11
CN108291520A (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
EP1651460B1 (de) Regelstrategie für elektromechanisch leistungsverzweigende hybridantriebe
DE10035521B4 (de) Verfahren und Vorrichtung zur Reduzierung von Lastwechselschwingungen im Antriebsstrang eines Kraftfahrzeugs
WO2017092745A1 (de) Drehmomentsteuerung einer elektromaschine zum starten eine brennkraftmaschine in einem antriebstrang eines kraftfahrzeuges
DE102014202621B4 (de) Lageranordnung eines Getriebes
DE112014002103T5 (de) Steuervorrichtung für Hybridfahrzeug und Steuerverfahren dafür
AT512035B1 (de) Antriebstrang für ein Fahrzeug
DE112011105717T5 (de) Vorrichtung mit dynamischem Dämpfer
WO1998006940A1 (de) Verfahren zum betrieb eines mit einem starter-generator kupplungslos gekoppelten ventilgesteuerten verbrennungsmotors und verbrennungsmotor zur durchführung des verfahrens
EP2017497A1 (de) Verfahren zum Starten einer mit einem geteilten Schwungrad ausgestatteten Brennkraftmaschine und Brennkraftmaschine zur Durchführung eines derartigen Verfahrens
DE10007956B4 (de) System und Verfahren zum Starten eines Verbrennungsmotors
EP3762269A1 (de) Hybridantriebsstrang für ein hybridgetriebenes fahrzeug und verfahren dafür
DE19727595C2 (de) Verfahren und Vorrichtung zum Starten einer Brennkraftmaschine mit Zweimassenschwungrad
DE102015226413A1 (de) Hybridsystem zur Verwendung in einem Hybridfahrzeug
DE10008287B4 (de) Fahrzeug-Antriebssystem und Verfahren zum Betreiben eines Fahrzeug-Antriebssystems
WO2020147874A1 (de) Verfahren zur aktiven dämpfung einer startresonanz eines torsionsdämpfers beim start eines verbrennungsmotors
DE102008023177B4 (de) Antriebseinrichtung für wenigstens eine Maschinenhilfseinheit mittels eines Riemens
DE112016005475T5 (de) Dreimassen-schwungrad
DE10005178A1 (de) Verfahren und Vorrichtung zur Dämpfung von Drehschwingungen in einem Antriebssystem, sowie Steuereinrichtung und Antriebssystem
DE102015112241A1 (de) Verfahren zum Betreiben einer Antriebsanordnung
DE102018122543B4 (de) Verfahren zum Starten einer Brennkraftmaschine in einem Hybridfahrzeug mittels selektiver Zylinderabschaltung
WO2015071126A1 (de) Verfahren zum abstellen einer brennkraftmaschine
DE102017217874B4 (de) Parallele Hybridantriebsstranganordnung, Fahrzeug und Verfahren zum Anlassen eines Verbrennungsmotors einer parallelen Hybridantriebsstranganordnung
DE102007058528A1 (de) Triebstranganordnung eines Fahrzeugs und Verfahren zum Betrieb einer Triebstranganordnung
DE19917295B4 (de) Antriebsvorrichtung
DE102017206587A1 (de) Antriebsanordnung für ein Fahrzeug mit einer Verbrennungskraftmaschine sowie Verfahren zum Abstellen und Starten einer Verbrennungskraftmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16822376

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15778031

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016005505

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112016005505

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16822376

Country of ref document: EP

Kind code of ref document: A1