WO2017090560A1 - タッチセンサ機能付き液晶パネル - Google Patents

タッチセンサ機能付き液晶パネル Download PDF

Info

Publication number
WO2017090560A1
WO2017090560A1 PCT/JP2016/084492 JP2016084492W WO2017090560A1 WO 2017090560 A1 WO2017090560 A1 WO 2017090560A1 JP 2016084492 W JP2016084492 W JP 2016084492W WO 2017090560 A1 WO2017090560 A1 WO 2017090560A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
liquid crystal
substrate
electrode
detection electrode
Prior art date
Application number
PCT/JP2016/084492
Other languages
English (en)
French (fr)
Inventor
治人 香川
孝司 緒方
直樹 屋田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201680062448.3A priority Critical patent/CN108351719A/zh
Priority to US15/778,472 priority patent/US10401671B2/en
Publication of WO2017090560A1 publication Critical patent/WO2017090560A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position

Definitions

  • the present invention relates to a liquid crystal panel with a touch sensor function.
  • a display device with a touch sensor function capable of detecting a pressed position at a touched position in addition to a touch position is known.
  • an electrode for detecting a press is provided separately from an electrode for detecting a touch position, and an electrostatic between an electrode for detecting the press and an opposing ground plate is provided. The press is detected based on the capacity.
  • An object of the present invention is to provide a liquid crystal panel with a touch sensor function capable of detecting a touch position and a press without degrading display quality.
  • a liquid crystal panel with a touch sensor function includes a first substrate, a second substrate disposed so as to face the first substrate, and the first substrate and the second substrate.
  • a liquid crystal layer, a touch driving electrode disposed on the liquid crystal layer side of the second substrate, a touch detection electrode disposed on the opposite side of the second substrate from the liquid crystal layer, and the first substrate A touch detection electrode disposed on the liquid crystal layer side, a drive signal is supplied to the touch drive electrode, and a touch signal is detected by detecting a detection signal output from the touch detection electrode.
  • a control unit that detects a pressure at the time of touch by detecting a change amount of a capacitance formed between the pressure detection electrodes.
  • the pressure detection electrode for detecting pressure is disposed on the liquid crystal layer side of the first substrate, the pressure detection electrode, and the touch drive electrode disposed on the liquid crystal layer side of the second substrate, The pressure at the time of touch is detected by detecting the amount of change in capacitance formed between the two. Since there is no air layer between the pressure detection electrode and the touch drive electrode, and a liquid crystal layer is interposed, there is no problem of interface reflection due to the presence of the air layer. Thereby, a touch position and a press can be detected without degrading display quality.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of a liquid crystal panel with a touch sensor function according to the first embodiment.
  • FIG. 2 is a plan view showing the arrangement positions of the touch detection electrode, the touch drive electrode, and the press detection electrode.
  • FIG. 3 is a diagram for explaining xy sensing for detecting a touch position and force sensing for detecting a press when touched.
  • FIG. 4 is an equivalent circuit diagram illustrating the capacitance formed between the touch drive electrode and the press detection electrode.
  • FIG. 5 is a diagram illustrating a temporal change in the voltage level of the touch drive electrode in the sequential drive method.
  • FIG. 6 is a diagram illustrating an example of a CV conversion circuit for detecting the amount of change in capacitance as the amount of change in voltage.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of a liquid crystal panel with a touch sensor function according to the first embodiment.
  • FIG. 2 is a plan view showing the arrangement positions of the touch detection
  • FIG. 7 is a diagram illustrating an example of the relationship between the pressing force and the amount of change in the output voltage of the operational amplifier.
  • FIG. 8 is a plan view showing the arrangement positions of the two press detection electrodes in the second embodiment.
  • FIG. 9 is an equivalent circuit diagram illustrating the capacitance formed between the touch drive electrode and the press detection electrode in the second embodiment.
  • FIG. 10 is a diagram illustrating a temporal change in the voltage level of the touch drive electrode in the second embodiment.
  • FIG. 11 is a diagram illustrating an example of a CV conversion circuit for detecting a change in capacitance as a change in voltage in the second embodiment.
  • a liquid crystal panel with a touch sensor function includes a first substrate, a second substrate disposed so as to face the first substrate, and the first substrate and the second substrate.
  • a liquid crystal layer, a touch driving electrode disposed on the liquid crystal layer side of the second substrate, a touch detection electrode disposed on the opposite side of the second substrate from the liquid crystal layer, and the first substrate A touch detection electrode disposed on the liquid crystal layer side, a drive signal is supplied to the touch drive electrode, and a touch signal is detected by detecting a detection signal output from the touch detection electrode.
  • a control unit that detects a pressure at the time of touch by detecting a change amount of a capacitance formed between the pressure detection electrodes (first configuration).
  • the pressure detection electrode for detecting pressure is disposed on the liquid crystal layer side of the first substrate, and the pressure detection electrode and the touch drive electrode disposed on the liquid crystal layer side of the second substrate.
  • the pressure at the time of touch is detected. Since there is no air layer between the pressure detection electrode and the touch drive electrode, and a liquid crystal layer is interposed, there is no problem of interface reflection due to the presence of the air layer. Further, the thickness is almost the same as that of a liquid crystal panel without a pressure detection function. Thereby, a touch position and a press can be detected without degrading display quality.
  • the converter further includes a conversion circuit that converts a change amount of capacitance formed between the touch drive electrode and the press detection electrode into a change amount of voltage, and the control unit includes the conversion circuit. It is good also as a structure which detects the press at the time of a touch based on the variation
  • the conversion circuit that converts the change amount of the capacitance into the change amount of the voltage since the conversion circuit that converts the change amount of the capacitance into the change amount of the voltage is provided, it is possible to detect the pressing at the time of touch based on the change amount of the voltage that is easy to detect.
  • control unit is formed between the touch drive electrode and the press detection electrode during a period in which the potential of the touch drive electrode is the same when detecting a press at the time of touch. It can be set as the structure which detects the variation
  • control unit may be configured to detect the pressing level by comparing a change amount of the voltage output from the conversion circuit with a threshold value prepared in advance (first). 4 configuration).
  • the pressing level is detected by comparing the amount of change in voltage with a threshold value prepared in advance, so that it is not necessary to accurately detect pressing based on the amount of change in voltage.
  • the pressure level can be easily detected.
  • the press detection electrode may be arranged in each of a plurality of regions obtained by dividing an active area capable of detecting a touch position (fifth configuration).
  • the fifth configuration it is possible to detect pressing independently in a plurality of regions of the active area.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of a liquid crystal panel with a touch sensor function according to the first embodiment.
  • the liquid crystal panel with a touch sensor function in the present embodiment includes, for example, a mobile phone (including a smartphone), a notebook computer (including a tablet notebook computer), a portable information terminal (including an electronic book, a PDA, etc.), digital It can be used for various electronic devices such as a photo frame, a car navigation display, and a portable game machine.
  • the liquid crystal panel with a touch sensor function in the first embodiment includes a TFT substrate (first substrate) 1, a CF substrate (second substrate) 2, a liquid crystal layer 3, a touch drive electrode Tx, and a touch detection electrode Rx.
  • the pressure detection electrode Fx, the sealing material 4, the optical adhesive film 5, and the cover glass 6 are provided.
  • the side on which the cover glass 6 is provided is the display surface side
  • the side on which the TFT substrate 1 is provided is the back side. Accordingly, the touch operation is performed by the user's finger or the like on the surface on the cover glass 6 side.
  • a back light (not shown) is also provided on the back side of the TFT substrate 1.
  • the liquid crystal layer 3 is interposed between the TFT substrate 1 and the CF substrate 2 that are arranged so as to face each other, and includes liquid crystal molecules that are substances whose optical characteristics change with voltage application.
  • the periphery of the liquid crystal layer 3 is surrounded by a sealing material 4.
  • Each of the TFT substrate 1 and the CF substrate 2 is made of a glass substrate that is substantially transparent (having high translucency).
  • Alignment films (not shown) for aligning liquid crystal molecules contained in the liquid crystal layer 3 are respectively formed on the inner surfaces of the TFT substrate 1 and the CF substrate 2.
  • polarizing plates are respectively attached to the outer surface sides of the TFT substrate 1 and the CF substrate 2.
  • the touch drive electrode Tx and the touch detection electrode Rx are electrodes for detecting a touch position (position coordinates).
  • the touch drive electrode Tx is provided on the inner surface side (the liquid crystal layer 3 side) of the CF substrate 2, and the touch detection electrode Rx is provided on the display surface side (the side opposite to the liquid crystal layer 3) of the CF substrate 2.
  • the touch drive electrode Tx and the touch detection electrode Rx are connected to a controller (control unit) 30 (see FIG. 3).
  • a drive signal is transmitted from the controller 30 to the touch drive electrode Tx, an electric field is formed between the touch drive electrode Tx and the touch detection electrode Rx.
  • the electric field between the touch drive electrode Tx and the touch detection electrode Rx is blocked at the touch position, thereby reducing the capacitance.
  • the controller 30 receives a detection signal from the touch detection electrode Rx, thereby detecting a difference in capacitance between a state where the surface of the liquid crystal panel is not touched and a state where the surface is touched, and detects a touch position.
  • the surface on the display surface side of the CF substrate 2 is attached to the cover glass 6 via the optical adhesive film 5.
  • the cover glass 6 is made of glass that is substantially transparent (having high translucency).
  • the pressure detection electrode Fx is provided on the inner surface side (the liquid crystal layer 3 side) of the TFT substrate 1.
  • the press detection electrode Fx is configured by a transparent electrode such as ITO.
  • a liquid crystal layer 3 is interposed between the press detection electrode Fx and the touch drive electrode Tx, and a capacitance is formed.
  • the capacitance changes due to a change in the distance between the press detection electrode Fx and the touch drive electrode Tx.
  • the pressing at the time of touch is detected.
  • the touch drive electrode Tx is paired with the touch detection electrode Rx to be used for detection of the touch position, and is paired with the press detection electrode Fx to be used for detection of pressure at the time of touch.
  • TFT Thin Film Transistor
  • pixel electrodes which are switching elements, are arranged in a matrix (matrix shape) on the inner surface of the TFT substrate 1.
  • the pressure detection electrode Fx is disposed on the TFT substrate 1
  • the TFT and the pixel electrode are disposed on the pressure detection electrode Fx via an insulating layer.
  • a gate wiring and a source wiring having a lattice shape are arranged around the TFT and the pixel electrode.
  • a color filter in which colored portions such as R (red), G (green), and B (blue) are arranged in a matrix is provided on the inner surface of the CF substrate 2.
  • Each colored portion of the color filter is arranged so as to overlap with each pixel electrode in plan view.
  • 2 (a) to 2 (c) are plan views showing arrangement positions of the touch detection electrode Rx, the touch drive electrode Tx, and the press detection electrode Fx, respectively.
  • 2A is a surface on the display surface side of the CF substrate 2
  • FIG. 2B is a surface on the inner surface side (liquid crystal layer 3 side) of the CF substrate 2
  • FIG. Each of the surfaces on the liquid crystal layer 3 side is shown.
  • the x-axis direction is a direction in which a gate wiring (not shown) extends (short-side direction of the liquid crystal panel)
  • the y-axis direction is a direction in which a source wiring (not shown) extends. (Long side direction of the liquid crystal panel).
  • an area surrounded by a broken line is an active area 21 in which the touch position can be detected.
  • the touch detection electrodes Rx extend in the y-axis direction in the active area 21, and a plurality of touch detection electrodes Rx are arranged in the x-axis direction.
  • a plurality of touch detection electrodes Rx are arranged in the x-axis direction.
  • Each of the touch detection electrodes Rx1 to Rx20 is connected to a lead line 22 disposed outside the active area 21.
  • the lead line 22 is connected to a controller 30 provided outside the substrate (TFT substrate 1 and CF substrate 2).
  • the touch drive electrodes Tx extend in the x-axis direction in the active area 21, and a plurality of touch drive electrodes Tx are arranged in the y-axis direction.
  • a leader line 23 provided outside the active area 21.
  • the lead wire 23 is connected to a connection line 25 provided on the TFT substrate 1 through a contact hole, and the connection line 25 is connected to a controller 30 provided outside the substrate (TFT substrate 1 and CF substrate 2). Connected with.
  • the touch detection electrode Rx may extend in the x-axis direction, and the touch drive electrode Tx may extend in the y-axis direction.
  • the press detection electrode Fx is formed in a flat plate shape in the active area 21.
  • the press detection electrode Fx is connected to the lead wire 24.
  • the lead line 24 is connected to a controller 30 provided outside the substrate (TFT substrate 1 and CF substrate 2).
  • the long side dimension of the CF substrate 2 is shorter than the long side dimension of the TFT substrate 1.
  • the CF substrate 2 is bonded in a state where one end portion (the upper end portion in FIG. 2) in the long side direction of the TFT substrate 1 is aligned. Accordingly, there is a region where the CF substrate 2 does not overlap over a predetermined range on the other end (lower end in FIG. 2) side in the long side direction of the TFT substrate 1. In this area, an unillustrated FPC (Flexible Printed Circuit) is mounted.
  • the lead lines 22 and 24 and the connection line 25 are connected to a controller 30 provided outside the substrate (TFT substrate 1 and CF substrate 2) via the FPC.
  • FIG. 3 is a diagram for explaining xy sensing for detecting a touch position and force sensing for detecting a press when touched. The xy sensing and the force sensing are performed by the controller 30.
  • the controller 30 obtains the coordinates of the touch position by transmitting drive signals to the touch drive electrodes Tx1 to Tx20 and receiving detection signals from the touch detection electrodes Rx1 to Rx20. That is, in the xy sensing, the touch drive electrodes Tx1 to Tx20 and the touch detection electrodes Rx1 to Rx20 are used.
  • the controller 30 detects the pressure by detecting the amount of change in the capacitance formed between the touch drive electrodes Tx1 to Tx20 and the pressure detection electrode Fx. That is, in the force sensing, the touch drive electrodes Tx1 to Tx20 and the press detection electrode Fx are used.
  • FIG. 4 is an equivalent circuit diagram showing the capacitance formed between the touch drive electrodes Tx1 to Tx20 and the press detection electrode Fx. Capacitances C1 to C20 are formed between the touch drive electrodes Tx1 to Tx20 and the pressure detection electrodes Fx, respectively. In the equivalent circuit diagram, as shown in FIG. 4, capacitors each having capacitances C1 to C20 are connected in parallel.
  • FIG. 5 is a diagram for explaining the timing when xy sensing and force sensing are performed, and is a diagram showing temporal changes in the voltage levels of the touch drive electrodes Tx1 to Tx20.
  • FIG. 5 is a diagram in the case of a sequential drive method in which drive signals are sequentially applied to the touch drive electrodes Tx1 to Tx20 during xy sensing.
  • a period in which the potentials of all the touch drive electrodes Tx1 to Tx20 are the same is referred to as a potential equal period T50.
  • the same potential period T50 the same low level signal is supplied to all the touch drive electrodes Tx1 to Tx20. Accordingly, the potentials of the touch drive electrodes Tx1 to Tx20 are not 0 in the same potential period T50. Further, since the press detection electrode Fx has a single flat plate shape, it has the same potential.
  • the force sensing is performed in the same potential period T50 in which the potentials of all the touch drive electrodes Tx1 to Tx20 are the same.
  • the capacitances C1 to C20 between the touch drive electrodes Tx1 to Tx20 and the pressure detection electrodes Fx at the touched positions change.
  • the pressure at the time of touch is detected.
  • the liquid crystal panel with a touch sensor function includes a CV conversion circuit for detecting the amount of change in capacitance as the amount of change in voltage.
  • the CV conversion circuit is formed in the controller 30, for example.
  • FIG. 6 is a diagram showing an example of a CV conversion circuit for detecting the amount of change in capacitance as the amount of change in voltage.
  • FIG. 6 shows an equivalent circuit during the same potential period T50 of the touch drive electrodes Tx1 to Tx20.
  • the CV conversion circuit includes switching elements SW1 to SW3, a feedback capacitor 61, and an operational amplifier 62.
  • the capacity of the feedback capacitor 61 is Cref.
  • the configuration of the CV conversion circuit is not limited to the configuration shown in FIG.
  • the capacitor 60 shown in FIG. 6 represents the sum of the capacitances formed between the touch drive electrodes Tx1 to Tx20 and the pressure detection electrode Fx, and the capacitance Csum is expressed by the following equation (1).
  • the Csum C1 + C2 + ... + C19 + C20 (1)
  • One end of the switching element SW1 is connected to the press detection electrode Fx, and the other end is connected to a voltage source of the voltage VCC.
  • the pressure detection electrode Fx is connected to the inverting input terminal of the operational amplifier 62 through the switching element SW2.
  • the non-inverting input terminal of the operational amplifier 62 is grounded.
  • a parallel circuit of the switching element SW3 and the feedback capacitor 61 is connected to a feedback path connecting the output terminal and the inverting input terminal of the operational amplifier 62.
  • the operation of the CV conversion circuit shown in FIG. 6 will be briefly described. First, the switching elements SW1 and SW3 are turned on, and the switching element SW2 is turned off. In this state, the capacitor 60 is charged with electric charge based on the voltage VCC of the voltage source. The charge of the feedback capacitor 61 is zero.
  • the change amount ⁇ Csum of the capacitance Csum changes according to the strength of the pressing. That is, the stronger the pressing, the larger the change amount ⁇ Csum of the capacitance Csum.
  • the pressure can be detected by detecting the change amount ⁇ Vout of the output voltage Vout.
  • FIG. 7 is a diagram illustrating an example of the relationship between the pressure and the change amount ⁇ Vout of the output voltage Vout. As shown in FIG. 7, the amount of change ⁇ Vout in the output voltage Vout increases as the pressure increases.
  • FIG. 7 shows an example in which two threshold values of a first threshold value Vth1 and a second threshold value Vth2 (Vth2> Vth1) are set. In this case, the magnitude of the press can be detected at three levels.
  • the threshold value is set according to the pressure level to be detected.
  • the pressing level 1 is when the change amount ⁇ Vout of the output voltage Vout is less than the first threshold value Vth1.
  • the pressing level 1 corresponds to pressing that touches the surface of the liquid crystal panel, for example.
  • the pressing level 2 is a case where the change amount ⁇ Vout of the output voltage Vout is not less than the first threshold value Vth1 and less than the second threshold value Vth2.
  • the pressing level 2 corresponds to pressing that pushes the surface of the liquid crystal panel, for example.
  • the pressing level 3 is when the change amount ⁇ Vout of the output voltage Vout is equal to or greater than the second threshold value Vth2.
  • the pressing level 3 corresponds to pressing when the surface of the liquid crystal panel is strongly pressed.
  • ⁇ ⁇ Pressing is not limited to detection at the above-described three levels.
  • only one threshold value to be compared with the change amount ⁇ Vout of the output voltage Vout may be prepared to detect pressing at two levels, or three or more threshold values may be prepared to have four or more levels. You may detect a press.
  • the magnitude of the pressure can also be detected. According to this method, the magnitude of the pressure can be detected finely as a numerical value rather than roughly detected in a plurality of stages.
  • the pressure detection electrode Fx for detecting the pressure is provided on the existing TFT substrate 1 and the touch drive electrode Tx for detecting the touch position is pressed. Since it is also used for detection, there is no need to newly arrange a pair of electrodes or to newly arrange another substrate for pressure detection, so the thickness is almost the same as a liquid crystal panel without a pressure detection function does not change. Further, since there is no air layer between the pressure detection electrode Fx and the touch drive electrode Tx and the liquid crystal layer 3 is interposed, there is no problem of interface reflection due to the presence of the air layer. Thereby, a touch position and a press can be detected without degrading display quality.
  • the pressure detection electrode Fx disposed on the TFT substrate 1 is configured by a transparent electrode such as ITO, it is possible to suppress a decrease in the aperture ratio due to the provision of the pressure detection electrode Fx. Further, by providing a CV conversion circuit for detecting pressure in a controller 30 provided outside the substrate (TFT substrate 1 and CF substrate 2), the switching element SW1 constituting the CV conversion circuit is provided. Since the SW3, the feedback capacitor 61, the operational amplifier 62 and the like need not be arranged on the TFT substrate 1, the aperture ratio does not decrease.
  • one press detection electrode Fx is arranged in the active area 21.
  • two press detection electrodes Fx are arranged in the active area 21.
  • FIG. 8 is a plan view showing the arrangement positions of the two press detection electrodes Fx1 and Fx2, and shows the surface on the inner surface side (the liquid crystal layer 3 side) of the TFT substrate 1.
  • the press detection electrodes Fx1 and Fx2 are arranged in a region obtained by dividing the active area 21 into two in the y-axis direction.
  • the press detection electrode Fx ⁇ b> 1 disposed on the upper side of the active area 21 is connected to the controller 30 via a lead line 81.
  • the pressure detection electrode Fx ⁇ b> 2 disposed below the active area 21 is connected to the controller 30 via a lead line 82.
  • the controller 30 selects one of the leader line 81 and the leader line 82.
  • a circuit for selecting one of the leader line 81 and the leader line 82 may be formed in the frame region on the TFT substrate 1.
  • FIG. 9 is an equivalent circuit diagram showing capacitance formed between the touch drive electrodes Tx1 to Tx20 and the press detection electrodes Fx1 and Fx2.
  • the touch drive electrodes Tx1 to Tx10 are disposed in a region facing the region in which the press detection electrode Fx1 is disposed in plan view. Further, the touch drive electrodes Tx11 to Tx20 are arranged in a region facing the region where the press detection electrode Fx2 is arranged in plan view. For this reason, capacitances C1 to C10 are formed between the touch drive electrodes Tx1 to Tx10 and the press detection electrodes Fx1, respectively. Capacitances C1 to C10 are connected in parallel. Capacitances C11 to C20 are formed between the touch drive electrodes Tx11 to Tx20 and the press detection electrode Fx2, respectively. Capacitances C11 to C20 are connected in parallel.
  • FIG. 10 is a diagram for explaining the timing of performing xy sensing and force sensing in the present embodiment, and is a diagram showing temporal changes in the voltage levels of the touch drive electrodes Tx1 to Tx20.
  • FIG. 10 is a diagram in the case of the sequential drive method in which drive signals are sequentially applied to the touch drive electrodes Tx1 to Tx20.
  • the first potential same period T101 is a period in which the potentials of the touch drive electrodes Tx1 to Tx10 are the same
  • the second potential same period T102 is a period in which the potentials of the touch drive electrodes Tx11 to Tx20 are the same.
  • the same low level signal is supplied to the touch drive electrodes Tx1 to Tx10
  • the second potential same period T102 the same low level is supplied to the touch drive electrodes Tx11 to Tx20. The signal is supplied.
  • FIG. 11 is a diagram illustrating an example of a CV conversion circuit for detecting the amount of change in capacitance as the amount of change in voltage.
  • FIG. 11 shows an equivalent circuit during the same potential period of the touch drive electrodes Tx1 to Tx20.
  • the same components as those of the circuit shown in FIG. Note that the capacitor 60a shown in FIG. 11 represents the total sum Csum1 of the capacitance formed between the touch drive electrodes Tx1 to Tx10 and the press detection electrode Fx1. Further, the capacitor 60b represents the total capacitance Csum2 formed between the touch drive electrodes Tx11 to Tx20 and the press detection electrode Fx2.
  • one input terminal 111a is connected to the press detection electrode Fx1
  • the other input terminal 111b is connected to the press detection electrode Fx2.
  • An output terminal 111c of the multiplexer 111 is connected to the switching elements SW1 and SW2.
  • the multiplexer 111 is provided in the controller 30.
  • the multiplexer 111 may be provided on the TFT substrate 1.
  • the multiplexer 111 is provided on the TFT substrate 1, it is preferably provided in the frame region in order not to reduce the aperture ratio.
  • pressing can be detected independently in the upper area and the lower area of the divided active area 21.
  • the present embodiment in the two areas of the active area 21 divided into two, it is possible to detect the pressure at the time of touch independently.
  • the liquid crystal panel with a touch sensor function in the present embodiment is applied to a smartphone, the smartphone is turned sideways, the right thumb and the left thumb are arranged on the left and right of the screen, respectively, and the left thumb press and the right thumb press It is possible to play with a game application that can give different operation instructions depending on the game.
  • the pressure detection electrodes Fx1 and Fx2 are arranged in the area divided into two in the y-axis direction in the active area 21, but the pressure detection electrodes are arranged in the areas divided into two in the x-axis direction. You may make it do.
  • the active area may be divided into three or more areas, and the pressure detection electrodes may be arranged corresponding to the divided areas. In this case, pressing can be detected independently in each of the three or more regions.
  • the present invention is not limited by the driving method of the liquid crystal panel.
  • the liquid crystal panel is not limited to a liquid crystal panel in which a pair of electrodes are provided with the liquid crystal layer 3 interposed therebetween and liquid crystal molecules are driven by a vertical electric field in a direction perpendicular to the TFT substrate 1.
  • An IPS touch sensor in which a pair of electrodes is provided on the liquid crystal layer 3 side of the substrate 1 and liquid crystal molecules are driven by a lateral electric field in a direction parallel to the TFT substrate 1 generated by applying a voltage between the pair of electrodes.
  • a liquid crystal panel with a function may be used.
  • TFT substrate TFT substrate
  • 2 CF substrate
  • 3 Liquid crystal layer
  • 21 Active area
  • 30 Controller
  • Tx (Tx1-Tx20) Touch drive electrode
  • Rx (Rx1-Rx20) Touch detection electrode
  • Fx (Fx1 -... Fx2) Pressure detection electrode

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Human Computer Interaction (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Geometry (AREA)
  • Position Input By Displaying (AREA)
  • Liquid Crystal (AREA)

Abstract

表示品質を低下させることなく、タッチ位置及び押圧を検出可能なタッチセンサ機能付き液晶パネルを提供する。タッチセンサ機能付き液晶パネルは、TFT基板(第1基板)1と、TFT基板1と対向するように配置されたCF基板(第2基板)2と、TFT基板1及びCF基板2の間に介在する液晶層3と、CF基板2の液晶層3側に配置されたタッチ駆動電極Txと、CF基板2の液晶層3とは反対側に配置されたタッチ検出電極Rxと、TFT基板1の液晶層3側に配置された押圧検出電極Fxと、タッチ駆動電極Txに駆動信号を供給し、タッチ検出電極Rxから出力される検出信号を検出することによってタッチ位置を検出するとともに、タッチ駆動電極Txと押圧検出電極Fxとの間で形成される静電容量の変化量を検出することによってタッチ時の押圧を検出する制御部とを備える。

Description

タッチセンサ機能付き液晶パネル
 本発明は、タッチセンサ機能付き液晶パネルに関する。
 タッチ位置に加えて、タッチされた位置の押圧を検出することができるタッチセンサ機能付き表示装置が知られている。特許文献1に記載のタッチパネルでは、タッチ位置を検出するための電極とは別に、押圧を検出するための電極を設け、押圧を検出するための電極と、対向する接地板との間の静電容量に基づいて、押圧を検出している。
特開2014-194591号公報
 しかしながら、特許文献1に記載のタッチパネルでは、図3に示すように、押圧を検出するための電極を配置するための圧力検出板と、接地板との間に空間部(空気層)が設けられているため、空間部における界面反射により、表示品質が低下する。
 本発明は、表示品質を低下させることなく、タッチ位置及び押圧を検出可能なタッチセンサ機能付き液晶パネルを提供することを目的とする。
 本発明の一実施形態におけるタッチセンサ機能付き液晶パネルは、第1基板と、前記第1基板と対向するように配置された第2基板と、前記第1基板及び前記第2基板の間に介在する液晶層と、前記第2基板の前記液晶層側に配置されたタッチ駆動電極と、前記第2基板の前記液晶層とは反対側に配置されたタッチ検出電極と、前記第1基板の前記液晶層側に配置された押圧検出電極と、前記タッチ駆動電極に駆動信号を供給し、前記タッチ検出電極から出力される検出信号を検出することによってタッチ位置を検出するとともに、前記タッチ駆動電極と前記押圧検出電極との間で形成される静電容量の変化量を検出することによってタッチ時の押圧を検出する制御部と、を備える。
 本実施形態の開示によれば、押圧を検出するための押圧検出電極を第1基板の液晶層側に配置し、押圧検出電極と、第2基板の液晶層側に配置されたタッチ駆動電極との間で形成される静電容量の変化量を検出することによって、タッチ時の押圧を検出する。押圧検出電極とタッチ駆動電極との間には空気層は存在せず、液晶層が介在する構成であるので、空気層が存在することによる界面反射の問題は生じない。これにより、表示品質を低下させることなく、タッチ位置及び押圧を検出することができる。
図1は、第1の実施形態におけるタッチセンサ機能付き液晶パネルの概略構成を示す断面図である。 図2は、タッチ検出電極、タッチ駆動電極、押圧検出電極の配置位置を示す平面図である。 図3は、タッチ位置を検出するためのx-yセンシングと、タッチされた際の押圧を検出するためのフォースセンシングについて説明するための図である。 図4は、タッチ駆動電極と押圧検出電極との間で形成される静電容量を示す等価回路図である。 図5は、逐次駆動方式において、タッチ駆動電極の電圧レベルの時間変化を示す図である。 図6は、静電容量の変化量を電圧の変化量として検出するためのC-V変換回路の一例を示す図である。 図7は、押圧力と演算増幅器の出力電圧の変化量との関係の一例を示す図である。 図8は、第2の実施形態において、2つの押圧検出電極の配置位置を示す平面図である。 図9は、第2の実施形態において、タッチ駆動電極と押圧検出電極との間で形成される静電容量を示す等価回路図である。 図10は、第2の実施形態において、タッチ駆動電極の電圧レベルの時間変化を示す図である。 図11は、第2の実施形態において、静電容量の変化量を電圧の変化量として検出するためのC-V変換回路の一例を示す図である。
 本発明の一実施形態におけるタッチセンサ機能付き液晶パネルは、第1基板と、前記第1基板と対向するように配置された第2基板と、前記第1基板及び前記第2基板の間に介在する液晶層と、前記第2基板の前記液晶層側に配置されたタッチ駆動電極と、前記第2基板の前記液晶層とは反対側に配置されたタッチ検出電極と、前記第1基板の前記液晶層側に配置された押圧検出電極と、前記タッチ駆動電極に駆動信号を供給し、前記タッチ検出電極から出力される検出信号を検出することによってタッチ位置を検出するとともに、前記タッチ駆動電極と前記押圧検出電極との間で形成される静電容量の変化量を検出することによってタッチ時の押圧を検出する制御部と、を備える(第1の構成)。
 第1の構成によれば、押圧を検出するための押圧検出電極を第1基板の液晶層側に配置し、押圧検出電極と、第2基板の液晶層側に配置されたタッチ駆動電極との間で形成される静電容量の変化量を検出することによって、タッチ時の押圧を検出する構成としている。押圧検出電極とタッチ駆動電極との間には空気層は存在せず、液晶層が介在する構成であるので、空気層が存在することによる界面反射の問題は生じない。また、押圧検出機能の無い液晶パネルと比べて厚みがほとんど変わらない。これにより、表示品質を低下させることなく、タッチ位置及び押圧を検出することができる。
 第1の構成において、前記タッチ駆動電極と前記押圧検出電極との間で形成される静電容量の変化量を電圧の変化量に変換する変換回路をさらに備え、前記制御部は、前記変換回路から出力される電圧の変化量に基づいて、タッチ時の押圧を検出する構成としても良い(第2の構成)。
 第2の構成によれば、静電容量の変化量を電圧の変化量に変換する変換回路を備えるので、検出しやすい電圧の変化量に基づいて、タッチ時の押圧を検出することができる。
 第2の構成において、前記制御部は、タッチ時の押圧を検出する際、前記タッチ駆動電極の電位が同一である期間中に、前記タッチ駆動電極と前記押圧検出電極との間で形成される静電容量の変化量を検出する構成とすることができる(第3の構成)。
 第3の構成によれば、タッチ位置の検出と押圧の検出の両方に用いられるタッチ駆動電極の電位が同一である期間中に、タッチ駆動電極と押圧検出電極との間で形成される静電容量の変化量を検出するので、精度良く押圧を検出することができる。
 第2または第3の構成において、前記制御部は、前記変換回路から出力される電圧の変化量を、予め用意されている閾値と比較することによって、押圧レベルを検出する構成としても良い(第4の構成)。
 第4の構成によれば、電圧の変化量を、予め用意されている閾値と比較することによって押圧レベルを検出するので、電圧の変化量に基づいて正確に押圧を検出する必要が無い場合に、簡単に押圧レベルを検出することができる。
 第1から第4のいずれかの構成において、前記押圧検出電極は、タッチ位置を検出可能なアクティブエリアを分割した複数の領域それぞれに配置されている構成としても良い(第5の構成)。
 第5の構成によれば、アクティブエリアの複数の領域において独立して押圧を検出することができる。
 [実施の形態]
 以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一または相当部分には同一符号を付してその説明は繰り返さない。なお、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。また、各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。
 [第1の実施形態]
 図1は、第1の実施形態におけるタッチセンサ機能付き液晶パネルの概略構成を示す断面図である。本実施形態におけるタッチセンサ機能付き液晶パネルは、例えば、携帯電話(スマートフォンなどを含む)、ノートパソコン(タブレット型ノートパソコンなどを含む)、携帯型情報端末(電子ブックやPDAなどを含む)、デジタルフォトフレーム、カーナビゲーションのディスプレイ、携帯型ゲーム機などの各種電子機器等に用いることができる。
 第1の実施形態におけるタッチセンサ機能付き液晶パネルは、TFT基板(第1基板)1と、CF基板(第2基板)2と、液晶層3と、タッチ駆動電極Txと、タッチ検出電極Rxと、押圧検出電極Fxと、封止材4と、光学粘着フィルム5と、カバーガラス6とを備える。図1において、カバーガラス6が設けられている側が表示面側であり、TFT基板1が設けられている側が裏側である。従って、ユーザの指等によってタッチ操作が行われるのは、カバーガラス6側の表面である。なお、TFT基板1の裏側には、図示しないバックライトも設けられている。
 液晶層3は、互いに対向するように配置されているTFT基板1とCF基板2との間に介在しており、電圧印加に伴って光学特性が変化する物質である液晶分子を含む。液晶層3は、その周囲を封止材4によって囲まれている。
 TFT基板1及びCF基板2はそれぞれ、ほぼ透明な(高い透光性を有する)ガラス基板からなる。TFT基板1及びCF基板2の内面側には、液晶層3に含まれる液晶分子を配向させるための配向膜(不図示)がそれぞれ形成されている。また、TFT基板1及びCF基板2の外面側には、それぞれ偏光板(不図示)が貼り付けられている。
 タッチ駆動電極Tx及びタッチ検出電極Rxは、タッチ位置(位置座標)を検出するための電極である。タッチ駆動電極Txは、CF基板2の内面側(液晶層3側)に設けられ、タッチ検出電極Rxは、CF基板2の表示面側(液晶層3とは反対側)に設けられている。タッチ駆動電極Tx及びタッチ検出電極Rxは、コントローラ(制御部)30(図3参照)と接続されている。
 コントローラ30からタッチ駆動電極Txに駆動信号が伝送されると、タッチ駆動電極Txとタッチ検出電極Rxとの間に電界が形成される。この状態で、例えばユーザの指が液晶パネルの表面をタッチすると、タッチ位置において、タッチ駆動電極Txとタッチ検出電極Rxとの間の電界が遮られることにより、静電容量が減少する。コントローラ30は、タッチ検出電極Rxから検出信号を受信することによって、液晶パネルの表面がタッチされていない状態とタッチされた状態との静電容量の差を検出し、タッチ位置を検出する。
 CF基板2の表示面側の面は、光学粘着フィルム5を介してカバーガラス6に貼り付けられている。カバーガラス6は、ほぼ透明な(高い透光性を有する)ガラスからなる。
 TFT基板1の内面側(液晶層3側)には、押圧検出電極Fxが設けられている。押圧検出電極Fxは、ITO等の透明電極により構成されている。図1に示すように、押圧検出電極Fxとタッチ駆動電極Txとの間には、液晶層3が介在しており、静電容量が形成されている。ユーザの指等が液晶パネルの表面をタッチすると、押圧検出電極Fxとタッチ駆動電極Txとの間の距離が変化することによって、静電容量が変化する。このときの静電容量の変化量を検出することにより、タッチ時の押圧を検出する。
 すなわち、タッチ駆動電極Txは、タッチ検出電極Rxと対になってタッチ位置の検出に用いられるとともに、押圧検出電極Fxと対になってタッチ時の押圧の検出に用いられる。
 なお、本発明と直接の関係が無いため、図示は省略しているが、TFT基板1の内面側の面には、スイッチング素子であるTFT(Thin Film Transistor)及び画素電極が行列状(マトリクス状)に複数設けられている。具体的には、TFT基板1の上に押圧検出電極Fxが配置され、押圧検出電極Fxの上に、絶縁層を介して、TFT及び画素電極が配置されている。TFT及び画素電極の周りには、格子状をなすゲート配線及びソース配線が配設されている。また、CF基板2の内面側の面には、R(赤色),G(緑色),B(青色)等の各着色部がマトリクス状に配置されたカラーフィルタが設けられている。カラーフィルタの各着色部は、平面視で各画素電極と重畳するように配置されている。
 図2(a)~図2(c)は、タッチ検出電極Rx、タッチ駆動電極Tx、押圧検出電極Fxの配置位置をそれぞれ示す平面図である。図2(a)はCF基板2の表示面側の面、図2(b)はCF基板2の内面側(液晶層3側)の面、図2(c)はTFT基板1の内面側(液晶層3側)の面をそれぞれ示している。図2(a)~図2(c)において、x軸方向は図示しないゲート配線が延びている方向(液晶パネルの短辺方向)であり、y軸方向は図示しないソース配線が延びている方向(液晶パネルの長辺方向)である。なお、図2(a)~図2(c)において、破線で囲まれた領域は、タッチ位置を検出可能なアクティブエリア21である。
 図2(a)に示すように、タッチ検出電極Rxは、アクティブエリア21内においてy軸方向に延びており、x軸方向に複数配置されている。ここでは、20個のタッチ検出電極Rx1~Rx20が設けられているものとして説明する。各タッチ検出電極Rx1~Rx20は、アクティブエリア21の外側に配設された引出線22と接続されている。引出線22は、基板(TFT基板1及びCF基板2)の外部に設けられたコントローラ30と接続されている。
 図2(b)に示すように、タッチ駆動電極Txは、アクティブエリア21内においてx軸方向に延びており、y軸方向に複数配置されている。ここでは、20個のタッチ駆動電極Tx1~Tx20が設けられているものとして説明する。各タッチ駆動電極Tx1~Tx20は、アクティブエリア21の外側に配設された引出線23と接続されている。引出線23は、コンタクトホールを介して、TFT基板1に設けられた接続線25と接続されており、接続線25は、基板(TFT基板1及びCF基板2)の外部に設けられたコントローラ30と接続されている。
 なお、タッチ検出電極Rxがx軸方向に延びており、タッチ駆動電極Txがy軸方向に延びた構成であっても良い。
 図2(c)に示すように、押圧検出電極Fxは、アクティブエリア21内に平板状に形成されている。押圧検出電極Fxは、引出線24と接続されている。引出線24は、基板(TFT基板1及びCF基板2)の外部に設けられたコントローラ30と接続されている。
 図2(a)~図2(c)に示すように、CF基板2の長辺寸法は、TFT基板1の長辺寸法よりも短い。CF基板2は、TFT基板1の長辺方向における一方の端部(図2の上側の端部)を揃えた状態で貼り合わせられている。従って、TFT基板1の長辺方向における他方の端部(図2の下側の端部)側には、所定範囲にわたってCF基板2が重ならない領域が存在する。この領域には、図示しないFPC(Flexible Printed Circuit)が実装されている。引出線22、24、及び接続線25は、FPCを介して、基板(TFT基板1及びCF基板2)の外部に設けられたコントローラ30と接続されている。
 図3は、タッチ位置を検出するためのx-yセンシングと、タッチされた際の押圧を検出するためのフォースセンシングについて説明するための図である。x-yセンシング及びフォースセンシングは、コントローラ30によって行われる。
 まず始めに、x-yセンシングについて説明する。コントローラ30は、タッチ駆動電極Tx1~Tx20に駆動信号を送信し、タッチ検出電極Rx1~Rx20からの検出信号を受信することによって、タッチ位置の座標を求める。すなわち、x-yセンシングでは、タッチ駆動電極Tx1~Tx20及びタッチ検出電極Rx1~Rx20が用いられる。
 続いて、フォースセンシングについて説明する。コントローラ30は、タッチ駆動電極Tx1~Tx20と押圧検出電極Fxとの間で形成される静電容量の変化量を検出することによって、押圧を検出する。すなわち、フォースセンシングでは、タッチ駆動電極Tx1~Tx20及び押圧検出電極Fxが用いられる。
 図4は、タッチ駆動電極Tx1~Tx20と押圧検出電極Fxとの間で形成される静電容量を示す等価回路図である。タッチ駆動電極Tx1~Tx20と押圧検出電極Fxとの間にはそれぞれ、静電容量C1~C20が形成される。等価回路図では、図4に示すように、静電容量C1~C20をそれぞれ有するコンデンサが並列に接続された状態である。
 図5は、x-yセンシング及びフォースセンシングを行うタイミングを説明するための図であって、タッチ駆動電極Tx1~Tx20の電圧レベルの時間変化を示す図である。図5は、x-yセンシング時に、タッチ駆動電極Tx1~Tx20に順に駆動信号を印加する逐次駆動方式の場合の図である。
 図5において、全てのタッチ駆動電極Tx1~Tx20の電位が同一である期間を電位同一期間T50と呼ぶ。この電位同一期間T50では、全てのタッチ駆動電極Tx1~Tx20に、同一のロー(Low)レベルの信号が供給されている。従って、電位同一期間T50において、タッチ駆動電極Tx1~Tx20の電位は0ではない。また、押圧検出電極Fxは1枚の平板状の形状であるから、同電位である。
 フォースセンシングは、全てのタッチ駆動電極Tx1~Tx20の電位が同一である電位同一期間T50に行われる。上述したように、ユーザの指等が液晶パネルの表面をタッチすると、タッチされた位置におけるタッチ駆動電極Tx1~Tx20と押圧検出電極Fxとの間の静電容量C1~C20が変化する。この時の静電容量C1~C20の変化量を検出することにより、タッチ時の押圧を検出する。本実施形態におけるタッチセンサ機能付き液晶パネルでは、静電容量の変化量を電圧の変化量として検出するためのC-V変換回路を備える。C-V変換回路は、例えばコントローラ30内に形成されている。
 図6は、静電容量の変化量を電圧の変化量として検出するためのC-V変換回路の一例を示す図である。図6では、タッチ駆動電極Tx1~Tx20の電位同一期間T50中における等価回路を示している。C-V変換回路は、スイッチング素子SW1~SW3と、帰還コンデンサ61と、演算増幅器62とを備える。帰還コンデンサ61の容量はCrefである。ただし、C-V変換回路の構成が図6に示す構成に限定されることはない。
 図6に示すコンデンサ60は、タッチ駆動電極Tx1~Tx20と押圧検出電極Fxとの間にそれぞれ形成される静電容量の総和を表しており、その容量Csumは、次式(1)により表される。
  Csum=C1+C2+…+C19+C20    …(1)
 スイッチング素子SW1の一端は押圧検出電極Fxと接続され、他端は電圧VCCの電圧源と接続されている。押圧検出電極Fxは、スイッチング素子SW2を介して、演算増幅器62の反転入力端子と接続されている。演算増幅器62の非反転入力端子は接地されている。演算増幅器62の出力端子と反転入力端子とを結ぶ帰還路に、スイッチング素子SW3と帰還コンデンサ61との並列回路が接続されている。
 図6に示すC-V変換回路の動作について簡単に説明する。まず、スイッチング素子SW1及びSW3がオンされ、スイッチング素子SW2はオフされる。この状態では、電圧源の電圧VCCに基づいて、コンデンサ60に電荷が充電される。帰還コンデンサ61の充電電荷はゼロである。
 続いて、スイッチング素子SW1及びSW3がオフされ、その後にスイッチング素子SW2がオンされる。これにより、コンデンサ60の電荷が帰還コンデンサ61に移り、帰還コンデンサ61が充電される。帰還コンデンサ61の充電電圧は、演算増幅器62の出力端子の電圧Vout(以下、出力電圧Voutと呼ぶ)として検出される。出力電圧Voutは、次式(2)により表される。
  Vout=(Csum/Cref)×VCC    …(2)
 ユーザの指等が液晶パネルの表面をタッチしたときに、押圧の強さに応じて、静電容量Csumの変化量ΔCsumが変化する。すなわち、押圧が強いほど静電容量Csumの変化量ΔCsumは大きくなる。式(2)より、静電容量Csumが変化した場合の出力電圧Voutの変化量ΔVoutは、次式(3)で表される。
  ΔVout=(ΔCsum/Cref)×VCC   …(3)
 すなわち、出力電圧Voutの変化量ΔVoutを検出することにより、押圧を検出することができる。
 図7は、押圧と出力電圧Voutの変化量ΔVoutとの関係の一例を示す図である。図7に示すように、押圧が大きくなるほど、出力電圧Voutの変化量ΔVoutは大きくなる。
 ここで、出力電圧Voutの変化量ΔVoutと比較するための閾値を予め複数設定しておくことにより、押圧を複数段階(複数レベル)で検出することができる。図7では、第1の閾値Vth1と第2の閾値Vth2(Vth2>Vth1)の2つの閾値を設定した例について示している。この場合、押圧の大きさを3段階のレベルで検出することができる。閾値は、検出したい押圧レベルに応じて設定しておく。
 押圧レベル1は、出力電圧Voutの変化量ΔVoutが第1の閾値Vth1未満の場合である。押圧レベル1は、例えば液晶パネルの表面を触る程度の押圧に対応する。
 押圧レベル2は、出力電圧Voutの変化量ΔVoutが第1の閾値Vth1以上であって、かつ、第2の閾値Vth2未満の場合である。押圧レベル2は、例えば液晶パネルの表面を押すくらいの押圧に対応する。
 押圧レベル3は、出力電圧Voutの変化量ΔVoutが第2の閾値Vth2以上の場合である。押圧レベル3は、液晶パネルの表面を強く押した場合の押圧に対応する。
 押圧は、上述した3段階のレベルでの検出に限定されることはない。例えば、出力電圧Voutの変化量ΔVoutと比較する閾値を1つだけ用意して、2段階のレベルで押圧を検出しても良いし、閾値を3つ以上用意して、4段階以上のレベルで押圧を検出しても良い。
 また、図7に示すような押圧と出力電圧Voutの変化量ΔVoutとの関係を示すテーブルデータを予め用意しておいて、出力電圧Voutの変化量ΔVoutに基づいて、テーブルデータを参照することにより、押圧の大きさを検出することもできる。この方法によれば、押圧の大きさを複数段階で大まかに検出するのではなく、数値として細かく検出することができる。
 第1の実施形態におけるタッチセンサ機能付き液晶パネルによれば、押圧を検出するための押圧検出電極Fxを既存のTFT基板1上に設けるとともに、タッチ位置を検出するためのタッチ駆動電極Txを押圧検出のためにも用いるので、押圧検出のために一対の電極を新たに配置する必要や、別の基板を新たに配置する必要がないので、押圧検出機能の無い液晶パネルと比べて厚みはほとんど変わらない。また、押圧検出電極Fxとタッチ駆動電極Txとの間には空気層は存在せず、液晶層3が介在する構成であるので、空気層が存在することによる界面反射の問題は生じない。これにより、表示品質を低下させることなく、タッチ位置及び押圧を検出することができる。
 上述したように、TFT基板1上に配置する押圧検出電極Fxは、ITO等の透明電極により構成されているので、押圧検出電極Fxを設けることによる開口率の低下を抑制することができる。また、押圧を検出するためのC-V変換回路を、基板(TFT基板1及びCF基板2)の外部に設けられたコントローラ30内に設けることにより、C-V変換回路を構成するスイッチング素子SW1~SW3、帰還コンデンサ61、演算増幅器62等をTFT基板1上に配置する必要がないので、開口率が低下することはない。
 [第2の実施形態]
 第1の実施形態では、アクティブエリア21内において、1つの押圧検出電極Fxが配置されていた。第2の実施形態では、アクティブエリア21内において、2つの押圧検出電極Fxが配置されている。
 図8は、2つの押圧検出電極Fx1、Fx2の配置位置を示す平面図であって、TFT基板1の内面側(液晶層3側)の面を示している。図8に示すように、アクティブエリア21をy軸方向に2分割した領域に、押圧検出電極Fx1とFx2を配置している。アクティブエリア21の上側に配置されている押圧検出電極Fx1は、引出線81を介してコントローラ30と接続されている。アクティブエリア21の下側に配置されている押圧検出電極Fx2は、引出線82を介してコントローラ30と接続されている。
 コントローラ30は、引出線81及び引出線82のうちの一方を選択する。ただし、引出線81及び引出線82のうちの一方を選択するための回路をTFT基板1上の額縁領域に形成するようにしても良い。
 図9は、タッチ駆動電極Tx1~Tx20と押圧検出電極Fx1、Fx2との間で形成される静電容量を示す等価回路図である。タッチ駆動電極Tx1~Tx10は、押圧検出電極Fx1が配置されている領域と平面視で対向する領域に配置されている。また、タッチ駆動電極Tx11~Tx20は、押圧検出電極Fx2が配置されている領域と平面視で対向する領域に配置されている。このため、タッチ駆動電極Tx1~Tx10と押圧検出電極Fx1との間にはそれぞれ、静電容量C1~C10が形成される。静電容量C1~C10は、並列に接続された状態である。また、タッチ駆動電極Tx11~Tx20と押圧検出電極Fx2との間にはそれぞれ、静電容量C11~C20が形成される。静電容量C11~C20は、並列に接続された状態である。
 図10は、本実施形態において、x-yセンシング及びフォースセンシングを行うタイミングを説明するための図であって、タッチ駆動電極Tx1~Tx20の電圧レベルの時間変化を示す図である。図10は、タッチ駆動電極Tx1~Tx20に順に駆動信号を印加する逐次駆動方式の場合の図である。
 第1の電位同一期間T101は、タッチ駆動電極Tx1~Tx10の電位が同一である期間であり、第2の電位同一期間T102は、タッチ駆動電極Tx11~Tx20の電位が同一である期間である。第1の電位同一期間T101では、タッチ駆動電極Tx1~Tx10に、同一のローレベルの信号が供給されており、第2の電位同一期間T102では、タッチ駆動電極Tx11~Tx20に、同一のローレベルの信号が供給されている。
 押圧検出電極Fx1が設けられているエリアでのフォースセンシングは、タッチ駆動電極Tx1~Tx10の電位が同一である第1の電位同一期間T101に行われる。第1の電位同一期間T101中におけるタッチ駆動電極Tx1~Tx10と押圧検出電極Fx1との間に形成される静電容量の総和Csum1は、次式(4)で表される。
  Csum1=C1+C2+…+C9+C10    …(4)
 押圧検出電極Fx2が設けられているエリアでのフォースセンシングは、タッチ駆動電極Tx11~Tx20の電位が同一である第2の電位同一期間T102に行われる。第2の電位同一期間T102中におけるタッチ駆動電極Tx11~Tx20と押圧検出電極Fx2との間に形成される静電容量の総和Csum2は、次式(5)で表される。
  Csum2=C11+C12+…+C19+C20    …(5)
 図11は、静電容量の変化量を電圧の変化量として検出するためのC-V変換回路の一例を示す図である。図11では、タッチ駆動電極Tx1~Tx20の電位同一期間中における等価回路を示している。図11において、図6に示す回路と同じ構成部分については同一の符号を付して詳しい説明は省略する。なお、図11に示すコンデンサ60aは、タッチ駆動電極Tx1~Tx10と押圧検出電極Fx1との間にそれぞれ形成される静電容量の総和Csum1を表している。また、コンデンサ60bは、タッチ駆動電極Tx11~Tx20と押圧検出電極Fx2との間にそれぞれ形成される静電容量の総和Csum2を表している。
 マルチプレクサ111の2つの入力端子111a、111bのうち、一方の入力端子111aは押圧検出電極Fx1と接続され、他方の入力端子111bは押圧検出電極Fx2と接続されている。マルチプレクサ111の出力端子111cは、スイッチング素子SW1及びSW2と接続されている。マルチプレクサ111は、コントローラ30内に設けられている。ただし、マルチプレクサ111をTFT基板1上に設けても良い。TFT基板1上にマルチプレクサ111を設ける場合には、開口率を低下させないために、額縁領域に設けることが好ましい。
 本実施形態では、2分割されたアクティブエリア21の上側の領域と下側の領域において、それぞれ独立して押圧を検出することができる。
 タッチ駆動電極Tx1~Tx10の電位が同一である第1の電位同一T101に、マルチプレクサ111の入力端子111aと出力端子111cとを接続すると、静電容量Csum1の変化量ΔCsum1に応じた出力電圧Voutの変化量ΔVout1を検出することができる(次式(6)参照)。出力電圧Voutの変化量ΔVout1を検出することにより、2分割されたアクティブエリア21の上側の領域の押圧を検出することができる。
  ΔVout1=(ΔCsum1/Cref)×VCC   …(6)
 タッチ駆動電極Tx11~Tx20の電位が同一である第2の電位同一期間T102に、マルチプレクサ111の入力端子111bと出力端子111cとを接続すると、静電容量Csum2の変化量ΔCsum2に応じた出力電圧Voutの変化量ΔVout2を検出することができる(次式(7)参照)。出力電圧Voutの変化量ΔVout2を検出することにより、2分割されたアクティブエリア21の下側の領域の押圧を検出することができる。
  ΔVout2=(ΔCsum2/Cref)×VCC   …(7)
 このように、本実施形態では、2分割されたアクティブエリア21の2つの領域において、それぞれ独立してタッチ時の押圧を検出することができる。例えば、本実施形態におけるタッチセンサ機能付き液晶パネルをスマートフォンに適用した場合において、スマートフォンを横向きにして、右手親指と左手親指を画面の左右にそれぞれ配置して、左手親指の押圧及び右手親指の押圧に応じて異なる操作指示を出すことができるようなゲームアプリで遊ぶことができる。
 以上、上述した実施形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施形態を適宜変形して実施することが可能である。
 例えば、第2の実施形態において、アクティブエリア21をy軸方向に2分割した領域にそれぞれ、押圧検出電極Fx1とFx2を配置したが、x軸方向に2分割した領域にそれぞれ押圧検出電極を配置するようにしても良い。また、アクティブエリアを3つ以上の領域に分割して、分割した領域のそれぞれに対応して押圧検出電極を配置する構成とすることもできる。この場合、3つ以上の複数の領域それぞれで独立して押圧を検出することができる。
 液晶パネルの駆動方式によって本発明が限定されることはない。例えば、上述した実施形態で説明したような、液晶層3を挟んで一対の電極が設けられ、TFT基板1と垂直な方向の縦電界によって液晶分子を駆動する方式の液晶パネルに限られず、TFT基板1の液晶層3側に、一対の電極が設けられ、一対の電極間に電圧を印加することによって生じる、TFT基板1と平行な方向の横電界によって液晶分子を駆動するIPS方式のタッチセンサ機能付き液晶パネルであっても良い。
1…TFT基板、2…CF基板、3…液晶層、21…アクティブエリア、30…コントローラ、Tx(Tx1~Tx20)…タッチ駆動電極、Rx(Rx1~Rx20)…タッチ検出電極、Fx(Fx1~Fx2)…押圧検出電極
 

Claims (5)

  1.  第1基板と、
     前記第1基板と対向するように配置された第2基板と、
     前記第1基板及び前記第2基板の間に介在する液晶層と、
     前記第2基板の前記液晶層側に配置されたタッチ駆動電極と、
     前記第2基板の前記液晶層とは反対側に配置されたタッチ検出電極と、
     前記第1基板の前記液晶層側に配置された押圧検出電極と、
     前記タッチ駆動電極に駆動信号を供給し、前記タッチ検出電極から出力される検出信号を検出することによってタッチ位置を検出するとともに、前記タッチ駆動電極と前記押圧検出電極との間で形成される静電容量の変化量を検出することによってタッチ時の押圧を検出する制御部と、
    を備えるタッチセンサ機能付き液晶パネル。
  2.  前記タッチ駆動電極と前記押圧検出電極との間で形成される静電容量の変化量を電圧の変化量に変換する変換回路をさらに備え、
     前記制御部は、前記変換回路から出力される電圧の変化量に基づいて、タッチ時の押圧を検出する、請求項1に記載のタッチセンサ機能付き液晶パネル。
  3.  前記制御部は、タッチ時の押圧を検出する際、前記タッチ駆動電極の電位が同一である期間中に、前記タッチ駆動電極と前記押圧検出電極との間で形成される静電容量の変化量を検出する、請求項2に記載のタッチセンサ機能付き液晶パネル。
  4.  前記制御部は、前記変換回路から出力される電圧の変化量を、予め用意されている閾値と比較することによって、押圧レベルを検出する、請求項2または3に記載のタッチセンサ機能付き液晶パネル。
  5.  前記押圧検出電極は、タッチ位置を検出可能なアクティブエリアを分割した複数の領域それぞれに配置されている、請求項1から4のいずれか一項に記載のタッチセンサ機能付き液晶パネル。
     
PCT/JP2016/084492 2015-11-24 2016-11-21 タッチセンサ機能付き液晶パネル WO2017090560A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680062448.3A CN108351719A (zh) 2015-11-24 2016-11-21 带触摸传感器功能的液晶面板
US15/778,472 US10401671B2 (en) 2015-11-24 2016-11-21 Liquid crystal panel having touch sensor function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015228437 2015-11-24
JP2015-228437 2015-11-24

Publications (1)

Publication Number Publication Date
WO2017090560A1 true WO2017090560A1 (ja) 2017-06-01

Family

ID=58763533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084492 WO2017090560A1 (ja) 2015-11-24 2016-11-21 タッチセンサ機能付き液晶パネル

Country Status (3)

Country Link
US (1) US10401671B2 (ja)
CN (1) CN108351719A (ja)
WO (1) WO2017090560A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7383869B2 (ja) * 2020-02-13 2023-11-21 シャープ株式会社 タッチパネル及び表示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204981A (ja) * 2008-02-28 2009-09-10 Citizen Holdings Co Ltd 液晶装置
JP2011258043A (ja) * 2010-06-10 2011-12-22 Sony Corp 情報処理装置、情報処理方法及びコンピュータプログラム
JP2012079135A (ja) * 2010-10-01 2012-04-19 Optrex Corp タッチパネル
JP2015106417A (ja) * 2013-11-29 2015-06-08 株式会社 ハイヂィープ タッチレベルに伴うフィードバック方法、及びこれを行うタッチ入力装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026845A1 (ja) * 2008-09-03 2010-03-11 Mizushima Masanori 入力装置
CN101989003A (zh) * 2009-07-31 2011-03-23 群康科技(深圳)有限公司 触控液晶显示装置
JP2012252025A (ja) 2009-09-30 2012-12-20 Sharp Corp タッチセンサ機能付き液晶パネル
CN102004573B (zh) * 2010-07-28 2014-01-01 深圳市汇顶科技股份有限公司 一种触摸检测系统及其检测方法
JP5628774B2 (ja) * 2011-11-07 2014-11-19 株式会社ジャパンディスプレイ タッチセンサ付き表示装置、電位制御方法、およびプログラム
JP6079372B2 (ja) 2013-03-28 2017-02-15 富士通株式会社 検出装置、検出方法および電子機器
JP5722954B2 (ja) 2013-06-23 2015-05-27 日本写真印刷株式会社 押圧検出機能付タッチパネル
KR101452302B1 (ko) * 2013-07-29 2014-10-22 주식회사 하이딥 터치 센서 패널
CN105068695A (zh) * 2015-09-11 2015-11-18 京东方科技集团股份有限公司 具有压力检测功能的触控显示面板、显示装置及驱动方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204981A (ja) * 2008-02-28 2009-09-10 Citizen Holdings Co Ltd 液晶装置
JP2011258043A (ja) * 2010-06-10 2011-12-22 Sony Corp 情報処理装置、情報処理方法及びコンピュータプログラム
JP2012079135A (ja) * 2010-10-01 2012-04-19 Optrex Corp タッチパネル
JP2015106417A (ja) * 2013-11-29 2015-06-08 株式会社 ハイヂィープ タッチレベルに伴うフィードバック方法、及びこれを行うタッチ入力装置

Also Published As

Publication number Publication date
CN108351719A (zh) 2018-07-31
US10401671B2 (en) 2019-09-03
US20180364511A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
US11630544B2 (en) Touch panel, display panel, and display unit
TWI594160B (zh) 整合有觸控感測與壓力感測之顯示器
TWI605369B (zh) 互容式壓力感測器以及具有壓力感測功能之觸控顯示裝置與其壓力感測方法
JP5968243B2 (ja) 入力装置、表示装置および電子機器
WO2017096916A1 (zh) 显示设备及其驱动方法
KR20090004677A (ko) 터치 패널을 갖는 표시 장치
JP2011008725A (ja) タッチセンサ、表示装置および電子機器
WO2013190909A1 (ja) タッチパネル付き表示装置
JP2011170659A (ja) センサ装置及び情報処理装置
JP2010277461A (ja) タッチパネル、表示パネル、タッチパネル用基板、表示パネル用基板および表示装置
JP2009211531A (ja) 表示装置
JP2013168172A (ja) 薄型タッチ装置
US20180088700A1 (en) Plug-in touch display with pressure sensing function
TWI626579B (zh) 顯示面板
US10802640B2 (en) Touch display device
US10185423B2 (en) Plug-in touch display device and an electronic device
WO2016090714A1 (zh) 一种触摸屏及其制造方法
US20180046278A1 (en) Touch display panel
JP2010079734A (ja) 静電容量型タッチパネル
KR20140093445A (ko) 셀프 커패시터 방식 인셀 터치 액정표시장치
CN102736344B (zh) 触控式彩色面板、触控式电泳彩色显示面板及其装置
TWI637299B (zh) 觸控顯示裝置
TW201712492A (zh) 具有壓力感測的顯示裝置
JP2010003060A (ja) タッチパネル付き表示装置
JP2014021865A (ja) タッチパネル付液晶表示装置及びタッチパネル付液晶表示装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP