WO2017090577A1 - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
WO2017090577A1
WO2017090577A1 PCT/JP2016/084528 JP2016084528W WO2017090577A1 WO 2017090577 A1 WO2017090577 A1 WO 2017090577A1 JP 2016084528 W JP2016084528 W JP 2016084528W WO 2017090577 A1 WO2017090577 A1 WO 2017090577A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
layer
transition metal
emitting device
gas barrier
Prior art date
Application number
PCT/JP2016/084528
Other languages
French (fr)
Japanese (ja)
Inventor
森 孝博
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN201680068450.1A priority Critical patent/CN108293279B/en
Priority to JP2017552415A priority patent/JP6773048B2/en
Publication of WO2017090577A1 publication Critical patent/WO2017090577A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Definitions

  • the present invention relates to a light emitting device, and more particularly to a light emitting device that can be miniaturized when carried.
  • organic electroluminescent element (hereinafter also referred to as “organic EL element”) using electroluminescence of organic material (hereinafter also referred to as “EL”) can emit light at a low voltage of several V to several tens V. It is a thin film type complete solid-state device and has many excellent features such as high brightness, high luminous efficiency, thinness, and light weight. For this reason, it is applied as a backlight for various displays, display boards such as signboards and emergency lights, and surface light emitters such as illumination light sources.
  • a flexible organic EL element using a resin base material having a thin and light gas barrier layer has attracted attention, and is applied as a light source having a curved surface and a high design property.
  • Patent Document 1 a method in which a gas barrier layer is formed on a glass substrate and then peeled and transferred to a resin base material has been studied.
  • the light-emitting device currently being studied is only a prototype for verifying flexibility, and no specific configuration as a practical device has been presented. Therefore, a specific configuration of the light emitting device that suppresses the deterioration of the light emitting device has been demanded.
  • the present invention has been made in view of the above-described problems and situations, and a problem to be solved is to provide a light-emitting device that can be miniaturized when being carried.
  • the present inventor has a gas barrier layer between a resin base material and an organic light emitting element of an organic light emitting element sandwiched between two resin base materials in the process of examining the cause of the above problem, etc.
  • the present invention has found that the above-mentioned problems can be solved when the radius of curvature of the curved surface formed by the organic light-emitting element is in the range of 1.0 to 10.0 mm when folded or rolled up when carried. It came.
  • a light emitting device in which a light emitting surface side resin base material, an organic light emitting element, and a back surface side base material are laminated in this order, and between the light emitting surface side resin base material and the organic light emitting element or between the organic light emitting element and the back surface side base At least one of the materials has a gas barrier layer containing an inorganic material as a main component, and the light emitting device is supported on a support member with a fixed portion and a movable portion.
  • a light-emitting device having a curved surface portion having a radius of curvature of a curved surface formed by the movable portion of the light-emitting element in a range of 1.0 to 10.0 mm.
  • the light emitting surface side resin bases face each other with a gap of less than 2 mm, and the curved surface formed by the movable part of the organic light emitting element has its light emitting surface bent outward.
  • C / L is 0.3 or more, and the part B with respect to the minimum curvature radius Ar of the part A 2.
  • the gas barrier layer is a region containing the non-transition metal M1 and the transition metal M2 at least in the thickness direction, and the value of the atomic ratio of the transition metal M2 to the non-transition metal M1 (M2 / M1) is Item 6.
  • the light emitting device according to any one of Items 1 to 5, wherein the mixed region in the range of 0.02 to 49 has a thickness of 5 nm or more continuously in the thickness direction.
  • the gas barrier layer includes the mixed region between a region containing the transition metal M2 as a main component of the metal and a region containing the non-transition metal M1 as a main component of the metal. 7.
  • transition metal is selected from niobium (Nb), tantalum (Ta), and vanadium (V).
  • the above-described means of the present invention can provide a light emitting device that can be miniaturized when being carried.
  • An example of a cross-sectional view of a light emitting part of a light emitting device of the present invention An example of a schematic diagram illustrating a light-emitting device having a folded configuration An example of a schematic diagram illustrating a light-emitting device having a folded configuration An example of a schematic diagram illustrating a light-emitting device having a folded configuration An example of a schematic diagram illustrating a light-emitting device having a bent form Conceptual diagram showing the thickness change of the adhesive during winding and withdrawal Conceptual diagram showing the thickness change of the adhesive during winding and withdrawal Conceptual diagram showing the thickness change of the adhesive during winding and withdrawal Conceptual diagram showing the thickness change of the adhesive during winding and withdrawal
  • An example showing the preferred shape of the support member Example of graph for explaining element profile and mixed region when composition distribution of non-transition metal and transition metal is analyzed by XPS method Diagram explaining the peeling method Diagram explaining the peeling method Diagram explaining the peeling method Diagram explaining the peeling method Diagram explaining the peeling method Diagram explaining the peeling method
  • the light emitting device of the present invention is a light emitting device in which a light emitting surface side resin base material, an organic light emitting element, and a back surface side base material are laminated in this order, and between the light emitting surface side resin base material and the organic light emitting element, or At least one of the organic light-emitting element and the back-side base material has a gas barrier layer mainly composed of an inorganic material, and the light-emitting device is supported by having a fixed part and a movable part on a support member. Furthermore, the curved surface formed by the movable portion of the organic light emitting element when carried has a curved surface portion having a radius of curvature in the range of 1.0 to 10.0 mm. This feature is a technical feature common to the inventions according to claims 1 to 12.
  • the light emitting surface side resin bases face each other with a gap of less than 2 mm, and the curved surface formed by the movable portion of the organic light emitting element emits light.
  • a portion A whose surface is bent outward, and a portion B whose light emitting surface is bent inward, wherein the portion A and the portion B exist continuously via an inflection point of curvature, and
  • C / L is 0.3 or more and the minimum of the part A
  • the ratio value (Br / Ar) of the minimum curvature radius Br of the part B to the curvature radius Ar is preferably in the range of 0.4 to 1.1.
  • the light emitting surface side resin when carrying, the light emitting surface side resin has a winding form, and the back side base material is installed on a rigid supporting member via a sheet-like member having viscoelasticity.
  • the base is wound outside and the winding outer end of the light emitting device is fixed so that the position does not shift relatively, and the winding inner is relatively positioned.
  • the movable part is variable.
  • the total thickness of the gas barrier layer is preferably in the range of 20 to 1000 nm.
  • the curved surface formed by the movable portion of the organic light emitting element has a curved radius within a range of 1.0 to 5.0 mm.
  • the gas barrier layer is a region containing the non-transition metal M1 and the transition metal M2 at least in the thickness direction, and has an atomic ratio of the transition metal M2 to the non-transition metal M1. It is preferable that a mixed region having a value (M2 / M1) in the range of 0.02 to 49 has 5 nm or more continuously in the thickness direction. As a result, even if the gas barrier layer is a thin layer, an extremely high gas barrier property can be obtained. Therefore, by making the gas barrier layer thinner, it is possible to achieve both better bending durability and gas barrier property. Is obtained.
  • the gas barrier layer includes the mixed region between a region containing the transition metal M2 as a metal main component and a region containing the non-transition metal M1 as a metal main component. It is preferable to have
  • the entire region in the thickness direction in the gas barrier layer is a mixed region containing the transition metal and the non-transition metal. Thereby, a very high gas barrier property is obtained.
  • composition of the mixed region is represented by the chemical composition formula (1)
  • relational formula (2) is satisfied. Thereby, better gas barrier properties can be obtained.
  • the non-transition metal is preferably silicon.
  • the transition metal is preferably selected from niobium (Nb), tantalum (Ta), and vanadium (V). This combination of metal elements provides the best gas barrier properties.
  • the light-emitting device of the present invention preferably includes an organic EL element.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the light emitting device of the present invention is a light emitting device in which a light emitting surface side resin base material, an organic light emitting element, and a back surface side base material are laminated in this order, and between the light emitting surface side resin base material and the organic light emitting element, or At least one of the organic light-emitting element and the back-side base material has a gas barrier layer mainly composed of an inorganic material, and the light-emitting device is supported by having a fixed part and a movable part on a support member. Furthermore, the curved surface formed by the movable portion of the organic light emitting element when carried has a curved surface portion having a radius of curvature in the range of 1.0 to 10.0 mm.
  • the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 ⁇ 10 ⁇ 3 cm 3 / (m 2 ⁇ 24 h ⁇ atm) or less
  • water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)) measured by a method according to JIS K 7129-1992 % RH) is preferably a high gas barrier property of 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • FIG. 1 is an example of a cross-sectional view of a light emitting portion of a light emitting device of the present invention.
  • the light emitting device has a light emitting portion L in which the light emitting surface side resin base material 2, the organic light emitting element 3 and the back surface side base material 4 are laminated in this order.
  • the organic light emitting element 3 may be, for example, an organic EL element, has an organic functional layer unit 7 including at least a light emitting layer via two electrodes 6, and is sealed with a sealing member 8.
  • the light emitting surface side resin base material 2 or the base material 4 may have a hard coat layer on both sides, and may have an adhesive layer as an intermediate layer, and a protective film on the outermost layer via an adhesive layer.
  • the organic functional layer unit has a hole transport layer, an electron transport layer, and the like in addition to the light emitting layer.
  • This light-emitting device has a curved surface portion in which the radius of curvature of the curved surface formed by the movable portion of the organic light-emitting element 7 when carried is in the range of 1.0 to 10.0 mm.
  • the curvature radius Ar of the part A or the curvature radius Br of the part B is less than 1.0, the base material itself deteriorates due to repeated bending, which is not preferable. Further, if the curvature radius exceeds 10.0 mm, it is not suitable as a small light emitting device.
  • the fixed portion refers to a portion where the light emitting device is fixed on the support member and the positional relationship between the light emitting device and the support member does not change
  • the movable portion refers to the light emitting device not fixed on the support member.
  • the organic light emitting element 3 is preferably sandwiched between the two base materials 2 and 4, more preferably the two base materials have the same thickness and the same elastic modulus. It can be expected that the stress applied to the organic light emitting element 3 located at the center of bending is brought close to zero when the light emitting device is bent because the two base materials have the same thickness and the same elastic modulus. it can.
  • the total thickness of the light emitting device is preferably in the range of 20 to 200 ⁇ m. More preferably, it is within the range of 30 to 150 ⁇ m, and further preferably within the range of 30 to 100 ⁇ m. It is considered that by reducing the thickness, the stress applied to the organic light emitting element 1 when bent can be further reduced.
  • the total thickness of the gas barrier layer 5 is preferably in the range of 20 to 1000 nm from the viewpoint of achieving both the gas barrier property and the bending resistance of the gas barrier layer.
  • Such a light emitting device makes it possible to reduce the size of the light emitting device when carried.
  • Preferred embodiments include a light-emitting device that is folded and a light-emitting device that is rolled up when carried.
  • Light-emitting device having a folded form When the light emitting device having a folded configuration is carried, the light emitting surface side resin bases face each other with a gap of less than 2 mm, and the curved surface formed by the movable portion of the organic light emitting element is bent outward.
  • the ratio value (Br / Ar) of the minimum curvature radius Br is preferably in the range of 0.4 to 1.1.
  • the movable portion in the case of a light-emitting device having a folded configuration, usually has a plurality of curved surfaces, and therefore the radius of curvature of the portion A and the portion B uses the minimum radius of curvature.
  • the minimum curvature radii of the part A and the part B are the minimum ones among the curvature radii of a plurality of curved surfaces of the organic light emitting element when bent.
  • FIGS. 2A to 2C are examples of schematic diagrams illustrating a light-emitting device having a folded configuration.
  • FIG. 2A shows a state where the light emitting devices supported by the support housing 10 and the support housing 11 as two support members are bent.
  • the bent light emitting device 1 has a portion A where the light emitting surface is bent outward and a portion B where the light emitting surface is bent inward via an inflection point.
  • a portion where the light emitting portion L is supported by the support housing 10 and the support housing 11 is a fixed portion, and a portion A and a portion B are movable portions.
  • FIG. 2C shows a state when the light emitting device 1 is opened.
  • the hinge portion 12 having the hinge portion 12 between the support housings 10 and 11 has a function of protecting the light emitting device together with the support housings 10 and 11.
  • the hinge portion 12 does not need to be in contact with the light emitting portion L.
  • the present invention has a portion A in which the light emitting surface is bent outward and a portion B in which the light emitting surface is bent inward.
  • C / L is 0.3 or more, and the minimum curvature of the part A, where L is the length of the part and C is the protruding length of the loop formed by the movable part from the support member
  • the ratio value (Br / Ar) of the minimum curvature radius Br of the part B to the radius Ar is preferably in the range of 0.4 to 1.1. More preferably, it is in the range of 0.6 to 1.1, and still more preferably in the range of 0.8 to 1.05.
  • the configuration in which the curvature when the light emitting surface is bent inward and the curvature when the light emitting surface is bent outward is approximate is the method for maximizing the minimum curvature. It is.
  • the light emission part L is being fixed on the support member with high rigidity.
  • the light emitting portion L other than the hinge portion 12 needs to be fixed to the support housing as a support member. The hinge portion is not fixed to the support housing so that it can be folded freely.
  • the B part is preferably substantially circular, and the C / L is more preferably 0.35 or more because the minimum curvature radius of the part A is not too small with respect to the minimum curvature radius of the part B.
  • the above is more preferable.
  • the upper limit of C / L may be adjusted so that the value of Br / Ar falls within the range of the present invention.
  • the protruding length C from the support member means the length of A + B in FIGS. 2A to 2C.
  • C is the average value.
  • the stress on the light emitting part L of the light emitting device applied to the part A and the part B can be reduced.
  • the length of the hinge part 12 is preferably within a range of 4 to 17 mm.
  • the minimum curvature radius of the part A is larger than the minimum curvature radius of the part B, it is preferable to have means for adjusting the minimum curvature radii of the part A and the part B.
  • the value of the ratio of the minimum curvature radius Br of the part B to the minimum curvature radius Ar of the part A is within the above range.
  • it can be adjusted by pressing from behind the light emitting device using a member constituting a hinge portion that supports the bent portion of the light emitting device from behind.
  • the respective minimum curvature radii are: As the light emitting device is designed to approach 1.0 mm, the damage to the movable part due to repeated folding increases. However, even in an apparatus having such a design, by having a movable part that falls within the scope of the present invention, an effect of improving folding durability can be obtained with respect to an apparatus having a movable part outside the scope of the present invention.
  • the back side resin base material is installed on a rigid support member having a winding form through a sheet-like member having viscoelasticity, and the light emitting surface side resin base material is wound outward.
  • the outer end of the light emitting device is fixed so that the position does not relatively shift (hereinafter also referred to as a fixed end), and the inner side of the winding is a movable part.
  • the end portion is preferably a free end whose position can be relatively changed. That is, it is preferable that a part of the back side substrate of the light emitting unit of the light emitting device is fixed on a support member having high rigidity.
  • the support member has high rigidity capable of supporting the light emitting portion.
  • FIG. 3 is an example of a schematic diagram illustrating a light emitting device having a winding form.
  • the back-side base material of the light-emitting portion L is installed on a rigid support member 21 via a sheet-like adhesive 22 having viscoelasticity, and the light-emitting surface-side resin base material It is structured to wind around the winding member 24 in the housing 23 with the outer side facing out.
  • the end part far from the winding shaft outside the winding of the light emitting device 1 is a fixed part fixed so as not to be relatively displaced. For example, it is fixed to the control unit 26.
  • the winding inner side is a movable part whose position can change relatively.
  • the positional relationship between the light emitting portion L and the support member 21 is shifted due to the winding diameter difference.
  • one end of the light emitting portion L of the light emitting device is fixed to the support member.
  • the other end of the light emitting portion L is a movable portion whose relative position can be changed with respect to the support member, so that stress can be reduced even if the radius of curvature formed by the movable portion of the light emitting portion L is reduced. .
  • the stress caused by winding is taken up because the adhesive deforms and absorbs due to shear elongation due to shearing elongation. Is considered to be difficult to be transmitted to the light emitting device.
  • the winding is performed as the inside of the light emitting device, the above-described elongation relationship is reversed, and the free end may not be fixed on the support member.
  • the sheet-like pressure-sensitive adhesive 22 not only supports the light emitting portion L on the support member 21 but also has viscoelasticity because it has a function of absorbing the deviation generated at the time of winding.
  • an acrylic or silicon adhesive can be used as the adhesive having viscoelasticity.
  • the magnitude of the deviation between the support member 21 and the light emitting portion L that occurs during winding increases as the winding proceeds.
  • the thickness of the adhesive after winding is constant. Therefore, it is preferable that the adhesive on the free end side is thicker than the adhesive on the fixed end side.
  • FIGS. 4A to 4D are conceptual diagrams showing changes in the thickness of the adhesive during winding and withdrawal.
  • a light emitting part L having a length of 100 mm and a thickness of 60 ⁇ m is installed on a support member having a thickness of 100 ⁇ m via a pressure-sensitive adhesive having a thickness of 100 ⁇ m, and this is wound around a radius of 5 mm.
  • the positions of the support member and the light-emitting device at the free end are shifted by about 3 mm, and the thickness of the adhesive is considered to be about 70% of the original.
  • the drawing at the time of winding is a schematic diagram in which the free end is flat for comparison.
  • the thickness of the pressure-sensitive adhesive is inclined to increase the free end side, and the pressure-sensitive adhesive is formed so that the thickness of the pressure-sensitive adhesive is constant during winding.
  • the stress concerning the light emitting part L can be reduced, which is preferable.
  • FIG. 4D it may be in a form in which the free ends of the organic light emitting element and the adhesive can be aligned at the time of winding.
  • the support member has a shape in which the edge is bent and the planar shape is maintained when being pulled out.
  • FIG. 5 is an example showing a preferable shape of the support member in the winding form.
  • the support member maintains a flat surface in the wound state, and has a shape in which the edge bends as shown in the drawing when pulled out in the direction of the arrow.
  • a metal plate such as a steel plate as the support member in order to increase rigidity.
  • the gas barrier layer according to the present invention has a mixed region containing a non-transition metal M1 and a transition metal M2 at least in the thickness direction, and has an atomic ratio of the transition metal M2 to the non-transition metal M1 in the mixed region.
  • the gas barrier layer is characterized in that a region having a value (M2 / M1) in the range of 0.02 to 49 has a thickness of 5 nm or more continuously in the thickness direction.
  • a region A containing a transition metal of Group 3 to Group 11 as the main component a of metal and a non-transition metal of Group 12 to Group 14 as the main component b of metal is a preferable embodiment to have a mixed region containing a compound derived from the main component a and the main component b between the B region to be contained.
  • the mixed region is formed over the entire region in the layer.
  • transition metal, non-transition metal, and oxygen are preferably contained.
  • the mixed region preferably includes at least one of a mixture of a transition metal oxide and a non-transition metal oxide, or a composite oxide of a transition metal and a non-transition metal. More preferably, a composite oxide of a transition metal and a non-transition metal is contained.
  • composition of the mixed region is represented by the following chemical composition formula (1), it is preferable that at least a part of the mixed region satisfies the condition defined by the following relational formula (2).
  • the “region” means a plane that is substantially perpendicular to the thickness direction of the gas barrier layer (that is, a plane parallel to the outermost surface of the gas barrier layer), and the gas barrier layer has a constant or arbitrary thickness. This is a three-dimensional range (region) between two opposing surfaces formed when divided by 1. The composition of components in the region changes gradually even if the composition is constant in the thickness direction. It may be what you do.
  • the “constituent component” refers to a compound constituting a specific region of the gas barrier layer and a metal or non-metal simple substance.
  • the “main component” in the present invention refers to a component having the maximum content as an atomic composition ratio.
  • metal main component refers to a metal component having the maximum content as an atomic composition ratio among the metal components in the constituent components.
  • the “mixture” refers to a product in which the constituent components of the regions A and B are mixed without being chemically bonded to each other.
  • the “compound derived from the main component a and the main component b” refers to the composite compound formed by the reaction between the main component a and the main component b themselves and the main component a and the main component b.
  • a “composite oxide” will be described as a specific example of the composite compound.
  • the “composite oxide” is a compound (oxide) formed by chemically bonding the constituent components in the regions A and B to each other.
  • a complex formed by physically bonding the constituent components of the regions A and B to each other by intermolecular interaction or the like is also included in the “composite oxide” according to the present invention.
  • Transition metal-containing region A region
  • the A region which is a transition metal-containing region refers to a region containing a transition metal as the main component a of the metal.
  • the transition metal (M2) is not particularly limited, and any transition metal can be used alone or in combination.
  • the transition metal refers to a Group 3 element to a Group 11 element in the long-period periodic table, and the transition metal includes Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y , Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta , W, Re, Os, Ir, Pt, and Au.
  • Nb, Ta, V, Zr, Ti, Hf, Y, La, Ce, and the like can be cited as transition metals (M2) that can provide good gas barrier properties.
  • Nb, Ta, and V, which are Group 5 elements, are preferably used from the viewpoint of easy binding to the non-transition metal (M1) contained in the gas barrier layer, based on various examination results. it can.
  • the transition metal (M2) is a Group 5 element (particularly Nb) and the non-transition metal (M1), which will be described in detail later, is Si
  • a significant gas barrier property improvement effect can be obtained.
  • the transition metal (M2) is particularly preferably Nb or Ta from which a compound with good transparency can be obtained.
  • the thickness of the region A is preferably in the range of 2 to 50 nm, more preferably in the range of 4 to 25 nm, and more preferably in the range of 5 to 15 nm from the viewpoint of achieving both gas barrier properties and optical characteristics. More preferably it is.
  • Non-transition metal-containing region B region
  • the B region which is a non-transition metal-containing region, refers to a region containing a non-transition metal as a metal main component b.
  • the “compound” here, that is, the “non-transition metal compound” means a compound containing a non-transition metal, for example, a non-transition metal oxide.
  • the non-transition metal (M1) is preferably a non-transition metal selected from Group 12 to Group 14 metals of the long-period periodic table.
  • the non-transition metal is not particularly limited, and any metal of Group 12 to Group 14 can be used alone or in combination. Examples thereof include Si, Al, Zn, In, and Sn. . Especially, it is preferable that Si, Sn, or Zn is included as the non-transition metal (M1), Si is more preferable, and Si alone is particularly preferable.
  • the thickness of the region B is preferably in the range of 10 to 1000 nm, more preferably in the range of 20 to 500 nm, and more preferably in the range of 50 to 300 nm from the viewpoint of achieving both gas barrier properties and productivity. More preferably it is.
  • the mixed region according to the present invention includes a non-transition metal (M1) selected from Group 12 to Group 14 metals of a long-period periodic table and a transition metal selected from Group 3 elements to Group 11 metals.
  • M1 non-transition metal
  • M2 is contained in the mixed region in which the value (M2 / M1) of the atomic ratio of the transition metal M2 to the non-transition metal M1 is in the range of 0.02 to 49. This is a region having 5 nm or more continuously in the vertical direction.
  • the mixed region may be formed as a plurality of regions having different chemical compositions of the constituent components, or may be formed as a region in which the chemical compositions of the constituent components are continuously changed. .
  • the region other than the mixed region of the gas barrier layer may be a region such as a non-transition metal (M1) oxide, nitride, oxynitride, or oxycarbide, or a transition metal (M2) oxide. It may be a region of nitride, oxynitride, oxycarbide, or the like.
  • M1 non-transition metal
  • M2 transition metal
  • Oxygen deficient composition In the present invention, it is preferable that a part of the composition contained in the mixed region has a non-stoichiometric composition (oxygen deficient composition) in which oxygen is lost.
  • the oxygen deficient composition is defined by the following relational expression (2) when at least a part of the composition of the mixed region is expressed by the following chemical composition formula (1). It is defined as satisfying the condition.
  • the oxygen deficiency index indicating the degree of oxygen deficiency in the mixed region
  • the minimum value obtained by calculating (2y + 3z) / (a + bx) in the certain mixed region is used.
  • composition represented by the chemical composition formula (1) is simply referred to as the composition of the composite region.
  • the composition of the composite region of the non-transition metal (M1) and the transition metal (M2) according to the present invention is represented by (M1) (M2) x O y N z which is the formula (1).
  • the composition of the composite region may partially include a nitride structure, and it is more preferable to include a nitride structure from the viewpoint of gas barrier properties.
  • the maximum valence of the non-transition metal (M1) is a
  • the maximum valence of the transition metal (M2) is b
  • the valence of O is 2
  • the valence of N is 3.
  • the composition of the composite region including a part of the nitride
  • (2y + 3z) / (a + bx) 1.0.
  • This formula means that the total number of bonds of non-transition metal (M1) and transition metal (M2) is equal to the total number of bonds of O and N.
  • non-transition metal (M1) And the transition metal (M2) are bonded to either O or N.
  • the maximum valence of each element is set to The composite valence calculated by performing the weighted average according to the existence ratio is adopted as the values of a and b of each “maximum valence”.
  • the remaining bonds of the non-transition metal (M1) and the transition metal (M2) have the possibility of bonding to each other, and the metals of the non-transition metal (M1) and the transition metal (M2) When they are directly bonded, it is considered that a denser and higher-density structure is formed than when bonded between metals via O or N, and as a result, gas barrier properties are improved.
  • the mixed region is a region where the value of x satisfies 0.02 ⁇ x ⁇ 49 (0 ⁇ y, 0 ⁇ z). This is defined as a region in which the value of the number ratio of transition metal (M2) / non-transition metal (M1) is in the range of 0.02 to 49 and the thickness is 5 nm or more. It is the same definition as that.
  • the mixed region is a region satisfying 0.1 ⁇ x ⁇ 10.
  • a thickness of 5 nm or more more preferably include a region satisfying 0.2 ⁇ x ⁇ 5 at a thickness of 5 nm or more, and a region satisfying 0.3 ⁇ x ⁇ 4 to a thickness of 5 nm or more. It is further preferable to contain.
  • the thickness of the mixed region where good gas barrier properties can be obtained is 5 nm or more as a sputtering thickness in terms of SiO 2 in the XPS analysis method described later, and this thickness is 8 nm or more. Preferably, it is 10 nm or more, more preferably 20 nm or more.
  • the thickness of the mixed region is not particularly limited from the viewpoint of gas barrier properties, but is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 30 nm or less from the viewpoint of optical characteristics. preferable.
  • a gas barrier layer having a mixed region having a specific configuration as described above exhibits a very high gas barrier property that can be used as a gas barrier layer for an electronic device such as an organic EL element.
  • composition analysis by XPS and measurement of the thickness of the mixed region About the composition distribution in the gas barrier layer according to the present invention, the composition distribution in the A region and the B region, the thickness of each region, and the like, X-ray photoelectron spectroscopy (abbreviation: XPS) described in detail below. It can obtain
  • XPS X-ray photoelectron spectroscopy
  • the element concentration distribution curve (hereinafter referred to as “depth profile”) in the thickness direction of the gas barrier layer according to the present invention is the element concentration of the non-transition metal M1 (for example, silicon), the transition metal M2 ( For example, the element concentration of niobium, oxygen (O), nitrogen (N), carbon (C) element concentration, etc. can be measured by combining X-ray photoelectron spectroscopy measurement with rare gas ion sputtering such as argon. It can be created by sequentially performing surface composition analysis while exposing the interior from the surface of the barrier layer.
  • the non-transition metal M1 for example, silicon
  • the transition metal M2 for example, the element concentration of niobium, oxygen (O), nitrogen (N), carbon (C) element concentration, etc.
  • rare gas ion sputtering such as argon. It can be created by sequentially performing surface composition analysis while exposing the interior from the surface of the barrier layer.
  • a distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio of each element (unit: atom%) and the horizontal axis as the etching time (sputtering time).
  • the etching time is generally correlated with the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer in the layer thickness direction, As the “distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer”, the distance from the surface of the gas barrier layer calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement Can be adopted.
  • etching rate is 0.05 nm / It is preferable to set to sec (SiO 2 thermal oxide film conversion value).
  • ⁇ Analyzer QUANTERASXM manufactured by ULVAC-PHI
  • X-ray source Monochromatic Al-K ⁇ ⁇ Sputtering ion: Ar (2 keV)
  • Depth profile Measurement is repeated at a predetermined thickness interval with a SiO 2 equivalent sputtering thickness to obtain a depth profile in the depth direction. The thickness interval was 1 nm (data every 1 nm is obtained in the depth direction).
  • Quantification The background was determined by the Shirley method, and quantified using the relative sensitivity coefficient method from the obtained peak area.
  • Data processing uses MultiPak manufactured by ULVAC-PHI.
  • the analyzed elements are non-transition metal M1 (for example, silicon (Si)), transition metal M2, oxygen (O), nitrogen (N), and carbon (C).
  • the composition ratio is calculated from the obtained data, the non-transition metal (M1) and the transition metal (M2) coexist, and the value of the atomic ratio of the transition metal (M2) / non-transition metal (M1) is , 0.02 to 49 is obtained, this is defined as a mixed region, and its thickness is obtained.
  • the thickness of the mixed region represents the sputter depth in XPS analysis in terms of SiO 2 .
  • the thickness of the mixed region when the thickness of the mixed region is 5 nm or more, it is determined as “mixed region”. From the viewpoint of gas barrier properties, there is no upper limit of the thickness in the mixed region, but from the viewpoint of optical properties, it is preferably in the range of 5 to 100 nm, more preferably in the range of 8 to 50 nm. Preferably, it is in the range of 10 to 30 nm.
  • FIG. 6 is an example of a graph for explaining the element profile and the mixed region when the composition distribution of the non-transition metal and the transition metal in the thickness direction of the gas barrier layer is analyzed by the XPS method.
  • elemental analysis of non-transition metal (M1), transition metal (M2), O, N, and C is performed in the depth direction from the surface of the gas barrier layer (the left end portion of the graph), and the horizontal axis represents spattering.
  • the B region which is an elemental composition having a non-transition metal (M1, for example, Si) as the main component of the metal is shown, and on the left side, the transition metal (M2, for example, niobium) is the main component of the metal.
  • a region which is an elemental composition is shown.
  • the mixed region is a region where the value of the atomic ratio of transition metal (M2) / non-transition metal (M1) is indicated by an element composition within the range of 0.02 to 49, and a part of A region and B region Is a region that overlaps with a part of the region and has a thickness of 5 nm or more.
  • transition metal-containing region formation of region A
  • transition metal (M2) include Nb, Ta, V, Zr, Ti, Hf, Y, La, Ce, and the like from the viewpoint of obtaining good gas barrier properties as described above.
  • Nb, Ta, and V which are Group 5 elements, can be preferably used because they are likely to be bonded to the non-transition metal (M1) contained in the gas barrier layer.
  • the formation of the layer containing the transition metal (M2) oxide is not particularly limited.
  • a conventionally known vapor deposition method using an existing thin film deposition technique can be used to make the mixed region efficient. It is preferable from a viewpoint of forming.
  • the vapor deposition method is not particularly limited, and examples thereof include physical vapor deposition (PVD) methods such as sputtering, vapor deposition, ion plating, and ion assist vapor deposition, plasma CVD (chemical vapor deposition), and ALD. Examples thereof include a chemical vapor deposition (CVD) method such as an (Atomic Layer Deposition) method.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • bipolar sputtering, magnetron sputtering, dual magnetron sputtering (DMS) using an intermediate frequency region, ion beam sputtering, ECR sputtering, or the like can be used alone or in combination of two or more.
  • the target application method is appropriately selected according to the target type, and any of DC (direct current) sputtering, DC pulse sputtering, AC (alternating current) sputtering, and RF (high frequency) sputtering may be used.
  • a reactive sputtering method using a transition mode that is intermediate between the metal mode and the oxide mode can also be used.
  • a metal oxide film can be formed at a high film formation speed, which is preferable.
  • the inert gas used for the process gas He, Ne, Ar, Kr, Xe or the like can be used, and Ar is preferably used. Furthermore, by introducing oxygen, nitrogen, carbon dioxide and carbon monoxide into the process gas, thin films of non-transition metal (M1) and transition metal (M2) composite oxides, nitride oxides, oxycarbides, etc. are formed. can do. Examples of film formation conditions in the sputtering method include applied power, discharge current, discharge voltage, time, and the like, which can be appropriately selected according to the sputtering apparatus, the material of the film, the layer thickness, and the like.
  • the sputtering method may be a multi-source simultaneous sputtering method using a plurality of sputtering targets including a transition metal (M2) alone or its oxide.
  • M2 transition metal
  • a method for producing these sputtering targets and a method for producing a thin film made of a composite oxide using these sputtering targets for example, JP 2000-160331 A, JP 2004-068109 A, JP
  • JP The methods and conditions described in JP 2013-047361 A can be referred to as appropriate.
  • the film forming conditions for carrying out the co-evaporation method include the ratio of the transition metal (M2) and oxygen in the film forming raw material, the ratio of the inert gas to the reactive gas during the film forming, and the gas concentration during the film forming. Examples include one or more conditions selected from the group consisting of supply amount, degree of vacuum during film formation, and power during film formation.
  • These film formation conditions preferably oxygen partial pressure
  • a mixed region made of a complex oxide having an oxygen deficient composition can be formed. That is, by forming the gas barrier layer using the co-evaporation method as described above, almost all regions in the thickness direction of the formed gas barrier layer can be mixed regions.
  • a desired gas barrier property can be realized by an extremely simple operation of controlling the thickness of the mixed region.
  • what is necessary is just to adjust the film-forming time at the time of implementing a co-evaporation method, for example, in order to control the thickness of a mixing area
  • the method for forming the B region containing the non-transition metal (M1) is not particularly limited, and for example, a vapor deposition method can be used by a known method.
  • the vapor deposition method is not particularly limited, and examples thereof include physical vapor deposition (PVD) methods such as sputtering, vapor deposition, ion plating, and ion assisted vapor deposition, plasma CVD (chemical vapor deposition), and ALD. Examples thereof include a chemical vapor deposition (CVD) method such as an (Atomic Layer Deposition) method.
  • PVD physical vapor deposition
  • a method of forming by a wet coating method using a polysilazane-containing coating solution containing Si as a non-transition metal is also a preferable method.
  • polysilazane applicable to the formation of the B region is a polymer having a silicon-nitrogen bond in the structure, and includes SiO 2 , Si 3 made of Si—N, Si—H, NH, or the like.
  • N is 4 and both of the intermediate solid solution SiO x N preceramic inorganic polymers, such as y.
  • the relatively Polysilazanes that can be modified to silicon oxide, silicon nitride, or silicon oxynitride at low temperatures are preferred.
  • Examples of such polysilazane include compounds having a structure represented by the following general formula (1).
  • R 1 , R 2 and R 3 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group.
  • perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms is particularly preferred from the viewpoint of the denseness of the B region constituting the resulting gas barrier layer as a thin film.
  • the organopolysilazane in which the hydrogen part bonded to Si is partially substituted with an alkyl group or the like has an alkyl group such as a methyl group, so that the adhesion to an adjacent substrate is improved and it may be hard.
  • the ceramic film made of polysilazane can be tough, and even when the film thickness is increased, the generation of cracks is preferred.
  • perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and may be used in combination.
  • Perhydropolysilazane is presumed to have a structure in which a linear structure and a ring structure centered on a 6- or 8-membered ring coexist.
  • the molecular weight of polysilazane is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), and is a liquid or solid substance, and varies depending on the molecular weight.
  • Mn number average molecular weight
  • These polysilazane compounds are commercially available in the form of a solution dissolved in an organic solvent, and commercially available products can be used as they are as coating solutions containing polysilazane compounds.
  • polysilazanes that are ceramicized at a low temperature include silicon alkoxide-added polysilazanes obtained by reacting the above polysilazanes with silicon alkoxides (Japanese Patent Laid-Open No. 5-238827), and glycidol-added polysilazanes obtained by reacting glycidol (specially No. 6-122852), an alcohol-added polysilazane obtained by reacting an alcohol (Japanese Patent Laid-Open No. 6-240208), and a metal carboxylate-added polysilazane obtained by reacting a metal carboxylate (Japanese Patent Laid-Open No. 6-299118). No.
  • acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329), metal fine particle-added polysilazane obtained by adding metal fine particles (JP-A-7- 1969 6 No.), and the like.
  • polysilazane examples include, for example, paragraphs (0024) to (0040) of JP2013-255910A, paragraphs (0037) to (0043) of JP2013-188942A, JP Paragraphs (0014) to (0021) of 2013-151123, Paragraphs (0033) to (0045) of JP2013-052569A, Paragraphs (0062) to (0075) of JP2013-129557A. ), And the contents described in paragraphs (0037) to (0064) of JP2013-226758A can be applied.
  • Suitable organic solvents include, for example, hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons, halogenated hydrocarbon solvents, ethers such as aliphatic ethers and alicyclic ethers. it can.
  • hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, and ethers such as dibutyl ether, dioxane and tetrahydrofuran.
  • organic solvents may be selected according to the purpose such as the solubility of polysilazane and the evaporation rate of the solvent, and a plurality of organic solvents may be mixed.
  • the concentration of polysilazane in the coating liquid containing polysilazane varies depending on the film thickness of the target gas barrier layer and the pot life of the coating liquid, but is preferably about 0.2 to 35% by mass.
  • an amine or metal catalyst can be added to the coating liquid containing polysilazane in order to promote modification to silicon oxide, silicon nitride, or silicon oxynitride.
  • a polysilazane solution containing a catalyst such as NAX120-20, NN120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, SP140 manufactured by AZ Electronic Materials Co., Ltd. as a commercial product is used. be able to.
  • these commercial items may be used independently and may be used in mixture of 2 or more types.
  • the addition amount of the catalyst is adjusted to 2% by mass or less with respect to polysilazane in order to avoid excessive silanol formation by the catalyst, decrease in film density, increase in film defects, and the like. It is preferable.
  • the coating liquid containing polysilazane can contain an inorganic precursor compound in addition to polysilazane.
  • the inorganic precursor compound other than polysilazane is not particularly limited as long as a coating liquid can be prepared.
  • compounds other than polysilazane described in paragraphs “0110” to “0114” of JP2011-143577A can be appropriately employed.
  • An organometallic compound of a metal element other than Si can be added to the coating liquid containing polysilazane.
  • an organometallic compound of a metal element other than Si By adding an organometallic compound of a metal element other than Si, the replacement of N atom and O atom of polysilazane is promoted in the coating and drying process, and the composition can be changed to a stable composition close to SiO2 after coating and drying. .
  • metal elements other than Si include aluminum (Al), titanium (Ti), zirconium (Zr), zinc (Zn), gallium (Ga), indium (In), chromium (Cr), iron (Fe), Magnesium (Mg), tin (Sn), nickel (Ni), palladium (Pd), lead (Pb), manganese (Mn), lithium (Li), germanium (Ge), copper (Cu), sodium (Na), Examples include potassium (K), calcium (Ca), cobalt (Co), boron (B), beryllium (Be), strontium (Sr), barium (Ba), radium (Ra), thallium (Tl), and the like.
  • Al, B, Ti and Zr are preferable, and among them, an organometallic compound containing Al is preferable.
  • Examples of the aluminum compound applicable to the present invention include aluminum isopoloxide, aluminum-sec-butyrate, titanium isopropoxide, aluminum triethylate, aluminum triisopropylate, aluminum tritert-butylate, aluminum tri-n- Examples include butyrate, aluminum tri-sec-butylate, aluminum ethyl acetoacetate / diisopropylate, acetoalkoxyaluminum diisopropylate, aluminum diisopropylate monoaluminum-t-butylate, aluminum trisethylacetoacetate, aluminum oxide isopropoxide trimer, etc. be able to.
  • Specific commercial products include, for example, AMD (aluminum diisopropylate monosec-butyrate), ASBD (aluminum secondary butyrate), ALCH (aluminum ethyl acetoacetate / diisopropylate), ALCH-TR (aluminum trisethyl acetoate).
  • the temperature is preferably raised to 30 to 100 ° C. and maintained for 1 minute to 24 hours with stirring.
  • the content of the additive metal element in the polysilazane-containing layer constituting the gas barrier film according to the present invention is preferably 0.05 to 10 mol%, more preferably 100 mol% of silicon (Si). Is 0.5 to 5 mol%.
  • the modification treatment is a treatment in which polysilazane is imparted with energy and part or all thereof is converted to silicon oxide or silicon oxynitride.
  • a known method based on the conversion reaction of polysilazane can be selected, and examples thereof include known plasma treatment, plasma ion implantation treatment, ultraviolet irradiation treatment, vacuum ultraviolet irradiation treatment and the like.
  • a conversion reaction using plasma, ozone, or ultraviolet light that can be converted at a low temperature is preferable.
  • Conventionally known methods can be used for plasma and ozone.
  • a gas barrier layer is formed by providing a coating film of a polysilazane-containing coating liquid of a coating method on a substrate and applying a vacuum ultraviolet irradiation treatment in which a vacuum ultraviolet ray (VUV) having a wavelength of 200 nm or less is irradiated to perform a modification treatment.
  • VUV vacuum ultraviolet ray
  • a rare gas excimer lamp is preferably used.
  • an excimer lamp (single wavelength of 172 nm, 222 nm, 308 nm, for example, manufactured by USHIO INC., Manufactured by M.D. Can be mentioned.
  • the treatment by vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy of a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in polysilazane, and the bonding of atoms is an action of only a photon called a photon process.
  • a silicon oxide film or a silicon oxynitride film is formed at a relatively low temperature (about 200 ° C. or lower) by proceeding an oxidation reaction with active oxygen or ozone while directly cutting.
  • the thickness of the B region is not particularly limited, but is preferably in the range of 1 to 500 nm, more preferably in the range of 10 to 300 nm.
  • the mixed region forming method is preferably a method of forming the mixed region between the A region and the B region by appropriately adjusting each forming condition when forming the A region and the B region.
  • the B region is formed by the above-described vapor deposition method, for example, the ratio of the non-transition metal (M1) and oxygen in the deposition raw material, the ratio of the inert gas and the reactive gas during the deposition, Mixing by adjusting one or more conditions selected from the group consisting of the gas supply amount during film formation, the degree of vacuum during film formation, the magnetic force during film formation, and the power during film formation Regions can be formed.
  • a film forming raw material type (polysilazane type or the like) containing the non-transition metal (M1), a catalyst type, a catalyst content, a coating film thickness, and a drying temperature.
  • a mixed region can be formed by adjusting one or more conditions selected from the group consisting of time, reforming method, and reforming conditions.
  • the ratio of the transition metal (M2) and oxygen in the deposition material for example, the ratio of the inert gas and the reactive gas during the deposition, A mixed region by adjusting one or more conditions selected from the group consisting of the gas supply amount during film formation, the degree of vacuum during film formation, the magnetic force during film formation, and the power during film formation Can be formed.
  • the formation conditions of the method of forming the A region and the B region can be adjusted as appropriate.
  • a desired thickness can be obtained by controlling the deposition time.
  • a method of directly forming a mixed region of a non-transition metal and a transition metal is also preferable.
  • a co-sputtering method is preferable.
  • the co-sputtering method employed in the present invention is, for example, a composite target made of an alloy containing both a non-transition metal (M1) and a transition metal (M2), or a composite of a non-transition metal (M1) and a transition metal (M2).
  • M1 non-transition metal
  • M2 transition metal
  • M2 non-transition metal
  • M2 a composite of a non-transition metal
  • M2 transition metal
  • M2 a composite of a non-transition metal
  • M2 transition metal
  • the co-sputtering method in the present invention is multi-source simultaneous sputtering using a plurality of sputtering targets including a single non-transition metal (M1) or its oxide and a single transition metal (M2) or its oxide. May be.
  • M1 non-transition metal
  • M2 single transition metal
  • the film forming conditions for carrying out the co-evaporation method include the ratio of the transition metal (M2) and oxygen in the film forming raw material, the ratio of the inert gas to the reactive gas during the film forming, and the film forming process.
  • One or two or more conditions selected from the group consisting of the gas supply amount, the degree of vacuum during film formation, and the power during film formation are exemplified, and these film formation conditions (preferably oxygen content)
  • these film formation conditions preferably oxygen content
  • a desired gas barrier property can be realized by an extremely simple operation of controlling the thickness of the mixed region.
  • what is necessary is just to adjust the film-forming time at the time of implementing a co-evaporation method, for example, in order to control the thickness of a mixing area
  • the gas barrier layer according to the present invention is formed by forming a gas barrier layer as a layer to be peeled through a release layer on a substrate such as glass, as in the peeling method described in JP-A-2015-173249,
  • the peelable layer can be transferred to a plastic film to function as a gas barrier film.
  • it can transfer to electronic devices, such as an organic electroluminescent (EL) element, and can also function as a sealing layer.
  • EL organic electroluminescent
  • Such a method for forming a gas barrier layer makes it easy to manage the cleanliness of the process of forming a thin gas barrier layer or sealing layer in a light, thin, or flexible electronic device. It is preferable from the viewpoint of improving the yield.
  • a first step of forming a release layer with a thickness of 0.1 nm or more and less than 10 nm on a substrate and a layer to be peeled including a first layer in contact with the release layer are formed on the release layer.
  • a gas barrier layer by a peeling method comprising: a second step of: separating a part of the peeling layer and the first layer; and a third step of separating the peeling layer and the layer to be peeled. It is preferable to form as a layer to be peeled.
  • a step of forming a starting point of peeling may be provided between the second step and the third step.
  • 7A to 7F are diagrams for explaining a peeling method.
  • a peeling layer 103 with a thickness of less than 10 nm is formed over a manufacturing substrate 101, and then, as a second step, a layer to be peeled 105 is formed on the peeling layer 103 (FIG. 7A).
  • a layer to be peeled 105 is formed on the peeling layer 103 (FIG. 7A).
  • an example in which an island-shaped release layer is formed is shown, but the present invention is not limited thereto.
  • the layer to be peeled 105 may be formed in an island shape.
  • the layer to be peeled 105 when the layer to be peeled 105 is peeled from the manufacturing substrate 101, peeling occurs in the interface between the manufacturing substrate 101 and the peeling layer 103, the interface between the peeling layer 103 and the layer to be peeled 105, or the peeling layer 103.
  • Select material In this embodiment, the case where separation occurs at the interface between the separation layer 105 and the separation layer 103 is illustrated; however, the present invention is not limited to this depending on the combination of materials used for the separation layer 103 and the separation layer 105. Note that in the case where the layer to be peeled 105 has a stacked structure, a layer in contact with the peeling layer 103 is particularly referred to as a first layer.
  • the thickness of the peeling layer 103 is, for example, less than 10 nm, preferably 8 nm or less, more preferably 5 nm or less, and further preferably 3 nm or less.
  • the thickness of the release layer 103 may be, for example, 0.1 nm or more, preferably 0.5 nm or more, more preferably 1 nm or more.
  • a thicker release layer 103 is preferable because a uniform film can be formed.
  • the thickness of the release layer 103 is preferably 1 nm or more and 8 nm or less. In this embodiment, a tungsten film with a thickness of 5 nm is used.
  • the thickness of the release layer 103 is desirably as described above over the entire layer.
  • the peeling layer 103 may have a region with the above thickness at least in part.
  • the release layer 103 may have a region with the above-described thickness in a region of 50% or more of the release layer, more preferably in a region of 90% or more of the release layer. That is, in one embodiment of the present invention, part of the peeling layer 103 may have a region with a thickness of less than 0.1 mm or a region with a thickness of 10 nm or more.
  • the manufacturing substrate 101 a substrate having heat resistance that can withstand at least a processing temperature in the manufacturing process is used.
  • a glass substrate, a quartz substrate, a sapphire substrate, a semiconductor substrate, a ceramic substrate, a metal substrate, a resin substrate, a plastic substrate, or the like can be used.
  • a large glass substrate is preferably used as the manufacturing substrate 101 in order to improve mass productivity.
  • the third generation 550 mm ⁇ 650 mm
  • the third generation 600 mm ⁇ 720 mm, or 620 mm ⁇ 750 mm
  • the fourth generation (680 mm ⁇ 880 mm, or 730 mm ⁇ 920 mm)
  • the fifth generation (1100 mm ⁇ 1300 mm
  • 6th generation (1500 mm ⁇ 1850 mm
  • 7th generation (1870 mm ⁇ 2200 mm
  • 8th generation (2200 mm ⁇ 2400 mm
  • 9th generation 2400 mm ⁇ 2800 mm, 2450 mm ⁇ 3050 mm
  • 10th generation 2950 mm ⁇ 3400 mm
  • a glass substrate or a glass substrate larger than this can be used.
  • an insulating film such as a silicon oxide film, a silicon oxynitride film, a silicon nitride film, or a silicon nitride oxide film is formed as a base film between the manufacturing substrate 101 and the separation layer 103. It is preferable because contamination from the glass substrate can be prevented.
  • the separation layer 103 includes an element selected from tungsten (W), molybdenum (Mo), titanium, tantalum, niobium, nickel, cobalt, zirconium, zinc, ruthenium, rhodium, palladium, osmium, iridium, and silicon, and the element.
  • An alloy material or a compound material containing the element can be used.
  • the crystal structure of the layer containing silicon may be any of amorphous, microcrystalline, and polycrystalline.
  • a metal oxide such as aluminum oxide, gallium oxide, zinc oxide, titanium dioxide, indium oxide, indium tin oxide, indium zinc oxide, or In—Ga—Zn oxide may be used. It is preferable to use a refractory metal material such as tungsten, titanium, or molybdenum for the separation layer 103 because the degree of freedom in the formation process of the separation layer 105 is increased.
  • the peeling layer 103 is formed by, for example, sputtering, CVD (Chemical Vapor Deposition) (plasma CVD, thermal CVD, MOCVD (Metal Organic CVD), etc.), ALD (Atomic Layer Deposition), coating (spin coating, (Including a droplet discharge method, a dispensing method, and the like), a printing method, a vapor deposition method, and the like.
  • CVD Chemical Vapor Deposition
  • CVD Chemical Vapor Deposition
  • MOCVD Metal Organic CVD
  • ALD Atomic Layer Deposition
  • coating spin coating, (Including a droplet discharge method, a dispensing method, and the like), a printing method, a vapor deposition method, and the like.
  • the separation layer 103 has a single-layer structure, it is preferable to form a tungsten film, a molybdenum film, or a film containing a mixture of tungsten and molybdenum.
  • a film containing tungsten oxide or oxynitride, a film containing molybdenum oxide or oxynitride, or a film containing an oxide or oxynitride of a mixture of tungsten and molybdenum may be formed.
  • the mixture of tungsten and molybdenum corresponds to, for example, an alloy of tungsten and molybdenum.
  • the surface of a film containing tungsten is subjected to thermal oxidation treatment, oxygen plasma treatment, nitrous oxide (N 2 O) plasma treatment, treatment with a solution having strong oxidizing power such as ozone water, and the like to form tungsten oxide.
  • a containing film may be formed.
  • Plasma treatment and heat treatment may be performed in oxygen, nitrogen, nitrous oxide alone, or a mixed gas atmosphere of the gas and other gases.
  • tungsten film with a thickness of less than 10 nm by using a tungsten film with a thickness of less than 10 nm, it is possible to easily perform separation with a small separation force in the third step, so that the plasma treatment or the heat treatment is not performed. Good. This is preferable because it can simplify the peeling process and the manufacturing process of the apparatus.
  • a gas barrier layer in contact with the peeling layer 103 is prepared. Furthermore, you may produce a functional element on a gas barrier layer.
  • FIG. 7B corresponds to a cross-sectional view taken along alternate long and short dash line A1-A2 in FIG. 7C.
  • FIG. 7C is a plan view seen from the substrate 109 (not shown) side.
  • the bonding layer 107 is preferably disposed so as to overlap with the peeling layer 103 and the peeled layer 105. 7B and 7C, the end portion of the bonding layer 107 is preferably not positioned outside the end portion of the release layer 103.
  • a starting point of peeling is formed by irradiation with laser light (step of forming a starting point of peeling) (FIGS. 7B and 7D).
  • Laser light is applied to a region where the bonding layer 107 in a cured state, the peeled layer 105, and the peeling layer 103 overlap (see arrow P1 in FIG. 7B).
  • the laser light may be irradiated from either side of the substrate, but it is preferable to irradiate from the side of the manufacturing substrate 101 provided with the release layer 103 in order to suppress the scattered light from being irradiated to the functional element or the like. .
  • a material that transmits the laser light is used for the substrate on the laser light irradiation side.
  • At least the first layer (the layer included in the layer to be peeled 105 and in contact with the peeling layer 103) is cracked (to cause film cracking or cracking), thereby removing a part of the first layer, A starting point can be formed (see the region enclosed by the dotted line in FIG. 7D).
  • the first layer not only the first layer but also other layers of the layer to be peeled 105, the peeling layer 103, and part of the bonding layer 107 may be removed.
  • the formation method of the starting point of peeling is not ask
  • the force for separating the layer to be peeled 105 and the peeling layer 103 is concentrated on the starting point of peeling, so that the starting point of peeling is formed near the end rather than the central part of the cured bonding layer 107.
  • a starting point of peeling in the form of a solid line or a broken line by continuously or intermittently irradiating a laser beam in the vicinity of the end of the bonding layer 107 because the peeling becomes easy.
  • laser used to form the starting point of peeling there is no particular limitation on the laser used to form the starting point of peeling.
  • a continuous wave laser or a pulsed laser can be used.
  • Laser light irradiation conditions frequencies, power density, energy density, beam profile, and the like are appropriately controlled in consideration of the thickness, material, and the like of the manufacturing substrate 101 and the separation layer 103.
  • the layer to be peeled 105 and the manufacturing substrate 101 are separated from the starting point of the peeling (FIGS. 7E and 7F).
  • the layer 105 to be peeled can be transferred from the manufacturing substrate 101 to the substrate 109.
  • the manufacturing substrate 101 may be fixed to an adsorption stage, and the layer to be peeled 105 may be peeled from the manufacturing substrate 101.
  • the substrate 109 may be fixed to the suction stage and the manufacturing substrate 101 may be peeled from the substrate 109.
  • the bonding layer 107 formed outside the separation starting point remains on at least one of the manufacturing substrate 101 and the substrate 109.
  • FIG. 7E and 7F show the example which remains on both sides, it is not restricted to this.
  • the layer to be peeled 105 and the manufacturing substrate 101 may be separated from the starting point of peeling by a physical force (a process of peeling with a human hand or a jig, a process of separating while rotating a roller, or the like).
  • the manufacturing substrate 101 and the layer to be peeled 105 may be separated by infiltrating a liquid such as water into the interface between the peeling layer 103 and the layer to be peeled 105.
  • the liquid can be easily separated by permeating between the peeling layer 103 and the peeled layer 105 by capillary action.
  • static electricity generated at the time of peeling can be prevented from adversely affecting the functional elements included in the layer to be peeled 105 (such as a semiconductor element being destroyed by static electricity).
  • the liquid may be sprayed in the form of mist or steam.
  • pure water, an organic solvent, or the like can be used, and a neutral, alkaline, or acidic aqueous solution, an aqueous solution in which a salt is dissolved, or the like may be used.
  • the bonding layer 107 or the like that does not contribute to adhesion between the layer to be peeled 105 and the substrate 109 remaining on the substrate 109 after peeling may be removed. By removing, it is possible to suppress adverse effects on the functional elements in the subsequent steps (mixing of impurities, etc.), which is preferable. For example, unnecessary resin can be removed by wiping, washing, or the like.
  • a peeling starting point is formed by laser light irradiation, and the peeling layer 103 and the layer to be peeled 105 are easily peeled, and then peeling is performed. Thereby, the yield of a peeling process can be improved.
  • the gas barrier film according to the present invention as described above has excellent gas barrier properties, transparency, and bending resistance. Therefore, the gas barrier film according to the present invention is a gas barrier used for electronic devices such as packages such as electronic devices, photoelectric conversion elements (solar cell elements), organic electroluminescence (EL) elements, liquid crystal display elements, and the like. It can be used for various applications such as a conductive film and an electronic device using the same.
  • electronic devices such as packages such as electronic devices, photoelectric conversion elements (solar cell elements), organic electroluminescence (EL) elements, liquid crystal display elements, and the like. It can be used for various applications such as a conductive film and an electronic device using the same.
  • an organic electroluminescent element organic EL element
  • LCD liquid crystal display element
  • PV solar cell
  • the electronic device body is preferably an organic EL element.
  • a plastic film is preferably used as the light emitting surface side resin base material and the back surface side base material used in the present invention.
  • the plastic film used is not particularly limited in material, thickness and the like as long as it can hold an organic light emitting element, a gas barrier layer, and the like, and can be appropriately selected.
  • Specific examples of the plastic film include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyetherimide.
  • Resin cellulose acylate resin, polyurethane resin, polyetheretherketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyethersulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring-modified polycarbonate resin, alicyclic ring
  • thermoplastic resins such as modified polycarbonate resins, fluorene ring-modified polyester resins, and acryloyl compounds.
  • the thickness of the resin substrate is preferably about 10 to 100 ⁇ m, more preferably 15 to 50 ⁇ m.
  • the back substrate has a high rigidity from the viewpoint of stably supporting the light emitting device.
  • the charge injection layer is a layer provided between the electrode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance.
  • the details are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123-166) of “November 30, 1998, NTS Co., Ltd.”. There is.
  • a charge injection layer generally, if it is a hole injection layer, it exists between a transparent anode and a light emitting layer or a hole transport layer, and if it is an electron injection layer, it exists between a cathode and a light emitting layer or an electron transport layer. Can be made.
  • the details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc.
  • materials used for the hole injection layer include: , Porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives, Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, polyvinylcarbazole, aromatic amines introduced into the main chain or side chain Child material or oligomer, polysilane, a conductive polymer or oligomer
  • Examples of the triarylamine derivative include benzidine type represented by ⁇ -NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), and MTDATA (4,4 ′, 4 ′′).
  • Examples include a starburst type represented by -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine), a compound having fluorene or anthracene in the triarylamine-linked core.
  • hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.
  • JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like Specific examples of materials preferably used for the electron injection layer are as follows. Metals represented by strontium and aluminum, alkali metal compounds represented by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkali metal halide layers represented by magnesium fluoride, calcium fluoride, etc. Examples thereof include an alkaline earth metal compound layer typified by magnesium, a metal oxide typified by molybdenum oxide and aluminum oxide, and a metal complex typified by lithium 8-hydroxyquinolate (Liq).
  • Metals represented by strontium and aluminum alkali metal compounds represented by lithium fluoride, sodium fluoride, potassium fluoride, etc.
  • the transparent electrode in this invention is a cathode
  • organic materials such as a metal complex
  • the electron injection layer is preferably a very thin film, and depending on the constituent material, the layer thickness is preferably in the range of 1 nm to 10 ⁇ m.
  • the light emitting layer constituting the organic functional layer unit preferably includes a phosphorescent light emitting compound as a light emitting material.
  • This light emitting layer is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer and holes injected from the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. Alternatively, it may be the interface between the light emitting layer and the adjacent layer.
  • Such a light emitting layer is not particularly limited in its configuration as long as the light emitting material contained satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting intermediate layer between the light emitting layers.
  • the total thickness of the light emitting layers is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained.
  • the sum total of the thickness of a light emitting layer is the thickness also including the said intermediate
  • each light emitting layer is preferably adjusted within the range of 1 to 50 nm, more preferably within the range of 1 to 20 nm.
  • the plurality of stacked light emitting layers correspond to the respective emission colors of blue, green, and red, there is no particular limitation on the relationship between the thicknesses of the blue, green, and red light emitting layers.
  • the light emitting layer as described above is prepared by using a known method such as a vacuum evaporation method, a spin coating method, a casting method, an LB method (Langmuir Blodget, Langmuir Blodgett method), an ink jet method, or the like. Can be formed.
  • a plurality of light emitting materials may be mixed, and a phosphorescent light emitting material and a fluorescent light emitting material (also referred to as a fluorescent dopant or a fluorescent compound) may be mixed and used in the same light emitting layer.
  • the structure of the light-emitting layer preferably includes a host compound (also referred to as a light-emitting host) and a light-emitting material (also referred to as a light-emitting dopant compound), and emits light from the light-emitting material.
  • ⁇ Host compound> As the host compound contained in the light emitting layer, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. Further, the phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
  • a known host compound may be used alone, or a plurality of types of host compounds may be used.
  • a plurality of types of host compounds it is possible to adjust the movement of charges, and the efficiency of the organic electroluminescent device can be improved.
  • a plurality of kinds of light emitting materials described later it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
  • the host compound used in the light emitting layer may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). )
  • host compounds applicable to the present invention include, for example, JP-A Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002 -75645, 2002-338579, 2002-105445, 2002-343568, 2002-141173, 2002-352957, 2002-203683, 2002 36 No. 227, No. 2002-231453, No. 2003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-260861, No. 2002-280183. No. 2002, No. 2002-299060, No.
  • a phosphorescent compound also referred to as a phosphorescent compound, a phosphorescent material, or a phosphorescent dopant
  • a fluorescent compound both a fluorescent compound or a fluorescent material
  • a phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and the phosphorescence quantum yield is 0 at 25 ° C.
  • a preferred phosphorescence quantum yield is 0.1 or more, although it is defined as 0.01 or more compounds.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7.
  • the phosphorescence quantum yield in the solution can be measured using various solvents, but when using a phosphorescent compound in the present invention, the phosphorescence quantum yield is 0.01 or more in any solvent. Should be achieved.
  • the phosphorescent compound can be appropriately selected from known compounds used in the light emitting layer of a general organic EL device, and preferably a group 8-10 metal in the periodic table of elements is used. It is a complex compound to be contained, more preferably an iridium compound, an osmium compound, a platinum compound (platinum complex compound) or a rare earth complex, and most preferably an iridium compound.
  • At least one light emitting layer may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compound in the light emitting layer varies in the thickness direction of the light emitting layer. It may be an embodiment.
  • preferred phosphorescent compounds include organometallic complexes having Ir as a central metal. Furthermore, a complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond is preferable.
  • the phosphorescent compound described above (also referred to as a phosphorescent metal complex) is described in, for example, Organic Letter, vol. 16, 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, pp. 1685-1687 (1991), J. Am. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, 3055-3066 (2002) , New Journal of Chemistry. 26, 1171 (2002), European Journal of It can be synthesized by applying the methods described in Organic Chemistry, Vol. 4, pages 695 to 709 (2004) and references in these documents.
  • Fluorescent compounds include, for example, coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes. Stilbene dyes, polythiophene dyes, rare earth complex phosphors, and the like.
  • the hole transport layer is composed of a hole transport material having a function of transporting holes.
  • the hole injection layer and the electron blocking layer also have a function of a hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has characteristics of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples include stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, and thiophene oligomers.
  • hole transport material those described above can be used, but in addition, porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds can be used, and in particular, aromatic tertiary amines. It is preferable to use a compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (abbreviation: TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1 -Bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl, 1,1-bis (4-di-p -Tolylaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p
  • the hole transport material may be formed by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, and an LB method (Langmuir Brodget, Langmuir Brodgett method). Thus, it can be formed by thinning.
  • the layer thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • the p property can be increased by doping impurities into the material of the hole transport layer.
  • Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175 and J.P. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer structure or a stacked structure of a plurality of layers.
  • an electron transport material (also serving as a hole blocking material) constituting a layer portion adjacent to the light emitting layer is used as an electron transporting material. What is necessary is just to have the function to transmit.
  • any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as a material for the electron transport layer. It can. Furthermore, a polymer material in which these materials are introduced into a polymer chain, or a polymer material having these materials as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviation: Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8- Quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), etc., and the central metal of these metal complexes
  • a metal complex in which In, Mg, Cu, Ca, Sn, Ga, or Pb is replaced can also be used as the material for the electron transport layer.
  • the electron transport layer can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer may have a single structure composed of one or more of the above materials.
  • blocking layer examples include a hole blocking layer and an electron blocking layer, which are provided as necessary in addition to the constituent layers of the organic functional layer unit described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. Hole blocking (hole block) layer and the like.
  • the hole blocking layer has a function of an electron transport layer in a broad sense.
  • the hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved.
  • the structure of an electron carrying layer can be used as a hole-blocking layer as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer.
  • the electron blocking layer has a function of a hole transport layer in a broad sense.
  • the electron blocking layer is made of a material that has the ability to transport holes and has a very small ability to transport electrons. By blocking holes while transporting holes, the probability of recombination of electrons and holes is improved. Can be made.
  • the structure of a positive hole transport layer can be used as an electron blocking layer as needed.
  • the layer thickness of the hole blocking layer applied to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • anode in the organic EL element a material having a work function (4 eV or more, preferably 4.5 eV or more) of a metal, an alloy, an electrically conductive compound, or a mixture thereof is preferably used.
  • electrode substances include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • the anode may be formed by depositing a thin film of these electrode materials by vapor deposition or sputtering, and a pattern having a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 ⁇ m or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • a wet film forming method such as a printing method or a coating method can be used.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the anode depends on the material, it is usually selected within the range of 10 nm to 1 ⁇ m, preferably 10 to 200 nm.
  • the cathode is an electrode film that functions to supply holes to the organic functional layer unit, and a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof is used. Specifically, gold, aluminum, silver, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum 1 mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO And oxide semiconductors such as TiO 2 and SnO 2 .
  • the cathode can be produced by using these conductive materials and forming a thin film by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • a cathode having good light transmittance may be selected and configured.
  • the organic EL device is a sealing member for shielding a transparent conductive film (TF) including a transparent anode, a cathode, and an organic functional layer unit formed between the cathode and the transparent anode from the outside air. It is preferable to have a structure for sealing.
  • TF transparent conductive film
  • sealing means used in the present invention include a method of bonding a sealing material and a constituent member of the organic EL element by forming a sealing resin layer with an adhesive. As long as it is arranged so as to cover the display area of the organic EL element, it may be in the form of a concave plate or a flat plate. Further, transparency and electrical insulation are not particularly limited.
  • the sealing material used for sealing include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the organic EL element can be thinned.
  • the polymer film is JIS K
  • the oxygen permeability measured by a method according to 7126-1987 is 1 ⁇ 10 ⁇ 3 cm 3 / ( m 2 ⁇ 24 h ⁇ atm)
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method according to JIS K 7129-1992 is 1 ⁇ 10 ⁇ 3 g / (M 2 ⁇ 24h) or less is preferable.
  • sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
  • the adhesive for forming the sealing resin layer include acrylic acid oligomers, photocuring and thermosetting adhesives having reactive vinyl groups of methacrylic acid oligomers, and moisture curing such as 2-cyanoacrylates.
  • examples thereof include an adhesive such as a mold.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an organic EL element may deteriorate by heat processing, what can be adhesive-hardened in the temperature range from room temperature to 80 degreeC is preferable.
  • a desiccant may be dispersed in the adhesive.
  • Application of the adhesive to the sealing material may use a commercially available dispenser, or may be printed like screen printing.
  • a display element a display device that is a device including a display element, a light-emitting element, and a light-emitting device that is a device including a light-emitting element have various forms or have various elements. I can do it.
  • a display element As an example of a display element, a display device, a light emitting element, or a light emitting device, an EL element (an EL element including an organic substance and an inorganic substance, an organic EL element, an inorganic EL element), an LED (white LED, red LED, green LED, blue LED, etc.) ), Transistor (transistor that emits light in response to current), electron-emitting device, liquid crystal device, electronic ink, electrophoretic device, grating light valve (GLV), plasma display panel (PDP), MEMS (micro electro mechanical system) ), Digital micromirror device (DMD), DMS (digital micro shutter), IMOD (interference modulation) element, electrowetting element, piezoelectric ceramic display, carbon nanotube, etc.
  • an EL element an EL element including an organic substance and an inorganic substance, an organic EL element, an inorganic EL element
  • an LED white LED, red LED, green LED, blue LED, etc.
  • Transistor Trans
  • An example of a display device using an EL element is an EL display.
  • a display device using an electron-emitting device there is a field emission display (FED) or a SED type flat display (SED: Surface-conduction Electro-emitter Display).
  • FED field emission display
  • SED SED type flat display
  • a display device using a liquid crystal element there is a liquid crystal display (a transmissive liquid crystal display, a transflective liquid crystal display, a reflective liquid crystal display, a direct view liquid crystal display, a projection liquid crystal display) and the like.
  • An example of a display device using electronic ink or an electrophoretic element is electronic paper.
  • Example 1 Production of organic EL element >> [Production of Organic EL Element 1]
  • the organic EL element 1 was produced according to the following method.
  • Step 1-1 Preparation of resin base material
  • a resin base material a polyethylene terephthalate film having a thickness of 23 ⁇ m and easily bonded on both sides (Teijin DuPont Films, KFL12W # 23, hereinafter abbreviated as PET) is used. The following hard coat was formed on both sides.
  • a clear hard coat layer having an antiblock function was formed on the surface opposite to the surface on which the gas barrier layer of PET was formed. Specifically, a UV curable resin (manufactured by Aika Kogyo Co., Ltd., product number: Z731L) was applied so that the dry film thickness was 0.5 ⁇ m, then dried at 80 ° C., and then in air, a high-pressure mercury lamp was cured under the condition of an irradiation energy amount of 0.5 J / cm 2 .
  • a UV curable resin manufactured by Aika Kogyo Co., Ltd., product number: Z731L
  • a clear hard coat layer having a thickness of 2 ⁇ m was formed on the surface on which the gas barrier layer was to be formed.
  • UV curable resin OPSTAR (registered trademark) Z7527 manufactured by JSR Corporation was applied so as to have a dry film thickness of 2 ⁇ m, dried at 80 ° C., and then a high-pressure mercury lamp in air. It was used and cured under conditions of an irradiation energy amount of 0.5 J / cm 2 .
  • the resin base material was produced (Hereafter, the same base material is used about all the preparation examples.).
  • an adhesive layer having an adhesive made of a heat-resistant acrylic resin having a thickness of 20 ⁇ m is used as a support film, and a thickness of 75 ⁇ m.
  • a PET film was bonded and pressure-bonded with a nip roll to obtain a resin base material with a support film.
  • Step 1-2 Formation of CVD gas barrier layer
  • a gas barrier layer was formed on the resin substrate by the following plasma CVD method.
  • a gas barrier layer made of silicon oxide and having a thickness of 200 nm was formed on a resin substrate according to the following film formation conditions.
  • ⁇ Film formation conditions Feed rate of raw material gas (hexamethyldisiloxane, HMDSO): 30 sccm (Standard Cubic Centimeter per Minute) Supply amount of oxygen gas (O 2 ): 300 sccm Degree of vacuum in the vacuum chamber: 3Pa Applied power from the power source for plasma generation: 0.5 kW Frequency of power source for plasma generation: 13.56 MHz Conveying speed of flexible resin substrate: 0.4 m / min (Step 1-3: Formation of coating gas barrier layer) A dibutyl ether solution containing 20% by mass of perhydropolysilazane (manufactured by AZ Electronic Materials Co., Ltd., NN120-20) and an amine catalyst (N, N, N ′, N′-tetramethyl-1,6-diaminohexane (TMDAH) )) And a dibutyl ether solution (NAX120-20, manufactured by AZ Electronic Materials Co., Ltd.) containing
  • a roll-to-roll type coating apparatus capable of successively performing coating surface side protective film peeling, coating, drying, excimer modification treatment, and coating surface side protective film bonding was used.
  • the coating solution was applied on the base material using a die coater so that the thickness after drying was 250 nm and dried at 80 ° C. in a dryer zone.
  • a vacuum ultraviolet ray irradiation treatment was performed on the dried coating film continuously in a vacuum ultraviolet ray irradiation zone having an Xe excimer lamp having a wavelength of 172 nm under the condition that the irradiation energy was 6.0 J / cm 2.
  • a barrier layer was formed.
  • the irradiation atmosphere was replaced with nitrogen heated to 60 ° C., and the oxygen concentration was set to 0.1% by volume or less. Up to this point, there was no contact of the transport roll or the like on the coating surface.
  • This process was further repeated twice to form three layers of a coating gas barrier layer having a thickness of 250 nm.
  • a self-adhesive OPP film (Futamura Chemical Co., Ltd., FSA010M) was bonded as a protective film to the coated surface, and then wound up.
  • the water vapor permeability of the gas barrier film substrate 1 was measured using the Ca method.
  • the measurement conditions were 40 ° C. and 90% RH.
  • the water vapor transmission rate obtained was 8.2 ⁇ 10 ⁇ 6 g / (m 2 ⁇ 24 h).
  • thermosetting sheet-like adhesive epoxy resin
  • Ca was vapor-deposited in the center of the glass plate with a size of 20 mm ⁇ 20 mm through a mask.
  • the thickness of Ca was 80 nm.
  • the glass plate on which Ca has been deposited is taken out into the glove box, placed so that the sealing resin layer surface of the gas barrier film to which the sealing resin layer is bonded and the Ca deposition surface of the glass plate are in contact with each other, and adhered by vacuum lamination. . At this time, heating at 110 ° C. was performed. Further, the adhered sample was placed on a hot plate set at 110 ° C. with the glass plate facing down, and cured for 30 minutes to produce an evaluation cell.
  • a sample using a quartz glass plate having a thickness of 0.2 mm was used instead of the gas barrier film sample as a comparative sample.
  • a black and white transmission densitometer TM-5 manufactured by Konica Minolta was used for transmission density measurement.
  • the transmission density was measured at any four points in the evaluation cell, and the average value was calculated.
  • Step 1-4 Formation of transparent anode
  • a transparent anode composed of a silver thin film was formed according to the following method.
  • the external size of the organic EL element 1 is 60 mm ⁇ 150 mm, and the size of the light emitting portion is 40 mm ⁇ 130 mm.
  • the gas barrier film base material 1 was fixed to a base material holder of a commercially available vacuum deposition apparatus, and a resistance heating boat made of tungsten was charged with silver (Ag), and attached to the first vacuum chamber of the vacuum deposition apparatus.
  • the resistance heating boat containing silver was energized and heated.
  • a transparent anode made of silver having a thickness of 15 nm was formed at a deposition rate of 0.1 nm / second to 0.2 nm / second, and a transparent conductive film 1 was produced.
  • Step 1-5 Organic functional layer unit to cathode formation
  • the compound HT-1 shown below was deposited at a deposition rate of 0 while moving the formed transparent conductive film 1 to the transparent anode. Evaporation was performed at a rate of 1 nm / second, and a 20 nm hole transport layer (HTL) was provided.
  • Compound A-3 blue light-emitting dopant
  • Compound A-1 green light-emitting dopant
  • Compound A-2 red light-emitting dopant
  • Compound H-1 host compound shown below
  • the vapor deposition rate is changed depending on the film formation region so that is linearly from 35% by mass to 5% by mass with respect to the film thickness.
  • the deposition rate was changed depending on the film formation region so that the concentration was at a deposition rate of 0.0002 nm / second and the compound H-1 was at a deposition rate of 0.002 nm / second so that the concentration would be 6% by mass to 94.6% by mass.
  • a light emitting layer was formed by co-evaporation so that the total layer thickness was 70 nm.
  • the following compound ET-1 was vapor-deposited with a film thickness of 30 nm to form an electron transport layer, and further potassium fluoride (KF) was formed with a thickness of 2 nm to form an organic functional layer unit. Subsequently, aluminum 110nm was vapor-deposited and the cathode was formed.
  • KF potassium fluoride
  • the compound HT-1, compounds A-1 to A-3, compound H-1 and compound ET-1 are the compounds shown below.
  • Step 1-6 Sealing step
  • the gas barrier film base material 1 used for the production of the transparent conductive film 1 is used as a sealing base material, and a thermosetting adhesive (as a sealing resin layer on one side of the sealing base material ( A sealing member in which an epoxy resin) was bonded to a thickness of 20 ⁇ m was used to superimpose the sample up to the cathode.
  • a thermosetting adhesive as a sealing resin layer on one side of the sealing base material ( A sealing member in which an epoxy resin) was bonded to a thickness of 20 ⁇ m was used to superimpose the sample up to the cathode.
  • the sealing resin layer forming surface of the sealing member and the organic functional layer unit surface of the organic EL element were overlapped so that the end portions of the transparent anode and the lead electrode of the cathode were exposed.
  • the laminate is placed in a decompression device, and the sample formed between the superposed resin base material and the cathode and the sealing member are pressed under a decompression condition of 0.1 MPa at 90 ° C. Hold for a minute. Subsequently, the laminate was returned to the atmospheric pressure environment and further heated at 90 ° C. for 30 minutes to cure the adhesive.
  • the sealing step is an atmospheric pressure with a cleanness measured in accordance with JIS B 9920, class 100, dew point temperature of ⁇ 80 ° C. or less, and oxygen concentration of 0.8 ppm or less in a nitrogen atmosphere with a moisture content of 1 ppm or less. Went under.
  • the description regarding formation of the extraction wiring from a transparent anode and a cathode is abbreviate
  • an organic EL element 1 which is a white light emitting device having a total thickness of about 75 ⁇ m was produced.
  • the organic EL element 2 was produced according to the following method.
  • Step 2-1 Preparation of resin base material
  • the same as the organic EL element 1 was used.
  • Step 2-2 Formation of coating gas barrier layer 1
  • a dibutyl ether solution containing 20% by mass of perhydropolysilazane manufactured by AZ Electronic Materials Co., Ltd., NN120-20
  • an amine catalyst N, N, N ′, N′-tetramethyl-1,6-diaminohexane (TMDAH)
  • a dibutyl ether solution NAX120-20, manufactured by AZ Electronic Materials Co., Ltd.
  • NAX120-20 manufactured by AZ Electronic Materials Co., Ltd.
  • a roll-to-roll type coating apparatus capable of successively performing coating surface side protective film peeling, coating, drying, excimer modification treatment, and coating surface side protective film bonding was used.
  • the coating solution was applied on the base material using a die coater so that the thickness after drying was 250 nm and dried at 80 ° C. in a dryer zone.
  • a vacuum ultraviolet ray irradiation treatment was performed on the dried coating film continuously in a vacuum ultraviolet ray irradiation zone having an Xe excimer lamp having a wavelength of 172 nm under the condition that the irradiation energy was 6.0 J / cm 2.
  • a gas barrier layer 1 was formed.
  • the irradiation atmosphere was replaced with nitrogen heated to 60 ° C., and the oxygen concentration was set to 0.1% by volume or less. Up to this point, there was no contact of the transport roll or the like on the coating surface.
  • the coated surface was wound up without attaching a protective film.
  • Step 2-3 Formation of transition metal-containing layer
  • a niobium oxide layer which is a transition metal-containing layer, was formed on the coating gas barrier layer obtained in step 2-2 using a roll-to-roll magnetron sputtering apparatus.
  • a commercially available oxygen deficient niobium oxide target was used as a target, and sputtering was performed by a DC pulse method.
  • the power density was 4.0 kW / cm 2
  • the TS distance was 100 mm
  • the film forming pressure was 0.2 Pa
  • argon and oxygen were used as process gases
  • the oxygen ratio was 10%.
  • the conveyance speed was adjusted so that the film thickness was 15 nm.
  • Step 2-4 Formation of coating gas barrier layer 2
  • a coating solution was prepared in the same manner as the coating gas barrier layer 1 except that the solid content was 4% by mass. Also, the coating gas barrier layer 1 was formed in the same manner as the coating gas barrier layer 1 except that the thickness after drying was 110 nm.
  • a self-adhesive OPP film manufactured by Futamura Chemical Co., Ltd., FSA010M was bonded to the coated surface as a protective film, and then wound up.
  • the water vapor permeability of the gas barrier film substrate 2 was measured using the Ca method.
  • the measurement conditions were set to 40 ° C. and 90% RH as in the measurement of the gas barrier film substrate 1.
  • the water vapor transmission rate obtained was 6.8 ⁇ 10 ⁇ 6 g / (m 2 ⁇ 24 h).
  • composition profile in the thickness direction of the gas barrier was analyzed by the XPS method. Confirm that a mixed region containing Si and Nb is formed at the interface 1 between the coating gas barrier layer 1 and the transition metal-containing layer and at the interface 2 between the transition metal-containing layer and the coating gas barrier layer 2. did. Further, when the minimum value of the oxygen deficiency in the mixed region was obtained using the relational expression (2), it was 0.57 at the interface 1 and 0.60 at the interface 2.
  • composition distribution profile in the thickness direction of the gas barrier layer was measured by XPS analysis.
  • the XPS analysis conditions are as follows.
  • the composition of the gas barrier layer can be represented by (Si) (Nb) x O y N z from the data obtained from the XPS composition analysis.
  • Si as a non-transition metal
  • Nb as a transition metal coexist in the interface region between the first layer and the second layer
  • the transition metal Nb / Si A region where the value x of the number ratio of atoms in the range of 0.02 ⁇ x ⁇ 50 was defined as a “mixed region”, and the presence / absence of the region and its thickness (nm) were measured and listed in the table.
  • the gas barrier layer was formed as a composite oxide layer of Si, which is a non-transition metal, and Nb (or Ta), which is a transition metal, and the thickness (nm) of the region is listed in the table. did.
  • Step 2-5 Formation of transparent anode
  • the same procedure as in the organic EL element 1 was performed except that the gas barrier film substrate 2 was used.
  • Step 2-6 Formation of organic functional layer unit to cathode
  • the same procedure as in the organic EL element 1 was performed except that the gas barrier film substrate 2 was used.
  • Step 2-7 Sealing step
  • an organic EL element 2 which is a white light emitting device having a total thickness of about 73 ⁇ m was produced.
  • Both the organic EL element 1 and the organic EL element 2 had good initial light emission state and no dark spots were generated. Also, no dark spots were generated after storage for 100 hours in an environment of 85 ° C. and 85% RH.
  • Example 2 Evaluation assuming a light emitting device in a folded form was performed.
  • a light emitting device simulating a folded light emitting device as shown in FIGS. 2A and 2B was created.
  • a device having a hinge part to be peeled is a type (1) (FIG. 2A), and a device having no hinge part at a bent part is a type (2) (FIG. 2B).
  • Eight types of light-emitting devices were produced by changing the radius of curvature of the part B to the values shown in Table 1.
  • the length of the hinge part is 16 mm. In the case of the type (2) which is a device having no hinge part, the minimum curvature radius of the part B was less than 1 mm.
  • the light emitting device of the present invention was good with almost no dark spots due to folding.
  • a light emitting device using a gas barrier film having a mixed region of transition metal and non-transition metal in the gas barrier layer showed good results.
  • Example 3 Evaluation was made assuming a light-emitting device in a winding form.
  • a steel sheet having a thickness of 100 ⁇ m is used as a supporting member, the organic EL element produced above is bonded to the steel sheet, the organic EL element is placed outside, and a winding shaft having a radius of 8 mm is wound in the longitudinal direction.
  • Four types of devices simulating a light emitting device in a winding form were prepared.
  • the type (3) apparatus has a short side 10 mm width on the side far from the take-up shaft attached to a steel sheet with a thermosetting adhesive (epoxy resin, 100 ⁇ m thickness), 90 ° C. for 30 minutes. Curing was performed to obtain a fixed portion (fixed end). The other part was bonded using a 100 ⁇ m thick acrylic adhesive sheet (manufactured by Nitto Denko Corporation), and the short side near the take-up shaft was a free end (see FIG. 4A. The right end is the fixed end) .
  • thermosetting adhesive epoxy resin, 100 ⁇ m thickness
  • the light-emitting devices 11 to 14 were prepared by combining the organic EL element and the device type, and the light-emitting state was confirmed by performing light-up after 100 winding and rewinding of each light-emitting device. The results are shown in Table 2.
  • the light-emitting device of the present invention maintained a good light-emitting state even when it was wound and rewound, and no dark spot was generated.
  • the light emitting device of the comparative example having no movable part linear dark spots, which are thought to be caused by gas barrier layer cracks, formed by stretching the organic EL element by winding were frequently generated.
  • the light-emitting device of the present invention can be miniaturized when being carried, and can be used in various applications such as electronic devices such as packages for electronic devices, photoelectric conversion elements (solar cell elements), organic EL elements, liquid crystal display elements, and the like. Can be used.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

The present invention addresses the problem of providing a light-emitting device that can be made more compact when carried. A light-emitting device in which a light-emitting surface side resin substrate, an organic light-emitting element, and a back surface side substrate are laminated in this order, said light-emitting device being characterized by having a gas barrier layer between the light-emitting surface side resin substrate and the organic light-emitting element, and/or between the organic light-emitting element and the back surface side substrate, said gas barrier layer having an inorganic material as a main component, by having and being supported by a fixed section and a moving section on a support member, and by having a bending surface section in which a bending surface of the organic light-emitting element has a radius of curvature within the range of 1.0-10.00mm, said bending surface being formed by the moving section when the light-emitting device is carried.

Description

発光装置Light emitting device
 本発明は発光装置に関し、より詳しくは携帯時の小型化が可能な発光装置に関する。 The present invention relates to a light emitting device, and more particularly to a light emitting device that can be miniaturized when carried.
 有機材料のエレクトロルミネッセンス(以下、「EL」ともいう。)を利用した有機エレクトロルミネッセンス素子(以下、「有機EL素子」ともいう。)は、数V~数十V程度の低電圧で発光が可能な薄膜型の完全固体素子であり、高輝度、高発光効率、薄型、軽量といった多くの優れた特徴を有する。このため、各種ディスプレイのバックライト、看板や非常灯等の表示板、照明光源等の面発光体として応用されている。 An organic electroluminescent element (hereinafter also referred to as “organic EL element”) using electroluminescence of organic material (hereinafter also referred to as “EL”) can emit light at a low voltage of several V to several tens V. It is a thin film type complete solid-state device and has many excellent features such as high brightness, high luminous efficiency, thinness, and light weight. For this reason, it is applied as a backlight for various displays, display boards such as signboards and emergency lights, and surface light emitters such as illumination light sources.
 特に近年では、薄型・軽量なガスバリアー層を有する樹脂基材を用いたフレキシブルな有機EL素子が注目されており、曲面を有する意匠性の高い光源として応用されている。 Particularly in recent years, a flexible organic EL element using a resin base material having a thin and light gas barrier layer has attracted attention, and is applied as a light source having a curved surface and a high design property.
 しかしながら、有機EL素子に曲げモーメントを加えることで、有機EL素子を構成する層間にずり応力が発生し、層の剥離を惹起してしまうことが問題となっており、屈曲時においても層間の剥離が発生しない有機EL素子が求められており、様々な検討がなされている。 However, when a bending moment is applied to the organic EL element, shear stress is generated between the layers constituting the organic EL element, causing peeling of the layer. There is a demand for an organic EL element that does not generate odor, and various studies have been made.
 一つの方法として、ガラス基板にガスバリアー層を形成した後、樹脂基材へ剥離転写する方法が検討されている(特許文献1参照。)。 As one method, a method in which a gas barrier layer is formed on a glass substrate and then peeled and transferred to a resin base material has been studied (see Patent Document 1).
 しかしながら、現在検討されている発光装置は、フレキシブル性を検証するためのプロトタイプに過ぎず、実用可能な装置としての具体的な構成の提示はされていない。したがって、発光装置の劣化を抑制する発光装置の具体的な構成が求められていた。 However, the light-emitting device currently being studied is only a prototype for verifying flexibility, and no specific configuration as a practical device has been presented. Therefore, a specific configuration of the light emitting device that suppresses the deterioration of the light emitting device has been demanded.
特開2015-173249号公報Japanese Patent Laying-Open No. 2015-173249
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、携帯時の小型化が可能な発光装置を提供することである。 The present invention has been made in view of the above-described problems and situations, and a problem to be solved is to provide a light-emitting device that can be miniaturized when being carried.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において2つの樹脂基材に挟まれた有機発光素子の、樹脂基材と有機発光素子間にガスバリアー層を有する発光装置において、携帯時折り畳んだり、巻き取るときに 、有機発光素子の形
成する曲面の曲率半径が、1.0~10.0mmの範囲内とすることで上記課題が解決できることを見出し本発明に至った。
In order to solve the above problems, the present inventor has a gas barrier layer between a resin base material and an organic light emitting element of an organic light emitting element sandwiched between two resin base materials in the process of examining the cause of the above problem, etc. In the light-emitting device, the present invention has found that the above-mentioned problems can be solved when the radius of curvature of the curved surface formed by the organic light-emitting element is in the range of 1.0 to 10.0 mm when folded or rolled up when carried. It came.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.発光面側樹脂基材、有機発光素子及び背面側基材がこの順で積層された発光装置であって、前記発光面側樹脂基材と有機発光素子間、又は前記有機発光素子と背面側基材間の少なくともいずれか一方に無機素材を主成分とするガスバリアー層を有し、かつ、発光装置が、支持部材上に固定部と可動部を有して支持され、さらに、携帯時に前記有機発光素子の前記可動部が形成する曲面の曲率半径が、1.0~10.0mmの範囲内の曲面部を有することを特徴とする発光装置。 1. A light emitting device in which a light emitting surface side resin base material, an organic light emitting element, and a back surface side base material are laminated in this order, and between the light emitting surface side resin base material and the organic light emitting element or between the organic light emitting element and the back surface side base At least one of the materials has a gas barrier layer containing an inorganic material as a main component, and the light emitting device is supported on a support member with a fixed portion and a movable portion. A light-emitting device having a curved surface portion having a radius of curvature of a curved surface formed by the movable portion of the light-emitting element in a range of 1.0 to 10.0 mm.
 2.前記携帯時、折り畳み形態を有し、前記発光面側樹脂基材同士が間隙2mm未満で対向し、かつ、前記有機発光素子の前記可動部が形成する曲面が、発光面が外側に曲げられた部位Aと発光面が内側に曲げられた部位Bとを有し、前記部位Aと部位Bとは曲率の変曲点を介して連続して存在し、かつ、前記可動部の長さをLとし、前記可動部が形成するループの、前記支持部材からの突き出し長さをCとした時に、C/Lが0.3以上であり、かつ、前記部位Aの最小曲率半径Arに対する前記部位Bの最小曲率半径Brの比の値(Br/Ar)が、0.4~1.1の範囲内であることを特徴とする第1項に記載の発光装置。 2. At the time of carrying, it has a folded form, the light emitting surface side resin bases face each other with a gap of less than 2 mm, and the curved surface formed by the movable part of the organic light emitting element has its light emitting surface bent outward. A portion A and a portion B in which the light emitting surface is bent inward; the portion A and the portion B are continuously present via an inflection point of curvature; and the length of the movable portion is L And when the protruding length of the loop formed by the movable portion from the support member is C, C / L is 0.3 or more, and the part B with respect to the minimum curvature radius Ar of the part A 2. The light emitting device according to item 1, wherein the ratio value (Br / Ar) of the minimum curvature radius Br is in the range of 0.4 to 1.1.
 3.前記携帯時、巻き取り形態を有し、剛性を有する前記支持部材上に前記背面側基材が粘弾性を有するシート状部材を介して設置され、前記発光面側樹脂基材が外側にして巻き取られ、かつ、発光装置の巻き取り外側の端部が、相対的に位置がずれないように固定された前記固定部であり、巻き取り内側が、相対的に位置が変化可能な前記可動部であることを特徴とする第1項に記載の発光装置。 3. At the time of carrying, it has a winding form, and the back side substrate is installed on a rigid support member via a viscoelastic sheet-like member, and the light emitting surface side resin substrate is wound outside. The movable part that is taken and the end part on the outer side of the winding of the light emitting device is fixed so that the position is not relatively displaced, and the position of the inner side of the winding is relatively variable 2. The light-emitting device according to item 1, wherein
 4.前記ガスバリアー層の総厚さが、20~1000nmの範囲内であることを特徴とする第1項から第3項までのいずれか一項に記載の発光装置。 4. The light-emitting device according to any one of Items 1 to 3, wherein the total thickness of the gas barrier layer is in a range of 20 to 1000 nm.
 5.前記有機発光素子の前記可動部が形成する前記曲面の曲率半径が、1.0~5.0mmの範囲内の曲面部を有することを特徴とする第1項から第4項までのいずれか一項に記載の発光装置。 5. Any one of Items 1 to 4, wherein a radius of curvature of the curved surface formed by the movable portion of the organic light emitting element has a curved surface portion in a range of 1.0 to 5.0 mm. The light emitting device according to item.
 6.前記ガスバリアー層が、少なくとも厚さ方向において、非遷移金属M1及び遷移金属M2を含有する領域であって、前記非遷移金属M1に対する遷移金属M2の原子数比の値(M2/M1)が、0.02~49の範囲内にある混合領域を、厚さ方向に連続して5nm以上有することを特徴とする第1項から第5項までのいずれか一項に記載の発光装置。 6. The gas barrier layer is a region containing the non-transition metal M1 and the transition metal M2 at least in the thickness direction, and the value of the atomic ratio of the transition metal M2 to the non-transition metal M1 (M2 / M1) is Item 6. The light emitting device according to any one of Items 1 to 5, wherein the mixed region in the range of 0.02 to 49 has a thickness of 5 nm or more continuously in the thickness direction.
 7.前記ガスバリアー層が、前記遷移金属M2を金属の主成分として含有する領域と前記非遷移金属M1を金属の主成分として含有する領域との間に、前記混合領域を有すること特徴とする、第6項に記載の発光装置。 7. The gas barrier layer includes the mixed region between a region containing the transition metal M2 as a main component of the metal and a region containing the non-transition metal M1 as a main component of the metal. 7. The light emitting device according to item 6.
 8.前記ガスバリアー層内の厚さ方向における全領域が、前記遷移金属及び非遷移金属が含有されている混合領域であることを特徴とする第6項又は第7項に記載の発光装置。 8. The light emitting device according to claim 6 or 7, wherein the entire region in the thickness direction in the gas barrier layer is a mixed region containing the transition metal and the non-transition metal.
 9.前記混合領域の組成を、下記化学組成式(1)で表したとき、下記関係式(2)を満たすことを特徴とする第6項から第8項までのいずれか一項に記載の発光装置。
化学組成式(1): (M1)(M2)
関係式(2): (2y+3z)/(a+bx)<1.0
(ただし式中、M1:非遷移金属、M2:遷移金属、O:酸素、N:窒素、
   x、y、z:化学量論係数、 a:M1の最大価数、b:M2の最大価数
を表す。)
 10.前記非遷移金属が、ケイ素であることを特徴とする第6項から第9項までのいずれか一項に記載の発光装置。
9. When the composition of the mixed region is expressed by the following chemical composition formula (1), the following relational expression (2) is satisfied: The light-emitting device according to any one of items 6 to 8 .
Chemical composition formula (1): (M1) (M2) x O y N z
Relational expression (2): (2y + 3z) / (a + bx) <1.0
(Wherein, M1: non-transition metal, M2: transition metal, O: oxygen, N: nitrogen,
x, y, z: stoichiometric coefficient, a: maximum valence of M1, b: maximum valence of M2. )
10. The light-emitting device according to any one of Items 6 to 9, wherein the non-transition metal is silicon.
 11.前記遷移金属が、ニオブ(Nb)、タンタル(Ta)、及びバナジウム(V)から選択されることを特徴とする第6項から第10項までのいずれか一項に記載の発光装置。 11. 11. The light emitting device according to any one of items 6 to 10, wherein the transition metal is selected from niobium (Nb), tantalum (Ta), and vanadium (V).
 12.有機エレクトロルミネッセンス素子を具備していることを特徴とする第1項から第11項までのいずれか一項に記載の発光装置。 12. The light-emitting device according to any one of Items 1 to 11, further comprising an organic electroluminescence element.
 本発明の上記手段により、携帯時の小型化が可能な発光装置を提供することができる。 The above-described means of the present invention can provide a light emitting device that can be miniaturized when being carried.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 従来、フレキシブルな発光素子は知られているが、その具体的な構成については知られていなかった。本発明では携帯時、折り畳んだり、巻き取るときの発光素子に係るストレスを、少なくできるために小型化が可能になると考えられる。 Conventionally, flexible light-emitting elements are known, but their specific configuration has not been known. In the present invention, it is considered that the size can be reduced because the stress on the light emitting element when folded, wound or taken up can be reduced.
本発明の発光装置の発光部の断面図の一例An example of a cross-sectional view of a light emitting part of a light emitting device of the present invention 折り畳み形態を有する発光装置を説明する模式図の一例An example of a schematic diagram illustrating a light-emitting device having a folded configuration 折り畳み形態を有する発光装置を説明する模式図の一例An example of a schematic diagram illustrating a light-emitting device having a folded configuration 折り畳み形態を有する発光装置を説明する模式図の一例An example of a schematic diagram illustrating a light-emitting device having a folded configuration 折り曲げ形態を有する発光装置を説明する模式図の一例An example of a schematic diagram illustrating a light-emitting device having a bent form 巻き取り時と引き出し時の粘着剤の厚さ変化を示す概念図Conceptual diagram showing the thickness change of the adhesive during winding and withdrawal 巻き取り時と引き出し時の粘着剤の厚さ変化を示す概念図Conceptual diagram showing the thickness change of the adhesive during winding and withdrawal 巻き取り時と引き出し時の粘着剤の厚さ変化を示す概念図Conceptual diagram showing the thickness change of the adhesive during winding and withdrawal 巻き取り時と引き出し時の粘着剤の厚さ変化を示す概念図Conceptual diagram showing the thickness change of the adhesive during winding and withdrawal 支持部材の好ましい形状を示す一例An example showing the preferred shape of the support member 非遷移金属及び遷移金属の組成分布をXPS法により分析したときの元素プロファイルと混合領域を説明するためのグラフの一例Example of graph for explaining element profile and mixed region when composition distribution of non-transition metal and transition metal is analyzed by XPS method 剥離方法を説明する図Diagram explaining the peeling method 剥離方法を説明する図Diagram explaining the peeling method 剥離方法を説明する図Diagram explaining the peeling method 剥離方法を説明する図Diagram explaining the peeling method 剥離方法を説明する図Diagram explaining the peeling method 剥離方法を説明する図Diagram explaining the peeling method
 本発明の発光装置は、発光面側樹脂基材、有機発光素子及び背面側基材がこの順で積層された発光装置であって、前記発光面側樹脂基材と有機発光素子間、又は前記有機発光素子と背面側基材間の少なくともいずれか一方に無機素材を主成分とするガスバリアー層を有し、かつ、発光装置が、支持部材上に固定部と可動部を有して支持され、さらに、携帯時に前記有機発光素子の前記可動部が形成する曲面の曲率半径が、1.0~10.0mmの範囲内の曲面部を有することを特徴とする。この特徴は、請求項1から請求項12までの請求項に係る発明に共通する技術的特徴である。 The light emitting device of the present invention is a light emitting device in which a light emitting surface side resin base material, an organic light emitting element, and a back surface side base material are laminated in this order, and between the light emitting surface side resin base material and the organic light emitting element, or At least one of the organic light-emitting element and the back-side base material has a gas barrier layer mainly composed of an inorganic material, and the light-emitting device is supported by having a fixed part and a movable part on a support member. Furthermore, the curved surface formed by the movable portion of the organic light emitting element when carried has a curved surface portion having a radius of curvature in the range of 1.0 to 10.0 mm. This feature is a technical feature common to the inventions according to claims 1 to 12.
 本発明の実施態様としては、携帯時、折り畳み形態を有し、前記発光面側樹脂基材同士が間隙2mm未満で対向し、かつ、前記有機発光素子の前記可動部が形成する曲面が、発光面が外側に曲げられた部位Aと発光面が内側に曲げられた部位Bとを有し、前記部位Aと部位Bとは曲率の変曲点を介して連続して存在し、かつ、前記可動部の長さをLとし、前記可動部が形成するループの、前記支持部材からの突き出し長さをCとした時に、C/Lが0.3以上であり、かつ、前記部位Aの最小曲率半径Arに対する前記部位Bの最小曲率半径Brの比の値(Br/Ar)が、0.4~1.1の範囲内であることが好ましい。これにより、有機発光素子にかかるストレスが少なくかつ小型の折り畳み形態の発光装置を得ることができる。 As an embodiment of the present invention, when folded, the light emitting surface side resin bases face each other with a gap of less than 2 mm, and the curved surface formed by the movable portion of the organic light emitting element emits light. A portion A whose surface is bent outward, and a portion B whose light emitting surface is bent inward, wherein the portion A and the portion B exist continuously via an inflection point of curvature, and When the length of the movable part is L and the protruding length of the loop formed by the movable part from the support member is C, C / L is 0.3 or more and the minimum of the part A The ratio value (Br / Ar) of the minimum curvature radius Br of the part B to the curvature radius Ar is preferably in the range of 0.4 to 1.1. Thereby, the stress applied to the organic light-emitting element is small, and a small-sized folded light-emitting device can be obtained.
 本発明の実施態様としては、携帯時、巻き取り形態を有し、剛性を有する前記支持部材上に前記背面側基材が粘弾性を有するシート状部材を介して設置され、前記発光面側樹脂基材が外側にして巻き取られ、かつ、発光装置の巻き取り外側の端部が、相対的に位置がずれないように固定された前記固定部であり、巻き取り内側が、相対的に位置が変化可能な前記可動部であることが好ましい。これにより、巻き取り時に生じる巻径差による発光装置と支持部材との位置関係のずれを少なくして、有機発光素子にかかるストレスが少なくできるため、小型の巻き取り形態の発光装置を得ることができる。 As an embodiment of the present invention, when carrying, the light emitting surface side resin has a winding form, and the back side base material is installed on a rigid supporting member via a sheet-like member having viscoelasticity. The base is wound outside and the winding outer end of the light emitting device is fixed so that the position does not shift relatively, and the winding inner is relatively positioned. It is preferable that the movable part is variable. Thereby, since the shift of the positional relationship between the light emitting device and the support member due to the difference in winding diameter that occurs during winding can be reduced and the stress applied to the organic light emitting element can be reduced, it is possible to obtain a light emitting device with a small winding form. it can.
 さらに、本発明においては、ガスバリアー層の総厚さが、20~1000nmの範囲内であることが好ましい。これにより、良好な屈曲耐久性とガスバリアー性とを両立させる効果が得られる。 Furthermore, in the present invention, the total thickness of the gas barrier layer is preferably in the range of 20 to 1000 nm. Thereby, the effect which makes favorable bending durability and gas barrier property compatible is acquired.
 前記有機発光素子の前記可動部が形成する前記曲面の曲率半径が、1.0~5.0mmの範囲内の曲面部を有することが小型の発光装置を実現する上で好ましい。 In order to realize a small light emitting device, it is preferable that the curved surface formed by the movable portion of the organic light emitting element has a curved radius within a range of 1.0 to 5.0 mm.
 本発明の実施態様としては、前記ガスバリアー層が、少なくとも厚さ方向において、非遷移金属M1及び遷移金属M2を含有する領域であって、前記非遷移金属M1に対する遷移金属M2の原子数比の値(M2/M1)が、0.02~49の範囲内にある混合領域を、厚さ方向に連続して5nm以上有することが好ましい。これにより、ガスバリアー層が薄層であっても非常に高いガスバリアー性が得られるようになるため、ガスバリアー層薄層化によって、さらに良好な屈曲耐久性とガスバリアー性とを両立させる効果が得られる。 As an embodiment of the present invention, the gas barrier layer is a region containing the non-transition metal M1 and the transition metal M2 at least in the thickness direction, and has an atomic ratio of the transition metal M2 to the non-transition metal M1. It is preferable that a mixed region having a value (M2 / M1) in the range of 0.02 to 49 has 5 nm or more continuously in the thickness direction. As a result, even if the gas barrier layer is a thin layer, an extremely high gas barrier property can be obtained. Therefore, by making the gas barrier layer thinner, it is possible to achieve both better bending durability and gas barrier property. Is obtained.
 また、前記実施態様においては、前記ガスバリアー層が、前記遷移金属M2を金属の主成分として含有する領域と前記非遷移金属M1を金属の主成分として含有する領域との間に、前記混合領域を有することが、好ましい。 In the embodiment, the gas barrier layer includes the mixed region between a region containing the transition metal M2 as a metal main component and a region containing the non-transition metal M1 as a metal main component. It is preferable to have
 さらに、前記ガスバリアー層内の厚さ方向における全領域が、前記遷移金属及び非遷移金属が含有されている混合領域であることが好ましい。これにより、非常に高いガスバリアー性が得られる。 Furthermore, it is preferable that the entire region in the thickness direction in the gas barrier layer is a mixed region containing the transition metal and the non-transition metal. Thereby, a very high gas barrier property is obtained.
 前記混合領域の組成を、前記化学組成式(1)で表したとき、前記関係式(2)を満たすことが好ましい。これにより、より良好なガスバリアー性が得られる。 When the composition of the mixed region is represented by the chemical composition formula (1), it is preferable that the relational formula (2) is satisfied. Thereby, better gas barrier properties can be obtained.
 さらに、本発明においては、前記非遷移金属が、ケイ素であることが好ましい。 Furthermore, in the present invention, the non-transition metal is preferably silicon.
 また前記遷移金属が、ニオブ(Nb)、タンタル(Ta)、及びバナジウム(V)から選択されることが好ましい。この金属元素の組合せが、最も良好なガスバリアー性が得られる。 The transition metal is preferably selected from niobium (Nb), tantalum (Ta), and vanadium (V). This combination of metal elements provides the best gas barrier properties.
 本発明の発光装置は、有機EL素子を具備していることが好ましい。 The light-emitting device of the present invention preferably includes an organic EL element.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 《本発明の発光装置の概要》
 本発明の発光装置は、発光面側樹脂基材、有機発光素子及び背面側基材がこの順で積層された発光装置であって、前記発光面側樹脂基材と有機発光素子間、又は前記有機発光素子と背面側基材間の少なくともいずれか一方に無機素材を主成分とするガスバリアー層を有し、かつ、発光装置が、支持部材上に固定部と可動部を有して支持され、さらに、携帯時に前記有機発光素子の前記可動部が形成する曲面の曲率半径が、1.0~10.0mmの範囲内の曲面部を有することを特徴とする。
<< Outline of Light Emitting Device of the Present Invention >>
The light emitting device of the present invention is a light emitting device in which a light emitting surface side resin base material, an organic light emitting element, and a back surface side base material are laminated in this order, and between the light emitting surface side resin base material and the organic light emitting element, or At least one of the organic light-emitting element and the back-side base material has a gas barrier layer mainly composed of an inorganic material, and the light-emitting device is supported by having a fixed part and a movable part on a support member. Furthermore, the curved surface formed by the movable portion of the organic light emitting element when carried has a curved surface portion having a radius of curvature in the range of 1.0 to 10.0 mm.
 本発明に係るガスバリアー層のガスバリアー性は、基材上に当該ガスバリアー層を形成させた積層体で算出した際、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3cm3/(m・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下の高ガスバリアー性であることが好ましい。 When the gas barrier property of the gas barrier layer according to the present invention is calculated using a laminate in which the gas barrier layer is formed on a substrate, the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 × 10 −3 cm 3 / (m 2 · 24 h · atm) or less, water vapor transmission rate (25 ± 0.5 ° C., relative humidity (90 ± 2)) measured by a method according to JIS K 7129-1992 % RH) is preferably a high gas barrier property of 1 × 10 −3 g / (m 2 · 24 h) or less.
 図1は、本発明の発光装置の発光部の断面図の一例である。 FIG. 1 is an example of a cross-sectional view of a light emitting portion of a light emitting device of the present invention.
 発光装置は、発光面側樹脂基材2、有機発光素子3及び背面側基材4がこの順で積層された発光部Lを有する、この例では、発光面側樹脂基材2と有機発光素子3との間及び有機発光素子3と背面側基材4との間にガスバリアー層5を有している。有機発光素子3は、例えば、有機EL素子であってよく、2つの電極6を介して少なくとも発光層を含む有機機能層ユニット7を有しており、封止部材8で封止されている。発光面側樹脂基材2又は基材4は両面にハードコート層を有していても良く、また中間層として接着層や、最外層に接着層を介して保護フィルムを有していても良い。有機機能層ユニットは、発光層以外に正孔輸送層、電子輸送層、などを有している。 The light emitting device has a light emitting portion L in which the light emitting surface side resin base material 2, the organic light emitting element 3 and the back surface side base material 4 are laminated in this order. In this example, the light emitting surface side resin base material 2 and the organic light emitting element 3, and between the organic light emitting element 3 and the back side substrate 4, a gas barrier layer 5 is provided. The organic light emitting element 3 may be, for example, an organic EL element, has an organic functional layer unit 7 including at least a light emitting layer via two electrodes 6, and is sealed with a sealing member 8. The light emitting surface side resin base material 2 or the base material 4 may have a hard coat layer on both sides, and may have an adhesive layer as an intermediate layer, and a protective film on the outermost layer via an adhesive layer. . The organic functional layer unit has a hole transport layer, an electron transport layer, and the like in addition to the light emitting layer.
 この発光装置は、携帯時に前記有機発光素子7の可動部が形成する曲面の曲率半径が、1.0~10.0mmの範囲内の曲面部を有する。部位Aの曲率半径Ar又は部位Bの曲率半径Brが1.0未満の場合、繰り返しの屈曲により基材自体が劣化するため好ましくない。また、曲率半径が10.0mmを超えると小型の発光装置としては適当ではない。 This light-emitting device has a curved surface portion in which the radius of curvature of the curved surface formed by the movable portion of the organic light-emitting element 7 when carried is in the range of 1.0 to 10.0 mm. When the curvature radius Ar of the part A or the curvature radius Br of the part B is less than 1.0, the base material itself deteriorates due to repeated bending, which is not preferable. Further, if the curvature radius exceeds 10.0 mm, it is not suitable as a small light emitting device.
 ここで、固定部とは、発光装置が支持部材上に固定されて発光装置と支持部材の位置関係が変化しない部分をいい、可動部とは、発光装置が支持部材上に固定されておらず、支持部材と接していないか、又は、粘弾性を有するシート状部材を介して設置されており、発光装置を折り曲げたとき、支持部材と発光装置の位置関係が、折り曲げの内側と外側で生じる巻径差によるずれを吸収し、わずかに変化する部分をいう。 Here, the fixed portion refers to a portion where the light emitting device is fixed on the support member and the positional relationship between the light emitting device and the support member does not change, and the movable portion refers to the light emitting device not fixed on the support member. When the light emitting device is folded, the positional relationship between the support member and the light emitting device is generated between the inner side and the outer side of the folding. A part that absorbs the deviation caused by the difference in winding diameter and slightly changes.
 また、有機発光素子3は、2つの基材2及び4に挟まれていることが好ましく、2つの基材が同様の厚さ、及び、同様の弾性率を有することがより好ましい。2つの基材が同様の厚さ、及び、同様の弾性率を有することによって、発光装置を曲げたとき、曲げ中心に位置する有機発光素子3にかかる応力をゼロに近づける効果を期待することができる。 Further, the organic light emitting element 3 is preferably sandwiched between the two base materials 2 and 4, more preferably the two base materials have the same thickness and the same elastic modulus. It can be expected that the stress applied to the organic light emitting element 3 located at the center of bending is brought close to zero when the light emitting device is bent because the two base materials have the same thickness and the same elastic modulus. it can.
 また、好ましくは発光装置の総厚さは、総厚が20~200μmの範囲内であることが好ましい。より好ましくは30~150μmの範囲内であり、さらに好ましくは30~100μmの範囲内である。薄くすることにより、屈曲させた際に、有機発光素子1にかかる応力をより小さくすることができると考えられる。 In addition, the total thickness of the light emitting device is preferably in the range of 20 to 200 μm. More preferably, it is within the range of 30 to 150 μm, and further preferably within the range of 30 to 100 μm. It is considered that by reducing the thickness, the stress applied to the organic light emitting element 1 when bent can be further reduced.
 さらに、ガスバリアー層5の総厚さは、20~1000nmの範囲内であることが、ガスバリアー層のガスバリアー性と折り曲げ耐性を両立する観点から好ましい。 Further, the total thickness of the gas barrier layer 5 is preferably in the range of 20 to 1000 nm from the viewpoint of achieving both the gas barrier property and the bending resistance of the gas barrier layer.
 このような発光装置により、携帯時の発光装置を小型化することが可能になる。好ましい実施形態としては、携帯時、折り畳み形態の発光装置と、巻き取り形態の発光装置を挙げることができる。 Such a light emitting device makes it possible to reduce the size of the light emitting device when carried. Preferred embodiments include a light-emitting device that is folded and a light-emitting device that is rolled up when carried.
 《折り畳み形態を有する発光装置》
 携帯時、折り畳み形態を有する発光装置は、発光面側樹脂基材同士が間隙2mm未満で対向し、かつ、前記有機発光素子の前記可動部が形成する曲面が、発光面が外側に曲げられた部位Aと発光面が内側に曲げられた部位Bとを有し、前記部位Aと部位Bとは曲率の変曲点を介して連続して存在し、かつ、前記可動部の長さをLとし、前記可動部が形成するループの、前記支持部材からの突き出し長さをCとした時に、C/Lが0.3以上であり、かつ、前記部位Aの最小曲率半径Arに対する前記部位Bの最小曲率半径Brの比の値(Br/Ar)が、0.4~1.1の範囲内であることが好ましい。ここで折り畳み形態を有する発光装置の場合可動部は通常複数の曲面を有するため、部位Aと部位Bの曲率半径は最小曲率半径を用いる。前記部位Aと部位Bの最小曲率半径とは、曲げられたとき有機発光素子が有する複数の曲面の曲率半径の中で、それぞれ最小のものをいう。
<< Light-emitting device having a folded form >>
When the light emitting device having a folded configuration is carried, the light emitting surface side resin bases face each other with a gap of less than 2 mm, and the curved surface formed by the movable portion of the organic light emitting element is bent outward. A portion A and a portion B in which the light emitting surface is bent inward; the portion A and the portion B are continuously present via an inflection point of curvature; and the length of the movable portion is L And when the protruding length of the loop formed by the movable portion from the support member is C, C / L is 0.3 or more, and the part B with respect to the minimum curvature radius Ar of the part A The ratio value (Br / Ar) of the minimum curvature radius Br is preferably in the range of 0.4 to 1.1. Here, in the case of a light-emitting device having a folded configuration, the movable portion usually has a plurality of curved surfaces, and therefore the radius of curvature of the portion A and the portion B uses the minimum radius of curvature. The minimum curvature radii of the part A and the part B are the minimum ones among the curvature radii of a plurality of curved surfaces of the organic light emitting element when bent.
 図2A~2Cは、折り畳み形態を有する発光装置を説明する模式図の一例である。 2A to 2C are examples of schematic diagrams illustrating a light-emitting device having a folded configuration.
 図2Aは2つの支持部材として支持筐体10と支持筐体11に支持された発光装置が折り曲げられた状態を示している。折り曲げられた発光装置1は、発光面が外側に曲げられた部位Aと発光面が内側に曲げられた部位Bとを変曲点を介して有している。発光部Lが支持筐体10と支持筐体11に支持された部分が固定部であり、部位A及び部位Bが可動部である。 FIG. 2A shows a state where the light emitting devices supported by the support housing 10 and the support housing 11 as two support members are bent. The bent light emitting device 1 has a portion A where the light emitting surface is bent outward and a portion B where the light emitting surface is bent inward via an inflection point. A portion where the light emitting portion L is supported by the support housing 10 and the support housing 11 is a fixed portion, and a portion A and a portion B are movable portions.
 図2Cは発光装置1を開いた時の状態を示している。支持筐体10及び11の間にヒンジ部12を有しているヒンジ部12は支持筐体10、11とともに発光装置を保護する機能を有している。なお発光装置1を開いたときヒンジ部12は発光部Lと接している必要はない。 FIG. 2C shows a state when the light emitting device 1 is opened. The hinge portion 12 having the hinge portion 12 between the support housings 10 and 11 has a function of protecting the light emitting device together with the support housings 10 and 11. When the light emitting device 1 is opened, the hinge portion 12 does not need to be in contact with the light emitting portion L.
 従来、折り曲げ部をU字型にする形態は知られている。しかしU字型の形態の場合、小型化を図るため、発光面側樹脂基材同士の間隙を2mm未満にすると折り曲げ時の発光装置にかかるストレス大きくなり、折り曲げ耐久性等に問題が生じやすい欠点があった。 Conventionally, a configuration in which the bent portion is U-shaped is known. However, in the case of the U-shaped form, in order to reduce the size, if the gap between the light emitting surface side resin base materials is less than 2 mm, the stress applied to the light emitting device at the time of bending increases, and there is a drawback that problems such as bending durability tend to occur. was there.
 このストレスを小さくし、かつ小型化を可能にするために、本発明では、発光面が外側に曲げられた部位Aと発光面が内側に曲げられた部位Bとを有し、さらに、前記可動部の長さをLとし、前記可動部が形成するループの、前記支持部材からの突き出し長さをCとした時に、C/Lが0.3以上であり、かつ、前記部位Aの最小曲率半径Arに対する前記部位Bの最小曲率半径Brの比の値(Br/Ar)が、0.4~1.1の範囲内であることが好ましい。より好ましくは0.6~1.1の範囲内であり、さらに好ましくは0.8~1.05の範囲内である。なぜなら、ヒンジ部12の長さを一定とした場合、発光面を内側に曲げたときの曲率と、外側に曲げたときの曲率とが近似する構成が、最小曲率を最も大きくする方法であるからである。 
 このように、部位Aと部位Bが形成する曲面の曲率半径を近づけるために、発光部Lはその一部が剛性の高い支持部材上に固定されていることが好ましい。折り畳み形態を有する発光装置の場合は、具体的にはヒンジ部12以外の発光部Lは支持部材として支持筐体に固定されていることが必要である。ヒンジ部は、自由に折り畳みできるように支持筐体とは固定されない。
In order to reduce this stress and enable miniaturization, the present invention has a portion A in which the light emitting surface is bent outward and a portion B in which the light emitting surface is bent inward. C / L is 0.3 or more, and the minimum curvature of the part A, where L is the length of the part and C is the protruding length of the loop formed by the movable part from the support member The ratio value (Br / Ar) of the minimum curvature radius Br of the part B to the radius Ar is preferably in the range of 0.4 to 1.1. More preferably, it is in the range of 0.6 to 1.1, and still more preferably in the range of 0.8 to 1.05. This is because, when the length of the hinge portion 12 is constant, the configuration in which the curvature when the light emitting surface is bent inward and the curvature when the light emitting surface is bent outward is approximate is the method for maximizing the minimum curvature. It is.
Thus, in order to make the curvature radius of the curved surface which the site | part A and the site | part B form close, it is preferable that the light emission part L is being fixed on the support member with high rigidity. In the case of a light emitting device having a folded configuration, specifically, the light emitting portion L other than the hinge portion 12 needs to be fixed to the support housing as a support member. The hinge portion is not fixed to the support housing so that it can be folded freely.
 ヒンジ部12がない状態で発光装置を折り畳む、と図2Bのように曲率半径の小さな部分が生じてしまう(最小曲率半径Brが小さくなる)が、ヒンジ部12を固定部側に適度に押し込むことにより(図2Aにおいてヒンジ部12を左側に押圧する。)、部位Bの形成する曲面を円に近くすることができる。しかし押し込み過ぎるとC/Lが小さくなる。この場合上記ループは上下に広がる形状になり、可動部のコンパクト性が損なわれてしまう。上記B部分がほぼ円状になることが好ましく、部位Aの最小曲率半径が、部位Bの最小曲率半径に対して小さくなり過ぎないためC/Lは0.35以上がより好ましく、0.4以上がさらに好ましい。C/Lの上限としては、Br/Arの値が本発明の範囲となるように調整されていればよい。 When the light emitting device is folded in the absence of the hinge portion 12, a portion with a small radius of curvature is generated as shown in FIG. 2B (the minimum radius of curvature Br becomes small), but the hinge portion 12 is appropriately pushed into the fixed portion side. (Pressing the hinge portion 12 to the left in FIG. 2A) makes it possible to make the curved surface formed by the portion B close to a circle. However, if pushed too much, C / L becomes small. In this case, the loop has a shape extending up and down, and the compactness of the movable part is impaired. The B part is preferably substantially circular, and the C / L is more preferably 0.35 or more because the minimum curvature radius of the part A is not too small with respect to the minimum curvature radius of the part B. The above is more preferable. The upper limit of C / L may be adjusted so that the value of Br / Ar falls within the range of the present invention.
 なお、支持部材からの突き出し長さCは、図2A~2CにおいてA+Bの長さを意味する。上記図で、10と11の可動部に接する位置が異なる(図のループの上下でA、Bの長さが異なる)場合、Cはその平均値とする。 Note that the protruding length C from the support member means the length of A + B in FIGS. 2A to 2C. In the above figure, if the positions in contact with the movable parts 10 and 11 are different (the lengths of A and B are different on the top and bottom of the loop in the figure), C is the average value.
 このように、部位Aと部位Bの曲率半径を近似させることにより、部位Aと部位Bにかかる発光装置の発光部Lに対するストレスを軽減することができる。 Thus, by approximating the curvature radii of the part A and the part B, the stress on the light emitting part L of the light emitting device applied to the part A and the part B can be reduced.
 ヒンジ部12の長さは4~17mmの範囲内であることが好ましい。 The length of the hinge part 12 is preferably within a range of 4 to 17 mm.
 通常、部位Aの最小曲率半径は部位Bの最小曲率半径より大きくなるため、部位Aと部位Bの最小曲率半径を調節する手段を有することが好ましい。最小曲率半径を調整する方法は、部位Aの最小曲率半径Arに対する前記部位Bの最小曲率半径Brの比の値が上記の範囲内となることが好ましい。例えば、折り曲げたとき、発光装置の折り曲げ部分を背後から支持するヒンジ部を構成する部材を用いて発光装置の背後から押圧することで調節することが可能である。 Usually, since the minimum curvature radius of the part A is larger than the minimum curvature radius of the part B, it is preferable to have means for adjusting the minimum curvature radii of the part A and the part B. In the method of adjusting the minimum curvature radius, it is preferable that the value of the ratio of the minimum curvature radius Br of the part B to the minimum curvature radius Ar of the part A is within the above range. For example, when it is bent, it can be adjusted by pressing from behind the light emitting device using a member constituting a hinge portion that supports the bent portion of the light emitting device from behind.
 もちろん、本態様の発光装置において、最小曲率半径Ar、最小曲率半径Brが小さくなるほど、すなわち、可動部である折り畳み部位の形状をよりコンパクトにすることを重視して、それぞれの最小曲率半径が、1.0mmに近づく設計がなされた発光装置ほど、繰り返しの折り畳みによる可動部へのダメージは大きくなる。しかし、そういった設計の装置においても、本発明の範囲となる可動部を有することで、本発明の範囲外の可動部を有する装置に対して折り畳み耐久性が向上する効果が得られるものである。 Of course, in the light emitting device of this embodiment, the smaller the minimum curvature radius Ar and the minimum curvature radius Br, that is, the emphasis on making the shape of the folding part that is the movable part more compact, the respective minimum curvature radii are: As the light emitting device is designed to approach 1.0 mm, the damage to the movable part due to repeated folding increases. However, even in an apparatus having such a design, by having a movable part that falls within the scope of the present invention, an effect of improving folding durability can be obtained with respect to an apparatus having a movable part outside the scope of the present invention.
 《巻き取り形態を有する発光装置》
 前記携帯時、巻き取り形態を有し、剛性を有する支持部材上に前記背面側樹脂基材が粘弾性を有するシート状部材を介して設置され、前記発光面側樹脂基材が外側にして巻き取られ、かつ、発光装置の巻き取り外側の端部が、相対的に位置がずれないように固定された前記固定部(以下固定端ともいう。)であり、巻き取り内側は可動部であり、その端部が、相対的に位置が変化可能な自由端であることが好ましい。つまり、発光装置の発光部の背面側基材は、一部が剛性の高い支持部材上に固定されていることが好ましい。巻き取り形態を有する発光装置の場合は、具体的には発光装置の巻き取り外側の巻き取り軸から遠いほうの端部が固定されている。支持部材は発光部を支持できる高い剛性を有していることが好ましい。
<< Light-emitting device having winding form >>
At the time of carrying, the back side resin base material is installed on a rigid support member having a winding form through a sheet-like member having viscoelasticity, and the light emitting surface side resin base material is wound outward. And the outer end of the light emitting device is fixed so that the position does not relatively shift (hereinafter also referred to as a fixed end), and the inner side of the winding is a movable part. The end portion is preferably a free end whose position can be relatively changed. That is, it is preferable that a part of the back side substrate of the light emitting unit of the light emitting device is fixed on a support member having high rigidity. In the case of a light emitting device having a winding form, specifically, an end portion far from the winding shaft on the outer side of the light emitting device is fixed. It is preferable that the support member has high rigidity capable of supporting the light emitting portion.
 図3は、巻き取り形態を有する発光装置を説明する模式図一例である。 FIG. 3 is an example of a schematic diagram illustrating a light emitting device having a winding form.
 巻き取り形態を有する発光装置1は、剛性を有する支持部材21上に発光部Lの前記背面側基材が粘弾性を有するシート状の粘着剤22を介して設置され、発光面側樹脂基材を外側にして筐体23内の巻き取り部材24に巻き取る構造となっている。そして発光装置1の巻き取り外側の巻き取り軸から遠いほうの端部が、相対的に位置がずれないように固定された固定部である。例えば制御部26に固定される。そして巻き取り内側が、相対的に位置が変化可能な可動部である。 In the light-emitting device 1 having a winding form, the back-side base material of the light-emitting portion L is installed on a rigid support member 21 via a sheet-like adhesive 22 having viscoelasticity, and the light-emitting surface-side resin base material It is structured to wind around the winding member 24 in the housing 23 with the outer side facing out. And the end part far from the winding shaft outside the winding of the light emitting device 1 is a fixed part fixed so as not to be relatively displaced. For example, it is fixed to the control unit 26. And the winding inner side is a movable part whose position can change relatively.
 支持部材21上に形成した発光部Lを巻き取り形態で巻き取ろうとすると、巻径差で、発光部Lと支持部材21との位置関係にズレを生じてしまう。本発明では、支持部材に対して、発光装置の発光部Lの一端は固定する。このように固定することにより発光装置の配線を確保することができる。そして、発光部Lのもう一端は、支持部材に対して相対位置が変化可能な可動部とすることで発光部Lの可動部が形成する曲率半径を小さくしてもストレスを少なくすることができる。 When the light emitting portion L formed on the support member 21 is to be wound in a winding form, the positional relationship between the light emitting portion L and the support member 21 is shifted due to the winding diameter difference. In the present invention, one end of the light emitting portion L of the light emitting device is fixed to the support member. By fixing in this way, the wiring of the light emitting device can be secured. The other end of the light emitting portion L is a movable portion whose relative position can be changed with respect to the support member, so that stress can be reduced even if the radius of curvature formed by the movable portion of the light emitting portion L is reduced. .
 発光部Lの背面側基材を粘弾性を有するシート状の粘着剤を介して設置することにより、巻き取り時生じるずれを、粘着剤が剪断伸びで変形し吸収するため、巻き取りにより生じるストレスが発光装置に伝わりにくくなると考えられる。発光装置内側として巻き取ると、上記伸びの関係が反対となり、自由端が支持部材上に固定されなくなる場合があるため発光装置外側として巻き取ることが好ましい。 By installing the back side base material of the light emitting part L via a sheet-like adhesive having viscoelasticity, the stress caused by winding is taken up because the adhesive deforms and absorbs due to shear elongation due to shearing elongation. Is considered to be difficult to be transmitted to the light emitting device. When the winding is performed as the inside of the light emitting device, the above-described elongation relationship is reversed, and the free end may not be fixed on the support member.
 シート状の粘着剤22は、支持部材21上に発光部Lを支持するだけでなく、このように巻き取り時生じるずれを吸収する機能を有するため粘弾性を有することが好ましい。粘弾性を有する粘着剤としてはアクリル系又はシリコン系の粘着剤を用いることができる。 It is preferable that the sheet-like pressure-sensitive adhesive 22 not only supports the light emitting portion L on the support member 21 but also has viscoelasticity because it has a function of absorbing the deviation generated at the time of winding. As the adhesive having viscoelasticity, an acrylic or silicon adhesive can be used.
 さらに、巻き取り時に生じる支持部材21と発光部Lのずれの大きさは巻き取りが進むにつれ大きくなる。巻き取り時の粘着剤にかかる剪断変形を一定にして、発光部Lにかかるストレスを平均化するためには、巻き取りした後の粘着剤の厚さが一定となることが好ましい。したがって、自由端側の粘着剤の厚さは固定端側の粘着剤よりも厚いほうが好ましい。 Furthermore, the magnitude of the deviation between the support member 21 and the light emitting portion L that occurs during winding increases as the winding proceeds. In order to make the shearing deformation applied to the adhesive during winding constant and to average the stress applied to the light emitting portion L, it is preferable that the thickness of the adhesive after winding is constant. Therefore, it is preferable that the adhesive on the free end side is thicker than the adhesive on the fixed end side.
 図4A~4Dは巻き取り時と引き出し時の粘着剤の厚さ変化を示す概念図である。例えば、図4Aに示すように、仮に、厚さ100μmの支持部材上に厚さ200μmの粘着剤を介して100mmの長さの厚さ60μmの発光部Lを設置し、これを半径5mmの巻き取り部材を有する筐体に巻き込んだ時、図4Bに示すように自由端における支持部材と発光装置の位置は約3mmずれ、かつ粘着剤の厚さも当初の70%程度になると考えられる。巻き取り時の図は、比較のため自由端を平坦にした模式図である。 FIGS. 4A to 4D are conceptual diagrams showing changes in the thickness of the adhesive during winding and withdrawal. For example, as shown in FIG. 4A, a light emitting part L having a length of 100 mm and a thickness of 60 μm is installed on a support member having a thickness of 100 μm via a pressure-sensitive adhesive having a thickness of 100 μm, and this is wound around a radius of 5 mm. When wound in a casing having a take-up member, as shown in FIG. 4B, the positions of the support member and the light-emitting device at the free end are shifted by about 3 mm, and the thickness of the adhesive is considered to be about 70% of the original. The drawing at the time of winding is a schematic diagram in which the free end is flat for comparison.
 図4Cのように、引き出し時、粘着剤の厚さに傾斜を持たせて自由端側を厚くし、巻き取り時に粘着剤の厚さが一定となるように粘着剤を形成することにより、巻き取り時、発光部Lに係るストレスを軽減することができ好ましい。 As shown in FIG. 4C, when pulling out, the thickness of the pressure-sensitive adhesive is inclined to increase the free end side, and the pressure-sensitive adhesive is formed so that the thickness of the pressure-sensitive adhesive is constant during winding. At the time of taking, the stress concerning the light emitting part L can be reduced, which is preferable.
 さらに、図4Dに示すように、巻き取り時に、有機発光素子と粘着剤との自由端を揃えることができる形態でも良い。 Furthermore, as shown in FIG. 4D, it may be in a form in which the free ends of the organic light emitting element and the adhesive can be aligned at the time of winding.
 また、引き出し及び巻き取りを、滑らかに行うために、支持部材は、引き出し時にエッジが曲がって平面形状を維持する形態のものが好ましい。 Also, in order to smoothly pull out and wind up, it is preferable that the support member has a shape in which the edge is bent and the planar shape is maintained when being pulled out.
 図5は、巻き取り形態における支持部材の好ましい形状を示す一例である。支持部材は、巻き取られた状態では平面を維持し、矢印方向に引き出されたときエッジが図のように曲がる形状である。 FIG. 5 is an example showing a preferable shape of the support member in the winding form. The support member maintains a flat surface in the wound state, and has a shape in which the edge bends as shown in the drawing when pulled out in the direction of the arrow.
 また、支持部材は例えばスチール板等の金属板を使用することが、剛性を高める上で好ましい。 In addition, it is preferable to use a metal plate such as a steel plate as the support member in order to increase rigidity.
 以下に本発明の構成についてさらに詳細に述べる。 Hereinafter, the configuration of the present invention will be described in more detail.
 <ガスバリアー層>
 本発明に係るガスバリアー層は、少なくとも厚さ方向において、非遷移金属M1及び遷移金属M2を含有する混合領域を有し、当該混合領域における前記非遷移金属M1に対する遷移金属M2の原子数比の値(M2/M1)が、0.02~49の範囲内にある領域を、厚さ方向に連続して5nm以上有することを特徴とするガスバリアー層である。
<Gas barrier layer>
The gas barrier layer according to the present invention has a mixed region containing a non-transition metal M1 and a transition metal M2 at least in the thickness direction, and has an atomic ratio of the transition metal M2 to the non-transition metal M1 in the mixed region. The gas barrier layer is characterized in that a region having a value (M2 / M1) in the range of 0.02 to 49 has a thickness of 5 nm or more continuously in the thickness direction.
 更には、ガスバリアー層としては、第3族~第11族の遷移金属を金属の主成分aとして含有するA領域と、第12族~第14族の非遷移金属を金属の主成分bとして含有するB領域との間に、主成分a及び主成分bに由来する化合物を含有する混合領域を有する構成であることが好ましい形態である。 Further, as the gas barrier layer, a region A containing a transition metal of Group 3 to Group 11 as the main component a of metal and a non-transition metal of Group 12 to Group 14 as the main component b of metal. It is a preferable embodiment to have a mixed region containing a compound derived from the main component a and the main component b between the B region to be contained.
 また、本発明に係るガスバリアー層においては、層内の全域にわたって、前記混合領域が形成されている構成であることも、好ましい形態である。 Moreover, in the gas barrier layer according to the present invention, it is also a preferable embodiment that the mixed region is formed over the entire region in the layer.
 この混合領域では、遷移金属と非遷移金属、及び酸素が含有されていることが好ましい。また、この混合領域は、遷移金属の酸化物と非遷移金属の酸化物との混合物、又は、遷移金属と非遷移金属との複合酸化物の少なくとも一方が含有されていることが好ましい形態であり、遷移金属と非遷移金属との複合酸化物が含有されていることがより好ましい形態である。 In this mixed region, transition metal, non-transition metal, and oxygen are preferably contained. In addition, the mixed region preferably includes at least one of a mixture of a transition metal oxide and a non-transition metal oxide, or a composite oxide of a transition metal and a non-transition metal. More preferably, a composite oxide of a transition metal and a non-transition metal is contained.
 加えて、上記混合領域の組成を下記化学組成式(1)で表したとき、混合領域の少なくとも一部が、下記関係式(2)で規定する条件を満たすことが好ましい。 In addition, when the composition of the mixed region is represented by the following chemical composition formula (1), it is preferable that at least a part of the mixed region satisfies the condition defined by the following relational formula (2).
 化学組成式(1):(M1)(M2)
 関係式(2):(2y+3z)/(a+bx)<1.0
 上記各式において、M1は非遷移金属、M2は遷移金属、Oは酸素、Nは窒素を表す。x、y、zは、それぞれ化学量論係数であり、aはM1の最大価数、bはM2の最大価数を表す。
Chemical composition formula (1): (M1) (M2) x O y N z
Relational expression (2): (2y + 3z) / (a + bx) <1.0
In the above formulas, M1 represents a non-transition metal, M2 represents a transition metal, O represents oxygen, and N represents nitrogen. x, y, and z are stoichiometric coefficients, respectively, a represents the maximum valence of M1, and b represents the maximum valence of M2.
 以下、本発明に係るガスバリアー層の詳細について更に説明する。 Hereinafter, details of the gas barrier layer according to the present invention will be further described.
 〔ガスバリアー層を構成する各領域〕
 本発明に係るガスバリアー層を構成する領域について説明するが、以下において使用する技術用語の定義について予め説明する。
[Each area constituting the gas barrier layer]
Although the area | region which comprises the gas barrier layer based on this invention is demonstrated, the definition of the technical term used below is demonstrated previously.
 本発明において、「領域」とは、ガスバリアー層の厚さ方向に対して略垂直な面(すなわち当該ガスバリアー層の最表面に平行な面)で当該ガスバリアー層を一定又は任意の厚さで分割したときに形成される対向する二つの面の間の三次元的範囲内(領域)をいい、当該領域内の構成成分の組成は、厚さ方向において一定であっても、徐々に変化するものであっても良い。 In the present invention, the “region” means a plane that is substantially perpendicular to the thickness direction of the gas barrier layer (that is, a plane parallel to the outermost surface of the gas barrier layer), and the gas barrier layer has a constant or arbitrary thickness. This is a three-dimensional range (region) between two opposing surfaces formed when divided by 1. The composition of components in the region changes gradually even if the composition is constant in the thickness direction. It may be what you do.
 本発明でいう「構成成分」とは、ガスバリアー層の特定領域を構成する化合物及び金属若しくは非金属の単体をいう。また、本発明でいう「主成分」とは、原子組成比として含有量が最大である構成成分をいう。例えば、「金属の主成分」といえば、構成成分の中の金属成分の中で、原子組成比として含有量が最大である金属成分をいう。 In the present invention, the “constituent component” refers to a compound constituting a specific region of the gas barrier layer and a metal or non-metal simple substance. In addition, the “main component” in the present invention refers to a component having the maximum content as an atomic composition ratio. For example, “metal main component” refers to a metal component having the maximum content as an atomic composition ratio among the metal components in the constituent components.
 本発明でいう「混合物」とは、前記領域A及びBの前記構成成分が相互に化学結合することなく混じり合っている状態の物をいう。例えば、酸化ニオブと酸化ケイ素がお互いに化学結合することなく混じり合っている状態をいう。 In the present invention, the “mixture” refers to a product in which the constituent components of the regions A and B are mixed without being chemically bonded to each other. For example, a state in which niobium oxide and silicon oxide are mixed without being chemically bonded to each other.
 本発明でいう「主成分a及び主成分bに由来する化合物」とは、主成分a及び主成分bそれら自体、並びに主成分aと主成分bが反応して形成された複合化合物をいう。 In the present invention, the “compound derived from the main component a and the main component b” refers to the composite compound formed by the reaction between the main component a and the main component b themselves and the main component a and the main component b.
 複合化合物の具体例として「複合酸化物」を挙げて説明すると、「複合酸化物」とは、前記領域A及びBの前記構成成分が相互に化学結合をして形成された化合物(酸化物)をいう。例えば、ニオブ原子とケイ素原子が直接的に、又は酸素原子を介して化学結合を形成している化学構造を有する化合物をいう。なお、本発明においては、前記領域A及びBの前記構成成分が相互に分子間相互作用などにより物理的結合をして形成された複合体も本発明に係る「複合酸化物」に含まれるものとする。 A “composite oxide” will be described as a specific example of the composite compound. The “composite oxide” is a compound (oxide) formed by chemically bonding the constituent components in the regions A and B to each other. Say. For example, a compound having a chemical structure in which a niobium atom and a silicon atom form a chemical bond directly or through an oxygen atom. In the present invention, a complex formed by physically bonding the constituent components of the regions A and B to each other by intermolecular interaction or the like is also included in the “composite oxide” according to the present invention. And
 次いで、各領域について詳細な説明をする。 Next, detailed explanation will be given for each area.
 (遷移金属含有領域:A領域)
 遷移金属含有領域であるA領域とは、遷移金属を金属の主成分aとして含有する領域をいう。
(Transition metal-containing region: A region)
The A region which is a transition metal-containing region refers to a region containing a transition metal as the main component a of the metal.
 遷移金属(M2)としては、特に制限されず、任意の遷移金属が単独で又は組み合わせて用いられうる。ここで、遷移金属とは、長周期型周期表の第3族元素から第11族元素を指し、遷移金属としては、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、及びAuなどが挙げられる。 The transition metal (M2) is not particularly limited, and any transition metal can be used alone or in combination. Here, the transition metal refers to a Group 3 element to a Group 11 element in the long-period periodic table, and the transition metal includes Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y , Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta , W, Re, Os, Ir, Pt, and Au.
 なかでも、良好なガスバリアー性が得られる遷移金属(M2)としては、Nb、Ta、V、Zr、Ti、Hf、Y、La、Ce等が挙げられる。これらのなかでも、種々の検討結果から、特に第5族元素であるNb、Ta、Vが、ガスバリアー層に含有される非遷移金属(M1)に対する結合が生じやすい観点から、好ましく用いることができる。 Among these, Nb, Ta, V, Zr, Ti, Hf, Y, La, Ce, and the like can be cited as transition metals (M2) that can provide good gas barrier properties. Among these, Nb, Ta, and V, which are Group 5 elements, are preferably used from the viewpoint of easy binding to the non-transition metal (M1) contained in the gas barrier layer, based on various examination results. it can.
 特に、遷移金属(M2)が第5族元素(特に、Nb)であって、詳細は後述する非遷移金属(M1)がSiであると、著しいガスバリアー性の向上効果を得ることができ、特に好ましい組み合わせである。これは、Siと第5族元素(特に、Nb)との結合が特に生じやすいためであると考えられる。さらに、光学特性の観点から、遷移金属(M2)は、透明性が良好な化合物が得られるNb、Taが特に好ましい。 In particular, when the transition metal (M2) is a Group 5 element (particularly Nb) and the non-transition metal (M1), which will be described in detail later, is Si, a significant gas barrier property improvement effect can be obtained. A particularly preferred combination. This is presumably because the bond between Si and the Group 5 element (particularly Nb) is particularly likely to occur. Furthermore, from the viewpoint of optical properties, the transition metal (M2) is particularly preferably Nb or Ta from which a compound with good transparency can be obtained.
 A領域の厚さとしては、ガスバリアー性と光学特性との両立の観点から、2~50nmの範囲であることが好ましく、4~25nmの範囲であることがより好ましく、5~15nmの範囲であることがさらに好ましい。 The thickness of the region A is preferably in the range of 2 to 50 nm, more preferably in the range of 4 to 25 nm, and more preferably in the range of 5 to 15 nm from the viewpoint of achieving both gas barrier properties and optical characteristics. More preferably it is.
 (非遷移金属含有領域:B領域)
 非遷移金属含有領域であるB領域とは、非遷移金属を金属の主成分bとして含有する領域をいう。ここでいう「その化合物」すなわち「非遷移金属の化合物」とは、非遷移金属を含む化合物をいい、例えば、非遷移金属酸化物をいう。
(Non-transition metal-containing region: B region)
The B region, which is a non-transition metal-containing region, refers to a region containing a non-transition metal as a metal main component b. The “compound” here, that is, the “non-transition metal compound” means a compound containing a non-transition metal, for example, a non-transition metal oxide.
 非遷移金属(M1)としては、長周期型周期表の第12族~第14族の金属から選択される非遷移金属が好ましい。当該非遷移金属としては、特に制限されず、第12族~第14族の任意の金属が単独で又は組み合わせて用いることができるが、例えば、Si、Al、Zn、In及びSnなどが挙げられる。なかでも、当該非遷移金属(M1)として、Si、Sn又はZnを含むことが好ましく、Siを含むことがより好ましく、Si単独であることが特に好ましい。 The non-transition metal (M1) is preferably a non-transition metal selected from Group 12 to Group 14 metals of the long-period periodic table. The non-transition metal is not particularly limited, and any metal of Group 12 to Group 14 can be used alone or in combination. Examples thereof include Si, Al, Zn, In, and Sn. . Especially, it is preferable that Si, Sn, or Zn is included as the non-transition metal (M1), Si is more preferable, and Si alone is particularly preferable.
 B領域の厚さとしては、ガスバリアー性と生産性との両立の観点から、10~1000nmの範囲であることが好ましく、20~500nmの範囲であることがより好ましく、50~300nmの範囲であることがさらに好ましい。 The thickness of the region B is preferably in the range of 10 to 1000 nm, more preferably in the range of 20 to 500 nm, and more preferably in the range of 50 to 300 nm from the viewpoint of achieving both gas barrier properties and productivity. More preferably it is.
 (混合領域)
 本発明に係る混合領域は、長周期型周期表の第12族~第14族の金属から選択される非遷移金属(M1)及び第3族元素から第11族の金属から選択される遷移金属(M2)が含有されている領域であって、前記非遷移金属M1に対する遷移金属M2の原子数比の値(M2/M1)が、0.02~49の範囲内にある混合領域を、厚さ方向に連続して5nm以上有する領域である。
(Mixed area)
The mixed region according to the present invention includes a non-transition metal (M1) selected from Group 12 to Group 14 metals of a long-period periodic table and a transition metal selected from Group 3 elements to Group 11 metals. (M2) is contained in the mixed region in which the value (M2 / M1) of the atomic ratio of the transition metal M2 to the non-transition metal M1 is in the range of 0.02 to 49. This is a region having 5 nm or more continuously in the vertical direction.
 ここで、混合領域は、構成成分の化学組成が相互に異なる複数の領域として形成されていてもよく、また、構成成分の化学組成が連続して変化している領域として形成されていてもよい。 Here, the mixed region may be formed as a plurality of regions having different chemical compositions of the constituent components, or may be formed as a region in which the chemical compositions of the constituent components are continuously changed. .
 なお、ガスバリアー層の混合領域以外の領域は、非遷移金属(M1)の酸化物、窒化物、酸窒化物、酸炭化物等の領域であってもよいし、遷移金属(M2)の酸化物、窒化物、酸窒化物、酸炭化物等の領域であってもよい。 The region other than the mixed region of the gas barrier layer may be a region such as a non-transition metal (M1) oxide, nitride, oxynitride, or oxycarbide, or a transition metal (M2) oxide. It may be a region of nitride, oxynitride, oxycarbide, or the like.
 (酸素欠損組成)
 本発明においては、混合領域に含有される一部の組成が、酸素が欠損した非化学量論的組成(酸素欠損組成)であることが好ましい。
(Oxygen deficient composition)
In the present invention, it is preferable that a part of the composition contained in the mixed region has a non-stoichiometric composition (oxygen deficient composition) in which oxygen is lost.
 本発明においては、酸素欠損組成とは、当該混合領域の組成を、下記化学組成式(1)で表したとき、当該混合領域の少なくとも一部の組成が、下記関係式(2)で規定する条件を満たすことと定義する。また、当該混合領域における酸素欠損程度を表す酸素欠損度指標としては、当該ある混合領域における(2y+3z)/(a+bx)を算出して得られる値の最小値を用いるものとする。
化学組成式(1)
(M1)(M2)
関係式(2)
(2y+3z)/(a+bx)<1.0
 上記各式において、M1は非遷移金属、M2は遷移金属、Oは酸素、Nは窒素を表し、x、y及びzはそれぞれ化学量論係数を表す。aはM1の最大価数、bはM2の最大価数を表す。
In the present invention, the oxygen deficient composition is defined by the following relational expression (2) when at least a part of the composition of the mixed region is expressed by the following chemical composition formula (1). It is defined as satisfying the condition. In addition, as the oxygen deficiency index indicating the degree of oxygen deficiency in the mixed region, the minimum value obtained by calculating (2y + 3z) / (a + bx) in the certain mixed region is used.
Chemical composition formula (1)
(M1) (M2) x O y N z
Relational expression (2)
(2y + 3z) / (a + bx) <1.0
In the above formulas, M1 represents a non-transition metal, M2 represents a transition metal, O represents oxygen, N represents nitrogen, and x, y, and z represent stoichiometric coefficients, respectively. a represents the maximum valence of M1, and b represents the maximum valence of M2.
 以下、特別の区別が必要ない場合、上記化学組成式(1)で表す組成を、単に複合領域の組成と言う。 Hereinafter, when no special distinction is necessary, the composition represented by the chemical composition formula (1) is simply referred to as the composition of the composite region.
 上述したように、本発明に係る非遷移金属(M1)と遷移金属(M2)との複合領域の組成は、式(1)である(M1)(M2)で示される。この組成からも明らかなように、上記複合領域の組成は、一部窒化物の構造を含んでいてもよく、窒化物の構造を含んでいる方がガスバリアー性の観点から好ましい。 As described above, the composition of the composite region of the non-transition metal (M1) and the transition metal (M2) according to the present invention is represented by (M1) (M2) x O y N z which is the formula (1). As is clear from this composition, the composition of the composite region may partially include a nitride structure, and it is more preferable to include a nitride structure from the viewpoint of gas barrier properties.
 ここでは、非遷移金属(M1)の最大価数をa、遷移金属(M2)の最大価数をb、Oの価数を2、Nの価数を3とする。そして、上記複合領域の組成(一部窒化物となっているものを含む)が化学量論的組成になっている場合は、(2y+3z)/(a+bx)=1.0となる。この式は、非遷移金属(M1)及び遷移金属(M2)の結合手の合計と、O、Nの結合手の合計とが同数であることを意味し、この場合、非遷移金属(M1)及び遷移金属(M2)ともに、O及びNのいずれか一方と結合していることになる。なお、本発明において、非遷移金属(M1)として2種以上が併用される場合や、遷移金属(M2)として2種以上が併用される場合には、各元素の最大価数を各元素の存在比率によって加重平均することにより算出される複合価数を、それぞれの「最大価数」のa及びbの値として採用するものとする。 Here, the maximum valence of the non-transition metal (M1) is a, the maximum valence of the transition metal (M2) is b, the valence of O is 2, and the valence of N is 3. When the composition of the composite region (including a part of the nitride) is a stoichiometric composition, (2y + 3z) / (a + bx) = 1.0. This formula means that the total number of bonds of non-transition metal (M1) and transition metal (M2) is equal to the total number of bonds of O and N. In this case, non-transition metal (M1) And the transition metal (M2) are bonded to either O or N. In the present invention, when two or more kinds are used together as the non-transition metal (M1), or when two or more kinds are used together as the transition metal (M2), the maximum valence of each element is set to The composite valence calculated by performing the weighted average according to the existence ratio is adopted as the values of a and b of each “maximum valence”.
 一方、本発明に係る混合領域において、関係式(2)で示す(2y+3z)/(a+bx)<1.0となる場合には、非遷移金属(M1)及び遷移金属(M2)の結合手の合計に対して、O、Nの結合手の合計が不足していることを意味し、この様な状態が上記の「酸素欠損」である。 On the other hand, in the mixed region according to the present invention, when (2y + 3z) / (a + bx) <1.0 shown by the relational expression (2), a bond between the non-transition metal (M1) and the transition metal (M2) This means that the total number of O and N bonds is insufficient with respect to the total, and such a state is the above-mentioned “oxygen deficiency”.
 酸素欠損状態においては、非遷移金属(M1)及び遷移金属(M2)の余った結合手は互いに結合する可能性を有しており、非遷移金属(M1)や遷移金属(M2)の金属同士が直接結合すると、金属の間にOやNを介して結合した場合よりも緻密で高密度な構造が形成され、その結果として、ガスバリアー性が向上すると考えられる。 In the oxygen deficient state, the remaining bonds of the non-transition metal (M1) and the transition metal (M2) have the possibility of bonding to each other, and the metals of the non-transition metal (M1) and the transition metal (M2) When they are directly bonded, it is considered that a denser and higher-density structure is formed than when bonded between metals via O or N, and as a result, gas barrier properties are improved.
 また、本発明において、混合領域は、前記xの値が、0.02≦x≦49(0<y、0≦z)を満たす領域である。これは、先に、遷移金属(M2)/非遷移金属(M1)の原子数比率の値が、0.02~49の範囲内にあり、厚さが5nm以上である領域と定義する、としたことと同一の定義である。 In the present invention, the mixed region is a region where the value of x satisfies 0.02 ≦ x ≦ 49 (0 <y, 0 ≦ z). This is defined as a region in which the value of the number ratio of transition metal (M2) / non-transition metal (M1) is in the range of 0.02 to 49 and the thickness is 5 nm or more. It is the same definition as that.
 この領域では、非遷移金属(M1)及び遷移金属(M2)の双方が金属同士の直接結合に関与することから、この条件を満たす混合領域が所定値以上(5nm)の厚さで存在することで、ガスバリアー性の向上に寄与すると考えられる。なお、非遷移金属(M1)及び遷移金属(M2)の存在比率が近いほどガスバリアー性の向上に寄与しうると考えられることから、混合領域は、0.1≦x≦10を満たす領域を5nm以上の厚さで含むことが好ましく、0.2≦x≦5を満たす領域を5nm以上の厚さで含むことがより好ましく、0.3≦x≦4を満たす領域を5nm以上の厚さで含むことが更に好ましい。 In this region, since both the non-transition metal (M1) and the transition metal (M2) are involved in the direct bonding between the metals, a mixed region that satisfies this condition exists in a thickness of a predetermined value or more (5 nm). Therefore, it is thought that it contributes to the improvement of gas barrier properties. In addition, since it is considered that the closer the abundance ratio of the non-transition metal (M1) and the transition metal (M2), the more the gas barrier property can be improved, the mixed region is a region satisfying 0.1 ≦ x ≦ 10. It is preferable to include a thickness of 5 nm or more, more preferably include a region satisfying 0.2 ≦ x ≦ 5 at a thickness of 5 nm or more, and a region satisfying 0.3 ≦ x ≦ 4 to a thickness of 5 nm or more. It is further preferable to contain.
 ここで、上述したように、混合領域の範囲内に、関係式(2)で示す(2y+3z)/(a+bx)<1.0の関係を満たす領域が存在すれば、ガスバリアー性の向上効果が発揮されることが確認されたが、混合領域は、その組成の少なくとも一部が(2y+3z)/(a+bx)≦0.9を満たすことが好ましく、(2y+3z)/(a+bx)≦0.85を満たすことがより好ましく、(2y+3z)/(a+bx)≦0.8を満たすことがさらに好ましい。ここで、混合領域における(2y+3z)/(a+bx)の値が小さくなるほど、ガスバリアー性の向上効果は高くなるものの可視光での吸収も大きくなる。したがって、透明性が望まれる用途に使用するガスバリアー層の場合には、0.2≦(2y+3z)/(a+bx)であることが好ましく、0.3≦(2y+3z)/(a+bx)であることがより好ましく、0.4≦(2y+3z)/(a+bx)であることがさらに好ましい。 Here, as described above, if there is a region satisfying the relationship of (2y + 3z) / (a + bx) <1.0 represented by the relational expression (2) within the range of the mixed region, the effect of improving the gas barrier property is obtained. Although it was confirmed that the mixed region exhibits at least a part of the composition, (2y + 3z) / (a + bx) ≦ 0.9, and (2y + 3z) / (a + bx) ≦ 0.85 in the mixed region. It is more preferable to satisfy | fill, and it is still more preferable to satisfy | fill (2y + 3z) / (a + bx) <= 0.8. Here, the smaller the value of (2y + 3z) / (a + bx) in the mixed region, the higher the gas barrier property, but the greater the absorption in visible light. Therefore, in the case of a gas barrier layer used for applications where transparency is desired, 0.2 ≦ (2y + 3z) / (a + bx) is preferable, and 0.3 ≦ (2y + 3z) / (a + bx). Is more preferable, and it is further preferable that 0.4 ≦ (2y + 3z) / (a + bx).
 なお、本発明において良好なガスバリアー性が得られる混合領域の厚さは、後述するXPS分析法におけるSiO2換算のスパッタ厚さとして、5nm以上であり、この厚さは、8nm以上であることが好ましく、10nm以上であることがより好ましく、20nm以上であることがさらに好ましい。混合領域の厚さは、ガスバリアー性の観点からは特に上限はないが、光学特性の観点から、100nm以下であることが好ましく、50nm以下であることがより好ましく、30nm以下であることがさらに好ましい。
上述したような特定構成の混合領域を有するガスバリアー層は、例えば、有機EL素子等の電子デバイス用のガスバリアー層として使用可能なレベルの非常に高いガスバリアー性を示す。
In the present invention, the thickness of the mixed region where good gas barrier properties can be obtained is 5 nm or more as a sputtering thickness in terms of SiO 2 in the XPS analysis method described later, and this thickness is 8 nm or more. Preferably, it is 10 nm or more, more preferably 20 nm or more. The thickness of the mixed region is not particularly limited from the viewpoint of gas barrier properties, but is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 30 nm or less from the viewpoint of optical characteristics. preferable.
A gas barrier layer having a mixed region having a specific configuration as described above exhibits a very high gas barrier property that can be used as a gas barrier layer for an electronic device such as an organic EL element.
 (XPSによる組成分析と混合領域の厚さの測定)
 本発明に係るガスバリアー層の混合領域やA領域及びB領域における組成分布や各領域の厚さ等については、以下に詳述するX線光電分光法(X-ray Photoelectron Spectroscopy、略称:XPS)により測定することにより求めることができる。
(Composition analysis by XPS and measurement of the thickness of the mixed region)
About the composition distribution in the gas barrier layer according to the present invention, the composition distribution in the A region and the B region, the thickness of each region, and the like, X-ray photoelectron spectroscopy (abbreviation: XPS) described in detail below. It can obtain | require by measuring by.
 以下、XPS分析法による混合領域及びA領域、B領域の測定方法について説明する。本発明に係るガスバリアー層の厚さ方向における元素濃度分布曲線(以下、「デプスプロファイル」という。)は、具体的には、非遷移金属M1(例えば、ケイ素)の元素濃度、遷移金属M2(例えば、ニオブ)の元素濃度、酸素(O)、窒素(N)、炭素(C)元素濃度等を、X線光電子分光法の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、ガスバリアー層の表面より内部を露出させつつ順次表面組成分析を行うことにより作成することができる。 Hereinafter, a method for measuring the mixed region, the A region, and the B region by XPS analysis will be described. Specifically, the element concentration distribution curve (hereinafter referred to as “depth profile”) in the thickness direction of the gas barrier layer according to the present invention is the element concentration of the non-transition metal M1 (for example, silicon), the transition metal M2 ( For example, the element concentration of niobium, oxygen (O), nitrogen (N), carbon (C) element concentration, etc. can be measured by combining X-ray photoelectron spectroscopy measurement with rare gas ion sputtering such as argon. It can be created by sequentially performing surface composition analysis while exposing the interior from the surface of the barrier layer.
 このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:atom%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は層厚方向における前記ガスバリアー層の厚さ方向におけるガスバリアー層の表面からの距離におおむね相関することから、「ガスバリアー層の厚さ方向におけるガスバリアー層の表面からの距離」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出されるガスバリアー層の表面からの距離を採用することができる。また、このようなXPSデプスプロファイル測定に際して採用するスパッタ法としては、エッチングイオン種としてアルゴン(Ar)を用いた希ガスイオンスパッタ法を採用し、そのエッチング速度(エッチングレート)を0.05nm/sec(SiO熱酸化膜換算値)とすることが好ましい。 A distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio of each element (unit: atom%) and the horizontal axis as the etching time (sputtering time). In addition, in the element distribution curve with the horizontal axis as the etching time in this way, the etching time is generally correlated with the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer in the layer thickness direction, As the “distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer”, the distance from the surface of the gas barrier layer calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement Can be adopted. In addition, as a sputtering method employed for such XPS depth profile measurement, a rare gas ion sputtering method using argon (Ar + ) as an etching ion species is employed, and the etching rate (etching rate) is 0.05 nm / It is preferable to set to sec (SiO 2 thermal oxide film conversion value).
 以下に、本発明に係るガスバリアー層の組成分析に適用可能なXPS分析の具体的な条件の一例を示す。
・分析装置:アルバックファイ社製QUANTERASXM
・X線源:単色化Al-Kα
・スパッタイオン:Ar(2keV)
・デプスプロファイル:SiO換算スパッタ厚さで、所定の厚さ間隔で測定を繰り返し、深さ方向のデプスプロファイルを求める。この厚さ間隔は、1nmとした(深さ方向に1nmごとのデータが得られる)。
・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量した。データ処理は、アルバックファイ社製のMultiPakを用いる。なお、分析した元素は、非遷移金属M1(例えば、ケイ素(Si))、遷移金属M2、酸素(O)、窒素(N)、炭素(C)である。
An example of specific conditions of XPS analysis applicable to the composition analysis of the gas barrier layer according to the present invention is shown below.
・ Analyzer: QUANTERASXM manufactured by ULVAC-PHI
・ X-ray source: Monochromatic Al-Kα
・ Sputtering ion: Ar (2 keV)
Depth profile: Measurement is repeated at a predetermined thickness interval with a SiO 2 equivalent sputtering thickness to obtain a depth profile in the depth direction. The thickness interval was 1 nm (data every 1 nm is obtained in the depth direction).
Quantification: The background was determined by the Shirley method, and quantified using the relative sensitivity coefficient method from the obtained peak area. Data processing uses MultiPak manufactured by ULVAC-PHI. The analyzed elements are non-transition metal M1 (for example, silicon (Si)), transition metal M2, oxygen (O), nitrogen (N), and carbon (C).
 得られたデータから、組成比を計算し、非遷移金属(M1)と遷移金属(M2)とが共存し、かつ、遷移金属(M2)/非遷移金属(M1)の原子数比率の値が、0.02~49になる範囲を求め、これを混合領域と定義し、その厚さを求める。混合領域の厚さは、XPS分析におけるスパッタ深さをSiO換算で表したものである。 The composition ratio is calculated from the obtained data, the non-transition metal (M1) and the transition metal (M2) coexist, and the value of the atomic ratio of the transition metal (M2) / non-transition metal (M1) is , 0.02 to 49 is obtained, this is defined as a mixed region, and its thickness is obtained. The thickness of the mixed region represents the sputter depth in XPS analysis in terms of SiO 2 .
 本発明において、混合領域の厚さは5nm以上であるときに「混合領域」と判定する。ガスバリアー性の観点からは、混合領域での厚さの上限はないが、光学特性の観点から、好ましくは5~100nmの範囲内であり、より好ましくは8~50nmの範囲内であり、さらに好ましくは、10~30nmの範囲内である。 In the present invention, when the thickness of the mixed region is 5 nm or more, it is determined as “mixed region”. From the viewpoint of gas barrier properties, there is no upper limit of the thickness in the mixed region, but from the viewpoint of optical properties, it is preferably in the range of 5 to 100 nm, more preferably in the range of 8 to 50 nm. Preferably, it is in the range of 10 to 30 nm.
 以下に、本発明に係るガスバリアー層における混合領域の具体例について、図を用いて説明する。 Hereinafter, specific examples of the mixing region in the gas barrier layer according to the present invention will be described with reference to the drawings.
 図6は、ガスバリアー層の厚さ方向における非遷移金属及び遷移金属の組成分布をXPS法により分析したときの元素プロファイルと混合領域を説明するためのグラフの一例である。図6において、ガスバリアー層の表面(グラフの左端部)より深さ方向に、非遷移金属(M1)、遷移金属(M2)、O、N、Cの元素分析を行い、横軸にスパッタの深さ(層厚:nm)を、縦軸に非遷移金属(M1)と遷移金属(M2)の含有率(atom%)を示したグラフである。 FIG. 6 is an example of a graph for explaining the element profile and the mixed region when the composition distribution of the non-transition metal and the transition metal in the thickness direction of the gas barrier layer is analyzed by the XPS method. In FIG. 6, elemental analysis of non-transition metal (M1), transition metal (M2), O, N, and C is performed in the depth direction from the surface of the gas barrier layer (the left end portion of the graph), and the horizontal axis represents spattering. It is the graph which showed the content rate (atom%) of a non-transition metal (M1) and a transition metal (M2) on the vertical axis | shaft with depth (layer thickness: nm).
 右側より、非遷移金属(M1、例えば、Si)を金属の主成分とする元素組成であるB領域が示され、これに接して左側に遷移金属(M2、例えば、ニオブ)を金属の主成分とする元素組成であるA領域が示されている。混合領域は、遷移金属(M2)/非遷移金属(M1)の原子数比率の値が、0.02~49の範囲内の元素組成で示される領域であり、A領域の一部とB領域の一部とに重なって示される領域であって、かつ、厚さ5nm以上の領域である。 From the right side, the B region which is an elemental composition having a non-transition metal (M1, for example, Si) as the main component of the metal is shown, and on the left side, the transition metal (M2, for example, niobium) is the main component of the metal. A region which is an elemental composition is shown. The mixed region is a region where the value of the atomic ratio of transition metal (M2) / non-transition metal (M1) is indicated by an element composition within the range of 0.02 to 49, and a part of A region and B region Is a region that overlaps with a part of the region and has a thickness of 5 nm or more.
 〔各領域の形成方法〕
 (遷移金属含有領域:A領域の形成)
 本発明に係る遷移金属(M2)は、前述のとおり良好なガスバリアー性が得られる観点から、Nb、Ta、V、Zr、Ti、Hf、Y、La、Ce等が挙げられ、これらの中でも、特に第5族元素であるNb、Ta、Vが、ガスバリアー層に含有される非遷移金属(M1)に対する結合が生じやすいと考えられるため、好ましく用いることができる。
[Method of forming each region]
(Transition metal-containing region: formation of region A)
Examples of the transition metal (M2) according to the present invention include Nb, Ta, V, Zr, Ti, Hf, Y, La, Ce, and the like from the viewpoint of obtaining good gas barrier properties as described above. In particular, Nb, Ta, and V, which are Group 5 elements, can be preferably used because they are likely to be bonded to the non-transition metal (M1) contained in the gas barrier layer.
 前記遷移金属(M2)の酸化物を含有する層の形成は、特に限定されず、例えば、既存の薄膜堆積技術を利用した従来公知の気相成膜法を用いることが、混合領域を効率的に形成する観点から好ましい。 The formation of the layer containing the transition metal (M2) oxide is not particularly limited. For example, a conventionally known vapor deposition method using an existing thin film deposition technique can be used to make the mixed region efficient. It is preferable from a viewpoint of forming.
 これらの気相成膜法は公知の方法で用いることができる。気相成膜法としては、特に制限されず、例えば、スパッタ法、蒸着法、イオンプレーティング法、イオンアシスト蒸着法等の物理気相成長(PVD)法、プラズマCVD(chemical vapordeposition)法、ALD(Atomic Layer Deposition)法などの化学気相成長(CVD)法が挙げられる。なかでも、機能性素子へのダメージを与えることなく成膜が可能となり、高い生産性を有することから、物理気相成長(PVD)法により形成することが好ましく、スパッタ法により形成することがより好ましい。 These vapor deposition methods can be used by known methods. The vapor deposition method is not particularly limited, and examples thereof include physical vapor deposition (PVD) methods such as sputtering, vapor deposition, ion plating, and ion assist vapor deposition, plasma CVD (chemical vapor deposition), and ALD. Examples thereof include a chemical vapor deposition (CVD) method such as an (Atomic Layer Deposition) method. In particular, it is possible to form a film without damaging the functional element, and since it has high productivity, it is preferably formed by a physical vapor deposition (PVD) method, and more preferably formed by a sputtering method. preferable.
 スパッタ法による成膜は、2極スパッタリング、マグネトロンスパッタリング、中間的な周波数領域を用いたデュアルマグネトロンスパッタリング(DMS)、イオンビームスパッタリング、ECRスパッタリングなどを単独で又は2種以上組み合わせて用いることができる。また、ターゲットの印加方式はターゲット種に応じて適宜選択され、DC(直流)スパッタリング、DCパルススパッタリング、AC(交流)スパッタリング、及びRF(高周波)スパッタリングのいずれを用いてもよい。 For the film formation by sputtering, bipolar sputtering, magnetron sputtering, dual magnetron sputtering (DMS) using an intermediate frequency region, ion beam sputtering, ECR sputtering, or the like can be used alone or in combination of two or more. The target application method is appropriately selected according to the target type, and any of DC (direct current) sputtering, DC pulse sputtering, AC (alternating current) sputtering, and RF (high frequency) sputtering may be used.
 また、金属モードと、酸化物モードとの中間である遷移モードを利用した反応性スパッタ法も用いることができる。遷移領域となるようにスパッタ現象を制御することにより、高い成膜スピードで金属酸化物を成膜することが可能となるため好ましい。 Further, a reactive sputtering method using a transition mode that is intermediate between the metal mode and the oxide mode can also be used. By controlling the sputtering phenomenon so as to be in the transition region, a metal oxide film can be formed at a high film formation speed, which is preferable.
 プロセスガスに用いられる不活性ガスとしては、He、Ne、Ar、Kr、Xe等を用いることができ、Arを用いることが好ましい。さらに、プロセスガス中に酸素、窒素、二酸化炭素、一酸化炭素を導入することで、非遷移金属(M1)及び遷移金属(M2)の複合酸化物、窒酸化物、酸炭化物等の薄膜を形成することができる。スパッタ法における成膜条件としては、印加電力、放電電流、放電電圧、時間等が挙げられるが、これらは、スパッタ装置や、膜の材料、層厚等に応じて適宜選択することができる。 As the inert gas used for the process gas, He, Ne, Ar, Kr, Xe or the like can be used, and Ar is preferably used. Furthermore, by introducing oxygen, nitrogen, carbon dioxide and carbon monoxide into the process gas, thin films of non-transition metal (M1) and transition metal (M2) composite oxides, nitride oxides, oxycarbides, etc. are formed. can do. Examples of film formation conditions in the sputtering method include applied power, discharge current, discharge voltage, time, and the like, which can be appropriately selected according to the sputtering apparatus, the material of the film, the layer thickness, and the like.
 スパッタ法は、遷移金属(M2)の単体又はその酸化物を含む複数のスパッタリングターゲットを用いた多元同時スパッタ方式であってもよい。これらのスパッタリングターゲットを作製する方法や、これらのスパッタリングターゲットを用いて複合酸化物からなる薄膜を作製する方法については、例えば、特開2000-160331号公報、特開2004-068109号公報、特開2013-047361号公報などの記載の方法や条件を適宜参照することができる。 The sputtering method may be a multi-source simultaneous sputtering method using a plurality of sputtering targets including a transition metal (M2) alone or its oxide. With respect to a method for producing these sputtering targets and a method for producing a thin film made of a composite oxide using these sputtering targets, for example, JP 2000-160331 A, JP 2004-068109 A, JP The methods and conditions described in JP 2013-047361 A can be referred to as appropriate.
 共蒸着法を実施する際の成膜条件としては、成膜原料における遷移金属(M2)と酸素との比率、成膜時の不活性ガスと反応性ガスとの比率、成膜時のガスの供給量、成膜時の真空度、及び、成膜時の電力からなる群から選択される1種又は2種以上の条件が例示され、これらの成膜条件(好ましくは、酸素分圧)を調節することによって、酸素欠損組成を有する複合酸化物からなる混合領域を形成することができる。すなわち、上述したような共蒸着法を用いてガスバリアー層を形成することで、形成されるガスバリアー層の厚さ方向のほとんどの領域を混合領域とすることができる。このような方法によれば、混合領域の厚さを制御するという極めて簡便な操作により、所望のガスバリアー性を実現することができる。なお、混合領域の厚さを制御するには、例えば、共蒸着法を実施する際の成膜時間を調節すればよい。 The film forming conditions for carrying out the co-evaporation method include the ratio of the transition metal (M2) and oxygen in the film forming raw material, the ratio of the inert gas to the reactive gas during the film forming, and the gas concentration during the film forming. Examples include one or more conditions selected from the group consisting of supply amount, degree of vacuum during film formation, and power during film formation. These film formation conditions (preferably oxygen partial pressure) are By adjusting, a mixed region made of a complex oxide having an oxygen deficient composition can be formed. That is, by forming the gas barrier layer using the co-evaporation method as described above, almost all regions in the thickness direction of the formed gas barrier layer can be mixed regions. According to such a method, a desired gas barrier property can be realized by an extremely simple operation of controlling the thickness of the mixed region. In addition, what is necessary is just to adjust the film-forming time at the time of implementing a co-evaporation method, for example, in order to control the thickness of a mixing area | region.
 (非遷移金属含有領域:B領域の形成)
 本発明に係るガスバリアー層において、非遷移金属(M1)を含有するB領域を形成する方法としては、特に制限はなく、例えば、気相成膜法は公知の方法で用いることができる。気相成膜法としては、特に制限されず、例えば、スパッタ法、蒸着法、イオンプレーティング法、イオンアシスト蒸着法等の物理気相成長(PVD)法、プラズマCVD(chemical vapordeposition)法、ALD(Atomic Layer Deposition)法などの化学気相成長(CVD)法が挙げられる。なかでも、機能性素子へのダメージを与えることなく成膜が可能となり、高い生産性を有することから、物理気相成長(PVD)法により形成することが好ましく、スパッタ法により、非遷移金属をターゲットとして用いて形成することができる。
(Non-transition metal-containing region: formation of B region)
In the gas barrier layer according to the present invention, the method for forming the B region containing the non-transition metal (M1) is not particularly limited, and for example, a vapor deposition method can be used by a known method. The vapor deposition method is not particularly limited, and examples thereof include physical vapor deposition (PVD) methods such as sputtering, vapor deposition, ion plating, and ion assisted vapor deposition, plasma CVD (chemical vapor deposition), and ALD. Examples thereof include a chemical vapor deposition (CVD) method such as an (Atomic Layer Deposition) method. In particular, it is possible to form a film without damaging the functional element, and since it has high productivity, it is preferably formed by a physical vapor deposition (PVD) method. A non-transition metal is formed by a sputtering method. It can be used as a target.
 また、他の方法としては、非遷移金属としてSiを含むポリシラザン含有塗布液を用いて、湿式塗布法により形成する方法も、好ましい方法の一つである。 Further, as another method, a method of forming by a wet coating method using a polysilazane-containing coating solution containing Si as a non-transition metal is also a preferable method.
 本発明において、B領域の形成に適用可能な「ポリシラザン」とは、構造内にケイ素-窒素結合を持つポリマーであり、Si-N、Si-H、N-H等からなるSiO、Si及び両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。 In the present invention, “polysilazane” applicable to the formation of the B region is a polymer having a silicon-nitrogen bond in the structure, and includes SiO 2 , Si 3 made of Si—N, Si—H, NH, or the like. N is 4 and both of the intermediate solid solution SiO x N preceramic inorganic polymers, such as y.
 上述した基材の平面性等を損なわないように、ポリシラザンを用いてガスバリアー層を構成するB領域を形成するためには、特開平8-112879号公報に記載されているような、比較的低温で酸化ケイ素、窒化ケイ素、又は酸窒化ケイ素に変性することが可能なポリシラザンが好ましい。 In order to form the B region constituting the gas barrier layer using polysilazane so as not to impair the planarity of the above-described base material, the relatively Polysilazanes that can be modified to silicon oxide, silicon nitride, or silicon oxynitride at low temperatures are preferred.
 このようなポリシラザンとしては、下記一般式(1)で表す構造を有する化合物が挙げられる。 Examples of such polysilazane include compounds having a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式中、R、R及びRは、各々水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、又はアルコキシ基を表す。 In the formula, R 1 , R 2 and R 3 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group.
 本発明では、得られるガスバリアー層を構成するB領域の、薄膜としての緻密性の観点からは、R、R及びRのすべてが水素原子であるパーヒドロポリシラザン(PHPS)が特に好ましい。 In the present invention, perhydropolysilazane (PHPS) in which all of R 1 , R 2 and R 3 are hydrogen atoms is particularly preferred from the viewpoint of the denseness of the B region constituting the resulting gas barrier layer as a thin film. .
 一方、そのSiと結合する水素部分が一部アルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより、隣接する基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より膜厚を厚くした場合でもクラックの発生が抑えられる点で好ましい。 On the other hand, the organopolysilazane in which the hydrogen part bonded to Si is partially substituted with an alkyl group or the like has an alkyl group such as a methyl group, so that the adhesion to an adjacent substrate is improved and it may be hard. The ceramic film made of polysilazane can be tough, and even when the film thickness is increased, the generation of cracks is preferred.
 用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。
なお、パーヒドロポリシラザンは、直鎖構造と6又は8員環を中心とする環構造とが共存した構造を有していると推定されている。
These perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and may be used in combination.
Perhydropolysilazane is presumed to have a structure in which a linear structure and a ring structure centered on a 6- or 8-membered ring coexist.
 ポリシラザンの分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)であり、液体又は固体の物質であり、分子量により異なる。これらのポリシラザン化合物は有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン化合物含有塗布液として使用することができる。 The molecular weight of polysilazane is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), and is a liquid or solid substance, and varies depending on the molecular weight. These polysilazane compounds are commercially available in the form of a solution dissolved in an organic solvent, and commercially available products can be used as they are as coating solutions containing polysilazane compounds.
 低温でセラミック化するポリシラザンの他の例としては、上記ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5-238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6-122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6-240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6-299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6-306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7-196986号公報)等が挙げられる。 Other examples of polysilazanes that are ceramicized at a low temperature include silicon alkoxide-added polysilazanes obtained by reacting the above polysilazanes with silicon alkoxides (Japanese Patent Laid-Open No. 5-238827), and glycidol-added polysilazanes obtained by reacting glycidol (specially No. 6-122852), an alcohol-added polysilazane obtained by reacting an alcohol (Japanese Patent Laid-Open No. 6-240208), and a metal carboxylate-added polysilazane obtained by reacting a metal carboxylate (Japanese Patent Laid-Open No. 6-299118). No. 1), acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329), metal fine particle-added polysilazane obtained by adding metal fine particles (JP-A-7- 1969 6 No.), and the like.
 また、その他、ポリシラザンの詳細については、例えば、特開2013-255910号公報の段落(0024)~同(0040)、特開2013-188942号公報の段落(0037)~同(0043)、特開2013-151123号公報の段落(0014)~同(0021)、特開2013-052569号公報の段落(0033)~同(0045)、特開2013-129557号公報の段落(0062)~同(0075)、特開2013-226758号公報の段落(0037)~同(0064)等に記載されている内容を参照して適用することができる。 Other details of polysilazane include, for example, paragraphs (0024) to (0040) of JP2013-255910A, paragraphs (0037) to (0043) of JP2013-188942A, JP Paragraphs (0014) to (0021) of 2013-151123, Paragraphs (0033) to (0045) of JP2013-052569A, Paragraphs (0062) to (0075) of JP2013-129557A. ), And the contents described in paragraphs (0037) to (0064) of JP2013-226758A can be applied.
 〈ポリシラザンを含有する塗布液〉
 ポリシラザンを含有する塗布液を調製する有機溶媒としては、ポリシラザンと容易に反応してしまうようなアルコール系や水分を含有するものを用いることは避けることが好ましい。好適な有機溶媒としては、例えば、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒、脂肪族エーテル、脂環式エーテル等のエーテル類が使用できる。具体的には、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の炭化水素、塩化メチレン、トリクロロエタン等のハロゲン炭化水素、ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等が挙げられる。これらの有機溶剤は、ポリシラザンの溶解度や溶剤の蒸発速度等、目的にあわせて選択し、複数の有機溶剤を混合してもよい。ポリシラザンを含有する塗布液におけるポリシラザンの濃度は、目的とするガスバリアー層の膜厚や塗布液のポットライフによっても異なるが、0.2~35質量%程度であることが好ましい。
<Coating liquid containing polysilazane>
As an organic solvent for preparing a coating liquid containing polysilazane, it is preferable to avoid using an alcohol or water-containing one that easily reacts with polysilazane. Suitable organic solvents include, for example, hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons, halogenated hydrocarbon solvents, ethers such as aliphatic ethers and alicyclic ethers. it can. Specific examples include hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, and ethers such as dibutyl ether, dioxane and tetrahydrofuran. These organic solvents may be selected according to the purpose such as the solubility of polysilazane and the evaporation rate of the solvent, and a plurality of organic solvents may be mixed. The concentration of polysilazane in the coating liquid containing polysilazane varies depending on the film thickness of the target gas barrier layer and the pot life of the coating liquid, but is preferably about 0.2 to 35% by mass.
 また、ポリシラザンを含有する塗布液には、酸化ケイ素、窒化ケイ素、又は酸窒化ケイ素への変性を促進するために、アミンや金属の触媒を添加することもできる。例えば、市販品としてのAZエレクトロニックマテリアルズ株式会社製のNAX120-20、NN120-20、NN110、NN310、NN320、NL110A、NL120A、NL150A、NP110、NP140、SP140のような触媒が含まれるポリシラザン溶液を用いることができる。また、これらの市販品は単独で使用されてもよく、2種以上混合して使用されてもよい。 Also, an amine or metal catalyst can be added to the coating liquid containing polysilazane in order to promote modification to silicon oxide, silicon nitride, or silicon oxynitride. For example, a polysilazane solution containing a catalyst such as NAX120-20, NN120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, SP140 manufactured by AZ Electronic Materials Co., Ltd. as a commercial product is used. be able to. Moreover, these commercial items may be used independently and may be used in mixture of 2 or more types.
 なお、ポリシラザンを含有する塗布液中において、触媒の添加量は、触媒による過剰なシラノール形成、及び膜密度の低下、膜欠陥の増大などを避けるため、ポリシラザンに対して2質量%以下に調整することが好ましい。 In addition, in the coating liquid containing polysilazane, the addition amount of the catalyst is adjusted to 2% by mass or less with respect to polysilazane in order to avoid excessive silanol formation by the catalyst, decrease in film density, increase in film defects, and the like. It is preferable.
 ポリシラザンを含有する塗布液には、ポリシラザン以外にも無機前駆体化合物を含有させることができる。ポリシラザン以外の無機前駆体化合物としては、塗布液の調製が可能であれば特に限定はされない。例えば、特開2011-143577号公報の段落「0110」~「0114」に記載のポリシラザン以外の化合物を適宜採用することができる。 The coating liquid containing polysilazane can contain an inorganic precursor compound in addition to polysilazane. The inorganic precursor compound other than polysilazane is not particularly limited as long as a coating liquid can be prepared. For example, compounds other than polysilazane described in paragraphs “0110” to “0114” of JP2011-143577A can be appropriately employed.
 (添加元素)
 ポリシラザンを含有する塗布液には、Si以外の金属元素の有機金属化合物を添加することができる。Si以外の金属元素の有機金属化合物を添加することで、塗布乾燥過程において、ポリシラザンのN原子とO原子との置き換わりが促進され、塗布乾燥後にSiO2に近い安定した組成へと変化させることができる。
(Additive elements)
An organometallic compound of a metal element other than Si can be added to the coating liquid containing polysilazane. By adding an organometallic compound of a metal element other than Si, the replacement of N atom and O atom of polysilazane is promoted in the coating and drying process, and the composition can be changed to a stable composition close to SiO2 after coating and drying. .
 Si以外の金属元素の例としては、アルミニウム(Al)、チタン(Ti)、ジルコニウム(Zr)、亜鉛(Zn)、ガリウム(Ga)、インジウム(In)、クロム(Cr)、鉄(Fe)、マグネシウム(Mg)、スズ(Sn)、ニッケル(Ni)、パラジウム(Pd)、鉛(Pb)、マンガン(Mn)、リチウム(Li)、ゲルマニウム(Ge)、銅(Cu)、ナトリウム(Na)、カリウム(K)、カルシウム(Ca)、コバルト(Co)、ホウ素(B)、ベリリウム(Be)、ストロンチウム(Sr)、バリウム(Ba)、ラジウム(Ra)、タリウム(Tl)等が挙げられる。 Examples of metal elements other than Si include aluminum (Al), titanium (Ti), zirconium (Zr), zinc (Zn), gallium (Ga), indium (In), chromium (Cr), iron (Fe), Magnesium (Mg), tin (Sn), nickel (Ni), palladium (Pd), lead (Pb), manganese (Mn), lithium (Li), germanium (Ge), copper (Cu), sodium (Na), Examples include potassium (K), calcium (Ca), cobalt (Co), boron (B), beryllium (Be), strontium (Sr), barium (Ba), radium (Ra), thallium (Tl), and the like.
 特に、Al、B、Ti及びZrが好ましく、中でもAlを含む有機金属化合物が好ましい。 Particularly, Al, B, Ti and Zr are preferable, and among them, an organometallic compound containing Al is preferable.
 本発明に適用可能なアルミニウム化合物としては、例えば、アルミニウムイソポロポキシド、アルミニウム-sec-ブチレート、チタンイソプロポキシド、アルミニウムトリエチレート、アルミニウムトリイソプロピレート、アルミニウムトリtert-ブチレート、アルミニウムトリn-ブチレート、アルミニウムトリsec-ブチレート、アルミニウムエチルアセトアセテート・ジイソプロピレート、アセトアルコキシアルミニウムジイソプロピレート、アルミニウムジイソプロピレートモノアルミニウム-t-ブチレート、アルミニウムトリスエチルアセトアセテート、アルミニウムオキシドイソプロポキシドトリマー等を挙げることができる。 Examples of the aluminum compound applicable to the present invention include aluminum isopoloxide, aluminum-sec-butyrate, titanium isopropoxide, aluminum triethylate, aluminum triisopropylate, aluminum tritert-butylate, aluminum tri-n- Examples include butyrate, aluminum tri-sec-butylate, aluminum ethyl acetoacetate / diisopropylate, acetoalkoxyaluminum diisopropylate, aluminum diisopropylate monoaluminum-t-butylate, aluminum trisethylacetoacetate, aluminum oxide isopropoxide trimer, etc. be able to.
 具体的な市販品としては、例えば、AMD(アルミニウムジイソプロピレートモノsec-ブチレート)、ASBD(アルミニウムセカンダリーブチレート)、ALCH(アルミニウムエチルアセトアセテート・ジイソプロピレート)、ALCH-TR(アルミニウムトリスエチルアセトアセテート)、アルミキレートM(アルミニウムアルキルアセトアセテート・ジイソプロピレート)、アルミキレートD(アルミニウムビスエチルアセトアセテート・モノアセチルアセトネート)、アルミキレートA(W)(アルミニウムトリスアセチルアセトネート)(以上、川研ファインケミカル株式会社製)、プレンアクト(登録商標)AL-M(アセトアルコキシアルミニウムジイソプロピレート、味の素ファインケミカル株式会社製)等を挙げることができる。 Specific commercial products include, for example, AMD (aluminum diisopropylate monosec-butyrate), ASBD (aluminum secondary butyrate), ALCH (aluminum ethyl acetoacetate / diisopropylate), ALCH-TR (aluminum trisethyl acetoate). Acetate), aluminum chelate M (aluminum alkyl acetoacetate / diisopropylate), aluminum chelate D (aluminum bisethylacetoacetate / monoacetylacetonate), aluminum chelate A (W) (aluminum trisacetylacetonate) Ken Fine Chemical Co., Ltd.), Preneact (registered trademark) AL-M (acetoalkoxyaluminum diisopropylate, Ajinomoto Fine Chemical Co., Ltd.), etc. Rukoto can.
 なお、これらの化合物を用いる場合は、ポリシラザンを含む塗布液と不活性ガス雰囲気下で混合することが好ましい。これらの化合物が大気中の水分や酸素と反応し、激しく酸化が進むことを抑制するためである。また、これらの化合物とポリシラザンとを混合する場合は、30~100℃に昇温し、撹拌しながら1分~24時間保持することが好ましい。 In addition, when using these compounds, it is preferable to mix with the coating liquid containing polysilazane in inert gas atmosphere. This is to prevent these compounds from reacting with moisture and oxygen in the atmosphere and causing intense oxidation. When these compounds and polysilazane are mixed, the temperature is preferably raised to 30 to 100 ° C. and maintained for 1 minute to 24 hours with stirring.
 本発明に係るガスバリアー性フィルムを構成するポリシラザン含有層における上記添加金属元素の含有量は、ケイ素(Si)の含有量100mol%に対して0.05~10mol%であることが好ましく、より好ましくは0.5~5mol%である。 
 ポリシラザンを用いたB領域の形成においては、ポリシラザン含有層を形成した後、改質処理を施すことが好ましい。
The content of the additive metal element in the polysilazane-containing layer constituting the gas barrier film according to the present invention is preferably 0.05 to 10 mol%, more preferably 100 mol% of silicon (Si). Is 0.5 to 5 mol%.
In the formation of the B region using polysilazane, it is preferable to perform a modification treatment after forming the polysilazane-containing layer.
 改質処理とは、ポリシラザンを、エネルギーを付与して、その一部又は全てを酸化ケイ素又は酸化窒化ケイ素への転化する処理である。 The modification treatment is a treatment in which polysilazane is imparted with energy and part or all thereof is converted to silicon oxide or silicon oxynitride.
 本発明における改質処理は、ポリシラザンの転化反応に基づく公知の方法を選ぶことができ、例えば、公知のプラズマ処理、プラズマイオン注入処理、紫外線照射処理、真空紫外線照射処理等を挙げることができる。本発明においては、低温で転化反応が可能なプラズマやオゾンや紫外線を使う転化反応が好ましい。プラズマやオゾンは従来公知の方法を用いることができる。本発明において、基材上に塗布方式のポリシラザン含有塗布液の塗膜を設け、波長200nm以下の真空紫外線(VUV)を照射して改質処理する真空紫外線照射処理を適用してガスバリアー層を形成する方法が好ましい。 As the modification treatment in the present invention, a known method based on the conversion reaction of polysilazane can be selected, and examples thereof include known plasma treatment, plasma ion implantation treatment, ultraviolet irradiation treatment, vacuum ultraviolet irradiation treatment and the like. In the present invention, a conversion reaction using plasma, ozone, or ultraviolet light that can be converted at a low temperature is preferable. Conventionally known methods can be used for plasma and ozone. In the present invention, a gas barrier layer is formed by providing a coating film of a polysilazane-containing coating liquid of a coating method on a substrate and applying a vacuum ultraviolet irradiation treatment in which a vacuum ultraviolet ray (VUV) having a wavelength of 200 nm or less is irradiated to perform a modification treatment. The forming method is preferred.
 真空紫外光源としては、希ガスエキシマランプが好ましく用いられ、例えば、エキシマランプ(172nm、222nm、308nmの単一波長、例えば、ウシオ電機株式会社製、株式会社エム・ディ・コム製など)等を挙げることができる。 As the vacuum ultraviolet light source, a rare gas excimer lamp is preferably used. For example, an excimer lamp (single wavelength of 172 nm, 222 nm, 308 nm, for example, manufactured by USHIO INC., Manufactured by M.D. Can be mentioned.
 真空紫外線照射による処理は、ポリシラザン内の原子間結合力より大きい100~200nmの光エネルギーを用い、好ましくは100~180nmの波長の光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温(約200℃以下)で、酸化ケイ素膜や酸化窒化ケイ素膜の形成を行う方法である。 The treatment by vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy of a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in polysilazane, and the bonding of atoms is an action of only a photon called a photon process. Thus, a silicon oxide film or a silicon oxynitride film is formed at a relatively low temperature (about 200 ° C. or lower) by proceeding an oxidation reaction with active oxygen or ozone while directly cutting.
 これらの改質処理の詳細については、例えば、特開2012-086394号公報の段落(0055)~同(0091)、特開2012-006154号公報の段落(0049)~同(0085)、特開2011-251460号公報の段落(0046)~同(0074)等に記載の内容を参照することができる。 Details of these reforming treatments are described in, for example, paragraphs (0055) to (0091) of JP2012-086394A, paragraphs (0049) to (0085) of JP2012-006154A, JP The contents described in paragraphs (0046) to (0074) of 2011-251460 can be referred to.
 B領域の厚さは、特に制限はないが、1~500nmの範囲内が好ましい、より好ましくは10~300nmの範囲内である。 The thickness of the B region is not particularly limited, but is preferably in the range of 1 to 500 nm, more preferably in the range of 10 to 300 nm.
 (混合領域の形成)
 混合領域形成方法としては、前述したように、A領域及びB領域を形成する際に、各々の形成条件を適宜調整して、A領域とB領域との間に混合領域を形成する方法が好ましい。 
 B領域を上述した気相成膜法により形成する場合は、例えば、成膜原料における前記非遷移金属(M1)と酸素との比率、成膜時の不活性ガスと反応性ガスとの比率、成膜時のガスの供給量、成膜時の真空度、成膜時の磁力、及び、成膜時の電力からなる群から選択される1種又は2種以上の条件を調節することで混合領域を形成することができる。
(Formation of mixed region)
As described above, the mixed region forming method is preferably a method of forming the mixed region between the A region and the B region by appropriately adjusting each forming condition when forming the A region and the B region. .
When the B region is formed by the above-described vapor deposition method, for example, the ratio of the non-transition metal (M1) and oxygen in the deposition raw material, the ratio of the inert gas and the reactive gas during the deposition, Mixing by adjusting one or more conditions selected from the group consisting of the gas supply amount during film formation, the degree of vacuum during film formation, the magnetic force during film formation, and the power during film formation Regions can be formed.
 B領域を上述した塗布成膜法により形成する場合は、例えば、前記非遷移金属(M1)を含有する成膜原料種(ポリシラザン種等)、触媒種、触媒含有量、塗布膜厚、乾燥温度・時間、改質方法、改質条件からなる群から選択される1種又は2種以上の条件を調節することで混合領域を形成することができる。 When forming the B region by the above-described coating film forming method, for example, a film forming raw material type (polysilazane type or the like) containing the non-transition metal (M1), a catalyst type, a catalyst content, a coating film thickness, and a drying temperature. A mixed region can be formed by adjusting one or more conditions selected from the group consisting of time, reforming method, and reforming conditions.
 A領域を上述した気相成膜法により形成する場合は、例えば、成膜原料における前記遷移金属(M2)と酸素との比率、成膜時の不活性ガスと反応性ガスとの比率、成膜時のガスの供給量、成膜時の真空度、成膜時の磁力、及び、成膜時の電力からなる群から選択される1種又は2種以上の条件を調節することで混合領域を形成することができる。 In the case where the A region is formed by the above-described vapor deposition method, for example, the ratio of the transition metal (M2) and oxygen in the deposition material, the ratio of the inert gas and the reactive gas during the deposition, A mixed region by adjusting one or more conditions selected from the group consisting of the gas supply amount during film formation, the degree of vacuum during film formation, the magnetic force during film formation, and the power during film formation Can be formed.
 なお、上記した方法によって、混合領域の厚さを制御するには、A領域及びB領域を形成する方法の形成条件を適宜調整して、制御することができる。例えば、A領域を気相成膜法で形成する際には、成膜時間を制御することにより所望の厚さにすることができる。また、これに加えて、非遷移金属と遷移金属の混合領域を直接形成する方法も好ましい。 Note that, in order to control the thickness of the mixed region by the above-described method, the formation conditions of the method of forming the A region and the B region can be adjusted as appropriate. For example, when forming the A region by a vapor deposition method, a desired thickness can be obtained by controlling the deposition time. In addition to this, a method of directly forming a mixed region of a non-transition metal and a transition metal is also preferable.
 混合領域を直接形成する方法としては、公知の共蒸着法を用いることが好ましい。このような共蒸着法として、好ましくは、共スパッタ法が挙げられる。本発明において採用される共スパッタ法は、例えば、非遷移金属(M1)及び遷移金属(M2)の双方を含む合金からなる複合ターゲットや、非遷移金属(M1)及び遷移金属(M2)の複合酸化物からなる複合ターゲットをスパッタリングターゲットとして用いた1元スパッタでありうる。 As a method for directly forming the mixed region, it is preferable to use a known co-evaporation method. As such a co-evaporation method, a co-sputtering method is preferable. The co-sputtering method employed in the present invention is, for example, a composite target made of an alloy containing both a non-transition metal (M1) and a transition metal (M2), or a composite of a non-transition metal (M1) and a transition metal (M2). One-way sputtering using a composite target made of an oxide as a sputtering target may be used.
 また、本発明における共スパッタ法は、非遷移金属(M1)の単体又はその酸化物と、遷移金属(M2)の単体又はその酸化物とを含む複数のスパッタリングターゲットを用いた多元同時スパッタであってもよい。これらのスパッタリングターゲットを作製する方法や、これらのスパッタリングターゲットを用いて複合酸化物からなる薄膜を作製する方法については、例えば、特開2000-160331号公報、特開2004-068109号公報、特開2013-047361号公報などの記載が適宜参照されうる。 In addition, the co-sputtering method in the present invention is multi-source simultaneous sputtering using a plurality of sputtering targets including a single non-transition metal (M1) or its oxide and a single transition metal (M2) or its oxide. May be. With respect to a method for producing these sputtering targets and a method for producing a thin film made of a composite oxide using these sputtering targets, for example, JP 2000-160331 A, JP 2004-068109 A, JP Reference can be made to the descriptions in Japanese Patent Application Laid-Open No. 2013-047361.
 そして、共蒸着法を実施する際の成膜条件としては、成膜原料における前記遷移金属(M2)と酸素との比率、成膜時の不活性ガスと反応性ガスとの比率、成膜時のガスの供給量、成膜時の真空度、及び、成膜時の電力からなる群から選択される1種又は2種以上の条件が例示され、これらの成膜条件(好ましくは、酸素分圧)を調節することによって、酸素欠損組成を有する複合酸化物からなる薄膜を形成することができる。すなわち、上述したような共蒸着法を用いてガスバリアー層を形成することで、形成されるガスバリアー層の厚さ方向のほとんどの領域を混合領域とすることができる。このため、かような手法によれば、混合領域の厚さを制御するという極めて簡便な操作により、所望のガスバリアー性を実現することができる。なお、混合領域の厚さを制御するには、例えば、共蒸着法を実施する際の成膜時間を調節すればよい。 The film forming conditions for carrying out the co-evaporation method include the ratio of the transition metal (M2) and oxygen in the film forming raw material, the ratio of the inert gas to the reactive gas during the film forming, and the film forming process. One or two or more conditions selected from the group consisting of the gas supply amount, the degree of vacuum during film formation, and the power during film formation are exemplified, and these film formation conditions (preferably oxygen content) By adjusting the pressure, a thin film made of a complex oxide having an oxygen deficient composition can be formed. That is, by forming the gas barrier layer using the co-evaporation method as described above, almost all regions in the thickness direction of the formed gas barrier layer can be mixed regions. For this reason, according to such a method, a desired gas barrier property can be realized by an extremely simple operation of controlling the thickness of the mixed region. In addition, what is necessary is just to adjust the film-forming time at the time of implementing a co-evaporation method, for example, in order to control the thickness of a mixing area | region.
 <ガスバリアー層の転写方法>
 本発明に係るガスバリアー層は、特開2015-173249号公報に記載されている剥離方法ように、ガラス等の基板上に剥離層を介してガスバリアー層を被剥離層として形成し、その後、被剥離層をプラスチックフィルムに転写して、ガスバリアー性フィルムとして機能させることもできる。また、有機エレクトロルミネッセンス(EL)素子等の電子デバイスに転写して、封止層として機能させることもできる。
<Transfer method of gas barrier layer>
The gas barrier layer according to the present invention is formed by forming a gas barrier layer as a layer to be peeled through a release layer on a substrate such as glass, as in the peeling method described in JP-A-2015-173249, The peelable layer can be transferred to a plastic film to function as a gas barrier film. Moreover, it can transfer to electronic devices, such as an organic electroluminescent (EL) element, and can also function as a sealing layer.
 このようなガスバリアー層の形成方法は、特に、軽量、薄型、又は可撓性を有する電子デバイスに、薄膜のガスバリアー層や封止層を形成する工程のクリーン度を管理し易くし、デバイスの歩留まりを向上させる観点から好ましい。 Such a method for forming a gas barrier layer makes it easy to manage the cleanliness of the process of forming a thin gas barrier layer or sealing layer in a light, thin, or flexible electronic device. It is preferable from the viewpoint of improving the yield.
 具体には、基板上に、厚さ0.1nm以上10nm未満の剥離層を形成する第1の工程と、前記剥離層上に、前記剥離層と接する第1の層を含む被剥離層を形成する第2の工程と、前記剥離層と前記第1の層の一部を分離し、前記剥離層と前記被剥離層とを分離する第3の工程と、を有する剥離方法によりガスバリアー層を被剥離層として形成することが好ましい。第2の工程と第3の工程のあいだに剥離の起点を形成する工程を設けても良い。 Specifically, a first step of forming a release layer with a thickness of 0.1 nm or more and less than 10 nm on a substrate and a layer to be peeled including a first layer in contact with the release layer are formed on the release layer. A gas barrier layer by a peeling method comprising: a second step of: separating a part of the peeling layer and the first layer; and a third step of separating the peeling layer and the layer to be peeled. It is preferable to form as a layer to be peeled. A step of forming a starting point of peeling may be provided between the second step and the third step.
 以下に剥離方法の一例を示す。図7A~7Fは、剥離方法を説明する図である。 An example of the peeling method is shown below. 7A to 7F are diagrams for explaining a peeling method.
 <剥離方法>
 はじめに、第1の工程として、作製基板101上に厚さ10nm未満の剥離層103を形成し、次いで第2の工程として、剥離層103上に被剥離層105を形成する(図7A)。ここでは、島状の剥離層を形成する例を示したがこれに限られない。また、被剥離層105を島状に形成してもよい。
<Peeling method>
First, as a first step, a peeling layer 103 with a thickness of less than 10 nm is formed over a manufacturing substrate 101, and then, as a second step, a layer to be peeled 105 is formed on the peeling layer 103 (FIG. 7A). Here, an example in which an island-shaped release layer is formed is shown, but the present invention is not limited thereto. Alternatively, the layer to be peeled 105 may be formed in an island shape.
 この工程では、作製基板101から被剥離層105を剥離する際に、作製基板101と剥離層103の界面、剥離層103と被剥離層105の界面、又は剥離層103中で剥離が生じるような材料を選択する。本実施の形態では、被剥離層105と剥離層103の界面で剥離が生じる場合を例示するが、剥離層103や被剥離層105に用いる材料の組み合わせによってはこれに限られない。なお、被剥離層105が積層構造である場合、剥離層103と接する層を特に第1の層と記す。 In this step, when the layer to be peeled 105 is peeled from the manufacturing substrate 101, peeling occurs in the interface between the manufacturing substrate 101 and the peeling layer 103, the interface between the peeling layer 103 and the layer to be peeled 105, or the peeling layer 103. Select material. In this embodiment, the case where separation occurs at the interface between the separation layer 105 and the separation layer 103 is illustrated; however, the present invention is not limited to this depending on the combination of materials used for the separation layer 103 and the separation layer 105. Note that in the case where the layer to be peeled 105 has a stacked structure, a layer in contact with the peeling layer 103 is particularly referred to as a first layer.
 剥離層103の厚さは、例えば、10nm未満、好ましくは8nm以下、より好ましくは5nm以下、さらに好ましくは3nm以下とすればよい。剥離層103が薄いほど剥離の歩留まりを向上でき好ましい。また、剥離層103の厚さは、例えば、0.1nm以上、好ましくは0.5nm以上、より好ましくは1nm以上とすればよい。剥離層103が厚いほど厚さの均一な膜を成膜でき好ましい。例えば、剥離層103の厚さは1nm以上8nm以下が好ましい。本実施の形態では、厚さ5nmのタングステン膜を用いる。 The thickness of the peeling layer 103 is, for example, less than 10 nm, preferably 8 nm or less, more preferably 5 nm or less, and further preferably 3 nm or less. The thinner the release layer 103 is, the better the release yield can be improved. In addition, the thickness of the release layer 103 may be, for example, 0.1 nm or more, preferably 0.5 nm or more, more preferably 1 nm or more. A thicker release layer 103 is preferable because a uniform film can be formed. For example, the thickness of the release layer 103 is preferably 1 nm or more and 8 nm or less. In this embodiment, a tungsten film with a thickness of 5 nm is used.
 なお、剥離層103の厚さは、一例としては、層の全体にわたって、上記のような厚さであることが望ましい。ただし、本発明の実施形態の一態様は、これに限定されない。例えば、剥離層103は、少なくとも一部において、上記のような厚さの領域を有していてもよい。または、剥離層103は、望ましくは、剥離層の50%以上の領域において、より望ましくは、剥離層の90%以上の領域において、上記のような厚さの領域を有していてもよい。つまり、本発明の一態様では、剥離層103の一部に厚さが0.1mm未満の領域や、10nm以上の領域を有していてもよい。 Note that, as an example, the thickness of the release layer 103 is desirably as described above over the entire layer. Note that one embodiment of the present invention is not limited to this. For example, the peeling layer 103 may have a region with the above thickness at least in part. Alternatively, the release layer 103 may have a region with the above-described thickness in a region of 50% or more of the release layer, more preferably in a region of 90% or more of the release layer. That is, in one embodiment of the present invention, part of the peeling layer 103 may have a region with a thickness of less than 0.1 mm or a region with a thickness of 10 nm or more.
 作製基板101には、少なくとも作製工程中の処理温度に耐えうる耐熱性を有する基板を用いる。作製基板101としては、例えばガラス基板、石英基板、サファイア基板、半導体基板、セラミック基板、金属基板、樹脂基板、プラスチック基板などを用いることができる。 As the manufacturing substrate 101, a substrate having heat resistance that can withstand at least a processing temperature in the manufacturing process is used. As the manufacturing substrate 101, for example, a glass substrate, a quartz substrate, a sapphire substrate, a semiconductor substrate, a ceramic substrate, a metal substrate, a resin substrate, a plastic substrate, or the like can be used.
 なお、量産性を向上させるため、作製基板101として大型のガラス基板を用いることが好ましい。例えば、第3世代(550mm×650mm)、第3.5世代(600mm×720mm、又は620mm×750mm)、第4世代(680mm×880mm、又は730mm×920mm)、第5世代(1100mm×1300mm)、第6世代(1500mm×1850mm)、第7世代(1870mm×2200mm)、第8世代(2200mm×2400mm)、第9世代(2400mm×2800mm、2450mm×3050mm)、第10世代(2950mm×3400mm)等のガラス基板、又はこれよりも大型のガラス基板を用いることができる。 Note that a large glass substrate is preferably used as the manufacturing substrate 101 in order to improve mass productivity. For example, the third generation (550 mm × 650 mm), the third generation (600 mm × 720 mm, or 620 mm × 750 mm), the fourth generation (680 mm × 880 mm, or 730 mm × 920 mm), the fifth generation (1100 mm × 1300 mm), 6th generation (1500 mm × 1850 mm), 7th generation (1870 mm × 2200 mm), 8th generation (2200 mm × 2400 mm), 9th generation (2400 mm × 2800 mm, 2450 mm × 3050 mm), 10th generation (2950 mm × 3400 mm), etc. A glass substrate or a glass substrate larger than this can be used.
 作製基板101にガラス基板を用いる場合、作製基板101と剥離層103との間に、下地膜として、酸化シリコン膜、酸化窒化シリコン膜、窒化シリコン膜、窒化酸化シリコン膜等の絶縁膜を形成すると、ガラス基板からの汚染を防止でき、好ましい。 In the case where a glass substrate is used as the manufacturing substrate 101, an insulating film such as a silicon oxide film, a silicon oxynitride film, a silicon nitride film, or a silicon nitride oxide film is formed as a base film between the manufacturing substrate 101 and the separation layer 103. It is preferable because contamination from the glass substrate can be prevented.
 剥離層103は、タングステン(W)、モリブデン(Mo)、チタン、タンタル、ニオブ、ニッケル、コバルト、ジルコニウム、亜鉛、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、シリコンから選択された元素、該元素を含む合金材料、又は該元素を含む化合物材料等を用いて形成できる。シリコンを含む層の結晶構造は、非晶質、微結晶、多結晶のいずれでもよい。また、酸化アルミニウム、酸化ガリウム、酸化亜鉛、二酸化チタン、酸化インジウム、インジウムスズ酸化物、インジウム亜鉛酸化物、In-Ga-Zn酸化物等の金属酸化物を用いてもよい。剥離層103に、タングステン、チタン、モリブデンなどの高融点金属材料を用いると、被剥離層105の形成工程の自由度が高まるため好ましい。 The separation layer 103 includes an element selected from tungsten (W), molybdenum (Mo), titanium, tantalum, niobium, nickel, cobalt, zirconium, zinc, ruthenium, rhodium, palladium, osmium, iridium, and silicon, and the element. An alloy material or a compound material containing the element can be used. The crystal structure of the layer containing silicon may be any of amorphous, microcrystalline, and polycrystalline. Alternatively, a metal oxide such as aluminum oxide, gallium oxide, zinc oxide, titanium dioxide, indium oxide, indium tin oxide, indium zinc oxide, or In—Ga—Zn oxide may be used. It is preferable to use a refractory metal material such as tungsten, titanium, or molybdenum for the separation layer 103 because the degree of freedom in the formation process of the separation layer 105 is increased.
 剥離層103は、例えばスパッタリング法、CVD(Chemical Vapor Deposition)法(プラズマCVD法、熱CVD法、MOCVD(Metal Organic CVD)法など)、ALD(Atomic Layer Deposition)法、塗布法(スピンコーティング法、液滴吐出法、ディスペンス法等を含む)、印刷法、蒸着法等により形成できる。 The peeling layer 103 is formed by, for example, sputtering, CVD (Chemical Vapor Deposition) (plasma CVD, thermal CVD, MOCVD (Metal Organic CVD), etc.), ALD (Atomic Layer Deposition), coating (spin coating, (Including a droplet discharge method, a dispensing method, and the like), a printing method, a vapor deposition method, and the like.
 剥離層103が単層構造の場合、タングステン膜、モリブデン膜、又はタングステンとモリブデンの混合物を含む膜を形成することが好ましい。また、タングステンの酸化物もしくは酸化窒化物を含む膜、モリブデンの酸化物もしくは酸化窒化物を含む膜、又はタングステンとモリブデンの混合物の酸化物もしくは酸化窒化物を含む膜を形成してもよい。なお、タングステンとモリブデンの混合物とは、例えば、タングステンとモリブデンの合金に相当する。例えば、Mo:W=3:1[原子数比]、Mo:W=1:1[原子数比]、又はMo:W=1:3[原子数比]などのモリブデンとタングステンの合金膜を用いてもよい。また、モリブデンとタングステンの合金膜は、例えば、Mo:W=49:51[重量%]、Mo:W=61:39[重量%]、Mo:W=14.8:85.2[重量%]の組成の金属ターゲットを用いてスパッタリング法により形成することができる。 In the case where the separation layer 103 has a single-layer structure, it is preferable to form a tungsten film, a molybdenum film, or a film containing a mixture of tungsten and molybdenum. Alternatively, a film containing tungsten oxide or oxynitride, a film containing molybdenum oxide or oxynitride, or a film containing an oxide or oxynitride of a mixture of tungsten and molybdenum may be formed. Note that the mixture of tungsten and molybdenum corresponds to, for example, an alloy of tungsten and molybdenum. For example, an alloy film of molybdenum and tungsten such as Mo: W = 3: 1 [atomic ratio], Mo: W = 1: 1 [atomic ratio], or Mo: W = 1: 3 [atomic ratio]. It may be used. The alloy film of molybdenum and tungsten is, for example, Mo: W = 49: 51 [wt%], Mo: W = 61: 39 [wt%], Mo: W = 14.8: 85.2 [wt%]. ] Can be formed by a sputtering method using a metal target having the composition.
 タングステン膜の表面状態を変えることにより、剥離層103と後に形成される被剥離層との密着性を制御することが可能である。例えば、タングステンを含む膜の表面を、熱酸化処理、酸素プラズマ処理、亜酸化窒素(NO)プラズマ処理、オゾン水等の酸化力の強い溶液での処理等を行ってタングステンの酸化物を含む膜を形成してもよい。またプラズマ処理や加熱処理は、酸素、窒素、亜酸化窒素単独、あるいは該ガスとその他のガスとの混合気体雰囲気下で行ってもよい。 By changing the surface state of the tungsten film, adhesion between the peeling layer 103 and a layer to be peeled later can be controlled. For example, the surface of a film containing tungsten is subjected to thermal oxidation treatment, oxygen plasma treatment, nitrous oxide (N 2 O) plasma treatment, treatment with a solution having strong oxidizing power such as ozone water, and the like to form tungsten oxide. A containing film may be formed. Plasma treatment and heat treatment may be performed in oxygen, nitrogen, nitrous oxide alone, or a mixed gas atmosphere of the gas and other gases.
 本発明の一態様では、厚さ10nm未満のタングステン膜を用いることで、第3の工程において、小さい剥離力で容易に剥離を行うことができるため、上記プラズマ処理や加熱処理を行わなくてもよい。これにより、剥離工程、さらには装置の作製工程を簡略化でき好ましい。 In one embodiment of the present invention, by using a tungsten film with a thickness of less than 10 nm, it is possible to easily perform separation with a small separation force in the third step, so that the plasma treatment or the heat treatment is not performed. Good. This is preferable because it can simplify the peeling process and the manufacturing process of the apparatus.
 被剥離層105としては、剥離層103上に接するガスバリアー層を作製する。さらに、ガスバリアー層上に機能素子を作製してもよい。 As the layer to be peeled 105, a gas barrier layer in contact with the peeling layer 103 is prepared. Furthermore, you may produce a functional element on a gas barrier layer.
 次に、被剥離層105と基板109とを接合層107を用いて貼り合わせ、接合層107を硬化させる(図7B)。ここで、図7Bは図7Cにおける一点鎖線A1-A2間の断面図に相当する。なお、図7Cは、基板109(図示しない)側から見た平面図である。 Next, the peeled layer 105 and the substrate 109 are bonded together using the bonding layer 107, and the bonding layer 107 is cured (FIG. 7B). Here, FIG. 7B corresponds to a cross-sectional view taken along alternate long and short dash line A1-A2 in FIG. 7C. FIG. 7C is a plan view seen from the substrate 109 (not shown) side.
 ここで、接合層107は剥離層103及び被剥離層105と重なるように配置することが好ましい。そして、図7B、7Cに示すように、接合層107の端部は、剥離層103の端部よりも外側に位置しないことが好ましい。 Here, the bonding layer 107 is preferably disposed so as to overlap with the peeling layer 103 and the peeled layer 105. 7B and 7C, the end portion of the bonding layer 107 is preferably not positioned outside the end portion of the release layer 103.
 次に、レーザ光の照射により、剥離の起点を形成する(剥離の起点を形成する工程)(図7B、7D)。 Next, a starting point of peeling is formed by irradiation with laser light (step of forming a starting point of peeling) (FIGS. 7B and 7D).
 レーザ光の照射を用いることで、剥離の起点を形成するために基板の切断等をする必要がなく、ゴミ等の発生を抑制でき、好ましい。 It is preferable to use laser light irradiation because it is not necessary to cut the substrate in order to form the separation starting point, and generation of dust or the like can be suppressed.
 レーザ光は、硬化状態の接合層107と、被剥離層105と、剥離層103とが重なる領域に対して照射する(図7Bの矢印P1参照)。 Laser light is applied to a region where the bonding layer 107 in a cured state, the peeled layer 105, and the peeling layer 103 overlap (see arrow P1 in FIG. 7B).
 レーザ光は、どちらの基板側から照射してもよいが、散乱した光が機能素子等に照射されることを抑制するため、剥離層103が設けられた作製基板101側から照射することが好ましい。なお、レーザ光を照射する側の基板は、該レーザ光を透過する材料を用いる。 The laser light may be irradiated from either side of the substrate, but it is preferable to irradiate from the side of the manufacturing substrate 101 provided with the release layer 103 in order to suppress the scattered light from being irradiated to the functional element or the like. . Note that a material that transmits the laser light is used for the substrate on the laser light irradiation side.
 少なくとも第1の層(被剥離層105に含まれる、剥離層103と接する層)にクラックを入れる(膜割れやひびを生じさせる)ことで、第1の層の一部を除去し、剥離の起点を形成できる(図7Dの点線で囲った領域参照)。このとき、第1の層だけでなく、被剥離層105の他の層や、剥離層103、接合層107の一部を除去してもよい。レーザ光の照射によって、膜の一部を溶解、蒸発、又は熱的に破壊することができる。また、剥離の起点の形成方法は問わない。少なくとも第1の層の一部が剥離層から剥離されればよく、第1の層の一部を除去しなくてもよい。 At least the first layer (the layer included in the layer to be peeled 105 and in contact with the peeling layer 103) is cracked (to cause film cracking or cracking), thereby removing a part of the first layer, A starting point can be formed (see the region enclosed by the dotted line in FIG. 7D). At this time, not only the first layer but also other layers of the layer to be peeled 105, the peeling layer 103, and part of the bonding layer 107 may be removed. By irradiation with laser light, a part of the film can be dissolved, evaporated, or thermally destroyed. Moreover, the formation method of the starting point of peeling is not ask | required. It is sufficient that at least a part of the first layer is peeled from the peeling layer, and a part of the first layer may not be removed.
 剥離工程時、剥離の起点に、被剥離層105と剥離層103を引き離す力が集中することが好ましいため、硬化状態の接合層107の中央部よりも端部近傍に剥離の起点を形成することが好ましい。特に、端部近傍の中でも、辺部近傍に比べて、角部近傍に剥離の起点を形成することが好ましい。 At the time of the peeling process, it is preferable that the force for separating the layer to be peeled 105 and the peeling layer 103 is concentrated on the starting point of peeling, so that the starting point of peeling is formed near the end rather than the central part of the cured bonding layer 107. Is preferred. In particular, it is preferable to form the separation starting point in the vicinity of the corner portion, in the vicinity of the edge portion, in comparison with the vicinity of the side portion.
 また、接合層107の端部近傍に連続的もしくは断続的にレーザ光を照射することで、実線状もしくは破線状に剥離の起点を形成すると、剥離が容易となるため好ましい。 In addition, it is preferable to form a starting point of peeling in the form of a solid line or a broken line by continuously or intermittently irradiating a laser beam in the vicinity of the end of the bonding layer 107 because the peeling becomes easy.
 剥離の起点を形成するために用いるレーザには特に限定はない。例えば、連続発振型のレーザやパルス発振型のレーザを用いることができる。レーザ光の照射条件(周波数、パワー密度、エネルギー密度、ビームプロファイル等)は、作製基板101や剥離層103の厚さ、材料等を考慮して適宜制御する。 There is no particular limitation on the laser used to form the starting point of peeling. For example, a continuous wave laser or a pulsed laser can be used. Laser light irradiation conditions (frequency, power density, energy density, beam profile, and the like) are appropriately controlled in consideration of the thickness, material, and the like of the manufacturing substrate 101 and the separation layer 103.
 そして、形成した剥離の起点から、被剥離層105と作製基板101とを分離する(図7E、7F)。これにより、被剥離層105を作製基板101から基板109に転置することができる。このとき、一方の基板を吸着ステージ等に固定することが好ましい。例えば、作製基板101を吸着ステージに固定し、作製基板101から被剥離層105を剥離してもよい。また、基板109を吸着ステージに固定し、基板109から作製基板101を剥離してもよい。なお、剥離の起点よりも外側に形成された接合層107は、作製基板101又は基板109の少なくとも一方に残存することになる。図7E、7Fでは双方の側に残存する例を示すがこれに限られない。 Then, the layer to be peeled 105 and the manufacturing substrate 101 are separated from the starting point of the peeling (FIGS. 7E and 7F). Thus, the layer 105 to be peeled can be transferred from the manufacturing substrate 101 to the substrate 109. At this time, it is preferable to fix one substrate to an adsorption stage or the like. For example, the manufacturing substrate 101 may be fixed to an adsorption stage, and the layer to be peeled 105 may be peeled from the manufacturing substrate 101. Alternatively, the substrate 109 may be fixed to the suction stage and the manufacturing substrate 101 may be peeled from the substrate 109. Note that the bonding layer 107 formed outside the separation starting point remains on at least one of the manufacturing substrate 101 and the substrate 109. Although FIG. 7E and 7F show the example which remains on both sides, it is not restricted to this.
 例えば、剥離の起点から、物理的な力(人間の手や治具で引き剥がす処理や、ローラーを回転させながら分離する処理等)によって被剥離層105と作製基板101とを分離すればよい。 For example, the layer to be peeled 105 and the manufacturing substrate 101 may be separated from the starting point of peeling by a physical force (a process of peeling with a human hand or a jig, a process of separating while rotating a roller, or the like).
 また、剥離層103と被剥離層105との界面に水などの液体を浸透させて作製基板101と被剥離層105とを分離してもよい。毛細管現象により液体が剥離層103と被剥離層105の間にしみこむことで、容易に分離することができる。また、剥離時に生じる静電気が、被剥離層105に含まれる機能素子に悪影響を及ぼすこと(半導体素子が静電気により破壊されるなど)を抑制できる。なお、液体を霧状又は蒸気にして吹き付けてもよい。液体としては、純水や有機溶剤などを用いることができ、中性、アルカリ性、もしくは酸性の水溶液や、塩が溶けている水溶液などを用いてもよい。 Alternatively, the manufacturing substrate 101 and the layer to be peeled 105 may be separated by infiltrating a liquid such as water into the interface between the peeling layer 103 and the layer to be peeled 105. The liquid can be easily separated by permeating between the peeling layer 103 and the peeled layer 105 by capillary action. In addition, static electricity generated at the time of peeling can be prevented from adversely affecting the functional elements included in the layer to be peeled 105 (such as a semiconductor element being destroyed by static electricity). The liquid may be sprayed in the form of mist or steam. As the liquid, pure water, an organic solvent, or the like can be used, and a neutral, alkaline, or acidic aqueous solution, an aqueous solution in which a salt is dissolved, or the like may be used.
 なお、剥離後に、基板109上に残った、被剥離層105と基板109との接着に寄与していない接合層107等を除去してもよい。除去することで、後の工程で機能素子に悪影響を及ぼすこと(不純物の混入など)を抑制でき好ましい。例えば、ふき取り、洗浄等によって、不要な樹脂を除去することができる。以上に示した本発明の一態様の剥離方法では、レーザ光の照射により剥離の起点を形成し、剥離層103と被剥離層105とを剥離しやすい状態にしてから、剥離を行う。これにより、剥離工程の歩留まりを向上させることができる。 Note that the bonding layer 107 or the like that does not contribute to adhesion between the layer to be peeled 105 and the substrate 109 remaining on the substrate 109 after peeling may be removed. By removing, it is possible to suppress adverse effects on the functional elements in the subsequent steps (mixing of impurities, etc.), which is preferable. For example, unnecessary resin can be removed by wiping, washing, or the like. In the peeling method of one embodiment of the present invention described above, a peeling starting point is formed by laser light irradiation, and the peeling layer 103 and the layer to be peeled 105 are easily peeled, and then peeling is performed. Thereby, the yield of a peeling process can be improved.
 <電子デバイス>
 上記したような本発明に係るガスバリアー性フィルムは、優れたガスバリアー性、透明性、耐屈曲性を有する。このため、本発明に係るガスバリアー性フィルムは、電子デバイス等のパッケージ、光電変換素子(太陽電池素子)や有機エレクトロルミネッセンス(EL)素子、液晶表示素子等の等の電子デバイスに用いられるガスバリアー性フィルム及びこれを用いた電子デバイスなど、様々な用途に使用することができる。
<Electronic device>
The gas barrier film according to the present invention as described above has excellent gas barrier properties, transparency, and bending resistance. Therefore, the gas barrier film according to the present invention is a gas barrier used for electronic devices such as packages such as electronic devices, photoelectric conversion elements (solar cell elements), organic electroluminescence (EL) elements, liquid crystal display elements, and the like. It can be used for various applications such as a conductive film and an electronic device using the same.
 電子デバイスに用いられる電子デバイス本体の例としては、例えば、有機エレクトロルミネッセンス素子(有機EL素子)、液晶表示素子(LCD)、薄膜トランジスタ、タッチパネル、電子ペーパー、太陽電池(PV)等を挙げることができる。本発明の効果がより効率的に得られるという観点から、該電子デバイス本体は有機EL素子が好ましい。 As an example of the electronic device main body used for an electronic device, an organic electroluminescent element (organic EL element), a liquid crystal display element (LCD), a thin film transistor, a touch panel, electronic paper, a solar cell (PV) etc. can be mentioned, for example. . From the viewpoint that the effects of the present invention can be obtained more efficiently, the electronic device body is preferably an organic EL element.
 <基材>
 本発明に用いられる発光面側樹脂基材と背面側基材としては、プラスチックフィルムが用いられることが好ましい。用いられるプラスチックフィルムは、有機発光素子やガスバリアー層等を保持できるフィルムであれば材質、厚さ等に特に制限はなく、適宜選択することができる。前記プラスチックフィルムとしては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂が挙げられる。
<Base material>
A plastic film is preferably used as the light emitting surface side resin base material and the back surface side base material used in the present invention. The plastic film used is not particularly limited in material, thickness and the like as long as it can hold an organic light emitting element, a gas barrier layer, and the like, and can be appropriately selected. Specific examples of the plastic film include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyetherimide. Resin, cellulose acylate resin, polyurethane resin, polyetheretherketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyethersulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring-modified polycarbonate resin, alicyclic ring Examples thereof include thermoplastic resins such as modified polycarbonate resins, fluorene ring-modified polyester resins, and acryloyl compounds.
 樹脂基材の厚さは10~100μm程度が好ましく、更に好ましくは15~50μmである。 The thickness of the resin substrate is preferably about 10 to 100 μm, more preferably 15 to 50 μm.
 その他、基材の種類、基材の製造方法等については、特開2013-226758号公報の段落「0125」~「0136」に開示されている技術を適宜採用することができる。 In addition, as for the type of base material, the manufacturing method of the base material, etc., the techniques disclosed in paragraphs “0125” to “0136” of JP2013-226758A can be appropriately employed.
 特に巻き取り形態の発光装置の場合には、背面基材は、剛性の高いものが、発光装置を安定に支持する観点から好ましい。 Particularly in the case of a light emitting device in a winding form, it is preferable that the back substrate has a high rigidity from the viewpoint of stably supporting the light emitting device.
 <有機機能層ユニットの構成と製造方法>
 次いで、本発明に好ましく用いることのできる発光素子としての有機EL素子において、透明陽極上に形成される有機機能層ユニットの各層の構成とその製造方法について、代表例として、電荷注入層、発光層、正孔輸送層、電子輸送層及び阻止層の順に説明する。
<Configuration and manufacturing method of organic functional layer unit>
Next, in the organic EL device as a light emitting device that can be preferably used in the present invention, as a representative example of the configuration of each layer of the organic functional layer unit formed on the transparent anode and the manufacturing method thereof, a charge injection layer, a light emitting layer The hole transport layer, the electron transport layer, and the blocking layer will be described in this order.
 (電荷注入層)
 本発明に係る有機EL素子において、電荷注入層とは、駆動電圧低下や発光輝度向上のために、電極と発光層の間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)にその詳細が記載されており、正孔注入層と電子注入層とがある。
(Charge injection layer)
In the organic EL device according to the present invention, the charge injection layer is a layer provided between the electrode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. The details are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123-166) of “November 30, 1998, NTS Co., Ltd.”. There is.
 電荷注入層としては、一般には、正孔注入層であれば、透明陽極と発光層又は正孔輸送層との間、電子注入層であれば陰極と発光層又は電子輸送層との間に存在させることができる。 As a charge injection layer, generally, if it is a hole injection layer, it exists between a transparent anode and a light emitting layer or a hole transport layer, and if it is an electron injection layer, it exists between a cathode and a light emitting layer or an electron transport layer. Can be made.
 正孔注入層は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、及びポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えば、PEDOT(ポリエチレンジオキシチオフェン):PSS(ポリスチレンスルホン酸)、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。 The details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc. Examples of materials used for the hole injection layer include: , Porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives, Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, polyvinylcarbazole, aromatic amines introduced into the main chain or side chain Child material or oligomer, polysilane, a conductive polymer or oligomer (e.g., PEDOT (polyethylene dioxythiophene): PSS (polystyrene sulfonic acid), aniline copolymers, polyaniline, polythiophene, etc.) and the like can be mentioned.
 トリアリールアミン誘導体としては、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)に代表されるベンジジン型や、MTDATA(4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン)に代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。 Examples of the triarylamine derivative include benzidine type represented by α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), and MTDATA (4,4 ′, 4 ″). Examples include a starburst type represented by -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine), a compound having fluorene or anthracene in the triarylamine-linked core.
 また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。 In addition, hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.
 電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ金属ハライド層、フッ化マグネシウムに代表されるアルカリ土類金属化合物層、酸化モリブデン、酸化アルミニウム等に代表される金属酸化物、リチウム8-ヒドロキシキノレート(Liq)等に代表される金属錯体等が挙げられる。また、本発明における透明電極が陰極の場合は、金属錯体等の有機材料が特に好適に用いられる。電子注入層はごく薄い膜であることが望ましく、構成材料にもよるが、その層厚は1nm~10μmの範囲が好ましい。 Details of the electron injection layer are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specific examples of materials preferably used for the electron injection layer are as follows. Metals represented by strontium and aluminum, alkali metal compounds represented by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkali metal halide layers represented by magnesium fluoride, calcium fluoride, etc. Examples thereof include an alkaline earth metal compound layer typified by magnesium, a metal oxide typified by molybdenum oxide and aluminum oxide, and a metal complex typified by lithium 8-hydroxyquinolate (Liq). Moreover, when the transparent electrode in this invention is a cathode, organic materials, such as a metal complex, are used especially suitably. The electron injection layer is preferably a very thin film, and depending on the constituent material, the layer thickness is preferably in the range of 1 nm to 10 μm.
 (発光層)
 本発明に係る有機EL素子において、有機機能層ユニットを構成する発光層は、発光材料としてリン光発光化合物が含有されている構成が好ましい。
(Light emitting layer)
In the organic EL device according to the present invention, the light emitting layer constituting the organic functional layer unit preferably includes a phosphorescent light emitting compound as a light emitting material.
 この発光層は、電極又は電子輸送層から注入される電子と、正孔輸送層から注入される正孔とが再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接する層との界面であってもよい。 This light emitting layer is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer and holes injected from the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. Alternatively, it may be the interface between the light emitting layer and the adjacent layer.
 このような発光層としては、含まれる発光材料が発光要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。この場合、各発光層間には非発光性の中間層を有していることが好ましい。 Such a light emitting layer is not particularly limited in its configuration as long as the light emitting material contained satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting intermediate layer between the light emitting layers.
 発光層の厚さの総和は、1~100nmの範囲内にあることが好ましく、より低い駆動電圧を得ることができることから1~30nmの範囲内がさらに好ましい。なお、発光層の厚さの総和とは、発光層間に非発光性の中間層が存在する場合には、当該中間層も含む厚さである。 The total thickness of the light emitting layers is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained. In addition, the sum total of the thickness of a light emitting layer is the thickness also including the said intermediate | middle layer, when a nonluminous intermediate | middle layer exists between light emitting layers.
 本発明においては、二つ以上の発光層ユニットを積層した構成であっても良い。個々の発光層の厚さとしては、それぞれ1~50nmの範囲内に調整することが好ましく、さらに好ましくは1~20nmの範囲内に調整することがより好ましい。積層された複数の発光層が、青、緑及び赤のそれぞれの発光色に対応する場合は、青、緑及び赤の各発光層の厚さの関係について特に制限されない。 In the present invention, a structure in which two or more light emitting layer units are stacked may be used. The thickness of each light emitting layer is preferably adjusted within the range of 1 to 50 nm, more preferably within the range of 1 to 20 nm. When the plurality of stacked light emitting layers correspond to the respective emission colors of blue, green, and red, there is no particular limitation on the relationship between the thicknesses of the blue, green, and red light emitting layers.
 以上のような発光層は、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法(ラングミュア・ブロジェット、Langmuir Blodgett法)、インクジェット法等の公知の方法により形成することができる。 The light emitting layer as described above is prepared by using a known method such as a vacuum evaporation method, a spin coating method, a casting method, an LB method (Langmuir Blodget, Langmuir Blodgett method), an ink jet method, or the like. Can be formed.
 また発光層は、複数の発光材料を混合してもよく、リン光発光材料と蛍光発光材料(蛍光ドーパント、蛍光性化合物ともいう)とを同一発光層中に混合して用いてもよい。発光層の構成としては、ホスト化合物(発光ホスト等ともいう)及び発光材料(発光ドーパント化合物ともいう。)を含有し、発光材料より発光させることが好ましい。 In the light emitting layer, a plurality of light emitting materials may be mixed, and a phosphorescent light emitting material and a fluorescent light emitting material (also referred to as a fluorescent dopant or a fluorescent compound) may be mixed and used in the same light emitting layer. The structure of the light-emitting layer preferably includes a host compound (also referred to as a light-emitting host) and a light-emitting material (also referred to as a light-emitting dopant compound), and emits light from the light-emitting material.
 〈ホスト化合物〉
 発光層に含有されるホスト化合物としては、室温(25℃)におけるリン光発光のリン光量子収率が0.1未満の化合物が好ましい。さらにリン光量子収率が0.01未満であることが好ましい。また、発光層に含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。
<Host compound>
As the host compound contained in the light emitting layer, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. Further, the phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、あるいは、複数種のホスト化合物を用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機電界発光素子を高効率化することができる。また、後述する発光材料を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。 As the host compound, a known host compound may be used alone, or a plurality of types of host compounds may be used. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the efficiency of the organic electroluminescent device can be improved. In addition, by using a plurality of kinds of light emitting materials described later, it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
 発光層に用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。 The host compound used in the light emitting layer may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). )
 本発明に適用可能なホスト化合物としては、例えば、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報、米国特許出願公開第2003/0175553号明細書、米国特許出願公開第2006/0280965号明細書、米国特許出願公開第2005/0112407号明細書、米国特許出願公開第2009/0017330号明細書、米国特許出願公開第2009/0030202号明細書、米国特許出願公開第2005/238919号明細書、国際公開第2001/039234号、国際公開第2009/021126号、国際公開第2008/056746号、国際公開第2004/093207号、国際公開第2005/089025号、国際公開第2007/063796号、国際公開第2007/063754号、国際公開第2004/107822号、国際公開第2005/030900号、国際公開第2006/114966号、国際公開第2009/086028号、国際公開第2009/003898号、国際公開第2012/023947号、特開2008-074939号公報、特開2007-254297号公報、欧州特許第2034538号明細書等に記載されている化合物を挙げることができる。 Examples of host compounds applicable to the present invention include, for example, JP-A Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002 -75645, 2002-338579, 2002-105445, 2002-343568, 2002-141173, 2002-352957, 2002-203683, 2002 36 No. 227, No. 2002-231453, No. 2003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-260861, No. 2002-280183. No. 2002, No. 2002-299060, No. 2002-302516, No. 2002-305083, No. 2002-305084, No. 2002-308837, US Patent Application Publication No. 2003/0175553, US Patent Application Publication No. 2006/0280965, US Patent Application Publication No. 2005/0112407, US Patent Application Publication No. 2009/0017330, US Patent Application Publication No. 2009/0030202, US Patent application No. 2005/238919, International Publication No. 2001/039234, International Publication No. 2009/021126, International Publication No. 2008/056746, International Publication No. 2004/093207, International Publication No. 2005/089025, International Public Publication No. 2007/063796, International Publication No. 2007/063754, International Publication No. 2004/107822, International Publication No. 2005/030900, International Publication No. 2006/114966, International Publication No. 2009/086028, International Publication No. Examples thereof include compounds described in 2009/003898, International Publication No. 2012/023947, Japanese Patent Application Laid-Open No. 2008-074939, Japanese Patent Application Laid-Open No. 2007-254297, European Patent No. 2034538, and the like.
 〈発光材料〉
 本発明で用いることのできる発光材料としては、リン光発光性化合物(リン光性化合物、リン光発光材料又はリン光発光ドーパントともいう。)や蛍光発光性化合物(蛍光性化合物又は蛍光発光材料ともいう。)が挙げられる。
<Light emitting material>
As a light-emitting material that can be used in the present invention, a phosphorescent compound (also referred to as a phosphorescent compound, a phosphorescent material, or a phosphorescent dopant) or a fluorescent compound (both a fluorescent compound or a fluorescent material) is used. Say).
 〈リン光発光性化合物〉
 リン光発光性化合物とは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物であり、リン光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
<Phosphorescent compound>
A phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and the phosphorescence quantum yield is 0 at 25 ° C. A preferred phosphorescence quantum yield is 0.1 or more, although it is defined as 0.01 or more compounds.
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は、種々の溶媒を用いて測定できるが、本発明においてリン光発光性化合物を用いる場合、任意の溶媒のいずれかにおいて、上記リン光量子収率として0.01以上が達成されればよい。 The phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. The phosphorescence quantum yield in the solution can be measured using various solvents, but when using a phosphorescent compound in the present invention, the phosphorescence quantum yield is 0.01 or more in any solvent. Should be achieved.
 リン光発光性化合物は、一般的な有機EL素子の発光層に使用されている公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、白金化合物(白金錯体系化合物)又は希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。 The phosphorescent compound can be appropriately selected from known compounds used in the light emitting layer of a general organic EL device, and preferably a group 8-10 metal in the periodic table of elements is used. It is a complex compound to be contained, more preferably an iridium compound, an osmium compound, a platinum compound (platinum complex compound) or a rare earth complex, and most preferably an iridium compound.
 本発明においては、少なくとも一つの発光層が、二種以上のリン光発光性化合物が含有されていてもよく、発光層におけるリン光発光性化合物の濃度比が発光層の厚さ方向で変化している態様であってもよい。 In the present invention, at least one light emitting layer may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compound in the light emitting layer varies in the thickness direction of the light emitting layer. It may be an embodiment.
 本発明に使用できる公知のリン光発光性化合物の具体例としては、以下の文献に記載されている化合物等が挙げられる。 Specific examples of known phosphorescent compounds that can be used in the present invention include compounds described in the following documents.
 Nature 395,151(1998)、Appl.Phys.Lett.78,1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許出願公開第2006/835469号明細書、米国特許出願公開第2006/0202194号明細書、米国特許出願公開第2007/0087321号明細書、米国特許出願公開第2005/0244673号明細書等に記載の化合物を挙げることができる。 Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Application Publication No. 2006/835469, US Patent Application Publication No. 2006 /. Examples thereof include compounds described in US Patent No. 0202194, US Patent Application Publication No. 2007/0087321, US Patent Application Publication No. 2005/0244673, and the like.
 また、Inorg.Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2002/015645号、国際公開第2009/000673号、米国特許出願公開第2002/0034656号明細書、米国特許第7332232号明細書、米国特許出願公開第2009/0108737号明細書、米国特許出願公開第2009/0039776号、米国特許第6921915号、米国特許第6687266号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2006/0008670号明細書、米国特許出願公開第2009/0165846号明細書、米国特許出願公開第2008/0015355号明細書、米国特許第7250226号明細書、米国特許第7396598号明細書、米国特許出願公開第2006/0263635号明細書、米国特許出願公開第2003/0138657号明細書、米国特許出願公開第2003/0152802号明細書、米国特許第7090928号明細書等に記載の化合物を挙げることができる。 Also, Inorg. Chem. 40, 1704 (2001), Chem. Mater. 16, 2480 (2004), Adv. Mater. 16, 2003 (2004), Angew. Chem. lnt. Ed. 2006, 45, 7800, Appl. Phys. Lett. 86, 153505 (2005), Chem. Lett. 34, 592 (2005), Chem. Commun. 2906 (2005), Inorg. Chem. 42, 1248 (2003), International Publication No. 2009/050290, International Publication No. 2002/015645, International Publication No. 2009/000673, US Patent Application Publication No. 2002/0034656, and US Pat. No. 7,332,232. US Patent Application Publication No. 2009/0108737, US Patent Application Publication No. 2009/0039776, US Patent No. 6921915, US Patent No. 6,687,266, US Patent Application Publication No. 2007/0190359, US Patent Application Publication No. 2006/0008670, US Patent Application Publication No. 2009/0165846, US Patent Application Publication No. 2008/0015355, US Pat. No. 7,250,226, US Pat. No. 7,396,598 US patent Examples include compounds described in Japanese Patent Application Publication No. 2006/0263635, US Patent Application Publication No. 2003/0138657, US Patent Application Publication No. 2003/0152802, US Pat. No. 7090928, and the like. it can.
 また、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2002/002714号、国際公開第2006/009024号、国際公開第2006/056418号、国際公開第2005/019373号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2007/004380号、国際公開第2006/082742号、米国特許出願公開第2006/0251923号明細書、米国特許出願公開第2005/0260441号明細書、米国特許第7393599号明細書、米国特許第7534505号明細書、米国特許第7445855号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2008/0297033号明細書、米国特許第7338722号明細書、米国特許出願公開第2002/0134984号明細書、米国特許第7279704号明細書、米国特許出願公開第2006/098120号明細書、米国特許出願公開第2006/103874号明細書等に記載の化合物も挙げることができる。 Also, Angew. Chem. lnt. Ed. 47, 1 (2008), Chem. Mater. 18, 5119 (2006), Inorg. Chem. 46, 4308 (2007), Organometallics 23, 3745 (2004), Appl. Phys. Lett. 74, 1361 (1999), International Publication No. 2002/002714, International Publication No. 2006/009024, International Publication No. 2006/056418, International Publication No. 2005/019373, International Publication No. 2005/123873, International Publication No. 2005/123873, International Publication No. 2007/004380, International Publication No. 2006/082742, US Patent Application Publication No. 2006/0251923, US Patent Application Publication No. 2005/0260441, US Pat. No. 7,393,599. Description, US Pat. No. 7,534,505, US Pat. No. 7,445,855, US Patent Application Publication No. 2007/0190359, US Patent Application Publication No. 2008/0297033, US Pat. No. 7,338,722 , US special Examples include compounds described in Japanese Patent Application Publication No. 2002/0134984, US Patent No. 7279704, US Patent Application Publication No. 2006/098120, US Patent Application Publication No. 2006/103874, and the like. it can.
 さらには、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第2008/140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/004639号、国際公開第2011/073149号、特開2012-069737号公報、特開2009-114086号公報、特開2003-81988号公報、特開2002-302671号公報、特開2002-363552号公報等を挙げることができる。 Furthermore, International Publication No. 2005/076380, International Publication No. 2010/032663, International Publication No. 2008/140115, International Publication No. 2007/052431, International Publication No. 2011/134013, International Publication No. 2011/157339. International Publication No. 2010/086089, International Publication No. 2009/113646, International Publication No. 2012/020327, International Publication No. 2011/051404, International Publication No. 2011/004639, International Publication No. 2011/073149, Special JP 2012-069737 A, JP 2009-1114086 A, JP 2003-81988 A, JP 2002-302671 A, JP 2002-363552 A, and the like.
 本発明においては、好ましいリン光発光性化合物としては、Irを中心金属に有する有機金属錯体が挙げられる。さらには、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも1つの配位様式を含む錯体が好ましい。 In the present invention, preferred phosphorescent compounds include organometallic complexes having Ir as a central metal. Furthermore, a complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond is preferable.
 上記説明したリン光発光性化合物(リン光発光性金属錯体ともいう)は、例えば、Organic Letter誌、vol3、No.16、2579~2581頁(2001)、Inorganic Chemistry,第30巻、第8号、1685~1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704~1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055~3066頁(2002年)、New Journal of Chemistry.,第26巻、1171頁(2002年)、European Journal of
 Organic Chemistry,第4巻、695~709頁(2004年)、さらにこれらの文献中の参考文献等に記載されている方法を適用することにより合成できる。
The phosphorescent compound described above (also referred to as a phosphorescent metal complex) is described in, for example, Organic Letter, vol. 16, 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, pp. 1685-1687 (1991), J. Am. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, 3055-3066 (2002) , New Journal of Chemistry. 26, 1171 (2002), European Journal of
It can be synthesized by applying the methods described in Organic Chemistry, Vol. 4, pages 695 to 709 (2004) and references in these documents.
 〈蛍光発光性化合物〉
 蛍光発光性化合物としては、例えば、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素又は希土類錯体系蛍光体等が挙げられる。
<Fluorescent compound>
Fluorescent compounds include, for example, coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes. Stilbene dyes, polythiophene dyes, rare earth complex phosphors, and the like.
 (正孔輸送層)
 正孔輸送層とは、正孔を輸送する機能を有する正孔輸送材料から構成され、広い意味で正孔注入層及び電子阻止層も正孔輸送層の機能を有する。正孔輸送層は単層又は複数層設けることができる。
(Hole transport layer)
The hole transport layer is composed of a hole transport material having a function of transporting holes. In a broad sense, the hole injection layer and the electron blocking layer also have a function of a hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかの特性を有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー及びチオフェンオリゴマー等が挙げられる。 The hole transport material has characteristics of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples include stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, and thiophene oligomers.
 正孔輸送材料としては、上記のものを使用することができるが、その他にも、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物を用いることができ、特に、芳香族第3級アミン化合物を用いることが好ましい。 As the hole transport material, those described above can be used, but in addition, porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds can be used, and in particular, aromatic tertiary amines. It is preferable to use a compound.
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル、N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(略称:TPD)、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル、1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル、N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル、4,4′-ビス(ジフェニルアミノ)クオードリフェニル、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン及びN-フェニルカルバゾール等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (abbreviation: TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1 -Bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl, 1,1-bis (4-di-p -Tolylaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N'-diphenyl-N N'-di (4-methoxyphenyl) -4,4'-diaminobiphenyl, N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether, 4,4'-bis (diphenylamino) Quadriphenyl, N, N, N-tri (p-tolyl) amine, 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene, 4-N, N -Diphenylamino- (2-diphenylvinyl) benzene, 3-methoxy-4'-N, N-diphenylaminostilbenzene, N-phenylcarbazole and the like.
 正孔輸送層は、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法及びLB法(ラングミュア・ブロジェット、Langmuir Blodgett法)等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲である。この正孔輸送層は、上記材料の一種又は二種以上からなる一層構造であってもよい。 For the hole transport layer, the hole transport material may be formed by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, and an LB method (Langmuir Brodget, Langmuir Brodgett method). Thus, it can be formed by thinning. The layer thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials.
 また、正孔輸送層の材料に不純物をドープすることにより、p性を高くすることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報及びJ.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 Also, the p property can be increased by doping impurities into the material of the hole transport layer. Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175 and J.P. Appl. Phys. 95, 5773 (2004), and the like.
 このように、正孔輸送層のp性を高くすると、より低消費電力の素子を作製することができるため好ましい。 Thus, it is preferable to increase the p property of the hole transport layer because an element with lower power consumption can be manufactured.
 (電子輸送層)
 電子輸送層は、電子を輸送する機能を有する材料から構成され、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は、単層構造又は複数層の積層構造として設けることができる。
(Electron transport layer)
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer structure or a stacked structure of a plurality of layers.
 単層構造の電子輸送層及び積層構造の電子輸送層において、発光層に隣接する層部分を構成する電子輸送材料(正孔阻止材料を兼ねる)としては、カソードより注入された電子を発光層に伝達する機能を有していれば良い。このような材料としては、従来公知の化合物の中から任意のものを選択して用いることができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体及びオキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送層の材料として用いることができる。さらにこれらの材料を高分子鎖に導入した高分子材料又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 In the electron transport layer having a single-layer structure and the electron transport layer having a multilayer structure, an electron transport material (also serving as a hole blocking material) constituting a layer portion adjacent to the light emitting layer is used as an electron transporting material. What is necessary is just to have the function to transmit. As such a material, any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as a material for the electron transport layer. it can. Furthermore, a polymer material in which these materials are introduced into a polymer chain, or a polymer material having these materials as a polymer main chain can also be used.
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(略称:Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(略称:Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送層の材料として用いることができる。 In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviation: Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8- Quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), etc., and the central metal of these metal complexes A metal complex in which In, Mg, Cu, Ca, Sn, Ga, or Pb is replaced can also be used as the material for the electron transport layer.
 電子輸送層は、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法及びLB法等の公知の方法により、薄膜化することで形成することができる。電子輸送層の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲内である。電子輸送層は上記材料の一種又は二種以上からなる単一構造であってもよい。 The electron transport layer can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method. The thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The electron transport layer may have a single structure composed of one or more of the above materials.
 (阻止層)
 阻止層としては、正孔阻止層及び電子阻止層が挙げられ、上記説明した有機機能層ユニットの各構成層の他に、必要に応じて設けられる層である。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層等を挙げることができる。
(Blocking layer)
Examples of the blocking layer include a hole blocking layer and an electron blocking layer, which are provided as necessary in addition to the constituent layers of the organic functional layer unit described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. Hole blocking (hole block) layer and the like.
 正孔阻止層とは、広い意味では、電子輸送層の機能を有する。正孔阻止層は、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、電子輸送層の構成を必要に応じて、正孔阻止層として用いることができる。正孔阻止層は、発光層に隣接して設けられていることが好ましい。 The hole blocking layer has a function of an electron transport layer in a broad sense. The hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved. Moreover, the structure of an electron carrying layer can be used as a hole-blocking layer as needed. The hole blocking layer is preferably provided adjacent to the light emitting layer.
 一方、電子阻止層とは、広い意味では、正孔輸送層の機能を有する。電子阻止層は、正孔を輸送する機能を有しつつ、電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に適用する正孔阻止層の層厚としては、好ましくは3~100nmの範囲であり、さらに好ましくは5~30nmの範囲である。 On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense. The electron blocking layer is made of a material that has the ability to transport holes and has a very small ability to transport electrons. By blocking holes while transporting holes, the probability of recombination of electrons and holes is improved. Can be made. Moreover, the structure of a positive hole transport layer can be used as an electron blocking layer as needed. The layer thickness of the hole blocking layer applied to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
 〔陽極〕
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上、好ましくは4.5eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムスズ酸化物(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
〔anode〕
As the anode in the organic EL element, a material having a work function (4 eV or more, preferably 4.5 eV or more) of a metal, an alloy, an electrically conductive compound, or a mixture thereof is preferably used. Specific examples of such electrode substances include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
 陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度を余り必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。 The anode may be formed by depositing a thin film of these electrode materials by vapor deposition or sputtering, and a pattern having a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 μm or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
 あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。 Alternatively, when a material that can be applied such as an organic conductive compound is used, a wet film forming method such as a printing method or a coating method can be used. When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less.
 陽極の膜厚は材料にもよるが、通常10nm~1μm、好ましくは10~200nmの範囲内で選ばれる。 Although the film thickness of the anode depends on the material, it is usually selected within the range of 10 nm to 1 μm, preferably 10 to 200 nm.
 〔陰極〕
 陰極は、有機機能層ユニットに正孔を供給するために機能する電極膜であり、金属、合金、有機若しくは無機の導電性化合物、又はこれらの混合物が用いられる。具体的には、金、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニ1ウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO及びSnO等の酸化物半導体などが挙げられる。
〔cathode〕
The cathode is an electrode film that functions to supply holes to the organic functional layer unit, and a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof is used. Specifically, gold, aluminum, silver, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum 1 mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO And oxide semiconductors such as TiO 2 and SnO 2 .
 陰極は、これらの導電性材料を用い、蒸着やスパッタリング等の方法により薄膜を形成させて作製することができる。また、陰極としてのシート抵抗は、数百Ω/□以下が好ましく、膜厚は通常5nm~5μm、好ましくは5~200nmの範囲で選ばれる。 The cathode can be produced by using these conductive materials and forming a thin film by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 5 nm to 5 μm, preferably 5 to 200 nm.
 なお、有機EL素子が、陰極側からも発光光を取り出す、両面発光型の場合には、光透過性の良好な陰極を選択して構成すればよい。 In the case where the organic EL element is a double-sided light emitting type in which emitted light is taken out from the cathode side, a cathode having good light transmittance may be selected and configured.
 〔封止部材〕
 本発明に係る有機EL素子は、透明陽極を含む透明導電性フィルム(TF)、陰極、及び陰極と透明陽極との間に形成される有機機能層ユニットを外気から遮断するため、封止部材で封止する構成を有することが好ましい。
(Sealing member)
The organic EL device according to the present invention is a sealing member for shielding a transparent conductive film (TF) including a transparent anode, a cathode, and an organic functional layer unit formed between the cathode and the transparent anode from the outside air. It is preferable to have a structure for sealing.
 本発明に用いられる封止手段としては、例えば、封止材料と、上記有機EL素子の構成部材を、接着剤で封止樹脂層を形成して接着する方法を挙げることができる。
としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また、透明性、電気絶縁性は特に問わない。
Examples of the sealing means used in the present invention include a method of bonding a sealing material and a constituent member of the organic EL element by forming a sealing resin layer with an adhesive.
As long as it is arranged so as to cover the display area of the organic EL element, it may be in the form of a concave plate or a flat plate. Further, transparency and electrical insulation are not particularly limited.
 封止に用いる封止材料としては、具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特に、ソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、例えば、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金からなるものが挙げられる。 Specific examples of the sealing material used for sealing include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
 本発明においては、有機EL素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。更には、ポリマーフィルムは、JIS K
 7126-1987に準拠した方法で測定された酸素透過度が1×10-3cm3/(
・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が1×10-3g/(m・24h)以下のものであることが好ましい。
In the present invention, a polymer film and a metal film can be preferably used because the organic EL element can be thinned. Furthermore, the polymer film is JIS K
The oxygen permeability measured by a method according to 7126-1987 is 1 × 10 −3 cm 3 / (
m 2 · 24 h · atm), the water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured by a method according to JIS K 7129-1992 is 1 × 10 −3 g / (M 2 · 24h) or less is preferable.
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。 For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
 封止樹脂層を形成する接着剤の具体例としては、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 Specific examples of the adhesive for forming the sealing resin layer include acrylic acid oligomers, photocuring and thermosetting adhesives having reactive vinyl groups of methacrylic acid oligomers, and moisture curing such as 2-cyanoacrylates. Examples thereof include an adhesive such as a mold. Moreover, heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
 尚、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までの温度範囲で接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。 In addition, since an organic EL element may deteriorate by heat processing, what can be adhesive-hardened in the temperature range from room temperature to 80 degreeC is preferable. A desiccant may be dispersed in the adhesive.
 封止材料への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。 Application of the adhesive to the sealing material may use a commercially available dispenser, or may be printed like screen printing.
 <他の発光素子>
 なお、以上、発光素子の一例として有機EL素子について述べたが、本発明の一態様はこれに限定されず、他の表示素子、発光素子、半導体素子等を用いてもよい。
<Other light emitting elements>
Note that although an organic EL element is described above as an example of a light-emitting element, one embodiment of the present invention is not limited thereto, and other display elements, light-emitting elements, semiconductor elements, or the like may be used.
 例えば、本明細書等において、表示素子、表示素子を有する装置である表示装置、発光素子、及び発光素子を有する装置である発光装置は、様々な形態を用いること、又は様々な素子を有することが出来る。表示素子、表示装置、発光素子又は発光装置の一例としては、EL素子(有機物及び無機物を含むEL素子、有機EL素子、無機EL素子)、LED(白色LED、赤色LED、緑色LED、青色LEDなど)、トランジスタ(電流に応じて発光するトランジスタ)、電子放出素子、液晶素子、電子インク、電気泳動素子、グレーティングライトバルブ(GLV)、プラズマディスプレイパネル(PDP)、MEMS(マイクロ・エレクトロ・メカニカル・システム)、デジタルマイクロミラーデバイス(DMD)、DMS(デジタル・マイクロ・シャッター)、IMOD(インターフェアレンス・モジュレーション)素子、エレクトロウェッティング素子、圧電セラミックディスプレイ、カーボンナノチューブなど、電気磁気的作用により、コントラスト、輝度、反射率、透過率などが変化する表示媒体を有するものがある。EL素子を用いた表示装置の一例としては、ELディスプレイなどがある。電子放出素子を用いた表示装置の一例としては、フィールドエミッションディスプレイ(FED)又はSED方式平面型ディスプレイ(SED:Surface-conduction Electron-emitter Display)などがある。液晶素子を用いた表示装置の一例としては、液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶ディスプレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプレイ)などがある。電子インク又は電気泳動素子を用いた表示装置の一例としては、電子ペーパーなどがある。 For example, in this specification and the like, a display element, a display device that is a device including a display element, a light-emitting element, and a light-emitting device that is a device including a light-emitting element have various forms or have various elements. I can do it. As an example of a display element, a display device, a light emitting element, or a light emitting device, an EL element (an EL element including an organic substance and an inorganic substance, an organic EL element, an inorganic EL element), an LED (white LED, red LED, green LED, blue LED, etc.) ), Transistor (transistor that emits light in response to current), electron-emitting device, liquid crystal device, electronic ink, electrophoretic device, grating light valve (GLV), plasma display panel (PDP), MEMS (micro electro mechanical system) ), Digital micromirror device (DMD), DMS (digital micro shutter), IMOD (interference modulation) element, electrowetting element, piezoelectric ceramic display, carbon nanotube, etc. Contrast, brightness, reflectance, etc. transmittance those having a display medium changes. An example of a display device using an EL element is an EL display. As an example of a display device using an electron-emitting device, there is a field emission display (FED) or a SED type flat display (SED: Surface-conduction Electro-emitter Display). As an example of a display device using a liquid crystal element, there is a liquid crystal display (a transmissive liquid crystal display, a transflective liquid crystal display, a reflective liquid crystal display, a direct view liquid crystal display, a projection liquid crystal display) and the like. An example of a display device using electronic ink or an electrophoretic element is electronic paper.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
 実施例1
 《有機EL素子の作製》
 [有機EL素子1の作製]
 下記の方法に従って、有機EL素子1を作製した。
Example 1
<< Production of organic EL element >>
[Production of Organic EL Element 1]
The organic EL element 1 was produced according to the following method.
 〔透明導電性フィルム1の作製〕
 (工程1-1:樹脂基材の準備)
 樹脂基材として、両面に易接着加工された厚さ23μmのポリエチレンテレフタレートフィルム(帝人デュポンフィルム株式会社製、KFL12W♯23、以下、PETと略記する。)を用い、ロール・トゥ・ロール方式により、下記のハードコートを両面に形成した。
[Preparation of transparent conductive film 1]
(Step 1-1: Preparation of resin base material)
As a resin base material, a polyethylene terephthalate film having a thickness of 23 μm and easily bonded on both sides (Teijin DuPont Films, KFL12W # 23, hereinafter abbreviated as PET) is used. The following hard coat was formed on both sides.
 このPETのガスバリアー層を形成する面とは反対側の面に、アンチブロック機能を有するクリアハードコート層を形成した。具体的には、UV硬化型樹脂(アイカ工業株式会社製、品番:Z731L)を乾燥膜厚が0.5μmになるように塗布した後、80℃で乾燥し、その後、空気下、高圧水銀ランプを用いて照射エネルギー量0.5J/cmの条件で硬化を行った。 A clear hard coat layer having an antiblock function was formed on the surface opposite to the surface on which the gas barrier layer of PET was formed. Specifically, a UV curable resin (manufactured by Aika Kogyo Co., Ltd., product number: Z731L) was applied so that the dry film thickness was 0.5 μm, then dried at 80 ° C., and then in air, a high-pressure mercury lamp Was cured under the condition of an irradiation energy amount of 0.5 J / cm 2 .
 次に、ガスバリアー層を形成する側の面に厚さ2μmのクリアハードコート層を形成した。具体的には、JSR株式会社製、UV硬化型樹脂オプスター(登録商標)Z7527を、乾燥膜厚が2μmになるように塗布した後、80℃で乾燥し、その後、空気下、高圧水銀ランプを用いて照射エネルギー量0.5J/cmの条件で硬化を行った。このようにして、樹脂基材を作製した(以下、全ての作製例について、同一の基材を用いている。)。 Next, a clear hard coat layer having a thickness of 2 μm was formed on the surface on which the gas barrier layer was to be formed. Specifically, UV curable resin OPSTAR (registered trademark) Z7527 manufactured by JSR Corporation was applied so as to have a dry film thickness of 2 μm, dried at 80 ° C., and then a high-pressure mercury lamp in air. It was used and cured under conditions of an irradiation energy amount of 0.5 J / cm 2 . Thus, the resin base material was produced (Hereafter, the same base material is used about all the preparation examples.).
 次いで、上記樹脂基材のガスバリアー層を形成する側の面の反対面に、厚さ20μmの耐熱性アクリル系樹脂からなる粘着剤を有する粘着層を介して、サポートフィルムとして、厚さ75μmのPETフィルムを貼合し、ニップロールで圧着して、サポートフィルム付樹脂基材を得た。 Next, on the opposite surface of the surface of the resin base material on which the gas barrier layer is formed, an adhesive layer having an adhesive made of a heat-resistant acrylic resin having a thickness of 20 μm is used as a support film, and a thickness of 75 μm. A PET film was bonded and pressure-bonded with a nip roll to obtain a resin base material with a support film.
 (工程1-2:CVDガスバリアー層の形成)
 下記のプラズマCVD法により、樹脂基材上にガスバリアー層を形成した。
(Step 1-2: Formation of CVD gas barrier layer)
A gas barrier layer was formed on the resin substrate by the following plasma CVD method.
 〈プラズマCVD法〉
 特開2007-307784号公報に記載のプラズマCVD装置を用いて、樹脂基材上に、下記の成膜条件に従って、酸化ケイ素からなる厚さ200nmのガスバリアー層を形成した。
<Plasma CVD method>
Using a plasma CVD apparatus described in Japanese Patent Application Laid-Open No. 2007-307784, a gas barrier layer made of silicon oxide and having a thickness of 200 nm was formed on a resin substrate according to the following film formation conditions.
 〈成膜条件〉
 原料ガス(ヘキサメチルジシロキサン、HMDSO)の供給量:30sccm(Standard Cubic Centimeter per Minute)
 酸素ガス(O)の供給量:300sccm
 真空チャンバー内の真空度:3Pa
 プラズマ発生用電源からの印加電力:0.5kW
 プラズマ発生用電源の周波数:13.56MHz
 可撓性樹脂基材の搬送速度;0.4m/min
 (工程1-3:塗布ガスバリアー層の形成)
 パーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NN120-20)と、アミン触媒(N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン(TMDAH))を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NAX120-20)とを、4:1(質量比)の割合で混合し、さらに乾燥膜厚調整のためジブチルエーテルで希釈し、固形分8質量%の塗布液を調製した。
<Film formation conditions>
Feed rate of raw material gas (hexamethyldisiloxane, HMDSO): 30 sccm (Standard Cubic Centimeter per Minute)
Supply amount of oxygen gas (O 2 ): 300 sccm
Degree of vacuum in the vacuum chamber: 3Pa
Applied power from the power source for plasma generation: 0.5 kW
Frequency of power source for plasma generation: 13.56 MHz
Conveying speed of flexible resin substrate: 0.4 m / min
(Step 1-3: Formation of coating gas barrier layer)
A dibutyl ether solution containing 20% by mass of perhydropolysilazane (manufactured by AZ Electronic Materials Co., Ltd., NN120-20) and an amine catalyst (N, N, N ′, N′-tetramethyl-1,6-diaminohexane (TMDAH) )) And a dibutyl ether solution (NAX120-20, manufactured by AZ Electronic Materials Co., Ltd.) containing 20% by mass of perhydropolysilazane in a ratio of 4: 1 (mass ratio), and further for adjusting the dry film thickness Dilution with dibutyl ether prepared a coating solution having a solid content of 8% by mass.
 塗布ガスバリアー層の形成には、塗布面側保護フィルム剥離、塗布、乾燥、エキシマ改質処理、塗布面側保護フィルム貼合を連続しておこなえるロール・トゥ・ロール方式の塗布装置を用いた。 For the formation of the coating gas barrier layer, a roll-to-roll type coating apparatus capable of successively performing coating surface side protective film peeling, coating, drying, excimer modification treatment, and coating surface side protective film bonding was used.
 上記基材上にダイコーターを用いて、上記塗布液を、乾燥後の厚さが250nmになるよう塗布し、ドライヤーゾーンにおいて80℃で乾燥した。 The coating solution was applied on the base material using a die coater so that the thickness after drying was 250 nm and dried at 80 ° C. in a dryer zone.
 次いで、連続して、乾燥した塗膜に対して、波長172nmのXeエキシマランプを有する真空紫外線照射ゾーンにおいて、照射エネルギーを6.0J/cmとした条件で真空紫外線照射処理を行って、ガスバリアー層を形成した。この際、照射雰囲気は60℃に加熱した窒素で置換し、酸素濃度は0.1体積%以下とした。ここまで、塗布面に搬送ロール等の接触はなかった。 Subsequently, a vacuum ultraviolet ray irradiation treatment was performed on the dried coating film continuously in a vacuum ultraviolet ray irradiation zone having an Xe excimer lamp having a wavelength of 172 nm under the condition that the irradiation energy was 6.0 J / cm 2. A barrier layer was formed. At this time, the irradiation atmosphere was replaced with nitrogen heated to 60 ° C., and the oxygen concentration was set to 0.1% by volume or less. Up to this point, there was no contact of the transport roll or the like on the coating surface.
 この工程をさらに2回繰り返し、厚さ250nmの塗布ガスバリアー層を3層積層して形成した。次いで、塗布面に保護フィルムとして自己粘着OPPフィルム(フタムラ化学社製、FSA010M)を貼合した後、巻き取った。 This process was further repeated twice to form three layers of a coating gas barrier layer having a thickness of 250 nm. Next, a self-adhesive OPP film (Futamura Chemical Co., Ltd., FSA010M) was bonded as a protective film to the coated surface, and then wound up.
 このようにして、合計の厚さが950nmであるガスバリアー層を有するガスバリアー性フィルム基材1を得た。 Thus, a gas barrier film substrate 1 having a gas barrier layer having a total thickness of 950 nm was obtained.
 ガスバリアー性フィルム基材1の水蒸気透過率を、Ca法を用いて測定した。測定条件は、40℃、90%RHとした。得られた水蒸気透過率は、8.2×10-6g/(m・24h)であった。 The water vapor permeability of the gas barrier film substrate 1 was measured using the Ca method. The measurement conditions were 40 ° C. and 90% RH. The water vapor transmission rate obtained was 8.2 × 10 −6 g / (m 2 · 24 h).
 〈Ca法による水蒸気透過率の測定〉
 (評価用セルの作製)
 ガスバリアー性フィルムのガスバリアー層表面をUV洗浄した後、ガスバリアー層表面に封止樹脂層として熱硬化型のシート状接着剤(エポキシ系樹脂)を厚さ20μmで貼合した。これを50mm×50mmのサイズに打ち抜いた後、グローブボックス内に入れて、24時間乾燥処理を行った。
<Measurement of water vapor transmission rate by Ca method>
(Production of evaluation cell)
After the surface of the gas barrier layer of the gas barrier film was UV washed, a thermosetting sheet-like adhesive (epoxy resin) was bonded to the surface of the gas barrier layer with a thickness of 20 μm as a sealing resin layer. This was punched out to a size of 50 mm × 50 mm, then placed in a glove box and dried for 24 hours.
 50mm×50mmサイズの無アルカリガラス板(厚さ0.7mm)の片面をUV洗浄した。 One side of a 50 mm × 50 mm non-alkali glass plate (thickness 0.7 mm) was UV cleaned.
 株式会社 ALSテクノロジー製の真空蒸着装置を用い、ガラス板の中央に、マスクを介して20mm×20mmのサイズでCaを蒸着した。Caの厚さは80nmとした。 Using a vacuum vapor deposition device manufactured by ALS Technology, Inc., Ca was vapor-deposited in the center of the glass plate with a size of 20 mm × 20 mm through a mask. The thickness of Ca was 80 nm.
 Ca蒸着済のガラス板をグローブボックス内に取り出し、封止樹脂層を貼合したガスバリアー性フィルムの封止樹脂層面とガラス板のCa蒸着面とを接するように配置し、真空ラミネートにより接着した。この際、110℃の加熱を行った。さらに、接着した試料を110℃に設定したホットプレート上にガラス板を下にして置き、30分間硬化させて、評価用セルを作製した。 The glass plate on which Ca has been deposited is taken out into the glove box, placed so that the sealing resin layer surface of the gas barrier film to which the sealing resin layer is bonded and the Ca deposition surface of the glass plate are in contact with each other, and adhered by vacuum lamination. . At this time, heating at 110 ° C. was performed. Further, the adhered sample was placed on a hot plate set at 110 ° C. with the glass plate facing down, and cured for 30 minutes to produce an evaluation cell.
 なお、ガスバリアー性フィルム面以外からの水蒸気の透過がないことを確認するために、比較試料としてガスバリアー性フィルム試料の代わりに、厚さ0.2mmの石英ガラス板を用いた試料を、同様に40℃、90%RHの高温高湿下保存を行い、500時間経過後でも金属カルシウム腐食が発生しないことを確認した。 In addition, in order to confirm that there is no permeation of water vapor from other than the gas barrier film surface, a sample using a quartz glass plate having a thickness of 0.2 mm was used instead of the gas barrier film sample as a comparative sample. Was stored under high temperature and high humidity at 40 ° C. and 90% RH, and it was confirmed that no corrosion of metallic calcium occurred even after 500 hours.
 (水蒸気透過率の測定)
 上記評価用セルを用いて、500時間経過前後Caの透過濃度の変化からCaと反応した水分量を求め、水蒸気透過率を求めた。
(Measurement of water vapor transmission rate)
Using the evaluation cell, the amount of water that reacted with Ca was determined from the change in the permeation concentration of Ca before and after 500 hours, and the water vapor transmission rate was determined.
 透過濃度測定には、コニカミノルタ社製の白黒透過濃度計 TM-5を用いた。透過濃度は、評価用セルの任意の4点で測定し、その平均値を算出した。 For transmission density measurement, a black and white transmission densitometer TM-5 manufactured by Konica Minolta was used. The transmission density was measured at any four points in the evaluation cell, and the average value was calculated.
 〔有機EL素子の作製〕
 (工程1-4:透明陽極の形成)
 得られたガスバリアー性フィルム基材1の保護フィルムを剥離したガスバリアー層上に、銀薄膜から構成される透明陽極を下記の方法に従って形成した。
[Production of organic EL elements]
(Step 1-4: Formation of transparent anode)
On the gas barrier layer from which the protective film of the obtained gas barrier film substrate 1 was peeled, a transparent anode composed of a silver thin film was formed according to the following method.
 尚、有機EL素子1の外形サイズは、60mm×150mmであり、発光部分のサイズは、40mm×130mmである。 In addition, the external size of the organic EL element 1 is 60 mm × 150 mm, and the size of the light emitting portion is 40 mm × 130 mm.
 ガスバリアー性フィルム基材1を、市販の真空蒸着装置の基材ホルダーに固定し、タングステン製の抵抗加熱ボートに銀(Ag)を装填し、真空蒸着装置の第1真空槽内に取り付けた。 The gas barrier film base material 1 was fixed to a base material holder of a commercially available vacuum deposition apparatus, and a resistance heating boat made of tungsten was charged with silver (Ag), and attached to the first vacuum chamber of the vacuum deposition apparatus.
 次に、第1真空槽を4×10-4Paまで減圧した後、銀の入った抵抗加熱ボートを通電して加熱した。これにより、蒸着速度0.1nm/秒~0.2nm/秒で厚さ15nmの銀からなる透明陽極を形成し、透明導電性フィルム1を作製した。 Next, after reducing the pressure in the first vacuum tank to 4 × 10 −4 Pa, the resistance heating boat containing silver was energized and heated. Thus, a transparent anode made of silver having a thickness of 15 nm was formed at a deposition rate of 0.1 nm / second to 0.2 nm / second, and a transparent conductive film 1 was produced.
 (工程1-5:有機機能層ユニット~陰極の形成)
 引き続き、市販の真空蒸着装置を用い、真空度1×10-4Paまで減圧した後、透明陽極まで形成した透明導電性フィルム1を移動させながら、下記に示す化合物HT-1を、蒸着速度0.1nm/秒で蒸着し、20nmの正孔輸送層(HTL)を設けた。
(Step 1-5: Organic functional layer unit to cathode formation)
Subsequently, after reducing the vacuum degree to 1 × 10 −4 Pa using a commercially available vacuum deposition apparatus, the compound HT-1 shown below was deposited at a deposition rate of 0 while moving the formed transparent conductive film 1 to the transparent anode. Evaporation was performed at a rate of 1 nm / second, and a 20 nm hole transport layer (HTL) was provided.
 次に、下記に示す化合物A-3(青色発光ドーパント)、化合物A-1(緑色発光ドーパント)、化合物A-2(赤色発光ドーパント)及び化合物H-1(ホスト化合物)を、化合物A-3が膜厚に対し線形に35質量%から5質量%になるように、成膜領域により蒸着速度を変化させ、化合物A-1と化合物A-2は膜厚に依存することなく各々0.2質量%の濃度になるように、蒸着速度0.0002nm/秒で、化合物H-1は64.6質量%から94.6質量%になるように、成膜領域により蒸着速度を変化させて、総層厚が70nmになるよう共蒸着して発光層を形成した。 Next, Compound A-3 (blue light-emitting dopant), Compound A-1 (green light-emitting dopant), Compound A-2 (red light-emitting dopant) and Compound H-1 (host compound) shown below are converted into Compound A-3. The vapor deposition rate is changed depending on the film formation region so that is linearly from 35% by mass to 5% by mass with respect to the film thickness. The deposition rate was changed depending on the film formation region so that the concentration was at a deposition rate of 0.0002 nm / second and the compound H-1 was at a deposition rate of 0.002 nm / second so that the concentration would be 6% by mass to 94.6% by mass. A light emitting layer was formed by co-evaporation so that the total layer thickness was 70 nm.
 その後、下記化合物ET-1を膜厚30nmで蒸着して電子輸送層を形成し、更にフッ化カリウム(KF)を厚さ2nmで形成して、有機機能層ユニットを形成した。次いで、アルミニウム110nmを蒸着して陰極を形成した。 Thereafter, the following compound ET-1 was vapor-deposited with a film thickness of 30 nm to form an electron transport layer, and further potassium fluoride (KF) was formed with a thickness of 2 nm to form an organic functional layer unit. Subsequently, aluminum 110nm was vapor-deposited and the cathode was formed.
 なお、上記化合物HT-1、化合物A-1~3、化合物H-1、及び、化合物ET-1は、以下に示す化合物である。 The compound HT-1, compounds A-1 to A-3, compound H-1 and compound ET-1 are the compounds shown below.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (工程1-6:封止工程)
 次に、封止基材として、透明導電性フィルム1の作製に用いた、ガスバリアー性フィルム基材1使用し、この封止基材の片面に封止樹脂層として熱硬化型の接着剤(エポキシ系樹脂)を厚さ20μmで貼合した封止部材を用いて、陰極までを形成した試料に重ね合わせた。このとき、透明陽極及び陰極の引き出し電極の端部が外に出るように、封止部材の封止樹脂層形成面と、有機EL素子の有機機能層ユニット面とを重ね合わせた。
(Step 1-6: Sealing step)
Next, the gas barrier film base material 1 used for the production of the transparent conductive film 1 is used as a sealing base material, and a thermosetting adhesive (as a sealing resin layer on one side of the sealing base material ( A sealing member in which an epoxy resin) was bonded to a thickness of 20 μm was used to superimpose the sample up to the cathode. At this time, the sealing resin layer forming surface of the sealing member and the organic functional layer unit surface of the organic EL element were overlapped so that the end portions of the transparent anode and the lead electrode of the cathode were exposed.
 次に、上記積層体を減圧装置内に配置し、90℃で0.1MPaの減圧条件下で、重ね合わせた樹脂基材~陰極間で形成した試料と封止部材とに押圧をかけて5分間保持した。続いて、積層体を大気圧環境に戻し、さらに90℃で30分間加熱して接着剤を硬化させた。 Next, the laminate is placed in a decompression device, and the sample formed between the superposed resin base material and the cathode and the sealing member are pressed under a decompression condition of 0.1 MPa at 90 ° C. Hold for a minute. Subsequently, the laminate was returned to the atmospheric pressure environment and further heated at 90 ° C. for 30 minutes to cure the adhesive.
 上記封止工程は、含水率が1ppm以下の窒素雰囲気で、JIS B 9920に準拠して測定した清浄度がクラス100で、露点温度が-80℃以下、酸素濃度が0.8ppm以下の大気圧下で行った。なお、透明陽極及び陰極からの引き出し配線等の形成に関する記載は省略してある。 The sealing step is an atmospheric pressure with a cleanness measured in accordance with JIS B 9920, class 100, dew point temperature of −80 ° C. or less, and oxygen concentration of 0.8 ppm or less in a nitrogen atmosphere with a moisture content of 1 ppm or less. Went under. In addition, the description regarding formation of the extraction wiring from a transparent anode and a cathode is abbreviate | omitted.
 次いで、基板側、及び、封止側のガスバリアー性フィルム基材1のサポートフィルムを剥離した。 Next, the support film of the gas barrier film substrate 1 on the substrate side and the sealing side was peeled off.
 以上により、全厚が約75μmの白色発光装置である、有機EL素子1を作製した。 Thus, an organic EL element 1 which is a white light emitting device having a total thickness of about 75 μm was produced.
 《有機EL素子2の作製》
 下記の方法に従って、有機EL素子2を作製した。
<< Production of Organic EL Element 2 >>
The organic EL element 2 was produced according to the following method.
 〔透明導電性フィルム1の作製〕
 (工程2-1:樹脂基材の準備)
 有機EL素子1と同様にした。
[Preparation of transparent conductive film 1]
(Step 2-1: Preparation of resin base material)
The same as the organic EL element 1 was used.
 (工程2-2:塗布ガスバリアー層1の形成)
 パーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NN120-20)と、アミン触媒(N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン(TMDAH))を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NAX120-20)とを、4:1(質量比)の割合で混合し、さらに乾燥膜厚調整のためジブチルエーテルで希釈し、固形分8質量%の塗布液を調製した。
(Step 2-2: Formation of coating gas barrier layer 1)
A dibutyl ether solution containing 20% by mass of perhydropolysilazane (manufactured by AZ Electronic Materials Co., Ltd., NN120-20) and an amine catalyst (N, N, N ′, N′-tetramethyl-1,6-diaminohexane (TMDAH) )) And a dibutyl ether solution (NAX120-20, manufactured by AZ Electronic Materials Co., Ltd.) containing 20% by mass of perhydropolysilazane in a ratio of 4: 1 (mass ratio), and further for adjusting the dry film thickness Dilution with dibutyl ether prepared a coating solution having a solid content of 8% by mass.
 塗布ガスバリアー層の形成には、塗布面側保護フィルム剥離、塗布、乾燥、エキシマ改質処理、塗布面側保護フィルム貼合を連続しておこなえるロール・トゥ・ロール方式の塗布装置を用いた。 For the formation of the coating gas barrier layer, a roll-to-roll type coating apparatus capable of successively performing coating surface side protective film peeling, coating, drying, excimer modification treatment, and coating surface side protective film bonding was used.
 上記基材上にダイコーターを用いて、上記塗布液を、乾燥後の厚さが250nmになるよう塗布し、ドライヤーゾーンにおいて80℃で乾燥した。 The coating solution was applied on the base material using a die coater so that the thickness after drying was 250 nm and dried at 80 ° C. in a dryer zone.
 次いで、連続して、乾燥した塗膜に対して、波長172nmのXeエキシマランプを有する真空紫外線照射ゾーンにおいて、照射エネルギーを6.0J/cmとした条件で真空紫外線照射処理を行って、塗布ガスバリアー層1を形成した。この際、照射雰囲気は60℃に加熱した窒素で置換し、酸素濃度は0.1体積%以下とした。ここまで、塗布面に搬送ロール等の接触はなかった。 Subsequently, a vacuum ultraviolet ray irradiation treatment was performed on the dried coating film continuously in a vacuum ultraviolet ray irradiation zone having an Xe excimer lamp having a wavelength of 172 nm under the condition that the irradiation energy was 6.0 J / cm 2. A gas barrier layer 1 was formed. At this time, the irradiation atmosphere was replaced with nitrogen heated to 60 ° C., and the oxygen concentration was set to 0.1% by volume or less. Up to this point, there was no contact of the transport roll or the like on the coating surface.
 次いで、塗布面に保護フィルムを貼合せずに巻き取った。 Next, the coated surface was wound up without attaching a protective film.
 (工程2-3:遷移金属含有層の形成)
 工程2-2で得られた塗布ガスバリアー層の上に、ロール・トゥ・ロール方式のマグネトロンスパッタ装置を用い、遷移金属含有層である、酸化ニオブ層を形成した。
(Step 2-3: Formation of transition metal-containing layer)
A niobium oxide layer, which is a transition metal-containing layer, was formed on the coating gas barrier layer obtained in step 2-2 using a roll-to-roll magnetron sputtering apparatus.
 ターゲットとして、市販の酸素欠損型酸化ニオブターゲットを用い、DCパルス方式によりスパッタを行った。出力密度を4.0kW/cm、T-S間距離を100mm、製膜圧力を0.2Pa、プロセスガスとしてアルゴンと酸素を用い、酸素比率を10%とした。また、膜厚が15nmとなるように、搬送速度を調整した。 A commercially available oxygen deficient niobium oxide target was used as a target, and sputtering was performed by a DC pulse method. The power density was 4.0 kW / cm 2 , the TS distance was 100 mm, the film forming pressure was 0.2 Pa, argon and oxygen were used as process gases, and the oxygen ratio was 10%. Moreover, the conveyance speed was adjusted so that the film thickness was 15 nm.
 (工程2-4:塗布ガスバリアー層2の形成)
 固形分4質量%とした以外は、塗布ガスバリアー層1と同様にして塗布液を調製した。また、乾燥後の厚さが110nmになるよう塗布した以外は、塗布ガスバリアー層1と同様にして、塗布ガスバリアー層1を形成した。
(Step 2-4: Formation of coating gas barrier layer 2)
A coating solution was prepared in the same manner as the coating gas barrier layer 1 except that the solid content was 4% by mass. Also, the coating gas barrier layer 1 was formed in the same manner as the coating gas barrier layer 1 except that the thickness after drying was 110 nm.
 次いで、塗布面に保護フィルムとして自己粘着OPPフィルム(フタムラ化学社製、FSA010M)を貼合した後、巻き取った。 Next, a self-adhesive OPP film (manufactured by Futamura Chemical Co., Ltd., FSA010M) was bonded to the coated surface as a protective film, and then wound up.
 このようにして、合計の厚さが375nmであるガスバリアー層を有するガスバリアー性フィルム基材2を得た。 Thus, a gas barrier film substrate 2 having a gas barrier layer having a total thickness of 375 nm was obtained.
 ガスバリアー性フィルム基材2の水蒸気透過率を、Ca法を用いて測定した。測定条件は、ガスバリアー性フィルム基材1の測定と同じ40℃、90%RHとした。得られた水蒸気透過率は、6.8×10-6g/(m・24h)であった。 The water vapor permeability of the gas barrier film substrate 2 was measured using the Ca method. The measurement conditions were set to 40 ° C. and 90% RH as in the measurement of the gas barrier film substrate 1. The water vapor transmission rate obtained was 6.8 × 10 −6 g / (m 2 · 24 h).
 また、ガスバリアーの厚さ方向の組成プロファイルをXPS法により分析した。塗布ガスバリアー層1と遷移金属含有層との界面1、及び、遷移金属含有層と塗布ガスバリアー層2との界面2に、SiとNbとを含有する混合領域が形成されていることを確認した。また、混合領域における酸素欠損度の最小値を関係式(2)を用いて求めたところ、界面1では、0.57、界面2では、0.60であった。 Moreover, the composition profile in the thickness direction of the gas barrier was analyzed by the XPS method. Confirm that a mixed region containing Si and Nb is formed at the interface 1 between the coating gas barrier layer 1 and the transition metal-containing layer and at the interface 2 between the transition metal-containing layer and the coating gas barrier layer 2. did. Further, when the minimum value of the oxygen deficiency in the mixed region was obtained using the relational expression (2), it was 0.57 at the interface 1 and 0.60 at the interface 2.
 〈ガスバリアー層の厚さ方向の組成分布の測定〉
 XPS分析により、ガスバリアー層の厚さ方向の組成分布プロファイルを測定した。なお、XPS分析条件は以下の通りである。
<Measurement of composition distribution in the thickness direction of the gas barrier layer>
The composition distribution profile in the thickness direction of the gas barrier layer was measured by XPS analysis. The XPS analysis conditions are as follows.
 〈XPS分析条件〉
 ・装置:アルバックファイ社製QUANTERASXM
 ・X線源:単色化Al-Kα
 ・スパッタイオン:Ar(2keV)
 ・デプスプロファイル:SiO2換算スパッタ厚さで、所定の厚さ間隔で測定を繰り返し、深さ方向のデプスプロファイルを得た。この厚さ間隔は、1nmとした(深さ方向に1nmごとのデータが得られる)
 ・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量した。データ処理は、アルバックファイ社製のMultiPakを用いた。なお、分析した元素は、Si、Nb、Ta、Al、O、N、Cである。
<XPS analysis conditions>
・ Device: QUANTERASXM manufactured by ULVAC-PHI
・ X-ray source: Monochromatic Al-Kα
・ Sputtering ion: Ar (2 keV)
Depth profile: Measurement was repeated at a predetermined thickness interval with a SiO2 equivalent sputtering thickness, and a depth profile in the depth direction was obtained. The thickness interval was 1 nm (data for every 1 nm is obtained in the depth direction)
Quantification: The background was determined by the Shirley method, and quantified using the relative sensitivity coefficient method from the obtained peak area. For data processing, MultiPak manufactured by ULVAC-PHI was used. The analyzed elements are Si, Nb, Ta, Al, O, N, and C.
 ただし、今回作成した試料において、(M1)と(M2)の含有する領域ではAlは検出されなかった。 However, in the sample prepared this time, Al was not detected in the region containing (M1) and (M2).
 〈混合領域の厚さの測定〉
 遷移金属がNbである場合を例に取ると、上記XPS組成分析から得られたデータから、ガスバリアー層の組成は、(Si)(Nb)で表すことができる。第1層及び第2層を積層した態様においては、第1層と第2層との界面領域で、非遷移金属であるSiと遷移金属であるNbとが共存し、かつ遷移金属Nb/Siの原子数比率の値xが、0.02≦x≦50の範囲内にある領域を「混合領域」とし、当該領域の有無とその厚さ(nm)を測定し、表に記載した。ガスバリアー層を非遷移金属であるSiと遷移金属であるNb(又はTa)の複合酸化物層として形成した態様の場合も同様の測定を行い、当該領域の厚さ(nm)を表に記載した。
<Measurement of mixing area thickness>
Taking the case where the transition metal is Nb as an example, the composition of the gas barrier layer can be represented by (Si) (Nb) x O y N z from the data obtained from the XPS composition analysis. In the aspect in which the first layer and the second layer are laminated, Si as a non-transition metal and Nb as a transition metal coexist in the interface region between the first layer and the second layer, and the transition metal Nb / Si. A region where the value x of the number ratio of atoms in the range of 0.02 ≦ x ≦ 50 was defined as a “mixed region”, and the presence / absence of the region and its thickness (nm) were measured and listed in the table. The same measurement was performed in the case where the gas barrier layer was formed as a composite oxide layer of Si, which is a non-transition metal, and Nb (or Ta), which is a transition metal, and the thickness (nm) of the region is listed in the table. did.
 〈混合領域の酸素欠損指標の計算〉
 上記XPS分析データを用いて、各測定点における(2y+3z)/(a+bx)の値を計算した。ここで、非遷移金属はSiであるため、a=4、また、遷移金属はNbもしくはTaであるため、a=5である。(2y+3z)/(a+bx)の値の最小値を求め、これを酸素欠損度指標として、表に記載した。(2y+3z)/(a+bx)<1.0となる場合、酸素欠損の状態であることを示す。
<Calculation of oxygen deficiency index in mixed region>
Using the XPS analysis data, a value of (2y + 3z) / (a + bx) at each measurement point was calculated. Here, since the non-transition metal is Si, a = 4, and since the transition metal is Nb or Ta, a = 5. The minimum value of the value of (2y + 3z) / (a + bx) was determined and listed in the table as an oxygen deficiency index. When (2y + 3z) / (a + bx) <1.0, this indicates an oxygen deficient state.
 〔有機EL素子の作製〕
 (工程2-5:透明陽極の形成)
 ガスバリアー性フィルム基材2を用いた以外は、有機EL素子1と同様にした。
[Production of organic EL elements]
(Step 2-5: Formation of transparent anode)
The same procedure as in the organic EL element 1 was performed except that the gas barrier film substrate 2 was used.
 (工程2-6:有機機能層ユニット~陰極の形成)
 ガスバリアー性フィルム基材2を用いた以外は、有機EL素子1と同様にした。
(Step 2-6: Formation of organic functional layer unit to cathode)
The same procedure as in the organic EL element 1 was performed except that the gas barrier film substrate 2 was used.
 (工程2-7:封止工程)
 次に、封止基材として、ガスバリアー性フィルム基材2を用いた以外は、有機EL素子1と同様にした。
(Step 2-7: Sealing step)
Next, it was made to be the same as that of the organic EL element 1 except that the gas barrier film substrate 2 was used as the sealing substrate.
 以上により、全厚が約73μmの白色発光装置である、有機EL素子2を作製した。 Thus, an organic EL element 2 which is a white light emitting device having a total thickness of about 73 μm was produced.
 有機EL素子1、有機EL素子2ともに、初期発光状態は良好で、ダークスポットの発生はなかった。また、85℃、85%RHの環境下に100時間保存した後も、ダークスポットの発生はなかった。 Both the organic EL element 1 and the organic EL element 2 had good initial light emission state and no dark spots were generated. Also, no dark spots were generated after storage for 100 hours in an environment of 85 ° C. and 85% RH.
 実施例2
 折り畳み形態の発光装置を想定した評価を行った。
Example 2
Evaluation assuming a light emitting device in a folded form was performed.
 図2A、2Bのような折り畳み形態の発光装置を模した発光装置を作成した。 A light emitting device simulating a folded light emitting device as shown in FIGS. 2A and 2B was created.
 折り畳み時に、発光面が外側に曲げられた部位Aと発光面が内側に曲げられた部位Bとを有し、前記部位Aと部位Bとは曲率の変曲点を介して連続して存在し、かつ、前記部位Aの曲率半径Arに対する前記部位Bの曲率半径Brの比の値(Br/Ar)が、0.4~1.0の範囲内になるように、折り畳み時に屈曲部にあてがわれるヒンジ部を有する装置をタイプ(1)(図2A)とし、屈曲部にヒンジ部がない装置をタイプ(2)(図2B)として、ヒンジ部の押し付け位置を調節して前記部位Aと部位Bの曲率半径が表1の値となるように変えて8種の発光装置を作成した。ヒンジ部の長さは16mmである。ヒンジ部を有しない装置であるタイプ(2)の場合は、部位Bの最小曲率半径が1mm未満であった。 At the time of folding, it has a portion A where the light emitting surface is bent outward and a portion B where the light emitting surface is bent inward, and the portion A and the portion B are continuously present via an inflection point of curvature. The ratio of the radius of curvature Br of the part B to the radius of curvature Ar of the part A (Br / Ar) is within the range of 0.4 to 1.0 and is applied to the bent part during folding. A device having a hinge part to be peeled is a type (1) (FIG. 2A), and a device having no hinge part at a bent part is a type (2) (FIG. 2B). Eight types of light-emitting devices were produced by changing the radius of curvature of the part B to the values shown in Table 1. The length of the hinge part is 16 mm. In the case of the type (2) which is a device having no hinge part, the minimum curvature radius of the part B was less than 1 mm.
 各発光装置について、平に伸ばした状態から支持筐体の面を合わせる折り畳みを5000回行った後、及び折り畳みを10000回行った後に発光させて、ヒンジ部における発光部のダークスポット発生の有無を、下記指標1~5にしたがって評価した。 For each light-emitting device, after performing folding to match the surface of the support housing 5000 times from a flat state, and after performing folding 10,000 times, light is emitted to determine whether or not dark spots occur in the light-emitting portion at the hinge portion. Evaluation was made according to the following indices 1 to 5.
 5:直径100μm以上のダークスポットの発生なし
 4:直径100μm以上のダークスポットの発生が1~2個
 3:直径100μm以上のダークスポットの発生が3~5個
 2:直径100μm以上のダークスポットの発生が6~10個
 1:直径100μm以上のダークスポットの発生が11個以上
Figure JPOXMLDOC01-appb-T000003
5: No generation of dark spots with a diameter of 100 μm or more 4: Generation of 1 to 2 dark spots with a diameter of 100 μm or more 3: Generation of 3 to 5 dark spots with a diameter of 100 μm or more 2: Dark spots with a diameter of 100 μm or more 6-10 occurrences: 11 occurrences of dark spots with a diameter of 100 μm or more
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、本発明の発光装置は、折り畳みによるダークスポットの発生がほとんどなく、良好であった。特に、ガスバリアー層に遷移金属と非遷移金属の混合領域を有するガスバリアー性フィルムを用いた発光装置は、良好な結果を示した。 As shown in Table 1, the light emitting device of the present invention was good with almost no dark spots due to folding. In particular, a light emitting device using a gas barrier film having a mixed region of transition metal and non-transition metal in the gas barrier layer showed good results.
 実施例3
 巻き取り形態の発光装置を想定した評価を行った。
Example 3
Evaluation was made assuming a light-emitting device in a winding form.
 支持部材として、厚さ100μmのスチールシートを用い、これに上記作製した有機EL素子を貼合して、有機EL素子を外側にして、半径8mmの巻き取り軸に、長手方向に巻き取る形態の、巻き取り形態の発光装置を模した装置を4種作成した。 A steel sheet having a thickness of 100 μm is used as a supporting member, the organic EL element produced above is bonded to the steel sheet, the organic EL element is placed outside, and a winding shaft having a radius of 8 mm is wound in the longitudinal direction. Four types of devices simulating a light emitting device in a winding form were prepared.
 タイプ(3)の装置は、スチールシートに対して、巻き取り軸に遠い側の短辺部10mm幅を熱硬化型の接着剤(エポキシ系樹脂、100μm厚)で接着し、90℃30分の硬化を行って固定部(固定端)とした。その他の部分は、100μm厚のアクリル系粘着剤シート(日東電工社製)を用いて貼合し、巻き取り軸に近い側の短辺部は自由端とした(図4A参照。右端が固定端。)。 The type (3) apparatus has a short side 10 mm width on the side far from the take-up shaft attached to a steel sheet with a thermosetting adhesive (epoxy resin, 100 μm thickness), 90 ° C. for 30 minutes. Curing was performed to obtain a fixed portion (fixed end). The other part was bonded using a 100 μm thick acrylic adhesive sheet (manufactured by Nitto Denko Corporation), and the short side near the take-up shaft was a free end (see FIG. 4A. The right end is the fixed end) .)
 タイプ(4)の装置は、スチールシートに対して、全面を熱硬化型の接着剤(エポキシ系樹脂、100μm厚)で接着し、90℃30分の硬化を行って固定した。 The type (4) apparatus was fixed by attaching the entire surface to a steel sheet with a thermosetting adhesive (epoxy resin, 100 μm thickness), curing at 90 ° C. for 30 minutes.
 有機EL素子と装置タイプを組み合わせて発光装置11~14を作成して、各発光装置に対して、100回の巻き取り、巻き戻しを行った後に発光させて、発光状態を確認した。結果を表2に示す。 The light-emitting devices 11 to 14 were prepared by combining the organic EL element and the device type, and the light-emitting state was confirmed by performing light-up after 100 winding and rewinding of each light-emitting device. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2に示したように、本発明の発光装置は、巻き取り、巻き戻しを行っても良好な発光状態を維持し、ダークスポットの発生もなかった。一方、可動部を有しない比較例の発光装置は、巻き取りで有機EL素子が引き伸ばされたことによって形成された、ガスバリアー層クラックに起因すると考えられる線状のダークスポットが多発した。 As shown in Table 2, the light-emitting device of the present invention maintained a good light-emitting state even when it was wound and rewound, and no dark spot was generated. On the other hand, in the light emitting device of the comparative example having no movable part, linear dark spots, which are thought to be caused by gas barrier layer cracks, formed by stretching the organic EL element by winding were frequently generated.
 本発明の発光装置は、携帯時の小型化が可能で、電子デバイス等のパッケージ、光電変換素子(太陽電池素子)や有機EL素子、液晶表示素子等の等の電子デバイスなど、様々な用途に使用することができる。 The light-emitting device of the present invention can be miniaturized when being carried, and can be used in various applications such as electronic devices such as packages for electronic devices, photoelectric conversion elements (solar cell elements), organic EL elements, liquid crystal display elements, and the like. Can be used.
 1 発光装置
 2 発光面側樹脂基材
 3 有機発光素子
 4 背面側基材
 5 ガスバリアー層
 6 電極
 7 有機機能層ユニット
 8 封止部材
 A 発光面が外側に曲げられた部位
 B 発光面が内側に曲げられた部位
 L 発光部
 10、11 支持筐体
 12 ヒンジ部
 21 支持部材
 22 粘着剤
 23 筐体
 24 巻き取り部材
 25 固定部(固定端)
 26 制御部
 27 自由端
 101 作製基板
 103 剥離層
 105 被剥離層
 107 接合層
 109 基板
DESCRIPTION OF SYMBOLS 1 Light-emitting device 2 Light emission surface side resin base material 3 Organic light emitting element 4 Back side base material 5 Gas barrier layer 6 Electrode 7 Organic functional layer unit 8 Sealing member A The site | part where the light emission surface was bent outside B Light emission surface inside Bent part L Light emitting part 10, 11 Supporting housing 12 Hinge part 21 Supporting member 22 Adhesive 23 Housing 24 Winding member 25 Fixed part (fixed end)
26 Control Unit 27 Free End 101 Fabrication Substrate 103 Peeling Layer 105 Peeled Layer 107 Bonding Layer 109 Substrate

Claims (12)

  1.  発光面側樹脂基材、有機発光素子及び背面側基材がこの順で積層された発光装置であって、前記発光面側樹脂基材と有機発光素子間、又は前記有機発光素子と背面側基材間の少なくともいずれか一方に無機素材を主成分とするガスバリアー層を有し、かつ、発光装置が、支持部材上に固定部と可動部を有して支持され、さらに、携帯時に前記有機発光素子の前記可動部が形成する曲面の曲率半径が、1.0~10.0mmの範囲内の曲面部を有することを特徴とする発光装置。 A light emitting device in which a light emitting surface side resin base material, an organic light emitting element, and a back surface side base material are laminated in this order, and between the light emitting surface side resin base material and the organic light emitting element or between the organic light emitting element and the back surface side base At least one of the materials has a gas barrier layer containing an inorganic material as a main component, and the light emitting device is supported on a support member with a fixed portion and a movable portion. A light-emitting device having a curved surface portion having a radius of curvature of a curved surface formed by the movable portion of the light-emitting element in a range of 1.0 to 10.0 mm.
  2.  前記携帯時、折り畳み形態を有し、前記発光面側樹脂基材同士が間隙2mm未満で対向し、かつ、前記有機発光素子の前記可動部が形成する曲面が、発光面が外側に曲げられた部位Aと発光面が内側に曲げられた部位Bとを有し、前記部位Aと部位Bとは曲率の変曲点を介して連続して存在し、かつ、前記可動部の長さをLとし、前記可動部が形成するループの、前記支持部材からの突き出し長さをCとした時に、C/Lが0.3以上であり、かつ、前記部位Aの最小曲率半径Arに対する前記部位Bの最小曲率半径Brの比の値(Br/Ar)が、0.4~1.1の範囲内であることを特徴とする請求項1に記載の発光装置。 At the time of carrying, it has a folded form, the light emitting surface side resin bases face each other with a gap of less than 2 mm, and the curved surface formed by the movable part of the organic light emitting element has its light emitting surface bent outward. A portion A and a portion B in which the light emitting surface is bent inward; the portion A and the portion B are continuously present via an inflection point of curvature; and the length of the movable portion is L And when the protruding length of the loop formed by the movable portion from the support member is C, C / L is 0.3 or more, and the part B with respect to the minimum curvature radius Ar of the part A 2. The light emitting device according to claim 1, wherein the ratio value (Br / Ar) of the minimum curvature radius Br is in a range of 0.4 to 1.1.
  3.  前記携帯時、巻き取り形態を有し、剛性を有する前記支持部材上に前記背面側基材が粘弾性を有するシート状部材を介して設置され、前記発光面側樹脂基材が外側にして巻き取られ、かつ、発光装置の巻き取り外側の端部が、相対的に位置がずれないように固定された前記固定部であり、巻き取り内側が、相対的に位置が変化可能な前記可動部であることを特徴とする請求項1に記載の発光装置。 At the time of carrying, it has a winding form, and the back side substrate is installed on a rigid support member via a viscoelastic sheet-like member, and the light emitting surface side resin substrate is wound outside. The movable part that is taken and the end part on the outer side of the winding of the light emitting device is fixed so that the position is not relatively displaced, and the position of the inner side of the winding is relatively variable The light emitting device according to claim 1, wherein:
  4.  前記ガスバリアー層の総厚さが、20~1000nmの範囲内であることを特徴とする請求項1から請求項3までのいずれか一項に記載の発光装置。 The light emitting device according to any one of claims 1 to 3, wherein a total thickness of the gas barrier layer is in a range of 20 to 1000 nm.
  5.  前記有機発光素子の前記可動部が形成する前記曲面の曲率半径が、1.0~5.0mmの範囲内の曲面部を有することを特徴とする請求項1から請求項4までのいずれか一項に記載の発光装置。 5. The curved surface portion formed by the movable portion of the organic light emitting element has a curved surface portion within a range of 1.0 to 5.0 mm, according to any one of claims 1 to 4. The light emitting device according to item.
  6.  前記ガスバリアー層が、少なくとも厚さ方向において、非遷移金属M1及び遷移金属M2を含有する領域であって、前記非遷移金属M1に対する遷移金属M2の原子数比の値(M2/M1)が、0.02~49の範囲内にある混合領域を、厚さ方向に連続して5nm以上有することを特徴とする請求項1から請求項5までのいずれか一項に記載の発光装置。 The gas barrier layer is a region containing the non-transition metal M1 and the transition metal M2 at least in the thickness direction, and the value of the atomic ratio of the transition metal M2 to the non-transition metal M1 (M2 / M1) is The light-emitting device according to any one of claims 1 to 5, wherein the mixed region in the range of 0.02 to 49 has a thickness of 5 nm or more continuously in the thickness direction.
  7.  前記ガスバリアー層が、前記遷移金属M2を金属の主成分として含有する領域と前記非遷移金属M1を金属の主成分として含有する領域との間に、前記混合領域を有すること特徴とする請求項6に記載の発光装置。 The gas barrier layer has the mixed region between a region containing the transition metal M2 as a main component of the metal and a region containing the non-transition metal M1 as a main component of the metal. 6. The light emitting device according to 6.
  8.  前記ガスバリアー層内の厚さ方向における全領域が、前記遷移金属及び非遷移金属が含有されている混合領域であることを特徴とする請求項6又は請求項7に記載の発光装置。 The light emitting device according to claim 6 or 7, wherein the entire region in the thickness direction in the gas barrier layer is a mixed region containing the transition metal and the non-transition metal.
  9.  前記混合領域の組成を、下記化学組成式(1)で表したとき、下記関係式(2)を満たすことを特徴とする請求項6から請求項8までのいずれか一項に記載の発光装置。
    化学組成式(1): (M1)(M2)
    関係式(2): (2y+3z)/(a+bx)<1.0
    (ただし式中、M1:非遷移金属、M2:遷移金属、O:酸素、N:窒素、
       x、y、z:化学量論係数、 a:M1の最大価数、b:M2の最大価数を表す。)
    The light emitting device according to any one of claims 6 to 8, wherein when the composition of the mixed region is expressed by the following chemical composition formula (1), the following relational expression (2) is satisfied. .
    Chemical composition formula (1): (M1) (M2) x O y N z
    Relational expression (2): (2y + 3z) / (a + bx) <1.0
    (Wherein, M1: non-transition metal, M2: transition metal, O: oxygen, N: nitrogen,
    x, y, z: stoichiometric coefficient, a: maximum valence of M1, b: maximum valence of M2. )
  10.  前記非遷移金属が、ケイ素であることを特徴とする請求項6から請求項9までのいずれか一項に記載の発光装置。 The light emitting device according to any one of claims 6 to 9, wherein the non-transition metal is silicon.
  11.  前記遷移金属が、ニオブ(Nb)、タンタル(Ta)、及びバナジウム(V)から選択されることを特徴とする請求項6から請求項10までのいずれか一項に記載の発光装置。 The light emitting device according to any one of claims 6 to 10, wherein the transition metal is selected from niobium (Nb), tantalum (Ta), and vanadium (V).
  12.  有機エレクトロルミネッセンス素子を具備していることを特徴とする請求項1から請求項11までのいずれか一項に記載の発光装置。 The light emitting device according to any one of claims 1 to 11, further comprising an organic electroluminescence element.
PCT/JP2016/084528 2015-11-24 2016-11-22 Light-emitting device WO2017090577A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680068450.1A CN108293279B (en) 2015-11-24 2016-11-22 Light emitting device
JP2017552415A JP6773048B2 (en) 2015-11-24 2016-11-22 Light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015228388 2015-11-24
JP2015-228388 2015-11-24

Publications (1)

Publication Number Publication Date
WO2017090577A1 true WO2017090577A1 (en) 2017-06-01

Family

ID=58764320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084528 WO2017090577A1 (en) 2015-11-24 2016-11-22 Light-emitting device

Country Status (4)

Country Link
JP (1) JP6773048B2 (en)
CN (1) CN108293279B (en)
TW (1) TWI638448B (en)
WO (1) WO2017090577A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010106590A1 (en) * 2009-03-17 2010-09-23 シャープ株式会社 Display device
JP2011020334A (en) * 2009-07-15 2011-02-03 Dainippon Printing Co Ltd Gas-barrier sheet, method for producing gas-barrier sheet, seal, and apparatus
JP2013232320A (en) * 2012-04-27 2013-11-14 Konica Minolta Inc Electronic device and manufacturing method of the same
JP2014120479A (en) * 2012-12-17 2014-06-30 Universal Display Corp Manufacture of flexible organic electronic device
JP2015064570A (en) * 2013-08-30 2015-04-09 株式会社半導体エネルギー研究所 Display device and manufacturing method of the same
JP2015152922A (en) * 2014-02-12 2015-08-24 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Rollable display apparatus
JP2015173249A (en) * 2013-11-06 2015-10-01 株式会社半導体エネルギー研究所 Peeling method and light-emitting device
WO2016125477A1 (en) * 2015-02-04 2016-08-11 シャープ株式会社 Display device and method for producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3880497B2 (en) * 2002-09-27 2007-02-14 Necインフロンティア株式会社 LAN communication system
KR102039496B1 (en) * 2013-08-19 2019-11-04 삼성디스플레이 주식회사 Foldable display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010106590A1 (en) * 2009-03-17 2010-09-23 シャープ株式会社 Display device
JP2011020334A (en) * 2009-07-15 2011-02-03 Dainippon Printing Co Ltd Gas-barrier sheet, method for producing gas-barrier sheet, seal, and apparatus
JP2013232320A (en) * 2012-04-27 2013-11-14 Konica Minolta Inc Electronic device and manufacturing method of the same
JP2014120479A (en) * 2012-12-17 2014-06-30 Universal Display Corp Manufacture of flexible organic electronic device
JP2015064570A (en) * 2013-08-30 2015-04-09 株式会社半導体エネルギー研究所 Display device and manufacturing method of the same
JP2015173249A (en) * 2013-11-06 2015-10-01 株式会社半導体エネルギー研究所 Peeling method and light-emitting device
JP2015152922A (en) * 2014-02-12 2015-08-24 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Rollable display apparatus
WO2016125477A1 (en) * 2015-02-04 2016-08-11 シャープ株式会社 Display device and method for producing same

Also Published As

Publication number Publication date
CN108293279B (en) 2019-12-31
TW201733093A (en) 2017-09-16
JP6773048B2 (en) 2020-10-21
TWI638448B (en) 2018-10-11
JPWO2017090577A1 (en) 2018-09-06
CN108293279A (en) 2018-07-17

Similar Documents

Publication Publication Date Title
WO2015083660A1 (en) Organic electroluminescence element
WO2014142036A1 (en) Gas barrier film, method for producing gas barrier film, and organic electroluminescent element
JP5895689B2 (en) Electronic device and manufacturing method thereof
JP5895684B2 (en) Method for producing gas barrier film, and method for producing electronic device using gas barrier film
WO2016143660A1 (en) Organic electroluminescent element
WO2017056635A1 (en) Organic electroluminescent element
WO2016063869A1 (en) Light extraction substrate, method for manufacturing light extraction substrate, organic electroluminescent element, and method for manufacturing organic electroluminescent element
JP2022010127A (en) Method for manufacturing gas barrier film, method for manufacturing transparent conductive member, and method for manufacturing organic electroluminescent element
JP5835082B2 (en) Sheet adhesive and electronic device using the same
JP2016219254A (en) Gas barrier film, transparent conductive member, and organic electroluminescent element
JP2016091793A (en) Organic electroluminescent device and method for manufacturing the same
WO2016163215A1 (en) Organic electroluminescent element
JP6409771B2 (en) Organic electroluminescence device and method for manufacturing the same
WO2017090577A1 (en) Light-emitting device
WO2014196329A1 (en) Organic electroluminescence element
JP6812429B2 (en) Light extraction film and organic electroluminescence light emitting device
WO2014185392A1 (en) Organic electroluminescence element
WO2017158920A1 (en) Organic electroluminescent element manufacturing method
WO2014126063A1 (en) Organic electroluminescent element and method for manufacturing organic electroluminescent element
WO2015005263A1 (en) Organic electroluminescent element, and production method therefor
JPWO2015115175A1 (en) Organic electroluminescence device and method for manufacturing the same
JP2021068679A (en) Electronic device and manufacturing method thereof
WO2016174950A1 (en) Organic electroluminescent element
WO2014208449A1 (en) Organic electroluminescent element and method for manufacturing same
JP2016190442A (en) Gas barrier film, transparent conductive member, and organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868524

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552415

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868524

Country of ref document: EP

Kind code of ref document: A1