WO2017090245A1 - 金属樹脂接合方法及び金属樹脂接合体 - Google Patents

金属樹脂接合方法及び金属樹脂接合体 Download PDF

Info

Publication number
WO2017090245A1
WO2017090245A1 PCT/JP2016/004936 JP2016004936W WO2017090245A1 WO 2017090245 A1 WO2017090245 A1 WO 2017090245A1 JP 2016004936 W JP2016004936 W JP 2016004936W WO 2017090245 A1 WO2017090245 A1 WO 2017090245A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
resin
resin material
heating
joining
Prior art date
Application number
PCT/JP2016/004936
Other languages
English (en)
French (fr)
Inventor
公則 和鹿
川人 洋介
Original Assignee
株式会社ヒロテック
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヒロテック, 国立大学法人大阪大学 filed Critical 株式会社ヒロテック
Priority to JP2017552273A priority Critical patent/JP6589171B2/ja
Publication of WO2017090245A1 publication Critical patent/WO2017090245A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8253Testing the joint by the use of waves or particle radiation, e.g. visual examination, scanning electron microscopy, or X-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74283Iron or alloys of iron, e.g. steel

Definitions

  • the present invention relates to a method for joining a metal material and a resin material, and a metal resin joined body in which the metal material and the resin material are joined. More specifically, the metal material and the resin are used without using an adhesive or rivet fastening.
  • the present invention relates to a method for strongly directly joining a material and a metal resin joined body having a strong joint.
  • an adhesive or rivet fastening for joining a metal material and a resin material.
  • joining is achieved by physical adsorption force or chemical adsorption force
  • rivet fastening joining is achieved by physical fastening using rivets.
  • the size and weight of the fastening portion increase the size and weight of the part, and the design flexibility also decreases, so the applicable parts are limited.
  • Patent Document 1 Japanese Patent Laid-Open No. 2008-213156
  • a metal material is heated by heating to a temperature at which bubbles are generated in the resin material of the joint portion in a state where the metal material and the resin material are combined using a laser light source.
  • a resin melting laser light source for heating to a temperature at which the resin material is melted
  • a resin decomposition laser light source for heating to a temperature to decompose the resin material are used as the laser light source.
  • a metal resin bonding method has been proposed.
  • the resin melt is used as a heating source. Because the laser light source for resin and the laser light source for resin decomposition are used in combination, the control of the resin heating location and temperature is extremely easy and efficient, and as a result greatly contributes to the uniform formation of high-strength metal-resin joints. It can be done.
  • Patent Document 1 requires expensive laser equipment, and there are problems related to large equipment costs and technology transfer to emerging countries. Further, since it is necessary to heat the metal surface by irradiating a laser from the resin side, it is difficult to control the bonding temperature and the like in addition to limiting the applicable resin material. Furthermore, it is desirable to remove bubbles remaining in the joining region from the viewpoint of the reliability of the joining portion.
  • an object of the present invention is to provide a method for strongly directly joining a metal material and a resin material using a generally inexpensive heat source and a strong joint portion.
  • An object of the present invention is to provide a metal resin joined body having the same.
  • the present inventor has conducted extensive research on a method for joining a metal material and a resin material. As a result, it is effective to heat a metal material using an arc heat source or a resistance spot heat source.
  • the headline, the present invention has been reached.
  • the present invention A method of directly joining a metal material and a resin material, Having a heating step of forming a heating region in at least a part of the metal material using an arc heat source; By heating at least a part of the resin material to a temperature equal to or higher than the melting temperature of the resin material by heat input from the heating region, to form a joint portion; A metal resin bonding method characterized by the above.
  • an arc heat source is used for arc welding in which metal materials are melted and joined.
  • a small current value heat input
  • a metal material and a resin material can be directly joined by using ().
  • the metal resin bonding method of the present invention it is preferable to pressurize the bonding portion immediately after forming the bonding portion. For example, compared to heating by laser irradiation, when an arc heat source is used, it becomes difficult to control heat input and to suppress thermal deformation caused by the heat input. Can be stably obtained.
  • the bubbles introduced into the resin of the bonding portion in the heating process can be moved out of the bonding portion, and the reliability is higher. A joint can be obtained. Furthermore, since the resin material softened by the pressurization spreads beyond the range of the heat-affected zone of the metal material, the bonding interface between the metal material and the resin material can be expanded.
  • the molten resin material wets and spreads to the interface to be bonded by pressurization, so that bonding can be achieved even at a site lower than the melting temperature.
  • the pressure is preferably 1.40 to 1.85 MPa, more preferably 1.70 to 1.85 MPa.
  • the pressure is preferably 1.40 to 1.85 MPa, more preferably 1.70 to 1.85 MPa.
  • the arc heat source is disposed on the metal material side in the heating step in a state where the metal material and the resin material are overlapped.
  • the resin material does not affect the heating, as the material to be bonded
  • a wide variety of resin materials can be used. Further, by heating from the metal material side, a space can be provided on the resin material side, and pressurization (details will be described later) from the resin material surface becomes easy.
  • the temperature control of the bonded interface in the heating process is facilitated.
  • the temperature distribution of the bonded interface in the heating process can be grasped.
  • the resin material is disposed so as to overlap with at least a part of the heating region. It is preferable that the temperature of a part of the resin material is raised to the melting temperature of the resin material or higher.
  • the resin material is formed so as to overlap with at least a part of the heating region after forming the heating region on at least a part of the metal material.
  • a good joined body can be obtained by abutting.
  • the arc heat input is set considering that the temperature of the metal material surface decreases from the heating to the contact with the resin material, and the temperature of the resin material is set. It must be above the melting temperature.
  • the heating step instead of using the arc heat source, one-side resistance spot welding is performed in a state where the metal material and the resin material are overlapped, and the metal It is preferable to form the heating region on at least a part of the material.
  • the heat source used in the metal resin bonding method of the present invention is not limited to an arc, and for example, one-side resistance spot welding can be suitably used.
  • a pressurization process can be achieved simultaneously with a heating process.
  • the maximum temperature of the bonded interface between the metal material and the resin material is 450 to 600 ° C. in the heating step.
  • the temperature of the resin material at the bonded interface can be set to the melting temperature or higher, and by setting it to 600 ° C. or lower, the resin material becomes brittle due to excessive heat input. Can be suppressed.
  • the temperature of the bonded interface between the metal material and the resin material is 275 to 600 ° C. in the heating step.
  • the present inventor has found that the bonding strength between the metal material and the resin material is sufficiently high in the region where the temperature of the bonded interface is 275 ° C. or higher.
  • the temperature of the bonded interface is 600 ° C. or less, embrittlement of the resin material due to excessive heat input can be suppressed.
  • the present invention also provides: A lap joint member of a resin material and a metal material, The resin material and the metal material are directly bonded, The metal material is formed with a heat affected zone by heat treatment, A bonding interface is also formed outside the heat affected zone, There is also provided a metal-resin joined body characterized by the following.
  • the metal resin bonded body of the present invention has high bonding strength and reliability because a bonding interface is also formed outside the heat affected zone of the metal material formed by heat treatment.
  • the metal material and the resin material are directly joined, and are not joined by an adhesive or rivet fastening.
  • the maximum diameter of bubbles existing in the joining region is less than 0.1 mm. Since the maximum diameter of the bubbles is less than 0.1 mm, the bubbles hardly affect the joint characteristics, and the joining member of the present invention has very good mechanical characteristics. Moreover, since the bubble of a junction part cannot be confirmed clearly visually, the fall of the image by a defect existing in a junction part can be suppressed.
  • the metal resin joining part body of this invention can be suitably obtained using the metal resin joining method of this invention.
  • a method for directly directly bonding a metal material and a resin material using a commonly used inexpensive heat source and a metal having a strong bonding portion A resin joined body can be provided.
  • FIG. 3 is a graph showing the shear strength of the metal resin bonded body obtained in Example 1.
  • FIG. 2 is an overview photograph after a shear test of the metal resin bonded body obtained in Example 1.
  • FIG. 4 is a graph showing the shear strength of the metal resin bonded body obtained in Example 2.
  • FIG. 6 is a graph showing the shear strength of the metal resin bonded body obtained in Example 3. It is a temperature distribution when the welding current is 10 A in Example 3. It is a temperature distribution when the welding current is 12 A in Example 3. It is a temperature distribution when the welding current is 22 A in Example 3. It is a graph which shows the shear strength of the implementation metal resin joining body obtained by changing joining speed in Example 3.
  • FIG. 6 is a graph showing the shear strength of the metal resin bonded body obtained in Example 4. It is a temperature distribution when the welding current is 14 A in Example 4. In Example 4, it is a temperature distribution when welding current is 20A. It is a graph which shows the shear strength of the implementation metal resin joined body obtained by changing joining speed in Example 4.
  • FIG. 6 is a graph showing the shear strength of the metal resin bonded body obtained in Example 3. It is a temperature distribution when the welding current is 10 A in Example 3. It is a temperature distribution when the welding current is 12 A in Example 3. It is a temperature distribution when the welding current is 22 A in Example 3. It
  • FIG. 6 is a graph showing the shear strength of the metal resin bonded body obtained in Example 5.
  • 6 is an overview photograph after a shear test of the metal resin bonded body obtained in Example 5.
  • FIG. It is a graph which shows the shear strength of the metal resin joined body obtained in Example 6 by setting the joining speed to 20 cm / min.
  • 6 is an overview photograph after a shear test of a metal resin bonded body obtained in Example 6.
  • FIG. 10 is a graph showing a maximum temperature change in a heating region in Example 6.
  • FIG. 7 is a TEM observation image of a typical metal / resin interface of the metal resin bonded body obtained in Example 7.
  • FIG. 10 is an overview photograph of each joint obtained in Example 8. It is the schematic which shows the arrangement
  • Example 10 It is a graph which shows the shear strength at the time of energizing current being 2.5 kA in Example 9.
  • 10 is a graph showing shear strength in Example 10.
  • 10 is a graph showing shear strength in Example 11.
  • 14 is a graph showing shear strength in Example 12.
  • 14 is a graph showing the shear strength in Example 13. It is the whole image (STEM-BF image) of the thin sample for STEM observation. It is a high magnification observation image of each area
  • FIG. 18 is a graph showing shear strength in Example 15.
  • 22 is a graph showing shear strength in Example 16.
  • Metal-resin bonding method In the metal-resin bonding method of the present invention, a method of heating the metal material in a state where the metal material and the resin material are superposed (lap heating bonding), and a resin after heating the metal material And a method of bringing the material into contact with each other (inter-plate heating bonding).
  • the arc 8 also moves, so that a desired heating region 10 can be formed.
  • a joint portion can be formed.
  • metal material 2 various conventionally known metal materials can be used as long as the effects of the present invention are not impaired.
  • the metal material 2 include various steel materials, galvanized steel materials, aluminum alloys, magnesium alloys, and the like, but it is preferable to use various steel materials or galvanized steel materials.
  • the resin material 4 various conventionally known resin materials can be used as long as the effects of the present invention are not impaired.
  • the resin material 4 include polyamide and PET (Polyethylene Terephthalate).
  • the conditions for generating the arc need to be set as appropriate depending on the types of metal material 2 and resin material 4, physical properties such as thermal conductivity, plate thickness, and the like. It is necessary to use conditions with a small amount of heat (conditions not used in normal arc welding).
  • the maximum temperature of the bonded interface between the metal material 2 and the resin material 4 is 450 to 600 ° C.
  • the temperature of the resin material 4 at the bonded interface can be set to the melting temperature or higher, and by setting it to 600 ° C. or lower, the temperature of the resin material 4 due to excessive heat input. Brittleness can be suppressed.
  • the temperature of the bonded interface between the metal material 2 and the resin material 4 is 275 to 600 ° C.
  • the bonding strength between the metal material 2 and the resin material 4 can be sufficiently increased.
  • the temperature of the bonded interface can be measured by various conventionally known methods such as a thermal image camera or a thermocouple.
  • the moving speed of the arc 8 is 20 cm /
  • the suitable joining conditions are shown in FIG. 5 to be described later, for example.
  • the moving speed of the arc 8 is 20 cm. / Min, and an arc current of 12 to 18 A, a good metal resin joined body can be obtained.
  • the suitable joining conditions are shown in FIG. 8 to be described later, for example.
  • the moving speed of the arc 8 is 20 cm / min.
  • the arc current is 12 to 20 A, a good metal resin joined body can be obtained.
  • the suitable joining conditions are shown in FIG. 9 to be described later, for example.
  • the moving speed of the arc 8 is 20 cm. / Min and an arc current of 14 to 22 A, a good metal resin bonded body can be obtained.
  • the suitable joining conditions are shown in FIG. 14 to be described later, for example.
  • the metal material 2 is heated by the arc 8, but simple one-side resistance spot welding can also be used.
  • one-side resistance spot welding is used, there is an advantage that a pressurizing step can be achieved simultaneously with a heating step.
  • FIG. 1 A conceptual diagram of inter-plate heating bonding is shown in FIG.
  • the metal material 2 is heated by the arc 8 to form the heating region 10, and then the resin material 4 is brought into contact with the heating region 10 to form a joint portion.
  • the metal material 2, the resin material 4, the plasma welding torch 6, and the maximum temperature and temperature distribution of the bonded interface that can be suitably used are the same as in the case of the above-described lap heating bonding, but the heating region 10 is formed. Therefore, it is necessary to set the joining conditions while paying attention to the temperature drop of the heating region 10 that occurs from when the resin material 4 is brought into contact therewith.
  • the moving speed of the arc 8 is 20 cm / min.
  • the arc current is 25 to 60 A, a good metal resin joined body can be obtained.
  • the suitable joining conditions are shown in FIG. 20 described later, for example.
  • the moving speed of the arc 8 is 20 cm. / Min, and an arc current of 40 to 70 A, a good metal resin joined body can be obtained.
  • the suitable joining conditions are shown in FIG. 25 described later, for example.
  • the pressure of the joint is preferably 1.40 to 1.85 MPa, more preferably 1.70 to 1.85 MPa.
  • the suitable pressurizing conditions are shown in FIG. 32 described later, for example.
  • the schematic sectional drawing of the metal-resin joined body of this invention is shown in FIG.
  • the metal resin bonded body 12 is obtained by directly bonding the metal material 2 and the resin material 4, and no adhesive or rivet is used in the bonded portion.
  • the heat affected zone 10 formed by external heating is formed on the metal material 2, and the bonding interface 14 between the metal material 2 and the resin material 4 extends to the outside of the heat affected zone 10.
  • the joined region is inside the heat-affected zone 10, but in the metal resin joined body 12, since the joining is achieved in a wider area, it is high. Bonding strength and reliability can be realized.
  • the maximum diameter of bubbles present in the bonded region is less than 0.1 mm. Since the maximum diameter of the bubbles is less than 0.1 mm, the bubbles hardly affect the joint characteristics, and the metal resin bonded body 12 has very good mechanical characteristics. Moreover, since the bubble of a junction part cannot be confirmed clearly visually, the fall of the image by a defect existing in a junction part can be suppressed.
  • the metal resin joined body 12 can be suitably obtained by using the metal resin joining method of the present invention, and in particular, the reduction of bubbles and the enlargement of the joint interface 14 are simultaneously achieved by the joining involving the pressurizing step described above. can do.
  • Example 1 Joining using arc heating ⁇
  • Example 1 Ferritic heat-resistant steel sheet: SUH409L plate (100 mm x 30 mm x 1.5 mm) as the metal material, PET plate (100 mm x 30 mm x 2 mm) as the resin material, and superposed on the state shown in Fig. 4, arc heating from the metal material side As a result, “lap heating bonding” was performed.
  • a plasma welding machine (350A) manufactured by Nippon Steel & Sumikin Welding Industry was used as the arc welding heat source, the tungsten electrode was ⁇ 3.2 mm, the insert tip was ⁇ 3.2 mm, and the operation was controlled by a 6-axis robot.
  • the pilot gas flow rate was constant at 0.4 L / min.
  • the various metal-resin joined bodies were manufactured by fixing the joining speed (moving speed of the arc heat source) at 20 cm / min and changing the welding current (arc current) at 4 to 12 A.
  • a tensile test was performed in the embodiment shown in FIG. 5 to measure the shear strength.
  • the obtained result is shown in FIG.
  • the bonded portion has a strength higher than the level at which the shear strength can be measured.
  • the welding current is set to 12A, strength reduction due to deterioration of the resin material due to excessive heat input is recognized.
  • the shear strength is less than the strength of the resin material, but under other conditions, a shear strength equivalent to the strength of the resin material is obtained.
  • FIG. 7 shows an overview photograph of the implemented metal-resin joined body in a state in which the resin material is stretched by a shear strength test, with respect to the implemented metal-resin joined body showing the same degree of shear strength as the resin material. Even after the shear test, no breakage was observed at the joint, and the elongation of the resin material in the vicinity of the joint could be confirmed.
  • the joining region is also formed outside the heating region by arc heating.
  • Example 2 Galvanized steel sheet: SPCM2-55 / 55 (100 mm x 30 mm x 1.6 mm) as metal material, PET plate (100 mm x 30 mm x 2 mm) as resin material, and welding current (arc current) varied from 5 to 12A Except for the above, “lap heating bonding” was performed in the same manner as in Example 1.
  • the shear strength was measured in the same manner as in Example 1 for the resulting metal resin bonded body. The obtained result is shown in FIG. In all of the metal resin bonded bodies, the bonded portion has a strength higher than the level at which the shear strength can be measured, but a high shear strength is stably obtained by setting the welding current to 12A. . When the welding current is 12 A, the shear strength is comparable to that of the resin material.
  • the average temperature of the highest temperature part was 300 to 450 ° C when the welding current was 12A, and there was a wide range of 275 ° C or more.
  • Example 3 Ferritic heat-resistant steel sheet: SUH409L plate (100 mm x 30 mm x 1.5 mm) as the metal material, polyamide plate (100 mm x 30 mm x 2 mm) as the resin material, welding current (arc current) of 10 to 22A, joining speed (arc) “Lamination heating joining” was performed in the same manner as in Example 1 except that the moving speed of the heat source was changed at 15 to 25 cm / min.
  • the shear strength was measured in the same manner as in Example 1 for the resulting metal resin bonded body. The obtained results are shown in FIG.
  • the joint has a strength higher than the level at which the shear strength can be measured, but when the welding current exceeds 20 A, the strength due to deterioration of the resin material due to excessive heat input. A decrease is observed.
  • the shear strength is less than the strength of the resin material, but under other conditions, a shear strength equivalent to the strength of the resin material is obtained.
  • the temperature in the vicinity of the bonding interface during each bonding process was measured with a thermal image camera.
  • the welding current was 10A and 12A
  • the average temperature of the highest temperature region was 300 to 450 ° C, and the region of 275 ° C or higher was wide. Existed.
  • 22A a temperature range exceeding 600 ° C. was recognized.
  • temperature distributions in the case of 10A, 12A, and 22A are shown in FIGS. 10, 11, and 12, respectively. The temperature distribution is at an intermediate time point from the start of heating to the end of heating, and the numerical value in the figure indicates the highest temperature reached at that time.
  • Fig. 13 shows the shear strength of the actual metal-resin joined body obtained by changing the joining speed while keeping the welding current constant at 15A.
  • the welding current is 15 A, it can be seen that a metal resin joined body having high shear strength can be obtained even if the joining speed is changed.
  • the temperature in the vicinity of the joining interface during each joining process was measured with a thermal image camera.
  • the average temperature at the highest temperature part was 300 to 450 ° C. There was a wide range of 275 ° C. or higher.
  • Example 4 Galvanized steel sheet: SPCM2-55 / 55 (100 mm x 30 mm x 1.6 mm) as the metal material, polyamide plate (100 mm x 30 mm x 2 mm) as the resin material, welding current (arc current) of 12 to 30 A, joining speed “Lap heating joining” was performed in the same manner as in Example 1 except that (the moving speed of the arc heat source) was changed at 20 to 30 cm / min.
  • the shear strength was measured in the same manner as in Example 1 for the resulting metal resin bonded body.
  • the obtained result is shown in FIG.
  • the bonded portion has a strength higher than that capable of measuring the shear strength, but a high shear strength is obtained when the welding current is in the range of 14 to 20 A.
  • the shear strength of the practical metal-resin joined body obtained at 14 to 20A is comparable to the strength of the resin material.
  • FIG. 17 shows the shear strength of the metal-metal bonded assembly obtained by changing the welding speed while keeping the welding current constant at 18A.
  • the welding current is 18 A, it can be seen that a metal resin joined body having high shear strength can be obtained even if the joining speed is changed.
  • the temperature in the vicinity of the joining interface during each joining process was measured with a thermal image camera.
  • the average temperature at the highest temperature part was 300 to 450 ° C. There was a wide range of 275 ° C. or higher.
  • Example 5 Ferritic heat-resistant steel plate as a metal material: SUH409L plate (100 mm ⁇ 30 mm ⁇ 1.5 mm), PET resin (100 mm ⁇ 30 mm ⁇ 2 mm) as a resin material, and immediately after the SUH409L plate is arc-heated, “Pressing between plates” was performed by pressurizing the bonded parts. Note that the arc heating location of the SUH409L plate and the arrangement when the SUH409L plate and the PET plate are brought into contact with each other are in the state shown in FIG. The pressure was 6 MPa.
  • a plasma welding machine (for 350A) manufactured by Nippon Steel & Sumikin Welding Industries was used as the arc welding heat source, the tungsten electrode was ⁇ 3.2 mm, the insert tip was ⁇ 3.2 mm, and the operation was controlled by a 6-axis robot.
  • the pilot gas flow rate was constant at 0.4 L / min.
  • the metal resin joined body was manufactured by fixing the joining speed (moving speed of the arc heat source) at 20 cm / min and setting the welding current (arc current) to 30 A or 50 A.
  • the shear strength was measured in the same manner as in Example 1. The obtained result is shown in FIG. It turns out that high shear strength is acquired in all the implementation metal resin joined bodies.
  • the shear strength of the practical metal-resin joined body is comparable to the strength of the resin material.
  • FIG. 19 shows an overview photograph of the implemented metal-resin joined body in a state in which the resin material is stretched by a shear strength test with respect to the implemented metal-resin joined body showing the same degree of shear strength as the resin material. Even after the shear test, no breakage was observed at the joint, and the elongation of the resin material in the vicinity of the joint could be confirmed.
  • the joining region is also formed outside the heating region by arc heating.
  • Example 6 Ferritic heat-resistant steel plate: SUH409L plate (100 mm x 30 mm x 1.5 mm) as the metal material, polyamide plate (100 mm x 30 mm x 2 mm) as the resin material, welding current (arc current) of 30-60A, joining speed (arc) “Inter-plate heating joining” was performed in the same manner as in Example 5 except that the moving speed of the heat source was changed at 20 to 55 cm / min.
  • the shear strength was measured in the same manner as in Example 1 for the resulting metal resin bonded body.
  • the shear strength when the joining speed is 20 cm / min and 30 cm / min is shown in FIGS. 20 and 21, respectively. Although the value varies at 25 A for 20 cm / min and 30 A for 30 cm / min, high shear strength is obtained under any conditions. Here, the obtained shear strength is comparable to the strength of the resin material.
  • the shear strength of the resin-metal bonded body obtained by changing the bonding speed with a welding current of 60 A is shown in FIG.
  • the welding current is 60 A
  • high shear strength is obtained even when the joining speed is increased to 55 cm / min.
  • FIG. 23 shows an overview photograph of the implemented metal-resin joined body in a state in which the resin material has been stretched by a shear strength test with respect to the implemented metal-resin joined body that showed a shear strength equivalent to that of the resin material. Even after the shear test, no breakage was observed at the joint, and the elongation of the resin material in the vicinity of the joint could be confirmed.
  • the joining region is also formed outside the heating region by arc heating.
  • FIG. 24 shows the maximum temperature change in the heating start part, the heating intermediate part, and the heating end part (joining conditions: 25 A, 20 cm / min). Since the contact of the resin material with the heating region is about 1 second after the heating is completed, the maximum temperature portion during the bonding seems to be about 400 ° C.
  • Example 7 Galvanized steel plate: SPCM2-55 / 55 (100 mm x 30 mm x 1.6 mm) as the metal material, polyamide plate (100 mm x 30 mm x 2 mm) as the resin material, welding current (arc current) of 30 to 70 A, joining speed “Inter-plate heating joining” was performed in the same manner as in Example 1 except that (the moving speed of the arc heat source) was changed at 20 to 40 cm / min.
  • the shear strength was measured in the same manner as in Example 1 for the resulting metal resin bonded body.
  • the shear strength when the bonding speed is 20 cm / min and 30 cm / min is shown in FIGS. 25 and 26, respectively.
  • a welding current of 30 A is used at a joining speed of 20 cm / min, a resin-metal joined body having a slightly low shear strength is included, but other resin-metal joined bodies have a good shear strength.
  • the shear strength of the implementation metal resin bonded body obtained on conditions other than 20 cm / min and 30 A is comparable to the strength of the resin material.
  • the shear strength when the welding current is 50 A and 60 A is shown in FIGS. 27 and 28, respectively. All the resin-metal bonded bodies have good shear strength equivalent to that of the resin material.
  • the temperature change of the surface of the metal material heated by arc was measured with a thermal image camera.
  • the maximum temperature change in the heating start part, the heating intermediate part, and the heating end part is shown in FIG. 29 (joining conditions: 40 A, 20 cm / min). Since the contact of the resin material with the heating region is about 1 second after the heating is completed, it is considered that the maximum temperature portion during bonding is about 300 ° C.
  • the temperature in the vicinity of the bonding interface is 275 ° C. or more in a wide range, but at the heating start portion, the temperature becomes lower than the melting point of the resin with time.
  • FIG. 30 and FIG. 31 show typical SEM observation images and TEM observation images of the metal / resin interface with respect to the implemented metal resin bonded body. In any observation, the metal and the resin were directly bonded, and no defects such as peeling were observed.
  • SMI3050SE manufactured by Hitachi High-Tech Science Co., Ltd. was used, and for TEM observation, JEM-2100F manufactured by JEOL Ltd. was used.
  • the acceleration voltage of SEM observation and TEM observation was 5 kV and 200 kV, respectively.
  • Example 8 Example 5 and Example 5 except that the pressure applied to the joint was changed in the range of 0.3 to 1.7 MPa (pressure area: 450 mm 2 ), and the joining speed and welding current were 20 cm / min and 8 A, respectively. In the same manner, an implementation metal resin bonded body was obtained.
  • FIG. 1 An overview photograph of each obtained joint is shown in FIG. It can be seen that when the applied pressure is 1.4 MPa, bubbles in the resin material at the joint are reduced. Further, the bubbles are almost disappeared by the pressurization of 1.7 MPa, and are not visually confirmed. In addition, no significant reduction in the thickness of the resin material was observed at any joint, and the joint area was also formed outside the heating area by arc heating.
  • Example 9 Joining Using One-Side Resistance Spot Heating ⁇
  • a galvanized steel sheet SPCM2-55 / 55 (100 mm x 25 mm x 0.8 mm) as the metal material, a polyamide plate (100 mm x 25 mm x 2 mm) as the resin material, and a stationary electrode equipped with a dedicated electrode designed for resin metal bonding “One-side resistance spot welding” using “one-side resistance spot welding” was performed by applying one-side current with a resistance spot welder.
  • FIG. 33 shows the arrangement of the galvanized steel plate and the polyamide plate.
  • the galvanized steel plate is placed on the upper side, the polyamide plate is placed on the lower side, energization was performed from the upper side of the lap member (galvanized steel plate side), and pressurization was performed from the lower side of the lap member (resin side). Was placed).
  • FIGS. 34 and 35 A schematic diagram and an appearance photograph showing the situation at the time of joining are shown in FIGS. 34 and 35, respectively.
  • An electrode is placed on the upper side of the galvanized steel sheet, and the members to be bonded are brought into close contact with each other by pressing the electrode against the surface of the galvanized steel sheet, and then resistance heating is conducted to the bonded interface between the electrodes.
  • pressure applied by being placed in the apparatus the upper electrode was set to load range 0.4kgf / cm 2 ⁇ 1.2kgf / cm 2.
  • the jig arranged at the lower part of the apparatus applies a constant pressure to the bonding interface immediately after completion of energization, and a pressure of 1.84 MPa at the maximum was set.
  • the energizing current at the time of joining was set to 0.5 to 4.0 kA, the number of energizing times was set to once, and the energizing time (Cycle) was changed to manufacture various metal resin joined bodies.
  • FIG. 36 shows the shear strength of the metal-metal bonded assembly obtained by changing the energization time with an energization current of 1.0 kA.
  • the shear strength of the implementation metal resin joined body obtained by making an energization current into 1.5 kA and changing an energization time is shown in FIG.
  • FIG. 38 shows the shear strength of the practical metal-resin joined body obtained by setting the energization current to 2.0 kA and changing the energization time.
  • any of the metal resin bonded bodies a relatively good shear strength is shown.
  • 2500 N A high shear strength equal to or greater than the bonding area (25 mm width) is obtained.
  • an extremely high shear strength of 3000 N or more is obtained under the joining conditions of an energization current of 1.5 kA and an energization time of 180 cycles or more, and an energization current of 2.0 kA and an energization time of 90 cycles or more.
  • FIG. 39 shows the shear strength of the metal-metal bonded assembly obtained by changing the secondary energization condition with the energization frequency set to 2 times, the primary energization condition as energization current: 2.5 kA, and the energization time: 15 Cycle.
  • the upslope from the primary energization to the secondary energization was 9 cycles, and the secondary energization conditions were energization current: 3.0 to 3.5 kA and energization time: 10 to 15 cycles.
  • the other conditions were the same as in Example 9.
  • the shear strength decreases as the amount of heat generated by secondary energization (joule heat generation) increases.
  • the amount of heat generated by energization heating is increased, the bonding temperature becomes equal to or higher than the decomposition temperature of the resin, which may be caused by the decomposition of the resin and the decrease in crystallinity.
  • an extremely high shear strength of about 3000 N is obtained in a short time compared to the case where the number of energizations is one.
  • Example 11 The primary energization conditions are energization current: 2.5 kA, energization time: 20 cycles, the secondary energization conditions are energization current: 2.0 kA, energization time: 40 cycles, and a constant pressure is applied immediately after completion of energization using a pressurizing jig. The effect of the applied pressure on the shear strength was examined by applying to the joint interface from the side. The other conditions were the same as in Example 9. The shear strength of the implementation metal resin joined body obtained on each pressurizing condition is shown in FIG.
  • the shear strength becomes substantially constant at a high value of 3000 N or more, and a stable metal / metal bonded body having a stable quality is obtained.
  • an increase in shear strength by increasing the applied pressure is not recognized, but in resistance spot welding, the reason is that sufficient pressure has already been applied by the electrodes to bring the materials to be joined into close contact during energization. I think that the.
  • Example 12 Next, without performing the pressurization with a pressing jig, changing the load due to energization time of the electrodes in the range of 0.4kgf / cm 2 ⁇ 1.2kgf / cm 2.
  • the primary energization conditions were energization current: 2.5 kA, energization time: 20 cycles, and the secondary energization conditions were energization current: 2.0 kA, energization time: 40 cycles.
  • the other conditions were the same as in Example 9.
  • the shear strength of the obtained metal-metal bonded body is shown in FIG.
  • Example 13 Primary energization condition: energization current: 0.7 kA, energization time: 99 cycle, secondary energization condition: energization current: 1.8 kA or 2.0 kA, energization time: 40 cycle, tertiary energization condition: energization current: 1.0 kA, energization time : The shear strength of the implementation metal-resin joined body obtained as 99Cycle is shown in FIG. The other conditions were the same as in Example 9.
  • the bonding interface of the metal resin bonded body was observed with a STEM.
  • the thin slice sample for observation was cut out from the area
  • An overall image (STEM-BF image) of the observation thin piece sample is shown in FIG. 43, and high-magnification observation images of the respective regions ((1) to (7)) shown in FIG. 43 are shown in FIG.
  • Example 14 Metal resin bonding was evaluated when the resin material was GFRP (polyamide resin with 30% glass fiber addition strengthening) and the metal material was a galvanized steel sheet.
  • the size and shape of the materials to be joined are the same as in Example 9.
  • the primary energization conditions are energization current: 2.5 kA, energization time: 30 cycles, the secondary energization conditions are energization current: 2.0 kA, energization time: 40 cycles, and a constant pressure is applied immediately after completion of energization using a pressurizing jig.
  • the effect of the applied pressure on the shear strength was examined by applying to the joint interface from the side.
  • the other conditions were the same as in Example 9.
  • the shear strength of the implementation metal resin joined body obtained on each pressurizing condition is shown in FIG.
  • the resin material is a polyamide resin
  • a practical metal-resin bonded body having high shear strength is stably obtained.
  • the influence of the applied pressure on the shear strength is hardly recognized.
  • Example 15 An aluminum metal alloy: 5000 series (100 mm ⁇ 25 mm ⁇ 0.9 mm) was used as the metal material, and a polyamide plate (100 mm ⁇ 25 mm ⁇ 2 mm) was used as the resin material.
  • FIG. 46 shows the shear strength of the practical metal-resin bonded body obtained with an energization current of 2.5 kA and an energization time of 175 to 275 Cycle. The other conditions were the same as in Example 9.
  • Example 16 Aluminum alloy: 5000 series (100 mm x 25 mm x 0.9 mm) as metal material, GFRP (polyamide resin with 30% glass fiber addition strengthening, 100 mm x 25 mm x 2 mm) as resin material, conducted once with energization Metal resin bonding The body was manufactured.
  • FIG. 47 shows the shear strength of the practical metal-resin bonded body obtained with an energization current of 2.5 to 3.5 kA and an energization time of 138 to 275 Cycle. The other conditions were the same as in Example 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

【課題】一般的に使用されている安価な熱源を用いて金属材と樹脂材とを強固に直接接合する方法及び強固な接合部を有する金属樹脂接合体を提供する。 【解決手段】金属材と樹脂材とを直接接合する方法であって、アーク熱源を用いて金属材の少なくとも一部に加熱領域を形成させる加熱工程を有し、加熱領域からの入熱によって、樹脂材の少なくとも一部を樹脂材の溶融温度以上に昇温し、接合部を形成すること、を特徴とする金属樹脂接合方法。

Description

金属樹脂接合方法及び金属樹脂接合体
 本発明は金属材と樹脂材とを接合する方法及び金属材と樹脂材とが接合された金属樹脂接合体に関し、より具体的には、接着剤やリベット締結等を用いることなく金属材と樹脂材とを強固に直接接合する方法及び強固な接合部を有する金属樹脂接合体に関する。
 従来、金属材と樹脂材との接合には、接着剤やリベット締結を用いるのが一般的である。接着剤を用いる場合は物理的吸着力や化学的吸着力により接合が達成され、リベット締結を用いる場合はリベットによる物理的な締結によって接合が達成される。
 しかしながら、接着剤を用いる場合、接着剤が濡れ広がるために接合領域が限定される精密な接合には不向きであることに加え、接合強度が被接合面の状態(表面粗さ等)に大きく影響されるという問題がある。更に、接着剤の硬化に必要な時間が生産性を律速すると共に、接着剤の状態維持や管理が難しい等の課題が存在する。
 また、リベット締結を用いる場合、締結部の大きさや重量によって部品が大型化・重量化することに加え、設計の自由度も低下することから、適用できる部品が限定されてしまう。
 これに対し、近年、レーザを用いて金属材と樹脂材を直接接合する技術が検討されている。例えば、特許文献1(特開2008-213156号公報)においては、レーザ光源を用いて金属材料と樹脂材料を合わせた状態で接合部の樹脂材料に気泡を発生させる温度まで加熱することにより金属材料と樹脂材料を接合する方法において、レーザ光源として、樹脂材料を溶融させる温度に加熱する樹脂溶融用レーザ光源と樹脂材料を分解させる温度に加熱する樹脂分解用レーザ光源を使用することを特徴とする金属樹脂接合方法、が提案されている。
 前記特許文献1に記載の金属樹脂接合方法では、接合部の樹脂材料に特定の大きさの気泡を発生させる温度まで加熱することにより金属材料と樹脂材料を接合する方法において、加熱源として樹脂溶融用レーザ光源と樹脂分解用レーザ光源を併用しているので、樹脂の加熱場所及び加熱温度の制御が極めて容易かつ効率的であり、結果として高い強度の金属樹脂接合部の均一な形成に大きく寄与することができる、としている。
特開2008-213156号公報
 しかしながら、前記特許文献1に記載の金属樹脂接合方法では高価なレーザ設備が必須であり、多額の設備費用及び新興国等への技術移転に関して問題がある。また、樹脂側からレーザを照射して金属表面を加熱する必要があるため、適用できる樹脂材が制限されることに加えて接合温度等の制御が困難である。更には、接合部の信頼性等の観点から、接合領域に残存する気泡を除去することが望まれる。
 以上のような従来技術における問題点に鑑み、本発明の目的は、一般的に使用されている安価な熱源を用いて金属材と樹脂材とを強固に直接接合する方法及び強固な接合部を有する金属樹脂接合体を提供することにある。
 本発明者は上記目的を達成すべく、金属材と樹脂材の接合方法について鋭意研究を重ねた結果、アーク熱源や抵抗スポット熱源を用いて金属材を加熱すること等が効果的であることを見出し、本発明に到達した。
 即ち、本発明は、
 金属材と樹脂材とを直接接合する方法であって、
 アーク熱源を用いて前記金属材の少なくとも一部に加熱領域を形成させる加熱工程を有し、
 前記加熱領域からの入熱によって、前記樹脂材の少なくとも一部を前記樹脂材の溶融温度以上に昇温し、接合部を形成すること、
 を特徴とする金属樹脂接合方法、を提供する。
 一般的に、アーク熱源は金属材を溶かして接合するアーク溶接に用いられるが、本発明の接合方法においては、通常のアーク溶接で設定される電流値からは大きくかけ離れた小さな電流値(入熱)を用いることで、金属材と樹脂材とを直接接合できることを見出した。
 本発明の金属樹脂接合方法においては、前記接合部の形成過程又は形成直後に前記接合部を加圧すること、が好ましい。例えば、レーザ照射による加熱と比較して、アーク熱源を用いる場合は入熱制御や当該入熱に起因する熱変形の抑制等が困難となるが、接合部の形成過程又は形成直後に当該接合部を加圧することで、良好な接合部を安定して得ることができる。
 また、接合部の形成過程又は形成直後に当該接合部を加圧することにより、加熱工程において接合部の樹脂中に導入される気泡を当該接合部外に移動させることができ、より信頼性の高い接合部を得ることができる。更に、当該加圧によって軟化した樹脂材が金属材の熱影響部の範囲を超えて広がることから、金属材と樹脂材との接合界面を拡大することができる。
 なお、被接合界面において、溶融した樹脂材が僅かにでも存在する場合、当該溶融樹脂材が加圧によって被接合界面に濡れ広がることで、溶融温度よりも低い部位についても接合が達成される。
 更に、本発明の金属樹脂接合方法においては、前記加圧を1.40~1.85MPaとすることが好ましく、1.70~1.85MPaとすることがより好ましい。加圧を0.25MPa以上とすることで、気泡の低減(移動)に効果があり、1.85MPa以下とすることで、接合部における樹脂材が薄くなり過ぎることを抑制することができる。
 また、本発明の金属樹脂接合方法においては、前記加熱工程において、前記金属材と前記樹脂材とを重ね合わせた状態で、前記アーク熱源を前記金属材の側に配置すること、が好ましい。金属材側からアーク加熱することで、金属材と樹脂材との被接合界面の温度を好適に制御することができることに加え、当該加熱に対して樹脂材が影響しないことから、被接合材として多種多様な樹脂材を用いることができる。また、金属材側から加熱することにより、樹脂材側に空間を設けることができ、当該樹脂材表面からの加圧(詳細は後述)が容易となる。
 また、金属材と樹脂材とを重ね合わせた状態で加熱することにより、当該加熱工程における被接合界面の温度管理が容易となる。例えば、熱画像カメラ等を用いることで、加熱工程における被接合界面の温度分布を把握することができる。
 また、本発明の金属樹脂接合方法においては、前記加熱工程で前記金属材の少なくとも一部に前記加熱領域を形成させた後に、前記加熱領域の少なくとも一部と重畳するように前記樹脂材を配置し、前記樹脂材の一部を前記樹脂材の溶融温度以上に昇温すること、が好ましい。
 金属材と樹脂材とを重ね合わせた状態でアーク加熱を施す態様以外にも、金属材の少なくとも一部に加熱領域を形成させた後に、当該加熱領域の少なくとも一部と重畳するように樹脂材を当接させることで、良好な接合体を得ることができる。ここで、エネルギー効率等の観点から、アーク加熱は金属材の被接合界面となる側から行うことが好ましい。
 また、金属材の加熱後に樹脂材を当接させる場合、加熱から樹脂材を当接させるまでに金属材表面の温度が低下することを考慮してアーク入熱を設定し、樹脂材の温度を溶融温度以上とする必要がある。
 また、本発明の金属樹脂接合方法においては、前記加熱工程において、前記アーク熱源の使用に代えて、前記金属材と前記樹脂材とを重ね合わせた状態でワンサイド抵抗スポット溶接を施し、前記金属材の少なくとも一部に前記加熱領域を形成させること、が好ましい。
 本発明の金属樹脂接合方法で用いる熱源はアークに限られず、例えば、ワンサイド抵抗スポット溶接を好適に用いることができる。当該態様においては、加熱工程と同時に加圧工程を達成できるという利点が存在する。
 また、本発明の金属樹脂接合方法においては、前記加熱工程において、前記金属材と前記樹脂材との被接合界面の最高温度を450~600℃とすること、が好ましい。被接合界面の最高温度を450℃以上とすることで、被接合界面における樹脂材の温度を溶融温度以上とすることができ、600℃以下とすることで、入熱過多による樹脂材の脆化を抑制することができる。
 また、本発明の金属樹脂接合方法においては、前記加熱工程において、前記金属材と前記樹脂材との前記被接合界面の温度を275~600℃とすること、が好ましい。本発明者は系統的な実験の結果、被接合界面の温度が275℃以上となる領域において、金属材と樹脂材との接合強度が十分に高くなることを見出した。一方で、被接合界面の温度を600℃以下とすることで、入熱過多による樹脂材の脆化を抑制することができる。
 また、本発明は、
 樹脂材と金属材との重ね接合部材であって、
 前記樹脂材と前記金属材とは直接接合されており、
 前記金属材には加熱処理による熱影響部が形成され、
 前記熱影響部の外側にも接合界面が形成されていること、
 を特徴とする金属樹脂接合体、も提供する。
 本発明の金属樹脂接合体は、加熱処理によって形成される金属材の熱影響部の外側にも接合界面が形成されるため、高い接合強度及び信頼性を有している。なお、金属材と樹脂材は直接接合されており、接着剤やリベット締結によって接合されたものではない。
 また、本発明の金属樹脂接合体においては、前記接合領域に存在する気泡の最大直径が0.1mm未満であること、が好ましい。気泡の最大直径が0.1mm未満であることから、当該気泡は継手特性に殆ど影響を及ぼすことがなく、本発明の接合部材は極めて良好な機械的特性を有している。また、目視では接合部の気泡を明瞭に確認することができないことから、接合部に欠陥が存在することによるイメージの低下を抑制することができる。
 なお、本発明の金属樹脂接合部体は、本発明の金属樹脂接合方法を用いて好適に得ることができる。
 本発明の金属樹脂接合方法及び金属樹脂接合体によれば、一般的に使用されている安価な熱源を用いて金属材と樹脂材とを強固に直接接合する方法及び強固な接合部を有する金属樹脂接合体を提供することができる。
本発明の金属樹脂接合方法の一態様(重ね加熱接合)を示す概念図である。 本発明の金属樹脂接合方法の一態様(板間加熱接合)を示す概念図である。 本発明の金属樹脂接合体の概略断面図である。 金属材と樹脂材とを重ね合わせた状態を示す模式図である。 せん断強度測定の状態を示す模式図及び写真である。 実施例1で得られた金属樹脂接合体のせん断強度を示すグラフである。 実施例1で得られた金属樹脂接合体のせん断試験後の概観写真である。 実施例2で得られた金属樹脂接合体のせん断強度を示すグラフである。 実施例3で得られた金属樹脂接合体のせん断強度を示すグラフである。 実施例3において溶接電流を10Aとした場合の温度分布である。 実施例3において溶接電流を12Aとした場合の温度分布である。 実施例3において溶接電流を22Aとした場合の温度分布である。 実施例3において接合速度を変化させて得られた実施金属樹脂接合体のせん断強度を示すグラフである。 実施例4で得られた金属樹脂接合体のせん断強度を示すグラフである。 実施例4において溶接電流を14Aとした場合の温度分布である。 実施例4において溶接電流を20Aとした場合の温度分布である。 実施例4において接合速度を変化させて得られた実施金属樹脂接合体のせん断強度を示すグラフである。 実施例5で得られた金属樹脂接合体のせん断強度を示すグラフである。 実施例5で得られた金属樹脂接合体のせん断試験後の概観写真である。 実施例6において接合速度を20cm/分として得られた金属樹脂接合体のせん断強度を示すグラフである。 実施例6において接合速度を30cm/分として得られた金属樹脂接合体のせん断強度を示すグラフである。 実施例6において溶接電流を60Aとして得られた金属樹脂接合体のせん断強度を示すグラフである。 実施例6で得られた金属樹脂接合体のせん断試験後の概観写真である。 実施例6における加熱領域の最高温度変化を示すグラフである。 実施例7において接合速度を20cm/分として得られた金属樹脂接合体のせん断強度を示すグラフである。 実施例7において接合速度を30cm/分として得られた金属樹脂接合体のせん断強度を示すグラフである。 実施例7において溶接電流を50Aとして得られた金属樹脂接合体のせん断強度を示すグラフである。 実施例7において溶接電流を60Aとして得られた金属樹脂接合体のせん断強度を示すグラフである。 実施例7における加熱領域の最高温度変化を示すグラフである。 実施例7で得られた金属樹脂接合体の代表的な金属/樹脂界面のSEM観察像である。 実施例7で得られた金属樹脂接合体の代表的な金属/樹脂界面のTEM観察像である。 実施例8で得られた各接合部の概観写真である。 被接合材の配置状況を示す概略図である。 ワンサイド抵抗スポット溶接を用いた接合時の状況を示す模式図である。 ワンサイド抵抗スポット溶接を用いた接合時の状況を示す外観写真である。 実施例9で通電電流を1.5kAとした場合のせん断強度を示すグラフである。 実施例9で通電電流を2.0kAとした場合のせん断強度を示すグラフである。 実施例9で通電電流を2.5kAとした場合のせん断強度を示すグラフである。 実施例10におけるせん断強度を示すグラフである。 実施例11におけるせん断強度を示すグラフである。 実施例12におけるせん断強度を示すグラフである。 実施例13におけるせん断強度を示すグラフである。 STEM観察用薄片試料の全体像(STEM-BF像)である。 図43に示す各領域の高倍率観察像である。 実施例14におけるせん断強度を示すグラフである。 実施例15におけるせん断強度を示すグラフである。 実施例16におけるせん断強度を示すグラフである。
 以下、図面を参照しながら本発明の樹脂金属接合方法及び樹脂金属接合体の代表的な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する場合がある。また、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。
(1)金属樹脂接合方法
 本発明の金属樹脂接合方法においては、金属材と樹脂材とを重ね合わせた状態で当該金属材を加熱する方法(重ね加熱接合)と、金属材を加熱した後に樹脂材を当接させる方法(板間加熱接合)と、が存在する。
(1-1)重ね加熱接合
 重ね加熱接合の概念図を図1に示す。重ね加熱接合においては、金属材2と樹脂材4を重ね合わせた状態で、金属材2の側にプラズマ溶接トーチ6を配置し、アーク8によって金属材2を加熱する。ここで、プラズマ溶接トーチ6は特に限定されず、従来公知の種々のプラズマ溶接トーチを用いることができる。
 プラズマ溶接トーチ6の移動に伴ってアーク8も移動するため、所望の加熱領域10を形成することができる。加熱領域10からの入熱によって、樹脂材4の少なくとも一部を樹脂材4の溶融温度以上に昇温することで、接合部を形成することができる。
 金属材2としては、本発明の効果を損なわない範囲で従来公知の種々の金属材を用いることができる。金属材2としては、各種鋼材、亜鉛めっき鋼材、アルミニウム合金、マグネシウム合金等を例示することができるが、各種鋼材又は亜鉛めっき鋼材を用いることが好ましい。
 また、樹脂材4としては、本発明の効果を損なわない範囲で従来公知の種々の樹脂材を用いることができる。樹脂材4としては、例えば、ポリアミドやPET(Polyethylene Terephthalate)等を例示することができる。
 アークを発生させる条件は、金属材2及び樹脂材4の種類や熱伝導率等の物性、及び板厚等によって適宜設定する必要があるが、従来実施されているアーク溶接と比較すると大幅に入熱量が小さな条件(通常のアーク溶接では用いられない条件)を用いる必要がある。
 加熱工程において、金属材2と樹脂材4との被接合界面の最高温度は450~600℃とすること、が好ましい。被接合界面の最高温度を450℃以上とすることで、被接合界面における樹脂材4の温度を溶融温度以上とすることができ、600℃以下とすることで、入熱過多による樹脂材4の脆化を抑制することができる。
 また、加熱工程において、金属材2と樹脂材4との被接合界面の温度は275~600℃とすること、が好ましい。被接合界面の温度を275℃以上とすることで、金属材2と樹脂材4との接合強度を十分に高くすることができる。一方で、被接合界面の温度を600℃以下とすることで、入熱過多による樹脂材4の脆化を抑制することができる。なお、被接合界面の温度は熱画像カメラや熱電対等の従来公知の種々の方法で測定することができる。
 ここで、金属材2としてフェライト系耐熱鋼板:SUH409L板(100mm×30mm×1.5mm)、樹脂材4としてPET板(100mm×30mm×2mm)を用いる場合は、アーク8の移動速度を20cm/分とし、アーク電流を4~10Aとすることで良好な金属樹脂接合体を得ることができる。なお、当該好適な接合条件については、例えば後述の図5に示されている。
 また、金属材2として亜鉛めっき鋼板:SPCM2-55/55(100mm×30mm×1.6mm)、樹脂材4としてPET板(100mm×30mm×2mm)を用いる場合は、アーク8の移動速度を20cm/分とし、アーク電流を12~18Aとすることで良好な金属樹脂接合体を得ることができる。なお、当該好適な接合条件については、例えば後述の図8に示されている。
 また、金属材2としてフェライト系耐熱鋼板:SUH409L板(100mm×30mm×1.5mm)、樹脂材4としてポリアミド板(100mm×30mm×2mm)を用いる場合は、アーク8の移動速度を20cm/分とし、アーク電流を12~20Aとすることで良好な金属樹脂接合体を得ることができる。なお、当該好適な接合条件については、例えば後述の図9に示されている。
 更に、金属材2として亜鉛めっき鋼板:SPCM2-55/55(100mm×30mm×1.6mm)、樹脂材4としてポリアミド板(100mm×30mm×2mm)を用いる場合は、アーク8の移動速度を20cm/分とし、アーク電流を14~22Aとすることで良好な金属樹脂接合体を得ることができる。なお、当該好適な接合条件については、例えば後述の図14に示されている。
 なお、本実施形態においてはアーク8によって金属材2を加熱しているが、簡便なワンサイド抵抗スポット溶接を用いることもできる。ワンサイド抵抗スポット溶接を用いる場合は、加熱工程と同時に加圧工程を達成できるという利点が存在する。
(1-2)板間加熱接合
 板間加熱接合の概念図を図2に示す。板間加熱接合においては、アーク8によって金属材2を加熱して加熱領域10を形成させた後、加熱領域10に樹脂材4を当接させることで接合部が形成される。
 ここで、好適に用いることができる金属材2、樹脂材4、プラズマ溶接トーチ6及び被接合界面の最高温度及び温度分布は上述の重ね加熱接合の場合と同様であるが、加熱領域10の形成から樹脂材4を当接させるまでに生じる加熱領域10の温度低下に留意して接合条件を設定する必要がある。
金属材2としてフェライト系耐熱鋼板:SUH409L板(100mm×30mm×1.5mm)、樹脂材4としてPET板(100mm×30mm×2mm)を用いる場合は、アーク8の移動速度を20cm/分とし、アーク電流を30~40Aとすることで良好な金属樹脂接合体を得ることができる。なお、当該好適な接合条件については、例えば後述の図18に示されている。
 また、金属材2として亜鉛めっき鋼板:SPCM2-55/55(100mm×30mm×1.6mm)、樹脂材4としてPET板(100mm×30mm×2mm)を用いる場合は、アーク8の移動速度を20cm/分とし、アーク電流を50~60Aとすることで良好な金属樹脂接合体を得ることができる。
 また、金属材2としてフェライト系耐熱鋼板:SUH409L板(100mm×30mm×1.5mm)、樹脂材4としてポリアミド板(100mm×30mm×2mm)を用いる場合は、アーク8の移動速度を20cm/分とし、アーク電流を25~60Aとすることで良好な金属樹脂接合体を得ることができる。なお、当該好適な接合条件については、例えば後述の図20に示されている。
 更に、金属材2として亜鉛めっき鋼板:SPCM2-55/55(100mm×30mm×1.6mm)、樹脂材4としてポリアミド板(100mm×30mm×2mm)を用いる場合は、アーク8の移動速度を20cm/分とし、アーク電流を40~70Aとすることで良好な金属樹脂接合体を得ることができる。なお、当該好適な接合条件については、例えば後述の図25に示されている。
(1-3)加圧工程
 上述の重ね加熱接合及び板間加熱接合においては、加圧工程を付加することで接合部の強度や信頼性等を向上させることができる。
 より具体的には、接合部の樹脂材4は高温に加熱されるため、樹脂材4の分解温度を超えた領域では気泡が発生し、冷却後も当該領域に留まって欠陥となる。これに対し、接合部の形成過程又は形成直後に接合部を加圧することで、加熱工程において接合部の樹脂中に導入される気泡を除去することができ、より信頼性の高い接合部を得ることができる。更に、当該加圧によって軟化した樹脂材が金属材の熱影響部の範囲を超えて広がることから、金属材と樹脂材との接合界面を拡大することができる。
 接合部の加圧は1.40~1.85MPaとすることが好ましく、1.70~1.85MPaとすることがより好ましい。加圧を1.40MPa以上とすることで、気泡の低減(移動)に効果があり、1.85MPa以下とすることで、接合部における樹脂材が薄くなり過ぎることを抑制することができる。なお、当該好適な加圧条件については、例えば後述の図32に示されている。
 板間加熱接合の場合は、金属材2の加熱領域10に樹脂材4を当接させた後、単純に金属材2及び樹脂材4の両側から圧力を印加すればよい。また、重ね加熱接合の場合は、例えば金属材2と樹脂材4を重ね合わせた状態で、金属材2を固定し、樹脂材4の側からシリンダー等で圧力を印加してもよい。なお、重ね加熱接合においては、加熱工程終了後、板間加熱接合の場合と同様に、単純に金属材2及び樹脂材4の両側から圧力を印加してもよい。
(2)金属樹脂接合体
 本発明の金属樹脂接合体の概略断面図を図3に示す。金属樹脂接合体12は、金属材2と樹脂材4とが直接接合されたものであり、接合部に接着剤やリベット等は使用されていない。
 金属材2には、外部加熱によって形成された熱影響部10が形成され、金属材2と樹脂材4との接合界面14は熱影響部10の外側にまで広がっている。従来の金属材と樹脂材の直接接合体においては、接合されている領域は熱影響部10の内側であるが、金属樹脂接合体12においてはより広い面積で接合が達成されているため、高い接合強度及び信頼性を実現することができる。
 金属樹脂接合体12の接合部においては、接合領域に存在する気泡の最大直径が0.1mm未満であること、が好ましい。気泡の最大直径が0.1mm未満であることから、当該気泡は継手特性に殆ど影響を及ぼすことがなく、金属樹脂接合体12は極めて良好な機械的特性を有している。また、目視では接合部の気泡を明瞭に確認することができないことから、接合部に欠陥が存在することによるイメージの低下を抑制することができる。
 なお、金属樹脂接合体12は、本発明の金属樹脂接合方法を用いて好適に得ることができ、特に、上述の加圧工程を伴った接合によって気泡の低減と接合界面14の拡大を同時に達成することができる。
 以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。
1.アーク加熱を用いた接合
≪実施例1≫
 金属材としてフェライト系耐熱鋼板:SUH409L板(100mm×30mm×1.5mm)、樹脂材としてPET板(100mm×30mm×2mm)を用い、図4に示す状態に重ね合わせて金属材側からアーク加熱することで、「重ね加熱接合」を施した。アーク溶接熱源には日鉄住金溶接工業製のプラズマ溶接機(350A用)を用い、タングステン電極をφ3.2mm、インサートチップをφ3.2mmとし、6軸ロボットにより動作制御を行った。なお、パイロットガス流量は0.4L/分で一定とした。
 接合速度(アーク熱源の移動速度)を20cm/分で固定し、溶接電流(アーク電流)を4~12Aで変化させて種々の実施金属樹脂接合体を製造した。図5に示す態様で引張試験を行い、せん断強度を測定した。得られた結果を図6に示す。全ての実施金属樹脂接合体において、接合部はせん断強度の測定が可能な程度以上の強度を有しているが、溶接電流を4~10Aとすることで、高いせん断強度が安定して得られていることが分かる。なお、溶接電流を12Aとした場合、入熱過多に起因する樹脂材の劣化による強度低下が認められる。ここで、12Aの場合はせん断強度が樹脂材の強度未満となるが、それ以外の条件では樹脂材の強度と同等程度のせん断強度が得られている。
 樹脂材と同等程度のせん断強度を示した実施金属樹脂接合体に関し、せん断強度試験によって樹脂材が伸長した状態における実施金属樹脂接合体の概観写真を図7に示す。せん断試験後も接合部における破断は認められず、接合部近傍の樹脂材の伸長が確認できる。加えて、接合領域はアーク加熱による加熱領域の外側にも形成されている。
 各接合工程中の接合界面近傍の温度を熱画像カメラ(日本アビオニクス株式会社製,R300SR-H)にて測定したところ、溶接電流が4~10Aの場合は最高温度部位の平均温度が300~450℃であり、275℃以上の領域が広範囲に存在していた。一方で、12Aの場合は600℃を超える温度領域が認められた。
≪実施例2≫
 金属材として亜鉛めっき鋼板:SPCM2-55/55(100mm×30mm×1.6mm)、樹脂材としてPET板(100mm×30mm×2mm)を用い、溶接電流(アーク電流)を5~12Aで変化させた以外は実施例1と同様にして「重ね加熱接合」を施した。
 得られた実施金属樹脂接合体に関し、実施例1と同様にしてせん断強度を測定した。得られた結果を図8に示す。全ての実施金属樹脂接合体において、接合部はせん断強度の測定が可能な程度以上の強度を有しているが、溶接電流を12Aとすることで、高いせん断強度が安定して得られている。なお、溶接電流を12Aとした場合、樹脂材の強度と同等程度のせん断強度となっている。
 各接合工程中の接合界面近傍の温度を熱画像カメラにて測定したところ、溶接電流が12Aの場合は最高温度部位の平均温度が300~450℃であり、275℃以上の領域が広範囲に存在していた。
≪実施例3≫
 金属材としてフェライト系耐熱鋼板:SUH409L板(100mm×30mm×1.5mm)、樹脂材としてポリアミド板(100mm×30mm×2mm)を用い、溶接電流(アーク電流)を10~22A、接合速度(アーク熱源の移動速度)を15~25cm/分
で変化させた以外は実施例1と同様にして「重ね加熱接合」を施した。
 得られた実施金属樹脂接合体に関し、実施例1と同様にしてせん断強度を測定した。得られた結果を図9に示す。全ての実施金属樹脂接合体において、接合部はせん断強度の測定が可能な程度以上の強度を有しているが、溶接電流が20Aを超える場合、入熱過多に起因する樹脂材の劣化による強度低下が認められる。ここで、20Aを超える場合はせん断強度が樹脂材の強度未満となるが、それ以外の条件では樹脂材の強度と同等程度のせん断強度が得られている。
 各接合工程中の接合界面近傍の温度を熱画像カメラにて測定したところ、溶接電流が10A及び12Aの場合は最高温度部位の平均温度が300~450℃であり、275℃以上の領域が広範囲に存在していた。一方で、22Aの場合は600℃を超える温度領域が認められた。測定結果の例として、10A、12A及び22Aの場合の温度分布を図10、図11及び図12にそれぞれ示す。なお、当該温度分布は加熱開始~加熱終了の中間時点におけるものであり、図中の数値は当該時点における最高到達温度を示している。
 溶接電流を15Aで一定とし、接合速度を変化させて得られた実施金属樹脂接合体のせん断強度を図13に示す。溶接電流を15Aとした場合、接合速度を変化させても高いせん断強度を有する金属樹脂接合体が得られることが分かる。
 なお、溶接電流を15Aで一定とし、接合速度を変化させた場合において、各接合工程中の接合界面近傍の温度を熱画像カメラにて測定したところ、最高温度部位の平均温度は300~450℃であり、275℃以上の領域が広範囲に存在していた。
≪実施例4≫
 金属材として亜鉛めっき鋼板:SPCM2-55/55(100mm×30mm×1.6mm)、樹脂材としてポリアミド板(100mm×30mm×2mm)を用い、溶接電流(アーク電流)を12~30A、接合速度(アーク熱源の移動速度)を20~30cm/分
で変化させた以外は実施例1と同様にして「重ね加熱接合」を施した。
 得られた実施金属樹脂接合体に関し、実施例1と同様にしてせん断強度を測定した。得られた結果を図14に示す。全ての実施金属樹脂接合体において、接合部はせん断強度の測定が可能な程度以上の強度を有しているが、溶接電流が14~20Aの範囲において高いせん断強度が得られている。ここで、14~20Aで得られた実施金属樹脂接合体のせん断強度は樹脂材の強度と同等程度になっている。
 各接合工程中の接合界面近傍の温度を熱画像カメラにて測定したところ、溶接電流が14~20Aの場合は最高温度部位の平均温度が300~450℃であり、275℃以上の領域が広範囲に存在していた。測定結果の例として、14A及び20Aの場合の温度分布を図15及び図16にそれぞれ示す。なお、当該温度分布は加熱開始~加熱終了の中間時点におけるものであり、図中の数値は当該時点における最高到達温度を示している。
 溶接電流を18Aで一定とし、接合速度を変化させて得られた実施金属樹脂接合体のせん断強度を図17に示す。溶接電流を18Aとした場合、接合速度を変化させても高いせん断強度を有する金属樹脂接合体が得られることが分かる。
 なお、溶接電流を18Aで一定とし、接合速度を変化させた場合において、各接合工程中の接合界面近傍の温度を熱画像カメラにて測定したところ、最高温度部位の平均温度は300~450℃であり、275℃以上の領域が広範囲に存在していた。
≪実施例5≫
 金属材としてフェライト系耐熱鋼板:SUH409L板(100mm×30mm×1.5mm)、樹脂材としてPET板(100mm×30mm×2mm)を用い、SUH409L板をアーク加熱した直後にPET板を当接させ、被接合部を加圧することで「板間加熱接合」を施した。なお、SUH409L板のアーク加熱箇所及びSUH409L板とPET板を当接させる際の配置は、「重ね加熱接合」の場合と同様に、図4に示す状態とし、接合部への加圧は0.6MPaとした。
 アーク溶接熱源には日鉄住金溶接工業製のプラズマ溶接機(350A用)を用い、タングステン電極をφ3.2mm、インサートチップをφ3.2mmとし、6軸ロボットにより動作制御を行った。なお、パイロットガス流量は0.4L/分で一定とした。
 接合速度(アーク熱源の移動速度)を20cm/分で固定し、溶接電流(アーク電流)を30A又は50Aとして実施金属樹脂接合体を製造した。得られた実施金属樹脂接合体に関し、実施例1と同様にしてせん断強度を測定した。得られた結果を図18に示す。全ての実施金属樹脂接合体において、高いせん断強度が得られていることが分かる。ここで、実施金属樹脂接合体のせん断強度は樹脂材の強度と同等程度になっている。
 樹脂材と同等程度のせん断強度を示した実施金属樹脂接合体に関し、せん断強度試験によって樹脂材が伸長した状態における実施金属樹脂接合体の概観写真を図19に示す。せん断試験後も接合部における破断は認められず、接合部近傍の樹脂材の伸長が確認できる。加えて、接合領域はアーク加熱による加熱領域の外側にも形成されている。
≪実施例6≫
 金属材としてフェライト系耐熱鋼板:SUH409L板(100mm×30mm×1.5mm)、樹脂材としてポリアミド板(100mm×30mm×2mm)を用い、溶接電流(アーク電流)を30~60A、接合速度(アーク熱源の移動速度)を20~55cm/分
で変化させた以外は実施例5と同様にして「板間加熱接合」を施した。
 得られた実施金属樹脂接合体に関し、実施例1と同様にしてせん断強度を測定した。接合速度を20cm/分及び30cm/分とした場合のせん断強度を図20及び図21にそれぞれ示す。20cm/分の場合は25A、30cm/分の場合は30Aで値がばらついているものの、何れの条件においても高いせん断強度が得られている。ここで、得られたせん断強度は樹脂材の強度と同程度となっている。
 溶接電流を60Aとし、接合速度を変化させて得られた実施樹脂金属接合体のせん断強度を図22に示す。溶接電流を60Aとした場合、接合速度を55cm/分まで増加させても高いせん断強度が得られている。
 樹脂材と同等程度のせん断強度を示した実施金属樹脂接合体に関し、せん断強度試験によって樹脂材が伸長した状態における実施金属樹脂接合体の概観写真を図23に示す。せん断試験後も接合部における破断は認められず、接合部近傍の樹脂材の伸長が確認できる。加えて、接合領域はアーク加熱による加熱領域の外側にも形成されている。
 アーク加熱された金属材表面の温度変化を熱画像カメラにて測定した。加熱開始部、加熱中間部及び加熱終了部における最高温度変化を図24に示す(接合条件:25A,20cm/分)。当該加熱領域への樹脂材の当接は、加熱終了後約1秒であることから、接合中の最高温度部位は約400℃であると思われる。
≪実施例7≫
 金属材として亜鉛めっき鋼板:SPCM2-55/55(100mm×30mm×1.6mm)、樹脂材としてポリアミド板(100mm×30mm×2mm)を用い、溶接電流(アーク電流)を30~70A、接合速度(アーク熱源の移動速度)を20~40cm/分
で変化させた以外は実施例1と同様にして「板間加熱接合」を施した。
 得られた実施金属樹脂接合体に関し、実施例1と同様にしてせん断強度を測定した。接合速度を20cm/分及び30cm/分とした場合のせん断強度を図25及び図26にそれぞれ示す。接合速度を20cm/分として30Aの溶接電流を用いた場合はやや低いせん断強度を有する樹脂金属接合体が含まれているが、それ以外の樹脂金属接合体は良好なせん断強度を有している。ここで、20cm/分、30A以外の条件で得られた実施金属樹脂接合体のせん断強度は、樹脂材の強度と同等程度になっている。
 溶接電流を50A及び60Aとした場合のせん断強度を図27及び図28にそれぞれ示す。全ての樹脂金属接合体は樹脂材の強度と同等程度の良好なせん断強度を有している。
 アーク加熱された金属材表面の温度変化を熱画像カメラにて測定した。加熱開始部、加熱中間部及び加熱終了部における最高温度変化を図29に示す(接合条件:40A,20cm/分)。当該加熱領域への樹脂材の当接は、加熱終了後約1秒であることから、接合中の最高温度部位は約300℃であると思われる。ここで、接合界面近傍の温度は広範囲で275℃以上となるが、加熱開始部においては時間の経過と共に樹脂の融点を下回る温度となっている。融点以下の領域では加圧による樹脂材の流動が損なわれるが、溶融部の樹脂材が加圧によって接合界面に濡れ広がることにより、低温部においても接合が達成されていると思われる。
 実施金属樹脂接合体に関し、代表的な金属/樹脂界面のSEM観察像及びTEM観察像を図30及び図31にそれぞれ示す。何れの観察においても金属と樹脂は直接接合されており、剥離等の欠陥は認められなかった。なお、SEM観察には株式会社日立ハイテクサイエンス製のSMI3050SEを用い、TEM観察には日本電子株式会社製のJEM-2100Fを用いた。また、SEM観察及びTEM観察の加速電圧は、それぞれ5kV及び200kVとした。
≪実施例8≫
 接合部へ印加する加圧力を0.3~1.7MPa(加圧部面積:450mm2)の範囲で変化させ、接合速度及び溶接電流をそれぞれ20cm/分及び8Aとした以外は実施例5と同様にして、実施金属樹脂接合体を得た。
 得られた各接合部の概観写真を図32に示す。加圧力が1.4MPaの場合、接合部の樹脂材における気泡が低減されていることが分かる。また、1.7MPaの加圧によって、気泡はほぼ消失しており、目視においては確認されない状態となっている。加えて、何れの接合部においても樹脂材厚さの顕著な減少は認められず、接合領域はアーク加熱による加熱領域の外側にも形成されていた。
2.ワンサイド抵抗スポット加熱を用いた接合
≪実施例9≫
 金属材として亜鉛めっき鋼板:SPCM2-55/55(100mm×25mm×0.8mm)、樹脂材としてポリアミド板(100mm×25mm×2mm)を用い、樹脂金属接合用に設計した専用電極を備えた定置抵抗スポット溶接機にてワンサイド通電することでワンサイド抵抗スポット溶接を用いた「重ね加熱接合」を施した。図33に亜鉛めっき鋼板とポリアミド板の配置状況を示す。亜鉛めっき鋼板は上側、ポリアミド板は下側に配置され、通電は重ね部材上側(亜鉛めっき鋼板側)から、加圧は重ね部材下側(樹脂側)から行った(溶接機の下部に加圧用の治具を配置した)。
 接合時の状況を示す模式図及び外観写真を図34及び図35にそれぞれ示す。亜鉛めっき鋼板の上側に電極を配置し、当該電極を亜鉛めっき鋼板の表面に押し当てることで被接合部材同士を密着させた後、電極間に通電して抵抗発熱を被接合界面に伝導させることにより接合が達成される。なお、装置上部に配置された電極による加圧力は0.4kgf/cm2~1.2kgf/cm2の荷重範囲に設定した。これに対し、装置下部に配置した治具は通電完了後直ちに一定圧力を接合界面に印加するものであり、最大で1.84MPaの圧力を設定した。
 接合時の通電電流を0.5~4.0kA、通電回数を1回に設定し、通電時間(Cycle)を変化させて種々の実施金属樹脂接合体を製造した。通電電流を1.0kAとし、通電時間を変化させて得られた実施金属樹脂接合体のせん断強度を図36に示す。また、通電電流を1.5kAとし、通電時間を変化させて得られた実施金属樹脂接合体のせん断強度を図37に示す。更に、通電電流を2.0kAとし、通電時間を変化させて得られた実施金属樹脂接合体のせん断強度を図38に示す。
 何れの実施金属樹脂接合体においても比較的良好なせん断強度を示しているが、通電電流1.5kAかつ通電時間150Cycle以上、及び通電電流2.0kAかつ通電時間70Cycle以上の接合条件において、2500N(接合領域25mm幅)以上の高いせん断強度が得られている。更に、通電電流1.5kAかつ通電時間180Cycle以上、及び通電電流2.0kAかつ通電時間90Cycle以上の接合条件において、3000N以上の極めて高いせん断強度が得られている。
≪実施例10≫
 通電回数を2回とし、一次通電条件を通電電流:2.5kA、通電時間:15Cycleとして二次通電条件を変化させて得られた実施金属樹脂接合体のせん断強度を図39に示す。なお、一次通電から二次通電へのアップスロープは9Cycleとし、二次通電条件は通電電流:3.0~3.5kA、通電時間:10~15Cycleとした。なお、その他の条件は実施例9と同様とした。
 図39において、二次通電による発熱量(ジュール発熱)の増加に伴いせん断強度が低下している。通電加熱による発熱量が増加すると接合温度が樹脂の分解温度以上となり、樹脂の分解及び結晶性の低下が生じることが原因であると思われる。一方で、通電回数が1回の場合と比較して、短時間で3000N程度の極めて高いせん断強度が得られている。
≪実施例11≫
 一次通電条件を通電電流:2.5kA、通電時間:20Cycle、二次通電条件を通電電流:2.0kA、通電時間:40Cycleとし、加圧用治具を用いて通電完了後直ちに一定圧力をポリアミド板側から接合界面に印加することで、せん断強度に及ぼす加圧力の影響を検討した。なお、その他の条件は実施例9と同様とした。各加圧力条件で得られた実施金属樹脂接合体のせん断強度を図40に示す。
 加圧力の印加により、せん断強度が3000N以上の高い値で略一定となっており、安定した品質の実施金属樹脂接合体が得られている。一方で、加圧力を大きくすることによるせん断強度の増加は認められないが、抵抗スポット溶接では通電時に被接合材同士を密着させるに十分な圧力が電極によって既に印加されていることが理由であると思われる。
≪実施例12≫
 次に、加圧用治具を用いた加圧を行うことなく、通電時の電極による荷重を0.4kgf/cm2~1.2kgf/cm2の範囲で変化させた。なお、一次通電条件は通電電流:2.5kA、通電時間:20Cycle、二次通電条件は通電電流:2.0kA、通電時間:40Cycleとした。なお、その他の条件は実施例9と同様とした。得られた実施金属樹脂接合体のせん断強度を図41に示す。
 3000N前後のせん断強度が得られているが、印加荷重の増加に伴う強度上昇は認められない。ここで、図40と図41の比較により、加圧用治具を用いて通電完了後直ちに一定圧力をポリアミド板側から接合界面に印加することで、より信頼性の高い金属樹脂接合体が得られることが分かる。
≪実施例13≫
 一次通電条件を通電電流:0.7kA、通電時間:99Cycle、二次通電条件を通電電流:1.8kA又は2.0kA、通電時間:40Cycle、三次通電条件を通電電流:1.0kA、通電時間:99Cycleとして得られた実施金属樹脂接合体のせん断強度を図42に示す。なお、その他の条件は実施例9と同様とした。
 加圧用治具を用いた加圧を印加していないが、三次通電まで行ったものは非常に安定したせん断強度を示している。つまり、ワンサイド抵抗スポット溶接で得られる金属樹脂接合体の品質を安定させるためには、通電完了後直ちに一定圧力を接合界面に印加することや、通電回数を増加させることが効果的である。
 実施金属樹脂接合体(亜鉛めっき鋼板/ポリアミド樹脂)の接合界面をSTEMにより観察した。なお、観察用薄片試料はFIBを用い、電極直下における接合界面を含む領域から切出した。観察用薄片試料の全体像(STEM-BF像)を図43に、図43に示す各領域((1)~(7))の高倍率観察像を図44にそれぞれ示す。
 ポリアミド樹脂と亜鉛めっき鋼板の接合領域に剥離やポア等の欠陥は認められず、良好な接合が達成されている。また、図44において、亜鉛めっき鋼板の表面に形成された酸化物層を介して、亜鉛めっき鋼板とポリアミド樹脂が強固に接合されていることが分かる。なお、STEM-EDS分析の結果、酸化物層からはアルミニウムが検出された。
≪実施例14≫
 樹脂材をGFRP(30%ガラス繊維添加強化によるポリアミド樹脂)、金属材を亜鉛めっき鋼板とした場合の金属樹脂接合について評価を行った。なお、被接合材のサイズ及び形状は実施例9と同様である。一次通電条件を通電電流:2.5kA、通電時間:30Cycle、二次通電条件を通電電流:2.0kA、通電時間:40Cycleとし、加圧用治具を用いて通電完了後直ちに一定圧力をGFRP板側から接合界面に印加することで、せん断強度に及ぼす加圧力の影響を検討した。なお、その他の条件は実施例9と同様とした。各加圧力条件で得られた実施金属樹脂接合体のせん断強度を図45に示す。
 樹脂材がポリアミド樹脂の場合と同様に、高いせん断強度を有する実施金属樹脂接合体が安定して得られている。なお、せん断強度に及ぼす加圧力の影響は殆ど認められない。
≪実施例15≫
 金属材としてアルミニウム合金:5000系(100mm×25mm×0.9mm)、樹脂材としてポリアミド板(100mm×25mm×2mm)を用い、通電回数1回で実施金属樹脂接合体を製造した。通電電流を2.5kA、通電時間を175~275Cycleとして得られた実施金属樹脂接合体のせん断強度を図46に示す。なお、その他の条件は実施例9と同様とした。
 アルミニウム合金/ポリアミド樹脂の組合せにおいても良好な接合体が得られており、2500N以上のせん断強度を示している。また、通電時間を長くすることでせん断強度が増加すると共に、より安定した接合体が得られている。
≪実施例16≫
 金属材としてアルミニウム合金:5000系(100mm×25mm×0.9mm)、樹脂材としてGFRP(30%ガラス繊維添加強化によるポリアミド樹脂,100mm×25mm×2mm)用い、通電回数1回で実施金属樹脂接合体を製造した。通電電流を2.5~3.5kA、通電時間を138~275Cycleとして得られた実施金属樹脂接合体のせん断強度を図47に示す。なお、その他の条件は実施例9と同様とした。
 その他の組合せと同様に、アルミニウム合金/GFRPにおいても良好な接合体が得られており、3500N前後の高いせん断強度を示している。
2・・・金属材、
4・・・樹脂材、
6・・・プラズマ溶接トーチ、
8・・・アーク、
10・・・加熱領域、
12・・・金属樹脂接合体、
14・・・接合界面。

Claims (10)

  1.  金属材と樹脂材とを直接接合する方法であって、
     アーク熱源を用いて前記金属材の少なくとも一部に加熱領域を形成させる加熱工程を有し、
     前記加熱領域からの入熱によって、前記樹脂材の少なくとも一部を前記樹脂材の溶融温度以上に昇温し、接合部を形成すること、
     を特徴とする金属樹脂接合方法。
  2.  前記接合部の形成過程又は形成直後に前記接合部を加圧すること、
     を特徴とする請求項1に記載の金属樹脂接合方法。
  3.  前記加熱工程において、前記金属材と前記樹脂材とを重ね合わせた状態で、前記アーク熱源を前記金属材の側に配置すること、
     を特徴とする請求項1又は2に記載の金属樹脂接合方法。
  4.  前記加熱工程で前記金属材の少なくとも一部に前記加熱領域を形成させた後に、前記加熱領域の少なくとも一部と重畳するように前記樹脂材を配置し、前記樹脂材の一部を前記樹脂材の溶融温度以上に昇温すること、
     を特徴とする請求項1又は2に記載の金属樹脂接合方法。
  5.  前記加熱工程において、前記アーク熱源の使用に代えて、前記金属材と前記樹脂材とを重ね合わせた状態でワンサイド抵抗スポット溶接を施し、前記金属材の少なくとも一部に前記加熱領域を形成させること、
     を特徴とする請求項1又は2に記載の金属樹脂接合方法。
  6.  前記加熱工程において、前記金属材と前記樹脂材との被接合界面の最高温度を450~600℃とすること、
     を特徴とする請求項1~5のうちのいずれかに記載の金属樹脂接合方法。
  7.  前記加熱工程において、前記金属材と前記樹脂材との前記被接合界面の温度を275~600℃とすること、
     を特徴とする請求項1~6のうちのいずれかに記載の金属樹脂接合方法。
  8.  前記加圧を1.40~1.85MPaとすること、
     を特徴とする請求項2~7のうちのいずれかに記載の金属樹脂接合方法。
  9.  樹脂材と金属材との重ね接合部材であって、
     前記樹脂材と前記金属材とは直接接合されており、
     前記金属材には加熱処理による熱影響部が形成され、
     前記熱影響部の外側にも接合界面が形成されていること、
     を特徴とする金属樹脂接合体。
  10.  前記接合領域に存在する気泡の最大直径が0.1mm未満であること、
     を特徴とする請求項9に記載の金属樹脂接合体。
PCT/JP2016/004936 2015-11-26 2016-11-21 金属樹脂接合方法及び金属樹脂接合体 WO2017090245A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017552273A JP6589171B2 (ja) 2015-11-26 2016-11-21 金属樹脂接合方法及び金属樹脂接合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-230204 2015-11-26
JP2015230204 2015-11-26

Publications (1)

Publication Number Publication Date
WO2017090245A1 true WO2017090245A1 (ja) 2017-06-01

Family

ID=58763384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004936 WO2017090245A1 (ja) 2015-11-26 2016-11-21 金属樹脂接合方法及び金属樹脂接合体

Country Status (2)

Country Link
JP (1) JP6589171B2 (ja)
WO (1) WO2017090245A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11987034B2 (en) 2019-03-29 2024-05-21 Ihi Corporation Metal-resin joining method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046831A (ja) * 2008-08-19 2010-03-04 Toyota Motor Corp 樹脂と金属との接合方法および装置
JP2010274454A (ja) * 2009-05-27 2010-12-09 Aisin Chem Co Ltd 樹脂金属複合筐体およびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6330760B2 (ja) * 2015-08-25 2018-05-30 マツダ株式会社 金属部材と樹脂部材との接合方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046831A (ja) * 2008-08-19 2010-03-04 Toyota Motor Corp 樹脂と金属との接合方法および装置
JP2010274454A (ja) * 2009-05-27 2010-12-09 Aisin Chem Co Ltd 樹脂金属複合筐体およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11987034B2 (en) 2019-03-29 2024-05-21 Ihi Corporation Metal-resin joining method

Also Published As

Publication number Publication date
JPWO2017090245A1 (ja) 2018-09-06
JP6589171B2 (ja) 2019-10-16

Similar Documents

Publication Publication Date Title
JP5293227B2 (ja) 高強度薄鋼板の抵抗スポット溶接方法
JP5468350B2 (ja) 異種金属板の接合方法
US10625365B2 (en) Resistance spot welding method
JP5793495B2 (ja) 直流マイクロパルスを用いた抵抗スポット溶接方法及びシステム
JP5999293B1 (ja) 抵抗スポット溶接方法および抵抗スポット溶接継手の製造方法
JP2008023583A (ja) 異種金属の接合方法、接合構造及び接合装置
WO2009123330A1 (ja) 高密度エネルギービームで接合した溶接鋼管およびその製造方法
JP2013501628A5 (ja)
JP2007268604A (ja) 抵抗スポット溶接方法
KR102328270B1 (ko) 알루미늄재의 저항 스폿 용접 이음, 및 알루미늄재의 저항 스폿 용접 방법
JP5401047B2 (ja) 高張力鋼板のシリーズスポットまたはインダイレクトスポット溶接法
CN107335921A (zh) 加钒中间层的钛合金‑不锈钢异种金属激光焊接方法
JP2020011276A (ja) 異材接合構造体の製造方法及び異材接合構造体
JP6589171B2 (ja) 金属樹脂接合方法及び金属樹脂接合体
US20160039039A1 (en) Aluminum resistance spot welding tip and method of making the same
JP7115223B2 (ja) 抵抗スポット溶接継手の製造方法
JP2008200750A (ja) 片面アークスポット溶接方法
CN103624393B (zh) 刚性拘束热自压连接方法
JP2012187616A (ja) 抵抗溶接装置、および抵抗溶接方法
JP6969649B2 (ja) 抵抗スポット溶接方法および溶接部材の製造方法
WO2020138468A1 (ja) 鋼部材の製造方法
KR20140016268A (ko) 2 단계 용접을 이용한 분산강화형 백금계 합금의 용접 물품 제조 방법
JP6418224B2 (ja) スポット溶接物の製造方法およびスポット溶接電極
Mithun et al. An Analysis of Geometrical and Failure Characteristics of Laser Micro-Welded SS304 and DSS2205
JP2010247194A (ja) 金属管の接合方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868196

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552273

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868196

Country of ref document: EP

Kind code of ref document: A1