WO2014196329A1 - Organic electroluminescence element - Google Patents
Organic electroluminescence element Download PDFInfo
- Publication number
- WO2014196329A1 WO2014196329A1 PCT/JP2014/062915 JP2014062915W WO2014196329A1 WO 2014196329 A1 WO2014196329 A1 WO 2014196329A1 JP 2014062915 W JP2014062915 W JP 2014062915W WO 2014196329 A1 WO2014196329 A1 WO 2014196329A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- organic
- transparent electrode
- light
- electrode
- Prior art date
Links
- 238000005401 electroluminescence Methods 0.000 title claims abstract description 118
- 239000010410 layer Substances 0.000 claims abstract description 501
- 239000000758 substrate Substances 0.000 claims abstract description 138
- 229910052751 metal Inorganic materials 0.000 claims abstract description 73
- 239000002184 metal Substances 0.000 claims abstract description 73
- 239000002346 layers by function Substances 0.000 claims abstract description 49
- 239000012463 white pigment Substances 0.000 claims abstract description 48
- 238000007789 sealing Methods 0.000 claims abstract description 40
- 239000011888 foil Substances 0.000 claims abstract description 25
- 229910052709 silver Inorganic materials 0.000 claims description 52
- 239000004332 silver Substances 0.000 claims description 52
- 229910052757 nitrogen Inorganic materials 0.000 claims description 29
- 239000011241 protective layer Substances 0.000 claims description 19
- 229910045601 alloy Inorganic materials 0.000 claims description 18
- 239000000956 alloy Substances 0.000 claims description 18
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 13
- 150000002894 organic compounds Chemical class 0.000 claims description 13
- 125000004429 atom Chemical group 0.000 claims description 11
- 229910052717 sulfur Inorganic materials 0.000 claims description 11
- 125000004434 sulfur atom Chemical group 0.000 claims description 11
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 150000004706 metal oxides Chemical class 0.000 claims description 6
- 230000004888 barrier function Effects 0.000 abstract description 40
- 238000000605 extraction Methods 0.000 abstract description 22
- 230000000694 effects Effects 0.000 abstract description 13
- 238000000034 method Methods 0.000 description 108
- 239000000463 material Substances 0.000 description 91
- 238000000576 coating method Methods 0.000 description 79
- 239000010408 film Substances 0.000 description 70
- 229920005989 resin Polymers 0.000 description 67
- 239000011347 resin Substances 0.000 description 67
- 239000011248 coating agent Substances 0.000 description 62
- 150000001875 compounds Chemical class 0.000 description 62
- -1 polyethylene terephthalate Polymers 0.000 description 54
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 52
- 239000000243 solution Substances 0.000 description 46
- 239000002585 base Substances 0.000 description 43
- 239000007789 gas Substances 0.000 description 42
- 238000002347 injection Methods 0.000 description 36
- 239000007924 injection Substances 0.000 description 36
- 238000010438 heat treatment Methods 0.000 description 35
- 230000005525 hole transport Effects 0.000 description 35
- 239000003822 epoxy resin Substances 0.000 description 33
- 238000004519 manufacturing process Methods 0.000 description 33
- 229920000647 polyepoxide Polymers 0.000 description 33
- 230000015572 biosynthetic process Effects 0.000 description 29
- 229920001709 polysilazane Polymers 0.000 description 29
- 229910052760 oxygen Inorganic materials 0.000 description 28
- 229910052782 aluminium Inorganic materials 0.000 description 27
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 27
- 239000001301 oxygen Substances 0.000 description 27
- 238000007740 vapor deposition Methods 0.000 description 27
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 26
- 229920000139 polyethylene terephthalate Polymers 0.000 description 24
- 239000005020 polyethylene terephthalate Substances 0.000 description 24
- 230000000903 blocking effect Effects 0.000 description 23
- 239000000203 mixture Substances 0.000 description 23
- 230000006870 function Effects 0.000 description 22
- 239000002019 doping agent Substances 0.000 description 21
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 20
- 229920000642 polymer Polymers 0.000 description 18
- 239000011230 binding agent Substances 0.000 description 17
- 239000012298 atmosphere Substances 0.000 description 16
- 238000001035 drying Methods 0.000 description 16
- 238000002834 transmittance Methods 0.000 description 14
- 239000000047 product Substances 0.000 description 13
- 239000000975 dye Substances 0.000 description 12
- 239000011112 polyethylene naphthalate Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000010409 thin film Substances 0.000 description 11
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 10
- 239000003054 catalyst Substances 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 239000011777 magnesium Substances 0.000 description 10
- 229910052749 magnesium Inorganic materials 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 9
- 230000035699 permeability Effects 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 238000004528 spin coating Methods 0.000 description 9
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 238000010030 laminating Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 239000002356 single layer Substances 0.000 description 8
- 239000004925 Acrylic resin Substances 0.000 description 7
- 239000004698 Polyethylene Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 229910002808 Si–O–Si Inorganic materials 0.000 description 7
- 150000001412 amines Chemical class 0.000 description 7
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 7
- 238000005266 casting Methods 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 229920000573 polyethylene Polymers 0.000 description 7
- 239000002243 precursor Substances 0.000 description 7
- 238000007639 printing Methods 0.000 description 7
- 238000006862 quantum yield reaction Methods 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 229920000178 Acrylic resin Polymers 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 239000004593 Epoxy Substances 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- 229910007991 Si-N Inorganic materials 0.000 description 6
- 229910006294 Si—N Inorganic materials 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 239000012790 adhesive layer Substances 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 6
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 6
- 239000004417 polycarbonate Substances 0.000 description 6
- 229920000515 polycarbonate Polymers 0.000 description 6
- 229920001721 polyimide Polymers 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 230000006798 recombination Effects 0.000 description 6
- 238000005215 recombination Methods 0.000 description 6
- 229920002799 BoPET Polymers 0.000 description 5
- 239000004642 Polyimide Substances 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 229910052738 indium Inorganic materials 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 239000011368 organic material Substances 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- 238000001771 vacuum deposition Methods 0.000 description 5
- 239000011787 zinc oxide Substances 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 4
- 229910010272 inorganic material Inorganic materials 0.000 description 4
- 230000001678 irradiating effect Effects 0.000 description 4
- 230000031700 light absorption Effects 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- SWELZOZIOHGSPA-UHFFFAOYSA-N palladium silver Chemical compound [Pd].[Ag] SWELZOZIOHGSPA-UHFFFAOYSA-N 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 229910052724 xenon Inorganic materials 0.000 description 4
- JHPBZFOKBAGZBL-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylprop-2-enoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)=C JHPBZFOKBAGZBL-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 229940126062 Compound A Drugs 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 239000004696 Poly ether ether ketone Substances 0.000 description 3
- 239000004697 Polyetherimide Substances 0.000 description 3
- 239000004721 Polyphenylene oxide Substances 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 229910008051 Si-OH Inorganic materials 0.000 description 3
- 229910006358 Si—OH Inorganic materials 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 239000004760 aramid Substances 0.000 description 3
- 229920003235 aromatic polyamide Polymers 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000004305 biphenyl Substances 0.000 description 3
- 235000010290 biphenyl Nutrition 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 125000003700 epoxy group Chemical group 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000005281 excited state Effects 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000009499 grossing Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 150000002484 inorganic compounds Chemical class 0.000 description 3
- CNQCVBJFEGMYDW-UHFFFAOYSA-N lawrencium atom Chemical compound [Lr] CNQCVBJFEGMYDW-UHFFFAOYSA-N 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000004843 novolac epoxy resin Substances 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 150000004866 oxadiazoles Chemical class 0.000 description 3
- 229920002492 poly(sulfone) Polymers 0.000 description 3
- 229920001230 polyarylate Polymers 0.000 description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 description 3
- 229920000570 polyether Polymers 0.000 description 3
- 229920002530 polyetherether ketone Polymers 0.000 description 3
- 229920001601 polyetherimide Polymers 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 150000002910 rare earth metals Chemical class 0.000 description 3
- 229930195734 saturated hydrocarbon Natural products 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 3
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 2
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical group C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 2
- OGGKVJMNFFSDEV-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 OGGKVJMNFFSDEV-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 239000005083 Zinc sulfide Substances 0.000 description 2
- NEIHULKJZQTQKJ-UHFFFAOYSA-N [Cu].[Ag] Chemical compound [Cu].[Ag] NEIHULKJZQTQKJ-UHFFFAOYSA-N 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- 238000007611 bar coating method Methods 0.000 description 2
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- 150000001925 cycloalkenes Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 2
- 238000007646 gravure printing Methods 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- YZASAXHKAQYPEH-UHFFFAOYSA-N indium silver Chemical compound [Ag].[In] YZASAXHKAQYPEH-UHFFFAOYSA-N 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- AFEQENGXSMURHA-UHFFFAOYSA-N oxiran-2-ylmethanamine Chemical compound NCC1CO1 AFEQENGXSMURHA-UHFFFAOYSA-N 0.000 description 2
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- UGFMBZYKVQSQFX-UHFFFAOYSA-N para-methoxy-n-methylamphetamine Chemical compound CNC(C)CC1=CC=C(OC)C=C1 UGFMBZYKVQSQFX-UHFFFAOYSA-N 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 150000003112 potassium compounds Chemical class 0.000 description 2
- 235000003270 potassium fluoride Nutrition 0.000 description 2
- 239000011698 potassium fluoride Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 238000007761 roller coating Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 235000021286 stilbenes Nutrition 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 235000014692 zinc oxide Nutrition 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 2
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical compound [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 description 1
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical class N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 1
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- VERMWGQSKPXSPZ-BUHFOSPRSA-N 1-[(e)-2-phenylethenyl]anthracene Chemical class C=1C=CC2=CC3=CC=CC=C3C=C2C=1\C=C\C1=CC=CC=C1 VERMWGQSKPXSPZ-BUHFOSPRSA-N 0.000 description 1
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- ZHKJHQBOAJQXQR-UHFFFAOYSA-N 1H-azirine Chemical compound N1C=C1 ZHKJHQBOAJQXQR-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- NBUKAOOFKZFCGD-UHFFFAOYSA-N 2,2,3,3-tetrafluoropropan-1-ol Chemical compound OCC(F)(F)C(F)F NBUKAOOFKZFCGD-UHFFFAOYSA-N 0.000 description 1
- SULWTXOWAFVWOY-PHEQNACWSA-N 2,3-bis[(E)-2-phenylethenyl]pyrazine Chemical class C=1C=CC=CC=1/C=C/C1=NC=CN=C1\C=C\C1=CC=CC=C1 SULWTXOWAFVWOY-PHEQNACWSA-N 0.000 description 1
- MVWPVABZQQJTPL-UHFFFAOYSA-N 2,3-diphenylcyclohexa-2,5-diene-1,4-dione Chemical class O=C1C=CC(=O)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 MVWPVABZQQJTPL-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- HONWGFNQCPRRFM-UHFFFAOYSA-N 2-n-(3-methylphenyl)-1-n,1-n,2-n-triphenylbenzene-1,2-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C(=CC=CC=2)N(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 HONWGFNQCPRRFM-UHFFFAOYSA-N 0.000 description 1
- VHMICKWLTGFITH-UHFFFAOYSA-N 2H-isoindole Chemical compound C1=CC=CC2=CNC=C21 VHMICKWLTGFITH-UHFFFAOYSA-N 0.000 description 1
- MGADZUXDNSDTHW-UHFFFAOYSA-N 2H-pyran Chemical compound C1OC=CC=C1 MGADZUXDNSDTHW-UHFFFAOYSA-N 0.000 description 1
- AGIJRRREJXSQJR-UHFFFAOYSA-N 2h-thiazine Chemical compound N1SC=CC=C1 AGIJRRREJXSQJR-UHFFFAOYSA-N 0.000 description 1
- UIKUBYKUYUSRSM-UHFFFAOYSA-N 3-morpholinopropylamine Chemical compound NCCCN1CCOCC1 UIKUBYKUYUSRSM-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- AHDTYXOIJHCGKH-UHFFFAOYSA-N 4-[[4-(dimethylamino)-2-methylphenyl]-phenylmethyl]-n,n,3-trimethylaniline Chemical compound CC1=CC(N(C)C)=CC=C1C(C=1C(=CC(=CC=1)N(C)C)C)C1=CC=CC=C1 AHDTYXOIJHCGKH-UHFFFAOYSA-N 0.000 description 1
- CXXSQMDHHYTRKY-UHFFFAOYSA-N 4-amino-2,3,5-tris(oxiran-2-ylmethyl)phenol Chemical compound C1=C(O)C(CC2OC2)=C(CC2OC2)C(N)=C1CC1CO1 CXXSQMDHHYTRKY-UHFFFAOYSA-N 0.000 description 1
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 description 1
- DUSWRTUHJVJVRY-UHFFFAOYSA-N 4-methyl-n-[4-[2-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]propan-2-yl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C(C)(C)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 DUSWRTUHJVJVRY-UHFFFAOYSA-N 0.000 description 1
- MVIXNQZIMMIGEL-UHFFFAOYSA-N 4-methyl-n-[4-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]phenyl]-n-(4-methylphenyl)aniline Chemical group C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 MVIXNQZIMMIGEL-UHFFFAOYSA-N 0.000 description 1
- XIQGFRHAIQHZBD-UHFFFAOYSA-N 4-methyl-n-[4-[[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]-phenylmethyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C(C=1C=CC=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 XIQGFRHAIQHZBD-UHFFFAOYSA-N 0.000 description 1
- ZYASLTYCYTYKFC-UHFFFAOYSA-N 9-methylidenefluorene Chemical class C1=CC=C2C(=C)C3=CC=CC=C3C2=C1 ZYASLTYCYTYKFC-UHFFFAOYSA-N 0.000 description 1
- VIJYEGDOKCKUOL-UHFFFAOYSA-N 9-phenylcarbazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2C2=CC=CC=C21 VIJYEGDOKCKUOL-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 241000284156 Clerodendrum quadriloculare Species 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- 229910014299 N-Si Inorganic materials 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N N-phenyl amine Natural products NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
- 229910000583 Nd alloy Inorganic materials 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229920001218 Pullulan Polymers 0.000 description 1
- 239000004373 Pullulan Substances 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- 229910008072 Si-N-Si Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- 229910006360 Si—O—N Inorganic materials 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229910000004 White lead Inorganic materials 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910001508 alkali metal halide Inorganic materials 0.000 description 1
- 150000008045 alkali metal halides Chemical class 0.000 description 1
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000005103 alkyl silyl group Chemical group 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 150000008425 anthrones Chemical class 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- ZSIQJIWKELUFRJ-UHFFFAOYSA-N azepane Chemical compound C1CCCNCC1 ZSIQJIWKELUFRJ-UHFFFAOYSA-N 0.000 description 1
- XYOVOXDWRFGKEX-UHFFFAOYSA-N azepine Chemical compound N1C=CC=CC=C1 XYOVOXDWRFGKEX-UHFFFAOYSA-N 0.000 description 1
- HONIICLYMWZJFZ-UHFFFAOYSA-N azetidine Chemical compound C1CNC1 HONIICLYMWZJFZ-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 238000010504 bond cleavage reaction Methods 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 238000005282 brightening Methods 0.000 description 1
- KAKZBPTYRLMSJV-UHFFFAOYSA-N butadiene group Chemical group C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- SURLGNKAQXKNSP-DBLYXWCISA-N chlorin Chemical compound C\1=C/2\N/C(=C\C3=N/C(=C\C=4NC(/C=C\5/C=CC/1=N/5)=CC=4)/C=C3)/CC\2 SURLGNKAQXKNSP-DBLYXWCISA-N 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- WCZVZNOTHYJIEI-UHFFFAOYSA-N cinnoline Chemical compound N1=NC=CC2=CC=CC=C21 WCZVZNOTHYJIEI-UHFFFAOYSA-N 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000004643 cyanate ester Substances 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 229920000775 emeraldine polymer Polymers 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 150000008376 fluorenones Chemical class 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 1
- 229940083761 high-ceiling diuretics pyrazolone derivative Drugs 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- PIJPYDMVFNTHIP-UHFFFAOYSA-L lead sulfate Chemical compound [PbH4+2].[O-]S([O-])(=O)=O PIJPYDMVFNTHIP-UHFFFAOYSA-L 0.000 description 1
- RYZCLUQMCYZBJQ-UHFFFAOYSA-H lead(2+);dicarbonate;dihydroxide Chemical compound [OH-].[OH-].[Pb+2].[Pb+2].[Pb+2].[O-]C([O-])=O.[O-]C([O-])=O RYZCLUQMCYZBJQ-UHFFFAOYSA-H 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- TXXWBTOATXBWDR-UHFFFAOYSA-N n,n,n',n'-tetramethylhexane-1,6-diamine Chemical compound CN(C)CCCCCCN(C)C TXXWBTOATXBWDR-UHFFFAOYSA-N 0.000 description 1
- DMQSHEKGGUOYJS-UHFFFAOYSA-N n,n,n',n'-tetramethylpropane-1,3-diamine Chemical compound CN(C)CCCN(C)C DMQSHEKGGUOYJS-UHFFFAOYSA-N 0.000 description 1
- JAYXSROKFZAHRQ-UHFFFAOYSA-N n,n-bis(oxiran-2-ylmethyl)aniline Chemical compound C1OC1CN(C=1C=CC=CC=1)CC1CO1 JAYXSROKFZAHRQ-UHFFFAOYSA-N 0.000 description 1
- BBDFECYVDQCSCN-UHFFFAOYSA-N n-(4-methoxyphenyl)-4-[4-(n-(4-methoxyphenyl)anilino)phenyl]-n-phenylaniline Chemical group C1=CC(OC)=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC(OC)=CC=1)C1=CC=CC=C1 BBDFECYVDQCSCN-UHFFFAOYSA-N 0.000 description 1
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical group C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 1
- 125000005487 naphthalate group Chemical group 0.000 description 1
- NXPPAOGUKPJVDI-UHFFFAOYSA-N naphthalene-1,2-diol Chemical compound C1=CC=CC2=C(O)C(O)=CC=C21 NXPPAOGUKPJVDI-UHFFFAOYSA-N 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical group C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 150000007978 oxazole derivatives Chemical class 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- GPRIERYVMZVKTC-UHFFFAOYSA-N p-quaterphenyl Chemical group C1=CC=CC=C1C1=CC=C(C=2C=CC(=CC=2)C=2C=CC=CC=2)C=C1 GPRIERYVMZVKTC-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- IGALFTFNPPBUDN-UHFFFAOYSA-N phenyl-[2,3,4,5-tetrakis(oxiran-2-ylmethyl)phenyl]methanediamine Chemical compound C=1C(CC2OC2)=C(CC2OC2)C(CC2OC2)=C(CC2OC2)C=1C(N)(N)C1=CC=CC=C1 IGALFTFNPPBUDN-UHFFFAOYSA-N 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920006290 polyethylene naphthalate film Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000734 polysilsesquioxane polymer Polymers 0.000 description 1
- 229960002796 polystyrene sulfonate Drugs 0.000 description 1
- 239000011970 polystyrene sulfonate Substances 0.000 description 1
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- CPNGPNLZQNNVQM-UHFFFAOYSA-N pteridine Chemical compound N1=CN=CC2=NC=CN=C21 CPNGPNLZQNNVQM-UHFFFAOYSA-N 0.000 description 1
- 235000019423 pullulan Nutrition 0.000 description 1
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical class O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- WVIICGIFSIBFOG-UHFFFAOYSA-N pyrylium Chemical compound C1=CC=[O+]C=C1 WVIICGIFSIBFOG-UHFFFAOYSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical class C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- DLJHXMRDIWMMGO-UHFFFAOYSA-N quinolin-8-ol;zinc Chemical compound [Zn].C1=CN=C2C(O)=CC=CC2=C1.C1=CN=C2C(O)=CC=CC2=C1 DLJHXMRDIWMMGO-UHFFFAOYSA-N 0.000 description 1
- 150000003252 quinoxalines Chemical class 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000001022 rhodamine dye Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 125000001174 sulfone group Chemical group 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- IBBLKSWSCDAPIF-UHFFFAOYSA-N thiopyran Chemical compound S1C=CC=C=C1 IBBLKSWSCDAPIF-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 150000004992 toluidines Chemical class 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- QQQSFSZALRVCSZ-UHFFFAOYSA-N triethoxysilane Chemical compound CCO[SiH](OCC)OCC QQQSFSZALRVCSZ-UHFFFAOYSA-N 0.000 description 1
- 125000006617 triphenylamine group Chemical group 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/85—Arrangements for extracting light from the devices
- H10K50/856—Arrangements for extracting light from the devices comprising reflective means
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/185—Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
- H10K77/111—Flexible substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
Definitions
- the present invention relates to an organic electroluminescence element. More specifically, the present invention relates to a flexible and lightweight organic electroluminescence element that has high light extraction efficiency and reduced color shift.
- organic light emitting devices are attracting attention as thin light emitting materials.
- Organic light-emitting devices (hereinafter also referred to as organic EL devices) using organic electroluminescence (EL) are thin-film, completely solid-state devices that can emit light at a low voltage of several volts to several tens of volts. It has many excellent features such as high brightness, high luminous efficiency, thinness, and light weight. For this reason, it has been attracting attention in recent years as surface light emitters such as backlights for various displays, display boards such as signboards and emergency lights, and illumination light sources.
- Such an organic EL element has a configuration in which a light emitting layer made of an organic material is disposed between two electrodes, and emitted light generated in the light emitting layer passes through the electrode and is extracted outside. Therefore, at least one of the two electrodes is configured as a transparent electrode, and emitted light is extracted from the transparent electrode side.
- organic light-emitting elements are characterized by thin-film surface light emission different from conventional light emitters, and element formation on a flexible transparent substrate is desired to take advantage of these characteristics.
- a general-purpose resin base material such as a polyethylene terephthalate (PET) film widely used in the market as a film substrate of transparent plastic or the like.
- a film substrate such as a transparent plastic has a problem that the gas barrier property is inferior to that of a glass substrate. If a substrate with inferior gas barrier properties is used, water vapor and oxygen will permeate, and for example, the function in the electronic device will be degraded.
- Patent Document 1 includes a plastic substrate coated with a metal layer or a metal foil, a substrate having a metal layer sandwiched between two plastic layers, and a metal foil.
- a certain substrate is disclosed, for example, the surface of the metal foil has fine irregularities on the surface of the metal foil manufacturing process, and when an electrode and an organic light emitting layer are formed on the upper layer, the organic EL element There is a problem that short-circuiting (electrical short-circuiting) easily occurs with storage over time.
- the light emitted from the organic light emitting layer is specularly reflected to generate a plasmon mode, which is a kind of waveguide mode, and the surface of the reflector.
- plasmon loss which is a loss of light confined in the vicinity, easily occurs, and the light extraction efficiency decreases.
- a cavity effect is generated, and the viewing angle dependency of emission chromaticity is deteriorated.
- Patent Document 2 by forming a layer such as a carbon black-based thin film on a substrate, reflection of light emitted from the organic light emitting layer is prevented, and optical interference caused by emitted light and reflected light is suppressed.
- a technique for preventing color misregistration is disclosed, there is a problem in that light emission luminance is reduced due to light absorption of the carbon black thin film.
- the present invention has been made in view of the above problems and situations, and a solution to the problem is to provide a flexible substrate having a high gas barrier property using a metal layer or a metal foil, and the substrate and the metal electrode. Flexibility that improves light extraction efficiency by suppressing the occurrence of plasmon loss of light due to specular light reflection, and reduces color shift by suppressing the cavity effect of a specific wavelength by using light diffusion reflection It is providing the organic electroluminescent element which has the property and is lightweight.
- the present inventor has a high gas barrier property by an organic electroluminescence element having a specific functional layer on a specific flexible substrate in the process of examining the cause of the above-mentioned problem.
- the present inventors have found that a light-emitting organic electroluminescence element having high light extraction efficiency and reduced color misregistration can be provided.
- the organic electroluminescence device according to claim 1, further comprising a smooth layer between the functional layer containing the white pigment and the first transparent electrode.
- Either the first transparent electrode or the second transparent electrode contains silver or an alloy containing silver as a main component, or the organic electroluminescent element according to the first or second item.
- the first transparent electrode has an underlayer containing an organic compound having at least one atom selected from a nitrogen atom and a sulfur atom on the flexible substrate side of the first transparent electrode.
- the organic electroluminescent element as described in any one of the items to.
- organic electroluminescence device according to any one of items 1 to 4, further comprising an electrode protective layer on the second transparent electrode.
- a flexible substrate having a high gas barrier property using a metal layer or a metal foil is provided, and generation of plasmon loss of light due to specular light reflection of the substrate and the metal electrode is suppressed. It is possible to provide a flexible and lightweight organic electroluminescent element that improves light extraction efficiency and suppresses a color shift by suppressing a cavity effect of a specific wavelength by utilizing light diffuse reflection. it can.
- the organic electroluminescent element of the present invention can achieve both high gas barrier properties and flexibility by using a flexible substrate on which a metal layer or a metal foil is laminated.
- Light emission generated on a metal reflective electrode formed on a substrate, such as a normal top-emitting element, by arranging a white light diffusing reflective layer containing a white pigment as a functional layer between the first transparent electrodes It is presumed that the coupling of the light to the plasmon mode can be suppressed by the white light diffuse reflection, and the light extraction efficiency is improved.
- the cavity effect at a specific wavelength can be suppressed, so that it is presumed that an organic electroluminescence element with reduced color shift can be obtained.
- Schematic diagram of a flexible substrate according to the present invention Schematic diagram of a flexible substrate according to the present invention
- the schematic diagram which shows an example of a structure of the organic EL element of this invention The schematic diagram which shows an example of the vacuum ultraviolet irradiation apparatus used for formation of the smooth layer based on this invention
- the organic electroluminescent element of the present invention has a functional layer containing at least a white pigment, a first transparent electrode, an organic light emitting layer, a second transparent electrode on a flexible substrate in which a metal layer or a metal foil is laminated, And having a transparent sealing substrate in this order.
- This feature is a technical feature common to the inventions according to claims 1 to 6.
- the present invention it is preferable to have a smooth layer between the functional layer containing the white pigment and the first transparent electrode, from the viewpoint of manifesting the effect of the present invention.
- a smooth layer By smoothing the surface of the layer, it is possible to suppress the occurrence of a short circuit (electrical short circuit) or the like associated with storage over time of the transparent electrode formed on the functional layer.
- either the first transparent electrode or the second transparent electrode contains silver or an alloy containing silver as a main component, and a nitrogen atom and a sulfur atom are formed on the flexible substrate side of the first transparent electrode. It is preferable to have a base layer containing an organic compound having at least one kind of atom selected from the viewpoints of providing a thin, transparent, and flexible electrode.
- the electrode protective layer on the second transparent electrode, and that the electrode protective layer contains a metal oxide improves adhesion with the transparent sealing substrate and provides a stronger sealing. It is preferable from the viewpoint of stopping.
- ⁇ is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
- the organic EL device of the present invention includes a functional layer containing at least a white pigment, a first transparent electrode, an organic light emitting layer, a second transparent electrode, and a transparent seal on a flexible substrate on which a metal layer or a metal foil is laminated.
- a functional layer containing at least a white pigment, a first transparent electrode, an organic light emitting layer, a second transparent electrode, and a transparent seal on a flexible substrate on which a metal layer or a metal foil is laminated.
- this configuration provides a lightweight and light organic electroluminescence element with high gas barrier properties, high light extraction efficiency, and reduced color shift can do.
- “flexibility” means that a substrate or a base material is wound around a ⁇ (diameter) 50 mm roll, and cracks or the like do not occur before and after winding with a constant tension.
- the flexible substrate or base material is more preferably a substrate or base material that can be wound around a ⁇ 30 mm roll, and a resin material described later is preferably used.
- the term “transparent” as used in the present invention refers to the light transmittance (%) at a light wavelength of 550 nm using a spectrophotometer (U-3300 manufactured by Hitachi High-Technologies Corporation) for each element constituting the organic EL element. ) Is measured, it has a light transmittance of 50% or more.
- the light transmittance of each element constituting the organic EL element is preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
- the organic EL device 100 of the present invention is provided on a substrate 110, and is configured by using a functional layer 106 containing at least a white pigment, a first transparent electrode 101, an organic material, and the like in order from the substrate 110 side.
- the light emitting layer 103, the second transparent electrode (counter electrode) 102, and the transparent sealing substrate 105 are laminated in this order.
- the substrate 110 is composed of a metal layer or a metal foil, it is preferable to have an insulating layer (not shown) in order to increase the degree of freedom of electrode installation.
- the end of the first transparent electrode 101 (electrode layer 101b) has the shape of an extraction electrode, and the first transparent electrode 101 and an external power source (not shown) are electrically connected via the extraction electrode. .
- the organic EL element 100 is a top emission type configured such that generated light (emitted light h) is extracted from the transparent sealing substrate 105 side.
- the organic EL device 100 of the present invention has the above-mentioned substrate, the functional layer containing the white pigment, the first transparent electrode, the organic light emitting layer, the second transparent electrode, and the transparent sealing substrate all having flexibility.
- An organic EL element having flexibility is realized.
- the layer structure of the organic EL element 100 is not limited and may be a general layer structure.
- the first transparent electrode 101 functions as an anode (that is, an anode)
- the second transparent electrode 102 functions as a cathode (that is, a cathode).
- the organic light emitting layer 103 is formed by laminating a hole injection layer 103a / a hole transport layer 103b / a light emission layer 103c / an electron transport layer 103d / an electron injection layer 103e in this order from the first transparent electrode 101 side which is an anode.
- the structure is illustrated, it is essential to have the light emitting layer 103c formed using at least an organic material.
- the hole injection layer 103a and the hole transport layer 103b may be provided as a hole transport injection layer.
- the electron transport layer 103d and the electron injection layer 103e may be provided as an electron transport injection layer.
- the electron injection layer 103e may be made of an inorganic material.
- the organic light emitting layer 103 may be laminated with a hole blocking layer, an electron blocking layer, or the like as necessary.
- the light emitting layer 103c may have a structure in which each color light emitting layer for generating light emitted in each light wavelength region is laminated, and each of these color light emitting layers is laminated via a non-light emitting intermediate layer.
- the intermediate layer may function as a hole blocking layer and an electron blocking layer.
- the second transparent electrode 102 as the cathode may also have a laminated structure as necessary. In such a configuration, only a portion where the organic light emitting layer 103 is sandwiched between the first transparent electrode 101 and the second transparent electrode 102 becomes a light emitting region in the organic EL element 100.
- an auxiliary electrode (not shown) is provided in contact with the electrode layer 101b of the first transparent electrode 101 for the purpose of reducing the resistance of the first transparent electrode 101. Also good.
- the organic EL element 100 configured as described above is sealed on the substrate 110 by the transparent sealing base material 105 for the purpose of preventing deterioration of the organic light emitting layer 103 formed using an organic material or the like. Yes.
- the transparent sealing substrate 105 is fixed to the surface of the substrate 110 via an adhesive layer. However, the extraction electrode portion of the first transparent electrode 101 and the terminal portion of the second transparent electrode 102 are exposed from the transparent sealing substrate 105 in a state in which the organic light emitting layer 103 maintains insulation from each other on the substrate 110. It is assumed that it is provided.
- the transparent sealing substrate 105 preferably has a gas barrier layer in order to protect the organic light emitting layer 103 from the humidity of the external environment.
- the smooth layer 107 between the functional layer 106 containing a white pigment and the first transparent electrode 101, and the surface of the functional layer 106 containing the white pigment formed on the substrate 110 and the substrate is preferably provided.
- an electrode protective layer 104 between the second transparent electrode 102 and the transparent sealing substrate 105, and the electrode surface is protected and planarized, and the transparent sealing substrate 105 is solid-sealed. Therefore, stronger sealing can be achieved, which is preferable.
- a functional layer containing at least a white pigment, a first transparent electrode, an organic light emitting layer and a second transparent electrode are laminated on a substrate, and further laminated with a transparent sealing substrate. It is preferable to seal.
- a functional layer 106 containing at least a white pigment, a first transparent electrode 101, an organic light emitting layer 103, and a second transparent electrode 102 are laminated on a substrate 110, and further transparent sealing is performed. Lamination is performed with the substrate 105.
- a flexible substrate 110 on which a metal layer or a metal foil is laminated is prepared, and a functional layer 106 containing a white pigment as a light-scattering / reflecting layer is preferably formed on the substrate 110 in a thickness range of 10 to 50 ⁇ m. And formed by a coating method.
- the smooth layer 107 is formed by a coating method, for example, with a layer thickness of preferably 0.1 to 5 ⁇ m, and an organic compound having at least one atom selected from a nitrogen atom and a sulfur atom thereon.
- the underlying layer 101a is formed by an appropriate method such as an evaporation method so as to have a layer thickness of 1 ⁇ m or less, preferably in the range of 10 to 100 nm.
- the electrode layer 101b made of silver or an alloy containing silver as a main component is formed on the base layer 101a by an appropriate method such as vapor deposition so that the layer thickness is 30 nm or less, preferably in the range of 5 to 30 nm.
- the first transparent electrode 101 is formed to be an anode.
- an extraction electrode portion connected to an external power source is formed at the end of the first transparent electrode 101 by an appropriate method such as a vapor deposition method.
- a hole injection layer 103a, a hole transport layer 103b, a light emitting layer 103c, an electron transport layer 103d, and an electron injection layer 103e are stacked in this order on this, thereby forming the organic light emitting layer 103.
- Each of these layers can be formed by spin coating, casting, ink jet, vapor deposition, printing, etc., but it is easy to obtain a homogeneous layer and it is difficult to generate pinholes.
- the vapor deposition method or the spin coating method is particularly preferable. Furthermore, different formation methods may be applied for each layer.
- the vapor deposition conditions vary depending on the type of compound used, etc., but generally a resistance heating boat is used and the boat heating temperature is 50 to 450 ° C., and the degree of vacuum is 1 ⁇ 10 ⁇ 6 to It is desirable to appropriately select each condition within the range of 1 ⁇ 10 ⁇ 2 Pa, vapor deposition rate of 0.01 to 50 nm / second, substrate temperature of ⁇ 50 to 300 ° C., and layer thickness of 0.1 to 5 ⁇ m.
- the second transparent electrode 102 serving as a cathode is formed on the upper portion by an appropriate forming method such as a vapor deposition method or a sputtering method. At this time, the second transparent electrode 102 is formed in a pattern in which a terminal portion is drawn from the upper side of the organic light emitting layer 103 to the periphery of the substrate 110 while being insulated from the first transparent electrode 101 by the organic light emitting layer 103. To do.
- the electrode protective layer 104 is preferably formed by an appropriate method such as the coating method or the vapor deposition method so that the layer thickness is 1 ⁇ m or less, preferably in the range of 10 to 100 nm.
- the transparent sealing substrate 105 provided with the adhesive layer is covered on the electrode protective layer 104 and the substrate 110 so as to cover the first transparent electrode, the organic light emitting layer, and the second transparent electrode by a method such as thermocompression bonding.
- the organic EL element 100 is manufactured by laminating and sealing.
- the flexible substrate 110 includes (i) a resin base layer laminated or coated with a metal layer, (ii) a metal layer sandwiched between two resin base layers, and (iii) It is preferably composed of any one of metal foils.
- the metal layer or metal foil on the flexible substrate serves as a gas barrier layer that minimizes the transmission of oxygen and moisture to the organic EL element. Therefore, the thickness of the metal layer or the metal foil is preferably in the range of 5 to 500 ⁇ m, more preferably in the range of 10 to 100 ⁇ m, in order to exhibit the function as a gas barrier layer. If it is the thickness in this range, the function as a gas barrier layer can be exhibited, without impairing flexibility.
- the gas barrier layer has a water vapor permeability (25 ⁇ 0.5 ° C., relative humidity 90 ⁇ 2% environment) measured by a method according to JIS K 7129: 1992, 0.01 g / (m 2 ⁇ 24 hours.
- the following gas barrier properties are preferred, and the oxygen permeability measured by a method according to JIS K 7126: 1987 is 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 hours ⁇ atm) or less, water vapor It is more preferable that the gas permeability is 1 ⁇ 10 ⁇ 5 g / (m 2 ⁇ 24 hours) or less.
- a substrate 110 according to the present invention is configured by a resin base material 110a laminated on or coated with a metal layer 110b.
- the method for laminating the metal layer or metal foil according to the present invention on the resin substrate 101a is not particularly limited.
- a metal plate or a metal foil may be bonded to the resin base material with an adhesive, or a metal material may be formed on the resin base material as a metal layer by a vapor deposition method.
- the metal material is not particularly limited, but stainless steel, iron (Fe), aluminum (Al), nickel (Ni), cobalt (Co), copper (Cu), and alloys thereof are preferably used.
- stainless steel, iron (Fe), aluminum (Al), nickel (Ni), cobalt (Co), copper (Cu), and alloys thereof are preferably used.
- aluminum having high reflectance and light weight is preferably used, and aluminum is preferable because it becomes an excellent barrier film against water and oxygen.
- the substrate 110 may be composed of a metal layer 110d sandwiched between two layers of resin base materials 110c and 101e.
- the insulating layer may be a polymer layer formed by spin coating or a dielectric layer, and may be, for example, an inorganic oxide or a spin-on-glass (SOG). This insulating layer also functions as a planarization layer.
- the resin substrate 110a used for the substrate 110 is a transparent and flexible resin substrate, and can be selected from conventionally known resin film substrates.
- the resin substrate preferably used in the present invention preferably has gas barrier properties such as moisture resistance / gas permeability resistance required for the organic EL element.
- the light transmittance of the resin base material is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more.
- the transparent resin base material that can be used in the present invention is a conventionally known base material, for example, acrylic resins such as acrylic ester, methacrylic ester, PMMA, polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene.
- acrylic resins such as acrylic ester, methacrylic ester, PMMA, polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene.
- Naphthalate PEN
- PC polycarbonate
- PVC polyvinyl chloride
- PE polyethylene
- PP polypropylene
- PS polystyrene
- nylon nylon
- aromatic polyamide polyether ether ketone
- resin films such as polysulfone, polyether sulfonate, polyimide, polyetherimide, polyolefin, and epoxy resin, and cycloolefin-based and cellulose ester-based films can also be used.
- a heat-resistant transparent film (product name: Sila-DEC, manufactured by Chisso Corporation) having silsesquioxane having an organic-inorganic hybrid structure as a basic skeleton, and a resin film obtained by laminating two or more layers of the resin material, etc. Can be mentioned.
- PET polyethylene terephthalate
- PEN polyethylene naphthalate
- PC polycarbonate
- acrylic resin acrylic resin
- a biaxially stretched polyethylene terephthalate (PET) film and a biaxially stretched polyethylene naphthalate (PEN) film are preferred in terms of transparency, heat resistance, ease of handling, strength, and cost.
- a low heat recovery treatment product that has been subjected to treatment such as thermal annealing is most preferable.
- the thickness of the resin substrate is preferably in the range of 10 to 500 ⁇ m, more preferably in the range of 20 to 250 ⁇ m, and still more preferably in the range of 30 to 150 ⁇ m.
- the thickness of the resin base material is in the range of 10 to 500 ⁇ m, a stable gas barrier property can be obtained, and the resin base material is suitable for conveyance in a roll-to-roll system.
- the substrate 110 is a metal foil coated with an insulating layer.
- the metal foil may be formed of aluminum, copper, or stainless steel.
- the insulating layer is as described above. In this case, the metal foil functions as a gas barrier layer.
- the functional layer 106 containing a white pigment according to the present invention is a layer that functions as a light diffusion reflection layer, and has a light diffusion reflection layer (white light) having a relative diffuse reflectance of 80% or more in a light wavelength range of 380 to 550 nm. It is also called a diffuse reflection layer.
- a more preferable relative diffuse reflectance is 85% or more, and further preferably 90% or more.
- the relative diffuse reflectance can be measured with a commercially available spectrophotometer.
- the relative diffuse reflectance can be measured by mounting an integrating sphere on a Hitachi spectrophotometer U-4100 manufactured by Hitachi or a UV-3101 spectrophotometer manufactured by Shimadzu Corporation.
- the functional layer preferably contains at least a white pigment. More preferably, the layer contains a white pigment and a binder resin and is formed by a coating method.
- a known white pigment can be used.
- barium sulfate and titanium oxide are preferable, and barium sulfate is particularly preferable.
- the content of the white pigment in the functional layer is preferably in the range of 50 to 90% by mass, more preferably in the range of 60 to 90% by mass.
- the functional layer containing the white pigment according to the present invention will be described using barium sulfate as an example of the white pigment.
- the functional layer 106 containing the white pigment according to the present invention is preferably composed of barium sulfate and a binder resin.
- the binder resin include urethane-based, acrylic-based, epoxy-based, vinyl-based, polyester-based, polyamide-based, and rubber-based synthetic resins.
- Barium sulfate contained in the functional layer 106 containing a white pigment is used as a light reflecting agent.
- the ratio of the barium sulfate to the binder resin is preferably not more than the critical pigment concentration from the viewpoint of physical properties of the coating film in order to prevent the coating film from being easily cohesive and broken.
- various additives such as a dispersant, a leveling agent, an anti-aging agent, a plasticizer, an antistatic agent, and a fluorescent brightening agent can be added to the functional layer 106 containing a white pigment. .
- the layer thickness of the functional layer 106 containing a white pigment is preferably in the range of 1 to 100 ⁇ m, and more preferably in the range of 5 to 100 ⁇ m, in order to efficiently perform light diffuse reflection.
- the thickness is 1 ⁇ m or more, light having a light wavelength of 450 nm or less can be efficiently reflected, and the function as a light reflecting material can be easily achieved.
- the upper limit of the layer thickness does not need to be specified in particular, but if it is within 100 ⁇ m, the flexibility of the organic EL element can be satisfied together with the effect of using a resin capable of imparting flexibility.
- the functional layer 106 containing a white pigment is preferably formed by applying a coating solution containing the barium sulfate, the binder resin, and the additive.
- a coating method include, for example, a roller coating method. , A flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, a gravure printing method, and the like, which are appropriately selected.
- the functional layer 106 containing a white pigment is formed with a predetermined layer thickness and then dried by a known drying method.
- the smooth layer 107 according to the present invention is free from adverse effects such as deterioration of storage stability and short circuit (electrical short circuit) in a high temperature and high humidity atmosphere due to the unevenness of the surface of the functional layer 106 containing the substrate 110 and the white pigment.
- the main purpose is to prevent.
- the smooth layer 107 according to the present invention has a flatness that allows the first transparent electrode 101 to be satisfactorily formed thereon, and the surface property is an arithmetic average roughness Ra in the range of 0.5 to 50 nm. It is preferable to be within. More preferably, it is 30 nm or less, Especially preferably, it is 10 nm or less, Most preferably, it is 5 nm or less. That is, by setting the arithmetic average roughness Ra of the surface of the smooth layer 107 on the organic light emitting layer 103 side within the range of 0.5 to 50 nm, defects such as a short circuit of the first transparent electrode to be laminated can be suppressed. . As for the arithmetic average roughness Ra, 0 nm is preferable, but 0.5 nm is set as a lower limit value as a practical level limit value.
- the arithmetic average roughness Ra of the surface represents an arithmetic average roughness based on JIS B0601-2001.
- the surface roughness (arithmetic mean roughness Ra) is an uneven cross-section measured continuously with a detector having a stylus with a minimum tip radius using an AFM (Atomic Force Microscope: Digital Instruments). It was calculated from the curve, measured three times in a section with a measuring direction of 30 ⁇ m with a stylus having a minimum tip radius, and obtained from the average roughness related to the amplitude of fine irregularities.
- the smoothing layer 107 receives light emitted from the organic light emitting layer 103. Therefore, the average refractive index nf of the smooth layer 107 is preferably a value close to the refractive index of the organic functional layer included in the organic light emitting layer 103. Specifically, since an organic material having a high refractive index is generally used for the organic light emitting layer 103, the smoothing layer 107 has the shortest emission maximum wavelength among the emission maximum wavelengths of the emitted light from the organic light emitting layer 103.
- the high refractive index layer preferably has an average refractive index nf of 1.50 or more, particularly 1.65 or more and less than 2.50.
- the average refractive index nf is 1.50 or more and less than 2.50, it may be formed of a single material or a mixture.
- the average refractive index nf of the smooth layer 1 uses a calculated refractive index calculated by a total value obtained by multiplying the refractive index specific to each material by the volume ratio.
- the refractive index of each material may be less than 1.50 or more than 2.50, and the average refractive index nf of the mixed film should satisfy 1.50 or more and less than 2.50. That's fine.
- the “average refractive index nf” of the smooth layer is the refractive index of a single material when formed of a single material, and in the case of a mixed system, the desired volume based on the density of each material.
- the refractive index is measured by preparing a smooth layer single film and irradiating the light having the shortest light emission maximum wavelength among the light emission maximum wavelengths of the light emitted from the light emitting unit in an atmosphere at 25 ° C. (Atago, DR-M2) is used.
- a known resin can be used without any particular limitation.
- hydrophilic resins can be used.
- hydrophilic resin examples include water-soluble resins, water-dispersible resins, colloid-dispersed resins, and mixtures thereof.
- hydrophilic resin examples include acrylic resins, polyester resins, polyamide resins, polyurethane resins, fluorine resins, etc., for example, polyvinyl alcohol, gelatin, polyethylene oxide, polyvinyl pyrrolidone, casein, starch, agar, carrageenan, polyacrylic resin.
- Polymers such as acid, polymethacrylic acid, polyacrylamide, polymethacrylamide, polystyrene sulfonic acid, cellulose, hydroxyl ethyl cellulose, carboxyl methyl cellulose, hydroxyl ethyl cellulose, dextran, dextrin, pullulan, water-soluble polyvinyl butyral can be mentioned, but these Among these, polyvinyl alcohol is preferable.
- the polymer used as the binder resin may be used alone or as a mixture of two or more if necessary.
- a resin curable mainly by ultraviolet rays or an electron beam that is, a mixture of a thermoplastic resin and a solvent in an ionizing radiation curable resin or a thermosetting resin can be suitably used.
- Such a binder resin is preferably a polymer having a saturated hydrocarbon or polyether as the main chain, and more preferably a polymer having a saturated hydrocarbon as the main chain.
- the binder is preferably crosslinked.
- the polymer having a saturated hydrocarbon as the main chain is preferably obtained by a polymerization reaction of an ethylenically unsaturated monomer.
- a fine particle sol contained in a binder contained in the smooth layer 107 can also be suitably used.
- the lower limit of the particle diameter dispersed in the binder contained in the smooth layer 107 having a high refractive index is usually preferably 5 nm or more, more preferably 10 nm or more, and further preferably 15 nm or more. .
- distributed to a binder it is preferable that it is 70 nm or less, It is more preferable that it is 60 nm or less, It is further more preferable that it is 50 nm or less.
- the particle diameter dispersed in the binder is in the range of 5 to 70 nm, it is preferable in that high transparency can be obtained.
- the particle size distribution is not limited, and may be wide or narrow and may have a plurality of distributions.
- the particles contained in the smooth layer 107 according to the present invention are more preferably TiO 2 (titanium dioxide sol) from the viewpoint of stability.
- TiO 2 titanium dioxide sol
- rutile type is more preferable than anatase type, since the catalytic activity is low, and the weather resistance of the smooth layer 107 and the adjacent layer becomes high and the refractive index is high.
- Examples of a method for preparing a titanium dioxide sol that can be used in the present invention include JP-A 63-17221, JP-A 7-819, JP-A 9-165218, and JP-A 11-43327. Can be referred to.
- the thickness of the smooth layer 107 needs to be somewhat thick in order to reduce the surface roughness of the functional layer containing the substrate and the white pigment, but on the other hand, it needs to be thin enough not to cause energy loss due to absorption. Specifically, it is preferably in the range of 0.1 to 5 ⁇ m, more preferably in the range of 0.5 to 2 ⁇ m.
- the smooth layer 107 is prepared by mixing a dispersion in which nano-TiO 2 particles are dispersed and a resin solution, and filtering with a filter to obtain a smooth layer preparation solution. And after apply
- the smooth layer 107 is also preferably provided with a gas barrier property, and the material that provides such a gas barrier property may be a material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
- the material that provides such a gas barrier property may be a material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
- silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
- a coating solution containing the following inorganic precursor compound for example, it is also preferable to apply a coating solution containing the following inorganic precursor compound and form it by a modification treatment.
- the inorganic precursor compound used in the present invention is not particularly limited as long as it is a compound capable of forming a metal oxide, a metal nitride, or a metal oxynitride by vacuum ultraviolet irradiation under a specific atmosphere, but is suitable for the present invention.
- the compound is preferably a compound that can be modified at a relatively low temperature as described in JP-A-8-112879.
- polysiloxane including polysilsesquioxane
- polysilazane having Si—N—Si bond
- Si—O—Si bond Si—Si bond
- Si— Polysiloxazan and the like containing both N—Si bonds can be raised. These can be used in combination of two or more. Moreover, it can be used even if different compounds are sequentially laminated or simultaneously laminated.
- polysilazane is preferable, and the polysilazane used in the present invention is a polymer having a silicon-nitrogen bond, and is composed of Si—N, Si—H, NH, etc., SiO 2 , Si 3 N 4 and the intermediate of both.
- An inorganic precursor polymer such as a solid solution SiO x N y (x: 0.1 to 1.9, y: 0.1 to 1.3).
- the polysilazane preferably used in the present invention is represented by the following general formula (A).
- R 1 , R 2 and R 3 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group or an alkoxy group.
- perhydropolysilazane in which all of R 1, R 2 and R 3 are hydrogen atoms is particularly preferred from the viewpoint of compactness.
- Polysilazane is commercially available in the form of a solution dissolved in an organic solvent, and the commercially available product can be used as a polysilazane-containing coating solution as it is.
- Examples of commercially available polysilazane solutions include NN120-20, NAX120-20, and NL120-20 manufactured by AZ Electronic Materials Co., Ltd.
- the coating solution containing the polysilazane can be applied and dried, and then subjected to a modification treatment by irradiation with vacuum ultraviolet rays.
- organic solvent for preparing a coating liquid containing polysilazane, it is preferable to avoid using an alcohol or water-containing one that easily reacts with polysilazane.
- organic solvents include hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons, ethers such as halogenated hydrocarbon solvents, aliphatic ethers, and alicyclic ethers.
- organic solvents such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, and ethers such as dibutyl ether, dioxane and tetrahydrofuran.
- organic solvents may be selected according to purposes such as the solubility of polysilazane and the evaporation rate of the organic solvent, and a plurality of organic solvents may be mixed.
- the concentration of polysilazane in the coating solution for forming a smooth layer containing polysilazane varies depending on the layer thickness of the smooth layer and the pot life of the coating solution, but is preferably in the range of 0.2 to 35% by mass.
- the coating solution for forming a smooth layer includes an amine catalyst, a Pt compound such as Pt acetylacetonate, a Pd compound such as propionic acid Pd, and an Rh compound such as Rh acetylacetonate.
- a metal catalyst can also be added. In the present invention, it is particularly preferable to use an amine catalyst.
- Specific amine catalysts include N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N ′, N′-tetramethyl-1 , 3-diaminopropane, N, N, N ′, N′-tetramethyl-1,6-diaminohexane and the like.
- the amount of these catalysts added to the polysilazane is preferably in the range of 0.1 to 10% by mass, and preferably in the range of 0.2 to 5% by mass with respect to the total mass of the smooth layer forming coating solution. More preferably, it is more preferably in the range of 0.5 to 2% by mass.
- Arbitrary appropriate wet coating methods may be employ
- Specific examples include a roller coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
- the thickness of the coating film can be appropriately set according to the purpose.
- the thickness of the coating film is preferably in the range of 50 nm to 2 ⁇ m as the thickness after drying, more preferably in the range of 70 nm to 1.5 ⁇ m, and in the range of 100 nm to 1 ⁇ m. Is more preferable.
- the smooth layer is a step of irradiating the layer containing polysilazane with vacuum ultraviolet (VUV), and at least a part of the polysilazane is modified into silicon oxynitride.
- VUV vacuum ultraviolet
- perhydropolysilazane will be described as an example of the presumed mechanism in which the coating film containing polysilazane is modified in the vacuum ultraviolet irradiation step and becomes a specific composition of SiO x N y .
- x and y are basically in the range of 2x + 3y ⁇ 4.
- the coating film contains silanol groups, and there are cases where 2 ⁇ x ⁇ 2.5.
- Si—H bonds and N—H bonds in perhydropolysilazane are relatively easily cleaved by excitation with vacuum ultraviolet irradiation and the like. It is considered that they are recombined as N (a dangling bond of Si may be formed). That is, the cured as SiN y composition without oxidizing. In this case, the polymer main chain is not broken. The breaking of Si—H bonds and N—H bonds is promoted by the presence of a catalyst and heating. The cut H is released out of the membrane as H 2 .
- Si—O—Si Bonds by Hydrolysis and Dehydration Condensation Si—N bonds in perhydropolysilazane are hydrolyzed by water, and the polymer main chain is cleaved to form Si—OH.
- Two Si—OH are dehydrated and condensed to form a Si—O—Si bond and harden. This is a reaction that occurs even in the atmosphere, but during vacuum ultraviolet irradiation in an inert atmosphere, it is considered that water vapor generated as outgas from the resin base material by the heat of irradiation becomes the main moisture source.
- Si—OH that cannot be dehydrated and condensed remains, and a cured film having a low gas barrier property represented by a composition of SiO 2.1 to SiO 2.3 is obtained.
- Adjustment of the composition of silicon oxynitride in the layer obtained by subjecting the polysilazane-containing layer to vacuum ultraviolet irradiation can be performed by appropriately controlling the oxidation state by appropriately combining the oxidation mechanisms (1) to (4) described above. .
- ⁇ Vacuum ultraviolet irradiation device with excimer lamp> As a preferable ultraviolet irradiation apparatus for modifying polysilazane, a rare gas excimer lamp that emits vacuum ultraviolet rays of 100 to 230 nm is specifically mentioned.
- Noble gas atoms such as Xe, Kr, Ar, Ne, etc. are called inert gases because they are chemically bonded and do not form molecules.
- rare gas atoms excited atoms
- that have gained energy by discharge or the like can be combined with other atoms to form molecules.
- a feature of the excimer lamp is that the radiation is concentrated on one wavelength, and since only the necessary light is not emitted, the efficiency is high. Moreover, since extra light is not radiated
- a dielectric barrier discharge lamp has a structure in which a discharge is generated between electrodes via a dielectric.
- at least one electrode is disposed between a discharge vessel made of a dielectric and the outside thereof. That's fine.
- a dielectric barrier discharge lamp for example, a rare gas such as xenon is enclosed in a double cylindrical discharge vessel composed of a thick tube and a thin tube made of quartz glass, and a mesh-like second electrode is formed outside the discharge vessel. There is one in which one electrode is provided and another electrode is provided inside the inner tube.
- the dielectric barrier discharge lamp generates a dielectric barrier discharge inside the discharge vessel by applying a high-frequency voltage or the like between the electrodes, and generates excimer light when excimer molecules such as xenon generated by the discharge dissociate.
- Excimer lamps can be lit with low power input because of their high light generation efficiency. In addition, since light having a long wavelength that causes a temperature rise is not emitted and energy is emitted at a single wavelength in the ultraviolet region, the temperature rise of the irradiation object due to the irradiation light itself is suppressed.
- illuminance of the vacuum ultraviolet rays in the coated surface of the polysilazane coating film is subjected is in the range of 30 ⁇ 200mW / cm 2, and more preferably in a range of 50 ⁇ 160mW / cm 2. If it is 30 mW / cm 2 or more, there is no concern about the reduction of the reforming efficiency, and if it is 200 mW / cm 2 or less, the coating film is not ablated and the substrate is not damaged.
- Irradiation energy amount of the VUV in the polysilazane coating film surface is preferably in the range of 200 ⁇ 10000mJ / cm 2, and more preferably in a range of 500 ⁇ 5000mJ / cm 2. If it is 200 mJ / cm 2 or more, the modification can be sufficiently performed, and if it is 10000 mJ / cm 2 or less, it is not over-reformed and cracking and thermal deformation of the resin substrate can be prevented. .
- first transparent electrode As the first transparent electrode, all the electrodes that can be normally used for organic EL elements can be used. Specifically, aluminum, silver, magnesium, lithium, magnesium / same mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO 2 , An oxide semiconductor such as SnO 2 can be given.
- the first transparent electrode 101 preferably has a two-layer structure in which a base layer 101a and an electrode layer 101b formed thereon are sequentially laminated from the substrate 110 side.
- the electrode layer 101b is a layer formed using, for example, silver or an alloy containing silver as a main component
- the base layer 101a is, for example, at least one kind of atom selected from a nitrogen atom and a sulfur atom. It is preferable that it is a layer containing the organic compound which has.
- the transparency of the first transparent electrode 101 means that the light transmittance at a light wavelength of 550 nm is 50% or more.
- the main component in the electrode layer 101b means that the content in the electrode layer 101b is 98% by mass or more.
- the underlayer 101a is a layer provided on the substrate 110 side of the electrode layer 101b.
- the material constituting the base layer 101a is not particularly limited as long as it can suppress the aggregation of silver when forming the electrode layer 101b made of silver or an alloy containing silver as a main component. , Organic compounds having at least one atom selected from a nitrogen atom and a sulfur atom.
- the compound containing a nitrogen atom constituting the underlayer is not particularly limited as long as it is an organic compound containing a nitrogen atom in the molecule, but is preferably a compound having a heterocycle having a nitrogen atom as a heteroatom. .
- heterocycle having a nitrogen atom as a hetero atom examples include aziridine, azirine, azetidine, azeto, azolidine, azole, azinane, pyridine, azepan, azepine, imidazole, pyrazole, oxazole, thiazole, imidazoline, pyrazine, morpholine, thiazine, indole, Examples include isoindole, benzimidazole, purine, quinoline, isoquinoline, quinoxaline, cinnoline, pteridine, acridine, carbazole, benzo-C-cinnoline, porphyrin, chlorin, choline and the like.
- the organic compound having a sulfur atom is preferably a compound having a sulfide bond, disulfide bond, mercapto group, sulfone group, thiocarbonyl bond or the like in the molecule. Among these, it is preferable to have a sulfide bond or a mercapto group.
- the organic compound may be one kind or a mixture of two or more kinds. In addition, it is allowed to mix a compound having no nitrogen atom and sulfur atom within a range that does not impair the effect of the underlayer.
- the upper limit of the layer thickness is preferably less than 50 nm, more preferably less than 30 nm, and less than 10 nm. More preferably, the thickness is less than 5 nm. By making the layer thickness less than 50 nm, optical loss can be minimized.
- the lower limit of the layer thickness is preferably 0.05 nm or more, more preferably 0.1 nm or more, and particularly preferably 0.3 nm or more. By setting the layer thickness to 0.05 nm or more, it is possible to make the underlayer 101a uniform, and to make the effect (inhibition of silver aggregation) uniform.
- the upper limit of the layer thickness is not particularly limited, and the lower limit of the layer thickness is the same as that of the low refractive index material. is there.
- the base layer 101a is formed with a necessary layer thickness that enables uniform film formation.
- a wet process such as a coating method, an inkjet method, a coating method, or a dip method, or a dry process such as a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, or the like is used. And the like. Among these, the vapor deposition method is preferably applied.
- Electrode layer 101b is preferably a layer formed using silver or an alloy containing silver as a main component, and is preferably a layer formed on the base layer 101a.
- a wet process such as a coating method, an inkjet method, a coating method, or a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, or the like is used. And a method using the dry process. Among these, the vapor deposition method is preferably applied.
- the electrode layer 101b is formed on the base layer 101a, so that the electrode layer 101b has sufficient conductivity even without high-temperature annealing after the electrode layer 101b is formed.
- the film may be subjected to high-temperature annealing after film formation.
- Examples of the alloy mainly composed of silver (Ag) constituting the electrode layer 101b include silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), and silver indium (AgIn). ) And the like.
- the electrode layer 101b as described above may have a configuration in which silver or an alloy layer mainly composed of silver is divided into a plurality of layers as necessary.
- the electrode layer 101b preferably has a layer thickness in the range of 5 to 30 nm.
- the layer thickness is less than 30 nm, the absorption component or reflection component of the layer is small, and the transmittance of the first transparent electrode 101 is increased.
- the layer thickness is thicker than 5 nm, the conductivity of the layer can be sufficiently secured.
- the range is preferably 8 to 20 nm, and more preferably 10 to 15 nm.
- the first transparent electrode 101 having a laminated structure composed of the base layer 101a and the electrode layer 101b formed thereon is covered with a protective film on the upper part of the electrode layer 101b or another electrode. Layers may be laminated. In this case, it is preferable that the protective film and the other electrode layer have light transmittance so as not to impair the light transmittance of the first transparent electrode 101.
- the first transparent electrode 101 having the above-described configuration is, for example, an underlayer formed using an organic compound having at least one atom selected from a nitrogen atom and a sulfur atom.
- An electrode layer 101b made of silver or an alloy containing silver as a main component is provided on 101a.
- the silver atoms constituting the electrode layer 101b interact with the compound containing nitrogen atoms or sulfur atoms constituting the base layer 101a, and The diffusion distance of silver atoms is reduced on the surface of the base layer 101a, and aggregation of silver is suppressed.
- the electrode layer 101b containing silver as a main component a thin film is grown in a nucleus growth type (Volume-Weber: VW type), and therefore, silver particles are easily isolated in an island shape, and the layer thickness is increased.
- a nucleus growth type Volume-Weber: VW type
- the layer thickness is increased.
- the thickness is thin, it is difficult to obtain conductivity, and the sheet resistance value becomes high. Therefore, although it is necessary to increase the layer thickness in order to ensure conductivity, it is difficult to use as the first transparent electrode because the light transmittance decreases as the layer thickness increases.
- the electrode layer 101b made of silver or an alloy containing silver as a main component is not a nucleus growth type but a single layer growth type ( A thin film grows with a Frank-van der Merwe (FM type).
- the first transparent electrode 101 is preferably a transparent electrode having a light transmittance of 50% or more at a light wavelength of 550 nm, and an electrode layer made of silver or an alloy containing silver as a main component by providing the base layer 101a.
- 101b can be thinned and can be a film with sufficiently good light transmittance.
- the conductivity of the first transparent electrode 101 is mainly ensured by the electrode layer 101b.
- the electrode layer 101b made of silver or an alloy containing silver as a main component has excellent conductivity, and conductivity is ensured with a thinner layer thickness. Accordingly, it is possible to achieve both the improvement of the conductivity of the first transparent electrode 101 and the improvement of the light transmittance.
- the first transparent electrode according to the present invention can be adjusted to a thin film within a range in which specular light reflection at the silver electrode does not occur, it can contribute to an improvement in light emission luminance.
- Organic light emitting layer 103 includes at least a light emitting layer 103c.
- the phosphor layer 103c used in the present invention preferably contains a phosphorescent compound as a luminescent material.
- a fluorescent material may be used as the light emitting material, or a phosphorescent light emitting compound and a fluorescent material may be used in combination.
- the light emitting layer 103c is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer 103d and holes injected from the hole transport layer 103b, and the light emitting portion is the light emitting layer 103c. Even within the layer, it may be an interface between the light emitting layer 103c and the adjacent layer.
- the structure of the light emitting layer 103c is not particularly limited as long as the included light emitting material satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, a non-light emitting intermediate layer (not shown) is preferably provided between the light emitting layers 103c.
- the total thickness of the light emitting layer 103c is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained.
- the sum of the layer thicknesses of the light emitting layer 103c is a layer thickness including the intermediate layer when a non-light emitting intermediate layer exists between the light emitting layers 103c.
- the thickness of each light emitting layer is preferably adjusted within a range of 1 to 50 nm, and more preferably adjusted within a range of 1 to 20 nm. preferable.
- the plurality of stacked light emitting layers correspond to blue, green, and red light emission colors, there is no particular limitation on the relationship between the thicknesses of the blue, green, and red light emitting layers.
- the light emitting layer 103c as described above is formed by forming a known light emitting material or host compound by a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method. be able to.
- a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method.
- a light-emitting dopant also referred to as a light-emitting dopant compound
- a host compound contained in the light-emitting layer will be described.
- the host compound means that the compound contained in the light emitting layer has a mass ratio of 20% or more in the layer and is phosphorus at room temperature (25 ° C.).
- a compound having a phosphorescence quantum yield of photoluminescence of less than 0.1 is defined.
- the phosphorescence quantum yield is preferably less than 0.01.
- the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
- known host compounds may be used alone or in combination of two or more.
- the organic EL element can be made highly efficient.
- the light emitting host used in the present invention may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (deposition polymerization property). Light emitting host).
- a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable.
- the light emitting layer of the organic EL device of the present invention preferably contains a phosphorescent dopant at the same time as containing the host compound.
- the phosphorescent dopant used in the present invention is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.). Yes, the phosphorescence quantum yield is defined to be a compound of 0.01 or more at 25 ° C., but the preferred phosphorescence quantum yield is 0.1 or more.
- the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant according to the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. That's fine.
- the energy transfer type that obtains light emission from the phosphorescent dopant, and the other is that the phosphorescent dopant becomes a carrier trap, carrier recombination occurs on the phosphorescent dopant, and light emission from the phosphorescent dopant is obtained.
- the excited state energy of the phosphorescent dopant is required to be lower than the excited state energy of the host compound.
- a preferable phosphorescent dopant includes an organometallic complex having Ir as a central metal. More preferably, a complex containing at least one coordination mode among a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond is preferable.
- At least one light emitting layer 103c may contain two or more types of phosphorescent compounds, and the concentration ratio of the phosphorescent compounds in the light emitting layer 103c is the thickness of the light emitting layer 103c. It may change in direction.
- the phosphorescent compound is preferably 0.1% by volume or more and less than 30% by volume with respect to the total amount of the light emitting layer 103c.
- Fluorescent compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes. Examples thereof include dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
- injection layer (hole injection layer, electron injection layer)
- the injection layer is a layer provided between the electrode and the light-emitting layer 103c in order to lower the drive voltage and improve the light emission luminance.
- the injection layer can be provided as necessary.
- the hole injection layer 103a may exist between the anode and the light emitting layer 103c or the hole transport layer 103b, and the electron injection layer 103e may exist between the cathode and the light emitting layer 103c or the electron transport layer 103d.
- hole injection layer 103a Details of the hole injection layer 103a are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, and the like.
- Specific examples include phthalocyanine represented by copper phthalocyanine.
- examples thereof include a layer, an oxide layer typified by vanadium oxide, an amorphous carbon layer, and a polymer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
- the details of the electron injection layer 103e are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like, and specifically represented by strontium, aluminum and the like. Examples thereof include a metal layer, an alkali metal halide layer typified by potassium fluoride, an alkaline earth metal compound layer typified by magnesium fluoride, and an oxide layer typified by molybdenum oxide.
- the electron injection layer 103e of the present invention is desirably a very thin film, and the layer thickness is preferably in the range of 1 nm to 10 ⁇ m although it depends on the material.
- the hole transport layer 103b is made of a hole transport material having a function of transporting holes, and in a broad sense, the hole injection layer 103a and the electron blocking layer are also included in the hole transport layer 103b. .
- the hole-transport layer 103b can be provided as a single layer or a plurality of layers.
- the hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
- triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
- Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
- hole transport material those described above can be used, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
- aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
- a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
- inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
- a so-called p-type hole transport material as described in 139 can also be used. In the present invention, it is preferable to use these materials because a light-emitting element with higher efficiency can be obtained.
- the hole transport layer 103b is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, or an LB method. be able to.
- the layer thickness of the hole transport layer 103b is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
- the hole transport layer 103b may have a single layer structure composed of one or more of the above materials.
- Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
- the electron transport layer 103d is made of a material having a function of transporting electrons. In a broad sense, the electron injection layer 103e and a hole blocking layer (not shown) are also included in the electron transport layer 103d.
- the electron transport layer 103d can be provided as a single-layer structure or a stacked structure of a plurality of layers.
- an electron transport material (also serving as a hole blocking material) constituting a layer portion adjacent to the light emitting layer 103c was injected from the cathode. What is necessary is just to have the function to transmit an electron to the light emitting layer 103c.
- any one of conventionally known compounds can be selected and used.
- Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives.
- a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group are also used as the material for the electron transport layer 103d.
- a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
- metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
- Mg Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as the material for the electron transport layer 103d.
- metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the material for the electron transport layer 103d.
- a distyrylpyrazine derivative exemplified also as a material of the light-emitting layer 103c can be used as a material of the electron-transport layer 103d, and n-type Si, n-type similarly to the hole-injection layer 103a and the hole-transport layer 103b.
- An inorganic semiconductor such as type-SiC can also be used as the material of the electron transport layer 103d.
- the electron transport layer 103d can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
- the layer thickness of the electron transport layer 103d is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
- the electron transport layer 103d may have a single-layer structure made of one or more of the above materials.
- the electron transport layer 103d can be doped with an impurity to increase the n property.
- examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
- the electron transport layer 103d contains potassium, a potassium compound, or the like.
- the potassium compound for example, potassium fluoride can be used.
- the material (electron transporting compound) of the electron transport layer 103d the same material as that of the base layer 101a described above may be used.
- the electron transport layer 103d that also serves as the electron injection layer 103e the same material as that of the base layer 101a described above may be used.
- Blocking layer (hole blocking layer, electron blocking layer)
- the blocking layer may be further provided as the organic light emitting layer 103 in addition to the above functional layers. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
- the hole blocking layer has a function of the electron transport layer 103d in a broad sense.
- the hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved.
- the structure of the electron carrying layer 103d mentioned later can be used as a hole-blocking layer concerning this invention as needed.
- the hole blocking layer is preferably provided adjacent to the light emitting layer 103c.
- the electron blocking layer has the function of the hole transport layer 103b in a broad sense.
- the electron blocking layer is made of a material that has a function of transporting holes but has a very small ability to transport electrons, and improves the probability of recombination of electrons and holes by blocking electrons while transporting holes. be able to.
- the structure of the hole transport layer 103b can be used as an electron blocking layer as necessary.
- the layer thickness of the hole blocking layer according to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
- Film formation of each of the hole injection layer 103a, the hole transport layer 103b, the light emitting layer 103c, the electron transport layer 103d, and the electron injection layer 103e described above is performed by a spin coating method, a casting method, an ink jet method, an evaporation method, and a printing method.
- the vacuum deposition method or the spin coating method is particularly preferable from the viewpoints that a homogeneous film is easily obtained and pinholes are hardly generated.
- different film formation methods may be applied for each layer.
- the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is in the range of 50 to 450 ° C.
- each condition is selected as appropriate within a range of ⁇ 2 Pa, a deposition rate of 0.01 to 50 nm / second, a substrate temperature of ⁇ 50 to 300 ° C., and a layer thickness of 0.1 to 5 ⁇ m.
- the second transparent electrode 102 is an electrode film that functions as a cathode for supplying electrons to the organic light emitting layer 103, and a metal, an alloy, an organic or inorganic conductive compound, and a mixture thereof are used.
- the 2nd transparent electrode 102 can use all the electrodes which can be normally used for an organic EL element like the 1st transparent electrode. Specifically, aluminum, silver, magnesium, lithium, magnesium / same mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO 2 , An oxide semiconductor such as SnO 2 can be given.
- the second transparent electrode 102 is preferably a layer composed of silver or an alloy containing silver as a main component.
- a method for forming the second transparent electrode 102 As a method for forming the second transparent electrode 102, a method using a wet process such as a coating method, an inkjet method, a coating method, a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, or the like. And a method using a dry process such as a method. Among these, the vapor deposition method is preferably applied.
- a wet process such as a coating method, an inkjet method, a coating method, a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, or the like.
- a method using a dry process such as a method.
- the vapor deposition method is preferably applied.
- Examples of the alloy mainly composed of silver (Ag) constituting the second transparent electrode 102 include silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), and silver indium. (AgIn) etc. are mentioned.
- the second transparent electrode 102 as described above may have a configuration in which silver or an alloy layer mainly composed of silver is divided into a plurality of layers as necessary.
- the second transparent electrode 102 preferably has a layer thickness in the range of 5 to 30 nm.
- the layer thickness is less than 30 nm, the absorption component or reflection component of the layer is small, and the transmittance of the second transparent electrode 102 is increased.
- the layer thickness is thicker than 5 nm, the conductivity of the layer can be sufficiently secured.
- the range is preferably 8 to 20 nm, and more preferably 10 to 15 nm.
- the extraction electrode is for electrically connecting the first transparent electrode 101 and the second transparent electrode 102 and an external power source, and the material thereof is not particularly limited, and a known material can be suitably used.
- a metal film such as a MAM electrode (Mo / Al ⁇ Nd alloy / Mo) having a three-layer structure can be used.
- the auxiliary electrode is provided for the purpose of reducing the resistance of the first transparent electrode 101 and the second transparent electrode 102, and is provided in contact with the electrode layer 101 b of the first transparent electrode 101 and the electrode layer of the second transparent electrode 102.
- the material for forming the auxiliary electrode is preferably a metal having low resistance such as gold, platinum, silver, copper, or aluminum. Since these metals have low light transmittance, a pattern is formed in a range not affected by extraction of the emitted light h from the light extraction surface.
- auxiliary electrodes examples include vapor deposition, sputtering, printing, ink jet, and aerosol jet.
- the line width of the auxiliary electrode is preferably 50 ⁇ m or less from the viewpoint of the aperture ratio for extracting light, and the thickness of the auxiliary electrode is preferably 1 ⁇ m or more from the viewpoint of conductivity.
- an electrode protective layer 104 containing an organic or inorganic compound is formed between the second transparent electrode 102 and the transparent sealing substrate 105 to smooth the surface of the second transparent electrode. And is sufficient for sufficient mechanical protection.
- an organic or inorganic compound when the transparent sealing substrate 105 is laminated, since it is solid-sealed, the adhesive strength is high.
- the electrode protective layer 104 as described above preferably has flexibility, and a thin polymer film or a thin metal film can be used.
- the organic compound used in the base layer or the organic light emitting layer can be used. It is also preferable that the layer is appropriately selected and formed by the coating method or the vapor deposition method.
- the electrode protective layer according to the present invention preferably contains a metal oxide from the viewpoint of solid sealing, and specific examples of the metal oxide include molybdenum oxide.
- the preferred thickness of the electrode protective layer according to the present invention can be appropriately set according to the purpose, but is preferably about 10 nm to 10 ⁇ m, more preferably about 15 nm to 1 ⁇ m, and more preferably 20 to 500 nm. More preferably, it is the range.
- the transparent sealing substrate 105 has a function of laminating and sealing the organic EL element 100, and as shown in the illustrated example, for example, an adhesive layer containing an adhesive (not shown) By this, it is fixed to the electrode protective layer 104 side and the substrate 110 side.
- Such a transparent sealing substrate 105 is provided in a state in which the terminal portions of the first transparent electrode 101 and the second transparent electrode 102 in the organic EL element 100 are exposed and at least the organic light emitting layer 103 is completely covered.
- the transparent sealing substrate 105 according to the present invention preferably has flexibility and preferably has gas barrier properties.
- the transparent sealing substrate 105 is preferably composed of a transparent resin substrate as a support and one or more gas barrier layers.
- the transparent sealing substrate 105 is a conventionally known substrate, for example, acrylic resins such as acrylic ester, methacrylic ester, PMMA, polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate. (PC), polyarylate, polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), polystyrene (PS), nylon (Ny), aromatic polyamide, polyether ether ketone, polysulfone, polyether sulfonate, polyimide , Polyetherimide, polyolefin, epoxy resin, and the like, and cycloolefin-based and cellulose ester-based films can also be used.
- acrylic resins such as acrylic ester, methacrylic ester, PMMA, polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate. (PC), polyarylate, polyvinyl
- a heat-resistant transparent film (product name: Sila-DEC, manufactured by Chisso Corporation) having silsesquioxane having an organic-inorganic hybrid structure as a basic skeleton, and a resin film obtained by laminating two or more layers of the resin material, etc. Can be mentioned.
- PET polyethylene terephthalate
- PEN polyethylene naphthalate
- PC polycarbonate
- acrylic resin acrylic resin
- a biaxially stretched polyethylene terephthalate (PET) film and a biaxially stretched polyethylene naphthalate (PEN) film are preferred in terms of transparency, heat resistance, ease of handling, strength, and cost.
- the thickness of the transparent resin substrate is preferably in the range of 10 to 500 ⁇ m, more preferably in the range of 20 to 250 ⁇ m, and still more preferably in the range of 30 to 150 ⁇ m.
- the thickness of the resin base material is in the range of 10 to 500 ⁇ m, a stable gas barrier property can be obtained, and the resin base material is suitable for conveyance in a roll-to-roll system.
- the gas barrier layer is not particularly limited, but preferably has at least one inorganic layer on the resin substrate from the viewpoint of controlling the average refractive index in the range of 1.50 to 2.50 for light extraction.
- the gas barrier layer is preferably a gas barrier layer coated with a coating solution containing a precursor compound and then subjected to a modification treatment by irradiation with vacuum ultraviolet rays.
- a method for forming the layer modified with silicon oxide the method described in the section of the smooth layer can be used.
- the method of sealing (laminating) with the transparent sealing substrate 105 is not particularly limited.
- the organic EL element 100 is subjected to an environment in which oxygen and moisture concentration are constant (for example, oxygen concentration of 10 ppm or less, moisture concentration).
- the organic EL element is formed by an adhesive layer formed on the transparent sealing substrate 105 by placing it under a reduced pressure (1 ⁇ 10 ⁇ 3 MPa or less) and applying pressure while applying suction. 100 is laminated, and then the adhesive layer is thermally cured by heating with a hot air circulation oven, an infrared heater, a heat gun, a high frequency induction heating device, a heat tool, or the like.
- thermosetting resins such as epoxy resins, cyanate ester resins, phenol resins, bismaleimide-triazine resins, polyimide resins, acrylic resins, and vinylbenzyl resins.
- an epoxy resin is preferable from the viewpoint of low-temperature curability and adhesiveness.
- epoxy resin those having an average of two or more epoxy groups per molecule may be used.
- bisphenol A type epoxy resin biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, and naphthol type epoxy are used.
- alicyclic epoxy resin aliphatic chain epoxy resin
- phenol novolac epoxy resin cresol novolac epoxy resin
- bisphenol A novolac epoxy resin Epoxy resin having a butadiene structure, phenol aralkyl type epoxy resin, epoxy resin having a dicyclopentadiene structure, diglycidyl ether
- bisphenol A type epoxy resin bisphenol F type epoxy resin, phenol novolac type epoxy resin, biphenyl aralkyl type epoxy resin, phenol aralkyl type epoxy from the viewpoint of maintaining high heat resistance and low moisture permeability of the resin composition.
- a resin, an aromatic glycidylamine type epoxy resin, an epoxy resin having a dicyclopentadiene structure, and the like are preferable.
- the epoxy resin may be liquid, solid, or both liquid and solid.
- “liquid” and “solid” are states of the epoxy resin at 25 ° C. From the viewpoints of coatability, processability, adhesiveness, and the like, it is preferable that 10% by mass or more of the entire epoxy resin to be used is liquid.
- the epoxy resin preferably has an epoxy equivalent in the range of 100 to 1000, more preferably in the range of 120 to 1000, from the viewpoint of reactivity.
- the epoxy equivalent is the number of grams (g / eq) of a resin containing 1 gram equivalent of an epoxy group, and is measured according to the method defined in JIS K-7236.
- the curing agent for the epoxy resin is not particularly limited as long as it has a function of curing the epoxy resin, but from the viewpoint of suppressing thermal deterioration of the element (particularly the organic EL element) during the curing treatment of the resin composition.
- the curing treatment of the composition is preferably performed at 140 ° C. or lower, more preferably 120 ° C. or lower, and the curing agent preferably has an epoxy resin curing action in such a temperature range.
- amine adduct-based compounds Amicure PN-23, Amicure MY-24, Amicure PN-D, Amicure MY-D, Amicure PN-H, Amicure MY-H, Amicure PN-31, Amicure PN-40, Amicure PN-40J, etc. (all Ajinomoto Fine Techno)
- organic acid dihydrazide Amicure VDH-J, Amicure UDH, Amicure LDH, etc. (all manufactured by Ajinomoto Fine Techno Co.)
- these may be used alone or in combination of two or more.
- the epoxy resin has extremely good low-temperature curability, and the upper limit of the curing temperature is preferably 140 ° C. or less, more preferably 120 ° C. or less, and even more preferably 110 ° C. or less.
- the lower limit of the curing temperature is preferably 50 ° C. or higher, and more preferably 55 ° C. or higher.
- 120 minutes or less is preferable, as for the upper limit of hardening time, 90 minutes or less are more preferable, and 60 minutes or less are still more preferable.
- the lower limit of the curing time is preferably 20 minutes or more, and more preferably 30 minutes or more. Thereby, the thermal deterioration of the organic EL element can be extremely reduced.
- the organic EL element of the present invention is a surface light emitter and can be used as various light sources.
- lighting devices such as home lighting and interior lighting, backlights for watches and liquid crystals, lighting for billboard advertisements, light sources for traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, It can be used as a light source for an optical sensor.
- the organic EL element of the present invention may be used as a kind of lamp such as an illumination or exposure light source, a projection device that projects an image, or a type that directly recognizes a still image or a moving image. It may be used as a display device (display).
- a display device display
- the organic EL element of the present invention is a top emission type, when used in a display device, the contrast is high and excellent display performance can be realized.
- the drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
- a color or full-color display device can be manufactured by using two or more organic EL elements of the present invention having different emission colors.
- Example 1 [Production of Organic EL Element 101] (Production of substrate) A polyester film having a thickness of 125 ⁇ m (manufactured by Teijin DuPont Films Ltd., extremely low heat yield PET) is put into a vacuum tank equipped with a resistance heating boat made of tungsten containing aluminum (Al), and the degree of vacuum is 4 ⁇ 10 ⁇ . The pressure was reduced to 4 Pa, and an aluminum (Al) layer having a layer thickness of 25 ⁇ m was deposited on a PET film at a deposition rate of 0.3 to 0.5 nm / second to produce a light reflective substrate.
- Al aluminum
- the substrate has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / m 2 ⁇ 24 h ⁇ atm or less, and a water vapor permeability of 1 ⁇ 10 ⁇ 5 g / m. it was confirmed that the following gas-barrier substrate 2 ⁇ 24h.
- a light diffusing reflection layer containing a white pigment was formed using the following coating solution.
- the coating solution A is coated on the aluminum (Al) layer of the substrate with a wire bar so that the dry coating film becomes 50 ⁇ m, and dried at 80 ° C. to contain a white pigment. A light diffuse reflection layer was formed.
- the relative diffuse reflectance of the formed light diffusive reflective layer containing the white pigment was 95% on average in the light wavelength region of 380 to 550 nm.
- the measurement was performed using a Hitachi spectrophotometer U-4100.
- a 150 nm thick ITO (Indium Tin Oxide: ITO) film is formed on the formed light diffusive reflection layer by a sputtering method using a commercially available sputtering apparatus, and patterned by a photolithography method.
- a first transparent electrode was formed. The pattern was such that the light emission area was 50 mm square.
- the following coating solution for forming a hole transport layer is applied with a spin coater in an environment of 25 ° C. and a relative humidity of 50% RH, and then dried and heated under the following conditions. And a hole transport layer was formed.
- the coating solution for forming the hole transport layer was applied so that the thickness after drying was 50 nm.
- PEDOT / PSS polystyrene sulfonate
- Baytron P AI 4083 manufactured by Bayer
- ⁇ Drying and heat treatment conditions After applying the hole transport layer forming coating solution, the solvent is removed at a height of 100 mm toward the film formation surface, a discharge air velocity of 1 m / s, a wide air velocity distribution of 5%, and a temperature of 100 ° C., followed by heat treatment.
- the back surface heat transfer type heat treatment was performed at a temperature of 150 ° C. using an apparatus to form a hole transport layer.
- the following coating solution for forming a white light emitting layer was applied with a spin coater under the following conditions, followed by drying and heat treatment under the following conditions to form a light emitting layer. .
- the white light emitting layer forming coating solution was applied so that the thickness after drying was 40 nm.
- ⁇ White luminescent layer forming coating solution> As a host material, 1.0 g of a compound represented by the following chemical formula HA, 100 mg of a compound represented by the following chemical formula DA as a dopant material, and 0.1 mg of a compound represented by the following chemical formula DB as a dopant material. 2 mg of a compound represented by the following chemical formula DC as a dopant material was dissolved in 0.2 mg and 100 g of toluene to prepare a white light emitting layer forming coating solution.
- the coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more, and the coating temperature was 25 ° C.
- ⁇ Drying and heat treatment conditions After applying the white light emitting layer forming coating solution, the solvent was removed at a height of 100 mm toward the film formation surface, a discharge wind speed of 1 m / s, a wide wind speed distribution of 5%, and a temperature of 60 ° C., and then a temperature of 130 ° C. A heat treatment was performed to form a light emitting layer.
- the following coating liquid for forming an electron transport layer was applied with a spin coater under the following conditions, and then dried and heated under the following conditions to form an electron transport layer.
- the coating solution for forming an electron transport layer was applied so that the thickness after drying was 30 nm.
- the coating process was performed in an atmosphere with a nitrogen gas concentration of 99% or more, and the coating temperature of the electron transport layer forming coating solution was 25 ° C.
- the electron transport layer was prepared by dissolving a compound represented by the following chemical formula EA in 2,2,3,3-tetrafluoro-1-propanol to obtain a 0.5 mass% solution as a coating solution for forming an electron transport layer.
- An electron injection layer was formed on the electron transport layer formed above. First, the substrate was put into a vacuum chamber and the pressure was reduced to 5 ⁇ 10 ⁇ 4 Pa. In advance, cesium fluoride prepared in a tantalum vapor deposition boat was heated in a vacuum chamber to form an electron injection layer having a thickness of 3 nm.
- Second transparent electrode (Formation of second transparent electrode) Using ITO as the second transparent electrode forming material under the vacuum of 5 ⁇ 10 ⁇ 4 Pa on the electron injection layer formed as described above, except for the portion that becomes the extraction electrode of the first transparent electrode. Then, a mask pattern was formed by vapor deposition so as to have an extraction electrode so that the light emission area was 50 mm square, and a second transparent electrode having a thickness of 150 nm was laminated.
- each of the laminates formed up to the second transparent electrode was moved again to a nitrogen atmosphere, and cut to a prescribed size using an ultraviolet laser to produce an organic EL element.
- Crimping conditions Crimping was performed at a temperature of 170 ° C. (ACF temperature 140 ° C. measured using a separate thermocouple), a pressure of 2 MPa, and 10 seconds.
- the organic EL element 101 was produced using the following PET base material with a gas barrier layer as a transparent sealing base material.
- a 125 ⁇ m-thick polyester film manufactured by Teijin DuPont Films Ltd., extremely low heat yield PET was used.
- Adhesion of the transparent sealing substrate using the PET substrate with the gas barrier layer uses an epoxy thermosetting adhesive (Elephan CS manufactured by Yodogawa Paper Co., Ltd.) as an adhesive, an oxygen concentration of 10 ppm or less, and a moisture concentration of 10 ppm.
- an epoxy thermosetting adhesive Elephan CS manufactured by Yodogawa Paper Co., Ltd.
- the PET base with a gas barrier layer toward the organic EL element Vacuum pressing was performed so that the gas barrier layer of the material was on the element side.
- the adhesive layer was thermally cured by heating on a hot plate at 110 ° C. for 30 minutes.
- ⁇ PET substrate with gas barrier layer> Preparation of polysilazane-containing coating solution
- TDAH 1,6-diaminohexane
- the coating solution obtained above was formed into a film with a thickness of 300 nm on the PET substrate with a spin coater, allowed to stand for 2 minutes, and then subjected to a heat treatment for 1 minute on an 80 ° C. hot plate to obtain polysilazane. A coating film was formed.
- a gas barrier layer was formed by performing a vacuum ultraviolet ray irradiation treatment of 6000 mJ / cm 2 according to the following method.
- reference numeral 201 denotes an apparatus chamber, which supplies appropriate amounts of nitrogen and oxygen from a gas supply port (not shown) to the inside and exhausts gas from a gas discharge port (not shown), thereby substantially removing water vapor from the inside of the chamber.
- the oxygen concentration can be maintained at a predetermined concentration.
- Reference numeral 202 denotes an Xe excimer lamp having a double tube structure that irradiates vacuum ultraviolet rays of 172 nm
- reference numeral 203 denotes an excimer lamp holder that also serves as an external electrode.
- Reference numeral 204 denotes a sample stage. The sample stage 204 can be reciprocated horizontally at a predetermined speed in the apparatus chamber 201 by a moving means (not shown).
- the sample stage 204 can be maintained at a predetermined temperature by a heating means (not shown).
- Reference numeral 205 denotes a sample on which a polysilazane coating film is formed. When the sample stage moves horizontally, the height of the sample stage is adjusted so that the shortest distance between the surface of the sample coating layer and the excimer lamp tube surface is 3 mm.
- Reference numeral 206 denotes a light shielding plate, which prevents the vacuum ultraviolet light from being applied to the coating layer of the sample during the aging of the Xe excimer lamp 202.
- the energy irradiated on the coating film surface in the vacuum ultraviolet irradiation process was measured using a 172 nm sensor head using an ultraviolet integrated light meter manufactured by Hamamatsu Photonics Co., Ltd .: C8026 / H8025 UV POWER METER.
- the sensor head is installed in the center of the sample stage 204 so that the shortest distance between the Xe excimer lamp tube surface and the measurement surface of the sensor head is 3 mm, and the atmosphere in the apparatus chamber 201 is irradiated with vacuum ultraviolet rays. Nitrogen and oxygen were supplied so that the oxygen concentration was the same as in the process, and the sample stage 204 was moved at a speed of 0.5 m / min (V in FIG. 3) for measurement.
- an aging time of 10 minutes was provided after the Xe excimer lamp was turned on, and then the sample stage was moved to start the measurement.
- the irradiation speed was adjusted to 6000 mJ / cm 2 by adjusting the moving speed of the sample stage.
- the vacuum ultraviolet irradiation was performed after aging for 10 minutes, similar to the measurement of irradiation energy.
- the organic EL element 102 was produced in the same manner except that a smooth layer was provided between the functional layer containing the white pigment and the first transparent electrode.
- the coating layer containing the following inorganic precursor compound is applied to the surface of the functional layer containing the formed white pigment by using a vacuum extrusion type coater so that the dry layer thickness is 150 nm. Was applied.
- the coating solution containing the inorganic precursor compound is a non-catalytic perhydropolysilazane 20 mass% dibutyl ether solution (AZ Electronic Materials Co., Ltd. Aquamica NN120-20) and an amine catalyst containing 5 mass% solid content.
- Hydropolysilazane 20% by mass dibutyl ether solution (AZ Electronic Materials Co., Ltd. Aquamica NAX120-20) is used by mixing, adjusting the amine catalyst to 1% by mass of solid content, and further diluting with dibutyl ether This was prepared as a 5% by mass dibutyl ether solution.
- the substrate was dried with infrared rays under conditions of a substrate temperature of 80 ° C., a drying time of 5 minutes, and a dew point of 5 ° C. in a dry atmosphere.
- the resin substrate was gradually cooled to 25 ° C., and the coating surface was subjected to modification treatment by irradiation with vacuum ultraviolet rays in a vacuum ultraviolet irradiation apparatus.
- a vacuum ultraviolet irradiation device an Xe excimer lamp having a double tube structure for irradiating vacuum ultraviolet rays of 172 nm was used.
- Excimer irradiation device MODEL MECL-M-1-200, light wavelength 172 nm, lamp filled gas Xe ⁇ Reforming treatment conditions> Excimer light intensity 3J / cm 2 (172nm) Stage heating temperature 100 ° C Oxygen concentration in the irradiation device 1000ppm After the modification treatment, the second layer, the third layer, and the fourth layer were further laminated in the same manner, and the reaction of polysilazane was further advanced in an 80 ° C. Dry environment to form a smooth layer.
- Organic EL Element 103 The following aluminum (Al) layer was further formed on the PET film having the aluminum (Al) layer used in the production of the organic EL element 101, and the organic EL element 101 was similarly used except that it was used as a substrate having a specular light reflecting layer. A light-emitting element 103 was manufactured.
- the PET film having the aluminum (Al) layer used in the production of the organic EL element 101 is put into a vacuum tank equipped with a resistance heating boat made of tungsten containing aluminum (Al), and the degree of vacuum is 4 ⁇ 10 ⁇ 4 Pa.
- the substrate having a specular light reflectivity is formed by laminating an aluminum (Al) layer having a layer thickness of 300 nm on the aluminum (Al) layer of the PET film at a film forming speed of 0.3 to 0.5 nm / sec. Was made.
- Example 2 [Production of Organic EL Element 201] An organic EL element 201 was produced in the same manner except that the organic EL element 101 of Example 1 was replaced with the following substrate, first transparent electrode, and second transparent electrode.
- a 125 ⁇ m thick polyethylene naphthalate film (Teonex Dupont Film Co., Ltd., Teonex Extremely Low Heat Yield PEN Q83) is placed in a vacuum tank equipped with a resistance heating boat made of tungsten containing aluminum (Al), and the degree of vacuum Depressurize to 4 ⁇ 10 ⁇ 4 Pa, deposit an aluminum (Al) layer with a thickness of 50 ⁇ m on the PEN film at a deposition rate of 0.3 to 0.5 nm / second, and produce a light-reflective substrate. did.
- the substrate has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / m 2 ⁇ 24 h ⁇ atm or less, and a water vapor permeability of 1 ⁇ 10 ⁇ 5 g / m. it was confirmed that the following gas-barrier substrate 2 ⁇ 24h.
- a PEN film formed with a functional layer containing a white pigment is set in a substrate holder, and these substrate holders and a resistance heating boat made of tungsten containing silver (Ag) are placed in the first vacuum chamber of the vacuum evaporation apparatus. Attached. After reducing the pressure in the first vacuum chamber to 4 ⁇ 10 ⁇ 4 Pa, the heating boat was energized and heated to form a first transparent electrode having a single layer structure made of silver by resistance heating vapor deposition. The layer thickness of the formed first transparent electrode made of silver (Ag) was 9 nm.
- Silver (Ag) is used as the second transparent electrode forming material on the formed electron injection layer except for the portion to be the extraction electrode of the first transparent electrode under a vacuum of 5 ⁇ 10 ⁇ 4 Pa. Then, a mask pattern was formed so as to have a light emission area of 50 mm square by the resistance heating vapor deposition so as to have the extraction electrode, and a second transparent electrode having a thickness of 9 nm was laminated.
- An organic EL element 202 was produced in the same manner as in the production of the organic EL element 102 of Example 1, except that the substrate, the first transparent electrode, and the second transparent electrode used in the organic EL element 201 were used.
- a PEN film formed up to a functional layer containing a white pigment is set in a substrate holder, the following compound A is put in a resistance heating boat made of tantalum, and these substrate holder and heating boat are connected to the first vacuum tank of the vacuum deposition apparatus. Attached to.
- the first vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then heated by energizing the heating boat containing Compound A, and the layer thickness was 25 nm on the substrate at a deposition rate of 0.1 nm / second.
- An underlayer which is a transparent functional layer made of Compound A was provided.
- the substrate on which the base layer was formed was transferred to the second vacuum chamber in a vacuum, the second vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then a resistance heating boat made of tungsten containing silver (Ag)
- the first transparent electrode having a single layer structure made of silver was formed by resistance heating vapor deposition.
- the layer thickness of the formed first transparent electrode made of silver (Ag) was 9 nm.
- the organic EL elements 201 to 204 having the white light diffusive reflecting layer according to the present invention reproduce Example 1 and are excellent in light emission luminance and color shift.
- the first transparent electrode and the second transparent electrode as a silver (Ag) thin film electrode, an organic EL element having more flexibility was realized.
- Example 3 In the production of the organic EL elements 203 and 204 produced in Example 2, a heating boat containing MoO 3 was heated on the second transparent electrode and heated, and a layer containing MoO 3 was formed on the second transparent electrode. , Formed as an electrode protective layer, and were used as organic EL elements 203b and 204b, respectively. At this time, the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then deposited at a deposition rate of 0.1 to 0.2 nm / second to a layer thickness of 50 nm.
- the organic electroluminescence device of the present invention has a functional layer containing at least a white pigment, a first transparent electrode, an organic light emitting layer, a second transparent electrode, and a transparent substrate on a flexible substrate on which a metal layer or a metal foil is laminated.
- Organic EL Element 101 First Transparent Electrode 101a Underlayer 101b Electrode Layer 102 Second Transparent Electrode (Counter Electrode) DESCRIPTION OF SYMBOLS 103 Organic light emitting layer 103a Hole injection layer 103b Hole transport layer 103c Light emission layer 103d Electron transport layer 103e Electron injection layer 104 Electrode protective layer 105 Transparent sealing substrate 106 Functional layer containing white pigment 107 Smooth layer 110 Substrate 110a Resin Base material 110b Metal layer 110c Resin base material 110e Resin base material 110d Metal layer h Emitted light
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
The purpose of the present invention is to provide a flexible, light-weight organic electroluminescence element which has a flexible substrate using a metal layer or a metal foil and having excellent gas barrier properties, which improves light extraction efficiency by suppressing the occurrence of plasmon loss of the light resulting from specular reflection on the substrate and a metal electrode, and which reduces color shift by suppressing the cavity effect at specific wavelengths by utilizing diffuse reflection. This organic electroluminescence element is characterized in that a functional layer that includes at least a white pigment, a first transparent electrode, an organic light-emitting layer, a second transparent electrode, and a transparent sealing substrate are arranged in that order on a flexible substrate on which a metal layer or metal foil is laminated.
Description
本発明は、有機エレクトロルミネッセンス素子に関する。より詳しくは、光取り出し効率が高く色ずれを低減した、可撓性を有し軽量な有機エレクトロルミネッセンス素子に関する。
The present invention relates to an organic electroluminescence element. More specifically, the present invention relates to a flexible and lightweight organic electroluminescence element that has high light extraction efficiency and reduced color shift.
現在、薄型の発光材料として有機発光素子が注目されている。
Currently, organic light emitting devices are attracting attention as thin light emitting materials.
有機材料のエレクトロルミネッセンス(Electro Luminescence:EL)を利用した有機発光素子(以下、有機EL素子ともいう。)は、数V~数十V程度の低電圧で発光が可能な薄膜型の完全固体素子であり、高輝度、高発光効率、薄型、軽量といった多くの優れた特徴を有している。このため、各種ディスプレイのバックライト、看板や非常灯等の表示板、照明光源等の面発光体として近年注目されている。
Organic light-emitting devices (hereinafter also referred to as organic EL devices) using organic electroluminescence (EL) are thin-film, completely solid-state devices that can emit light at a low voltage of several volts to several tens of volts. It has many excellent features such as high brightness, high luminous efficiency, thinness, and light weight. For this reason, it has been attracting attention in recent years as surface light emitters such as backlights for various displays, display boards such as signboards and emergency lights, and illumination light sources.
このような有機EL素子は、2枚の電極間に有機材料からなる発光層が配置された構成であり、発光層で生じた発光光は電極を透過して外部に取り出される。このため、2枚の電極のうちの少なくとも一方は透明電極として構成され、透明電極側から発光光は取り出される。
Such an organic EL element has a configuration in which a light emitting layer made of an organic material is disposed between two electrodes, and emitted light generated in the light emitting layer passes through the electrode and is extracted outside. Therefore, at least one of the two electrodes is configured as a transparent electrode, and emitted light is extracted from the transparent electrode side.
また、有機発光素子は従来の発光体と異なる薄膜面発光が特徴であり、その特徴を生かすため可撓性の透明基材上での素子形成が要望されている。このような要望に対し、透明プラスチック等のフィルム基板として、広く市場で用いられているポリエチレンテレフタレート(PET)フィルムのような、汎用の樹脂基材を用いた有機EL素子への要望は大きい。
Also, organic light-emitting elements are characterized by thin-film surface light emission different from conventional light emitters, and element formation on a flexible transparent substrate is desired to take advantage of these characteristics. In response to such a demand, there is a great demand for an organic EL element using a general-purpose resin base material such as a polyethylene terephthalate (PET) film widely used in the market as a film substrate of transparent plastic or the like.
しかしながら、透明プラスチック等のフィルム基板は、ガラス基板に比較しガスバリアー性が劣るという問題がある。ガスバリアー性が劣る基板を用いると、水蒸気や酸素が浸透してしまい、例えば、電子デバイス内の機能を劣化させてしまう。
However, a film substrate such as a transparent plastic has a problem that the gas barrier property is inferior to that of a glass substrate. If a substrate with inferior gas barrier properties is used, water vapor and oxygen will permeate, and for example, the function in the electronic device will be degraded.
ガスバリアー性と可撓性を両立する基板として、特許文献1には、金属層又は金属箔で被覆されたプラスチック基板、2層のプラスチック層に挟まれた金属層を有する基板、及び金属箔である基板が開示されているが、例えば当該金属箔の表面は金属箔の製造プロセス上、その表面には微細な凹凸があり、その上層に電極及び有機発光層を形成させると、有機EL素子の経時保存に伴い、ショート(電気的短絡)が生じやすくなるという問題がある。
As a substrate having both gas barrier properties and flexibility, Patent Document 1 includes a plastic substrate coated with a metal layer or a metal foil, a substrate having a metal layer sandwiched between two plastic layers, and a metal foil. Although a certain substrate is disclosed, for example, the surface of the metal foil has fine irregularities on the surface of the metal foil manufacturing process, and when an electrode and an organic light emitting layer are formed on the upper layer, the organic EL element There is a problem that short-circuiting (electrical short-circuiting) easily occurs with storage over time.
さらに、当該金属層又は金属箔を有する基板及び金属電極を用いると、有機発光層で発光する光を鏡面反射することによって、導波モードの一種であるプラズモンモードが発生して、反射体の表面近傍に閉じ込められる光の損失である「プラズモン損失」が発生しやすく、光の取り出し効率が低下するという問題がある。またキャビティー効果も発生し、発光色度の視野角依存性が劣化するという問題もある。
Furthermore, when a substrate having a metal layer or a metal foil and a metal electrode are used, the light emitted from the organic light emitting layer is specularly reflected to generate a plasmon mode, which is a kind of waveguide mode, and the surface of the reflector. There is a problem that “plasmon loss”, which is a loss of light confined in the vicinity, easily occurs, and the light extraction efficiency decreases. There is also a problem that a cavity effect is generated, and the viewing angle dependency of emission chromaticity is deteriorated.
特許文献2では、カーボンブラック系薄膜等の層を基板上に形成することによって、上記有機発光層で発光する光の反射を防止し、発光光と反射光とによる光学干渉作用を抑制することで、色ずれを防止する技術が開示されているが、当該カーボンブラック系薄膜の光吸収によって、発光輝度が低下するという問題がある。
In Patent Document 2, by forming a layer such as a carbon black-based thin film on a substrate, reflection of light emitted from the organic light emitting layer is prevented, and optical interference caused by emitted light and reflected light is suppressed. Although a technique for preventing color misregistration is disclosed, there is a problem in that light emission luminance is reduced due to light absorption of the carbon black thin film.
本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、金属層又は金属箔を用いた高いガスバリアー性を有する可撓性基板を具備し、当該基板及び金属電極の鏡面光反射による、光のプラズモン損失の発生を抑制することで光取り出し効率を向上し、かつ光拡散反射を利用することによって特定波長のキャビティー効果を抑制して色ずれを低減した、可撓性を有し軽量な有機エレクトルミネッセンス素子を提供することである。
The present invention has been made in view of the above problems and situations, and a solution to the problem is to provide a flexible substrate having a high gas barrier property using a metal layer or a metal foil, and the substrate and the metal electrode. Flexibility that improves light extraction efficiency by suppressing the occurrence of plasmon loss of light due to specular light reflection, and reduces color shift by suppressing the cavity effect of a specific wavelength by using light diffusion reflection It is providing the organic electroluminescent element which has the property and is lightweight.
本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、特定の可撓性基板上に、特定の機能層を有する有機エレクトロルミネッセンス素子によって、高いガスバリアー性を有し、光取り出し効率が高く、かつ色ずれを低減した可撓性を有し軽量な有機エレクトルミネッセンス素子を提供できることを見出し本発明に至った。
In order to solve the above-mentioned problems, the present inventor has a high gas barrier property by an organic electroluminescence element having a specific functional layer on a specific flexible substrate in the process of examining the cause of the above-mentioned problem. The present inventors have found that a light-emitting organic electroluminescence element having high light extraction efficiency and reduced color misregistration can be provided.
すなわち、本発明に係る上記課題は、以下の手段により解決される。
That is, the above-mentioned problem according to the present invention is solved by the following means.
1.金属層又は金属箔が積層された可撓性基板上に、少なくとも白色顔料を含有する機能層、第一透明電極、有機発光層、第二透明電極、及び透明封止基材をこの順に有することを特徴とする有機エレクトロルミネッセンス素子。
1. Having a functional layer containing at least a white pigment, a first transparent electrode, an organic light emitting layer, a second transparent electrode, and a transparent sealing substrate in this order on a flexible substrate on which a metal layer or a metal foil is laminated An organic electroluminescence device characterized by the above.
2.前記白色顔料を含有する機能層と前記第一透明電極の間に、平滑層を有することを特徴とする第1項に記載の有機エレクトロルミネッセンス素子。
2. 2. The organic electroluminescence device according to claim 1, further comprising a smooth layer between the functional layer containing the white pigment and the first transparent electrode.
3.前記第一透明電極又は前記第二透明電極のいずれかが、銀又は銀を主成分とする合金を含有することを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子。
3. Either the first transparent electrode or the second transparent electrode contains silver or an alloy containing silver as a main component, or the organic electroluminescent element according to the first or second item.
4.前記第一透明電極の前記可撓性基板側に、窒素原子及び硫黄原子から選択される少なくとも1種の原子を有する有機化合物を含有する下地層を有することを特徴とする第1項から第3項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
4. The first transparent electrode has an underlayer containing an organic compound having at least one atom selected from a nitrogen atom and a sulfur atom on the flexible substrate side of the first transparent electrode. The organic electroluminescent element as described in any one of the items to.
5.前記第二透明電極上に、電極保護層を有することを特徴とする第1項から第4項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
5. The organic electroluminescence device according to any one of items 1 to 4, further comprising an electrode protective layer on the second transparent electrode.
6.前記電極保護層が、金属酸化物を含有することを特徴とする第5項に記載の有機エレクトロルミネッセンス素子。
6. 6. The organic electroluminescence device according to item 5, wherein the electrode protective layer contains a metal oxide.
本発明の上記手段により、金属層又は金属箔を用いた高いガスバリアー性を有する可撓性基板を具備し、当該基板及び金属電極の鏡面光反射による、光のプラズモン損失の発生を抑制することで光取り出し効率を向上し、かつ光拡散反射を利用することによって特定波長のキャビティー効果を抑制して色ずれを低減した、可撓性を有し軽量な有機エレクトルミネッセンス素子を提供することができる。
By the above means of the present invention, a flexible substrate having a high gas barrier property using a metal layer or a metal foil is provided, and generation of plasmon loss of light due to specular light reflection of the substrate and the metal electrode is suppressed. It is possible to provide a flexible and lightweight organic electroluminescent element that improves light extraction efficiency and suppresses a color shift by suppressing a cavity effect of a specific wavelength by utilizing light diffuse reflection. it can.
本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
本発明の有機エレクトルミネッセンス素子は、金属層又は金属箔が積層された可撓性基板を用いることで高いガスバリアー性と可撓性の両立を図ることができ、さらに前記可撓性基板と前記第一透明電極の間に、白色顔料を含有する白色光拡散反射層を機能層として配置することで、通常の上面発光型素子のような、基板上に形成する金属反射電極上で発生する発光した光のプラズモンモードへの結合を、白色光拡散反射によって抑制することができ、光取り出し効率を向上させていると推察される。
The organic electroluminescent element of the present invention can achieve both high gas barrier properties and flexibility by using a flexible substrate on which a metal layer or a metal foil is laminated. Light emission generated on a metal reflective electrode formed on a substrate, such as a normal top-emitting element, by arranging a white light diffusing reflective layer containing a white pigment as a functional layer between the first transparent electrodes It is presumed that the coupling of the light to the plasmon mode can be suppressed by the white light diffuse reflection, and the light extraction efficiency is improved.
さらに当該白色光拡散反射を利用することによって、特定波長でのキャビティー効果を抑制することができるため、色ずれを低減した有機エレクトルミネッセンス素子を得ることができるものと推察される。
Further, by utilizing the white light diffuse reflection, the cavity effect at a specific wavelength can be suppressed, so that it is presumed that an organic electroluminescence element with reduced color shift can be obtained.
本発明の有機エレクトルミネッセンス素子は、金属層又は金属箔が積層された可撓性を有する基板上に、少なくとも白色顔料を含有する機能層、第一透明電極、有機発光層、第二透明電極、及び透明封止基材をこの順に有することを特徴とる。この特徴は、請求項1から請求項6までの請求項に係る発明に共通する技術的特徴である。
The organic electroluminescent element of the present invention has a functional layer containing at least a white pigment, a first transparent electrode, an organic light emitting layer, a second transparent electrode on a flexible substrate in which a metal layer or a metal foil is laminated, And having a transparent sealing substrate in this order. This feature is a technical feature common to the inventions according to claims 1 to 6.
本発明の実施態様としては、本発明の効果発現の観点から、前記白色顔料を含有する機能層と前記第一透明電極の間に平滑層を有することが好ましく、当該平滑層によって上記基板及び機能層の表面を平滑化して、当該機能層上に形成される透明電極の経時保存に伴うショート(電気的短絡)等の発生を抑えることができる。
As an embodiment of the present invention, it is preferable to have a smooth layer between the functional layer containing the white pigment and the first transparent electrode, from the viewpoint of manifesting the effect of the present invention. By smoothing the surface of the layer, it is possible to suppress the occurrence of a short circuit (electrical short circuit) or the like associated with storage over time of the transparent electrode formed on the functional layer.
また、前記第一透明電極又は前記第二透明電極のいずれかが、銀又は銀を主成分とする合金を含有し、当該第一透明電極の前記可撓性基板側に、窒素原子及び硫黄原子から選択される少なくとも1種の原子を有する有機化合物を含有する下地層を有することが、薄膜で透明で可撓性を有する電極を具備できる観点から、好ましい。
Further, either the first transparent electrode or the second transparent electrode contains silver or an alloy containing silver as a main component, and a nitrogen atom and a sulfur atom are formed on the flexible substrate side of the first transparent electrode. It is preferable to have a base layer containing an organic compound having at least one kind of atom selected from the viewpoints of providing a thin, transparent, and flexible electrode.
さらに、前記第二透明電極上に、電極保護層を有することが好ましく、当該電極保護層が金属酸化物を含有することが、透明封止基材との接着性が向上し、より強固な封止ができる観点から好ましい。
Furthermore, it is preferable to have an electrode protective layer on the second transparent electrode, and that the electrode protective layer contains a metal oxide improves adhesion with the transparent sealing substrate and provides a stronger sealing. It is preferable from the viewpoint of stopping.
以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
<本発明の有機EL素子の概要>
本発明の有機EL素子は、金属層又は金属箔が積層された可撓性基板上に、少なくとも白色顔料を含有する機能層、第一透明電極、有機発光層、第二透明電極、及び透明封止基材をこの順に有することを特徴とし、かかる構成により、高いガスバリアー性を有し、光取り出し効率が高く、かつ色ずれを低減した可撓性を有し軽量な有機エレクトルミネッセンス素子を提供することができる。 <Outline of Organic EL Device of the Present Invention>
The organic EL device of the present invention includes a functional layer containing at least a white pigment, a first transparent electrode, an organic light emitting layer, a second transparent electrode, and a transparent seal on a flexible substrate on which a metal layer or a metal foil is laminated. Provided with a stop base material in this order, this configuration provides a lightweight and light organic electroluminescence element with high gas barrier properties, high light extraction efficiency, and reduced color shift can do.
本発明の有機EL素子は、金属層又は金属箔が積層された可撓性基板上に、少なくとも白色顔料を含有する機能層、第一透明電極、有機発光層、第二透明電極、及び透明封止基材をこの順に有することを特徴とし、かかる構成により、高いガスバリアー性を有し、光取り出し効率が高く、かつ色ずれを低減した可撓性を有し軽量な有機エレクトルミネッセンス素子を提供することができる。 <Outline of Organic EL Device of the Present Invention>
The organic EL device of the present invention includes a functional layer containing at least a white pigment, a first transparent electrode, an organic light emitting layer, a second transparent electrode, and a transparent seal on a flexible substrate on which a metal layer or a metal foil is laminated. Provided with a stop base material in this order, this configuration provides a lightweight and light organic electroluminescence element with high gas barrier properties, high light extraction efficiency, and reduced color shift can do.
ここでいう「可撓性」とは、基板又は基材をφ(直径)50mmロールに巻き付け、一定の張力で巻取る前後で割れ等が生じることのないことをいう。可撓性基板又は基材としては、φ30mmロールに巻き付け可能な基板又は基材であることがより好ましく、後述する樹脂材料を用いることが好ましい。
Here, “flexibility” means that a substrate or a base material is wound around a φ (diameter) 50 mm roll, and cracks or the like do not occur before and after winding with a constant tension. The flexible substrate or base material is more preferably a substrate or base material that can be wound around a φ30 mm roll, and a resin material described later is preferably used.
また、本発明でいう「透明」とは、有機EL素子を構成する要素について、それぞれ分光光度計((株)日立ハイテクノロジーズ製U-3300)を用いて、光波長550nmにおける光透過率(%)を測定したときに、50%以上の光透過率を有することをいう。上記有機EL素子を構成する要素のそれぞれの光透過率は、好ましくは60%以上、より好ましくは70%以上、特に好ましくは80%以上である。
The term “transparent” as used in the present invention refers to the light transmittance (%) at a light wavelength of 550 nm using a spectrophotometer (U-3300 manufactured by Hitachi High-Technologies Corporation) for each element constituting the organic EL element. ) Is measured, it has a light transmittance of 50% or more. The light transmittance of each element constituting the organic EL element is preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
<本発明の有機EL素子の詳細>
〔有機EL素子の構成〕
本発明の有機EL素子の一例を、図2に示す。ただし、本発明はこれに限定されるものではない。 <Details of the organic EL device of the present invention>
[Configuration of organic EL element]
An example of the organic EL element of the present invention is shown in FIG. However, the present invention is not limited to this.
〔有機EL素子の構成〕
本発明の有機EL素子の一例を、図2に示す。ただし、本発明はこれに限定されるものではない。 <Details of the organic EL device of the present invention>
[Configuration of organic EL element]
An example of the organic EL element of the present invention is shown in FIG. However, the present invention is not limited to this.
本発明の有機EL素子100は、基板110上に設けられており、基板110側から順に、少なくとも白色顔料を含有する機能層106、第一透明電極101、有機材料等を用いて構成された有機発光層103、第二透明電極(対向電極)102、及び透明封止基材105をこの順に積層して構成されている。基板110は金属層又は金属箔で構成されているため、絶縁層(不図示)を有することが電極の設置自由度を増すため好ましい。第一透明電極101(電極層101b)の端部は、取り出し電極の形状を有し、第一透明電極101と外部電源(図示略)とは、取り出し電極を介して、電気的に接続される。有機EL素子100は、発生させた光(発光光h)は、透明封止基材105側から取り出すように構成されているトップエミッション型である。
The organic EL device 100 of the present invention is provided on a substrate 110, and is configured by using a functional layer 106 containing at least a white pigment, a first transparent electrode 101, an organic material, and the like in order from the substrate 110 side. The light emitting layer 103, the second transparent electrode (counter electrode) 102, and the transparent sealing substrate 105 are laminated in this order. Since the substrate 110 is composed of a metal layer or a metal foil, it is preferable to have an insulating layer (not shown) in order to increase the degree of freedom of electrode installation. The end of the first transparent electrode 101 (electrode layer 101b) has the shape of an extraction electrode, and the first transparent electrode 101 and an external power source (not shown) are electrically connected via the extraction electrode. . The organic EL element 100 is a top emission type configured such that generated light (emitted light h) is extracted from the transparent sealing substrate 105 side.
本発明の有機EL素子100は、前記基板、白色顔料を含有する機能層、第一透明電極、有機発光層、第二透明電極及び透明封止基材がいずれも可撓性を有することによって、可撓性を有する有機EL素子を実現するものである。
The organic EL device 100 of the present invention has the above-mentioned substrate, the functional layer containing the white pigment, the first transparent electrode, the organic light emitting layer, the second transparent electrode, and the transparent sealing substrate all having flexibility. An organic EL element having flexibility is realized.
有機EL素子100の層構造は限定されることはなく、一般的な層構造であってよい。ここでは、第一透明電極101がアノード(すなわち陽極)として機能し、第二透明電極102がカソード(すなわち陰極)として機能することとする。この場合、例えば、有機発光層103は、アノードである第一透明電極101側から順に正孔注入層103a/正孔輸送層103b/発光層103c/電子輸送層103d/電子注入層103eを積層した構成が例示されるが、このうち、少なくとも有機材料を用いて構成された発光層103cを有することが必須である。正孔注入層103a及び正孔輸送層103bは、正孔輸送注入層として設けられてもよい。電子輸送層103d及び電子注入層103eは、電子輸送注入層として設けられてもよい。また、これらの有機発光層103のうち、例えば、電子注入層103eは無機材料で構成されている場合もある。
The layer structure of the organic EL element 100 is not limited and may be a general layer structure. Here, the first transparent electrode 101 functions as an anode (that is, an anode), and the second transparent electrode 102 functions as a cathode (that is, a cathode). In this case, for example, the organic light emitting layer 103 is formed by laminating a hole injection layer 103a / a hole transport layer 103b / a light emission layer 103c / an electron transport layer 103d / an electron injection layer 103e in this order from the first transparent electrode 101 side which is an anode. Although the structure is illustrated, it is essential to have the light emitting layer 103c formed using at least an organic material. The hole injection layer 103a and the hole transport layer 103b may be provided as a hole transport injection layer. The electron transport layer 103d and the electron injection layer 103e may be provided as an electron transport injection layer. Among these organic light emitting layers 103, for example, the electron injection layer 103e may be made of an inorganic material.
また、有機発光層103は、これらの層の他にも正孔阻止層や電子阻止層等が必要に応じて必要箇所に積層されていてもよい。さらに、発光層103cは、各光波長領域の発光光を発生させる各色発光層を有し、これらの各色発光層を、非発光性の中間層を介して積層させた構造としてもよい。中間層は、正孔阻止層、電子阻止層として機能してもよい。さらに、カソードである第二透明電極102も、必要に応じた積層構造であってもよい。このような構成において、第一透明電極101と第二透明電極102とで有機発光層103が挟持された部分のみが、有機EL素子100における発光領域となる。
In addition to these layers, the organic light emitting layer 103 may be laminated with a hole blocking layer, an electron blocking layer, or the like as necessary. Furthermore, the light emitting layer 103c may have a structure in which each color light emitting layer for generating light emitted in each light wavelength region is laminated, and each of these color light emitting layers is laminated via a non-light emitting intermediate layer. The intermediate layer may function as a hole blocking layer and an electron blocking layer. Further, the second transparent electrode 102 as the cathode may also have a laminated structure as necessary. In such a configuration, only a portion where the organic light emitting layer 103 is sandwiched between the first transparent electrode 101 and the second transparent electrode 102 becomes a light emitting region in the organic EL element 100.
また、以上のような層構成においては、第一透明電極101の低抵抗化を図ることを目的とし、第一透明電極101の電極層101bに接して補助電極(不図示)が設けられていてもよい。
Further, in the layer configuration as described above, an auxiliary electrode (not shown) is provided in contact with the electrode layer 101b of the first transparent electrode 101 for the purpose of reducing the resistance of the first transparent electrode 101. Also good.
以上のような構成の有機EL素子100は、有機材料等を用いて構成された有機発光層103の劣化を防止することを目的として、基板110上において透明封止基材105によって封止されている。この透明封止基材105はその表面に接着剤層を介して基板110側に固定されている。ただし、第一透明電極101の取り出し電極部及び第二透明電極102の端子部分は、基板110上において有機発光層103によって互いに絶縁性を保った状態で透明封止基材105から露出させた状態で設けられていることとする。透明封止基材105は、有機発光層103を外部環境の湿度等から保護するため、ガスバリアー層を有することが好ましい。
The organic EL element 100 configured as described above is sealed on the substrate 110 by the transparent sealing base material 105 for the purpose of preventing deterioration of the organic light emitting layer 103 formed using an organic material or the like. Yes. The transparent sealing substrate 105 is fixed to the surface of the substrate 110 via an adhesive layer. However, the extraction electrode portion of the first transparent electrode 101 and the terminal portion of the second transparent electrode 102 are exposed from the transparent sealing substrate 105 in a state in which the organic light emitting layer 103 maintains insulation from each other on the substrate 110. It is assumed that it is provided. The transparent sealing substrate 105 preferably has a gas barrier layer in order to protect the organic light emitting layer 103 from the humidity of the external environment.
また、白色顔料を含有する機能層106と第一透明電極101の間には、平滑層107を設けることが好ましく、基板110及び基板上に形成される白色顔料を含有する機能層106の表面の凹凸を平坦化することで、経時保存による電極のショート(電気的短絡)を防ぐことができる。
Moreover, it is preferable to provide the smooth layer 107 between the functional layer 106 containing a white pigment and the first transparent electrode 101, and the surface of the functional layer 106 containing the white pigment formed on the substrate 110 and the substrate is preferably provided. By flattening the unevenness, it is possible to prevent an electrode short-circuit (electrical short-circuit) due to storage with time.
さらに、第二透明電極102と透明封止基材105との間には、電極保護層104を設けることが好ましく、電極表面の保護及び平坦化、並びに透明封止基材105と固体封止することができるため、より強固な封止を可能とすることができ、好ましい。
Furthermore, it is preferable to provide an electrode protective layer 104 between the second transparent electrode 102 and the transparent sealing substrate 105, and the electrode surface is protected and planarized, and the transparent sealing substrate 105 is solid-sealed. Therefore, stronger sealing can be achieved, which is preferable.
〔有機EL素子の製造方法〕
本発明の有機EL素子の製造方法は、基板上に少なくとも白色顔料を含有する機能層、第一透明電極、有機発光層及び第二透明電極を積層し、さらに透明封止基材によってラミネートして封止することが好ましい。 [Method for producing organic EL element]
In the method for producing an organic EL device of the present invention, a functional layer containing at least a white pigment, a first transparent electrode, an organic light emitting layer and a second transparent electrode are laminated on a substrate, and further laminated with a transparent sealing substrate. It is preferable to seal.
本発明の有機EL素子の製造方法は、基板上に少なくとも白色顔料を含有する機能層、第一透明電極、有機発光層及び第二透明電極を積層し、さらに透明封止基材によってラミネートして封止することが好ましい。 [Method for producing organic EL element]
In the method for producing an organic EL device of the present invention, a functional layer containing at least a white pigment, a first transparent electrode, an organic light emitting layer and a second transparent electrode are laminated on a substrate, and further laminated with a transparent sealing substrate. It is preferable to seal.
ここでは、一例として、図2に示す有機EL素子100の製造方法を説明する。
Here, as an example, a method for manufacturing the organic EL element 100 shown in FIG. 2 will be described.
〈積層工程〉
本発明の有機EL素子の製造方法では、基板110上に、少なくとも白色顔料を含有する機能層106、第一透明電極101、有機発光層103及び第二透明電極102を積層し、さら透明封止基材105によってラミネートする。 <Lamination process>
In the method for producing an organic EL element of the present invention, afunctional layer 106 containing at least a white pigment, a first transparent electrode 101, an organic light emitting layer 103, and a second transparent electrode 102 are laminated on a substrate 110, and further transparent sealing is performed. Lamination is performed with the substrate 105.
本発明の有機EL素子の製造方法では、基板110上に、少なくとも白色顔料を含有する機能層106、第一透明電極101、有機発光層103及び第二透明電極102を積層し、さら透明封止基材105によってラミネートする。 <Lamination process>
In the method for producing an organic EL element of the present invention, a
まず、金属層又は金属箔が積層された可撓性基板110を準備し、基板110上に、光散乱反射層である白色顔料を含有する機能層106を、好ましくは層厚10~50μmの範囲で塗布法によって形成する。
First, a flexible substrate 110 on which a metal layer or a metal foil is laminated is prepared, and a functional layer 106 containing a white pigment as a light-scattering / reflecting layer is preferably formed on the substrate 110 in a thickness range of 10 to 50 μm. And formed by a coating method.
次いで、平滑層107を、例えば塗布法によって、層厚として好ましくは0.1~5μmの範囲で形成し、その上に窒素原子及び硫黄原子から選択される少なくとも1種の原子を有する有機化合物からなる下地層101aを、1μm以下、好ましくは10~100nmの範囲内の層厚になるように蒸着法等の適宜の方法により形成する。
Next, the smooth layer 107 is formed by a coating method, for example, with a layer thickness of preferably 0.1 to 5 μm, and an organic compound having at least one atom selected from a nitrogen atom and a sulfur atom thereon. The underlying layer 101a is formed by an appropriate method such as an evaporation method so as to have a layer thickness of 1 μm or less, preferably in the range of 10 to 100 nm.
次に、銀又は銀を主成分とする合金からなる電極層101bを、30nm以下、好ましくは5~30nmの範囲の層厚になるように、蒸着法等の適宜の方法により下地層101a上に形成し、アノードとなる第一透明電極101を作製する。同時に、第一透明電極101端部に、外部電源と接続される取り出し電極部を蒸着法等の適宜の方法に形成する。
Next, the electrode layer 101b made of silver or an alloy containing silver as a main component is formed on the base layer 101a by an appropriate method such as vapor deposition so that the layer thickness is 30 nm or less, preferably in the range of 5 to 30 nm. The first transparent electrode 101 is formed to be an anode. At the same time, an extraction electrode portion connected to an external power source is formed at the end of the first transparent electrode 101 by an appropriate method such as a vapor deposition method.
次に、この上に、正孔注入層103a、正孔輸送層103b、発光層103c、電子輸送層103d、電子注入層103eの順に積層し、有機発光層103を形成する。
Next, a hole injection layer 103a, a hole transport layer 103b, a light emitting layer 103c, an electron transport layer 103d, and an electron injection layer 103e are stacked in this order on this, thereby forming the organic light emitting layer 103.
これらの各層の形成は、スピンコート法、キャスト法、インクジェット法、蒸着法、印刷法等を用いることができるが、均質な層が得られやすく、かつ、ピンホールが生成しにくい等の点から、蒸着法又はスピンコート法が特に好ましい。更に、層ごとに異なる形成法を適用してもよい。これらの各層の形成に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般に抵抗加熱ボートを用いてボート加熱温度50~450℃、真空度1×10-6~1×10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、層厚0.1~5μmの範囲内で、各条件を適宜選択することが望ましい。
Each of these layers can be formed by spin coating, casting, ink jet, vapor deposition, printing, etc., but it is easy to obtain a homogeneous layer and it is difficult to generate pinholes. The vapor deposition method or the spin coating method is particularly preferable. Furthermore, different formation methods may be applied for each layer. When a vapor deposition method is employed for forming each of these layers, the vapor deposition conditions vary depending on the type of compound used, etc., but generally a resistance heating boat is used and the boat heating temperature is 50 to 450 ° C., and the degree of vacuum is 1 × 10 −6 to It is desirable to appropriately select each condition within the range of 1 × 10 −2 Pa, vapor deposition rate of 0.01 to 50 nm / second, substrate temperature of −50 to 300 ° C., and layer thickness of 0.1 to 5 μm.
以上のようにして有機発光層103を形成した後、この上部にカソードとなる第二透明電極102を、蒸着法やスパッタ法などの適宜の形成法によって形成する。この際、第二透明電極102は、有機発光層103によって第一透明電極101に対して絶縁状態を保ちつつ、有機発光層103の上方から基板110の周縁に端子部分を引き出した形状にパターン形成する。
After forming the organic light emitting layer 103 as described above, the second transparent electrode 102 serving as a cathode is formed on the upper portion by an appropriate forming method such as a vapor deposition method or a sputtering method. At this time, the second transparent electrode 102 is formed in a pattern in which a terminal portion is drawn from the upper side of the organic light emitting layer 103 to the periphery of the substrate 110 while being insulated from the first transparent electrode 101 by the organic light emitting layer 103. To do.
透明第二電極の表面を平滑にし、強度を付与して保護するために、電極保護層104を形成することが好ましい。電極保護層の層厚は、1μm以下、好ましくは10~100nmの範囲内の層厚になるように、前記塗布法又は蒸着法等の適宜の方法により形成することが好ましい。
It is preferable to form the electrode protective layer 104 in order to smooth the surface of the transparent second electrode and to provide strength and protect it. The electrode protective layer is preferably formed by an appropriate method such as the coating method or the vapor deposition method so that the layer thickness is 1 μm or less, preferably in the range of 10 to 100 nm.
次いで、接着層が設けられた透明封止基材105を加熱圧着等の方法によって、第一透明電極、有機発光層及び第二透明電極を覆うように、上記電極保護層104上、及び基板110上にラミネートして封止し、有機EL素子100を作製する。
Next, the transparent sealing substrate 105 provided with the adhesive layer is covered on the electrode protective layer 104 and the substrate 110 so as to cover the first transparent electrode, the organic light emitting layer, and the second transparent electrode by a method such as thermocompression bonding. The organic EL element 100 is manufactured by laminating and sealing.
以下、上述した有機EL素子100を構成するための主要各層の詳細とその製造方法についてさらに説明する。
Hereinafter, details of each main layer for constituting the organic EL element 100 described above and a manufacturing method thereof will be further described.
〔基板〕
本発明に係る可撓性基板110は、(i)金属層に積層又は金属層で被覆された樹脂基材層、(ii)2層の樹脂基材層に挟まれた金属層、(iii)金属箔、のいずれか一つで構成されることが好ましい。当該可撓性基板上の金属層又は金属箔は、有機EL素子への酸素及び水分の透過を最小限に抑えるガスバリアー層として働く。したがって、金属層又は金属箔の厚さはガスバリアー層としての機能を発揮するため、5~500μmの範囲内であることが好ましく、10~100μmの範囲内であることがより好ましい。この範囲内の厚さであれば、可撓性を損なうことなく、ガスバリアー層としての機能を発揮できる。 〔substrate〕
Theflexible substrate 110 according to the present invention includes (i) a resin base layer laminated or coated with a metal layer, (ii) a metal layer sandwiched between two resin base layers, and (iii) It is preferably composed of any one of metal foils. The metal layer or metal foil on the flexible substrate serves as a gas barrier layer that minimizes the transmission of oxygen and moisture to the organic EL element. Therefore, the thickness of the metal layer or the metal foil is preferably in the range of 5 to 500 μm, more preferably in the range of 10 to 100 μm, in order to exhibit the function as a gas barrier layer. If it is the thickness in this range, the function as a gas barrier layer can be exhibited, without impairing flexibility.
本発明に係る可撓性基板110は、(i)金属層に積層又は金属層で被覆された樹脂基材層、(ii)2層の樹脂基材層に挟まれた金属層、(iii)金属箔、のいずれか一つで構成されることが好ましい。当該可撓性基板上の金属層又は金属箔は、有機EL素子への酸素及び水分の透過を最小限に抑えるガスバリアー層として働く。したがって、金属層又は金属箔の厚さはガスバリアー層としての機能を発揮するため、5~500μmの範囲内であることが好ましく、10~100μmの範囲内であることがより好ましい。この範囲内の厚さであれば、可撓性を損なうことなく、ガスバリアー層としての機能を発揮できる。 〔substrate〕
The
ガスバリアー層は、JIS K 7129:1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度90±2%環境下)が0.01g/(m2・24時間)以下のガスバリアー性であることが好ましく、また、JIS K 7126:1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m2・24時間・atm)以下、水蒸気透過度が1×10-5g/(m2・24時間)以下の高ガスバリアー性であることがより好ましい。
The gas barrier layer has a water vapor permeability (25 ± 0.5 ° C., relative humidity 90 ± 2% environment) measured by a method according to JIS K 7129: 1992, 0.01 g / (m 2 · 24 hours. The following gas barrier properties are preferred, and the oxygen permeability measured by a method according to JIS K 7126: 1987 is 1 × 10 −3 ml / (m 2 · 24 hours · atm) or less, water vapor It is more preferable that the gas permeability is 1 × 10 −5 g / (m 2 · 24 hours) or less.
一実施形態において、本発明に係る基板110は、図1Aに示すように、金属層110bに積層又は金属層110bで被覆された樹脂基材110aで構成されている。本発明に係る金属層又は金属箔を樹脂基材101aに積層する方法は、特に限定されない。例えば、樹脂基材に金属板又は金属箔を接着剤によって貼合してもよいし、金属材料を蒸着法によって当該樹脂基材上に金属層として形成してもよい。本発明では、蒸着法を用いることが、均一な金属層を形成する上で好ましく、抵抗加熱ボートを用いる真空蒸着法であることが、より均一な金属層を形成しやすいため好ましい。当該金属材料としては、特に限定されるものではないが、ステンレス、鉄(Fe)、アルミニウム(Al)、ニッケル(Ni)、コバルト(Co)、銅(Cu)やこれらの合金が好ましく用いられる。中でも、反射率が高く、軽量であるアルミニウムが好ましく用いられアルミニウムは水及び酸素に対する優れたバリア膜となるため好適である。
In one embodiment, as shown in FIG. 1A, a substrate 110 according to the present invention is configured by a resin base material 110a laminated on or coated with a metal layer 110b. The method for laminating the metal layer or metal foil according to the present invention on the resin substrate 101a is not particularly limited. For example, a metal plate or a metal foil may be bonded to the resin base material with an adhesive, or a metal material may be formed on the resin base material as a metal layer by a vapor deposition method. In the present invention, it is preferable to use a vapor deposition method in order to form a uniform metal layer, and a vacuum vapor deposition method using a resistance heating boat is preferable because it is easy to form a more uniform metal layer. The metal material is not particularly limited, but stainless steel, iron (Fe), aluminum (Al), nickel (Ni), cobalt (Co), copper (Cu), and alloys thereof are preferably used. Among them, aluminum having high reflectance and light weight is preferably used, and aluminum is preferable because it becomes an excellent barrier film against water and oxygen.
別の実施形態として、図1Bに示すように基板110は、2層の樹脂基材110c及び101eに挟まれた金属層110dで構成されていてもよい。
As another embodiment, as shown in FIG. 1B, the substrate 110 may be composed of a metal layer 110d sandwiched between two layers of resin base materials 110c and 101e.
また、金属層110bと第一透明電極101の間に絶縁層(不図示)を設けることが好ましい。絶縁層は、スピンコートにより形成されたポリマー層、又は誘電体層であってもよく、例えば、無機酸化物又はスピンオングラス(spin-on-glass:SOG)であってもよい。この絶縁層は、平坦化層としても機能する。
It is also preferable to provide an insulating layer (not shown) between the metal layer 110b and the first transparent electrode 101. The insulating layer may be a polymer layer formed by spin coating or a dielectric layer, and may be, for example, an inorganic oxide or a spin-on-glass (SOG). This insulating layer also functions as a planarization layer.
基板110に使用される樹脂基材110aとしては、透明であって、かつ可撓性を有する樹脂基材であり、従来公知の樹脂フィルム基材から選択して使用できる。本発明で好ましく用いられる樹脂基材は、有機EL素子に必要な耐湿性/耐気体透過性等のガスバリアー性能を有することが好ましい。
The resin substrate 110a used for the substrate 110 is a transparent and flexible resin substrate, and can be selected from conventionally known resin film substrates. The resin substrate preferably used in the present invention preferably has gas barrier properties such as moisture resistance / gas permeability resistance required for the organic EL element.
本発明において、樹脂基材の光透過率は、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましい。
In the present invention, the light transmittance of the resin base material is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more.
本発明において用いることのできる透明な樹脂基材としては、従来公知の基材であり、例えば、アクリル酸エステル、メタクリル酸エステル、PMMA等のアクリル樹脂、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ナイロン(Ny)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホネート、ポリイミド、ポリエーテルイミド、ポリオレフィン、エポキシ樹脂等の各樹脂フィルムが挙げられ、更に、シクロオレフィン系やセルロースエステル系のものも用いることができる。また、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(製品名Sila-DEC、チッソ株式会社製)、更には前記樹脂材料を2層以上積層してなる樹脂フィルム等を挙げることができる。
The transparent resin base material that can be used in the present invention is a conventionally known base material, for example, acrylic resins such as acrylic ester, methacrylic ester, PMMA, polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene. Naphthalate (PEN), polycarbonate (PC), polyarylate, polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), polystyrene (PS), nylon (Ny), aromatic polyamide, polyether ether ketone, Examples include resin films such as polysulfone, polyether sulfonate, polyimide, polyetherimide, polyolefin, and epoxy resin, and cycloolefin-based and cellulose ester-based films can also be used. In addition, a heat-resistant transparent film (product name: Sila-DEC, manufactured by Chisso Corporation) having silsesquioxane having an organic-inorganic hybrid structure as a basic skeleton, and a resin film obtained by laminating two or more layers of the resin material, etc. Can be mentioned.
コストや入手容易性の観点から、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、アクリル樹脂等が好ましく用いられる。
From the viewpoint of cost and availability, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), acrylic resin and the like are preferably used.
中でも透明性、耐熱性、取り扱いやすさ、強度及びコストの点から、二軸延伸ポリエチレンテレフタレート(PET)フィルム、二軸延伸ポリエチレンナフタレート(PEN)フィルムが好ましい。
Of these, a biaxially stretched polyethylene terephthalate (PET) film and a biaxially stretched polyethylene naphthalate (PEN) film are preferred in terms of transparency, heat resistance, ease of handling, strength, and cost.
更に熱膨張時の収縮を最大限抑えるため、熱アニール等の処理を行った低熱収処理品が最も好ましい。
Furthermore, in order to suppress the shrinkage at the time of thermal expansion to the maximum, a low heat recovery treatment product that has been subjected to treatment such as thermal annealing is most preferable.
樹脂基材の厚さは10~500μmの範囲が好ましく、より好ましくは20~250μmの範囲であり、さらに好ましくは30~150μmの範囲である。樹脂基材の厚さが10~500μmの範囲にあることで、安定したガスバリアー性を得られ、また、ロール・ツー・ロール方式の搬送に適したものになる。
The thickness of the resin substrate is preferably in the range of 10 to 500 μm, more preferably in the range of 20 to 250 μm, and still more preferably in the range of 30 to 150 μm. When the thickness of the resin base material is in the range of 10 to 500 μm, a stable gas barrier property can be obtained, and the resin base material is suitable for conveyance in a roll-to-roll system.
さらに別の実施形態においては、基板110は絶縁層で被覆された金属箔である。前記金属箔は、アルミニウム、銅、又はステレンス鋼で形成されていてもよい。絶縁層については、前述のとおりである。この場合、前記金属箔は、ガスバリアー層として機能する。
In yet another embodiment, the substrate 110 is a metal foil coated with an insulating layer. The metal foil may be formed of aluminum, copper, or stainless steel. The insulating layer is as described above. In this case, the metal foil functions as a gas barrier layer.
〔白色顔料を含有する機能層〕
本発明に係る白色顔料を含有する機能層106は、光拡散反射層として機能する層であり、光波長380~550nmの範囲で80%以上の相対拡散反射率を有する光拡散反射層(白色光拡散反射層ともいう。)であることが好ましい。より好ましい相対拡散反射率は85%以上であり、さらに好ましくは90%以上である。相対拡散反射率は、市販の分光光度計で測定でき、例えば日立製日立分光光度計U-4100や島津製作所製UV-3101分光光度計に積分球を装着して測定することができる。 [Functional layer containing white pigment]
Thefunctional layer 106 containing a white pigment according to the present invention is a layer that functions as a light diffusion reflection layer, and has a light diffusion reflection layer (white light) having a relative diffuse reflectance of 80% or more in a light wavelength range of 380 to 550 nm. It is also called a diffuse reflection layer. A more preferable relative diffuse reflectance is 85% or more, and further preferably 90% or more. The relative diffuse reflectance can be measured with a commercially available spectrophotometer. For example, the relative diffuse reflectance can be measured by mounting an integrating sphere on a Hitachi spectrophotometer U-4100 manufactured by Hitachi or a UV-3101 spectrophotometer manufactured by Shimadzu Corporation.
本発明に係る白色顔料を含有する機能層106は、光拡散反射層として機能する層であり、光波長380~550nmの範囲で80%以上の相対拡散反射率を有する光拡散反射層(白色光拡散反射層ともいう。)であることが好ましい。より好ましい相対拡散反射率は85%以上であり、さらに好ましくは90%以上である。相対拡散反射率は、市販の分光光度計で測定でき、例えば日立製日立分光光度計U-4100や島津製作所製UV-3101分光光度計に積分球を装着して測定することができる。 [Functional layer containing white pigment]
The
当該相対拡散反射率を実現するには、機能層が少なくとも白色顔料を含有することが好ましい。より好ましくは、白色顔料とバインダー樹脂を含有し、塗布法によって形成される層であることが好ましい。
In order to realize the relative diffuse reflectance, the functional layer preferably contains at least a white pigment. More preferably, the layer contains a white pigment and a binder resin and is formed by a coating method.
本発明に用いることのできる白色顔料は、公知の白色顔料を用いることができるが、例えば、硫酸バリウム、酸化チタン、塩基性炭酸鉛(2PbCO3・Pb(OH)2(鉛白)等)、塩基性硫酸鉛(2PbSO4・Pb(OH)2等)、塩基性ケイ酸鉛(Pb2SiO4・Pb(OH)2等)、亜鉛華(ZnO(酸化亜鉛))、硫化亜鉛、リトポン(硫化亜鉛と硫酸バリウムとの混合物)、及び三酸化アンチモンが挙げられる。中でも好ましくは、硫酸バリウム及び酸化チタンであり、特に好ましくは硫酸バリウムである。
As the white pigment that can be used in the present invention, a known white pigment can be used. For example, barium sulfate, titanium oxide, basic lead carbonate (2PbCO 3 .Pb (OH) 2 (lead white), etc.), Basic lead sulfate (2PbSO 4 · Pb (OH) 2 etc.), basic lead silicate (Pb 2 SiO 4 · Pb (OH) 2 etc.), zinc white (ZnO (zinc oxide)), zinc sulfide, lithopone ( And a mixture of zinc sulfide and barium sulfate) and antimony trioxide. Of these, barium sulfate and titanium oxide are preferable, and barium sulfate is particularly preferable.
機能層中の白色顔料の含有量は、好ましくは50~90質量%の範囲、より好ましくは60~90質量%の範囲である。
The content of the white pigment in the functional layer is preferably in the range of 50 to 90% by mass, more preferably in the range of 60 to 90% by mass.
以下、硫酸バリウムを白色顔料の例として、本発明に係る白色顔料を含有する機能層を説明する。
Hereinafter, the functional layer containing the white pigment according to the present invention will be described using barium sulfate as an example of the white pigment.
本発明に係る白色顔料を含有する機能層106は、硫酸バリウムとバインダー樹脂から構成されることが好ましい。バインダー樹脂としては、ウレタン系、アクリル系、エポキシ系、ビニル系、ポリエステル系、ポリアミド系、ゴム系等の合成樹脂が挙げられる。特に高い柔軟性を機能層に与えるためには、JIS-Z2246におけるショア硬度が20以下となるようなバインダー樹脂を選択することが好ましい。
The functional layer 106 containing the white pigment according to the present invention is preferably composed of barium sulfate and a binder resin. Examples of the binder resin include urethane-based, acrylic-based, epoxy-based, vinyl-based, polyester-based, polyamide-based, and rubber-based synthetic resins. In order to give particularly high flexibility to the functional layer, it is preferable to select a binder resin having a Shore hardness of 20 or less in JIS-Z2246.
白色顔料を含有する機能層106に含有させる硫酸バリウムは、光反射剤として用いるものである。硫酸バリウムとバインダー樹脂の比率は、塗膜が凝集破壊しやすくなるのを防止するため、塗膜物性の点から臨界顔料濃度以下にすることが好ましい。
Barium sulfate contained in the functional layer 106 containing a white pigment is used as a light reflecting agent. The ratio of the barium sulfate to the binder resin is preferably not more than the critical pigment concentration from the viewpoint of physical properties of the coating film in order to prevent the coating film from being easily cohesive and broken.
白色顔料を含有する機能層106には、上述したものの他、分散剤、レベリング剤、老化防止剤、可塑剤、帯電防止剤、蛍光増白剤等の各種添加剤を添加することも可能である。
In addition to those described above, various additives such as a dispersant, a leveling agent, an anti-aging agent, a plasticizer, an antistatic agent, and a fluorescent brightening agent can be added to the functional layer 106 containing a white pigment. .
また、白色顔料を含有する機能層106の層厚としては、光拡散反射を効率よく行うために、1~100μmの範囲内であることが好ましく、5~100μmの範囲が好ましく機能層の層厚が1μm以上であると、光波長450nm以下の光を効率よく反射でき、光反射材料としての機能を果たしやすくなる。
Further, the layer thickness of the functional layer 106 containing a white pigment is preferably in the range of 1 to 100 μm, and more preferably in the range of 5 to 100 μm, in order to efficiently perform light diffuse reflection. When the thickness is 1 μm or more, light having a light wavelength of 450 nm or less can be efficiently reflected, and the function as a light reflecting material can be easily achieved.
一方、層厚の上限は特に規定する必要がないが、100μm以内であれば柔軟性を付与できる樹脂を使用する効果と合わせて、有機EL素子の可撓性を満たすことができる。
On the other hand, the upper limit of the layer thickness does not need to be specified in particular, but if it is within 100 μm, the flexibility of the organic EL element can be satisfied together with the effect of using a resin capable of imparting flexibility.
白色顔料を含有する機能層106は、上記硫酸バリウムとバインダー樹脂、及び上記添加剤を含む塗布液を塗布して形成されることが好ましいが、塗布法の具体例としては、例えば、ローラーコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられ、この中から適宜選択される。白色顔料を含有する機能層106は、所定の層厚で塗布された後、公知の乾燥方法によって乾燥され形成される。
The functional layer 106 containing a white pigment is preferably formed by applying a coating solution containing the barium sulfate, the binder resin, and the additive. Specific examples of the coating method include, for example, a roller coating method. , A flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, a gravure printing method, and the like, which are appropriately selected. The functional layer 106 containing a white pigment is formed with a predetermined layer thickness and then dried by a known drying method.
〔平滑層〕
本発明に係る平滑層107は、基板110及び白色顔料を含有する機能層106の表面の凹凸に起因する高温・高湿雰囲気下での保存性の劣化やショート(電気的短絡)等の弊害を防止することを主目的とするものである。 [Smooth layer]
Thesmooth layer 107 according to the present invention is free from adverse effects such as deterioration of storage stability and short circuit (electrical short circuit) in a high temperature and high humidity atmosphere due to the unevenness of the surface of the functional layer 106 containing the substrate 110 and the white pigment. The main purpose is to prevent.
本発明に係る平滑層107は、基板110及び白色顔料を含有する機能層106の表面の凹凸に起因する高温・高湿雰囲気下での保存性の劣化やショート(電気的短絡)等の弊害を防止することを主目的とするものである。 [Smooth layer]
The
本発明に係る平滑層107は、この上に第一透明電極101を良好に形成させる平坦性を有することが重要であり、その表面性は、算術平均粗さRaが0.5~50nmの範囲内であることが好ましい。更に好ましくは30nm以下、特に好ましくは10nm以下、最も好ましくは5nm以下である。すなわち、平滑層107の有機発光層103側の表面の算術平均粗さRaを0.5~50nmの範囲内とすることで、積層する第一透明電極のショート等の不良を抑制することができる。なお、算術平均粗さRaについては、0nmが好ましいが実用レベルの限界値として0.5nmを下限値とする。
It is important that the smooth layer 107 according to the present invention has a flatness that allows the first transparent electrode 101 to be satisfactorily formed thereon, and the surface property is an arithmetic average roughness Ra in the range of 0.5 to 50 nm. It is preferable to be within. More preferably, it is 30 nm or less, Especially preferably, it is 10 nm or less, Most preferably, it is 5 nm or less. That is, by setting the arithmetic average roughness Ra of the surface of the smooth layer 107 on the organic light emitting layer 103 side within the range of 0.5 to 50 nm, defects such as a short circuit of the first transparent electrode to be laminated can be suppressed. . As for the arithmetic average roughness Ra, 0 nm is preferable, but 0.5 nm is set as a lower limit value as a practical level limit value.
また、本願において、表面の算術平均粗さRaとは、JIS B0601-2001に準拠した算術平均粗さを表している。
Further, in the present application, the arithmetic average roughness Ra of the surface represents an arithmetic average roughness based on JIS B0601-2001.
なお、表面粗さ(算術平均粗さRa)は、AFM(原子間力顕微鏡 Atomic Force Microscope:Digital Instruments社製)を用い、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が30μmの区間内を3回測定し、微細な凹凸の振幅に関する平均の粗さから求めた。
The surface roughness (arithmetic mean roughness Ra) is an uneven cross-section measured continuously with a detector having a stylus with a minimum tip radius using an AFM (Atomic Force Microscope: Digital Instruments). It was calculated from the curve, measured three times in a section with a measuring direction of 30 μm with a stylus having a minimum tip radius, and obtained from the average roughness related to the amplitude of fine irregularities.
平滑層107は、有機発光層103からの発光光が入射する。そのため、平滑層107の平均屈折率nfは、有機発光層103に含まれる有機機能層の屈折率と近い値であることが好ましい。具体的には、有機発光層103には一般的に高屈折率の有機材料が用いられるため、平滑層107は、有機発光層103からの発光光の発光極大波長のうち最も短い発光極大波長において、平均屈折率nfが1.50以上、特に1.65以上、2.50未満の高屈折率層であることが好ましい。平均屈折率nfが1.50以上、2.50未満であれば、単独の素材で形成されていてもよいし、混合物で形成されていてもよい。このような混合系の場合、平滑層1の平均屈折率nfは、各々の素材固有の屈折率に体積比率を乗じた合算値により算出される計算屈折率を用いる。また、この場合、各々の素材の屈折率は、1.50未満若しくは2.50以上であってもよく、混合した膜の平均屈折率nfとして1.50以上、2.50未満を満たしていればよい。
The smoothing layer 107 receives light emitted from the organic light emitting layer 103. Therefore, the average refractive index nf of the smooth layer 107 is preferably a value close to the refractive index of the organic functional layer included in the organic light emitting layer 103. Specifically, since an organic material having a high refractive index is generally used for the organic light emitting layer 103, the smoothing layer 107 has the shortest emission maximum wavelength among the emission maximum wavelengths of the emitted light from the organic light emitting layer 103. The high refractive index layer preferably has an average refractive index nf of 1.50 or more, particularly 1.65 or more and less than 2.50. As long as the average refractive index nf is 1.50 or more and less than 2.50, it may be formed of a single material or a mixture. In the case of such a mixed system, the average refractive index nf of the smooth layer 1 uses a calculated refractive index calculated by a total value obtained by multiplying the refractive index specific to each material by the volume ratio. In this case, the refractive index of each material may be less than 1.50 or more than 2.50, and the average refractive index nf of the mixed film should satisfy 1.50 or more and less than 2.50. That's fine.
ここで、平滑層の「平均屈折率nf」とは、単独の素材で形成されている場合は、単独の素材の屈折率であり、混合系の場合は各材料の密度に基づき、所望の体積比率になるように質量を計算し、混合することで、各々の素材固有の屈折率に体積比率を乗じた合算値により算出される計算屈折率を算出している。
Here, the “average refractive index nf” of the smooth layer is the refractive index of a single material when formed of a single material, and in the case of a mixed system, the desired volume based on the density of each material. By calculating and mixing the mass so as to be a ratio, the calculated refractive index calculated by the sum of the refractive index specific to each material multiplied by the volume ratio is calculated.
なお、屈折率の測定は、平滑層単膜を作製し、25℃の雰囲気下で、発光ユニットからの発光光の発光極大波長のうち最も短い発光極大波長の光線を照射し、アッベ屈折率計(ATAGO社製、DR-M2)を用いて行う。
The refractive index is measured by preparing a smooth layer single film and irradiating the light having the shortest light emission maximum wavelength among the light emission maximum wavelengths of the light emitted from the light emitting unit in an atmosphere at 25 ° C. (Atago, DR-M2) is used.
平滑層107に用いられるバインダーとしては、公知の樹脂が特に制限なく使用可能であり、例えば、アクリル酸エステル、メタクリル酸エステル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ナイロン(Ny)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等の樹脂フィルム、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(製品名Sila-DEC、チッソ株式会社製)、パーフルオロアルキル基含有シラン化合物(例えば、(ヘプタデカフルオロ-1,1,2,2-テトラデシル)トリエトキシシラン)の他、含フッ素モノマーと架橋性基付与のためのモノマーを構成単位とする含フッ素共重合体等が挙げられる。これら樹脂は、2種以上混合して使用することができる。これらの中でも、有機無機ハイブリッド構造を有するものが好ましい。
As the binder used for the smooth layer 107, a known resin can be used without any particular limitation. For example, acrylic ester, methacrylic ester, polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), polystyrene (PS), nylon (Ny), aromatic polyamide, polyether ether ketone, polysulfone, polyether sulfone, polyimide , Resin films such as polyetherimide, heat-resistant transparent film based on silsesquioxane having an organic-inorganic hybrid structure (product name: Sila-DEC, manufactured by Chisso Corporation), perfluoroal Fluorine-containing silane compounds (for example, (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane), fluorine-containing monomers and monomers containing a crosslinkable group as structural units A polymer etc. are mentioned. These resins can be used in combination of two or more. Among these, those having an organic-inorganic hybrid structure are preferable.
また、以下の親水性樹脂を使うことも可能である。親水性樹脂としては水溶性の樹脂、水分散性の樹脂、コロイド分散樹脂又はそれらの混合物が挙げられる。親水性樹脂としては、アクリル系、ポリエステル系、ポリアミド系、ポリウレタン系、フッ素系等の樹脂が挙げられ、例えば、ポリビニルアルコール、ゼラチン、ポリエチレンオキシド、ポリビニルピロリドン、カゼイン、デンプン、寒天、カラギーナン、ポリアクリル酸、ポリメタクリル酸、ポリアクリルアミド、ポリメタクリルアミド、ポリスチレンスルホン酸、セルロース、ヒドロキシルエチルセルロース、カルボキシルメチルセルロース、ヒドロキシルエチルセルロース、デキストラン、デキストリン、プルラン、水溶性ポリビニルブチラール等のポリマーを挙げることができるが、これらの中でも、ポリビニルアルコールが好ましい。
Also, the following hydrophilic resins can be used. Examples of the hydrophilic resin include water-soluble resins, water-dispersible resins, colloid-dispersed resins, and mixtures thereof. Examples of the hydrophilic resin include acrylic resins, polyester resins, polyamide resins, polyurethane resins, fluorine resins, etc., for example, polyvinyl alcohol, gelatin, polyethylene oxide, polyvinyl pyrrolidone, casein, starch, agar, carrageenan, polyacrylic resin. Polymers such as acid, polymethacrylic acid, polyacrylamide, polymethacrylamide, polystyrene sulfonic acid, cellulose, hydroxyl ethyl cellulose, carboxyl methyl cellulose, hydroxyl ethyl cellulose, dextran, dextrin, pullulan, water-soluble polyvinyl butyral can be mentioned, but these Among these, polyvinyl alcohol is preferable.
バインダー樹脂として用いられるポリマーは、1種類を単独で用いてもよいし、必要に応じて2種類以上を混合して使用してもよい。
The polymer used as the binder resin may be used alone or as a mixture of two or more if necessary.
また、同様に、従来公知の樹脂粒子(エマルジョン)等も好適にバインダーとして使用可能である。
Similarly, conventionally known resin particles (emulsion) and the like can also be suitably used as a binder.
また、バインダーとしては、主として紫外線・電子線によって硬化する樹脂、すなわち、電離放射線硬化型樹脂に熱可塑性樹脂と溶剤とを混合したものや熱硬化型樹脂も好適に使用できる。
Also, as the binder, a resin curable mainly by ultraviolet rays or an electron beam, that is, a mixture of a thermoplastic resin and a solvent in an ionizing radiation curable resin or a thermosetting resin can be suitably used.
このようなバインダー樹脂としては、飽和炭化水素又はポリエーテルを主鎖として有するポリマーであることが好ましく、飽和炭化水素を主鎖として有するポリマーであることがより好ましい。
Such a binder resin is preferably a polymer having a saturated hydrocarbon or polyether as the main chain, and more preferably a polymer having a saturated hydrocarbon as the main chain.
また、バインダーは架橋していることが好ましい。飽和炭化水素を主鎖として有するポリマーは、エチレン性不飽和モノマーの重合反応により得ることが好ましい。架橋しているバインダーを得るためには、二つ以上のエチレン性不飽和基を有するモノマーを用いることが好ましい。
Also, the binder is preferably crosslinked. The polymer having a saturated hydrocarbon as the main chain is preferably obtained by a polymerization reaction of an ethylenically unsaturated monomer. In order to obtain a crosslinked binder, it is preferable to use a monomer having two or more ethylenically unsaturated groups.
平滑層107に含有されるバインダーに含まれる微粒子ゾルも好適に使用可能である。
A fine particle sol contained in a binder contained in the smooth layer 107 can also be suitably used.
また、高屈折率の平滑層107に含まれるバインダーに分散される粒子径の下限としては、通常5nm以上であることが好ましく、10nm以上であることがより好ましく、15nm以上であることがさらに好ましい。また、バインダーに分散される粒子径の上限としては、70nm以下であることが好ましく、60nm以下であることがより好ましく、50nm以下であることがさらに好ましい。バインダーに分散される粒子径が5~70nmの範囲内であることにより、高い透明性が得られる点で好ましい。本発明の効果を損なわない限り、粒子径の分布は制限されず、広くても狭くても複数の分布を持っていてもよい。
Further, the lower limit of the particle diameter dispersed in the binder contained in the smooth layer 107 having a high refractive index is usually preferably 5 nm or more, more preferably 10 nm or more, and further preferably 15 nm or more. . Moreover, as an upper limit of the particle diameter disperse | distributed to a binder, it is preferable that it is 70 nm or less, It is more preferable that it is 60 nm or less, It is further more preferable that it is 50 nm or less. When the particle diameter dispersed in the binder is in the range of 5 to 70 nm, it is preferable in that high transparency can be obtained. As long as the effect of the present invention is not impaired, the particle size distribution is not limited, and may be wide or narrow and may have a plurality of distributions.
本発明に係る平滑層107に含有される粒子としては、安定性の観点から、TiO2(二酸化チタンゾル)であることがより好ましい。また、TiO2の中でも、特にアナターゼ型よりルチル型の方が、触媒活性が低いため、平滑層107や隣接した層の耐候性が高くなり、さらに屈折率が高いことから好ましい。
The particles contained in the smooth layer 107 according to the present invention are more preferably TiO 2 (titanium dioxide sol) from the viewpoint of stability. Among TiO 2 , rutile type is more preferable than anatase type, since the catalytic activity is low, and the weather resistance of the smooth layer 107 and the adjacent layer becomes high and the refractive index is high.
本発明で用いることのできる二酸化チタンゾルの調製方法としては、例えば、特開昭63-17221号公報、特開平7-819号公報、特開平9-165218号公報、特開平11-43327号公報等を参照することができる。
Examples of a method for preparing a titanium dioxide sol that can be used in the present invention include JP-A 63-17221, JP-A 7-819, JP-A 9-165218, and JP-A 11-43327. Can be referred to.
平滑層107の厚さは、基板及び白色顔料を含有する機能層の表面粗さを緩和するためにある程度厚い必要があるが、一方で吸収によるエネルギーロスを生じない程度に薄い必要がある。具体的には0.1~5μmの範囲内が好ましく、0.5~2μmの範囲内が更に好ましい。
The thickness of the smooth layer 107 needs to be somewhat thick in order to reduce the surface roughness of the functional layer containing the substrate and the white pigment, but on the other hand, it needs to be thin enough not to cause energy loss due to absorption. Specifically, it is preferably in the range of 0.1 to 5 μm, more preferably in the range of 0.5 to 2 μm.
平滑層107の作製方法は、例えば、白色顔料を含有する機能層を形成した後、ナノTiO2粒子が分散する分散液と樹脂溶液を混合し、フィルターで濾過して平滑層作製溶液を得る。そして、得られた平滑層作製溶液を白色顔料を含有する機能層上に塗布して、乾燥した後、加熱して平滑層を作製する。
For example, after forming a functional layer containing a white pigment, the smooth layer 107 is prepared by mixing a dispersion in which nano-TiO 2 particles are dispersed and a resin solution, and filtering with a filter to obtain a smooth layer preparation solution. And after apply | coating the obtained smooth layer preparation solution on the functional layer containing a white pigment and drying, it heats and produces a smooth layer.
また、平滑層107として、ガスバリアー性を付与することも好ましく、このようなガスバリアー性を付与する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であれば良く、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。
The smooth layer 107 is also preferably provided with a gas barrier property, and the material that provides such a gas barrier property may be a material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
例えば、下記無機前駆体化合物を含有する塗布液を塗布し改質処理により形成することも好ましい。
For example, it is also preferable to apply a coating solution containing the following inorganic precursor compound and form it by a modification treatment.
本発明に用いられる無機前駆体化合物とは、特定の雰囲気下で真空紫外線照射によって金属酸化物や金属窒化物や金属酸化窒化物を形成しうる化合物であれば特に限定されないが、本発明に適する化合物としては、特開平8-112879号公報に記載されているように比較的低温で改質処理され得る化合物が好ましい。
The inorganic precursor compound used in the present invention is not particularly limited as long as it is a compound capable of forming a metal oxide, a metal nitride, or a metal oxynitride by vacuum ultraviolet irradiation under a specific atmosphere, but is suitable for the present invention. The compound is preferably a compound that can be modified at a relatively low temperature as described in JP-A-8-112879.
具体的には、無機前駆体化合物として、Si-O-Si結合を有するポリシロキサン(ポリシルセスキオキサンを含む)、Si-N-Si結合を有するポリシラザン、Si-O-Si結合とSi-N-Si結合の両方を含むポリシロキサザン等を上げることができる。これらは2種以上を混合して使用することができる。また、異なる化合物を逐次積層したり、同時積層したりしても使用可能である。
Specifically, as the inorganic precursor compound, polysiloxane (including polysilsesquioxane) having Si—O—Si bond, polysilazane having Si—N—Si bond, Si—O—Si bond and Si— Polysiloxazan and the like containing both N—Si bonds can be raised. These can be used in combination of two or more. Moreover, it can be used even if different compounds are sequentially laminated or simultaneously laminated.
中でも好ましくはポリシラザンであり、 本発明で用いられるポリシラザンとは、ケイ素-窒素結合を持つポリマーで、Si-N、Si-H、N-H等からなるSiO2、Si3N4及び両方の中間固溶体SiOxNy(x:0.1~1.9、y:0.1~1.3)等の無機前駆体ポリマーである。
Among them, polysilazane is preferable, and the polysilazane used in the present invention is a polymer having a silicon-nitrogen bond, and is composed of Si—N, Si—H, NH, etc., SiO 2 , Si 3 N 4 and the intermediate of both. An inorganic precursor polymer such as a solid solution SiO x N y (x: 0.1 to 1.9, y: 0.1 to 1.3).
本発明に好ましく用いられるポリシラザンとしては、下記一般式(A)で表される。
The polysilazane preferably used in the present invention is represented by the following general formula (A).
一般式(A)
-[Si(R1)(R2)-N(R3)]-
一般式(A)中、R1,R2及びR3は、各々水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基又はアルコキシ基を表す。 Formula (A)
— [Si (R 1 ) (R 2 ) —N (R 3 )] —
In general formula (A), R 1 , R 2 and R 3 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group or an alkoxy group.
-[Si(R1)(R2)-N(R3)]-
一般式(A)中、R1,R2及びR3は、各々水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基又はアルコキシ基を表す。 Formula (A)
— [Si (R 1 ) (R 2 ) —N (R 3 )] —
In general formula (A), R 1 , R 2 and R 3 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group or an alkoxy group.
本発明では、緻密性の観点から、R1、R2及びR3のすべてが水素原子であるパーヒドロポリシラザンが特に好ましい。
In the present invention, perhydropolysilazane in which all of R 1, R 2 and R 3 are hydrogen atoms is particularly preferred from the viewpoint of compactness.
ポリシラザンは、有機溶媒に溶解した溶液の状態で市販されており、市販品をそのままポリシラザン含有塗布液として使用することができる。ポリシラザン溶液の市販品としては、例えば、AZエレクトロニックマテリアルズ株式会社製のNN120-20、NAX120-20、NL120-20などが挙げられる。
Polysilazane is commercially available in the form of a solution dissolved in an organic solvent, and the commercially available product can be used as a polysilazane-containing coating solution as it is. Examples of commercially available polysilazane solutions include NN120-20, NAX120-20, and NL120-20 manufactured by AZ Electronic Materials Co., Ltd.
上記ポリシラザンを含む塗布液を塗布及び乾燥した後、真空紫外線を照射することにより改質処理することができる。
The coating solution containing the polysilazane can be applied and dried, and then subjected to a modification treatment by irradiation with vacuum ultraviolet rays.
ポリシラザンを含有する塗布液を調製する有機溶媒としては、ポリシラザンと容易に反応してしまうようなアルコール系や水分を含有するものを用いることは避けることが好ましい。適用可能な有機溶媒としては、例えば、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒、脂肪族エーテル、脂環式エーテル等のエーテル類が使用でき、具体的には、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の炭化水素、塩化メチレン、トリクロロエタン等のハロゲン炭化水素、ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等がある。これらの有機溶媒は、ポリシラザンの溶解度や有機溶媒の蒸発速度等の目的に併せて選択し、複数の有機溶媒を混合してもよい。
As an organic solvent for preparing a coating liquid containing polysilazane, it is preferable to avoid using an alcohol or water-containing one that easily reacts with polysilazane. Examples of applicable organic solvents include hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons, ethers such as halogenated hydrocarbon solvents, aliphatic ethers, and alicyclic ethers. Specific examples include hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, and ethers such as dibutyl ether, dioxane and tetrahydrofuran. These organic solvents may be selected according to purposes such as the solubility of polysilazane and the evaporation rate of the organic solvent, and a plurality of organic solvents may be mixed.
ポリシラザンを含有する平滑層形成用塗布液中のポリシラザンの濃度は、平滑層の層厚や塗布液のポットライフによっても異なるが、好ましくは0.2~35質量%の範囲内である。
The concentration of polysilazane in the coating solution for forming a smooth layer containing polysilazane varies depending on the layer thickness of the smooth layer and the pot life of the coating solution, but is preferably in the range of 0.2 to 35% by mass.
酸窒化ケイ素への変性を促進するために、平滑層形成用塗布液にアミン触媒や、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒を添加することもできる。本発明においては、アミン触媒を用いることが特に好ましい。具体的なアミン触媒としては、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N,N,N′,N′-テトラメチル-1,3-ジアミノプロパン、N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン等が挙げられる。
In order to promote the modification to silicon oxynitride, the coating solution for forming a smooth layer includes an amine catalyst, a Pt compound such as Pt acetylacetonate, a Pd compound such as propionic acid Pd, and an Rh compound such as Rh acetylacetonate. A metal catalyst can also be added. In the present invention, it is particularly preferable to use an amine catalyst. Specific amine catalysts include N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N ′, N′-tetramethyl-1 , 3-diaminopropane, N, N, N ′, N′-tetramethyl-1,6-diaminohexane and the like.
ポリシラザンに対するこれら触媒の添加量は、平滑層形成用塗布液全質量に対して0.1~10質量%の範囲内であることが好ましく、0.2~5質量%の範囲内であることがより好ましく、0.5~2質量%の範囲内であることが更に好ましい。触媒添加量を上記で規定する範囲内とすることにより、反応の急激な進行よる過剰なシラノール形成、及び膜密度の低下、膜欠陥の増大のなどを避けることができる。
The amount of these catalysts added to the polysilazane is preferably in the range of 0.1 to 10% by mass, and preferably in the range of 0.2 to 5% by mass with respect to the total mass of the smooth layer forming coating solution. More preferably, it is more preferably in the range of 0.5 to 2% by mass. By setting the addition amount of the catalyst within the range specified above, excessive silanol formation due to rapid progress of the reaction, reduction in film density, increase in film defects, and the like can be avoided.
ポリシラザンを含有する平滑層形成用塗布液を塗布する方法としては、任意の適切な湿式塗布方法が採用され得る。具体例としては、例えば、ローラーコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
Arbitrary appropriate wet coating methods may be employ | adopted as a method of apply | coating the coating liquid for smooth layer formation containing polysilazane. Specific examples include a roller coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
塗膜の厚さは、目的に応じて適切に設定され得る。例えば、塗膜の厚さは、乾燥後の厚さとして50nm~2μmの範囲内にあることが好ましく、より好ましくは70nm~1.5μmの範囲内にあり、100nm~1μmの範囲内にあることが更に好ましい。
The thickness of the coating film can be appropriately set according to the purpose. For example, the thickness of the coating film is preferably in the range of 50 nm to 2 μm as the thickness after drying, more preferably in the range of 70 nm to 1.5 μm, and in the range of 100 nm to 1 μm. Is more preferable.
平滑層は、ポリシラザンを含む層に真空紫外線(VUV)を照射する工程で、ポリシラザンの少なくとも一部が酸窒化ケイ素へと改質される。
The smooth layer is a step of irradiating the layer containing polysilazane with vacuum ultraviolet (VUV), and at least a part of the polysilazane is modified into silicon oxynitride.
ここで、真空紫外線照射工程でポリシラザンを含む塗膜が改質され、SiOxNyの特定組成となる推定メカニズムについて、パーヒドロポリシラザンを一例として説明する。
Here, perhydropolysilazane will be described as an example of the presumed mechanism in which the coating film containing polysilazane is modified in the vacuum ultraviolet irradiation step and becomes a specific composition of SiO x N y .
パーヒドロポリシラザンは「-(SiH2-NH)n-」の組成で示すことができる。SiOxNyで示す場合、x=0、y=1である。x>0となるためには外部の酸素源が必要であるが、これは、
(i)ポリシラザン塗布液に含まれる酸素や水分、
(ii)塗布乾燥過程の雰囲気中から塗膜に取り込まれる酸素や水分、
(iii)真空紫外線照射工程での雰囲気中から塗膜に取り込まれる酸素や水分、オゾン、一重項酸素、
(iv)真空紫外線照射工程で印加される熱等により基材側からアウトガスとして塗膜中に移動してくる酸素や水分、
(v)真空紫外線照射工程が非酸化性雰囲気で行われる場合には、その非酸化性雰囲気から酸化性雰囲気へと移動した際に、その雰囲気から塗膜に取り込まれる酸素や水分、
などが酸素源となる。 Perhydropolysilazane can be represented by a composition of “— (SiH 2 —NH) n —”. In the case of SiO x N y , x = 0 and y = 1. An external oxygen source is required for x> 0,
(I) oxygen and moisture contained in the polysilazane coating solution,
(Ii) oxygen and moisture taken into the coating film from the atmosphere of the coating and drying process,
(Iii) oxygen, moisture, ozone, singlet oxygen taken into the coating film from the atmosphere in the vacuum ultraviolet irradiation process,
(Iv) Oxygen and moisture moving into the coating film as outgas from the substrate side by heat applied in the vacuum ultraviolet irradiation process,
(V) When the vacuum ultraviolet ray irradiation step is performed in a non-oxidizing atmosphere, when moving from the non-oxidizing atmosphere to the oxidizing atmosphere, oxygen and moisture taken into the coating film from the atmosphere,
Etc. become oxygen sources.
(i)ポリシラザン塗布液に含まれる酸素や水分、
(ii)塗布乾燥過程の雰囲気中から塗膜に取り込まれる酸素や水分、
(iii)真空紫外線照射工程での雰囲気中から塗膜に取り込まれる酸素や水分、オゾン、一重項酸素、
(iv)真空紫外線照射工程で印加される熱等により基材側からアウトガスとして塗膜中に移動してくる酸素や水分、
(v)真空紫外線照射工程が非酸化性雰囲気で行われる場合には、その非酸化性雰囲気から酸化性雰囲気へと移動した際に、その雰囲気から塗膜に取り込まれる酸素や水分、
などが酸素源となる。 Perhydropolysilazane can be represented by a composition of “— (SiH 2 —NH) n —”. In the case of SiO x N y , x = 0 and y = 1. An external oxygen source is required for x> 0,
(I) oxygen and moisture contained in the polysilazane coating solution,
(Ii) oxygen and moisture taken into the coating film from the atmosphere of the coating and drying process,
(Iii) oxygen, moisture, ozone, singlet oxygen taken into the coating film from the atmosphere in the vacuum ultraviolet irradiation process,
(Iv) Oxygen and moisture moving into the coating film as outgas from the substrate side by heat applied in the vacuum ultraviolet irradiation process,
(V) When the vacuum ultraviolet ray irradiation step is performed in a non-oxidizing atmosphere, when moving from the non-oxidizing atmosphere to the oxidizing atmosphere, oxygen and moisture taken into the coating film from the atmosphere,
Etc. become oxygen sources.
一方、yについては、Siの酸化よりも窒化が進行する条件は非常に特殊であると考えられるため、基本的には1が上限である。
On the other hand, for y, the condition under which nitriding proceeds rather than the oxidation of Si is considered to be very special, so basically 1 is the upper limit.
また、Si、O、Nの結合手の関係から、基本的には、x、yは2x+3y≦4の範囲にある。酸化が完全に進んだy=0の状態においては、塗膜中にシラノール基を含有するようになり、2<x<2.5の範囲となる場合もある。
Also, from the relationship of Si, O, N bond, x and y are basically in the range of 2x + 3y ≦ 4. In the state of y = 0 where the oxidation has progressed completely, the coating film contains silanol groups, and there are cases where 2 <x <2.5.
真空紫外線照射工程でパーヒドロポリシラザンから酸窒化ケイ素、さらには酸化ケイ素が生じると推定される反応機構について、以下に説明する。
The reaction mechanism presumed to produce silicon oxynitride and further silicon oxide from perhydropolysilazane in the vacuum ultraviolet irradiation process will be described below.
(1)脱水素、それに伴うSi-N結合の形成
パーヒドロポリシラザン中のSi-H結合やN-H結合は真空紫外線照射による励起等で比較的容易に切断され、不活性雰囲気下ではSi-Nとして再結合すると考えられる(Siの未結合手が形成される場合もある)。すなわち、酸化することなくSiNy組成として硬化する。この場合はポリマー主鎖の切断は生じない。Si-H結合やN-H結合の切断は触媒の存在や、加熱によって促進される。切断されたHはH2として膜外に放出される。 (1) Dehydrogenation and accompanying Si—N bond formation Si—H bonds and N—H bonds in perhydropolysilazane are relatively easily cleaved by excitation with vacuum ultraviolet irradiation and the like. It is considered that they are recombined as N (a dangling bond of Si may be formed). That is, the cured as SiN y composition without oxidizing. In this case, the polymer main chain is not broken. The breaking of Si—H bonds and N—H bonds is promoted by the presence of a catalyst and heating. The cut H is released out of the membrane as H 2 .
パーヒドロポリシラザン中のSi-H結合やN-H結合は真空紫外線照射による励起等で比較的容易に切断され、不活性雰囲気下ではSi-Nとして再結合すると考えられる(Siの未結合手が形成される場合もある)。すなわち、酸化することなくSiNy組成として硬化する。この場合はポリマー主鎖の切断は生じない。Si-H結合やN-H結合の切断は触媒の存在や、加熱によって促進される。切断されたHはH2として膜外に放出される。 (1) Dehydrogenation and accompanying Si—N bond formation Si—H bonds and N—H bonds in perhydropolysilazane are relatively easily cleaved by excitation with vacuum ultraviolet irradiation and the like. It is considered that they are recombined as N (a dangling bond of Si may be formed). That is, the cured as SiN y composition without oxidizing. In this case, the polymer main chain is not broken. The breaking of Si—H bonds and N—H bonds is promoted by the presence of a catalyst and heating. The cut H is released out of the membrane as H 2 .
(2)加水分解及び脱水縮合によるSi-O-Si結合の形成
パーヒドロポリシラザン中のSi-N結合は水により加水分解され、ポリマー主鎖が切断されてSi-OHを形成する。二つのSi-OHが脱水縮合してSi-O-Si結合を形成して硬化する。これは大気中でも生じる反応であるが、不活性雰囲気下での真空紫外線照射中では、照射の熱によって樹脂基材からアウトガスとして生じる水蒸気が主な水分源となると考えられる。水分が過剰になると、脱水縮合しきれないSi-OHが残存し、SiO2.1~SiO2.3の組成で示されるガスバリアー性の低い硬化膜となる。 (2) Formation of Si—O—Si Bonds by Hydrolysis and Dehydration Condensation Si—N bonds in perhydropolysilazane are hydrolyzed by water, and the polymer main chain is cleaved to form Si—OH. Two Si—OH are dehydrated and condensed to form a Si—O—Si bond and harden. This is a reaction that occurs even in the atmosphere, but during vacuum ultraviolet irradiation in an inert atmosphere, it is considered that water vapor generated as outgas from the resin base material by the heat of irradiation becomes the main moisture source. When the moisture is excessive, Si—OH that cannot be dehydrated and condensed remains, and a cured film having a low gas barrier property represented by a composition of SiO 2.1 to SiO 2.3 is obtained.
パーヒドロポリシラザン中のSi-N結合は水により加水分解され、ポリマー主鎖が切断されてSi-OHを形成する。二つのSi-OHが脱水縮合してSi-O-Si結合を形成して硬化する。これは大気中でも生じる反応であるが、不活性雰囲気下での真空紫外線照射中では、照射の熱によって樹脂基材からアウトガスとして生じる水蒸気が主な水分源となると考えられる。水分が過剰になると、脱水縮合しきれないSi-OHが残存し、SiO2.1~SiO2.3の組成で示されるガスバリアー性の低い硬化膜となる。 (2) Formation of Si—O—Si Bonds by Hydrolysis and Dehydration Condensation Si—N bonds in perhydropolysilazane are hydrolyzed by water, and the polymer main chain is cleaved to form Si—OH. Two Si—OH are dehydrated and condensed to form a Si—O—Si bond and harden. This is a reaction that occurs even in the atmosphere, but during vacuum ultraviolet irradiation in an inert atmosphere, it is considered that water vapor generated as outgas from the resin base material by the heat of irradiation becomes the main moisture source. When the moisture is excessive, Si—OH that cannot be dehydrated and condensed remains, and a cured film having a low gas barrier property represented by a composition of SiO 2.1 to SiO 2.3 is obtained.
(3)一重項酸素による直接酸化、Si-O-Si結合の形成
真空紫外線照射中、雰囲気下に適当量の酸素が存在すると、酸化力の非常に強い一重項酸素が形成される。パーヒドロポリシラザン中のHやNは、Oと置き換わってSi-O-Si結合を形成して硬化する。ポリマー主鎖の切断により結合の組み換えが生じる場合もあると考えられる。 (3) Direct oxidation by singlet oxygen, formation of Si—O—Si bond When a suitable amount of oxygen is present in the atmosphere during irradiation with vacuum ultraviolet rays, singlet oxygen having very strong oxidizing power is formed. H or N in the perhydropolysilazane is replaced with O to form a Si—O—Si bond and is cured. It is considered that recombination of the bond may occur due to cleavage of the polymer main chain.
真空紫外線照射中、雰囲気下に適当量の酸素が存在すると、酸化力の非常に強い一重項酸素が形成される。パーヒドロポリシラザン中のHやNは、Oと置き換わってSi-O-Si結合を形成して硬化する。ポリマー主鎖の切断により結合の組み換えが生じる場合もあると考えられる。 (3) Direct oxidation by singlet oxygen, formation of Si—O—Si bond When a suitable amount of oxygen is present in the atmosphere during irradiation with vacuum ultraviolet rays, singlet oxygen having very strong oxidizing power is formed. H or N in the perhydropolysilazane is replaced with O to form a Si—O—Si bond and is cured. It is considered that recombination of the bond may occur due to cleavage of the polymer main chain.
(4)真空紫外線照射及び励起によるSi-N結合切断を伴う酸化
真空紫外線のエネルギーは、パーヒドロポリシラザン中のSi-Nの結合エネルギーよりも高いため、Si-N結合は切断され、周囲に酸素、オゾン、水等の酸素源が存在すると、酸化されてSi-O-Si結合やSi-O-N結合が生じると考えられる。ポリマー主鎖の切断により、結合の組み換えが生じる場合もあると考えられる。 (4) Oxidation with Si-N bond cleavage by vacuum ultraviolet irradiation and excitation Since the energy of vacuum ultraviolet light is higher than the bond energy of Si-N in perhydropolysilazane, the Si-N bond is broken and oxygen is surrounded by oxygen. In the presence of an oxygen source such as ozone or water, it is considered that the Si—O—Si bond or Si—O—N bond is formed by oxidation. It is considered that recombination of the bond may occur due to the cleavage of the polymer main chain.
真空紫外線のエネルギーは、パーヒドロポリシラザン中のSi-Nの結合エネルギーよりも高いため、Si-N結合は切断され、周囲に酸素、オゾン、水等の酸素源が存在すると、酸化されてSi-O-Si結合やSi-O-N結合が生じると考えられる。ポリマー主鎖の切断により、結合の組み換えが生じる場合もあると考えられる。 (4) Oxidation with Si-N bond cleavage by vacuum ultraviolet irradiation and excitation Since the energy of vacuum ultraviolet light is higher than the bond energy of Si-N in perhydropolysilazane, the Si-N bond is broken and oxygen is surrounded by oxygen. In the presence of an oxygen source such as ozone or water, it is considered that the Si—O—Si bond or Si—O—N bond is formed by oxidation. It is considered that recombination of the bond may occur due to the cleavage of the polymer main chain.
ポリシラザンを含有する層に真空紫外線照射を施した層の酸窒化ケイ素の組成の調整は、上述の(1)~(4)の酸化機構を適宜組み合わせて酸化状態を制御することで行うことができる。
Adjustment of the composition of silicon oxynitride in the layer obtained by subjecting the polysilazane-containing layer to vacuum ultraviolet irradiation can be performed by appropriately controlling the oxidation state by appropriately combining the oxidation mechanisms (1) to (4) described above. .
〈エキシマランプを有する真空紫外線照射装置〉
ポリシラザンを改質処理するのに好ましい紫外線照射装置としては、具体的には、100~230nmの真空紫外線を発する希ガスエキシマランプが挙げられる。 <Vacuum ultraviolet irradiation device with excimer lamp>
As a preferable ultraviolet irradiation apparatus for modifying polysilazane, a rare gas excimer lamp that emits vacuum ultraviolet rays of 100 to 230 nm is specifically mentioned.
ポリシラザンを改質処理するのに好ましい紫外線照射装置としては、具体的には、100~230nmの真空紫外線を発する希ガスエキシマランプが挙げられる。 <Vacuum ultraviolet irradiation device with excimer lamp>
As a preferable ultraviolet irradiation apparatus for modifying polysilazane, a rare gas excimer lamp that emits vacuum ultraviolet rays of 100 to 230 nm is specifically mentioned.
Xe,Kr,Ar,Ne等の希ガスの原子は、化学的に結合して分子を作らないため、不活性ガスと呼ばれる。しかし、放電などによりエネルギーを得た希ガスの原子(励起原子)は、他の原子と結合して分子を作ることができる。
Noble gas atoms such as Xe, Kr, Ar, Ne, etc. are called inert gases because they are chemically bonded and do not form molecules. However, rare gas atoms (excited atoms) that have gained energy by discharge or the like can be combined with other atoms to form molecules.
例えば、希ガスがXe(キセノン)の場合には、下記反応式で示されるように、励起されたエキシマ分子であるXe2
*が基底状態に遷移するときに、172nmのエキシマ光を発光する。
For example, when the rare gas is Xe (xenon), excimer light of 172 nm is emitted when the excited excimer molecule Xe 2 * transitions to the ground state, as shown in the following reaction formula.
e+Xe→Xe*
Xe*+2Xe→Xe2 *+Xe
Xe2 *→Xe+Xe+hν(172nm)
エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。また、余分な光が放射されないので、対象物の温度を比較的低く保つことができる。さらには、始動・再始動に時間を要さないので、瞬時の点灯点滅が可能である。 e + Xe → Xe *
Xe * + 2Xe → Xe 2 * + Xe
Xe 2 * → Xe + Xe + hν (172 nm)
A feature of the excimer lamp is that the radiation is concentrated on one wavelength, and since only the necessary light is not emitted, the efficiency is high. Moreover, since extra light is not radiated | emitted, the temperature of a target object can be kept comparatively low. Furthermore, since no time is required for starting and restarting, instantaneous lighting and blinking are possible.
Xe*+2Xe→Xe2 *+Xe
Xe2 *→Xe+Xe+hν(172nm)
エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。また、余分な光が放射されないので、対象物の温度を比較的低く保つことができる。さらには、始動・再始動に時間を要さないので、瞬時の点灯点滅が可能である。 e + Xe → Xe *
Xe * + 2Xe → Xe 2 * + Xe
Xe 2 * → Xe + Xe + hν (172 nm)
A feature of the excimer lamp is that the radiation is concentrated on one wavelength, and since only the necessary light is not emitted, the efficiency is high. Moreover, since extra light is not radiated | emitted, the temperature of a target object can be kept comparatively low. Furthermore, since no time is required for starting and restarting, instantaneous lighting and blinking are possible.
エキシマ光を効率よく照射する光源としては、誘電体バリア放電ランプが挙げられる。
As a light source for efficiently irradiating excimer light, there is a dielectric barrier discharge lamp.
誘電体バリア放電ランプの構成としては、電極間に誘電体を介して放電を起こすものであり、一般的には、誘電体からなる放電容器とその外部とに少なくとも一方の電極が配置されていればよい。誘電体バリア放電ランプとして、例えば、石英ガラスで構成された太い管と細い管とからなる二重円筒状の放電容器中にキセノン等の希ガスが封入され、当該放電容器の外部に網状の第1の電極を設け、内管の内側に他の電極を設けたものがある。
A dielectric barrier discharge lamp has a structure in which a discharge is generated between electrodes via a dielectric. Generally, at least one electrode is disposed between a discharge vessel made of a dielectric and the outside thereof. That's fine. As a dielectric barrier discharge lamp, for example, a rare gas such as xenon is enclosed in a double cylindrical discharge vessel composed of a thick tube and a thin tube made of quartz glass, and a mesh-like second electrode is formed outside the discharge vessel. There is one in which one electrode is provided and another electrode is provided inside the inner tube.
誘電体バリア放電ランプは、電極間に高周波電圧等を加えることによって放電容器内部に誘電体バリア放電を発生させ、放電により生成されたキセノン等のエキシマ分子が解離する際にエキシマ光を発生させる。
The dielectric barrier discharge lamp generates a dielectric barrier discharge inside the discharge vessel by applying a high-frequency voltage or the like between the electrodes, and generates excimer light when excimer molecules such as xenon generated by the discharge dissociate.
エキシマランプは、光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、温度上昇の要因となる波長の長い光は発せず、紫外線領域の単一波長でエネルギーを照射するため、照射光自体による照射対象物の温度上昇を抑えられる特徴を持っている。
Excimer lamps can be lit with low power input because of their high light generation efficiency. In addition, since light having a long wavelength that causes a temperature rise is not emitted and energy is emitted at a single wavelength in the ultraviolet region, the temperature rise of the irradiation object due to the irradiation light itself is suppressed.
ポリシラザン層塗膜が受ける塗膜面での真空紫外線の照度は30~200mW/cm2の範囲内であることが好ましく、50~160mW/cm2の範囲内であることがより好ましい。30mW/cm2以上であれば、改質効率の低下の懸念がなく、200mW/cm2以下であれば、塗膜にアブレーションを生じることがなく、基材にダメージを与えないため好ましい。
Preferably illuminance of the vacuum ultraviolet rays in the coated surface of the polysilazane coating film is subjected is in the range of 30 ~ 200mW / cm 2, and more preferably in a range of 50 ~ 160mW / cm 2. If it is 30 mW / cm 2 or more, there is no concern about the reduction of the reforming efficiency, and if it is 200 mW / cm 2 or less, the coating film is not ablated and the substrate is not damaged.
ポリシラザン層塗膜面における真空紫外線の照射エネルギー量は、200~10000mJ/cm2の範囲内であることが好ましく、500~5000mJ/cm2の範囲内であることがより好ましい。200mJ/cm2以上であれば、改質を十分に行うことができ、10000mJ/cm2以下であれば、過剰改質にならずクラック発生や、樹脂基材の熱変形を防止することができる。
Irradiation energy amount of the VUV in the polysilazane coating film surface is preferably in the range of 200 ~ 10000mJ / cm 2, and more preferably in a range of 500 ~ 5000mJ / cm 2. If it is 200 mJ / cm 2 or more, the modification can be sufficiently performed, and if it is 10000 mJ / cm 2 or less, it is not over-reformed and cracking and thermal deformation of the resin substrate can be prevented. .
〔第一透明電極〕
第一透明電極は、通常有機EL素子に使用可能な全ての電極を使用することができる。具体的には、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/同混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO2、SnO2等の酸化物半導体等が挙げられる。 [First transparent electrode]
As the first transparent electrode, all the electrodes that can be normally used for organic EL elements can be used. Specifically, aluminum, silver, magnesium, lithium, magnesium / same mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO 2 , An oxide semiconductor such as SnO 2 can be given.
第一透明電極は、通常有機EL素子に使用可能な全ての電極を使用することができる。具体的には、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/同混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO2、SnO2等の酸化物半導体等が挙げられる。 [First transparent electrode]
As the first transparent electrode, all the electrodes that can be normally used for organic EL elements can be used. Specifically, aluminum, silver, magnesium, lithium, magnesium / same mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO 2 , An oxide semiconductor such as SnO 2 can be given.
例えば、図2に示すとおり、第一透明電極101は、基板110側から、下地層101aと、この上部に成膜された電極層101bとを順に積層した2層構造であることが好ましい。このうち、電極層101bは、例えば、銀又は銀を主成分とする合金を用いて構成された層であり、下地層101aは、例えば、窒素原子及び硫黄原子から選択される少なくとも1種の原子を有する有機化合物を含有する層であることが好ましい。
For example, as shown in FIG. 2, the first transparent electrode 101 preferably has a two-layer structure in which a base layer 101a and an electrode layer 101b formed thereon are sequentially laminated from the substrate 110 side. Among these, the electrode layer 101b is a layer formed using, for example, silver or an alloy containing silver as a main component, and the base layer 101a is, for example, at least one kind of atom selected from a nitrogen atom and a sulfur atom. It is preferable that it is a layer containing the organic compound which has.
なお、第一透明電極101の透明とは、光波長550nmでの光透過率が50%以上であることをいう。また、電極層101bにおいて主成分とは、電極層101b中の含有量が98質量%以上であることをいう。
Note that the transparency of the first transparent electrode 101 means that the light transmittance at a light wavelength of 550 nm is 50% or more. The main component in the electrode layer 101b means that the content in the electrode layer 101b is 98% by mass or more.
(1)下地層
下地層101aは、電極層101bの基板110側に設けられる層である。下地層101aを構成する材料としては、特に限定されるものではなく、銀又は銀を主成分とする合金からなる電極層101bの成膜に際し、銀の凝集を抑制できるものであれば良く、例えば、窒素原子及び硫黄原子から選択される少なくとも1種の原子を有する有機化合物等が挙げられる。 (1) Underlayer Theunderlayer 101a is a layer provided on the substrate 110 side of the electrode layer 101b. The material constituting the base layer 101a is not particularly limited as long as it can suppress the aggregation of silver when forming the electrode layer 101b made of silver or an alloy containing silver as a main component. , Organic compounds having at least one atom selected from a nitrogen atom and a sulfur atom.
下地層101aは、電極層101bの基板110側に設けられる層である。下地層101aを構成する材料としては、特に限定されるものではなく、銀又は銀を主成分とする合金からなる電極層101bの成膜に際し、銀の凝集を抑制できるものであれば良く、例えば、窒素原子及び硫黄原子から選択される少なくとも1種の原子を有する有機化合物等が挙げられる。 (1) Underlayer The
下地層を構成する窒素原子を含んだ化合物としては、分子内に窒素原子を含んでいる有機化合物であれば特に限定されないが、窒素原子をヘテロ原子とした複素環を有する化合物であることが好ましい。窒素原子をヘテロ原子とした複素環としては、アジリジン、アジリン、アゼチジン、アゼト、アゾリジン、アゾール、アジナン、ピリジン、アゼパン、アゼピン、イミダゾール、ピラゾール、オキサゾール、チアゾール、イミダゾリン、ピラジン、モルホリン、チアジン、インドール、イソインドール、ベンゾイミダゾール、プリン、キノリン、イソキノリン、キノキサリン、シンノリン、プテリジン、アクリジン、カルバゾール、ベンゾ-C-シンノリン、ポルフィリン、クロリン、コリン等が挙げられる。
The compound containing a nitrogen atom constituting the underlayer is not particularly limited as long as it is an organic compound containing a nitrogen atom in the molecule, but is preferably a compound having a heterocycle having a nitrogen atom as a heteroatom. . Examples of the heterocycle having a nitrogen atom as a hetero atom include aziridine, azirine, azetidine, azeto, azolidine, azole, azinane, pyridine, azepan, azepine, imidazole, pyrazole, oxazole, thiazole, imidazoline, pyrazine, morpholine, thiazine, indole, Examples include isoindole, benzimidazole, purine, quinoline, isoquinoline, quinoxaline, cinnoline, pteridine, acridine, carbazole, benzo-C-cinnoline, porphyrin, chlorin, choline and the like.
硫黄原子を有する有機化合物は、分子内に、スルフィド結合、ジスルフィド結合、メルカプト基、スルホン基、チオカルボニル結合等を有している化合物であることが好ましい。これらの中でも、スルフィド結合又はメルカプト基を有していることが好ましい。
The organic compound having a sulfur atom is preferably a compound having a sulfide bond, disulfide bond, mercapto group, sulfone group, thiocarbonyl bond or the like in the molecule. Among these, it is preferable to have a sulfide bond or a mercapto group.
上記有機化合物は、1種でもよく、2種以上を混合してもよい。また、窒素原子及び硫黄原子を有していない化合物を、下地層の効果を阻害しない範囲で混合することも許される。
The organic compound may be one kind or a mixture of two or more kinds. In addition, it is allowed to mix a compound having no nitrogen atom and sulfur atom within a range that does not impair the effect of the underlayer.
下地層101aが、低屈折率材料(屈折率1.7未満)からなる場合、その層厚の上限としては、50nm未満であることが好ましく、30nm未満であることがより好ましく、10nm未満であることがさらに好ましく、5nm未満であることが特に好ましい。層厚を50nm未満とすることにより、光学的ロスを最小限に抑えられる。一方、層厚の下限としては、0.05nm以上であることが好ましく、0.1nm以上であることがより好ましく、0.3nm以上であることが特に好ましい。層厚を0.05nm以上とすることにより、下地層101aの成膜を均一とし、その効果(銀の凝集抑制)を均一とすることができる。
When the underlayer 101a is made of a low refractive index material (refractive index less than 1.7), the upper limit of the layer thickness is preferably less than 50 nm, more preferably less than 30 nm, and less than 10 nm. More preferably, the thickness is less than 5 nm. By making the layer thickness less than 50 nm, optical loss can be minimized. On the other hand, the lower limit of the layer thickness is preferably 0.05 nm or more, more preferably 0.1 nm or more, and particularly preferably 0.3 nm or more. By setting the layer thickness to 0.05 nm or more, it is possible to make the underlayer 101a uniform, and to make the effect (inhibition of silver aggregation) uniform.
下地層101aが、高屈折率材料(屈折率1.7以上)からなる場合、その層厚の上限としては特に制限はなく、層厚の下限としては上記低屈折率材料からなる場合と同様である。
When the underlayer 101a is made of a high refractive index material (refractive index of 1.7 or more), the upper limit of the layer thickness is not particularly limited, and the lower limit of the layer thickness is the same as that of the low refractive index material. is there.
ただし、単なる下地層101aの機能としては、均一な成膜が得られる必要層厚で形成されれば十分である。
However, as a simple function of the base layer 101a, it is sufficient that the base layer 101a is formed with a necessary layer thickness that enables uniform film formation.
下地層101aの成膜方法としては、塗布法、インクジェット法、コーティング法、ディップ法などのウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法など)、スパッタ法、CVD法等のドライプロセスを用いる方法等が挙げられる。中でも、蒸着法が好ましく適用される。
As a method for forming the base layer 101a, a wet process such as a coating method, an inkjet method, a coating method, or a dip method, or a dry process such as a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, or the like is used. And the like. Among these, the vapor deposition method is preferably applied.
(2)電極層
電極層101bは、好ましくは銀又は銀を主成分とした合金を用いて構成された層であって、下地層101a上に成膜された層であることが好ましい。 (2) Electrode layer Theelectrode layer 101b is preferably a layer formed using silver or an alloy containing silver as a main component, and is preferably a layer formed on the base layer 101a.
電極層101bは、好ましくは銀又は銀を主成分とした合金を用いて構成された層であって、下地層101a上に成膜された層であることが好ましい。 (2) Electrode layer The
このような電極層101bの成膜方法としては、塗布法、インクジェット法、コーティング法、ディップ法等のウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法など)、スパッタ法、CVD法等のドライプロセスを用いる方法等が挙げられる。中でも、蒸着法が好ましく適用される。
As a method for forming such an electrode layer 101b, a wet process such as a coating method, an inkjet method, a coating method, or a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, or the like is used. And a method using the dry process. Among these, the vapor deposition method is preferably applied.
また、電極層101bは、下地層101a上に成膜されることにより、電極層101b成膜後の高温アニール処理等がなくても十分に導電性を有することを特徴とするが、必要に応じて、成膜後に高温アニール処理等を行ったものであってもよい。
In addition, the electrode layer 101b is formed on the base layer 101a, so that the electrode layer 101b has sufficient conductivity even without high-temperature annealing after the electrode layer 101b is formed. The film may be subjected to high-temperature annealing after film formation.
電極層101bを構成する銀(Ag)を主成分とする合金としては、例えば、銀マグネシウム(AgMg)、銀銅(AgCu)、銀パラジウム(AgPd)、銀パラジウム銅(AgPdCu)、銀インジウム(AgIn)等が挙げられる。
Examples of the alloy mainly composed of silver (Ag) constituting the electrode layer 101b include silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), and silver indium (AgIn). ) And the like.
さらに、銀に対してアルミニウム(Al)や金(Au)を2原子数%程度添加して共蒸着することも好ましい。
Further, it is also preferable to co-evaporate by adding about 2 atomic% of aluminum (Al) or gold (Au) to silver.
以上のような電極層101bは、銀又は銀を主成分とした合金の層が、必要に応じて複数の層に分けて積層された構成であってもよい。
The electrode layer 101b as described above may have a configuration in which silver or an alloy layer mainly composed of silver is divided into a plurality of layers as necessary.
さらに、この電極層101bは、層厚が5~30nmの範囲内であることが好ましい。層厚が30nmより薄い場合には、層の吸収成分又は反射成分が少なく、第一透明電極101の透過率が大きくなる。また、層厚が5nmより厚い場合には、層の導電性を十分に確保することができる。好ましくは8~20nmの範囲であり、さらに好ましくは10~15nmの範囲である。
Furthermore, the electrode layer 101b preferably has a layer thickness in the range of 5 to 30 nm. When the layer thickness is less than 30 nm, the absorption component or reflection component of the layer is small, and the transmittance of the first transparent electrode 101 is increased. Moreover, when the layer thickness is thicker than 5 nm, the conductivity of the layer can be sufficiently secured. The range is preferably 8 to 20 nm, and more preferably 10 to 15 nm.
なお、以上のような下地層101aとこの上部に成膜された電極層101bとからなる積層構造の第一透明電極101は、電極層101bの上部が保護膜で覆われていたり、別の電極層が積層されていたりしてもよい。この場合、第一透明電極101の光透過性を損なうことのないように、保護膜及び別の電極層が光透過性を有することが好ましい。
Note that the first transparent electrode 101 having a laminated structure composed of the base layer 101a and the electrode layer 101b formed thereon is covered with a protective film on the upper part of the electrode layer 101b or another electrode. Layers may be laminated. In this case, it is preferable that the protective film and the other electrode layer have light transmittance so as not to impair the light transmittance of the first transparent electrode 101.
(3)第一透明電極の効果
以上のような構成の第一透明電極101は、例えば、窒素原子及び硫黄原子から選択される少なくとも1種の原子を有する有機化合物を用いて構成された下地層101a上に、銀又は銀を主成分とする合金からなる電極層101bを設けた構成である。これにより、下地層101aの上部に電極層101bを成膜する際には、電極層101bを構成する銀原子が下地層101aを構成する窒素原子又は硫黄原子を含んだ化合物と相互作用し、下地層101a表面において銀原子の拡散距離が減少し、銀の凝集が抑えられる。 (3) Effect of first transparent electrode The firsttransparent electrode 101 having the above-described configuration is, for example, an underlayer formed using an organic compound having at least one atom selected from a nitrogen atom and a sulfur atom. An electrode layer 101b made of silver or an alloy containing silver as a main component is provided on 101a. Thus, when the electrode layer 101b is formed on the base layer 101a, the silver atoms constituting the electrode layer 101b interact with the compound containing nitrogen atoms or sulfur atoms constituting the base layer 101a, and The diffusion distance of silver atoms is reduced on the surface of the base layer 101a, and aggregation of silver is suppressed.
以上のような構成の第一透明電極101は、例えば、窒素原子及び硫黄原子から選択される少なくとも1種の原子を有する有機化合物を用いて構成された下地層101a上に、銀又は銀を主成分とする合金からなる電極層101bを設けた構成である。これにより、下地層101aの上部に電極層101bを成膜する際には、電極層101bを構成する銀原子が下地層101aを構成する窒素原子又は硫黄原子を含んだ化合物と相互作用し、下地層101a表面において銀原子の拡散距離が減少し、銀の凝集が抑えられる。 (3) Effect of first transparent electrode The first
ここで、一般的に銀を主成分とした電極層101bの成膜においては、核成長型(Volumer-Weber:VW型)で薄膜成長するため、銀粒子が島状に孤立しやすく、層厚が薄いときは導電性を得ることが困難であり、シート抵抗値が高くなる。したがって、導電性を確保するには層厚を厚くする必要があるが、層厚を厚くすると光透過率が下がるため、第一透明電極としては用いることが困難であった。
Here, in general, in the film formation of the electrode layer 101b containing silver as a main component, a thin film is grown in a nucleus growth type (Volume-Weber: VW type), and therefore, silver particles are easily isolated in an island shape, and the layer thickness is increased. When the thickness is thin, it is difficult to obtain conductivity, and the sheet resistance value becomes high. Therefore, although it is necessary to increase the layer thickness in order to ensure conductivity, it is difficult to use as the first transparent electrode because the light transmittance decreases as the layer thickness increases.
しかしながら、上述したように下地層101a上において銀の凝集が抑えられるため、銀又は銀を主成分とする合金からなる電極層101bの成膜においては、核成長型ではなく、単層成長型(Frank-van der Merwe:FM型)で薄膜成長するようになる。
However, as described above, since aggregation of silver is suppressed on the base layer 101a, the electrode layer 101b made of silver or an alloy containing silver as a main component is not a nucleus growth type but a single layer growth type ( A thin film grows with a Frank-van der Merwe (FM type).
第一透明電極101は、光波長550nmでの光透過率が50%以上である透明電極であることが好ましく、下地層101aを設けることによって、銀又は銀を主成分とする合金からなる電極層101bは薄膜化が可能であり、十分に光透過性の良好な膜となり得る。一方、第一透明電極101の導電性は、主に、電極層101bによって確保される。銀又は銀を主成分とする合金からなる電極層101bは導電性に優れており、より薄い層厚で導電性が確保される。したがって、第一透明電極101の導電性の向上と光透過性の向上との両立を図ることが可能になるものである。
The first transparent electrode 101 is preferably a transparent electrode having a light transmittance of 50% or more at a light wavelength of 550 nm, and an electrode layer made of silver or an alloy containing silver as a main component by providing the base layer 101a. 101b can be thinned and can be a film with sufficiently good light transmittance. On the other hand, the conductivity of the first transparent electrode 101 is mainly ensured by the electrode layer 101b. The electrode layer 101b made of silver or an alloy containing silver as a main component has excellent conductivity, and conductivity is ensured with a thinner layer thickness. Accordingly, it is possible to achieve both the improvement of the conductivity of the first transparent electrode 101 and the improvement of the light transmittance.
さらに、本発明に係る第一透明電極は、銀電極での鏡面光反射が発生しない程度の範囲で、薄膜化に調整が可能であるため、発光輝度の向上に寄与することができる。
Furthermore, since the first transparent electrode according to the present invention can be adjusted to a thin film within a range in which specular light reflection at the silver electrode does not occur, it can contribute to an improvement in light emission luminance.
〔有機発光層〕
(1)発光層
有機発光層103には少なくとも発光層103cが含まれる。 (Organic light emitting layer)
(1) Light emitting layer The organiclight emitting layer 103 includes at least a light emitting layer 103c.
(1)発光層
有機発光層103には少なくとも発光層103cが含まれる。 (Organic light emitting layer)
(1) Light emitting layer The organic
本発明に用いられる発光層103cには、発光材料としてリン光発光化合物が含有されていることが好ましい。なお、発光材料として、蛍光材料が使用されてもよいし、リン光発光化合物と蛍光材料とを併用してもよい。
The phosphor layer 103c used in the present invention preferably contains a phosphorescent compound as a luminescent material. Note that a fluorescent material may be used as the light emitting material, or a phosphorescent light emitting compound and a fluorescent material may be used in combination.
この発光層103cは、電極又は電子輸送層103dから注入された電子と、正孔輸送層103bから注入された正孔とが再結合して発光する層であり、発光する部分は発光層103cの層内であっても発光層103cと隣接する層との界面であってもよい。
The light emitting layer 103c is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer 103d and holes injected from the hole transport layer 103b, and the light emitting portion is the light emitting layer 103c. Even within the layer, it may be an interface between the light emitting layer 103c and the adjacent layer.
このような発光層103cとしては、含まれる発光材料が発光要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。この場合、各発光層103c間には、非発光性の中間層(図示略)を有していることが好ましい。
The structure of the light emitting layer 103c is not particularly limited as long as the included light emitting material satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, a non-light emitting intermediate layer (not shown) is preferably provided between the light emitting layers 103c.
発光層103cの層厚の総和は1~100nmの範囲内にあることが好ましく、より低い駆動電圧を得ることができることから1~30nmの範囲内であることがより好ましい。
The total thickness of the light emitting layer 103c is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained.
なお、発光層103cの層厚の総和とは、発光層103c間に非発光性の中間層が存在する場合には、当該中間層も含む層厚である。
Note that the sum of the layer thicknesses of the light emitting layer 103c is a layer thickness including the intermediate layer when a non-light emitting intermediate layer exists between the light emitting layers 103c.
複数層を積層した構成の発光層103cの場合、個々の発光層の層厚としては、1~50nmの範囲内に調整することが好ましく、更に、1~20nmの範囲内に調整することがより好ましい。積層された複数の発光層が、青、緑、赤のそれぞれの発光色に対応する場合、青、緑、赤の各発光層の層厚の関係については、特に制限はない。
In the case of the light emitting layer 103c having a structure in which a plurality of layers are stacked, the thickness of each light emitting layer is preferably adjusted within a range of 1 to 50 nm, and more preferably adjusted within a range of 1 to 20 nm. preferable. When the plurality of stacked light emitting layers correspond to blue, green, and red light emission colors, there is no particular limitation on the relationship between the thicknesses of the blue, green, and red light emitting layers.
以上のような発光層103cは、公知の発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜形成方法により成膜して形成することができる。
The light emitting layer 103c as described above is formed by forming a known light emitting material or host compound by a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method. be able to.
発光層に含まれる発光ドーパント(発光ドーパント化合物ともいう)、ホスト化合物について説明する。
A light-emitting dopant (also referred to as a light-emitting dopant compound) and a host compound contained in the light-emitting layer will be described.
(1-1)ホスト化合物
ここで、本発明においてホスト化合物とは、発光層に含有される化合物の内でその層中での質量比が20%以上であり、かつ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。 (1-1) Host Compound Here, in the present invention, the host compound means that the compound contained in the light emitting layer has a mass ratio of 20% or more in the layer and is phosphorus at room temperature (25 ° C.). A compound having a phosphorescence quantum yield of photoluminescence of less than 0.1 is defined. The phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
ここで、本発明においてホスト化合物とは、発光層に含有される化合物の内でその層中での質量比が20%以上であり、かつ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。 (1-1) Host Compound Here, in the present invention, the host compound means that the compound contained in the light emitting layer has a mass ratio of 20% or more in the layer and is phosphorus at room temperature (25 ° C.). A compound having a phosphorescence quantum yield of photoluminescence of less than 0.1 is defined. The phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光ドーパントを複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
As the host compound, known host compounds may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient. Moreover, it becomes possible to mix different light emission by using multiple types of light emission dopants mentioned later, and, thereby, arbitrary luminescent colors can be obtained.
また、本発明に用いられる発光ホストとしては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。
The light emitting host used in the present invention may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (deposition polymerization property). Light emitting host).
併用してもよい公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を防ぎ、なおかつ高Tg(ガラス転移温度)である化合物が好ましい。
As the known host compound that may be used in combination, a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable.
公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられるが、これに限定されるものではない。
Specific examples of known host compounds include compounds described in the following documents, but are not limited thereto.
特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等。
JP-A-2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002-105445, 2002-343568, 2002-141173, 2002-352957, 2002-203683, 2002-363227, 2002-231453, 2003-3165, 2002-234888, 2003-27048, 2002-255934, 2002-260861, 2002-280183, 2002-299060, 2002 -302516, 2002-305083, 2002-305084, 2002-308837, and the like.
(1-2)発光ドーパント
本発明に用いられる発光ドーパントについて説明する。 (1-2) Luminescent dopant The luminescent dopant used in the present invention will be described.
本発明に用いられる発光ドーパントについて説明する。 (1-2) Luminescent dopant The luminescent dopant used in the present invention will be described.
より発光効率の高い有機EL素子を得る観点から、本発明の有機EL素子の発光層としては、上記のホスト化合物を含有すると同時に、リン光ドーパントを含有することが好ましい。
From the viewpoint of obtaining an organic EL device with higher luminous efficiency, the light emitting layer of the organic EL device of the present invention preferably contains a phosphorescent dopant at the same time as containing the host compound.
(1-3)リン光ドーパント
本発明に用いられるリン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。 (1-3) Phosphorescent dopant The phosphorescent dopant used in the present invention is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.). Yes, the phosphorescence quantum yield is defined to be a compound of 0.01 or more at 25 ° C., but the preferred phosphorescence quantum yield is 0.1 or more.
本発明に用いられるリン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。 (1-3) Phosphorescent dopant The phosphorescent dopant used in the present invention is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.). Yes, the phosphorescence quantum yield is defined to be a compound of 0.01 or more at 25 ° C., but the preferred phosphorescence quantum yield is 0.1 or more.
上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
The phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant according to the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. That's fine.
リン光ドーパントの発光は原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るというエネルギー移動型、もう一つはリン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こりリン光ドーパントからの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、リン光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。
There are two types of light emission of phosphorescent dopants in principle. One is the recombination of carriers on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent dopant. The energy transfer type that obtains light emission from the phosphorescent dopant, and the other is that the phosphorescent dopant becomes a carrier trap, carrier recombination occurs on the phosphorescent dopant, and light emission from the phosphorescent dopant is obtained. Although it is a trap type, in any case, the excited state energy of the phosphorescent dopant is required to be lower than the excited state energy of the host compound.
本発明に使用できる公知のリン光ドーパントの具体例としては、以下の文献に記載されている化合物等が挙げられる。
Specific examples of known phosphorescent dopants that can be used in the present invention include compounds described in the following documents.
Nature 395,151 (1998)、Appl. Phys. Lett. 78, 1622 (2001)、Adv. Mater. 19, 739 (2007)、Chem. Mater. 17, 3532 (2005)、Adv. Mater. 17, 1059 (2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許出願公開第2006/835469号明細書、米国特許出願公開第2006/0202194号明細書、米国特許出願公開第2007/0087321号明細書、米国特許出願公開第2005/0244673号明細書、Inorg. Chem. 40, 1704 (2001)、Chem. Mater. 16, 2480 (2004)、Adv. Mater. 16, 2003 (2004)、Angew. Chem. lnt. Ed. 2006, 45, 7800、Appl. Phys. Lett. 86, 153505 (2005)、Chem. Lett. 34, 592 (2005)、Chem. Commun. 2906 (2005)、Inorg. Chem. 42, 1248 (2003)、国際公開第2009/050290号、国際公開第2002/015645号、国際公開第2009/000673号、米国特許出願公開第2002/0034656号明細書、米国特許第7332232号明細書、米国特許出願公開第2009/0108737号明細書、米国特許出願公開第2009/0039776号明細書、米国特許第6921915号明細書、米国特許第6687266号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2006/0008670号明細書、米国特許出願公開第2009/0165846号明細書、米国特許出願公開第2008/0015355号明細書、米国特許第7250226号明細書、米国特許第7396598号明細書、米国特許出願公開第2006/0263635号明細書、米国特許出願公開第2003/0138657号明細書、米国特許出願公開第2003/0152802号明細書、米国特許第7090928号明細書、Angew. Chem. lnt. Ed. 47, 1 (2008)、Chem. Mater. 18, 5119 (2006)、Inorg. Chem. 46, 4308(2007)、Organometallics 23, 3745 (2004)、Appl. Phys. Lett. 74, 1361 (1999)、国際公開第2002/002714号、国際公開第2006/009024号、国際公開第2006/056418号、国際公開第2005/019373号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2007/004380号、国際公開第2006/082742号、米国特許出願公開第2006/0251923号明細書、米国特許出願公開第2005/0260441号明細書、米国特許第7393599号明細書、米国特許第7534505号明細書、米国特許第7445855号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2008/0297033号明細書、米国特許第7338722号明細書、米国特許出願公開第2002/0134984号明細書、米国特許第7279704号明細書、米国特許出願公開第2006/098120号明細書、米国特許出願公開第2006/103874号明細書、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第2008/140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/004639号、国際公開第2011/073149号、米国特許出願公開第2012/228583号明細書、米国特許出願公開第2012/212126号明細書、特開2012-069737号公報、特開2011-181303号公報、特開2009-114086号公報、特開2003-81988号公報、特開2002-302671号公報、特開2002-363552号公報等である。
Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Application Publication No. 2006/835469, US Patent Application Publication No. 2006 / No. 0202194, U.S. Patent Application Publication No. 2007/0087321, U.S. Patent Application Publication No. 2005/0244673, Inorg. Chem. 40, 1704 (2001), Chem. Mater. 16, 2480 (2004), Adv. Mater. 16, 2003 (2004), Angew. Chem. Lnt. Ed. 2006, 45, 7800, Appl. Phys. Lett. 86, 153505 (2005), Chem. Lett. 34, 592 (2005), Chem. Commun. 2906 (2005), Inorg. Chem. 42, 1248 (2003), International Publication No. 2009/050290, International Publication No. 2002/015645, International Publication No. 2009/000673, US Patent Application Publication No. 2002/0034656, and US Pat. No. 7,332,232. US Patent Application Publication No. 2009/0108737, US Patent Application Publication No. 2009/0039776, US Patent No. 6921915, US Patent No. 6,687,266, US Patent Application Publication No. 2007/0190359. Specification, US Patent Application Publication No. 2006/0008670, US Patent Application Publication No. 2009/0165846, US Patent Application Publication No. 2008/0015355, US Patent No. 7250226, US Patent No. 7396598 Specification, U.S. Patent Application Publication No. 2006/0263635, U.S. Patent Application Publication No. 2003/0138657, U.S. Patent Application Publication No. 2003/0152802, U.S. Patent No. 7090928, Angew. Chem. Lnt. Ed. 47, 1 (2008), Chem. Mater. 18, 5119 (2006), Inorg. Chem. 46, 4308 (2007), Organometallics 23, 3745 (2004), Appl. Phys. Lett. 74, 1361 (1999), International Publication No. 2002/002714, International Publication No. 2006/009024, International Publication No. 2006/056418, International Publication No. 2005/019373, International Publication No. 2005/123873, International Publication No. 2005/123873, International Publication No. 2007/004380, International Publication No. 2006/082742, US Patent Application Publication No. 2006/0251923, US Patent Application Publication No. 2005/0260441, US Pat. No. 7,393,599. Description, US Pat. No. 7,534,505, US Pat. No. 7,445,855, US Patent Application Publication No. 2007/0190359, US Patent Application Publication No. 2008/0297033, US Pat. No. 7,338,722 , National Patent Application Publication No. 2002/0134984, U.S. Patent No. 7279704, U.S. Patent Application Publication No. 2006/098120, U.S. Patent Application Publication No. 2006/103874, International Publication No. 2005/076380. No., International Publication No. 2010/032663, International Publication No. 2008/140115, International Publication No. 2007/052431, International Publication No. 2011/134013, International Publication No. 2011/157339, International Publication No. 2010/086089, International Publication No. 2009/113646, International Publication No. 2012/020327, International Publication No. 2011/051404, International Publication No. 2011/004639, International Publication No. 2011/073149, US Patent Application Publication No. 2012/2285853 book US Patent Application Publication No. 2012/212126, JP2012-069737, JP2011-181303, JP2009-1114086, JP2003-81988, JP2002-302671 For example, Japanese Patent Laid-Open No. 2002-363552.
中でも、好ましいリン光ドーパントとしてはIrを中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合のうち少なくとも一つの配位様式を含む錯体が好ましい。
Among these, a preferable phosphorescent dopant includes an organometallic complex having Ir as a central metal. More preferably, a complex containing at least one coordination mode among a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond is preferable.
有機EL素子100においては、少なくとも一つの発光層103cに2種以上のリン光発光性化合物を含有していても良く、発光層103cにおけるリン光発光性化合物の濃度比が発光層103cの層厚方向で変化していてもよい。
In the organic EL element 100, at least one light emitting layer 103c may contain two or more types of phosphorescent compounds, and the concentration ratio of the phosphorescent compounds in the light emitting layer 103c is the thickness of the light emitting layer 103c. It may change in direction.
リン光発光性化合物は好ましくは発光層103cの総量に対し0.1体積%以上30体積%未満であることが好ましい。
The phosphorescent compound is preferably 0.1% by volume or more and less than 30% by volume with respect to the total amount of the light emitting layer 103c.
(1-4)蛍光性化合物
蛍光性化合物としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等が挙げられる。 (1-4) Fluorescent compounds Fluorescent compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes. Examples thereof include dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
蛍光性化合物としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等が挙げられる。 (1-4) Fluorescent compounds Fluorescent compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes. Examples thereof include dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
(2)注入層(正孔注入層、電子注入層)
注入層とは、駆動電圧低下や発光輝度向上のために電極と発光層103cの間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層103aと電子注入層103eとがある。 (2) Injection layer (hole injection layer, electron injection layer)
The injection layer is a layer provided between the electrode and the light-emittinglayer 103c in order to lower the drive voltage and improve the light emission luminance. “The organic EL element and its forefront of industrialization (November 30, 1998, NT. 2) Chapter 2 “Electrode Materials” (pages 123 to 166) of “S. Co., Ltd.”), which includes a hole injection layer 103a and an electron injection layer 103e.
注入層とは、駆動電圧低下や発光輝度向上のために電極と発光層103cの間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層103aと電子注入層103eとがある。 (2) Injection layer (hole injection layer, electron injection layer)
The injection layer is a layer provided between the electrode and the light-emitting
注入層は、必要に応じて設けることができる。正孔注入層103aであれば、アノードと発光層103c又は正孔輸送層103bの間、電子注入層103eであればカソードと発光層103c又は電子輸送層103dとの間に存在させてもよい。
The injection layer can be provided as necessary. The hole injection layer 103a may exist between the anode and the light emitting layer 103c or the hole transport layer 103b, and the electron injection layer 103e may exist between the cathode and the light emitting layer 103c or the electron transport layer 103d.
正孔注入層103aは、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニン層、酸化バナジウムに代表される酸化物層、アモルファスカーボン層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子層等が挙げられる。
Details of the hole injection layer 103a are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, and the like. Specific examples include phthalocyanine represented by copper phthalocyanine. Examples thereof include a layer, an oxide layer typified by vanadium oxide, an amorphous carbon layer, and a polymer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
電子注入層103eは、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属層、フッ化カリウムに代表されるアルカリ金属ハライド層、フッ化マグネシウムに代表されるアルカリ土類金属化合物層、酸化モリブデンに代表される酸化物層等が挙げられる。本発明の電子注入層103eはごく薄い膜であることが望ましく、素材にもよるがその層厚は1nm~10μmの範囲が好ましい。
The details of the electron injection layer 103e are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like, and specifically represented by strontium, aluminum and the like. Examples thereof include a metal layer, an alkali metal halide layer typified by potassium fluoride, an alkaline earth metal compound layer typified by magnesium fluoride, and an oxide layer typified by molybdenum oxide. The electron injection layer 103e of the present invention is desirably a very thin film, and the layer thickness is preferably in the range of 1 nm to 10 μm although it depends on the material.
(3)正孔輸送層
正孔輸送層103bは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層103a、電子阻止層も正孔輸送層103bに含まれる。正孔輸送層103bは単層又は複数層設けることができる。 (3) Hole transport layer Thehole transport layer 103b is made of a hole transport material having a function of transporting holes, and in a broad sense, the hole injection layer 103a and the electron blocking layer are also included in the hole transport layer 103b. . The hole-transport layer 103b can be provided as a single layer or a plurality of layers.
正孔輸送層103bは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層103a、電子阻止層も正孔輸送層103bに含まれる。正孔輸送層103bは単層又は複数層設けることができる。 (3) Hole transport layer The
正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また、導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
The hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
As the hole transport material, those described above can be used, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、さらには米国特許第5061569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが三つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' Di (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino -(2-diphenylvinyl) benzene; 3-methoxy-4'-N, N-diphenylaminostilbenzene; N-phenylcarbazole and also two condensed aromatics described in US Pat. No. 5,061,569 Having a ring in the molecule, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-3086 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in publication No. 8 are linked in three starburst types ( MTDATA) and the like.
さらにこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
Further, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
また、特開平11-251067号公報、J.Huang et.al.,Applied Physics Letters,80(2002),p.139に記載されているようないわゆる、p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることから、これらの材料を用いることが好ましい。
Also, JP-A-11-251067, J. Org. Huang et. al. , Applied Physics Letters, 80 (2002), p. A so-called p-type hole transport material as described in 139 can also be used. In the present invention, it is preferable to use these materials because a light-emitting element with higher efficiency can be obtained.
正孔輸送層103bは、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層103bの層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲である。この正孔輸送層103bは、上記材料の1種又は2種以上からなる1層構造であってもよい。
The hole transport layer 103b is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, or an LB method. be able to. The layer thickness of the hole transport layer 103b is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The hole transport layer 103b may have a single layer structure composed of one or more of the above materials.
また、正孔輸送層103bの材料に不純物をドープしてp性を高くすることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
It is also possible to increase the p property by doping impurities into the material of the hole transport layer 103b. Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
このように、正孔輸送層103bのp性を高くすると、より低消費電力の素子を作製することができるため好ましい。
Thus, it is preferable to increase the p property of the hole transport layer 103b because an element with lower power consumption can be manufactured.
(4)電子輸送層
電子輸送層103dは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層103e、正孔阻止層(図示略)も電子輸送層103dに含まれる。電子輸送層103dは単層構造又は複数層の積層構造として設けることができる。 (4) Electron Transport Layer Theelectron transport layer 103d is made of a material having a function of transporting electrons. In a broad sense, the electron injection layer 103e and a hole blocking layer (not shown) are also included in the electron transport layer 103d. The electron transport layer 103d can be provided as a single-layer structure or a stacked structure of a plurality of layers.
電子輸送層103dは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層103e、正孔阻止層(図示略)も電子輸送層103dに含まれる。電子輸送層103dは単層構造又は複数層の積層構造として設けることができる。 (4) Electron Transport Layer The
単層構造の電子輸送層103d、及び、積層構造の電子輸送層103dにおいて、発光層103cに隣接する層部分を構成する電子輸送材料(正孔阻止材料を兼ねる)としては、カソードより注入された電子を発光層103cに伝達する機能を有していればよい。このような材料としては従来公知の化合物の中から任意のものを選択して用いることができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体及びオキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送層103dの材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
In the electron transport layer 103d having a single layer structure and the electron transport layer 103d having a multilayer structure, an electron transport material (also serving as a hole blocking material) constituting a layer portion adjacent to the light emitting layer 103c was injected from the cathode. What is necessary is just to have the function to transmit an electron to the light emitting layer 103c. As such a material, any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives. Further, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group are also used as the material for the electron transport layer 103d. Can do. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq3)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送層103dの材料として用いることができる。
In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and the central metals of these metal complexes are In, Mg Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as the material for the electron transport layer 103d.
その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送層103dの材料として好ましく用いることができる。また、発光層103cの材料としても例示されるジスチリルピラジン誘導体も電子輸送層103dの材料として用いることができるし、正孔注入層103a、正孔輸送層103bと同様にn型-Si、n型-SiC等の無機半導体も電子輸送層103dの材料として用いることができる。
In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the material for the electron transport layer 103d. Further, a distyrylpyrazine derivative exemplified also as a material of the light-emitting layer 103c can be used as a material of the electron-transport layer 103d, and n-type Si, n-type similarly to the hole-injection layer 103a and the hole-transport layer 103b. An inorganic semiconductor such as type-SiC can also be used as the material of the electron transport layer 103d.
電子輸送層103dは、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層103dの層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲である。電子輸送層103dは上記材料の1種又は2種以上からなる1層構造であってもよい。
The electron transport layer 103d can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. The layer thickness of the electron transport layer 103d is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The electron transport layer 103d may have a single-layer structure made of one or more of the above materials.
また、電子輸送層103dに不純物をドープし、n性を高くすることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。さらに電子輸送層103dには、カリウムやカリウム化合物などを含有させることが好ましい。カリウム化合物としては、例えば、フッ化カリウム等を用いることができる。このように電子輸送層103dのn性を高くすると、より低消費電力の素子を作製することができる。
Further, the electron transport layer 103d can be doped with an impurity to increase the n property. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like. Furthermore, it is preferable that the electron transport layer 103d contains potassium, a potassium compound, or the like. As the potassium compound, for example, potassium fluoride can be used. Thus, when the n property of the electron transport layer 103d is increased, a device with lower power consumption can be manufactured.
また電子輸送層103dの材料(電子輸送性化合物)として、上述した下地層101aを構成する材料と同様のものを用いてもよい。これは、電子注入層103eを兼ねた電子輸送層103dであっても同様であり、上述した下地層101aを構成する材料と同様のものを用いてもよい。
Further, as the material (electron transporting compound) of the electron transport layer 103d, the same material as that of the base layer 101a described above may be used. The same applies to the electron transport layer 103d that also serves as the electron injection layer 103e, and the same material as that of the base layer 101a described above may be used.
(5)阻止層(正孔阻止層、電子阻止層)
阻止層は、有機発光層103として、上記各機能層の他に、更に設けられていてもよい。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。 (5) Blocking layer (hole blocking layer, electron blocking layer)
The blocking layer may be further provided as the organiclight emitting layer 103 in addition to the above functional layers. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
阻止層は、有機発光層103として、上記各機能層の他に、更に設けられていてもよい。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。 (5) Blocking layer (hole blocking layer, electron blocking layer)
The blocking layer may be further provided as the organic
正孔阻止層とは、広い意味では、電子輸送層103dの機能を有する。正孔阻止層は、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層103dの構成を必要に応じて、本発明に係る正孔阻止層として用いることができる。正孔阻止層は、発光層103cに隣接して設けられていることが好ましい。
The hole blocking layer has a function of the electron transport layer 103d in a broad sense. The hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved. Moreover, the structure of the electron carrying layer 103d mentioned later can be used as a hole-blocking layer concerning this invention as needed. The hole blocking layer is preferably provided adjacent to the light emitting layer 103c.
一方、電子阻止層とは、広い意味では、正孔輸送層103bの機能を有する。電子阻止層は、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、正孔輸送層103bの構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層の層厚としては、好ましくは3~100nmの範囲であり、さらに好ましくは5~30nmの範囲である。
On the other hand, the electron blocking layer has the function of the hole transport layer 103b in a broad sense. The electron blocking layer is made of a material that has a function of transporting holes but has a very small ability to transport electrons, and improves the probability of recombination of electrons and holes by blocking electrons while transporting holes. be able to. Further, the structure of the hole transport layer 103b can be used as an electron blocking layer as necessary. The layer thickness of the hole blocking layer according to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
以上挙げた正孔注入層103a、正孔輸送層103b、発光層103c、電子輸送層103d、電子注入層103eの各層の製膜は、スピンコート法、キャスト法、インクジェット法、蒸着法、印刷法等があるが、均質な膜が得られやすく、かつピンホールが生成しにくい等の点から、真空蒸着法又はスピンコート法が特に好ましい。さらに、層ごとに異なる成膜法を適用してもよい。これらの各層の成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃の範囲、真空度1×10-6~1×10-2Paの範囲、蒸着速度0.01~50nm/秒の範囲、基板温度-50~300℃の範囲、層厚0.1~5μmの範囲で、各条件を適宜選択することが望ましい。
Film formation of each of the hole injection layer 103a, the hole transport layer 103b, the light emitting layer 103c, the electron transport layer 103d, and the electron injection layer 103e described above is performed by a spin coating method, a casting method, an ink jet method, an evaporation method, and a printing method. However, the vacuum deposition method or the spin coating method is particularly preferable from the viewpoints that a homogeneous film is easily obtained and pinholes are hardly generated. Further, different film formation methods may be applied for each layer. When a vapor deposition method is employed for forming each of these layers, the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is in the range of 50 to 450 ° C. and the degree of vacuum is 1 × 10 −6 to 1 × 10. It is desirable to select each condition as appropriate within a range of −2 Pa, a deposition rate of 0.01 to 50 nm / second, a substrate temperature of −50 to 300 ° C., and a layer thickness of 0.1 to 5 μm.
〔第二透明電極(対向電極)〕
第二透明電極102は、有機発光層103に電子を供給するカソードとして機能する電極膜であり、金属、合金、有機又は無機の導電性化合物、及びこれらの混合物が用いられる。 [Second transparent electrode (counter electrode)]
The secondtransparent electrode 102 is an electrode film that functions as a cathode for supplying electrons to the organic light emitting layer 103, and a metal, an alloy, an organic or inorganic conductive compound, and a mixture thereof are used.
第二透明電極102は、有機発光層103に電子を供給するカソードとして機能する電極膜であり、金属、合金、有機又は無機の導電性化合物、及びこれらの混合物が用いられる。 [Second transparent electrode (counter electrode)]
The second
第二透明電極102は、第一透明電極と同様に、通常有機EL素子に使用可能な全ての電極を使用することができる。具体的には、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/同混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO2、SnO2等の酸化物半導体等が挙げられる。
The 2nd transparent electrode 102 can use all the electrodes which can be normally used for an organic EL element like the 1st transparent electrode. Specifically, aluminum, silver, magnesium, lithium, magnesium / same mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO 2 , An oxide semiconductor such as SnO 2 can be given.
中でも、第二透明電極102は、第一透明電極101と同様に、銀又は銀を主成分とした合金を用いて構成された層であることが好ましい。
Among these, like the first transparent electrode 101, the second transparent electrode 102 is preferably a layer composed of silver or an alloy containing silver as a main component.
このような第二透明電極102の成膜方法としては、塗布法、インクジェット法、コーティング法、ディップ法等のウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法など)、スパッタ法、CVD法等のドライプロセスを用いる方法等が挙げられる。中でも、蒸着法が好ましく適用される。
As a method for forming the second transparent electrode 102, a method using a wet process such as a coating method, an inkjet method, a coating method, a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, or the like. And a method using a dry process such as a method. Among these, the vapor deposition method is preferably applied.
第二透明電極102を構成する銀(Ag)を主成分とする合金としては、例えば、銀マグネシウム(AgMg)、銀銅(AgCu)、銀パラジウム(AgPd)、銀パラジウム銅(AgPdCu)、銀インジウム(AgIn)等が挙げられる。
Examples of the alloy mainly composed of silver (Ag) constituting the second transparent electrode 102 include silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), and silver indium. (AgIn) etc. are mentioned.
さらに、銀に対してアルミニウム(Al)や金(Au)を2原子数%程度添加して共蒸着することも好ましい。
Further, it is also preferable to co-evaporate by adding about 2 atomic% of aluminum (Al) or gold (Au) to silver.
以上のような第二透明電極102は、銀又は銀を主成分とした合金の層が、必要に応じて複数の層に分けて積層された構成であってもよい。
The second transparent electrode 102 as described above may have a configuration in which silver or an alloy layer mainly composed of silver is divided into a plurality of layers as necessary.
さらに、この第二透明電極102は、層厚が5~30nmの範囲内であることが好ましい。層厚が30nmより薄い場合には、層の吸収成分又は反射成分が少なく、第二透明電極102の透過率が大きくなる。また、層厚が5nmより厚い場合には、層の導電性を十分に確保することができる。好ましくは8~20nmの範囲であり、さらに好ましくは10~15nmの範囲である。
Furthermore, the second transparent electrode 102 preferably has a layer thickness in the range of 5 to 30 nm. When the layer thickness is less than 30 nm, the absorption component or reflection component of the layer is small, and the transmittance of the second transparent electrode 102 is increased. Moreover, when the layer thickness is thicker than 5 nm, the conductivity of the layer can be sufficiently secured. The range is preferably 8 to 20 nm, and more preferably 10 to 15 nm.
〔取り出し電極(不図示)〕
取り出し電極は、第一透明電極101及び第二透明電極102と外部電源とを電気的に接続するものであって、その材料としては特に限定されるものではなく公知の素材を好適に使用できるが、例えば、3層構造からなるMAM電極(Mo/Al・Nd合金/Mo)等の金属膜を用いることができる。 [Extraction electrode (not shown)]
The extraction electrode is for electrically connecting the firsttransparent electrode 101 and the second transparent electrode 102 and an external power source, and the material thereof is not particularly limited, and a known material can be suitably used. For example, a metal film such as a MAM electrode (Mo / Al · Nd alloy / Mo) having a three-layer structure can be used.
取り出し電極は、第一透明電極101及び第二透明電極102と外部電源とを電気的に接続するものであって、その材料としては特に限定されるものではなく公知の素材を好適に使用できるが、例えば、3層構造からなるMAM電極(Mo/Al・Nd合金/Mo)等の金属膜を用いることができる。 [Extraction electrode (not shown)]
The extraction electrode is for electrically connecting the first
〔補助電極(不図示)〕
補助電極は、第一透明電極101及び第二透明電極102の抵抗を下げる目的で設けるものであって、第一透明電極101の電極層101b及び第二透明電極102の電極層に接して設けられる。補助電極を形成する材料は、金、白金、銀、銅、アルミニウム等の抵抗が低い金属が好ましい。これらの金属は光透過性が低いため、光取り出し面からの発光光hの取り出しの影響のない範囲でパターン形成される。 [Auxiliary electrode (not shown)]
The auxiliary electrode is provided for the purpose of reducing the resistance of the firsttransparent electrode 101 and the second transparent electrode 102, and is provided in contact with the electrode layer 101 b of the first transparent electrode 101 and the electrode layer of the second transparent electrode 102. . The material for forming the auxiliary electrode is preferably a metal having low resistance such as gold, platinum, silver, copper, or aluminum. Since these metals have low light transmittance, a pattern is formed in a range not affected by extraction of the emitted light h from the light extraction surface.
補助電極は、第一透明電極101及び第二透明電極102の抵抗を下げる目的で設けるものであって、第一透明電極101の電極層101b及び第二透明電極102の電極層に接して設けられる。補助電極を形成する材料は、金、白金、銀、銅、アルミニウム等の抵抗が低い金属が好ましい。これらの金属は光透過性が低いため、光取り出し面からの発光光hの取り出しの影響のない範囲でパターン形成される。 [Auxiliary electrode (not shown)]
The auxiliary electrode is provided for the purpose of reducing the resistance of the first
このような補助電極の形成方法としては、蒸着法、スパッタリング法、印刷法、インクジェット法、エアロゾルジェット法等が挙げられる。補助電極の線幅は、光を取り出す開口率の観点から50μm以下であることが好ましく、補助電極の厚さは、導電性の観点から1μm以上であることが好ましい。
Examples of methods for forming such auxiliary electrodes include vapor deposition, sputtering, printing, ink jet, and aerosol jet. The line width of the auxiliary electrode is preferably 50 μm or less from the viewpoint of the aperture ratio for extracting light, and the thickness of the auxiliary electrode is preferably 1 μm or more from the viewpoint of conductivity.
〔電極保護層〕
本発明では前記第二透明電極102と前記透明封止基材105の間には、有機又は無機の化合物を含有する電極保護層104を形成することが、当該第二透明電極の表面を平滑にし、かつ機械的な保護を十分にするため、好ましい。また、有機又は無機の化合物を含有することによって、透明封止基材105をラミネートする際に、固体封止されるために接着強度が高い。 (Electrode protective layer)
In the present invention, an electrodeprotective layer 104 containing an organic or inorganic compound is formed between the second transparent electrode 102 and the transparent sealing substrate 105 to smooth the surface of the second transparent electrode. And is sufficient for sufficient mechanical protection. In addition, by containing an organic or inorganic compound, when the transparent sealing substrate 105 is laminated, since it is solid-sealed, the adhesive strength is high.
本発明では前記第二透明電極102と前記透明封止基材105の間には、有機又は無機の化合物を含有する電極保護層104を形成することが、当該第二透明電極の表面を平滑にし、かつ機械的な保護を十分にするため、好ましい。また、有機又は無機の化合物を含有することによって、透明封止基材105をラミネートする際に、固体封止されるために接着強度が高い。 (Electrode protective layer)
In the present invention, an electrode
以上のような電極保護層104は、可撓性を有することが好ましく、薄型のポリマーフィルム、又は薄型の金属フィルムを用いることができるが、前記下地層、又は有機発光層で用いた有機化合物を適宜選択して、前記塗布法又は蒸着法によって形成された層であることも好ましい。
The electrode protective layer 104 as described above preferably has flexibility, and a thin polymer film or a thin metal film can be used. The organic compound used in the base layer or the organic light emitting layer can be used. It is also preferable that the layer is appropriately selected and formed by the coating method or the vapor deposition method.
本発明に係る電極保護層は、金属酸化物を含有することが固体封止の観点から好ましく、当該金属酸化物の具体例としては、酸化モリブデンが挙げられる。
The electrode protective layer according to the present invention preferably contains a metal oxide from the viewpoint of solid sealing, and specific examples of the metal oxide include molybdenum oxide.
本発明に係る電極保護層の好ましい層厚としては目的に応じて適切に設定され得るが、例えば、10nm~10μm程度であることが好ましく、15nm~1μm程度であることがより好ましく、20~500nmの範囲であることがさらに好ましい。
The preferred thickness of the electrode protective layer according to the present invention can be appropriately set according to the purpose, but is preferably about 10 nm to 10 μm, more preferably about 15 nm to 1 μm, and more preferably 20 to 500 nm. More preferably, it is the range.
〔透明封止基材〕
本発明に係る透明封止基材105は、その機能としては、有機EL素子100をラミネートして封止するものであり、図示例のように、例えば接着剤を含有する接着層(不図示)によって、電極保護層104側及び基板110側に固定されるものである。このような透明封止基材105は、有機EL素子100における第一透明電極101及び第二透明電極102の端子部分を露出させ、少なくとも有機発光層103を完全に覆う状態で設けられる。 (Transparent sealing substrate)
Thetransparent sealing substrate 105 according to the present invention has a function of laminating and sealing the organic EL element 100, and as shown in the illustrated example, for example, an adhesive layer containing an adhesive (not shown) By this, it is fixed to the electrode protective layer 104 side and the substrate 110 side. Such a transparent sealing substrate 105 is provided in a state in which the terminal portions of the first transparent electrode 101 and the second transparent electrode 102 in the organic EL element 100 are exposed and at least the organic light emitting layer 103 is completely covered.
本発明に係る透明封止基材105は、その機能としては、有機EL素子100をラミネートして封止するものであり、図示例のように、例えば接着剤を含有する接着層(不図示)によって、電極保護層104側及び基板110側に固定されるものである。このような透明封止基材105は、有機EL素子100における第一透明電極101及び第二透明電極102の端子部分を露出させ、少なくとも有機発光層103を完全に覆う状態で設けられる。 (Transparent sealing substrate)
The
本発明に係る透明封止基材105は、可撓性を有することが好ましく、かつガスバリアー性を有することが好ましい。
The transparent sealing substrate 105 according to the present invention preferably has flexibility and preferably has gas barrier properties.
透明封止基材105は、支持体としての透明樹脂基材と、1層以上のガスバリアー層とで、構成されていることが好ましい。
The transparent sealing substrate 105 is preferably composed of a transparent resin substrate as a support and one or more gas barrier layers.
透明封止基材105は、従来公知の基材であり、例えば、アクリル酸エステル、メタクリル酸エステル、PMMA等のアクリル樹脂、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ナイロン(Ny)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホネート、ポリイミド、ポリエーテルイミド、ポリオレフィン、エポキシ樹脂等の各樹脂フィルムが挙げられ、更に、シクロオレフィン系やセルロースエステル系のものも用いることができる。また、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(製品名Sila-DEC、チッソ株式会社製)、更には前記樹脂材料を2層以上積層してなる樹脂フィルム等を挙げることができる。
The transparent sealing substrate 105 is a conventionally known substrate, for example, acrylic resins such as acrylic ester, methacrylic ester, PMMA, polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate. (PC), polyarylate, polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), polystyrene (PS), nylon (Ny), aromatic polyamide, polyether ether ketone, polysulfone, polyether sulfonate, polyimide , Polyetherimide, polyolefin, epoxy resin, and the like, and cycloolefin-based and cellulose ester-based films can also be used. In addition, a heat-resistant transparent film (product name: Sila-DEC, manufactured by Chisso Corporation) having silsesquioxane having an organic-inorganic hybrid structure as a basic skeleton, and a resin film obtained by laminating two or more layers of the resin material, etc. Can be mentioned.
基板110と同様に、コストや入手容易性の観点から、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、アクリル樹脂等が好ましく用いられる。
As with the substrate 110, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), acrylic resin, and the like are preferably used from the viewpoint of cost and availability.
中でも透明性、耐熱性、取り扱いやすさ、強度及びコストの点から、二軸延伸ポリエチレンテレフタレート(PET)フィルム、二軸延伸ポリエチレンナフタレート(PEN)フィルムが好ましい。
Of these, a biaxially stretched polyethylene terephthalate (PET) film and a biaxially stretched polyethylene naphthalate (PEN) film are preferred in terms of transparency, heat resistance, ease of handling, strength, and cost.
透明樹脂基材の厚さは10~500μmの範囲が好ましく、より好ましくは20~250μmの範囲であり、さらに好ましくは30~150μmの範囲である。樹脂基材の厚さが10~500μmの範囲にあることで、安定したガスバリアー性を得られ、また、ロール・ツー・ロール方式の搬送に適したものになる。
The thickness of the transparent resin substrate is preferably in the range of 10 to 500 μm, more preferably in the range of 20 to 250 μm, and still more preferably in the range of 30 to 150 μm. When the thickness of the resin base material is in the range of 10 to 500 μm, a stable gas barrier property can be obtained, and the resin base material is suitable for conveyance in a roll-to-roll system.
ガスバリアー層は、特に限定されるものではないが、好ましくは光取り出しのために、平均屈折率を1.50~2.50の範囲に制御する観点から、樹脂基板上に少なくとも1層の無機前駆体化合物を含有する塗布液が塗布され、次いで真空紫外線照射によって改質処理を施したガスバリアー層であることが好ましい。中でも、前記平滑層に用いたポリシラザンを含有する塗布液を塗布し、真空紫外線照射によって酸化ケイ素に改質処理した層であることが好ましい。当該酸化ケイ素に改質処理した層の形成方法は、前記平滑層の項で説明した方法をとり得る。
The gas barrier layer is not particularly limited, but preferably has at least one inorganic layer on the resin substrate from the viewpoint of controlling the average refractive index in the range of 1.50 to 2.50 for light extraction. The gas barrier layer is preferably a gas barrier layer coated with a coating solution containing a precursor compound and then subjected to a modification treatment by irradiation with vacuum ultraviolet rays. Especially, it is preferable that it is the layer which apply | coated the coating liquid containing the polysilazane used for the said smooth layer, and modify-processed to silicon oxide by vacuum ultraviolet irradiation. As a method for forming the layer modified with silicon oxide, the method described in the section of the smooth layer can be used.
〈封止(ラミネート)方法〉
透明封止基材105による封止(ラミネート)方法は、特に限定されるものではないが、例えば上記有機EL素子100を酸素及び水分濃度が一定の環境下(例えば、酸素濃度10ppm以下、水分濃度10ppm以下のグローブボックス内等)に置き、減圧下(1×10-3MPa以下)で吸引しながら加重をかけてプレスして、透明封止基材105に形成した接着層によって当該有機EL素子100をラミネートし、その後、熱風循環式オーブン、赤外線ヒーター、ヒートガン、高周波誘導加熱装置、ヒートツールの圧着による加熱等によって、当該接着層を熱硬化することによって行われる。 <Sealing (laminate) method>
The method of sealing (laminating) with thetransparent sealing substrate 105 is not particularly limited. For example, the organic EL element 100 is subjected to an environment in which oxygen and moisture concentration are constant (for example, oxygen concentration of 10 ppm or less, moisture concentration). The organic EL element is formed by an adhesive layer formed on the transparent sealing substrate 105 by placing it under a reduced pressure (1 × 10 −3 MPa or less) and applying pressure while applying suction. 100 is laminated, and then the adhesive layer is thermally cured by heating with a hot air circulation oven, an infrared heater, a heat gun, a high frequency induction heating device, a heat tool, or the like.
透明封止基材105による封止(ラミネート)方法は、特に限定されるものではないが、例えば上記有機EL素子100を酸素及び水分濃度が一定の環境下(例えば、酸素濃度10ppm以下、水分濃度10ppm以下のグローブボックス内等)に置き、減圧下(1×10-3MPa以下)で吸引しながら加重をかけてプレスして、透明封止基材105に形成した接着層によって当該有機EL素子100をラミネートし、その後、熱風循環式オーブン、赤外線ヒーター、ヒートガン、高周波誘導加熱装置、ヒートツールの圧着による加熱等によって、当該接着層を熱硬化することによって行われる。 <Sealing (laminate) method>
The method of sealing (laminating) with the
接着剤としては、特に制限はないが、具体的には、エポキシ樹脂、シアネートエステル樹脂、フェノール樹脂、ビスマレイミド-トリアジン樹脂、ポリイミド樹脂、アクリル樹脂、ビニルベンジル樹脂等の種々の熱硬化性樹脂が好ましい。中でも、低温硬化性や接着性等の観点から、エポキシ樹脂が好ましい。
There are no particular restrictions on the adhesive, but specific examples include various thermosetting resins such as epoxy resins, cyanate ester resins, phenol resins, bismaleimide-triazine resins, polyimide resins, acrylic resins, and vinylbenzyl resins. preferable. Among these, an epoxy resin is preferable from the viewpoint of low-temperature curability and adhesiveness.
エポキシ樹脂としては、平均して1分子当り2個以上のエポキシ基を有するものであればよく、具体的には、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、リン含有エポキシ樹脂、ビスフェノールS型エポキシ樹脂、芳香族グリシジルアミン型エポキシ樹脂(具体的には、テトラグリシジルジアミノジフェニルメタン、トリグリシジル-p-アミノフェノール、ジグリシジルトルイジン、ジグリシジルアニリン等)、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ジシクロペンタジエン構造を有するエポキシ樹脂、ビスフェノールのジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、フェノール類のグリシジルエーテル化物、及びアルコール類のジグリシジルエーテル化物、並びにこれらのエポキシ樹脂のアルキル置換体、ハロゲン化物及び水素添加物等が挙げられる。これらは1種又は2種以上を組み合わせて使用してもよい。
As an epoxy resin, those having an average of two or more epoxy groups per molecule may be used. Specifically, bisphenol A type epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, and naphthol type epoxy are used. Resin, naphthalene type epoxy resin, bisphenol F type epoxy resin, phosphorus-containing epoxy resin, bisphenol S type epoxy resin, aromatic glycidylamine type epoxy resin (specifically, tetraglycidyldiaminodiphenylmethane, triglycidyl-p-aminophenol, Diglycidyl toluidine, diglycidyl aniline, etc.), alicyclic epoxy resin, aliphatic chain epoxy resin, phenol novolac epoxy resin, cresol novolac epoxy resin, bisphenol A novolac epoxy resin , Epoxy resin having a butadiene structure, phenol aralkyl type epoxy resin, epoxy resin having a dicyclopentadiene structure, diglycidyl etherified product of bisphenol, diglycidyl etherified product of naphthalenediol, glycidyl etherified product of phenol, and diester of alcohol Examples thereof include glycidyl etherified products, and alkyl-substituted products, halides, and hydrogenated products of these epoxy resins. These may be used alone or in combination of two or more.
これらの中でも、樹脂組成物の高い耐熱性及び低い透湿性を保つ等の観点から、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、芳香族グリシジルアミン型エポキシ樹脂、ジシクロペンタジエン構造を有するエポキシ樹脂等が好ましい。
Among these, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, biphenyl aralkyl type epoxy resin, phenol aralkyl type epoxy from the viewpoint of maintaining high heat resistance and low moisture permeability of the resin composition. A resin, an aromatic glycidylamine type epoxy resin, an epoxy resin having a dicyclopentadiene structure, and the like are preferable.
また、エポキシ樹脂は、液状であっても、固形状であっても、液状と固形状の両方を用いてもよい。ここで、「液状」及び「固形状」とは、25℃でのエポキシ樹脂の状態である。塗工性、加工性、接着性等の観点から、使用するエポキシ樹脂全体の10質量%以上が液状であるのが好ましい。
The epoxy resin may be liquid, solid, or both liquid and solid. Here, “liquid” and “solid” are states of the epoxy resin at 25 ° C. From the viewpoints of coatability, processability, adhesiveness, and the like, it is preferable that 10% by mass or more of the entire epoxy resin to be used is liquid.
また、エポキシ樹脂は反応性の観点から、エポキシ当量が100~1000の範囲のものが好ましく、より好ましくは120~1000の範囲のものである。ここでエポキシ当量とは1グラム当量のエポキシ基を含む樹脂のグラム数(g/eq)であり、JIS K-7236に規定された方法に従って測定されるものである。
The epoxy resin preferably has an epoxy equivalent in the range of 100 to 1000, more preferably in the range of 120 to 1000, from the viewpoint of reactivity. Here, the epoxy equivalent is the number of grams (g / eq) of a resin containing 1 gram equivalent of an epoxy group, and is measured according to the method defined in JIS K-7236.
エポキシ樹脂の硬化剤としては、エポキシ樹脂を硬化する機能を有するものであれば特に限定されないが、樹脂組成物の硬化処理時における素子(特に有機EL素子)の熱劣化を抑制する観点から、樹脂組成物の硬化処理は好ましくは140℃以下、より好ましくは120℃以下で行うのが好ましく、硬化剤はかかる温度領域にてエポキシ樹脂の硬化作用を有するものが好ましい。
The curing agent for the epoxy resin is not particularly limited as long as it has a function of curing the epoxy resin, but from the viewpoint of suppressing thermal deterioration of the element (particularly the organic EL element) during the curing treatment of the resin composition. The curing treatment of the composition is preferably performed at 140 ° C. or lower, more preferably 120 ° C. or lower, and the curing agent preferably has an epoxy resin curing action in such a temperature range.
具体的には、一級アミン、二級アミン、三級アミン系硬化剤、ポリアミノアミド系硬化剤、ジシアンジアミド、有機酸ジヒドラジド等が挙げられるが、中でも、速硬化性の観点から、アミンアダクト系化合物(アミキュアPN-23、アミキュアMY-24、アミキュアPN-D、アミキュアMY-D、アミキュアPN-H、アミキュアMY-H、アミキュアPN-31、アミキュアPN-40、アミキュアPN-40J等(いずれも味の素ファインテクノ社製))、有機酸ジヒドラジド(アミキュアVDH-J、アミキュアUDH、アミキュアLDH等(いずれも味の素ファインテクノ社製))等が好ましい。これらは1種又は2種以上組み合わせて使用してもよい。
Specific examples include primary amines, secondary amines, tertiary amine-based curing agents, polyaminoamide-based curing agents, dicyandiamide, and organic acid dihydrazides. Among these, amine adduct-based compounds ( Amicure PN-23, Amicure MY-24, Amicure PN-D, Amicure MY-D, Amicure PN-H, Amicure MY-H, Amicure PN-31, Amicure PN-40, Amicure PN-40J, etc. (all Ajinomoto Fine Techno)), organic acid dihydrazide (Amicure VDH-J, Amicure UDH, Amicure LDH, etc. (all manufactured by Ajinomoto Fine Techno Co.)) and the like are preferable. These may be used alone or in combination of two or more.
エポキシ樹脂は極めて良好な低温硬化性を有しており、硬化温度の上限は140℃以下が好ましく、120℃以下がより好ましく、110℃以下が更に好ましい。一方、硬化物の接着性を確保するという観点から、硬化温度の下限は50℃以上が好ましく、55℃以上がより好ましい。また、硬化時間の上限は120分以下が好ましく、90分以下がより好ましく、60分以下が更に好ましい。一方、硬化物の硬化を確実に行うという観点から、硬化時間の下限は20分以上が好ましく、30分以上がより好ましい。これによって、有機EL素子の熱劣化を極めて小さくすることができる。
The epoxy resin has extremely good low-temperature curability, and the upper limit of the curing temperature is preferably 140 ° C. or less, more preferably 120 ° C. or less, and even more preferably 110 ° C. or less. On the other hand, from the viewpoint of securing the adhesiveness of the cured product, the lower limit of the curing temperature is preferably 50 ° C. or higher, and more preferably 55 ° C. or higher. Moreover, 120 minutes or less is preferable, as for the upper limit of hardening time, 90 minutes or less are more preferable, and 60 minutes or less are still more preferable. On the other hand, from the viewpoint of surely curing the cured product, the lower limit of the curing time is preferably 20 minutes or more, and more preferably 30 minutes or more. Thereby, the thermal deterioration of the organic EL element can be extremely reduced.
≪有機EL素子の用途≫
本発明の有機EL素子は、面発光体であり、各種の発光光源として用いることができる。例えば、家庭用照明や車内照明等の照明装置、時計や液晶用のバックライト、看板広告用照明、信号機の光源、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等に使用することができる。 ≪Use of organic EL elements≫
The organic EL element of the present invention is a surface light emitter and can be used as various light sources. For example, lighting devices such as home lighting and interior lighting, backlights for watches and liquid crystals, lighting for billboard advertisements, light sources for traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, It can be used as a light source for an optical sensor.
本発明の有機EL素子は、面発光体であり、各種の発光光源として用いることができる。例えば、家庭用照明や車内照明等の照明装置、時計や液晶用のバックライト、看板広告用照明、信号機の光源、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等に使用することができる。 ≪Use of organic EL elements≫
The organic EL element of the present invention is a surface light emitter and can be used as various light sources. For example, lighting devices such as home lighting and interior lighting, backlights for watches and liquid crystals, lighting for billboard advertisements, light sources for traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, It can be used as a light source for an optical sensor.
特に、本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。特に本発明の有機EL素子は、トップエミッション型であるため、表示装置に用いるとコントラストが高く、優れた表示性能を実現することができる。
In particular, the organic EL element of the present invention may be used as a kind of lamp such as an illumination or exposure light source, a projection device that projects an image, or a type that directly recognizes a still image or a moving image. It may be used as a display device (display). In particular, since the organic EL element of the present invention is a top emission type, when used in a display device, the contrast is high and excellent display performance can be realized.
動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。また、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、カラー又はフルカラー表示装置を作製することが可能である。
The drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method. In addition, a color or full-color display device can be manufactured by using two or more organic EL elements of the present invention having different emission colors.
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
実施例1
〔有機EL素子101の作製〕
(基板の作製)
厚さ125μmのポリエステルフィルム(帝人デュポンフィルム株式会社製、極低熱収PET)を、アルミニウム(Al)を入れたタングステン製の抵抗加熱ボートが取り付けられた真空槽へ入れ、真空度4×10-4Paまで減圧し、成膜速度0.3~0.5nm/秒で、層厚25μmのアルミニウム(Al)層をPETフィルム上に蒸着製膜し、光反射性の基板を作製した。 Example 1
[Production of Organic EL Element 101]
(Production of substrate)
A polyester film having a thickness of 125 μm (manufactured by Teijin DuPont Films Ltd., extremely low heat yield PET) is put into a vacuum tank equipped with a resistance heating boat made of tungsten containing aluminum (Al), and the degree of vacuum is 4 × 10 −. The pressure was reduced to 4 Pa, and an aluminum (Al) layer having a layer thickness of 25 μm was deposited on a PET film at a deposition rate of 0.3 to 0.5 nm / second to produce a light reflective substrate.
〔有機EL素子101の作製〕
(基板の作製)
厚さ125μmのポリエステルフィルム(帝人デュポンフィルム株式会社製、極低熱収PET)を、アルミニウム(Al)を入れたタングステン製の抵抗加熱ボートが取り付けられた真空槽へ入れ、真空度4×10-4Paまで減圧し、成膜速度0.3~0.5nm/秒で、層厚25μmのアルミニウム(Al)層をPETフィルム上に蒸着製膜し、光反射性の基板を作製した。 Example 1
[Production of Organic EL Element 101]
(Production of substrate)
A polyester film having a thickness of 125 μm (manufactured by Teijin DuPont Films Ltd., extremely low heat yield PET) is put into a vacuum tank equipped with a resistance heating boat made of tungsten containing aluminum (Al), and the degree of vacuum is 4 × 10 −. The pressure was reduced to 4 Pa, and an aluminum (Al) layer having a layer thickness of 25 μm was deposited on a PET film at a deposition rate of 0.3 to 0.5 nm / second to produce a light reflective substrate.
当該基板は、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/m2・24h・atm以下、水蒸気透過度が、1×10-5g/m2・24h以下のガスバリアー性基板であることを確認した。
The substrate has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 ml / m 2 · 24 h · atm or less, and a water vapor permeability of 1 × 10 −5 g / m. it was confirmed that the following gas-barrier substrate 2 · 24h.
(白色顔料を含有する機能層の形成)
白色顔料を含有する機能層として、白色顔料を含有する光拡散反射層を下記塗布液を用いて形成した。 (Formation of functional layer containing white pigment)
As a functional layer containing a white pigment, a light diffusing reflection layer containing a white pigment was formed using the following coating solution.
白色顔料を含有する機能層として、白色顔料を含有する光拡散反射層を下記塗布液を用いて形成した。 (Formation of functional layer containing white pigment)
As a functional layer containing a white pigment, a light diffusing reflection layer containing a white pigment was formed using the following coating solution.
〈塗布液Aの調製〉
硫酸バリウム(商品名B-54:堺化学工業社)をショア硬度5~7のウレタン系ポリエステルポリオール樹脂(商品名バーノックD6-439:DIC株式会社)に顔料:樹脂=6:1(質量比)で分散し塗布液Aを調製した。 <Preparation of coating liquid A>
Barium sulfate (trade name B-54: Sakai Chemical Industry Co., Ltd.) is applied to a urethane-based polyester polyol resin (trade name Barnock D6-439: DIC Corporation) having a shore hardness of 5-7. Pigment: resin = 6: 1 (mass ratio) To prepare a coating solution A.
硫酸バリウム(商品名B-54:堺化学工業社)をショア硬度5~7のウレタン系ポリエステルポリオール樹脂(商品名バーノックD6-439:DIC株式会社)に顔料:樹脂=6:1(質量比)で分散し塗布液Aを調製した。 <Preparation of coating liquid A>
Barium sulfate (trade name B-54: Sakai Chemical Industry Co., Ltd.) is applied to a urethane-based polyester polyol resin (trade name Barnock D6-439: DIC Corporation) having a shore hardness of 5-7. Pigment: resin = 6: 1 (mass ratio) To prepare a coating solution A.
上記塗布液Aをワイヤーバーにて、前記基板のアルミニウム(Al)層上に、乾燥塗膜が50μmになるように塗布液Aを塗工し、80℃で乾燥して、白色顔料を含有する光拡散反射層を形成した。
The coating solution A is coated on the aluminum (Al) layer of the substrate with a wire bar so that the dry coating film becomes 50 μm, and dried at 80 ° C. to contain a white pigment. A light diffuse reflection layer was formed.
形成した白色顔料を含有する光拡散反射層の相対拡散反射率は、光波長380~550nmの領域で平均95%であった。測定は日立分光光度計 U-4100を用いて測定した。
The relative diffuse reflectance of the formed light diffusive reflective layer containing the white pigment was 95% on average in the light wavelength region of 380 to 550 nm. The measurement was performed using a Hitachi spectrophotometer U-4100.
(第一透明電極の形成)
前記形成した光拡散反射層上に、厚さ150nmのITO(酸化インジウム・スズ(Indiumu Tin Oxide:ITO))を市販のスパッタリング装置を用いてスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、第一透明電極を形成した。なお、パターンは発光面積が50mm平方になるようなパターンとした。 (Formation of first transparent electrode)
A 150 nm thick ITO (Indium Tin Oxide: ITO) film is formed on the formed light diffusive reflection layer by a sputtering method using a commercially available sputtering apparatus, and patterned by a photolithography method. A first transparent electrode was formed. The pattern was such that the light emission area was 50 mm square.
前記形成した光拡散反射層上に、厚さ150nmのITO(酸化インジウム・スズ(Indiumu Tin Oxide:ITO))を市販のスパッタリング装置を用いてスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、第一透明電極を形成した。なお、パターンは発光面積が50mm平方になるようなパターンとした。 (Formation of first transparent electrode)
A 150 nm thick ITO (Indium Tin Oxide: ITO) film is formed on the formed light diffusive reflection layer by a sputtering method using a commercially available sputtering apparatus, and patterned by a photolithography method. A first transparent electrode was formed. The pattern was such that the light emission area was 50 mm square.
(有機発光層の形成)
(正孔輸送層の形成)
第一透明電極の上に、以下に示す正孔輸送層形成用塗布液を、25℃、相対湿度50%RHの環境下で、スピンコーターで塗布した後、下記の条件で乾燥及び加熱処理を行い、正孔輸送層を形成した。正孔輸送層形成用塗布液は乾燥後の厚さが50nmになるように塗布した。 (Formation of organic light emitting layer)
(Formation of hole transport layer)
On the first transparent electrode, the following coating solution for forming a hole transport layer is applied with a spin coater in an environment of 25 ° C. and a relative humidity of 50% RH, and then dried and heated under the following conditions. And a hole transport layer was formed. The coating solution for forming the hole transport layer was applied so that the thickness after drying was 50 nm.
(正孔輸送層の形成)
第一透明電極の上に、以下に示す正孔輸送層形成用塗布液を、25℃、相対湿度50%RHの環境下で、スピンコーターで塗布した後、下記の条件で乾燥及び加熱処理を行い、正孔輸送層を形成した。正孔輸送層形成用塗布液は乾燥後の厚さが50nmになるように塗布した。 (Formation of organic light emitting layer)
(Formation of hole transport layer)
On the first transparent electrode, the following coating solution for forming a hole transport layer is applied with a spin coater in an environment of 25 ° C. and a relative humidity of 50% RH, and then dried and heated under the following conditions. And a hole transport layer was formed. The coating solution for forming the hole transport layer was applied so that the thickness after drying was 50 nm.
〈正孔輸送層形成用塗布液の準備〉
ポリエチレンジオキシチオフェン・ポリスチレンスルホネート(PEDOT/PSS、Bayer社製 Bytron P AI 4083)を純水で65%、メタノール5%で希釈した溶液を正孔輸送層形成用塗布液として準備した。 <Preparation of hole transport layer forming coating solution>
A solution prepared by diluting polyethylene dioxythiophene / polystyrene sulfonate (PEDOT / PSS, Baytron P AI 4083 manufactured by Bayer) with pure water at 65% and methanol at 5% was prepared as a coating solution for forming a hole transport layer.
ポリエチレンジオキシチオフェン・ポリスチレンスルホネート(PEDOT/PSS、Bayer社製 Bytron P AI 4083)を純水で65%、メタノール5%で希釈した溶液を正孔輸送層形成用塗布液として準備した。 <Preparation of hole transport layer forming coating solution>
A solution prepared by diluting polyethylene dioxythiophene / polystyrene sulfonate (PEDOT / PSS, Baytron P AI 4083 manufactured by Bayer) with pure water at 65% and methanol at 5% was prepared as a coating solution for forming a hole transport layer.
〈乾燥及び加熱処理条件〉
正孔輸送層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度100℃で溶媒を除去した後、引き続き、加熱処理装置を用い温度150℃で裏面伝熱方式の熱処理を行い、正孔輸送層を形成した。 <Drying and heat treatment conditions>
After applying the hole transport layer forming coating solution, the solvent is removed at a height of 100 mm toward the film formation surface, a discharge air velocity of 1 m / s, a wide air velocity distribution of 5%, and a temperature of 100 ° C., followed by heat treatment. The back surface heat transfer type heat treatment was performed at a temperature of 150 ° C. using an apparatus to form a hole transport layer.
正孔輸送層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度100℃で溶媒を除去した後、引き続き、加熱処理装置を用い温度150℃で裏面伝熱方式の熱処理を行い、正孔輸送層を形成した。 <Drying and heat treatment conditions>
After applying the hole transport layer forming coating solution, the solvent is removed at a height of 100 mm toward the film formation surface, a discharge air velocity of 1 m / s, a wide air velocity distribution of 5%, and a temperature of 100 ° C., followed by heat treatment. The back surface heat transfer type heat treatment was performed at a temperature of 150 ° C. using an apparatus to form a hole transport layer.
(発光層の形成)
上記で形成した正孔輸送層上に、以下に示す白色発光層形成用塗布液を、下記の条件によりスピンコーターで塗布した後、下記の条件で乾燥及び加熱処理を行い、発光層を形成した。白色発光層形成用塗布液は乾燥後の厚さが40nmになるように塗布した。 (Formation of light emitting layer)
On the hole transport layer formed above, the following coating solution for forming a white light emitting layer was applied with a spin coater under the following conditions, followed by drying and heat treatment under the following conditions to form a light emitting layer. . The white light emitting layer forming coating solution was applied so that the thickness after drying was 40 nm.
上記で形成した正孔輸送層上に、以下に示す白色発光層形成用塗布液を、下記の条件によりスピンコーターで塗布した後、下記の条件で乾燥及び加熱処理を行い、発光層を形成した。白色発光層形成用塗布液は乾燥後の厚さが40nmになるように塗布した。 (Formation of light emitting layer)
On the hole transport layer formed above, the following coating solution for forming a white light emitting layer was applied with a spin coater under the following conditions, followed by drying and heat treatment under the following conditions to form a light emitting layer. . The white light emitting layer forming coating solution was applied so that the thickness after drying was 40 nm.
〈白色発光層形成用塗布液〉
ホスト材として下記化学式H-Aで表される化合物1.0gと、ドーパント材として下記化学式D-Aで表される化合物を100mg、ドーパント材として下記化学式D-Bで表される化合物を0.2mg、ドーパント材として下記化学式D-Cで表される化合物を0.2mg、100gのトルエンに溶解し白色発光層形成用塗布液として準備した。 <White luminescent layer forming coating solution>
As a host material, 1.0 g of a compound represented by the following chemical formula HA, 100 mg of a compound represented by the following chemical formula DA as a dopant material, and 0.1 mg of a compound represented by the following chemical formula DB as a dopant material. 2 mg of a compound represented by the following chemical formula DC as a dopant material was dissolved in 0.2 mg and 100 g of toluene to prepare a white light emitting layer forming coating solution.
ホスト材として下記化学式H-Aで表される化合物1.0gと、ドーパント材として下記化学式D-Aで表される化合物を100mg、ドーパント材として下記化学式D-Bで表される化合物を0.2mg、ドーパント材として下記化学式D-Cで表される化合物を0.2mg、100gのトルエンに溶解し白色発光層形成用塗布液として準備した。 <White luminescent layer forming coating solution>
As a host material, 1.0 g of a compound represented by the following chemical formula HA, 100 mg of a compound represented by the following chemical formula DA as a dopant material, and 0.1 mg of a compound represented by the following chemical formula DB as a dopant material. 2 mg of a compound represented by the following chemical formula DC as a dopant material was dissolved in 0.2 mg and 100 g of toluene to prepare a white light emitting layer forming coating solution.
〈塗布条件〉
塗布工程を窒素ガス濃度99%以上の雰囲気で、塗布温度を25℃とした。 <Application conditions>
The coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more, and the coating temperature was 25 ° C.
塗布工程を窒素ガス濃度99%以上の雰囲気で、塗布温度を25℃とした。 <Application conditions>
The coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more, and the coating temperature was 25 ° C.
〈乾燥及び加熱処理条件〉
白色発光層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、温度130℃で加熱処理を行い、発光層を形成した。 <Drying and heat treatment conditions>
After applying the white light emitting layer forming coating solution, the solvent was removed at a height of 100 mm toward the film formation surface, a discharge wind speed of 1 m / s, a wide wind speed distribution of 5%, and a temperature of 60 ° C., and then a temperature of 130 ° C. A heat treatment was performed to form a light emitting layer.
白色発光層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、温度130℃で加熱処理を行い、発光層を形成した。 <Drying and heat treatment conditions>
After applying the white light emitting layer forming coating solution, the solvent was removed at a height of 100 mm toward the film formation surface, a discharge wind speed of 1 m / s, a wide wind speed distribution of 5%, and a temperature of 60 ° C., and then a temperature of 130 ° C. A heat treatment was performed to form a light emitting layer.
(電子輸送層の形成)
上記で形成した発光層の上に、以下に示す電子輸送層形成用塗布液を下記の条件によりスピンコーターで塗布した後、下記の条件で乾燥及び加熱処理し、電子輸送層を形成した。電子輸送層形成用塗布液は、乾燥後の厚さが30nmになるように塗布した。 (Formation of electron transport layer)
On the light emitting layer formed above, the following coating liquid for forming an electron transport layer was applied with a spin coater under the following conditions, and then dried and heated under the following conditions to form an electron transport layer. The coating solution for forming an electron transport layer was applied so that the thickness after drying was 30 nm.
上記で形成した発光層の上に、以下に示す電子輸送層形成用塗布液を下記の条件によりスピンコーターで塗布した後、下記の条件で乾燥及び加熱処理し、電子輸送層を形成した。電子輸送層形成用塗布液は、乾燥後の厚さが30nmになるように塗布した。 (Formation of electron transport layer)
On the light emitting layer formed above, the following coating liquid for forming an electron transport layer was applied with a spin coater under the following conditions, and then dried and heated under the following conditions to form an electron transport layer. The coating solution for forming an electron transport layer was applied so that the thickness after drying was 30 nm.
〈塗布条件〉
塗布工程は窒素ガス濃度99%以上の雰囲気で、電子輸送層形成用塗布液の塗布温度を25℃とした。 <Application conditions>
The coating process was performed in an atmosphere with a nitrogen gas concentration of 99% or more, and the coating temperature of the electron transport layer forming coating solution was 25 ° C.
塗布工程は窒素ガス濃度99%以上の雰囲気で、電子輸送層形成用塗布液の塗布温度を25℃とした。 <Application conditions>
The coating process was performed in an atmosphere with a nitrogen gas concentration of 99% or more, and the coating temperature of the electron transport layer forming coating solution was 25 ° C.
〈電子輸送層形成用塗布液〉
電子輸送層は下記化学式E-Aで表される化合物を2,2,3,3-テトラフルオロ-1-プロパノール中に溶解し0.5質量%溶液とし電子輸送層形成用塗布液とした。 <Coating liquid for electron transport layer formation>
The electron transport layer was prepared by dissolving a compound represented by the following chemical formula EA in 2,2,3,3-tetrafluoro-1-propanol to obtain a 0.5 mass% solution as a coating solution for forming an electron transport layer.
電子輸送層は下記化学式E-Aで表される化合物を2,2,3,3-テトラフルオロ-1-プロパノール中に溶解し0.5質量%溶液とし電子輸送層形成用塗布液とした。 <Coating liquid for electron transport layer formation>
The electron transport layer was prepared by dissolving a compound represented by the following chemical formula EA in 2,2,3,3-tetrafluoro-1-propanol to obtain a 0.5 mass% solution as a coating solution for forming an electron transport layer.
〈乾燥及び加熱処理条件〉
電子輸送層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、加熱処理部で、温度200℃で加熱処理を行い、電子輸送層を形成した。 <Drying and heat treatment conditions>
After applying the electron transport layer forming coating solution, the solvent is removed at a height of 100 mm toward the film formation surface, a discharge wind speed of 1 m / s, a wide wind speed distribution of 5%, and a temperature of 60 ° C. Then, heat treatment was performed at a temperature of 200 ° C. to form an electron transport layer.
電子輸送層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、加熱処理部で、温度200℃で加熱処理を行い、電子輸送層を形成した。 <Drying and heat treatment conditions>
After applying the electron transport layer forming coating solution, the solvent is removed at a height of 100 mm toward the film formation surface, a discharge wind speed of 1 m / s, a wide wind speed distribution of 5%, and a temperature of 60 ° C. Then, heat treatment was performed at a temperature of 200 ° C. to form an electron transport layer.
(電子注入層の形成)
上記で形成した電子輸送層上に、電子注入層を形成した。まず、基板を減圧チャンバーに投入し、5×10-4Paまで減圧した。あらかじめ、真空チャンバーにタンタル製蒸着ボートに用意しておいたフッ化セシウムを加熱し、厚さ3nmの電子注入層を形成した。 (Formation of electron injection layer)
An electron injection layer was formed on the electron transport layer formed above. First, the substrate was put into a vacuum chamber and the pressure was reduced to 5 × 10 −4 Pa. In advance, cesium fluoride prepared in a tantalum vapor deposition boat was heated in a vacuum chamber to form an electron injection layer having a thickness of 3 nm.
上記で形成した電子輸送層上に、電子注入層を形成した。まず、基板を減圧チャンバーに投入し、5×10-4Paまで減圧した。あらかじめ、真空チャンバーにタンタル製蒸着ボートに用意しておいたフッ化セシウムを加熱し、厚さ3nmの電子注入層を形成した。 (Formation of electron injection layer)
An electron injection layer was formed on the electron transport layer formed above. First, the substrate was put into a vacuum chamber and the pressure was reduced to 5 × 10 −4 Pa. In advance, cesium fluoride prepared in a tantalum vapor deposition boat was heated in a vacuum chamber to form an electron injection layer having a thickness of 3 nm.
(第二透明電極の形成)
上記で形成した電子注入層の上であって、第一透明電極の取り出し電極になる部分を除く部分に、5×10-4Paの真空下で、第二透明電極形成材料としてITOを使用し、取り出し電極を有するように蒸着法にて、発光面積が50mm平方になるようにマスクパターン成膜し、厚さ150nmの第二透明電極を積層した。 (Formation of second transparent electrode)
Using ITO as the second transparent electrode forming material under the vacuum of 5 × 10 −4 Pa on the electron injection layer formed as described above, except for the portion that becomes the extraction electrode of the first transparent electrode. Then, a mask pattern was formed by vapor deposition so as to have an extraction electrode so that the light emission area was 50 mm square, and a second transparent electrode having a thickness of 150 nm was laminated.
上記で形成した電子注入層の上であって、第一透明電極の取り出し電極になる部分を除く部分に、5×10-4Paの真空下で、第二透明電極形成材料としてITOを使用し、取り出し電極を有するように蒸着法にて、発光面積が50mm平方になるようにマスクパターン成膜し、厚さ150nmの第二透明電極を積層した。 (Formation of second transparent electrode)
Using ITO as the second transparent electrode forming material under the vacuum of 5 × 10 −4 Pa on the electron injection layer formed as described above, except for the portion that becomes the extraction electrode of the first transparent electrode. Then, a mask pattern was formed by vapor deposition so as to have an extraction electrode so that the light emission area was 50 mm square, and a second transparent electrode having a thickness of 150 nm was laminated.
(裁断)
以上のように、第二透明電極までが形成された各積層体を、再び窒素雰囲気に移動し、規定の大きさに、紫外線レーザーを用いて裁断し、有機EL素子を作製した。 (Cutting)
As described above, each of the laminates formed up to the second transparent electrode was moved again to a nitrogen atmosphere, and cut to a prescribed size using an ultraviolet laser to produce an organic EL element.
以上のように、第二透明電極までが形成された各積層体を、再び窒素雰囲気に移動し、規定の大きさに、紫外線レーザーを用いて裁断し、有機EL素子を作製した。 (Cutting)
As described above, each of the laminates formed up to the second transparent electrode was moved again to a nitrogen atmosphere, and cut to a prescribed size using an ultraviolet laser to produce an organic EL element.
(電極リード接続)
作製した有機EL素子に、ソニーケミカル&インフォメーションデバイス株式会社製の異方性導電フィルムDP3232S9を用いて、フレキシブルプリント基板(ベースフィルム:ポリイミド12.5μm、圧延銅箔18μm、カバーレイ:ポリイミド12.5μm、表面処理NiAuメッキ)を接続した。 (Electrode lead connection)
An anisotropic conductive film DP3232S9 manufactured by Sony Chemical & Information Device Co., Ltd. was used for the produced organic EL element, and a flexible printed board (base film: polyimide 12.5 μm, rolled copper foil 18 μm, coverlay: polyimide 12.5 μm). , Surface-treated NiAu plating).
作製した有機EL素子に、ソニーケミカル&インフォメーションデバイス株式会社製の異方性導電フィルムDP3232S9を用いて、フレキシブルプリント基板(ベースフィルム:ポリイミド12.5μm、圧延銅箔18μm、カバーレイ:ポリイミド12.5μm、表面処理NiAuメッキ)を接続した。 (Electrode lead connection)
An anisotropic conductive film DP3232S9 manufactured by Sony Chemical & Information Device Co., Ltd. was used for the produced organic EL element, and a flexible printed board (base film: polyimide 12.5 μm, rolled copper foil 18 μm, coverlay: polyimide 12.5 μm). , Surface-treated NiAu plating).
圧着条件:温度170℃(別途熱伝対を用いて測定したACF温度140℃)、圧力2MPa、10秒で圧着を行った。
Crimping conditions: Crimping was performed at a temperature of 170 ° C. (ACF temperature 140 ° C. measured using a separate thermocouple), a pressure of 2 MPa, and 10 seconds.
(封止)
透明封止基材として、下記ガスバリアー層付きPET基材を用いて、有機EL素子101を作製した。PET基材は、厚さ125μmのポリエステルフィルム(帝人デュポンフィルム株式会社製、極低熱収PET)を用いた。 (Sealing)
Theorganic EL element 101 was produced using the following PET base material with a gas barrier layer as a transparent sealing base material. As the PET substrate, a 125 μm-thick polyester film (manufactured by Teijin DuPont Films Ltd., extremely low heat yield PET) was used.
透明封止基材として、下記ガスバリアー層付きPET基材を用いて、有機EL素子101を作製した。PET基材は、厚さ125μmのポリエステルフィルム(帝人デュポンフィルム株式会社製、極低熱収PET)を用いた。 (Sealing)
The
当該ガスバリアー層付きPET基材を用いた透明封止基材の接着は、接着剤としてエポキシ系熱硬化型接着剤(巴川製紙所社製エレファンCS)を用い、酸素濃度10ppm以下、水分濃度10ppm以下のグローブボックス内で、80℃、0.04MPa荷重下、減圧(1×10-3MPa以下)吸引20秒、プレス20秒の条件で、有機EL素子に向けて、ガスバリアー層付きPET基材のガスバリアー層が素子側になるように真空プレスした。
Adhesion of the transparent sealing substrate using the PET substrate with the gas barrier layer uses an epoxy thermosetting adhesive (Elephan CS manufactured by Yodogawa Paper Co., Ltd.) as an adhesive, an oxygen concentration of 10 ppm or less, and a moisture concentration of 10 ppm. In the following glove box, under the conditions of 80 ° C., 0.04 MPa load, reduced pressure (1 × 10 −3 MPa or less) suction 20 seconds, press 20 seconds, the PET base with a gas barrier layer toward the organic EL element Vacuum pressing was performed so that the gas barrier layer of the material was on the element side.
その後、グローブボックス内で、110℃のホットプレート上で30分間加熱して接着層を熱硬化させた。
Then, in the glove box, the adhesive layer was thermally cured by heating on a hot plate at 110 ° C. for 30 minutes.
〈ガスバリアー層付きPET基材〉
(ポリシラザン含有塗布液の調製)
無触媒のパーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカ(登録商標)NN120-20)と、アミン触媒(N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン(TMDAH))5質量%を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカ(登録商標)NAX120-20)とを、4:1の割合で混合し、さらにジブチルエーテルと2,2,4-トリメチルペンタンとの質量比が65:35となるように混合した溶媒で、塗布液の固形分が5質量%になるように、塗布液を希釈調製した。 <PET substrate with gas barrier layer>
(Preparation of polysilazane-containing coating solution)
Dibutyl ether solution containing 20% by mass of non-catalytic perhydropolysilazane (manufactured by AZ Electronic Materials, Aquamica (registered trademark) NN120-20) and amine catalyst (N, N, N ′, N′-tetramethyl-) Perhydropolysilazane 20 mass% dibutyl ether solution (AZ Electronic Materials Co., Ltd., Aquamica (registered trademark) NAX120-20) containing 5 mass% of 1,6-diaminohexane (TMDAH) 4: 1 In a solvent mixed so that the mass ratio of dibutyl ether and 2,2,4-trimethylpentane was 65:35, the coating solution was mixed so that the solid content of the coating solution was 5% by mass. Was diluted and prepared.
(ポリシラザン含有塗布液の調製)
無触媒のパーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカ(登録商標)NN120-20)と、アミン触媒(N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン(TMDAH))5質量%を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカ(登録商標)NAX120-20)とを、4:1の割合で混合し、さらにジブチルエーテルと2,2,4-トリメチルペンタンとの質量比が65:35となるように混合した溶媒で、塗布液の固形分が5質量%になるように、塗布液を希釈調製した。 <PET substrate with gas barrier layer>
(Preparation of polysilazane-containing coating solution)
Dibutyl ether solution containing 20% by mass of non-catalytic perhydropolysilazane (manufactured by AZ Electronic Materials, Aquamica (registered trademark) NN120-20) and amine catalyst (N, N, N ′, N′-tetramethyl-) Perhydropolysilazane 20 mass% dibutyl ether solution (AZ Electronic Materials Co., Ltd., Aquamica (registered trademark) NAX120-20) containing 5 mass% of 1,6-diaminohexane (TMDAH) 4: 1 In a solvent mixed so that the mass ratio of dibutyl ether and 2,2,4-trimethylpentane was 65:35, the coating solution was mixed so that the solid content of the coating solution was 5% by mass. Was diluted and prepared.
上記で得られた塗布液を、スピンコーターにて上記PET基材上に厚さが300nmになるよう成膜し、2分間放置した後、80℃のホットプレートで1分間加熱処理を行い、ポリシラザン塗膜を形成した。
The coating solution obtained above was formed into a film with a thickness of 300 nm on the PET substrate with a spin coater, allowed to stand for 2 minutes, and then subjected to a heat treatment for 1 minute on an 80 ° C. hot plate to obtain polysilazane. A coating film was formed.
ポリシラザン塗膜を形成した後、下記の方法に従って、6000mJ/cm2の真空紫外線照射処理を施してガスバリアー層を形成した。
After forming the polysilazane coating film, a gas barrier layer was formed by performing a vacuum ultraviolet ray irradiation treatment of 6000 mJ / cm 2 according to the following method.
〈真空紫外線照射条件・照射エネルギーの測定〉
真空紫外線照射は、図3に模式図で示した装置を用いて行った。 <Measurement of vacuum ultraviolet irradiation conditions and irradiation energy>
The vacuum ultraviolet irradiation was performed using the apparatus schematically shown in FIG.
真空紫外線照射は、図3に模式図で示した装置を用いて行った。 <Measurement of vacuum ultraviolet irradiation conditions and irradiation energy>
The vacuum ultraviolet irradiation was performed using the apparatus schematically shown in FIG.
図3において、201は装置チャンバーであり、図示しないガス供給口から内部に窒素と酸素とを適量供給し、図示しないガス排出口から排気することで、チャンバー内部から実質的に水蒸気を除去し、酸素濃度を所定の濃度に維持することができる。202は172nmの真空紫外線を照射する二重管構造を有するXeエキシマランプ、203は外部電極を兼ねるエキシマランプのホルダーである。204は試料ステージである。試料ステージ204は、図示しない移動手段により装置チャンバー201内を水平に所定の速度で往復移動することができる。また、試料ステージ204は図示しない加熱手段により、所定の温度に維持することができる。205はポリシラザン塗膜が形成された試料である。試料ステージが水平移動する際、試料の塗布層表面と、エキシマランプ管面との最短距離が3mmとなるように試料ステージの高さが調整されている。206は遮光板であり、Xeエキシマランプ202のエージング中に試料の塗布層に真空紫外光が照射されないようにしている。
In FIG. 3, reference numeral 201 denotes an apparatus chamber, which supplies appropriate amounts of nitrogen and oxygen from a gas supply port (not shown) to the inside and exhausts gas from a gas discharge port (not shown), thereby substantially removing water vapor from the inside of the chamber. The oxygen concentration can be maintained at a predetermined concentration. Reference numeral 202 denotes an Xe excimer lamp having a double tube structure that irradiates vacuum ultraviolet rays of 172 nm, and reference numeral 203 denotes an excimer lamp holder that also serves as an external electrode. Reference numeral 204 denotes a sample stage. The sample stage 204 can be reciprocated horizontally at a predetermined speed in the apparatus chamber 201 by a moving means (not shown). The sample stage 204 can be maintained at a predetermined temperature by a heating means (not shown). Reference numeral 205 denotes a sample on which a polysilazane coating film is formed. When the sample stage moves horizontally, the height of the sample stage is adjusted so that the shortest distance between the surface of the sample coating layer and the excimer lamp tube surface is 3 mm. Reference numeral 206 denotes a light shielding plate, which prevents the vacuum ultraviolet light from being applied to the coating layer of the sample during the aging of the Xe excimer lamp 202.
真空紫外線照射工程で塗膜表面に照射されるエネルギーは、浜松ホトニクス株式会社製の紫外線積算光量計:C8026/H8025 UV POWER METERを用い、172nmのセンサーヘッドを用いて測定した。測定に際しては、Xeエキシマランプ管面とセンサーヘッドの測定面との最短距離が、3mmとなるようにセンサーヘッドを試料ステージ204中央に設置し、かつ、装置チャンバー201内の雰囲気が、真空紫外線照射工程と同一の酸素濃度となるように窒素と酸素とを供給し、試料ステージ204を0.5m/minの速度(図3のV)で移動させて測定を行った。測定に先立ち、Xeエキシマランプ202の照度を安定させるため、Xeエキシマランプ点灯後に10分間のエージング時間を設け、その後試料ステージを移動させて測定を開始した。
The energy irradiated on the coating film surface in the vacuum ultraviolet irradiation process was measured using a 172 nm sensor head using an ultraviolet integrated light meter manufactured by Hamamatsu Photonics Co., Ltd .: C8026 / H8025 UV POWER METER. In the measurement, the sensor head is installed in the center of the sample stage 204 so that the shortest distance between the Xe excimer lamp tube surface and the measurement surface of the sensor head is 3 mm, and the atmosphere in the apparatus chamber 201 is irradiated with vacuum ultraviolet rays. Nitrogen and oxygen were supplied so that the oxygen concentration was the same as in the process, and the sample stage 204 was moved at a speed of 0.5 m / min (V in FIG. 3) for measurement. Prior to measurement, in order to stabilize the illuminance of the Xe excimer lamp 202, an aging time of 10 minutes was provided after the Xe excimer lamp was turned on, and then the sample stage was moved to start the measurement.
この測定で得られた照射エネルギーを元に、試料ステージの移動速度を調整することで6000mJ/cm2の照射エネルギーとなるように調整した。なお、真空紫外線照射に際しては、照射エネルギー測定時と同様に、10分間のエージング後に行った。
Based on the irradiation energy obtained by this measurement, the irradiation speed was adjusted to 6000 mJ / cm 2 by adjusting the moving speed of the sample stage. The vacuum ultraviolet irradiation was performed after aging for 10 minutes, similar to the measurement of irradiation energy.
〔有機EL素子102の作製〕
有機EL素子101の作製において、白色顔料を含有する機能層と第一透明電極の間に平滑層を設けた以外は同様にして有機EL素子102を作製した。 [Production of Organic EL Element 102]
In the production of theorganic EL element 101, the organic EL element 102 was produced in the same manner except that a smooth layer was provided between the functional layer containing the white pigment and the first transparent electrode.
有機EL素子101の作製において、白色顔料を含有する機能層と第一透明電極の間に平滑層を設けた以外は同様にして有機EL素子102を作製した。 [Production of Organic EL Element 102]
In the production of the
(平滑層)
前記形成した白色顔料を含有する機能層上に、層厚600nmの下記平滑層を形成した。当該平滑層の表面粗さ(算術平均粗さRa)を測定したところ、Ra=5nmであった。 (Smooth layer)
The following smooth layer having a layer thickness of 600 nm was formed on the functional layer containing the formed white pigment. When the surface roughness (arithmetic mean roughness Ra) of the smooth layer was measured, Ra = 5 nm.
前記形成した白色顔料を含有する機能層上に、層厚600nmの下記平滑層を形成した。当該平滑層の表面粗さ(算術平均粗さRa)を測定したところ、Ra=5nmであった。 (Smooth layer)
The following smooth layer having a layer thickness of 600 nm was formed on the functional layer containing the formed white pigment. When the surface roughness (arithmetic mean roughness Ra) of the smooth layer was measured, Ra = 5 nm.
〈平滑層の形成〉
前記形成した白色顔料を含有する機能層表面に、下記無機前駆体化合物を含有する塗布液を、減圧押し出し方式のコーターを用いて、乾燥層厚が150nmとなるように、平滑層の1層目を塗布した。 <Formation of smooth layer>
The coating layer containing the following inorganic precursor compound is applied to the surface of the functional layer containing the formed white pigment by using a vacuum extrusion type coater so that the dry layer thickness is 150 nm. Was applied.
前記形成した白色顔料を含有する機能層表面に、下記無機前駆体化合物を含有する塗布液を、減圧押し出し方式のコーターを用いて、乾燥層厚が150nmとなるように、平滑層の1層目を塗布した。 <Formation of smooth layer>
The coating layer containing the following inorganic precursor compound is applied to the surface of the functional layer containing the formed white pigment by using a vacuum extrusion type coater so that the dry layer thickness is 150 nm. Was applied.
無機前駆体化合物を含有する塗布液は、無触媒のパーヒドロポリシラザン20質量%ジブチルエーテル溶液(AZエレクトロニックマテリアルズ(株)製アクアミカ NN120-20)とアミン触媒を固形分の5質量%含有するパーヒドロポリシラザン20質量%ジブチルエーテル溶液(AZエレクトロニックマテリアルズ(株)製アクアミカ NAX120-20)とを混合して用い、アミン触媒を固形分の1質量%に調整した後、さらに、ジブチルエーテルで希釈することにより5質量%ジブチルエーテル溶液として作製した。
The coating solution containing the inorganic precursor compound is a non-catalytic perhydropolysilazane 20 mass% dibutyl ether solution (AZ Electronic Materials Co., Ltd. Aquamica NN120-20) and an amine catalyst containing 5 mass% solid content. Hydropolysilazane 20% by mass dibutyl ether solution (AZ Electronic Materials Co., Ltd. Aquamica NAX120-20) is used by mixing, adjusting the amine catalyst to 1% by mass of solid content, and further diluting with dibutyl ether This was prepared as a 5% by mass dibutyl ether solution.
塗布後、赤外線で基材温度80℃、乾燥時間5分、乾燥雰囲気の露点5℃の条件下で乾燥させた。
After application, the substrate was dried with infrared rays under conditions of a substrate temperature of 80 ° C., a drying time of 5 minutes, and a dew point of 5 ° C. in a dry atmosphere.
乾燥後、樹脂基材を25℃まで徐冷し、真空紫外線照射装置内で、塗布面に真空紫外線照射による改質処理を行った。真空紫外線照射装置の光源としては、172nmの真空紫外線を照射する二重管構造を有するXeエキシマランプを用いた。
After drying, the resin substrate was gradually cooled to 25 ° C., and the coating surface was subjected to modification treatment by irradiation with vacuum ultraviolet rays in a vacuum ultraviolet irradiation apparatus. As a light source of the vacuum ultraviolet irradiation device, an Xe excimer lamp having a double tube structure for irradiating vacuum ultraviolet rays of 172 nm was used.
〈改質処理装置〉
株式会社エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200、光波長172nm、ランプ封入ガス Xe
〈改質処理条件〉
エキシマ光強度 3J/cm2(172nm)
ステージ加熱温度 100℃
照射装置内の酸素濃度 1000ppm
改質処理後、更に同様にして、2層目、3層目、4層目まで積層し、更に80℃Dry環境で、ポリシラザンの反応を進めて、平滑層を形成した。 <Modification processing equipment>
Excimer irradiation device MODEL: MECL-M-1-200, light wavelength 172 nm, lamp filled gas Xe
<Reforming treatment conditions>
Excimer light intensity 3J / cm 2 (172nm)
Stage heating temperature 100 ° C
Oxygen concentration in the irradiation device 1000ppm
After the modification treatment, the second layer, the third layer, and the fourth layer were further laminated in the same manner, and the reaction of polysilazane was further advanced in an 80 ° C. Dry environment to form a smooth layer.
株式会社エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200、光波長172nm、ランプ封入ガス Xe
〈改質処理条件〉
エキシマ光強度 3J/cm2(172nm)
ステージ加熱温度 100℃
照射装置内の酸素濃度 1000ppm
改質処理後、更に同様にして、2層目、3層目、4層目まで積層し、更に80℃Dry環境で、ポリシラザンの反応を進めて、平滑層を形成した。 <Modification processing equipment>
Excimer irradiation device MODEL: MECL-M-1-200, light wavelength 172 nm, lamp filled gas Xe
<Reforming treatment conditions>
Excimer light intensity 3J / cm 2 (172nm)
Oxygen concentration in the irradiation device 1000ppm
After the modification treatment, the second layer, the third layer, and the fourth layer were further laminated in the same manner, and the reaction of polysilazane was further advanced in an 80 ° C. Dry environment to form a smooth layer.
〔有機EL素子103の作製〕
有機EL素子101の作製において用いたアルミニウム(Al)層を有するPETフィルム上に、さらに下記アルミニウム(Al)層を形成して、鏡面光反射層を有する基板として用いた以外は同様にして、有機発光素子103を作製した。 [Production of Organic EL Element 103]
The following aluminum (Al) layer was further formed on the PET film having the aluminum (Al) layer used in the production of theorganic EL element 101, and the organic EL element 101 was similarly used except that it was used as a substrate having a specular light reflecting layer. A light-emitting element 103 was manufactured.
有機EL素子101の作製において用いたアルミニウム(Al)層を有するPETフィルム上に、さらに下記アルミニウム(Al)層を形成して、鏡面光反射層を有する基板として用いた以外は同様にして、有機発光素子103を作製した。 [Production of Organic EL Element 103]
The following aluminum (Al) layer was further formed on the PET film having the aluminum (Al) layer used in the production of the
(基板の作製)
有機EL素子101の作製において用いたアルミニウム(Al)層を有するPETフィルムを、アルミニウム(Al)を入れたタングステン製の抵抗加熱ボートが取り付けられた真空槽へ入れ、真空度4×10-4Paまで減圧し、成膜速度0.3~0.5nm/秒で、層厚300nmのアルミニウム(Al)層をPETフィルムのアルミニウム(Al)層上に積層製膜し、鏡面光反射性を有する基板を作製した。 (Production of substrate)
The PET film having the aluminum (Al) layer used in the production of theorganic EL element 101 is put into a vacuum tank equipped with a resistance heating boat made of tungsten containing aluminum (Al), and the degree of vacuum is 4 × 10 −4 Pa. The substrate having a specular light reflectivity is formed by laminating an aluminum (Al) layer having a layer thickness of 300 nm on the aluminum (Al) layer of the PET film at a film forming speed of 0.3 to 0.5 nm / sec. Was made.
有機EL素子101の作製において用いたアルミニウム(Al)層を有するPETフィルムを、アルミニウム(Al)を入れたタングステン製の抵抗加熱ボートが取り付けられた真空槽へ入れ、真空度4×10-4Paまで減圧し、成膜速度0.3~0.5nm/秒で、層厚300nmのアルミニウム(Al)層をPETフィルムのアルミニウム(Al)層上に積層製膜し、鏡面光反射性を有する基板を作製した。 (Production of substrate)
The PET film having the aluminum (Al) layer used in the production of the
〔有機EL素子104の作製〕
有機EL素子102の作製において用いたアルミニウム(Al)層を有するPETフィルムの代わりに、有機EL素子103の作製で用いたアルミニウム(Al)層を積層形成した基板を用いた以外は、有機EL素子102の作製と同様にして、有機発光素子104を作製した。 [Production of Organic EL Element 104]
An organic EL element except that a substrate on which an aluminum (Al) layer used in the production of theorganic EL element 103 was laminated was used instead of the PET film having the aluminum (Al) layer used in the production of the organic EL element 102. The organic light emitting device 104 was produced in the same manner as the production of 102.
有機EL素子102の作製において用いたアルミニウム(Al)層を有するPETフィルムの代わりに、有機EL素子103の作製で用いたアルミニウム(Al)層を積層形成した基板を用いた以外は、有機EL素子102の作製と同様にして、有機発光素子104を作製した。 [Production of Organic EL Element 104]
An organic EL element except that a substrate on which an aluminum (Al) layer used in the production of the
〔有機EL素子105の作製〕
有機EL素子101の作製において、機能層として下記黒色光吸収層を形成した以外は同様にして、有機EL素子105を作製した。 [Production of Organic EL Element 105]
In the production of theorganic EL element 101, an organic EL element 105 was produced in the same manner except that the following black light absorption layer was formed as a functional layer.
有機EL素子101の作製において、機能層として下記黒色光吸収層を形成した以外は同様にして、有機EL素子105を作製した。 [Production of Organic EL Element 105]
In the production of the
(黒色光吸収層の形成)
基板上にカーボンブラックを含有するフォトレジスト材料をスピンコート法により塗布し、ベーク処理することにより。カーボンブラックを含有する厚さ2μmの薄膜を製膜した。 (Formation of black light absorption layer)
By applying a photoresist material containing carbon black on a substrate by spin coating and baking. A thin film having a thickness of 2 μm containing carbon black was formed.
基板上にカーボンブラックを含有するフォトレジスト材料をスピンコート法により塗布し、ベーク処理することにより。カーボンブラックを含有する厚さ2μmの薄膜を製膜した。 (Formation of black light absorption layer)
By applying a photoresist material containing carbon black on a substrate by spin coating and baking. A thin film having a thickness of 2 μm containing carbon black was formed.
〔有機EL素子106の作製〕
有機EL素子102の作製において、機能層として有機EL素子105で用いた黒色光吸収層を機能層として形成した以外は同様にして、有機EL素子106を作製した。 [Production of Organic EL Element 106]
In the production of theorganic EL element 102, the organic EL element 106 was produced in the same manner except that the black light absorption layer used in the organic EL element 105 was formed as the functional layer.
有機EL素子102の作製において、機能層として有機EL素子105で用いた黒色光吸収層を機能層として形成した以外は同様にして、有機EL素子106を作製した。 [Production of Organic EL Element 106]
In the production of the
≪評価≫
(1)発光輝度の測定
作製した各有機EL素子を、室温下において2.5mA/cm2の定電流条件下で連続発光させ、発光輝度を、分光放射輝度計CS-1000(コニカミノルタ社製)を用いて測定した。測定した発光輝度の値を有機EL素子106の値を100として相対値で示した。 ≪Evaluation≫
(1) Measurement of light emission luminance Each of the produced organic EL devices was allowed to emit light continuously at a constant current of 2.5 mA / cm 2 at room temperature, and the light emission luminance was measured using a spectral radiance meter CS-1000 (manufactured by Konica Minolta). ). The measured luminance value was shown as a relative value with the value of theorganic EL element 106 as 100.
(1)発光輝度の測定
作製した各有機EL素子を、室温下において2.5mA/cm2の定電流条件下で連続発光させ、発光輝度を、分光放射輝度計CS-1000(コニカミノルタ社製)を用いて測定した。測定した発光輝度の値を有機EL素子106の値を100として相対値で示した。 ≪Evaluation≫
(1) Measurement of light emission luminance Each of the produced organic EL devices was allowed to emit light continuously at a constant current of 2.5 mA / cm 2 at room temperature, and the light emission luminance was measured using a spectral radiance meter CS-1000 (manufactured by Konica Minolta). ). The measured luminance value was shown as a relative value with the value of the
(2)色ずれ評価(ΔExy)
分光放射輝度計CS-1000(コニカミノルタ社製)を用いて、各有機EL素子の色度の角度依存性を、正面及び5°毎に±80°の角度まで測定し、その正面との色ずれΔEが最大となる時のΔEの値を下記式より、第一透明電極側(基板側)、及び第二透明電極側(封止側)でそれぞれ求めた。なお、下記式においてx、yは、CIE1931表色系における色度x、yである。 (2) Color misregistration evaluation (ΔExy)
Using a spectral radiance meter CS-1000 (manufactured by Konica Minolta), the angle dependence of the chromaticity of each organic EL element is measured up to an angle of ± 80 ° in front and every 5 °. The value of ΔE when the deviation ΔE is maximum was obtained from the following formula on the first transparent electrode side (substrate side) and the second transparent electrode side (sealing side), respectively. In the following formula, x and y are chromaticity x and y in the CIE 1931 color system.
分光放射輝度計CS-1000(コニカミノルタ社製)を用いて、各有機EL素子の色度の角度依存性を、正面及び5°毎に±80°の角度まで測定し、その正面との色ずれΔEが最大となる時のΔEの値を下記式より、第一透明電極側(基板側)、及び第二透明電極側(封止側)でそれぞれ求めた。なお、下記式においてx、yは、CIE1931表色系における色度x、yである。 (2) Color misregistration evaluation (ΔExy)
Using a spectral radiance meter CS-1000 (manufactured by Konica Minolta), the angle dependence of the chromaticity of each organic EL element is measured up to an angle of ± 80 ° in front and every 5 °. The value of ΔE when the deviation ΔE is maximum was obtained from the following formula on the first transparent electrode side (substrate side) and the second transparent electrode side (sealing side), respectively. In the following formula, x and y are chromaticity x and y in the CIE 1931 color system.
ΔE=(Δx2+Δy2)1/2
上記測定したΔExyについて、ΔExyが大きいほど、視野角の変化により表現される色調等が大きく変化することを表す。 ΔE = (Δx 2 + Δy 2 ) 1/2
Regarding ΔExy measured above, the larger ΔExy, the greater the change in color tone or the like expressed by the change in viewing angle.
上記測定したΔExyについて、ΔExyが大きいほど、視野角の変化により表現される色調等が大きく変化することを表す。 ΔE = (Δx 2 + Δy 2 ) 1/2
Regarding ΔExy measured above, the larger ΔExy, the greater the change in color tone or the like expressed by the change in viewing angle.
以上の評価結果を下記表1に示す。
The above evaluation results are shown in Table 1 below.
表1より、本発明に係る白色顔料を含有する機能層として、白色光拡散反射層を有する有機EL素子101及び102は、比較例に対して発光輝度が高く、色ずれが小さいことが明らかである。
From Table 1, it is clear that the organic EL elements 101 and 102 having the white light diffusive reflecting layer as the functional layer containing the white pigment according to the present invention have higher emission luminance and smaller color shift than the comparative example. is there.
実施例2
〔有機EL素子201の作製〕
実施例1の有機EL素子101の作製において、下記基板、第一透明電極及び第二透明電極に代えた以外は同様にして有機EL素子201を作製した。 Example 2
[Production of Organic EL Element 201]
Anorganic EL element 201 was produced in the same manner except that the organic EL element 101 of Example 1 was replaced with the following substrate, first transparent electrode, and second transparent electrode.
〔有機EL素子201の作製〕
実施例1の有機EL素子101の作製において、下記基板、第一透明電極及び第二透明電極に代えた以外は同様にして有機EL素子201を作製した。 Example 2
[Production of Organic EL Element 201]
An
(基板の作製)
厚さ125μmのポリエチレンナフタレートフィルム(帝人デュポンフィルム株式会社製、テオネックス 極低熱収PEN Q83)を、アルミニウム(Al)を入れたタングステン製の抵抗加熱ボートが取り付けられた真空槽へ入れ、真空度4×10-4Paまで減圧し、成膜速度0.3~0.5nm/秒で、層厚50μmのアルミニウム(Al)層をPENフィルム上に蒸着製膜し、光反射性の基板を作製した。 (Production of substrate)
A 125 μm thick polyethylene naphthalate film (Teonex Dupont Film Co., Ltd., Teonex Extremely Low Heat Yield PEN Q83) is placed in a vacuum tank equipped with a resistance heating boat made of tungsten containing aluminum (Al), and the degree of vacuum Depressurize to 4 × 10 −4 Pa, deposit an aluminum (Al) layer with a thickness of 50 μm on the PEN film at a deposition rate of 0.3 to 0.5 nm / second, and produce a light-reflective substrate. did.
厚さ125μmのポリエチレンナフタレートフィルム(帝人デュポンフィルム株式会社製、テオネックス 極低熱収PEN Q83)を、アルミニウム(Al)を入れたタングステン製の抵抗加熱ボートが取り付けられた真空槽へ入れ、真空度4×10-4Paまで減圧し、成膜速度0.3~0.5nm/秒で、層厚50μmのアルミニウム(Al)層をPENフィルム上に蒸着製膜し、光反射性の基板を作製した。 (Production of substrate)
A 125 μm thick polyethylene naphthalate film (Teonex Dupont Film Co., Ltd., Teonex Extremely Low Heat Yield PEN Q83) is placed in a vacuum tank equipped with a resistance heating boat made of tungsten containing aluminum (Al), and the degree of vacuum Depressurize to 4 × 10 −4 Pa, deposit an aluminum (Al) layer with a thickness of 50 μm on the PEN film at a deposition rate of 0.3 to 0.5 nm / second, and produce a light-reflective substrate. did.
当該基板は、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/m2・24h・atm以下、水蒸気透過度が、1×10-5g/m2・24h以下のガスバリアー性基板であることを確認した。
The substrate has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 ml / m 2 · 24 h · atm or less, and a water vapor permeability of 1 × 10 −5 g / m. it was confirmed that the following gas-barrier substrate 2 · 24h.
(第一透明電極の形成)
まず、白色顔料を含有する機能層まで形成したPENフィルムを基板ホルダーにセットし、これらの基板ホルダーと銀(Ag)が入ったタングステン製の抵抗加熱ボートとを真空蒸着装置の第1真空槽に取り付けた。第1真空槽を4×10-4Paまで減圧した後、加熱ボートを通電して加熱し、銀からなる単層構造の第一透明電極を抵抗加熱蒸着にて形成した。形成された銀(Ag)からなる第一透明電極の層厚は9nmであった。 (Formation of first transparent electrode)
First, a PEN film formed with a functional layer containing a white pigment is set in a substrate holder, and these substrate holders and a resistance heating boat made of tungsten containing silver (Ag) are placed in the first vacuum chamber of the vacuum evaporation apparatus. Attached. After reducing the pressure in the first vacuum chamber to 4 × 10 −4 Pa, the heating boat was energized and heated to form a first transparent electrode having a single layer structure made of silver by resistance heating vapor deposition. The layer thickness of the formed first transparent electrode made of silver (Ag) was 9 nm.
まず、白色顔料を含有する機能層まで形成したPENフィルムを基板ホルダーにセットし、これらの基板ホルダーと銀(Ag)が入ったタングステン製の抵抗加熱ボートとを真空蒸着装置の第1真空槽に取り付けた。第1真空槽を4×10-4Paまで減圧した後、加熱ボートを通電して加熱し、銀からなる単層構造の第一透明電極を抵抗加熱蒸着にて形成した。形成された銀(Ag)からなる第一透明電極の層厚は9nmであった。 (Formation of first transparent electrode)
First, a PEN film formed with a functional layer containing a white pigment is set in a substrate holder, and these substrate holders and a resistance heating boat made of tungsten containing silver (Ag) are placed in the first vacuum chamber of the vacuum evaporation apparatus. Attached. After reducing the pressure in the first vacuum chamber to 4 × 10 −4 Pa, the heating boat was energized and heated to form a first transparent electrode having a single layer structure made of silver by resistance heating vapor deposition. The layer thickness of the formed first transparent electrode made of silver (Ag) was 9 nm.
(第二透明電極の形成)
形成した電子注入層の上であって、第一透明電極の取り出し電極になる部分を除く部分に、5×10-4Paの真空下で、第二透明電極形成材料として銀(Ag)を使用し、取り出し電極を有するように前記抵抗加熱蒸着にて、発光面積が50mm平方になるようにマスクパターン成膜し、厚さ9nmの第二透明電極を積層した。 (Formation of second transparent electrode)
Silver (Ag) is used as the second transparent electrode forming material on the formed electron injection layer except for the portion to be the extraction electrode of the first transparent electrode under a vacuum of 5 × 10 −4 Pa. Then, a mask pattern was formed so as to have a light emission area of 50 mm square by the resistance heating vapor deposition so as to have the extraction electrode, and a second transparent electrode having a thickness of 9 nm was laminated.
形成した電子注入層の上であって、第一透明電極の取り出し電極になる部分を除く部分に、5×10-4Paの真空下で、第二透明電極形成材料として銀(Ag)を使用し、取り出し電極を有するように前記抵抗加熱蒸着にて、発光面積が50mm平方になるようにマスクパターン成膜し、厚さ9nmの第二透明電極を積層した。 (Formation of second transparent electrode)
Silver (Ag) is used as the second transparent electrode forming material on the formed electron injection layer except for the portion to be the extraction electrode of the first transparent electrode under a vacuum of 5 × 10 −4 Pa. Then, a mask pattern was formed so as to have a light emission area of 50 mm square by the resistance heating vapor deposition so as to have the extraction electrode, and a second transparent electrode having a thickness of 9 nm was laminated.
〔有機EL素子202の作製〕
実施例1の有機EL素子102の作製において、有機EL素子201で用いた基板、第一透明電極及び第二透明電極に代えた以外は同様にして有機EL素子202を作製した。 [Production of Organic EL Element 202]
Anorganic EL element 202 was produced in the same manner as in the production of the organic EL element 102 of Example 1, except that the substrate, the first transparent electrode, and the second transparent electrode used in the organic EL element 201 were used.
実施例1の有機EL素子102の作製において、有機EL素子201で用いた基板、第一透明電極及び第二透明電極に代えた以外は同様にして有機EL素子202を作製した。 [Production of Organic EL Element 202]
An
〔有機EL素子203の作製〕
有機EL素子201の作製において、第一透明電極を下記電極に代えた以外は同様にして有機EL素子203を作製した。 [Production of Organic EL Element 203]
In the production of theorganic EL element 201, an organic EL element 203 was produced in the same manner except that the first transparent electrode was replaced with the following electrode.
有機EL素子201の作製において、第一透明電極を下記電極に代えた以外は同様にして有機EL素子203を作製した。 [Production of Organic EL Element 203]
In the production of the
(第一透明電極の形成)
まず、白色顔料を含有する機能層まで形成したPENフィルムを基板ホルダーにセットし、下記化合物Aをタンタル製抵抗加熱ボートに入れ、これらの基板ホルダーと加熱ボートとを真空蒸着装置の第1真空槽に取り付けた。 (Formation of first transparent electrode)
First, a PEN film formed up to a functional layer containing a white pigment is set in a substrate holder, the following compound A is put in a resistance heating boat made of tantalum, and these substrate holder and heating boat are connected to the first vacuum tank of the vacuum deposition apparatus. Attached to.
まず、白色顔料を含有する機能層まで形成したPENフィルムを基板ホルダーにセットし、下記化合物Aをタンタル製抵抗加熱ボートに入れ、これらの基板ホルダーと加熱ボートとを真空蒸着装置の第1真空槽に取り付けた。 (Formation of first transparent electrode)
First, a PEN film formed up to a functional layer containing a white pigment is set in a substrate holder, the following compound A is put in a resistance heating boat made of tantalum, and these substrate holder and heating boat are connected to the first vacuum tank of the vacuum deposition apparatus. Attached to.
この状態で、まず、第1真空槽を4×10-4Paまで減圧した後、化合物Aの入った加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で基板上に層厚25nmの化合物Aからなる透明機能層である下地層を設けた。
In this state, first, the first vacuum chamber was depressurized to 4 × 10 −4 Pa, and then heated by energizing the heating boat containing Compound A, and the layer thickness was 25 nm on the substrate at a deposition rate of 0.1 nm / second. An underlayer which is a transparent functional layer made of Compound A was provided.
次に、下地層まで成膜した基板を真空のまま第2真空槽に移し、第2真空槽を4×10-4Paまで減圧した後、銀(Ag)が入ったタングステン製の抵抗加熱ボートを通電して加熱し、銀からなる単層構造の第一透明電極を抵抗加熱蒸着にて形成した。形成された銀(Ag)からなる第一透明電極の層厚は9nmであった。
Next, the substrate on which the base layer was formed was transferred to the second vacuum chamber in a vacuum, the second vacuum chamber was depressurized to 4 × 10 −4 Pa, and then a resistance heating boat made of tungsten containing silver (Ag) The first transparent electrode having a single layer structure made of silver was formed by resistance heating vapor deposition. The layer thickness of the formed first transparent electrode made of silver (Ag) was 9 nm.
〔有機EL素子204の作製〕
有機EL素子202の作製において、第一透明電極を有機EL素子203で用いた電極に代えた以外は同様にして、有機EL素子204を作製した。 [Production of Organic EL Element 204]
In the production of theorganic EL element 202, an organic EL element 204 was produced in the same manner except that the first transparent electrode was replaced with the electrode used in the organic EL element 203.
有機EL素子202の作製において、第一透明電極を有機EL素子203で用いた電極に代えた以外は同様にして、有機EL素子204を作製した。 [Production of Organic EL Element 204]
In the production of the
〔有機EL素子205~211の作製〕
Al蒸着したPENフィルム上に、実施例1と同様に鏡面光反射層及び黒色光吸収層を形成し、有機EL素子201~204の作製と同様にして、表2に記載の構成で有機EL素子205~211を作製した。 [Production oforganic EL elements 205 to 211]
On the PEN film deposited with Al, a specular light reflecting layer and a black light absorbing layer are formed in the same manner as in Example 1, and the organic EL elements having the configuration shown in Table 2 are formed in the same manner as the fabrication of theorganic EL elements 201 to 204 205 to 211 were produced.
Al蒸着したPENフィルム上に、実施例1と同様に鏡面光反射層及び黒色光吸収層を形成し、有機EL素子201~204の作製と同様にして、表2に記載の構成で有機EL素子205~211を作製した。 [Production of
On the PEN film deposited with Al, a specular light reflecting layer and a black light absorbing layer are formed in the same manner as in Example 1, and the organic EL elements having the configuration shown in Table 2 are formed in the same manner as the fabrication of the
≪評価≫
作製した有機EL素子201~211と実施例1で作製した有機EL素子102及び106を用いて、実施例1と同様にして、発光輝度及び色ずれの評価を実施し、結果を表2に示した。 ≪Evaluation≫
Using the producedorganic EL elements 201 to 211 and the organic EL elements 102 and 106 produced in Example 1, evaluation of light emission luminance and color shift was performed in the same manner as in Example 1, and the results are shown in Table 2. It was.
作製した有機EL素子201~211と実施例1で作製した有機EL素子102及び106を用いて、実施例1と同様にして、発光輝度及び色ずれの評価を実施し、結果を表2に示した。 ≪Evaluation≫
Using the produced
表2から、本発明に係る白色光拡散反射層を有する有機EL素子201~204は、実施例1を再現し、発光輝度及び色ずれに優れていることが分かる。
From Table 2, it can be seen that the organic EL elements 201 to 204 having the white light diffusive reflecting layer according to the present invention reproduce Example 1 and are excellent in light emission luminance and color shift.
また、第一透明電極及び第二透明電極を銀(Ag)の薄膜電極としたことにより、より可撓性に優れた有機EL素子が実現できた。
Moreover, by using the first transparent electrode and the second transparent electrode as a silver (Ag) thin film electrode, an organic EL element having more flexibility was realized.
実施例3
実施例2で作製した有機EL素子203及び204の作製において、第二透明電極上に、MoO3が入った加熱ボートに通電して加熱し、第二透明電極上にMoO3を含有する層を、電極保護層として形成し、それぞれ有機EL素子203b及び204bとした。この際、真空槽を4×10-4Paまで減圧した後、蒸着速度0.1~0.2nm/秒で蒸着し、層厚50nmとした。 Example 3
In the production of the organic EL elements 203 and 204 produced in Example 2, a heating boat containing MoO 3 was heated on the second transparent electrode and heated, and a layer containing MoO 3 was formed on the second transparent electrode. , Formed as an electrode protective layer, and were used as organic EL elements 203b and 204b, respectively. At this time, the vacuum chamber was depressurized to 4 × 10 −4 Pa, and then deposited at a deposition rate of 0.1 to 0.2 nm / second to a layer thickness of 50 nm.
実施例2で作製した有機EL素子203及び204の作製において、第二透明電極上に、MoO3が入った加熱ボートに通電して加熱し、第二透明電極上にMoO3を含有する層を、電極保護層として形成し、それぞれ有機EL素子203b及び204bとした。この際、真空槽を4×10-4Paまで減圧した後、蒸着速度0.1~0.2nm/秒で蒸着し、層厚50nmとした。 Example 3
In the production of the
≪評価≫
作製した有機EL素子203b及び204bと実施例2で作製した有機EL素子203及び204を用いて、実施例2と同様にして、発光輝度及び色ずれの評価を実施し、結果を表3に示した。 ≪Evaluation≫
Using the produced organic EL elements 203b and 204b and the organic EL elements 203 and 204 produced in Example 2, the light emission luminance and the color shift were evaluated in the same manner as in Example 2, and the results are shown in Table 3. It was.
作製した有機EL素子203b及び204bと実施例2で作製した有機EL素子203及び204を用いて、実施例2と同様にして、発光輝度及び色ずれの評価を実施し、結果を表3に示した。 ≪Evaluation≫
Using the produced organic EL elements 203b and 204b and the
表3から、電極保護層を形成した有機EL素子203b及び204bは、色ずれがさらに優れることが分かった。
From Table 3, it was found that the organic EL elements 203b and 204b on which the electrode protective layer was formed were more excellent in color shift.
本発明の有機エレクトロルミネッセンス素子は、金属層又は金属箔が積層された可撓性基板上に、少なくとも白色顔料を含有する機能層、第一透明電極、有機発光層、第二透明電極、及び透明封止基材をこの順に有することで、光取り出し効率の向上、及び色ずれを低減し、画像表示装置や照明装置に好適に用いられる。
The organic electroluminescence device of the present invention has a functional layer containing at least a white pigment, a first transparent electrode, an organic light emitting layer, a second transparent electrode, and a transparent substrate on a flexible substrate on which a metal layer or a metal foil is laminated. By having the sealing base material in this order, the light extraction efficiency is improved and the color shift is reduced, and it is suitably used for an image display device and a lighting device.
100 有機EL素子
101 第一透明電極
101a 下地層
101b 電極層
102 第二透明電極(対向電極)
103 有機発光層
103a 正孔注入層
103b 正孔輸送層
103c 発光層
103d 電子輸送層
103e 電子注入層
104 電極保護層
105 透明封止基材
106 白色顔料を含有する機能層
107 平滑層
110 基板
110a 樹脂基材
110b 金属層
110c 樹脂基材
110e 樹脂基材
110d 金属層
h 発光光 100Organic EL Element 101 First Transparent Electrode 101a Underlayer 101b Electrode Layer 102 Second Transparent Electrode (Counter Electrode)
DESCRIPTION OFSYMBOLS 103 Organic light emitting layer 103a Hole injection layer 103b Hole transport layer 103c Light emission layer 103d Electron transport layer 103e Electron injection layer 104 Electrode protective layer 105 Transparent sealing substrate 106 Functional layer containing white pigment 107 Smooth layer 110 Substrate 110a Resin Base material 110b Metal layer 110c Resin base material 110e Resin base material 110d Metal layer h Emitted light
101 第一透明電極
101a 下地層
101b 電極層
102 第二透明電極(対向電極)
103 有機発光層
103a 正孔注入層
103b 正孔輸送層
103c 発光層
103d 電子輸送層
103e 電子注入層
104 電極保護層
105 透明封止基材
106 白色顔料を含有する機能層
107 平滑層
110 基板
110a 樹脂基材
110b 金属層
110c 樹脂基材
110e 樹脂基材
110d 金属層
h 発光光 100
DESCRIPTION OF
Claims (6)
- 金属層又は金属箔が積層された可撓性基板上に、少なくとも白色顔料を含有する機能層、第一透明電極、有機発光層、第二透明電極、及び透明封止基材をこの順に有することを特徴とする有機エレクトロルミネッセンス素子。 Having a functional layer containing at least a white pigment, a first transparent electrode, an organic light emitting layer, a second transparent electrode, and a transparent sealing substrate in this order on a flexible substrate on which a metal layer or a metal foil is laminated An organic electroluminescence device characterized by the above.
- 前記白色顔料を含有する機能層と前記第一透明電極の間に、平滑層を有することを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent device according to claim 1, further comprising a smooth layer between the functional layer containing the white pigment and the first transparent electrode.
- 前記第一透明電極又は前記第二透明電極のいずれかが、銀又は銀を主成分とする合金を含有することを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。 3. The organic electroluminescent element according to claim 1, wherein either the first transparent electrode or the second transparent electrode contains silver or an alloy containing silver as a main component.
- 前記第一透明電極の前記可撓性基板側に、窒素原子及び硫黄原子から選択される少なくとも1種の原子を有する有機化合物を含有する下地層を有することを特徴とする請求項1から請求項3までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The base layer containing an organic compound having at least one atom selected from a nitrogen atom and a sulfur atom is provided on the flexible substrate side of the first transparent electrode. The organic electroluminescent element according to any one of 3 to 3.
- 前記第二透明電極上に、電極保護層を有することを特徴とする請求項1から請求項4までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent element according to any one of claims 1 to 4, further comprising an electrode protective layer on the second transparent electrode.
- 前記電極保護層が、金属酸化物を含有することを特徴とする請求項5に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent element according to claim 5, wherein the electrode protective layer contains a metal oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015521363A JPWO2014196329A1 (en) | 2013-06-06 | 2014-05-15 | Organic electroluminescence device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-119603 | 2013-06-06 | ||
JP2013119603 | 2013-06-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014196329A1 true WO2014196329A1 (en) | 2014-12-11 |
Family
ID=52007982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/062915 WO2014196329A1 (en) | 2013-06-06 | 2014-05-15 | Organic electroluminescence element |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2014196329A1 (en) |
WO (1) | WO2014196329A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017049568A (en) * | 2015-08-31 | 2017-03-09 | 株式会社Joled | Semiconductor device, display, manufacturing method of display, and electronic apparatus |
US10283579B2 (en) | 2015-08-31 | 2019-05-07 | Joled, Inc. | Semiconductor device, display unit, method of manufacturing display unit, and electronic apparatus |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004146379A (en) * | 2002-10-22 | 2004-05-20 | Osram Opto Semiconductors Gmbh | Virtually transparent electrode having conductivity, its manufacturing method, and organic electronic device comprising the electrode |
JP2007311811A (en) * | 2002-12-11 | 2007-11-29 | Lg Chem Ltd | Electroluminescence device having anode with low work function |
JP2011060549A (en) * | 2009-09-09 | 2011-03-24 | Fujifilm Corp | Optical member for organic el device, and organic el device |
JP2011077028A (en) * | 2009-09-04 | 2011-04-14 | Hitachi Displays Ltd | Organic el display device |
WO2011046144A1 (en) * | 2009-10-14 | 2011-04-21 | 日本ゼオン株式会社 | Organic electroluminescent light source device |
JP2013101349A (en) * | 2000-05-31 | 2013-05-23 | Nitto Denko Corp | Particle dispersion system resin substrate, liquid crystal display device, electroluminescence device, and solar cell |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7268485B2 (en) * | 2003-10-07 | 2007-09-11 | Eastman Kodak Company | White-emitting microcavity OLED device |
-
2014
- 2014-05-15 JP JP2015521363A patent/JPWO2014196329A1/en active Pending
- 2014-05-15 WO PCT/JP2014/062915 patent/WO2014196329A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013101349A (en) * | 2000-05-31 | 2013-05-23 | Nitto Denko Corp | Particle dispersion system resin substrate, liquid crystal display device, electroluminescence device, and solar cell |
JP2004146379A (en) * | 2002-10-22 | 2004-05-20 | Osram Opto Semiconductors Gmbh | Virtually transparent electrode having conductivity, its manufacturing method, and organic electronic device comprising the electrode |
JP2007311811A (en) * | 2002-12-11 | 2007-11-29 | Lg Chem Ltd | Electroluminescence device having anode with low work function |
JP2011077028A (en) * | 2009-09-04 | 2011-04-14 | Hitachi Displays Ltd | Organic el display device |
JP2011060549A (en) * | 2009-09-09 | 2011-03-24 | Fujifilm Corp | Optical member for organic el device, and organic el device |
WO2011046144A1 (en) * | 2009-10-14 | 2011-04-21 | 日本ゼオン株式会社 | Organic electroluminescent light source device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017049568A (en) * | 2015-08-31 | 2017-03-09 | 株式会社Joled | Semiconductor device, display, manufacturing method of display, and electronic apparatus |
US10283579B2 (en) | 2015-08-31 | 2019-05-07 | Joled, Inc. | Semiconductor device, display unit, method of manufacturing display unit, and electronic apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014196329A1 (en) | 2017-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015083660A1 (en) | Organic electroluminescence element | |
JP6274199B2 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE | |
WO2014203729A1 (en) | Organic light-emitting element | |
WO2016063869A1 (en) | Light extraction substrate, method for manufacturing light extraction substrate, organic electroluminescent element, and method for manufacturing organic electroluminescent element | |
WO2017056635A1 (en) | Organic electroluminescent element | |
JP2022010127A (en) | Method for manufacturing gas barrier film, method for manufacturing transparent conductive member, and method for manufacturing organic electroluminescent element | |
WO2014196330A1 (en) | Organic electroluminescence element | |
US9876057B2 (en) | Organic electroluminescence panel, method for manufacturing the same, organic electroluminescence module, and information device | |
JP2016219254A (en) | Gas barrier film, transparent conductive member, and organic electroluminescent element | |
JP2016091793A (en) | Organic electroluminescent device and method for manufacturing the same | |
JP6592915B2 (en) | Transparent electrode substrate and manufacturing method thereof, electronic device and organic EL device | |
WO2014196329A1 (en) | Organic electroluminescence element | |
JP4985602B2 (en) | Method for manufacturing organic electroluminescent element and organic electroluminescent element | |
WO2014185392A1 (en) | Organic electroluminescence element | |
JP5472107B2 (en) | Method for manufacturing organic electroluminescent element | |
WO2015005263A1 (en) | Organic electroluminescent element, and production method therefor | |
WO2015178245A1 (en) | Organic electroluminescent element | |
WO2014148595A1 (en) | Organic electroluminescent element and lighting device | |
WO2014126063A1 (en) | Organic electroluminescent element and method for manufacturing organic electroluminescent element | |
CN108293279B (en) | Light emitting device | |
JP2016190442A (en) | Gas barrier film, transparent conductive member, and organic electroluminescent element | |
JP2016054097A (en) | Organic electroluminescent element and substrate | |
JP2015170443A (en) | Organic electroluminescent element and method of manufacturing the same | |
JP2010073589A (en) | Method of manufacturing organic electroluminescent device, and organic electroluminescent device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14808302 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015521363 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14808302 Country of ref document: EP Kind code of ref document: A1 |