WO2017090207A1 - Optical receiver, optical communication device and control method - Google Patents
Optical receiver, optical communication device and control method Download PDFInfo
- Publication number
- WO2017090207A1 WO2017090207A1 PCT/JP2015/083491 JP2015083491W WO2017090207A1 WO 2017090207 A1 WO2017090207 A1 WO 2017090207A1 JP 2015083491 W JP2015083491 W JP 2015083491W WO 2017090207 A1 WO2017090207 A1 WO 2017090207A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- optical
- input
- optical packet
- circuit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/69—Electrical arrangements in the receiver
- H04B10/693—Arrangements for optimizing the preamplifier in the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/69—Electrical arrangements in the receiver
- H04B10/693—Arrangements for optimizing the preamplifier in the receiver
- H04B10/6931—Automatic gain control of the preamplifier
Definitions
- the present invention relates to an optical receiver, an optical communication apparatus, and a control method in an optical receiver in an optical communication system.
- optical transceiver of the OLT which is the base station in the optical access system, is required to be multi-rate to accommodate the old and new systems, and for any light reception level signal Is required to have both a high-speed response and a high continuous resistance with the same sign.
- Patent Document 1 discloses an invention that can realize optimum frequency response characteristics for different transmission rates by switching the internal feedback resistance value of the preamplifier by a rate switching signal that is an external signal. Yes.
- the OLT receives packets transmitted from each ONU (Optical Network Unit) intermittently, that is, in bursts. Therefore, in the OLT optical receiver 1, stable control is desired, and a high-speed response at the start of packet reception is desired.
- ONU Optical Network Unit
- Patent Document 2 when the control converges, a high continuous resistance with the same sign is realized by using a low-speed time constant, and a high-speed response is realized by switching to a high-speed time constant when a reset signal is input from the outside. is doing.
- both a rate switching signal for switching the transmission rate and a reset signal for switching to a fast time constant are required.
- the optical transceiver is mounted as an optical module mounted on a substrate, in order to reduce the size of the optical transceiver, the board and the optical module are miniaturized, and the connector that connects the optical module and an external interface substrate Reducing the number of input / output pins in the unit is also a major issue. Therefore, the optical receiver is required to realize both multi-rate and high-speed response while avoiding a large hardware scale.
- the present invention has been made in view of the above, and it is an object of the present invention to obtain an optical receiver capable of realizing a high-speed response to a burst signal and compatibility with a plurality of transmission rates while avoiding an increase in size of hardware. Objective.
- an optical receiver includes a light receiving element that converts an optical signal intermittently received as an optical packet into a current signal, and a control input from the outside.
- a separation circuit that separates the signal into a first signal that indicates a time at which the head of the optical packet is received and a second signal that indicates a transmission rate of the optical packet, and outputs the first signal and the second signal; .
- the control signal is a signal in which information indicating the time at which the light receiving element receives the head of the optical packet and information indicating the transmission rate of the optical packet are superimposed.
- An optical receiver according to the present invention includes a receiver that converts a current signal into a voltage signal, switches a time constant according to a first signal, and switches a frequency response characteristic according to a second signal. .
- the optical receiver according to the present invention has an effect that it is possible to realize a high-speed response to a burst signal and compatibility with a plurality of transmission rates while avoiding an increase in size of hardware.
- FIG. 1 is a diagram illustrating a configuration example of an optical receiver according to a first embodiment.
- FIG. 3 illustrates a configuration example of a receiver in the first embodiment.
- FIG. 3 is a diagram illustrating a configuration example of a gain control circuit according to the first embodiment. The figure which shows the structural example of the optical communication system of Embodiment 1.
- FIG. 3 illustrates a configuration example of a processing circuit according to the first embodiment.
- FIG. 3 is a diagram illustrating a configuration example of a control circuit according to the first embodiment.
- FIG. 3 is a timing chart illustrating an example of each signal in the optical receiver according to the first embodiment.
- FIG. 5 is a diagram illustrating a configuration example of a separation circuit of an optical receiver according to a second embodiment.
- FIG. 4 is a timing chart illustrating an example of a control signal, a rate select signal, and a reset signal according to the second embodiment.
- Flowchart illustrating an example of a control signal generation procedure according to the second embodiment The figure which shows the circuit structural example of an edge detection circuit when an edge detection circuit is used as a rising edge detection circuit The figure which shows the circuit structural example of an edge detection circuit when an edge detection circuit is made into a falling edge detection circuit The figure which shows the circuit structural example of an edge detection circuit when an edge detection circuit is used as a both-edge detection circuit
- FIG. 6 is a diagram illustrating an example of an input signal to an operational amplifier and a signal output from the edge detection circuit in the edge detection circuit according to the second embodiment.
- FIG. 6 is a timing chart illustrating an example of each signal when a falling detection circuit is used as the edge detection circuit according to the second embodiment.
- FIG. 6 is a timing chart illustrating an example of each signal when both edge detection circuits are used as the edge detection circuit according to the second embodiment.
- Timing chart showing an example of each signal in the optical receiver of the third embodiment Flowchart showing an example of a control signal generation procedure according to the third embodiment Timing chart showing an example of each signal in the optical receiver of the fourth embodiment
- FIG. 6 is a diagram illustrating a configuration example of a separation circuit according to a fourth embodiment.
- FIG. 6 is a timing chart illustrating an example of each signal in the separation circuit of the fourth embodiment. The figure which shows the structural example of the isolation
- FIG. 1 is a diagram illustrating a configuration example of an optical receiver 1 according to the first embodiment of the present invention.
- the optical receiver 1 according to the first embodiment includes a light receiving element 11, a receiver 12, and a separation circuit 13.
- the optical receiver 1 according to the first embodiment is an optical receiver 1 that receives optical packets in a burst manner.
- the optical receiver 1 according to Embodiment 1 is mounted on, for example, an OLT that is an optical communication device.
- the light receiving element 11 is an element that converts a received optical signal, that is, a received light signal into a current signal and outputs it, and is, for example, an APD (Avalanche Photo Diode) or a PD (Photo Diode).
- the receiver 12 converts the current signal output from the light receiving element 11 into a voltage signal.
- the separation circuit 13 receives a control signal, which will be described later, input from the outside, a reset signal that is a first signal used for switching the time constant in the receiver 12 and a second signal used for switching the frequency response characteristic in the receiver 12. And a reset signal and a rate select signal are input to the receiver 12.
- the control signal is a signal in which the time when the optical receiver 1 receives the head of the optical packet, that is, the information indicating the time when the light receiving element 11 receives the head of the optical packet and the information indicating the transmission rate of the optical packet are superimposed. is there.
- the reset signal is a signal indicating the time when the head of the optical packet received by the optical receiver 1 is received.
- the rate select signal is a signal indicating the transmission rate of the optical signal received by the optical receiver 1, that is, the transmission rate of the signal input to the receiver 12.
- the transmission rate of the optical signal received by the optical receiver 1 is the bit rate # 1 that is the first transmission rate and the bit rate # that is the second transmission rate that is higher than the first transmission rate. 2 and 2 types are included. Therefore, the rate select signal is, for example, a binary signal indicating either a value indicating the bit rate # 1 or a value indicating the bit rate # 2.
- the reset signal is a signal input from the separation circuit 13 and is a signal for instructing initialization, that is, resetting of the optical receiver 1.
- the reset signal is, for example, a value indicating reset every time reception of an optical packet is started.
- control signal only needs to be generated so that the reset signal and the rate select signal can be separated from the control signal, and the specific format of the control signal is not particularly limited. Specific examples of the control signal will be described in the second and subsequent embodiments.
- the control signal is input to the optical receiver 1 from a control unit that controls an ONU in the OLT.
- the receiver 12 includes an amplifier and a control circuit that controls the amplifier, and is configured such that control parameters in the amplifier in the receiver 12 can be changed according to the reset signal and the rate select signal.
- the control parameters include a frequency characteristic parameter that is a parameter corresponding to the frequency response characteristic of the receiver 12 and a time constant of a control circuit in the receiver 12.
- the frequency characteristic parameters are, for example, the feedback resistance value and the open loop gain described in Patent Document 1, and are changed according to the rate select signal.
- the control circuit of the receiver 12 can change the time constant according to the reset signal, for example, by the method described in Patent Document 2.
- the optimum frequency response characteristic in the operation of the receiver 12 varies depending on the transmission rate of the signal input to the receiver 12.
- the receiver 12 can change the frequency response parameter as described above, and the first frequency response parameter, which is a frequency response parameter for realizing an optimal frequency response characteristic for the bit rate # 1, and the bit rate It is assumed that a second frequency response parameter that is a frequency response parameter for realizing an optimal frequency response characteristic for # 2 can be set.
- FIG. 2 is a diagram illustrating a configuration example of the receiver 12 according to the first embodiment.
- the receiver 12 shown in FIG. 2 includes an inverting amplifier 121 that is a variable gain inverting amplifier, a resistor 122 that is a first resistor, a resistor 123 that is a second resistor, and a MOS (Metal Oxide Semiconductor) transistor 124. And a gain control circuit 125 and a convergence determination circuit 126.
- the gain control circuit 125 performs automatic gain control on the inverting amplifier 121.
- the convergence determination circuit 126 determines the convergence of control by the gain control circuit 125.
- the MOS transistor 124 of the receiver 12 shown in FIG. 2 is turned on or off according to a rate select signal that is a signal indicating the transmission rate of the signal input to the receiver 12.
- the resistor 122, the resistor 123, and the MOS transistor 124 constitute a feedback resistor unit.
- the resistance value of the feedback resistor section that is, the feedback resistance value changes according to the on / off state of the MOS transistor 124 serving as a switch.
- the frequency response characteristic depends on the feedback resistance value. Further, as described above, the optimum frequency response characteristic in the operation of the receiver 12 varies depending on the transmission rate of the signal input to the receiver 12. Therefore, the optimum feedback resistance value varies depending on the transmission rate of the signal input to the receiver 12. In the receiver 12 shown in FIG. 2, the resistance values of the resistor 122 and the resistor 123 and the resistance value of the MOS transistor 124 are optimal for the bit rate # 2 when the MOS transistor 124 is turned on.
- the resistance value of the feedback resistor when the MOS transistor 124 is off is set to an optimum value for the bit rate # 1.
- the MOS transistor 124 is turned on when the value of the rate select signal is a value indicating the bit rate # 2, and the MOS transistor 124 is turned off when the value of the rate select signal is a value indicating the bit rate # 1.
- an optimum feedback resistance value can be used according to the transmission rate.
- an optimal frequency response characteristic can be realized according to the transmission rate.
- FIG. 3 is a diagram illustrating a configuration example of the gain control circuit 125 according to the first embodiment.
- the gain control circuit 125 shown in FIG. 3 includes a high-speed time constant circuit 127, a low-speed time constant circuit 128, a switch 129, an arithmetic circuit 130, and a logic circuit 131 that is a D-flip flop.
- the high-speed time constant circuit 127 is a circuit that averages the signal output from the inverting amplifier 121 with the first time constant.
- the low-speed time constant circuit 128 is a circuit that averages the signal output from the inverting amplifier 121 with a second time constant longer than the first time constant.
- the switch 129 outputs one of a signal output from the high speed time constant circuit 127 and a signal output from the low speed time constant circuit 128 to the arithmetic circuit 130 based on the reset signal and the convergence determination signal. Based on the signal output from the switch 129, the arithmetic circuit 130 generates a gain control signal according to a predetermined control logic for automatically controlling the gain of the inverting amplifier 121, and the generated gain control signal is inverted. To 121.
- the convergence determination circuit 126 detects the convergence of the automatic gain control based on the signal output from the gain control circuit 125, generates a convergence determination signal that is a signal indicating whether the convergence is detected, and generates the generated convergence.
- a determination signal is input to the logic circuit 131.
- the convergence determination circuit 126 for example, a circuit obtained by removing a logic circuit from the convergence determination circuit described in Patent Document 2 can be used.
- the logic circuit 131 generates a time constant switching signal for switching the time constant circuit selected by the switch 129 based on the reset signal and the convergence determination signal, and outputs the generated time constant switching signal to the switch 129.
- the logic circuit 131 sets the time constant switching signal to a value instructing to select the high-speed time constant circuit 127 when the reset signal has a value instructing reset. Further, the logic circuit 131 sets the time constant switching signal to a value instructing to select the low-speed time constant circuit 128 when the convergence determination signal has a value instructing convergence detection.
- the optical receiver 1 when the optical receiver 1 starts receiving an optical packet, the first time constant that is a high-speed time constant is set, and when the control is converged, the second time constant that is a low-speed time constant is set.
- the receiver 12 can implement
- the receiver 12 may be any receiver 12 that performs switching of frequency response characteristics based on the rate select signal and operation based on the reset signal.
- the receiver 12 may have a function of performing automatic offset control of the preamplifier, and the time constant in the automatic offset control may be switched based on the reset signal.
- the example in which the reset signal is used to set a time constant suitable for the start of optical packet reception, that is, a high-speed time constant when the time constant can be switched has been described. .
- the operation of setting a time constant suitable for starting reception of an optical packet can be referred to as an initialization operation in the receiver 12.
- the reset signal is not limited to switching of the time constant, and may be an operation for initializing the operation in the receiver 12. Further, in FIG. 2, the example in which the feedback resistance value and the open loop gain are changed by the rate select signal has been described, but the control parameters to be changed based on the rate select signal are not limited to these.
- the separation circuit 13 separates a control signal (described later) input from the outside into a reset signal and a rate select signal, and inputs the reset signal and the rate select signal to the receiver 12.
- the reset signal is a signal indicating the head of the optical packet received by the optical receiver 1.
- the rate select signal is a signal that instructs the receiver 12 whether to set the first frequency response parameter or the second frequency response parameter as the frequency response parameter.
- the control signal is generated so that the reset signal and the rate select signal can be separated from the control signal.
- the optical receiver 1 according to Embodiment 1 is mounted on, for example, an OLT in an optical communication system.
- FIG. 4 is a diagram illustrating a configuration example of the optical communication system according to the first embodiment.
- the optical communication system 60 according to the first embodiment includes an OLT 50 and ONUs 51, 52, and 53.
- the OLT 50 is connected to the ONUs 51, 52, and 53 via an optical star coupler and an optical fiber that is a transmission path.
- the number of ONUs is three, but the number of ONUs is not limited to this.
- the OLT 50 assigns upstream communication bandwidth to the ONUs 51, 52, and 53, and grasps the reception time of the optical packet transmitted from each ONU.
- the OLT 50 and the ONUs 51, 52, and 53 operate according to a protocol (hereinafter referred to as a PON protocol) in a PON (Passive Optical Network) system.
- a protocol hereinafter referred to as a PON protocol
- PON Passive Optical Network
- a protocol conforming to the GE-PON standard of IEEE (Institute of Electrical and Electronics Engineers) or the G-PON standard of ITU-T (International Telecommunication Union Telecommunication Standardization Sector) can be used. .
- the OLT 50 includes the optical receiver 1 according to the first embodiment, the optical transmitter 2, and the control unit 3.
- the optical receiver 1 converts an optical signal received from each ONU through an optical fiber, that is, a received light signal into a voltage signal and outputs the voltage signal to the control unit 3.
- the optical transmitter 2 converts a transmission signal transmitted to each ONU generated by the control unit 3 into an optical signal, and transmits the optical signal to each ONU via an optical fiber.
- the control unit 3 generates a transmission signal to be transmitted to each ONU according to the PON protocol, outputs the transmission signal to the optical transmitter 2, and complies with the PON protocol for the signal received from each ONU via the optical receiver 1. Implement the process. In addition, the control unit 3 obtains the upstream transmission rate corresponding to each ONU, that is, the transmission rate of the optical packet transmitted by each ONU, through discovery processing in the GE-PON, and holds the transmission rate for each ONU. Yes. Further, the control unit 3 assigns an upstream band to each ONU. In the PON system, the uplink bandwidth is assigned by time division multiplexing so that signals transmitted from each ONU do not overlap.
- the control unit 3 allocates an upstream band to each ONU, that is, a time zone permitting transmission from each ONU to the OLT 50 by time division multiplexing, and transmits the allocation result to each ONU via the optical transmitter 2.
- Each ONU transmits an optical signal to the OLT 50 according to the allocation result received from the OLT 50.
- the OLT 50 receives optical signals transmitted from each ONU in a burst manner, that is, intermittently.
- a group of signals transmitted in bursts is called an optical packet.
- An optical packet is composed of a predetermined bit string called a preample and data.
- the control unit 3 since the control unit 3 allocates an upstream band to each ONU, it knows the time for receiving an optical signal from each ONU. For this reason, the control part 3 can obtain
- the control unit 3 since the control unit 3 knows the upstream transmission rate of each ONU, the optical packet to be received next can generate a rate select signal based on the optical signal of any transmission rate. As described above, the rate select signal is used for switching frequency response characteristics in the receiver 12 of the optical receiver 1. Therefore, the rate select signal has a value indicating the transmission rate corresponding to the optical packet for each optical packet.
- the frequency response characteristics may not be suitable for the transmission rate, and before the optical receiver 1 receives the data portion of the optical packet,
- the value of the rate select signal only needs to be a value indicating the corresponding transmission rate.
- the control unit 3 can generate a rate select signal and a reset signal used in the optical receiver 1, but when the rate select signal and the reset signal are input to the optical receiver 1, the optical receiver 1
- An optical module to be mounted requires two signal input pins. In recent years, downsizing of hardware is desired, and fewer input pins are desirable. Therefore, in the present embodiment, a control signal is input from the control unit 3 to the optical receiver 1 via one input pin, and the separation circuit 13 of the optical receiver 1 receives a rate select signal from the control signal. And the reset signal are separated.
- the control signal may be a signal in which the reset signal and the rate select signal are multiplexed by shifting the timing at which the reset is instructed by the reset signal and the timing at which the value of the rate select signal changes. It may be multiplexed by a method. Specific control signals will be described in the second and subsequent embodiments.
- the control unit 3 is realized by a processing circuit. Even if this processing circuit is dedicated hardware, a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, DSP that executes a program stored in the memory (Also referred to as “Digital Signal Processor”).
- the memory is, for example, non-volatile or RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), etc. Volatile semiconductor memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disk), etc. are applicable.
- the processing circuit 100 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof.
- ASIC Application Specific Integrated Circuit
- FPGA Field Programmable Gate Array
- control circuit 200 When the control unit 3 is realized by a control circuit including a CPU, the control circuit is, for example, a control circuit 200 having a configuration shown in FIG. As shown in FIG. 6, the control circuit 200 includes a processor 201 that is a CPU and a memory 202. When the control unit 3 is realized by the control circuit 200, the processor 201 reads out and executes a program stored in the memory 202 and corresponding to the process of the control unit 3. The memory 202 is also used as a temporary memory in each process executed by the processor 201.
- FIG. 7 is a timing chart illustrating an example of each signal in the optical receiver 1 according to the first embodiment.
- the horizontal axis in FIG. 7 indicates time.
- the first stage of FIG. 7 shows an example of an optical signal received by the optical receiver 1
- the second stage of FIG. 7 shows an example of a rate select signal
- the third stage of FIG. An example is shown.
- the optical receiver 1 receives optical packets in bursts. Each optical packet is composed of a preamble and data as described above. That is, the optical signal of the optical receiver 1 is an optical signal that is intermittently received as an optical packet.
- the optical packet shown on the left side is transmitted at the transmission rate of the bit rate # 1
- the optical packet shown on the left side is transmitted at the transmission rate of the bit rate # 2.
- the optical receiver 1 receives a control signal synchronized with the optical packet from the outside.
- the control signal is an arbitrary signal that can be separated into a rate select signal and a reset signal.
- the separation circuit 13 separates the control signal into a rate select signal and a reset signal.
- the rate select signal and the reset signal are input to the receiver 12.
- the operation of the receiver 12 when the rate select signal and the reset signal are input is as described above.
- the receiver 12 operates with a frequency response characteristic corresponding to the rate select signal, and the operation of the receiver 12 by the reset signal. To reset.
- the optical receiver 1 separates the first step of converting an optical signal into a current signal and the control signal input from the outside into a reset signal and a rate select signal. And a second step of outputting a rate select signal and a third step of converting a current signal into a voltage signal, switching a time constant according to a reset signal, and switching a frequency response characteristic according to a rate select signal To do.
- the rate select signal is a binary signal of high and low, where high indicates the bit rate # 1 and low indicates the bit rate # 2. Therefore, when the rate select signal is high, the receiver 12 operates with a frequency response characteristic suitable for the bit rate # 1, and when the rate select signal is low, the receiver 12 has a frequency suitable for the bit rate # 2. Operates with response characteristics.
- the correspondence between the value of the rate select signal and the bit rate is not limited to this example, and low may indicate the bit rate # 1 and high may indicate the bit rate # 2.
- the reset signal is a binary signal of high and low, and high indicates that the reset is significant, that is, reset is instructed, and low indicates that the reset is not significant, that is, reset is instructed. Indicates not.
- the reset signal is generally a pulse signal indicating the reset timing.
- the receiver 12 switches the time constant to the first time constant, that is, the fast response time constant as described above. Further, other initialization operations may be performed in response to the reset signal.
- the correspondence between the value of the reset signal and whether or not the reset is significant is not limited to this example. Low indicates that the reset is significant, and high indicates that the reset is not significant. Good.
- the control signal input from one signal input pin is separated into the reset signal and the rate select signal by the separation circuit 13.
- the frequency response characteristic can be switched according to the transmission rate, and a high-speed response to an optical packet received in bursts can be realized.
- the frequency response characteristics can be switched according to the transmission rate, and the hardware can be reduced in size while realizing a high-speed response to optical packets received in bursts.
- FIG. FIG. 8 is a diagram illustrating a configuration example of the separation circuit of the optical receiver 1 according to the second embodiment of the present invention.
- a configuration example of the separation circuit 13 and an example of a control signal in the optical receiver 1 described in the first embodiment will be described.
- the separation circuit 13 includes an edge detection circuit 14 as shown in FIG.
- the edge detection circuit 14 uses a rising edge detection circuit that detects a rising edge, a falling edge detection circuit that detects a falling edge, or a both-edge detection circuit that detects both rising and falling edges.
- FIG. 9 is a timing chart illustrating an example of a control signal, a rate select signal, and a reset signal according to the second embodiment.
- FIG. 9 shows an example in which a rising edge detection circuit is used as the edge detection circuit 14.
- the control signal changes from low to high at the timing when the reset signal changes from low to high, that is, when the reset signal changes from a value indicating that the reset is not significant to a value indicating that the reset is significant. Change. Thereafter, the control signal becomes a value corresponding to the transmission rate of the optical packet received by the optical receiver 1 after a predetermined time has elapsed.
- the control signal according to the present embodiment is a value corresponding to the transmission rate of the optical packet received by the optical receiver 1 during the rate indication period including the time point after the beginning of the optical packet and before receiving the data portion.
- the rate instruction period is a period from when the reset signal changes from low to high and after a certain time elapses until reception of the optical packet ends.
- the bit rate # 1 is shown when the control signal is high, and the bit rate # 2 is shown when the control signal is low.
- FIG. 10 is a flowchart illustrating an example of a control signal generation procedure according to the second embodiment.
- the control signal shown in FIG. 9 is generated by the control unit 3 of the OLT 50 on which the optical receiver 1 is mounted as described in the first embodiment. Here, it is assumed that the control signal is generated by the control unit 3.
- the control unit 3 retains information on the uplink bandwidth allocated to each ONU, and determines whether or not the reception start timing of the optical packet is reached based on the information on the uplink bandwidth for each ONU that is retained ( Step S1). When the control unit 3 determines that the optical packet reception start timing is reached (Yes in step S1), the control unit 3 sets the control signal value to high (step S2). If the control unit 3 determines that it is not the optical packet reception start timing (No in step S1), it repeats step S1.
- step S2 the control unit 3 determines whether or not the transmission rate of the optical packet, that is, the received optical packet is the bit rate # 1 (step S3). When the transmission rate of the optical packet is the bit rate # 1 (step S3, Yes), the control unit 3 determines whether it is the reception end timing of the optical packet (step S4). When it is the reception end timing of the optical packet (step S4, Yes), the control unit 3 sets the value of the control signal output to the optical receiver 1 to low (step S5).
- step S3 when the transmission rate of the optical packet is not the bit rate # 1 (No in step S3), the control unit 3 determines whether or not a certain time has passed since the value of the control signal was set high (step S6). When the fixed time has passed (Yes at Step S6), the process proceeds to Step S5. When the fixed time has not passed (No at Step S6), Step S6 is repeated. If it is not the optical packet reception end timing in step S4 (No in step S4), step S4 is repeated.
- the control unit 3 can generate the control signal shown in FIG.
- the processing procedure shown in FIG. 10 is an example, and the specific processing procedure for generating the control signal is not limited to the example of FIG.
- the edge detection circuit 14 when the edge detection circuit 14 detects the rising edge of the control signal, as shown in the second stage of FIG. 9, the edge detection circuit 14 generates a pulsed reset signal, and the generated reset signal is received by the receiver 12. Output to. Further, the separation circuit 13 of the optical receiver 1 outputs the input control signal as it is to the receiver 12 as a rate select signal.
- the receiver 12 only needs to have a frequency response characteristic corresponding to the transmission rate of the optical packet before receiving the data portion of the optical packet. For this reason, the fixed time in the process of FIG. 9 described above may be within the time zone corresponding to the preamble.
- FIG. 11 is a diagram showing a circuit configuration example of the edge detection circuit 14 when the edge detection circuit 14 is a rising edge detection circuit.
- the edge detection circuit 14 shown in FIG. 11 includes a resistor 15, a capacitor 20, and an operational amplifier (operational amplifier) 24.
- the control signal is branched into two, one of the branched signals is input to the positive phase of the operational amplifier 24, and the other is input to the negative phase of the operational amplifier 24 through the low-pass filter 151 including the resistor 15 and the capacitor 20. Is done.
- the operational amplifier 24 is used as a circuit that outputs a high value signal when the positive phase input voltage becomes higher than the negative phase input voltage.
- a signal input to the operational amplifier 24 through the low-pass filter 151 is a signal with a dull edge.
- the signal input in the positive phase is larger than the signal input in the negative phase.
- the difference between the signal input in the positive phase and the signal input in the reverse phase is amplified by the operational amplifier 24, and becomes a pulse in the vicinity of the rising edge.
- FIG. 12 is a diagram showing a circuit configuration example of the edge detection circuit 14 when the edge detection circuit 14 is a falling edge detection circuit.
- a control signal obtained by inverting the control signal shown in FIG. 9 can be used.
- the edge detection circuit 14 shown in FIG. 12 includes a resistor 16, a capacitor 21, and an operational amplifier 25.
- the control signal is input to the negative phase of the operational amplifier 25, and the control signal via the low-pass filter 152 formed by the resistor 16 and the capacitor 21 is set to the positive phase of the operational amplifier 25. Entered.
- the signal output from the operational amplifier 25 is pulsed in the vicinity of the falling edge of the control signal.
- FIG. 13 is a diagram showing a circuit configuration example of the edge detection circuit 14 when the edge detection circuit 14 is a both-edge detection circuit.
- the edge detection circuit 14 shown in FIG. 13 includes a falling detection circuit including a resistor 17, a capacitor 22, and an operational amplifier 26 that is a first operational amplifier, and a resistor 18, a capacitor 23, and an operational amplifier that is a second operational amplifier. 27, a rising edge detection circuit, and an OR circuit 28.
- the falling edge detection circuit is the same as the edge detection circuit 14 in FIG. 11, and the rising edge detection circuit is the same as the edge detection circuit 14 in FIG.
- the resistor 17 and the capacitor 22 constitute a first low-pass filter 153, and the resistor 18 and the capacitor 23 constitute a second low-pass filter 154.
- the OR circuit (logical sum circuit) 28 outputs an OR (logical sum) of the signal output from the falling detection circuit and the signal output from the rising detection circuit.
- FIG. 14 is a diagram illustrating an example of an input signal to the operational amplifier in the edge detection circuit 14 according to the second embodiment and a signal output from the edge detection circuit 14.
- the first stage of FIG. 14 shows an input signal to the operational amplifier
- the solid line indicates the positive phase of the operational amplifier 24 shown in FIG. 11 and the operational amplifier 27 shown in FIG. 13, and the operational amplifier 25 shown in FIG.
- the input signal to the reverse phase of the operational amplifier 26 shown in FIG. 13 is shown. That is, the first solid line in FIG. 14 indicates a control signal input to the edge detection circuit 14.
- the dotted line in the first stage of FIG. 14 indicates the reverse phase of the operational amplifier 24 shown in FIG. 11 and the operational amplifier 27 shown in FIG. 13, and the positive phase of the operational amplifier 25 shown in FIG. 12 and the operational amplifier 26 shown in FIG.
- the input signal to is shown.
- the second stage of FIG. 14 shows the signal output from the edge detection circuit 14 shown in FIG. 11, and the third stage of FIG. 14 shows the signal output from the edge detection circuit 14 shown in FIG. 14 shows a signal output from the rising edge detection circuit 14 shown in FIG.
- each signal in the case where the rising edge detection circuit is used as the edge detection circuit 14 is shown, but when the rising edge detection circuit or both edge detection circuits are used as the edge detection circuit 14, the timing chart is the example of FIG. 9. Is partly different.
- FIG. 15 is a timing chart showing an example of each signal when a falling detection circuit is used as the edge detection circuit 14.
- the edge detection circuit 14 since the value of the reset signal becomes high when the control signal falls, the falling edge of the control signal is generated at the timing for instructing reset.
- the control signal is generated so that the value of the control signal changes from high to low at the reception start timing of the optical packet.
- the control signal changes from low to high after a certain time from the optical packet reception start timing and goes high until the reception timing of the next optical packet. And is generated to change to low at the reception start timing of the next optical packet.
- the control signal remains low after becoming low at the reception start timing of the optical packet, and goes low for a certain time before the reception disclosure timing of the next packet. Is generated to change from high to low.
- FIG. 16 is a timing chart showing an example of each signal when both edge detection circuits are used as the edge detection circuit 14.
- the control signal is generated such that the falling edge and the falling edge become the timing for instructing the reset. Therefore, for example, when the control signal continuously receives optical packets having the same bit rate, the control signal is generated in the same manner as in the example of FIG. 9 and an optical packet having a bit rate different from that of the previous packet is received. In this case, as shown in FIG. 16, a value corresponding to the transmission rate of the previous optical packet may be maintained until the start timing of the next optical packet.
- a rate indication period which is a signal corresponding to the time at which the light receiving element 11, that is, the optical receiver 1 receives the beginning of the packet and includes the time after the time at which the beginning of the optical packet is received and before the start of data reception Then, what is necessary is just to be comprised so that it may have a value which shows the transmission rate of an optical packet.
- the separation circuit 13 includes an edge detection circuit 14 that detects an edge corresponding to the time at which the head of the optical packet of the control signal is received. The signal output from the edge detection circuit 14 is used as a reset signal, and the rate indication period The rate select signal may be generated based on the value of the control signal at.
- the separation circuit 13 is used to separate the control signal, the rate select signal, and the reset signal. Therefore, the frequency response characteristics can be switched according to the transmission rate, and the hardware can be reduced in size while realizing a high-speed response to optical packets received in bursts.
- FIG. 17 is a timing chart illustrating an example of each signal in the optical receiver 1 according to the third embodiment of the present invention.
- the configuration of the optical receiver 1 of the present embodiment is the same as that of the first embodiment, and the configuration of the separation circuit 13 can use the configuration shown in FIG. 8 of the second embodiment.
- the configuration shown in FIG. 13 can be used.
- parts different from the first embodiment and the second embodiment will be described.
- switching of the frequency response characteristics based on the rate select signal may be performed before receiving the data portion of the optical packet.
- this switching is performed during reception of the optical packet, there is a problem. May occur. For this reason, it is more desirable to switch the frequency response characteristics before receiving the preamble portion.
- an operation is described in which frequency response characteristics are not switched during reception of an optical packet when a guard time is inserted between the optical packets.
- guard time a no-signal section called guard time is inserted between packets.
- the control signal is fixed to a value determined by the transmission rate during reception of the optical packet.
- a signal obtained by inverting the signal level determined by the transmission rate of the optical packet immediately after the guard time is input.
- the control signal is a binary signal, and the value obtained by inverting the value indicating the transmission rate is different from the value indicating the transmission rate and the value indicating the transmission rate which is not the value indicating the transmission rate. It shows that.
- the leading or trailing edge of the control signal occurs at the beginning of the optical packet, that is, at the start of reception. Therefore, the reset signal can be generated by the double edge detection circuit described in the second embodiment. Further, the rate select signal is not switched during reception of the optical packet.
- FIG. 18 is a flowchart illustrating an example of a control signal generation procedure according to the third embodiment.
- the control signal is generated by the control unit 3 of the OLT 50 on which the optical receiver 1 is mounted as described in the first embodiment.
- the control unit 3 determines whether or not it is the start time of the guard time (step S21). If it is not the start time of the guard time (No at Step S21), Step S21 is repeated.
- the control unit 3 inverts the value of the control signal corresponding to the transmission rate of the next optical packet, that is, the value indicating the transmission rate. A value is set (step S22).
- the control part 3 judges whether the guard time was complete
- control unit 3 sets the value of the control signal as the value of the rate select signal corresponding to the transmission rate of the optical packet (step S24), and returns to step S21.
- the value of the control signal is set to a value obtained by inverting the value of the rate select signal corresponding to the transmission rate of the next optical packet.
- the value of the signal be the value of the rate select signal corresponding to the transmission rate of the optical packet.
- the reset signal is generated by using both edge detection circuits. Therefore, the effects described in the first embodiment can be obtained, and the rate select signal can be prevented from being switched during the reception of the optical packet, and problems caused by the rate select signal switching can be prevented.
- FIG. FIG. 19 is a timing chart illustrating an example of each signal in the optical receiver 1 according to the fourth embodiment of the present invention.
- the fourth embodiment an example different from the second and third embodiments will be described as a specific example of the control signal and the separation circuit 13 described in the first embodiment.
- the configuration of the optical receiver 1 is the same as that of the first embodiment.
- the control signal is generated as a pulse signal.
- the control signal changes from low to high in the form of a pulse at the beginning, that is, at the start of reception for each optical packet.
- This pulse at the start of reception is called the first pulse or the first pulse.
- the second pulse is input as the control signal.
- the transmission rate of the optical packet is the bit rate # 2
- the second pulse is not input and the control signal remains low.
- the bit rate is indicated by the number of times the pulse is input. That is, the control signal of the fourth embodiment is a pulse signal, and has a number of pulses corresponding to the transmission rate of the optical packet before receiving the data portion of the optical packet for each optical packet.
- the leading pulse which is one of the pulses, indicates the time at which the light receiving element receives the head of the optical packet.
- the optical receiver 1 can use the control signal as a reset signal as it is.
- the optical receiver 1 can generate a rate select signal according to the number of pulses for each optical packet.
- the control signal of the present embodiment is generated by the control unit 3 of the OLT 50, for example, as described in the first embodiment.
- the control unit 3 sends the second pulse after the first pulse. To be included.
- FIG. 20 is a diagram illustrating a configuration example of the separation circuit 13 according to the present embodiment.
- the separation circuit 13 of this embodiment includes a D-flip flop circuit 30 that is a first delay flip-flop circuit and a D-flip flop circuit that is a second delay flip-flop circuit. 31, a hysteresis circuit 32, a resistor 33, a capacitor 34, and an OR circuit 35.
- the resistor 33 and the capacitor 34 form a low pass filter 155.
- a control signal is input to one input section of the OR circuit 35, and a signal output from the OR circuit 35 is input to the clock input section of the D-flip flop circuit 30 to 30 output signals having opposite phases are input to the D input portion of the D flip-flop circuit 30.
- the positive phase output signal of the D-flip flop circuit 30 is input to the low-pass filter 155 including the resistor 33 and the capacitor 34, and the signal output from the low-pass filter 155 is input to the hysteresis circuit 32.
- a signal output from the hysteresis circuit 32 is input to the D input portion of the D-flip flop circuit 31, and a control signal is input to the clock input portion of the D-flip flop circuit 31.
- a signal output from the low-pass filter 155 is input to the other input portion of the OR circuit 35.
- FIG. 21 is a timing chart illustrating an example of each signal in the separation circuit 13 according to the fourth embodiment.
- 21 shows the control signal
- the second solid line in FIG. 21 shows the reset signal generated by the separation circuit 13 of the fourth embodiment
- the second dotted line in FIG. 4 shows a rate select signal generated by the separation circuit 13 of the fourth embodiment.
- the solid line at the third stage in FIG. 21 indicates the signal on the signal line A shown in FIG. 20, that is, the signal A
- the dotted line at the third stage in FIG. 21 indicates the signal at the signal line B shown in FIG. Show.
- the solid line at the fourth stage in FIG. 21 indicates the signal on the signal line C shown in FIG. 20, that is, the signal C
- the dotted line at the fourth stage in FIG. 21 indicates the signal at the signal line D shown in FIG. Show.
- the solid line at the fifth stage in FIG. 21 indicates the signal on the signal line E shown in FIG.
- the signal A and the signals C, D, E, and F are low, and the signal B is high. At this time, there is no problem whether the rate select signal is high or low.
- the control signal is input to the OR circuit 35 and the clock input unit of the D-flip flop circuit 31, and is output as it is as a reset signal.
- the signal E is low in the initial state, and when the first pulse is input as the control signal, the positive phase output of the D-flip flop circuit 31 becomes low in synchronization with the reset signal.
- the positive phase output signal of the D-flip flop circuit 31 is a rate select signal.
- the control signal input to the OR circuit 35 is input to the clock input unit of the D-flip flop circuit 30 via the OR circuit 35.
- the D-flip flop circuit 30 forms a frequency divider, and the level of the output signal is switched in synchronization with the signal input to the clock input unit. Therefore, when the first pulse is input as the control signal, the signal B which is the output signal of the opposite phase of the D-flip flop circuit 30 is switched from high to low, and the positive phase of the D-flip flop circuit 30 is changed.
- the output signal, signal C goes from low to high.
- the signal C is input to the low-pass filter and hysteresis circuit 32 formed by the resistor 33 and the capacitor 34, and is output from the hysteresis circuit 32 as a signal D having a delay corresponding to the filter time constant. That is, the signal E, which is a signal output from the hysteresis circuit 32, rises with a delay from the rise of the first pulse of the control signal, as shown in FIG.
- the signal output from the hysteresis circuit 32 is input to the OR circuit 35 and then input to the clock input section of the D-flip flop circuit 30.
- the signal C that is the positive phase output signal of the D-flip flop circuit 30 becomes low, and the signal B that is the negative phase output signal of the D-flip flop circuit 30 becomes high.
- the signal A transitions from high to low, and the signal D transitions smoothly from high to low according to the time constant of the low-pass filter. Therefore, the signal E changes to low after maintaining the time high depending on the change of the signal D. While the signal E is high, the input to the D-flip flop circuit 30 is not changed by the OR circuit 35 even if the second pulse is input as the control signal.
- a rate select signal that is a signal output from the D-flip flop circuit 31 when the second pulse is input. Changes to high.
- the separation circuit 13 when the pulse is input twice in succession to the separation circuit 13 of the fourth embodiment, the rate select signal becomes high, and when the pulse is input only once, the rate select signal is input. The signal goes low. Thereby, the separation circuit 13 according to the fourth embodiment can separate the reset signal and the rate select signal from the control signal.
- FIG. 22 is a diagram illustrating a configuration example of the separation circuit 13 according to the fourth embodiment to which a circuit for masking the second pulse with respect to the reset signal is added.
- the separation circuit 13 shown in FIG. 22 has a mask circuit 42 configured by a buffer circuit 40 and an AND circuit (logical product circuit) 41 added to the separation circuit 13 shown in FIG.
- the second pulse can be masked with respect to the signal output as the reset signal, and one pulse per optical packet is output as the reset signal.
- the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
Abstract
An optical receiver (1) is provided with: a light receiving element (11) that converts an optical signal which is intermittently received as an optical packet into a current signal; a separation circuit (13) that separates a control signal which is inputted from outside and in which information indicating a time at which the light receiving element receives the head of the optical packet and information indicating the transmission rate of the optical packet are superimposed into a reset signal and a rate select signal, and outputs the reset signal and the rate select signal; and a receiver (12) that converts the current signal into a voltage signal, switches a time constant in response to the reset signal, and switches a frequency response characteristic in response to the rate select signal.
Description
本発明は、光通信システムにおける光受信器、光通信装置および光受信器における制御方法に関する。
The present invention relates to an optical receiver, an optical communication apparatus, and a control method in an optical receiver in an optical communication system.
近年、光通信システムでは伝送レートの高速化が進んでいる。一方で、高速化されていない既存のシステムも継続して使用することが望まれており、高速化された新システムと既存のシステムである旧システムとを共存させることが必要となっている。その際、光アクセスシステムにおける基地局であるOLT(Optical Line Terminal)の光送受信器には、新旧システムを収容するためのマルチレート化が要求されるとともに、どのような受光レベルの信号に対しても高速応答と高い同符号連続耐力との両方を有することが要求される。
In recent years, transmission rates have been increased in optical communication systems. On the other hand, it is desired to continue using an existing system that has not been speeded up, and it is necessary to coexist a new system that has been speeded up and an old system that is an existing system. At that time, the optical transceiver of the OLT (Optical Line Terminal), which is the base station in the optical access system, is required to be multi-rate to accommodate the old and new systems, and for any light reception level signal Is required to have both a high-speed response and a high continuous resistance with the same sign.
特許文献1には、前置増幅器の内部帰還抵抗値を外部信号であるレート切替信号により切り替えることで、異なる伝送レートに対してそれぞれ最適な周波数応答特性を実現することができる発明が開示されている。
Patent Document 1 discloses an invention that can realize optimum frequency response characteristics for different transmission rates by switching the internal feedback resistance value of the preamplifier by a rate switching signal that is an external signal. Yes.
また、光通信システムでは、OLTは、各ONU(Optical Network Unit)から送信されたパケットを間欠的すなわちバースト的に受信する。このため、OLTの光受信器1では、安定した制御が望まれるとともにパケットの受信開始時の高速応答が望まれる。特許文献2では、制御が収束した場合には低速な時定数を用いることにより高い同符号連続耐力を実現し、外部からリセット信号が入力されると高速な時定数に切り換えることで高速応答を実現している。
In the optical communication system, the OLT receives packets transmitted from each ONU (Optical Network Unit) intermittently, that is, in bursts. Therefore, in the OLT optical receiver 1, stable control is desired, and a high-speed response at the start of packet reception is desired. In Patent Document 2, when the control converges, a high continuous resistance with the same sign is realized by using a low-speed time constant, and a high-speed response is realized by switching to a high-speed time constant when a reset signal is input from the outside. is doing.
上記従来の技術を用いて、マルチレート化と高速応答との両方を実現する場合、伝送レートを切り替えるためのレート切替信号と高速な時定数に切り換えるためのリセット信号との両方が必要となる。一方で、近年では、光アクセスシステムのコストを削減するために、光送受信器の実装密度を上げて光送受信器を小型化することが求められている。光送受信器が基板に実装される光モジュールとして実装される場合、光送受信器の小型化のためには、基板および光モジュールを小型化するとともに、光モジュールと外部のインターフェース基板とを接続するコネクタ部の入出力ピン数を削減することも大きな課題となる。したがって、光受信器には、ハードウェア規模の大型を回避しつつ、マルチレート化と高速応答との両方を実現することが要求される。
When realizing both multi-rate and high-speed response using the above-described conventional technology, both a rate switching signal for switching the transmission rate and a reset signal for switching to a fast time constant are required. On the other hand, in recent years, in order to reduce the cost of the optical access system, it is required to increase the mounting density of the optical transceivers and reduce the size of the optical transceivers. When the optical transceiver is mounted as an optical module mounted on a substrate, in order to reduce the size of the optical transceiver, the board and the optical module are miniaturized, and the connector that connects the optical module and an external interface substrate Reducing the number of input / output pins in the unit is also a major issue. Therefore, the optical receiver is required to realize both multi-rate and high-speed response while avoiding a large hardware scale.
本発明は、上記に鑑みてなされたものであって、ハードウェアの大型化を回避しつつ、バースト信号に対する高速応答と複数の伝送レートへの対応とを実現可能な光受信器を得ることを目的とする。
The present invention has been made in view of the above, and it is an object of the present invention to obtain an optical receiver capable of realizing a high-speed response to a burst signal and compatibility with a plurality of transmission rates while avoiding an increase in size of hardware. Objective.
上述した課題を解決し、目的を達成するために、本発明にかかる光受信器は、光パケットとして間欠的に受信される光信号を電流信号に変換する受光素子と、外部から入力される制御信号を、光パケットの先頭を受信する時刻を示す第1の信号と、光パケットの伝送レートを示す第2の信号とに分離し、第1の信号および第2の信号を出力する分離回路と、を備える。制御信号は、光パケットの先頭を受光素子が受信する時刻を示す情報と光パケットの伝送レートを示す情報とが重畳された信号である。また、本発明にかかる光受信器は、電流信号を電圧信号に変換し、第1の信号に応じて時定数を切替え、第2の信号に応じて周波数応答特性を切替える受信器と、を備える。
In order to solve the above-described problems and achieve the object, an optical receiver according to the present invention includes a light receiving element that converts an optical signal intermittently received as an optical packet into a current signal, and a control input from the outside. A separation circuit that separates the signal into a first signal that indicates a time at which the head of the optical packet is received and a second signal that indicates a transmission rate of the optical packet, and outputs the first signal and the second signal; . The control signal is a signal in which information indicating the time at which the light receiving element receives the head of the optical packet and information indicating the transmission rate of the optical packet are superimposed. An optical receiver according to the present invention includes a receiver that converts a current signal into a voltage signal, switches a time constant according to a first signal, and switches a frequency response characteristic according to a second signal. .
本発明にかかる光受信器は、ハードウェアの大型化を回避しつつ、バースト信号に対する高速応答と複数の伝送レートへの対応とを実現可能となるという効果を奏する。
The optical receiver according to the present invention has an effect that it is possible to realize a high-speed response to a burst signal and compatibility with a plurality of transmission rates while avoiding an increase in size of hardware.
以下に、本発明の実施の形態にかかる光受信器1、光通信装置および制御方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
Hereinafter, an optical receiver 1, an optical communication apparatus, and a control method according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
図1は、本発明の実施の形態1にかかる光受信器1の構成例を示す図である。図1に示すように、実施の形態1の光受信器1は、受光素子11、受信器12および分離回路13を備える。実施の形態1の光受信器1は、光パケットをバースト的に受信する光受信器1である。実施の形態1の光受信器1は、後述するように、例えば、光通信装置であるOLTに搭載される。Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration example of anoptical receiver 1 according to the first embodiment of the present invention. As shown in FIG. 1, the optical receiver 1 according to the first embodiment includes a light receiving element 11, a receiver 12, and a separation circuit 13. The optical receiver 1 according to the first embodiment is an optical receiver 1 that receives optical packets in a burst manner. As will be described later, the optical receiver 1 according to Embodiment 1 is mounted on, for example, an OLT that is an optical communication device.
図1は、本発明の実施の形態1にかかる光受信器1の構成例を示す図である。図1に示すように、実施の形態1の光受信器1は、受光素子11、受信器12および分離回路13を備える。実施の形態1の光受信器1は、光パケットをバースト的に受信する光受信器1である。実施の形態1の光受信器1は、後述するように、例えば、光通信装置であるOLTに搭載される。
FIG. 1 is a diagram illustrating a configuration example of an
受光素子11は、受信した光信号、すなわち受光信号を電流信号に変換して出力する素子であり、例えばAPD(Avalanche Photo Diode)またはPD(Photo Diode)である。受信器12は、受光素子11から出力される電流信号を電圧信号に変換する。
The light receiving element 11 is an element that converts a received optical signal, that is, a received light signal into a current signal and outputs it, and is, for example, an APD (Avalanche Photo Diode) or a PD (Photo Diode). The receiver 12 converts the current signal output from the light receiving element 11 into a voltage signal.
分離回路13は、外部から入力される後述する制御信号を、受信器12において時定数の切り替えに用いられる第1の信号であるリセット信号と受信器12において周波数応答特性の切り替えに用いられる第2の信号であるレートセレクト信号とに分離し、リセット信号およびレートセレクト信号を受信器12に入力する。制御信号は、光パケットの先頭を光受信器1が受信する時刻、すなわち光パケットの先頭を受光素子11が受信する時刻を示す情報と光パケットの伝送レートを示す情報とが重畳された信号である。リセット信号は、光受信器1が受信する光パケットの先頭を受信する時刻を示す信号である。
The separation circuit 13 receives a control signal, which will be described later, input from the outside, a reset signal that is a first signal used for switching the time constant in the receiver 12 and a second signal used for switching the frequency response characteristic in the receiver 12. And a reset signal and a rate select signal are input to the receiver 12. The control signal is a signal in which the time when the optical receiver 1 receives the head of the optical packet, that is, the information indicating the time when the light receiving element 11 receives the head of the optical packet and the information indicating the transmission rate of the optical packet are superimposed. is there. The reset signal is a signal indicating the time when the head of the optical packet received by the optical receiver 1 is received.
レートセレクト信号は、光受信器1が受光する光信号の伝送レート、すなわち受信器12に入力される信号の伝送レートを示す信号である。実施の形態1では、光受信器1が受光する光信号の伝送レートは、第1の伝送レートであるビットレート#1と、第1の伝送レートより高い第2の伝送レートであるビットレート#2との2種類を含むこととする。したがって、レートセレクト信号は、例えば、ビットレート#1であることを示す値とビットレート#2を示す値とのいずれかを示す2値信号である。
The rate select signal is a signal indicating the transmission rate of the optical signal received by the optical receiver 1, that is, the transmission rate of the signal input to the receiver 12. In the first embodiment, the transmission rate of the optical signal received by the optical receiver 1 is the bit rate # 1 that is the first transmission rate and the bit rate # that is the second transmission rate that is higher than the first transmission rate. 2 and 2 types are included. Therefore, the rate select signal is, for example, a binary signal indicating either a value indicating the bit rate # 1 or a value indicating the bit rate # 2.
リセット信号は、分離回路13から入力される信号であり、光受信器1の初期化すなわちリセットを指示する信号である。リセット信号は、例えば、光パケットの受信の開始ごとにリセットを指示する値となる。
The reset signal is a signal input from the separation circuit 13 and is a signal for instructing initialization, that is, resetting of the optical receiver 1. The reset signal is, for example, a value indicating reset every time reception of an optical packet is started.
制御信号は、制御信号からリセット信号とレートセレクト信号とを分離可能なように生成されていればよく、制御信号の具体的な形式は特に制約はない。制御信号の具体例については、実施の形態2以降で説明する。制御信号は、例えば、光受信器1がOLTに搭載される場合、OLTにおけるONUを制御する制御部から光受信器1へ入力される。
The control signal only needs to be generated so that the reset signal and the rate select signal can be separated from the control signal, and the specific format of the control signal is not particularly limited. Specific examples of the control signal will be described in the second and subsequent embodiments. For example, when the optical receiver 1 is mounted on the OLT, the control signal is input to the optical receiver 1 from a control unit that controls an ONU in the OLT.
受信器12は、増幅器と増幅器を制御する制御回路とを備え、受信器12内の増幅器における制御パラメータを、リセット信号およびレートセレクト信号に応じて変更可能なように構成されている。制御パラメータには、受信器12の周波数応答特性に対応するパラメータである周波数特性パラメータと、受信器12における制御回路の時定数とを含む。周波数特性パラメータは、例えば、特許文献1に記載されている帰還抵抗値およびオープンループ利得であり、レートセレクト信号に応じて変更される。また、受信器12の制御回路は、例えば、特許文献2に記載されている方法により、リセット信号に応じて時定数を変更することができる。
The receiver 12 includes an amplifier and a control circuit that controls the amplifier, and is configured such that control parameters in the amplifier in the receiver 12 can be changed according to the reset signal and the rate select signal. The control parameters include a frequency characteristic parameter that is a parameter corresponding to the frequency response characteristic of the receiver 12 and a time constant of a control circuit in the receiver 12. The frequency characteristic parameters are, for example, the feedback resistance value and the open loop gain described in Patent Document 1, and are changed according to the rate select signal. Further, the control circuit of the receiver 12 can change the time constant according to the reset signal, for example, by the method described in Patent Document 2.
受信器12に入力される信号の伝送レートにより、受信器12の動作における最適な周波数応答特性が異なる。受信器12は、上述したように周波数応答パラメータを変更可能であり、ビットレート#1に対して最適な周波数応答特性を実現するための周波数応答パラメータである第1の周波数応答パラメータと、ビットレート#2に対して最適な周波数応答特性を実現するための周波数応答パラメータである第2の周波数応答パラメータとを設定可能であるとする。
The optimum frequency response characteristic in the operation of the receiver 12 varies depending on the transmission rate of the signal input to the receiver 12. The receiver 12 can change the frequency response parameter as described above, and the first frequency response parameter, which is a frequency response parameter for realizing an optimal frequency response characteristic for the bit rate # 1, and the bit rate It is assumed that a second frequency response parameter that is a frequency response parameter for realizing an optimal frequency response characteristic for # 2 can be set.
図2は、実施の形態1の受信器12の構成例を示す図である。図2に示す受信器12は、利得可変型の反転増幅器である反転増幅器121と、第1の抵抗である抵抗122と、第2の抵抗である抵抗123と、MOS(Metal Oxide Semiconductor)トランジスタ124と、利得制御回路125と、収束判定回路126とを備える。利得制御回路125は、反転増幅器121に対して自動利得制御を行う。収束判定回路126は、利得制御回路125による制御の収束を判定する。図2に示す受信器12のMOSトランジスタ124は、受信器12に入力される信号の伝送レートを示す信号であるレートセレクト信号に応じてオンまたはオフとなる。
FIG. 2 is a diagram illustrating a configuration example of the receiver 12 according to the first embodiment. The receiver 12 shown in FIG. 2 includes an inverting amplifier 121 that is a variable gain inverting amplifier, a resistor 122 that is a first resistor, a resistor 123 that is a second resistor, and a MOS (Metal Oxide Semiconductor) transistor 124. And a gain control circuit 125 and a convergence determination circuit 126. The gain control circuit 125 performs automatic gain control on the inverting amplifier 121. The convergence determination circuit 126 determines the convergence of control by the gain control circuit 125. The MOS transistor 124 of the receiver 12 shown in FIG. 2 is turned on or off according to a rate select signal that is a signal indicating the transmission rate of the signal input to the receiver 12.
抵抗122、抵抗123およびMOSトランジスタ124は、帰還抵抗部を構成する。帰還抵抗部の抵抗値、すなわち帰還抵抗値は、スイッチとなるMOSトランジスタ124のオンオフの状態に応じて変化する。周波数応答特性は帰還抵抗値に依存する。また、上述したように、受信器12に入力される信号の伝送レートにより、受信器12の動作における最適な周波数応答特性が異なる。したがって、受信器12に入力される信号の伝送レートにより最適な帰還抵抗値が異なる。図2に示す受信器12では、抵抗122および抵抗123の抵抗値とMOSトランジスタ124の抵抗値とは、MOSトランジスタ124がオンの場合の帰還抵抗部の抵抗値がビットレート#2に対して最適となり、かつMOSトランジスタ124がオフの場合の帰還抵抗部の抵抗値がビットレート#1に対して最適となる値としておく。レートセレクト信号の値がビットレート#2を示す値である場合にMOSトランジスタ124がオンとなり、レートセレクト信号の値がビットレート#1を示す値である場合MOSトランジスタ124がオフとなるように動作することで、伝送レートに応じて最適な帰還抵抗値を用いることができる。これにより伝送レートに応じて最適な周波数応答特性を実現することができる。
The resistor 122, the resistor 123, and the MOS transistor 124 constitute a feedback resistor unit. The resistance value of the feedback resistor section, that is, the feedback resistance value changes according to the on / off state of the MOS transistor 124 serving as a switch. The frequency response characteristic depends on the feedback resistance value. Further, as described above, the optimum frequency response characteristic in the operation of the receiver 12 varies depending on the transmission rate of the signal input to the receiver 12. Therefore, the optimum feedback resistance value varies depending on the transmission rate of the signal input to the receiver 12. In the receiver 12 shown in FIG. 2, the resistance values of the resistor 122 and the resistor 123 and the resistance value of the MOS transistor 124 are optimal for the bit rate # 2 when the MOS transistor 124 is turned on. And the resistance value of the feedback resistor when the MOS transistor 124 is off is set to an optimum value for the bit rate # 1. The MOS transistor 124 is turned on when the value of the rate select signal is a value indicating the bit rate # 2, and the MOS transistor 124 is turned off when the value of the rate select signal is a value indicating the bit rate # 1. Thus, an optimum feedback resistance value can be used according to the transmission rate. Thereby, an optimal frequency response characteristic can be realized according to the transmission rate.
図3は、実施の形態1の利得制御回路125の構成例を示す図である。図3に示した利得制御回路125は、高速時定数回路127、低速時定数回路128、スイッチ129、演算回路130およびD-フリップフロップであるロジック回路131を備える。高速時定数回路127は、反転増幅器121から出力される信号を第1の時定数で平均化する回路である。低速時定数回路128は、反転増幅器121から出力される信号を、第1の時定数より長い第2の時定数で平均化する回路である。スイッチ129は、リセット信号および収束判定信号に基づいて高速時定数回路127から出力される信号と低速時定数回路128から出力される信号とのうちの一方を演算回路130に出力する。演算回路130は、スイッチ129から出力された信号に基づいて、反転増幅器121の利得を自動制御するためのあらかじめ定められた制御ロジックにしたがって利得制御信号を生成し、生成した利得制御信号を反転増幅器121へ出力する。
FIG. 3 is a diagram illustrating a configuration example of the gain control circuit 125 according to the first embodiment. The gain control circuit 125 shown in FIG. 3 includes a high-speed time constant circuit 127, a low-speed time constant circuit 128, a switch 129, an arithmetic circuit 130, and a logic circuit 131 that is a D-flip flop. The high-speed time constant circuit 127 is a circuit that averages the signal output from the inverting amplifier 121 with the first time constant. The low-speed time constant circuit 128 is a circuit that averages the signal output from the inverting amplifier 121 with a second time constant longer than the first time constant. The switch 129 outputs one of a signal output from the high speed time constant circuit 127 and a signal output from the low speed time constant circuit 128 to the arithmetic circuit 130 based on the reset signal and the convergence determination signal. Based on the signal output from the switch 129, the arithmetic circuit 130 generates a gain control signal according to a predetermined control logic for automatically controlling the gain of the inverting amplifier 121, and the generated gain control signal is inverted. To 121.
収束判定回路126は、利得制御回路125から出力される信号に基づいて自動利得制御の収束を検出し、収束を検出したか否かを示す信号である収束判定信号を生成して、生成した収束判定信号をロジック回路131へ入力する。収束判定回路126としては、例えば、特許文献2に記載の収束判定回路からロジック回路を除いた回路を用いることができる。
The convergence determination circuit 126 detects the convergence of the automatic gain control based on the signal output from the gain control circuit 125, generates a convergence determination signal that is a signal indicating whether the convergence is detected, and generates the generated convergence. A determination signal is input to the logic circuit 131. As the convergence determination circuit 126, for example, a circuit obtained by removing a logic circuit from the convergence determination circuit described in Patent Document 2 can be used.
ロジック回路131は、リセット信号と収束判定信号とに基づいて、スイッチ129が選択する時定数回路を切替えるための時定数切替信号を生成し、生成した時定数切替信号をスイッチ129へ出力する。ロジック回路131は、リセット信号がリセットを指示する値となった場合に、時定数切替信号を、高速時定数回路127を選択することを指示する値に設定する。また、ロジック回路131は、収束判定信号が収束検出を指示する値となった場合に、時定数切替信号を、低速時定数回路128を選択することを指示する値に設定する。以上の動作により、光受信器1が、光パケットの受信開始時には、高速時定数である第1の時定数が設定され、制御が収束すると、低速時定数である第2の時定数が設定される。これにより、受信器12は、高い同符号連続耐力と高速応答を実現することができる。
The logic circuit 131 generates a time constant switching signal for switching the time constant circuit selected by the switch 129 based on the reset signal and the convergence determination signal, and outputs the generated time constant switching signal to the switch 129. The logic circuit 131 sets the time constant switching signal to a value instructing to select the high-speed time constant circuit 127 when the reset signal has a value instructing reset. Further, the logic circuit 131 sets the time constant switching signal to a value instructing to select the low-speed time constant circuit 128 when the convergence determination signal has a value instructing convergence detection. With the above operation, when the optical receiver 1 starts receiving an optical packet, the first time constant that is a high-speed time constant is set, and when the control is converged, the second time constant that is a low-speed time constant is set. The Thereby, the receiver 12 can implement | achieve a high same sign continuous proof stress and a high-speed response.
なお、図2および図3の構成例は一例であり、受信器12の構成は、図2の例に限定されない。受信器12は、レートセレクト信号に基づく周波数応答特性の切り替えと、リセット信号に基づく動作とを実施する受信器12であればよい。例えば、受信器12は、前置増幅器の自動オフセット制御を行う機能を有し、自動オフセット制御における時定数をリセット信号に基づいて切替えるようにしてもよい。また、図2および図3の例では、リセット信号を、時定数が切替え可能な場合に、光パケットの受信開始時に適した時定数、すなわち高速時定数をも設定するために用いる例を説明した。光パケットの受信開始時に適した時定数を設定する動作は受信器12における初期化動作ということができる。リセット信号は、時定数の切替えに限定されず、受信器12における動作を初期化するための動作であればよい。また、図2では、レートセレクト信号により帰還抵抗値およびオープンループ利得を変更する例を説明したが、レートセレクト信号に基づいて変更する制御パラメータはこれらに限定されない。
2 and FIG. 3 are examples, and the configuration of the receiver 12 is not limited to the example of FIG. The receiver 12 may be any receiver 12 that performs switching of frequency response characteristics based on the rate select signal and operation based on the reset signal. For example, the receiver 12 may have a function of performing automatic offset control of the preamplifier, and the time constant in the automatic offset control may be switched based on the reset signal. Further, in the examples of FIGS. 2 and 3, the example in which the reset signal is used to set a time constant suitable for the start of optical packet reception, that is, a high-speed time constant when the time constant can be switched has been described. . The operation of setting a time constant suitable for starting reception of an optical packet can be referred to as an initialization operation in the receiver 12. The reset signal is not limited to switching of the time constant, and may be an operation for initializing the operation in the receiver 12. Further, in FIG. 2, the example in which the feedback resistance value and the open loop gain are changed by the rate select signal has been described, but the control parameters to be changed based on the rate select signal are not limited to these.
分離回路13は、外部から入力される後述する制御信号を、リセット信号とレートセレクト信号とに分離し、リセット信号およびレートセレクト信号を受信器12に入力する。リセット信号は、光受信器1が受信する光パケットの先頭を示す信号である。レートセレクト信号は、受信器12に対して、周波数応答パラメータとして第1の周波数応答パラメータを設定するか第2の周波数応答パラメータを設定するかを指示する信号である。制御信号は、制御信号からリセット信号とレートセレクト信号とを分離可能なように生成される。
The separation circuit 13 separates a control signal (described later) input from the outside into a reset signal and a rate select signal, and inputs the reset signal and the rate select signal to the receiver 12. The reset signal is a signal indicating the head of the optical packet received by the optical receiver 1. The rate select signal is a signal that instructs the receiver 12 whether to set the first frequency response parameter or the second frequency response parameter as the frequency response parameter. The control signal is generated so that the reset signal and the rate select signal can be separated from the control signal.
実施の形態1の光受信器1は、例えば、光通信システムにおけるOLTに搭載される。図4は、実施の形態1の光通信システムの構成例を示す図である。図4に示すように、実施の形態1の光通信システム60は、OLT50と、ONU51,52,53と、を備える。OLT50は、光スターカプラ、および伝送路である光ファイバを介して、ONU51,52,53と接続している。図4では、ONUの数を3つとしているが、ONUの数はこれに限定されない。
The optical receiver 1 according to Embodiment 1 is mounted on, for example, an OLT in an optical communication system. FIG. 4 is a diagram illustrating a configuration example of the optical communication system according to the first embodiment. As shown in FIG. 4, the optical communication system 60 according to the first embodiment includes an OLT 50 and ONUs 51, 52, and 53. The OLT 50 is connected to the ONUs 51, 52, and 53 via an optical star coupler and an optical fiber that is a transmission path. In FIG. 4, the number of ONUs is three, but the number of ONUs is not limited to this.
OLT50は、ONU51,52,53に対して上り通信の帯域割当てを行っており、各ONUから送信される光パケットの受信時刻を把握している。OLT50とONU51,52,53は、PON(Passive Optical Network)システムにおけるプロトコル(以下、PONプトロコルという)に従って動作する。なお、PONプトロコルとしては、例えばIEEE(Institute of Electrical and Electronics Engineers)のGE-PONの規格またはITU-T(International Telecommunication Union Telecommunication Standardization Sector)のG-PONの規格に従ったプトロコルを用いることができる。
The OLT 50 assigns upstream communication bandwidth to the ONUs 51, 52, and 53, and grasps the reception time of the optical packet transmitted from each ONU. The OLT 50 and the ONUs 51, 52, and 53 operate according to a protocol (hereinafter referred to as a PON protocol) in a PON (Passive Optical Network) system. As the PON protocol, for example, a protocol conforming to the GE-PON standard of IEEE (Institute of Electrical and Electronics Engineers) or the G-PON standard of ITU-T (International Telecommunication Union Telecommunication Standardization Sector) can be used. .
OLT50は、実施の形態1の光受信器1と、光送信器2と、制御部3とを備える。光受信器1は、光ファイバを介して各ONUから受信した光信号、すなわち受光信号を電圧信号に変換して制御部3へ出力する。光送信器2は、制御部3により生成された各ONUへ送信する送信信号を光信号に変換して、光ファイバを介して各ONUへ送信する。
The OLT 50 includes the optical receiver 1 according to the first embodiment, the optical transmitter 2, and the control unit 3. The optical receiver 1 converts an optical signal received from each ONU through an optical fiber, that is, a received light signal into a voltage signal and outputs the voltage signal to the control unit 3. The optical transmitter 2 converts a transmission signal transmitted to each ONU generated by the control unit 3 into an optical signal, and transmits the optical signal to each ONU via an optical fiber.
制御部3は、PONプロトコルに従って各ONUへ送信する送信信号を生成して、光送信器2へ出力し、また、光受信器1を介して各ONUから受信した信号に対してPONプロトコルに従った処理を実施する。また、制御部3は、各ONUに対応する上り方向の伝送レート、すなわち各ONUが送信する光パケットの伝送レートをGE-PONにおけるディスカバリ処理などにより取得し、ONUごとの伝送レートを保持している。また、制御部3は、各ONUに対して上り帯域を割当てる。PONシステムでは、上り帯域は、各ONUから送信された信号が重複しないように時分割多重による割当てが行われる。制御部3は、時分割多重により各ONUへ上り帯域、すなわち各ONUからOLT50への送信を許可する時間帯を割当て、割当て結果を各ONUへ光送信器2経由で送信する。各ONUは、OLT50から受信した割当て結果に従って、OLT50へ光信号を送信する。このように、PONシステムでは時分割多重で各ONUからOLT50への送信が行われるため、OLT50は、バースト的に、すなわち間欠的に、各ONUから送信された光信号を受信する。以下、バースト的に送信されるひとかたまりの信号を光パケットと呼ぶ。光パケットは、プリアンプルと呼ばれる予め定められたビット列とデータとで構成される。
The control unit 3 generates a transmission signal to be transmitted to each ONU according to the PON protocol, outputs the transmission signal to the optical transmitter 2, and complies with the PON protocol for the signal received from each ONU via the optical receiver 1. Implement the process. In addition, the control unit 3 obtains the upstream transmission rate corresponding to each ONU, that is, the transmission rate of the optical packet transmitted by each ONU, through discovery processing in the GE-PON, and holds the transmission rate for each ONU. Yes. Further, the control unit 3 assigns an upstream band to each ONU. In the PON system, the uplink bandwidth is assigned by time division multiplexing so that signals transmitted from each ONU do not overlap. The control unit 3 allocates an upstream band to each ONU, that is, a time zone permitting transmission from each ONU to the OLT 50 by time division multiplexing, and transmits the allocation result to each ONU via the optical transmitter 2. Each ONU transmits an optical signal to the OLT 50 according to the allocation result received from the OLT 50. As described above, since transmission from each ONU to the OLT 50 is performed by time division multiplexing in the PON system, the OLT 50 receives optical signals transmitted from each ONU in a burst manner, that is, intermittently. Hereinafter, a group of signals transmitted in bursts is called an optical packet. An optical packet is composed of a predetermined bit string called a preample and data.
以上のように、制御部3は、各ONUへ上り帯域を割当てているため、各ONUから光信号を受信する時間を把握している。このため、制御部3は、光受信器1が、ONUから送信された光パケットの受信を開始する時刻を求めることができる。したがって、制御部3は、上述した光受信器1に入力されるリセット信号を生成することができる。また、制御部3は、各ONUの上りの伝送レートを把握しているため、次に受信する光パケットがどの伝送レートの光信号に基づいてレートセレクト信号を生成することもできる。レートセレクト信号は、上述したように、光受信器1の受信器12において、周波数応答特性の切替えに用いられる。このため、レートセレクト信号は、光パケットごとに、該光パケットに対応する伝送レートを示す値となる。なお、光パケットのプリアンブル部分では、同期処理等が行われるため、伝送レートに適した周波数応答特性となっていなくてもよく、光受信器1が光パケットのデータ部分を受信する前までに、レートセレクト信号の値が対応する伝送レートを示す値となっていればよい。
As described above, since the control unit 3 allocates an upstream band to each ONU, it knows the time for receiving an optical signal from each ONU. For this reason, the control part 3 can obtain | require the time when the optical receiver 1 starts reception of the optical packet transmitted from ONU. Therefore, the control unit 3 can generate a reset signal that is input to the optical receiver 1 described above. In addition, since the control unit 3 knows the upstream transmission rate of each ONU, the optical packet to be received next can generate a rate select signal based on the optical signal of any transmission rate. As described above, the rate select signal is used for switching frequency response characteristics in the receiver 12 of the optical receiver 1. Therefore, the rate select signal has a value indicating the transmission rate corresponding to the optical packet for each optical packet. In the preamble portion of the optical packet, synchronization processing or the like is performed, so the frequency response characteristics may not be suitable for the transmission rate, and before the optical receiver 1 receives the data portion of the optical packet, The value of the rate select signal only needs to be a value indicating the corresponding transmission rate.
制御部3は、光受信器1において用いられるレートセレクト信号およびリセット信号を生成可能であるが、レートセレクト信号とリセット信号とをそれぞれ光受信器1に入力する構成とすると、光受信器1が実装される光モジュールには2つの信号入力ピンが必要となる。近年、ハードウェアの小型化が望まれており、入力ピンも少ない方が望ましい。そこで、本実施の形態では、制御部3から光受信器1に対して1つの入力ピンを介して制御信号が入力される構成とし、光受信器1の分離回路13が制御信号からレートセレクト信号とリセット信号とを分離する。制御信号は、リセット信号によりリセットが指示されるタイミングと、レートセレクト信号の値が変化するタイミングとをずらすことにより、リセット信号とレートセレクト信号が多重されたものであってもよいし、その他の方法により多重されたものであってもよい。制御信号の具体的は実施の形態2以降で述べる。
The control unit 3 can generate a rate select signal and a reset signal used in the optical receiver 1, but when the rate select signal and the reset signal are input to the optical receiver 1, the optical receiver 1 An optical module to be mounted requires two signal input pins. In recent years, downsizing of hardware is desired, and fewer input pins are desirable. Therefore, in the present embodiment, a control signal is input from the control unit 3 to the optical receiver 1 via one input pin, and the separation circuit 13 of the optical receiver 1 receives a rate select signal from the control signal. And the reset signal are separated. The control signal may be a signal in which the reset signal and the rate select signal are multiplexed by shifting the timing at which the reset is instructed by the reset signal and the timing at which the value of the rate select signal changes. It may be multiplexed by a method. Specific control signals will be described in the second and subsequent embodiments.
次に、制御部3のハードウェア構成について説明する。制御部3は、処理回路により実現される。この処理回路は、専用のハードウェアであっても、メモリとメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)とを備える制御回路であってもよい。ここで、メモリとは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disk)等が該当する。
Next, the hardware configuration of the control unit 3 will be described. The control unit 3 is realized by a processing circuit. Even if this processing circuit is dedicated hardware, a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, DSP that executes a program stored in the memory (Also referred to as “Digital Signal Processor”). Here, the memory is, for example, non-volatile or RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), etc. Volatile semiconductor memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disk), etc. are applicable.
制御部3が、専用のハードウェアで実現される場合、図5に示す処理回路100により実現される。処理回路100は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものである。
When the control unit 3 is realized by dedicated hardware, it is realized by the processing circuit 100 shown in FIG. The processing circuit 100 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof.
制御部3がCPUを備える制御回路で実現される場合、この制御回路は例えば図6に示す構成の制御回路200である。図6に示すように制御回路200は、CPUであるプロセッサ201と、メモリ202とを備える。制御部3が制御回路200により実現される場合、プロセッサ201がメモリ202に記憶された、制御部3の処理に対応するプログラムを読み出して実行することにより実現される。また、メモリ202は、プロセッサ201が実施する各処理における一時メモリとしても使用される。
When the control unit 3 is realized by a control circuit including a CPU, the control circuit is, for example, a control circuit 200 having a configuration shown in FIG. As shown in FIG. 6, the control circuit 200 includes a processor 201 that is a CPU and a memory 202. When the control unit 3 is realized by the control circuit 200, the processor 201 reads out and executes a program stored in the memory 202 and corresponding to the process of the control unit 3. The memory 202 is also used as a temporary memory in each process executed by the processor 201.
次に、本実施の光受信器1における動作について説明する。図7は、実施の形態1の光受信器1における各信号の一例を示すタイミングチャート図である。図7の横軸は、時間を示す。図7の1段目には、光受信器1が受光する光信号の一例を示し、図7の2段目にはレートセレクト信号の一例を示し、図7の3段目にはリセット信号の一例を示している。図7の1段目に示すように、光受信器1では、光パケットをバースト的に受信する。各光パケットは、上述したようにプリアンブルとデータとで構成される。すなわち、光受信器1の光信号は、光パケットとして間欠的に受信される光信号である。図7の例では、左側に示した光パケットは、ビットレート#1の伝送レートで送信され、左側に示した光パケットは、ビットレート#2の伝送レートで送信されている。
Next, the operation of the optical receiver 1 according to the present embodiment will be described. FIG. 7 is a timing chart illustrating an example of each signal in the optical receiver 1 according to the first embodiment. The horizontal axis in FIG. 7 indicates time. The first stage of FIG. 7 shows an example of an optical signal received by the optical receiver 1, the second stage of FIG. 7 shows an example of a rate select signal, and the third stage of FIG. An example is shown. As shown in the first stage of FIG. 7, the optical receiver 1 receives optical packets in bursts. Each optical packet is composed of a preamble and data as described above. That is, the optical signal of the optical receiver 1 is an optical signal that is intermittently received as an optical packet. In the example of FIG. 7, the optical packet shown on the left side is transmitted at the transmission rate of the bit rate # 1, and the optical packet shown on the left side is transmitted at the transmission rate of the bit rate # 2.
光受信器1には、外部から、光パケットと同期した制御信号が入力される。制御信号は、レートセレクト信号とリセット信号とに分離可能な任意の信号である。分離回路13は、制御信号をレートセレクト信号とリセット信号とに分離する。レートセレクト信号とリセット信号とは、受信器12に入力される。レートセレクト信号とリセット信号が入力された場合の受信器12の動作は、前述したとおりであり、受信器12はレートセレクト信号に応じた周波数応答特性で動作し、リセット信号により受信器12の動作をリセットする。すなわち、本実施の形態の光受信器1は、光信号を電流信号に変換する第1のステップと、外部から入力された制御信号を、リセット信号と、レートセレクト信号とに分離し、リセット信号およびレートセレクト信号を出力する第2のステップと、電流信号を電圧信号に変換し、リセット信号に応じて時定数を切替え、レートセレクト信号に応じて周波数応答特性を切替える第3のステップとを実施する。
The optical receiver 1 receives a control signal synchronized with the optical packet from the outside. The control signal is an arbitrary signal that can be separated into a rate select signal and a reset signal. The separation circuit 13 separates the control signal into a rate select signal and a reset signal. The rate select signal and the reset signal are input to the receiver 12. The operation of the receiver 12 when the rate select signal and the reset signal are input is as described above. The receiver 12 operates with a frequency response characteristic corresponding to the rate select signal, and the operation of the receiver 12 by the reset signal. To reset. In other words, the optical receiver 1 according to the present embodiment separates the first step of converting an optical signal into a current signal and the control signal input from the outside into a reset signal and a rate select signal. And a second step of outputting a rate select signal and a third step of converting a current signal into a voltage signal, switching a time constant according to a reset signal, and switching a frequency response characteristic according to a rate select signal To do.
図7の例では、レートセレクト信号は、ハイおよびローの2値信号であり、ハイはビットレート#1を示し、ローはビットレート#2を示す。したがって、レートセレクト信号がハイの間は、受信器12はビットレート#1に適した周波数応答特性で動作し、レートセレクト信号がローの間は、受信器12はビットレート#2に適した周波数応答特性で動作する。なお、レートセレクト信号の値とビットレートとの対応は、この例に限定されず、ローがビットレート#1を示し、ハイがビットレート#2を示すようにしてもよい。
In the example of FIG. 7, the rate select signal is a binary signal of high and low, where high indicates the bit rate # 1 and low indicates the bit rate # 2. Therefore, when the rate select signal is high, the receiver 12 operates with a frequency response characteristic suitable for the bit rate # 1, and when the rate select signal is low, the receiver 12 has a frequency suitable for the bit rate # 2. Operates with response characteristics. The correspondence between the value of the rate select signal and the bit rate is not limited to this example, and low may indicate the bit rate # 1 and high may indicate the bit rate # 2.
また、図7の例では、リセット信号は、ハイおよびローの2値信号であり、ハイはリセットが有意であるすなわちリセットが指示されたことを示し、ローはリセットが有意でないすなわちリセットが指示されていないことを示す。リセット信号は、一般に、図7の例に示すように、リセットするタイミングを示すパルス状の信号となる。受信器12は、リセット信号が、リセットを示す値すなわちリセットが有意であることを示す値となると、前述のように、時定数を第1の時定数、すなわち高速応答の時定数に切り換える。また、リセット信号に応じてその他の初期化動作を行ってもよい。なお、リセット信号の値とリセットが有意であるか否かとの対応は、この例に限定されず、ローはリセットが有意であることを示し、ハイはリセットが有意でないことを示すようにしてもよい。
Further, in the example of FIG. 7, the reset signal is a binary signal of high and low, and high indicates that the reset is significant, that is, reset is instructed, and low indicates that the reset is not significant, that is, reset is instructed. Indicates not. As shown in the example of FIG. 7, the reset signal is generally a pulse signal indicating the reset timing. When the reset signal becomes a value indicating reset, that is, a value indicating that the reset is significant, the receiver 12 switches the time constant to the first time constant, that is, the fast response time constant as described above. Further, other initialization operations may be performed in response to the reset signal. The correspondence between the value of the reset signal and whether or not the reset is significant is not limited to this example. Low indicates that the reset is significant, and high indicates that the reset is not significant. Good.
以上のように、本実施の形態の光受信器1では、1つの信号入力ピンにより入力された制御信号を、分離回路13でリセット信号とレートセレクト信号とに分離する。これにより、1つの信号入力ピンを用いて、伝送レートに応じて周波数応答特性を切り替えることができるとともにバースト的に受信する光パケットに対する高速応答を実現することができる。この結果、伝送レートに応じて周波数応答特性を切り替えることができるとともにバースト的に受信する光パケットに対する高速応答を実現しつつ、ハードウェアを小型化することができる。
As described above, in the optical receiver 1 according to the present embodiment, the control signal input from one signal input pin is separated into the reset signal and the rate select signal by the separation circuit 13. Thereby, using one signal input pin, the frequency response characteristic can be switched according to the transmission rate, and a high-speed response to an optical packet received in bursts can be realized. As a result, the frequency response characteristics can be switched according to the transmission rate, and the hardware can be reduced in size while realizing a high-speed response to optical packets received in bursts.
実施の形態2.
図8は、本発明にかかる実施の形態2の光受信器1の分離回路の構成例を示す図である。実施の形態2では、実施の形態1で述べた光受信器1における分離回路13の構成例と制御信号の一例を説明する。Embodiment 2. FIG.
FIG. 8 is a diagram illustrating a configuration example of the separation circuit of theoptical receiver 1 according to the second embodiment of the present invention. In the second embodiment, a configuration example of the separation circuit 13 and an example of a control signal in the optical receiver 1 described in the first embodiment will be described.
図8は、本発明にかかる実施の形態2の光受信器1の分離回路の構成例を示す図である。実施の形態2では、実施の形態1で述べた光受信器1における分離回路13の構成例と制御信号の一例を説明する。
FIG. 8 is a diagram illustrating a configuration example of the separation circuit of the
実施の形態2の分離回路13は、図8に示すように、エッジ検出回路14で構成される。エッジ検出回路14は、立ち上がりを検出する立ち上がりエッジ検出回路、立ち下がりを検出する立ち下りエッジ検出回路、または立ち上がりおよび立ち下がりの両エッジを検出する両エッジ検出回路を用いる。
The separation circuit 13 according to the second embodiment includes an edge detection circuit 14 as shown in FIG. The edge detection circuit 14 uses a rising edge detection circuit that detects a rising edge, a falling edge detection circuit that detects a falling edge, or a both-edge detection circuit that detects both rising and falling edges.
図9は、実施の形態2の制御信号、レートセレクト信号およびリセット信号の一例を示すタイミングチャート図である。図9では、エッジ検出回路14として立ち上がり検出回路を用いる例を示している。図9に示す例では、制御信号は、リセット信号がローからハイとなるタイミング、すなわちリセットが有意でないことを示す値からリセットが有意であることを示す値に変化するタイミングで、ローからハイに変化する。その後、制御信号は、一定時間経過後、光受信器1が受信する光パケットの伝送レートに応じた値となる。このように、本実施の形態の制御信号は、光パケットの先頭以降データ部分を受信する前の時点を含むレート指示期間の間、光受信器1が受信する光パケットの伝送レートに応じた値を示す。図9の例では、レート指示期間は、リセット信号がローからハイになってから一定時間経過後から光パケットの受信を終了するまでの間である。図9の例では、制御信号がハイの場合にビットレート#1を示し、制御信号がローの場合にビットレート#2を示す。
FIG. 9 is a timing chart illustrating an example of a control signal, a rate select signal, and a reset signal according to the second embodiment. FIG. 9 shows an example in which a rising edge detection circuit is used as the edge detection circuit 14. In the example shown in FIG. 9, the control signal changes from low to high at the timing when the reset signal changes from low to high, that is, when the reset signal changes from a value indicating that the reset is not significant to a value indicating that the reset is significant. Change. Thereafter, the control signal becomes a value corresponding to the transmission rate of the optical packet received by the optical receiver 1 after a predetermined time has elapsed. As described above, the control signal according to the present embodiment is a value corresponding to the transmission rate of the optical packet received by the optical receiver 1 during the rate indication period including the time point after the beginning of the optical packet and before receiving the data portion. Indicates. In the example of FIG. 9, the rate instruction period is a period from when the reset signal changes from low to high and after a certain time elapses until reception of the optical packet ends. In the example of FIG. 9, the bit rate # 1 is shown when the control signal is high, and the bit rate # 2 is shown when the control signal is low.
図10は、実施の形態2の制御信号の生成手順の一例を示すフローチャートである。図9に示す制御信号は、実施の形態1で述べたように、光受信器1が搭載されるOLT50の制御部3により生成される。ここでは、制御信号は制御部3により生成されるとして説明する。
FIG. 10 is a flowchart illustrating an example of a control signal generation procedure according to the second embodiment. The control signal shown in FIG. 9 is generated by the control unit 3 of the OLT 50 on which the optical receiver 1 is mounted as described in the first embodiment. Here, it is assumed that the control signal is generated by the control unit 3.
制御部3は、各ONUへ割当てた上り帯域の情報を保持しておき、保持しているONUごとの上り帯域の情報に基づいて、光パケットの受信開始タイミングになったか否かを判断する(ステップS1)。制御部3は、光パケットの受信開始タイミングになったと判断した場合(ステップS1 Yes)、制御信号の値をハイとする(ステップS2)。制御部3は、光パケットの受信開始タイミングでないと判断した場合(ステップS1 No)、ステップS1を繰り返す。
The control unit 3 retains information on the uplink bandwidth allocated to each ONU, and determines whether or not the reception start timing of the optical packet is reached based on the information on the uplink bandwidth for each ONU that is retained ( Step S1). When the control unit 3 determines that the optical packet reception start timing is reached (Yes in step S1), the control unit 3 sets the control signal value to high (step S2). If the control unit 3 determines that it is not the optical packet reception start timing (No in step S1), it repeats step S1.
ステップS2の後、制御部3は、光パケット、すなわち受信する光パケットの伝送レートはビットレート#1であるか否かを判断する(ステップS3)。光パケットの伝送レートはビットレート#1である場合(ステップS3 Yes)、制御部3は、光パケットの受信終了タイミングであるか否かを判断する(ステップS4)。光パケットの受信終了タイミングである場合(ステップS4 Yes)、制御部3は、光受信器1へ出力する制御信号の値をローとする(ステップS5)。
After step S2, the control unit 3 determines whether or not the transmission rate of the optical packet, that is, the received optical packet is the bit rate # 1 (step S3). When the transmission rate of the optical packet is the bit rate # 1 (step S3, Yes), the control unit 3 determines whether it is the reception end timing of the optical packet (step S4). When it is the reception end timing of the optical packet (step S4, Yes), the control unit 3 sets the value of the control signal output to the optical receiver 1 to low (step S5).
ステップS3で、光パケットの伝送レートはビットレート#1でない場合(ステップS3 No)、制御部3は制御信号の値をハイとしてから一定時間経過したか否かを判断する(ステップS6)。一定時間経過した場合(ステップS6 Yes)、ステップS5へ進み、一定時間経過していない場合(ステップS6 No)、ステップS6を繰り返す。ステップS4で、光パケットの受信終了タイミングでない場合(ステップS4 No)、ステップS4を繰り返す。以上の処理により、制御部3は、図9に示した制御信号を生成することができる。なお、図10に示した処理手順は一例であり、制御信号を生成する具体的な処理手順は図10の例に限定されない。
In step S3, when the transmission rate of the optical packet is not the bit rate # 1 (No in step S3), the control unit 3 determines whether or not a certain time has passed since the value of the control signal was set high (step S6). When the fixed time has passed (Yes at Step S6), the process proceeds to Step S5. When the fixed time has not passed (No at Step S6), Step S6 is repeated. If it is not the optical packet reception end timing in step S4 (No in step S4), step S4 is repeated. Through the above processing, the control unit 3 can generate the control signal shown in FIG. The processing procedure shown in FIG. 10 is an example, and the specific processing procedure for generating the control signal is not limited to the example of FIG.
図9の説明に戻り、エッジ検出回路14は、図9の2段目に示すように、制御信号の立ち上がりエッジを検出すると、パルス状のリセット信号を生成し、生成したリセット信号を受信器12に出力する。また、光受信器1の分離回路13は、入力された制御信号をそのままレートセレクト信号として受信器12に出力する。受信器12は、光パケットのデータ部分を受信する前に光パケットの伝送レートに応じた周波数応答特性が設定されていればよい。このため、上述した図9の処理における一定時間は、プリアンブルに対応する時間帯内であればよい。
Returning to the description of FIG. 9, when the edge detection circuit 14 detects the rising edge of the control signal, as shown in the second stage of FIG. 9, the edge detection circuit 14 generates a pulsed reset signal, and the generated reset signal is received by the receiver 12. Output to. Further, the separation circuit 13 of the optical receiver 1 outputs the input control signal as it is to the receiver 12 as a rate select signal. The receiver 12 only needs to have a frequency response characteristic corresponding to the transmission rate of the optical packet before receiving the data portion of the optical packet. For this reason, the fixed time in the process of FIG. 9 described above may be within the time zone corresponding to the preamble.
図11は、エッジ検出回路14を立ち上がりエッジ検出回路とした場合のエッジ検出回路14の回路構成例を示す図である。図11に示したエッジ検出回路14は、抵抗15とコンデンサ20とオペアンプ(演算増幅器:operational amplifier)24とで構成される。制御信号は2つに分岐され、分岐された信号のうち一方はオペアンプ24の正相に入力され、他方は抵抗15とコンデンサ20で構成されるローパスフィルタ151を介してオペアンプ24の逆相に入力される。ここでは、オペアンプ24を、正相の入力電圧が逆相の入力電圧より高くなった時にハイの値の信号を出力する回路として用いられる。ローパスフィルタ151を介してオペアンプ24に入力される信号はエッジが鈍った信号となる。したがって、制御信号の立ち上がりエッジの付近で、正相に入力された信号が逆相に入力された信号より大きくなる。正相に入力された信号と逆相に入力された信号との差がオペアンプ24により増幅されることにより立ち上がりエッジ付近でパルス状となる。
FIG. 11 is a diagram showing a circuit configuration example of the edge detection circuit 14 when the edge detection circuit 14 is a rising edge detection circuit. The edge detection circuit 14 shown in FIG. 11 includes a resistor 15, a capacitor 20, and an operational amplifier (operational amplifier) 24. The control signal is branched into two, one of the branched signals is input to the positive phase of the operational amplifier 24, and the other is input to the negative phase of the operational amplifier 24 through the low-pass filter 151 including the resistor 15 and the capacitor 20. Is done. Here, the operational amplifier 24 is used as a circuit that outputs a high value signal when the positive phase input voltage becomes higher than the negative phase input voltage. A signal input to the operational amplifier 24 through the low-pass filter 151 is a signal with a dull edge. Therefore, in the vicinity of the rising edge of the control signal, the signal input in the positive phase is larger than the signal input in the negative phase. The difference between the signal input in the positive phase and the signal input in the reverse phase is amplified by the operational amplifier 24, and becomes a pulse in the vicinity of the rising edge.
図12は、エッジ検出回路14を立ち下がりエッジ検出回路とした場合のエッジ検出回路14の回路構成例を示す図である。この場合、制御信号は、例えば、図9に示した制御信号を反転させたものを用いることができる。図12に示したエッジ検出回路14は、抵抗16とコンデンサ21とオペアンプ25とで構成される。図12に示したエッジ検出回路14では、制御信号がオペアンプ25の逆相に入力されるとともに、抵抗16とコンデンサ21とで構成されるローパスフィルタ152を経由した制御信号がオペアンプ25の正相に入力される。これにより、オペアンプ25から出力される信号は、制御信号の立ち下りエッジ付近でパルス状となる。
FIG. 12 is a diagram showing a circuit configuration example of the edge detection circuit 14 when the edge detection circuit 14 is a falling edge detection circuit. In this case, for example, a control signal obtained by inverting the control signal shown in FIG. 9 can be used. The edge detection circuit 14 shown in FIG. 12 includes a resistor 16, a capacitor 21, and an operational amplifier 25. In the edge detection circuit 14 shown in FIG. 12, the control signal is input to the negative phase of the operational amplifier 25, and the control signal via the low-pass filter 152 formed by the resistor 16 and the capacitor 21 is set to the positive phase of the operational amplifier 25. Entered. As a result, the signal output from the operational amplifier 25 is pulsed in the vicinity of the falling edge of the control signal.
図13は、エッジ検出回路14を両エッジ検出回路とした場合のエッジ検出回路14の回路構成例を示す図である。図13に示したエッジ検出回路14は、抵抗17、コンデンサ22および第1の演算増幅器であるオペアンプ26で構成される立ち下り検出回路と、抵抗18、コンデンサ23および第2の演算増幅器であるオペアンプ27で構成される立ち上がり検出回路と、OR回路28とで構成される。立ち下り検出回路は、図11のエッジ検出回路14と同様であり、立ち上がり検出回路は、図12のエッジ検出回路14と同様である。抵抗17およびコンデンサ22は第1のローパスフィルタ153を構成し、抵抗18およびコンデンサ23は第2のローパスフィルタ154を構成する。OR回路(論理和回路)28は、立ち下り検出回路から出力される信号と立ち上がり検出回路から出力される信号とのOR(論理和)を出力する。
FIG. 13 is a diagram showing a circuit configuration example of the edge detection circuit 14 when the edge detection circuit 14 is a both-edge detection circuit. The edge detection circuit 14 shown in FIG. 13 includes a falling detection circuit including a resistor 17, a capacitor 22, and an operational amplifier 26 that is a first operational amplifier, and a resistor 18, a capacitor 23, and an operational amplifier that is a second operational amplifier. 27, a rising edge detection circuit, and an OR circuit 28. The falling edge detection circuit is the same as the edge detection circuit 14 in FIG. 11, and the rising edge detection circuit is the same as the edge detection circuit 14 in FIG. The resistor 17 and the capacitor 22 constitute a first low-pass filter 153, and the resistor 18 and the capacitor 23 constitute a second low-pass filter 154. The OR circuit (logical sum circuit) 28 outputs an OR (logical sum) of the signal output from the falling detection circuit and the signal output from the rising detection circuit.
図14は、実施の形態2のエッジ検出回路14におけるオペアンプへの入力信号、およびエッジ検出回路14から出力される信号の一例を示す図である。図14の1段目には、オペアンプへの入力信号を示しており、実線は、図11で示したオペアンプ24および図13に示したオペアンプ27の正相、および図12で示したオペアンプ25および図13に示したオペアンプ26の逆相への入力信号を示している。すなわち、図14の1段目の実線は、エッジ検出回路14へ入力される制御信号を示している。また、図14の1段目の点線は、図11で示したオペアンプ24および図13に示したオペアンプ27の逆相、および図12で示したオペアンプ25および図13に示したオペアンプ26の正相への入力信号を示している。
FIG. 14 is a diagram illustrating an example of an input signal to the operational amplifier in the edge detection circuit 14 according to the second embodiment and a signal output from the edge detection circuit 14. The first stage of FIG. 14 shows an input signal to the operational amplifier, and the solid line indicates the positive phase of the operational amplifier 24 shown in FIG. 11 and the operational amplifier 27 shown in FIG. 13, and the operational amplifier 25 shown in FIG. The input signal to the reverse phase of the operational amplifier 26 shown in FIG. 13 is shown. That is, the first solid line in FIG. 14 indicates a control signal input to the edge detection circuit 14. Also, the dotted line in the first stage of FIG. 14 indicates the reverse phase of the operational amplifier 24 shown in FIG. 11 and the operational amplifier 27 shown in FIG. 13, and the positive phase of the operational amplifier 25 shown in FIG. 12 and the operational amplifier 26 shown in FIG. The input signal to is shown.
図14の2段目は、図11に示したエッジ検出回路14から出力される信号を示しており、図14の3段目は、図12に示したエッジ検出回路14から出力される信号を示しており、図14の4段目は、図13に示した立ち上がりエッジ検出回路14から出力される信号を示している。
The second stage of FIG. 14 shows the signal output from the edge detection circuit 14 shown in FIG. 11, and the third stage of FIG. 14 shows the signal output from the edge detection circuit 14 shown in FIG. 14 shows a signal output from the rising edge detection circuit 14 shown in FIG.
図9では、エッジ検出回路14として立ち上がり検出回路を用いて場合の各信号を示したが、エッジ検出回路14として立ち上がり検出回路または両エッジ検出回路を用いる場合には、タイミングチャートは図9の例とは一部異なる。
In FIG. 9, each signal in the case where the rising edge detection circuit is used as the edge detection circuit 14 is shown, but when the rising edge detection circuit or both edge detection circuits are used as the edge detection circuit 14, the timing chart is the example of FIG. 9. Is partly different.
エッジ検出回路14として立ち下がり検出回路を用いる場合、制御信号の論理を反転させ、レートセレクト信号の値とビットレートとの対応を反転させればよい。または、次の図15に示すような制御信号を生成してもよい。図15は、エッジ検出回路14として立ち下がり検出回路を用いる場合の各信号の一例を示すタイミングチャート図である。エッジ検出回路14として立ち下がり検出回路を用いる場合、制御信号の立ち下がり時にリセット信号の値がハイとなるため、制御信号の立下りがリセットを指示するタイミングとなるよう生成される。
When a falling detection circuit is used as the edge detection circuit 14, the logic of the control signal may be inverted and the correspondence between the value of the rate select signal and the bit rate may be inverted. Alternatively, a control signal as shown in FIG. 15 may be generated. FIG. 15 is a timing chart showing an example of each signal when a falling detection circuit is used as the edge detection circuit 14. When a falling detection circuit is used as the edge detection circuit 14, since the value of the reset signal becomes high when the control signal falls, the falling edge of the control signal is generated at the timing for instructing reset.
図15の例では、制御信号は、光パケットの受信開始タイミングでは制御信号の値がハイからローとなるように生成される。また、制御信号は、ビットレート#1が1の光パケットを受信する場合、光パケットの受信開始タイミングから一定時間後に制御信号の値がローからハイとなり次の光パケットの受信開始タイミングまでハイを維持して次の光パケットの受信開始タイミングでローに変化するよう生成される。また、制御信号は、ビットレート#1が1の光パケットを受信する場合、光パケットの受信開始タイミングでローとなってからローを維持し、次のパケットの受信開示タイミングより一定時間前にローからハイに変化するよう生成される。
In the example of FIG. 15, the control signal is generated so that the value of the control signal changes from high to low at the reception start timing of the optical packet. When an optical packet with a bit rate # 1 of 1 is received, the control signal changes from low to high after a certain time from the optical packet reception start timing and goes high until the reception timing of the next optical packet. And is generated to change to low at the reception start timing of the next optical packet. Also, when an optical packet with a bit rate # 1 of 1 is received, the control signal remains low after becoming low at the reception start timing of the optical packet, and goes low for a certain time before the reception disclosure timing of the next packet. Is generated to change from high to low.
図16は、エッジ検出回路14として両エッジ検出回路を用いる場合の各信号の一例を示すタイミングチャート図である。エッジ検出回路14として両エッジ検出回路を用いる場合、制御信号の立ち下がりおよび立ち下がり時が、リセットを指示するタイミングとなるよう生成される。したがって、例えば、制御信号は、ビットレートが同一の光パケットを連続して受信する場合には、図9の例と同様に制御信号を生成し、前のパケットと異なるビットレートの光パケットを受信する場合には、図16に示すように、次の光パケットの開始タイミングまで前の光パケットの伝送レートに対応する値を維持するようにしてもよい。
FIG. 16 is a timing chart showing an example of each signal when both edge detection circuits are used as the edge detection circuit 14. When both edge detection circuits are used as the edge detection circuit 14, the control signal is generated such that the falling edge and the falling edge become the timing for instructing the reset. Therefore, for example, when the control signal continuously receives optical packets having the same bit rate, the control signal is generated in the same manner as in the example of FIG. 9 and an optical packet having a bit rate different from that of the previous packet is received. In this case, as shown in FIG. 16, a value corresponding to the transmission rate of the previous optical packet may be maintained until the start timing of the next optical packet.
以上、実施の形態2では、いくつかの分離回路13の構成例および制御信号の例を説明したが、本実施の形態の制御信号は、立ち上がりエッジおよび立ち下がりエッジのうち少なくとも一方のエッジが光パケットの先頭を受光素子11すなわち光受信器1が受信する時刻に対応する信号であり、光パケットの先頭を受信する時刻以降かつデータの受信を開始する前の時刻を含む期間であるレート指示期間では、光パケットの伝送レートを示す値を有するように構成されていればよい。そして、分離回路13は、制御信号の光パケットの先頭を受信する時刻に対応するエッジを検出するエッジ検出回路14、を備え、エッジ検出回路14から出力される信号をリセット信号とし、レート指示期間における制御信号の値に基づいてレートセレクト信号を生成するように構成されていればよい。
As described above, in the second embodiment, some configuration examples of the separation circuit 13 and examples of the control signal have been described. However, in the control signal according to the present embodiment, at least one of the rising edge and the falling edge is light. A rate indication period, which is a signal corresponding to the time at which the light receiving element 11, that is, the optical receiver 1 receives the beginning of the packet and includes the time after the time at which the beginning of the optical packet is received and before the start of data reception Then, what is necessary is just to be comprised so that it may have a value which shows the transmission rate of an optical packet. The separation circuit 13 includes an edge detection circuit 14 that detects an edge corresponding to the time at which the head of the optical packet of the control signal is received. The signal output from the edge detection circuit 14 is used as a reset signal, and the rate indication period The rate select signal may be generated based on the value of the control signal at.
以上のように、本実施の形態では、実施の形態1の効果を実現することができる分離回路13としてエッジ検出回路を用いた例を説明した。実施の形態1で述べたように、この分離回路13を用いることにより、制御信号とレートセレクト信号とリセット信号とを分離するようにした。このため、伝送レートに応じて周波数応答特性を切り替えることができるとともにバースト的に受信する光パケットに対する高速応答を実現しつつ、ハードウェアを小型化することができる。
As described above, in this embodiment, the example in which the edge detection circuit is used as the separation circuit 13 that can realize the effect of the first embodiment has been described. As described in the first embodiment, the separation circuit 13 is used to separate the control signal, the rate select signal, and the reset signal. Therefore, the frequency response characteristics can be switched according to the transmission rate, and the hardware can be reduced in size while realizing a high-speed response to optical packets received in bursts.
実施の形態3.
図17は、本発明にかかる実施の形態3の光受信器1における各信号の一例を示すタイミングチャート図である。本実施の形態の光受信器1の構成は実施の形態1と同様であり、分離回路13の構成は実施の形態2の図8に示した構成を用いることができ、エッジ検出回路14としては図13に示した構成を用いることができる。以下、実施の形態1および実施の形態2と異なる部分を説明する。 Embodiment 3 FIG.
FIG. 17 is a timing chart illustrating an example of each signal in theoptical receiver 1 according to the third embodiment of the present invention. The configuration of the optical receiver 1 of the present embodiment is the same as that of the first embodiment, and the configuration of the separation circuit 13 can use the configuration shown in FIG. 8 of the second embodiment. The configuration shown in FIG. 13 can be used. Hereinafter, parts different from the first embodiment and the second embodiment will be described.
図17は、本発明にかかる実施の形態3の光受信器1における各信号の一例を示すタイミングチャート図である。本実施の形態の光受信器1の構成は実施の形態1と同様であり、分離回路13の構成は実施の形態2の図8に示した構成を用いることができ、エッジ検出回路14としては図13に示した構成を用いることができる。以下、実施の形態1および実施の形態2と異なる部分を説明する。 Embodiment 3 FIG.
FIG. 17 is a timing chart illustrating an example of each signal in the
実施の形態1で述べたように、レートセレクト信号に基づく周波数応答特性の切替えは光パケットのデータ部分を受信する前に行われればよいが、光パケットの受信中にこの切り替えが行われると不具合が生じる可能性がある。このため、プリアンブルの部分を受信する前に周波数応答特性を切替える方がより望ましい。実施の形態3では、光パケット間にガードタイムが挿入される場合に、光パケットの受信中に周波数応答特性の切替えを生じさせないようにする動作について説明する。
As described in the first embodiment, switching of the frequency response characteristics based on the rate select signal may be performed before receiving the data portion of the optical packet. However, if this switching is performed during reception of the optical packet, there is a problem. May occur. For this reason, it is more desirable to switch the frequency response characteristics before receiving the preamble portion. In the third embodiment, an operation is described in which frequency response characteristics are not switched during reception of an optical packet when a guard time is inserted between the optical packets.
図17に示すように、本実施の形態ではパケット間にガードタイムと呼ばれる無信号区間が挿入されることを前提としている。制御信号は、光パケットの受信中は、伝送レートにより定める値に固定される。そして、ガードタイムの期間中は、ガードタイムの直後の光パケットの伝送レートで決まる信号レベルを反転した信号を入力する。ここでは、制御信号は2値信号であるとし、伝送レートを示す値を反転した値とは、2値のうち伝送レートを示す値ではない方の値、伝送レートを示す値とは異なる値のことを示す。これにより、光パケットの先頭部分、すなわち受信開始時に、制御信号の立ち上がりまたは立ち下がりエッジが生じる。したがって、実施の形態2で述べた両エッジ検出回路によりリセット信号を生成することができる。また、光パケットの受信中はレートセレクト信号の切り替わりが発生しない。
As shown in FIG. 17, in this embodiment, it is assumed that a no-signal section called guard time is inserted between packets. The control signal is fixed to a value determined by the transmission rate during reception of the optical packet. During the guard time period, a signal obtained by inverting the signal level determined by the transmission rate of the optical packet immediately after the guard time is input. Here, it is assumed that the control signal is a binary signal, and the value obtained by inverting the value indicating the transmission rate is different from the value indicating the transmission rate and the value indicating the transmission rate which is not the value indicating the transmission rate. It shows that. As a result, the leading or trailing edge of the control signal occurs at the beginning of the optical packet, that is, at the start of reception. Therefore, the reset signal can be generated by the double edge detection circuit described in the second embodiment. Further, the rate select signal is not switched during reception of the optical packet.
図18は、実施の形態3の制御信号の生成手順の一例を示すフローチャートである。制御信号は、実施の形態1で述べたように光受信器1が搭載されるOLT50の制御部3により生成される。図18に示すように、制御部3は、ガードタイムの開始タイミングであるか否かを判断する(ステップS21)。ガードタイムの開始タイミングでない場合(ステップS21 No)、ステップS21を繰り返す。ガードタイムの開始タイミングである場合(ステップS21 Yes)、制御部3は、制御信号の値を次の光パケットの伝送レートに対応するレートセレクト信号の値、すなわち伝送レートを示す値を反転させた値とする(ステップS22)。そして、制御部3は、ガードタイムが終了したか否かを判断する(ステップS23)。ガードタイムが終了していない場合(ステップS23 No)、ステップS23を繰り返す。
FIG. 18 is a flowchart illustrating an example of a control signal generation procedure according to the third embodiment. The control signal is generated by the control unit 3 of the OLT 50 on which the optical receiver 1 is mounted as described in the first embodiment. As shown in FIG. 18, the control unit 3 determines whether or not it is the start time of the guard time (step S21). If it is not the start time of the guard time (No at Step S21), Step S21 is repeated. When it is the start timing of the guard time (step S21, Yes), the control unit 3 inverts the value of the control signal corresponding to the transmission rate of the next optical packet, that is, the value indicating the transmission rate. A value is set (step S22). And the control part 3 judges whether the guard time was complete | finished (step S23). If the guard time has not ended (No at Step S23), Step S23 is repeated.
ガードタイムが終了した場合(ステップS23 Yes)、制御部3は、制御信号の値を光パケットの伝送レートに対応するレートセレクト信号の値とし(ステップS24)、ステップS21へ戻る。
When the guard time is over (step S23, Yes), the control unit 3 sets the value of the control signal as the value of the rate select signal corresponding to the transmission rate of the optical packet (step S24), and returns to step S21.
以上のように、本実施の形態では、ガードタイムでは、制御信号の値を次の光パケットの伝送レートに対応するレートセレクト信号の値を反転させた値とし、光パケットの受信中は、制御信号の値を光パケットの伝送レートに対応するレートセレクト信号の値とする。そして、光受信器1の分離回路13では、両エッジ検出回路を用いてリセット信号を生成するようにした。このため、実施の形態1で述べた効果を奏するとともに、光パケットの受信中にレートセレクト信号が切り替わるのを防ぐことができ、レートセレクト信号の切替えに起因する不具合を防ぐことが可能となる。
As described above, in this embodiment, in the guard time, the value of the control signal is set to a value obtained by inverting the value of the rate select signal corresponding to the transmission rate of the next optical packet. Let the value of the signal be the value of the rate select signal corresponding to the transmission rate of the optical packet. In the separation circuit 13 of the optical receiver 1, the reset signal is generated by using both edge detection circuits. Therefore, the effects described in the first embodiment can be obtained, and the rate select signal can be prevented from being switched during the reception of the optical packet, and problems caused by the rate select signal switching can be prevented.
実施の形態4.
図19は、本発明にかかる実施の形態4の光受信器1における各信号の一例を示すタイミングチャート図である。実施の形態4では、実施の形態1で述べた制御信号と分離回路13の具体例として、実施の形態2および実施の形態3と異なる例を説明する。光受信器1の構成は、実施の形態1と同様である。本実施の形態では、制御信号をパルス信号として生成する。 Embodiment 4 FIG.
FIG. 19 is a timing chart illustrating an example of each signal in theoptical receiver 1 according to the fourth embodiment of the present invention. In the fourth embodiment, an example different from the second and third embodiments will be described as a specific example of the control signal and the separation circuit 13 described in the first embodiment. The configuration of the optical receiver 1 is the same as that of the first embodiment. In this embodiment, the control signal is generated as a pulse signal.
図19は、本発明にかかる実施の形態4の光受信器1における各信号の一例を示すタイミングチャート図である。実施の形態4では、実施の形態1で述べた制御信号と分離回路13の具体例として、実施の形態2および実施の形態3と異なる例を説明する。光受信器1の構成は、実施の形態1と同様である。本実施の形態では、制御信号をパルス信号として生成する。 Embodiment 4 FIG.
FIG. 19 is a timing chart illustrating an example of each signal in the
図19に示すように、制御信号は、光パケットごとに、先頭すなわち受信開始時にパルス状にローからハイとなる。この受信開始時のパルスを先頭パルスまたは1回目のパルスと呼ぶ。その後、光パケットの伝送レートがビットレート#1の場合には、2回目のパルスが制御信号として入力される。一方、光パケットの伝送レートがビットレート#2の場合には、2回目のパルスは入力されず、制御信号はローのままである。このように、実施の形態4の制御信号では、パルスが入力される回数によりビットレートを示している。すなわち、実施の形態4の制御信号は、パルス信号であり、光パケットごとに光パケットのデータ部分を受信するまでの間に光パケットの伝送レートに応じた数のパルスを有し、光パケットごとのパルスのうちの1つである先頭パルスは光パケットの先頭を受光素子が受信する時刻を示す。
As shown in FIG. 19, the control signal changes from low to high in the form of a pulse at the beginning, that is, at the start of reception for each optical packet. This pulse at the start of reception is called the first pulse or the first pulse. Thereafter, when the transmission rate of the optical packet is the bit rate # 1, the second pulse is input as the control signal. On the other hand, when the transmission rate of the optical packet is the bit rate # 2, the second pulse is not input and the control signal remains low. Thus, in the control signal of the fourth embodiment, the bit rate is indicated by the number of times the pulse is input. That is, the control signal of the fourth embodiment is a pulse signal, and has a number of pulses corresponding to the transmission rate of the optical packet before receiving the data portion of the optical packet for each optical packet. The leading pulse, which is one of the pulses, indicates the time at which the light receiving element receives the head of the optical packet.
本実施の形態では、光パケットの先頭でパルスが入力されるため、光受信器1は、制御信号をリセット信号としてそのまま使用することができる。また、光受信器1は、光パケットごとのパルスの数に応じてレートセレクト信号を生成することができる。
In this embodiment, since a pulse is input at the head of the optical packet, the optical receiver 1 can use the control signal as a reset signal as it is. The optical receiver 1 can generate a rate select signal according to the number of pulses for each optical packet.
本実施の形態の制御信号は、実施の形態1で述べたように、例えば、OLT50の制御部3により生成される。制御部3は、制御信号を、各光パケットの先頭において、1回目のパルスが含まれ、かつ光パケットの伝送レートがビットレート#1の場合には、1回目のパルスの後に2回目のパルスが含まれるように生成する。
The control signal of the present embodiment is generated by the control unit 3 of the OLT 50, for example, as described in the first embodiment. When the first pulse is included in the head of each optical packet and the transmission rate of the optical packet is the bit rate # 1, the control unit 3 sends the second pulse after the first pulse. To be included.
図20は、本実施の形態の分離回路13の構成例を示す図である。図20に示すように、本実施の形態の分離回路13は、第1の遅延型フリップフロップ回路であるD-フリップフロップ回路30と、第2の遅延型フリップフロップ回路であるD-フリップフロップ回路31と、ヒステリシス回路32と、抵抗33と、コンデンサ34と、OR回路35とを備える。抵抗33およびコンデンサ34は、ローパスフィルタ155を形成している。
FIG. 20 is a diagram illustrating a configuration example of the separation circuit 13 according to the present embodiment. As shown in FIG. 20, the separation circuit 13 of this embodiment includes a D-flip flop circuit 30 that is a first delay flip-flop circuit and a D-flip flop circuit that is a second delay flip-flop circuit. 31, a hysteresis circuit 32, a resistor 33, a capacitor 34, and an OR circuit 35. The resistor 33 and the capacitor 34 form a low pass filter 155.
図20に示すように、OR回路35の一方の入力部に制御信号が入力され、OR回路35から出力される信号がD-フリップフロップ回路30のクロック入力部に入力され、D-フリップフロップ回路30の逆相の出力信号がD-フリップフロップ回路30のD入力部に入力される。また、D-フリップフロップ回路30の正相の出力信号が抵抗33およびコンデンサ34で構成されるローパスフィルタ155に入力され、ローパスフィルタ155から出力される信号がヒステリシス回路32に入力される。ヒステリシス回路32から出力される信号がD-フリップフロップ回路31のD入力部に入力され、D-フリップフロップ回路31のクロック入力部に制御信号が入力される。OR回路35の他方の入力部には、ローパスフィルタ155から出力される信号が入力される。
As shown in FIG. 20, a control signal is input to one input section of the OR circuit 35, and a signal output from the OR circuit 35 is input to the clock input section of the D-flip flop circuit 30 to 30 output signals having opposite phases are input to the D input portion of the D flip-flop circuit 30. In addition, the positive phase output signal of the D-flip flop circuit 30 is input to the low-pass filter 155 including the resistor 33 and the capacitor 34, and the signal output from the low-pass filter 155 is input to the hysteresis circuit 32. A signal output from the hysteresis circuit 32 is input to the D input portion of the D-flip flop circuit 31, and a control signal is input to the clock input portion of the D-flip flop circuit 31. A signal output from the low-pass filter 155 is input to the other input portion of the OR circuit 35.
図21は、実施の形態4の分離回路13における各信号の一例を示すタイミングチャート図である。図21の1段目には、制御信号を示し、図21の2段目の実線は、実施の形態4の分離回路13により生成されたリセット信号を示し、図21の2段目の点線は、実施の形態4の分離回路13により生成されたレートセレクト信号を示している。図21の3段目の実線は、図20に示した信号線Aにおける信号すなわち信号Aを示し、図21の3段目の点線は、図20に示した信号線Bにおける信号すなわち信号Bを示す。図21の4段目の実線は、図20に示した信号線Cにおける信号すなわち信号Cを示し、図21の4段目の点線は、図20に示した信号線Dにおける信号すなわち信号Dを示す。図21の5段目の実線は、図20に示した信号線Eにおける信号すなわち信号Eを示す。
FIG. 21 is a timing chart illustrating an example of each signal in the separation circuit 13 according to the fourth embodiment. 21 shows the control signal, the second solid line in FIG. 21 shows the reset signal generated by the separation circuit 13 of the fourth embodiment, and the second dotted line in FIG. 4 shows a rate select signal generated by the separation circuit 13 of the fourth embodiment. The solid line at the third stage in FIG. 21 indicates the signal on the signal line A shown in FIG. 20, that is, the signal A, and the dotted line at the third stage in FIG. 21 indicates the signal at the signal line B shown in FIG. Show. The solid line at the fourth stage in FIG. 21 indicates the signal on the signal line C shown in FIG. 20, that is, the signal C, and the dotted line at the fourth stage in FIG. 21 indicates the signal at the signal line D shown in FIG. Show. The solid line at the fifth stage in FIG. 21 indicates the signal on the signal line E shown in FIG.
初期状態、すなわち制御信号が入力される前では、信号Aと、信号C,D,E,Fとはローであり、信号Bはハイである。このとき、レートセレクト信号はハイであってもローであってもどちらでも問題はない。制御信号は、OR回路35とD-フリップフロップ回路31のクロック入力部とに入力されるとともに、リセット信号としてそのまま出力される。信号Eは初期状態ではローであり、制御信号として1回目のパルスが入力されると、D-フリップフロップ回路31の正相の出力はリセット信号に同期してローとなる。D-フリップフロップ回路31の正相の出力信号はレートセレクト信号となる。
In the initial state, that is, before the control signal is input, the signal A and the signals C, D, E, and F are low, and the signal B is high. At this time, there is no problem whether the rate select signal is high or low. The control signal is input to the OR circuit 35 and the clock input unit of the D-flip flop circuit 31, and is output as it is as a reset signal. The signal E is low in the initial state, and when the first pulse is input as the control signal, the positive phase output of the D-flip flop circuit 31 becomes low in synchronization with the reset signal. The positive phase output signal of the D-flip flop circuit 31 is a rate select signal.
また、OR回路35に入力された制御信号は、OR回路35を経由して、D-フリップフロップ回路30のクロック入力部に入力される。D-フリップフロップ回路30は、分周回路を形成しており、クロック入力部に入力された信号に同期して出力信号のレベルが切り替わる。したがって、制御信号として1回目のパルスが入力されることにより、D-フリップフロップ回路30の逆相の出力信号である信号Bは、ハイからローへ切り替わり、D-フリップフロップ回路30の正相の出力信号である信号Cは、ローからハイとなる。
The control signal input to the OR circuit 35 is input to the clock input unit of the D-flip flop circuit 30 via the OR circuit 35. The D-flip flop circuit 30 forms a frequency divider, and the level of the output signal is switched in synchronization with the signal input to the clock input unit. Therefore, when the first pulse is input as the control signal, the signal B which is the output signal of the opposite phase of the D-flip flop circuit 30 is switched from high to low, and the positive phase of the D-flip flop circuit 30 is changed. The output signal, signal C, goes from low to high.
信号Cは、抵抗33とコンデンサ34で形成されるローパスフィルタおよびヒステリシス回路32に入力され、フィルタ時定数に応じた遅延を持った信号である信号Dとしてヒステリシス回路32から出力される。すなわち、ヒステリシス回路32から出力される信号である信号Eは、図21に示すように、制御信号の1回目のパルスの立ち上がりから遅延して立ち上がる。ヒステリシス回路32から出力された信号は、OR回路35に入力された後に、D-フリップフロップ回路30のクロック入力部に入力される。これにより、D-フリップフロップ回路30の正相の出力信号である信号Cはローとなり、D-フリップフロップ回路30の逆相の出力信号である信号Bはハイとなる。これらの動作に同期して、信号Aはハイからローに遷移し、信号Dは、ローパスフィルタの時定数に準じてハイからローへなだらかに遷移していく。このため、信号Eは信号Dの変化に依存した時間ハイを維持した後にローへ変化する。信号Eがハイとなっている間は、2回目のパルスが制御信号として入力されてもOR回路35によりD-フリップフロップ回路30への入力は変化しない。一方、D-フリップフロップ回路31には、制御信号の2回目のパルスがそのまま入力されるため、2回目のパルスが入力されるとD-フリップフロップ回路31から出力される信号であるレートセレクト信号はハイに変化する。
The signal C is input to the low-pass filter and hysteresis circuit 32 formed by the resistor 33 and the capacitor 34, and is output from the hysteresis circuit 32 as a signal D having a delay corresponding to the filter time constant. That is, the signal E, which is a signal output from the hysteresis circuit 32, rises with a delay from the rise of the first pulse of the control signal, as shown in FIG. The signal output from the hysteresis circuit 32 is input to the OR circuit 35 and then input to the clock input section of the D-flip flop circuit 30. As a result, the signal C that is the positive phase output signal of the D-flip flop circuit 30 becomes low, and the signal B that is the negative phase output signal of the D-flip flop circuit 30 becomes high. In synchronization with these operations, the signal A transitions from high to low, and the signal D transitions smoothly from high to low according to the time constant of the low-pass filter. Therefore, the signal E changes to low after maintaining the time high depending on the change of the signal D. While the signal E is high, the input to the D-flip flop circuit 30 is not changed by the OR circuit 35 even if the second pulse is input as the control signal. On the other hand, since the second pulse of the control signal is input to the D-flip flop circuit 31 as it is, a rate select signal that is a signal output from the D-flip flop circuit 31 when the second pulse is input. Changes to high.
以上の動作により、実施の形態4の分離回路13に、2回連続してパルスが入力された場合には、レートセレクト信号がハイとなり、1回だけパルスが入力される場合には、レートセレクト信号がローとなる。これにより、実施の形態4の分離回路13は、制御信号から、リセット信号とレートセレクト信号との分離が可能となる。
With the above operation, when the pulse is input twice in succession to the separation circuit 13 of the fourth embodiment, the rate select signal becomes high, and when the pulse is input only once, the rate select signal is input. The signal goes low. Thereby, the separation circuit 13 according to the fourth embodiment can separate the reset signal and the rate select signal from the control signal.
また、図20に示した構成に、リセット信号に対する2回目のパルスをマスクする回路を追加してもよい。図22は、リセット信号に対する2回目のパルスをマスクする回路を追加した実施の形態4の分離回路13の構成例を示す図である。図22に示す分離回路13は、図20に示した分離回路13に対して、バッファ回路40およびAND回路(論理積回路)41で構成されるマスク回路42を追加している。これにより、リセット信号として出力される信号に対して、2回目のパルスをマスクすることができ、リセット信号としては光パケットあたり1回のパルスが出力されることになる。これにより、受信器12に2回連続でリセット信号が入力されることに起因する不具合を防止することが可能となる。
Further, a circuit for masking the second pulse for the reset signal may be added to the configuration shown in FIG. FIG. 22 is a diagram illustrating a configuration example of the separation circuit 13 according to the fourth embodiment to which a circuit for masking the second pulse with respect to the reset signal is added. The separation circuit 13 shown in FIG. 22 has a mask circuit 42 configured by a buffer circuit 40 and an AND circuit (logical product circuit) 41 added to the separation circuit 13 shown in FIG. As a result, the second pulse can be masked with respect to the signal output as the reset signal, and one pulse per optical packet is output as the reset signal. As a result, it is possible to prevent problems caused by the reset signal being input to the receiver 12 twice in succession.
以上のように、本実施の形態では、実施の形態1の効果を実現することができる制御信号としてパルスの回数により伝送レートを示す信号を用いる例を説明した。このため、伝送レートに応じて周波数応答特性を切り替えることができるとともにバースト的に受信する光パケットに対する高速応答を実現しつつ、ハードウェアを小型化することができる。
As described above, in this embodiment, the example in which the signal indicating the transmission rate by the number of pulses is used as the control signal capable of realizing the effect of the first embodiment. Therefore, the frequency response characteristics can be switched according to the transmission rate, and the hardware can be reduced in size while realizing a high-speed response to optical packets received in bursts.
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
1 光受信器、2 光送信器、3 制御部、11 受光素子、12 受信器、13 分離回路、14 エッジ検出回路、50 OLT、51,52,53 ONU、15,16,17,18,33 抵抗、20,21,22,23,34 コンデンサ、24,25,26,27 オペアンプ、28 OR回路、30,31 D-フリップフロップ回路、32 ヒステリシス回路、40 バッファ回路、41 AND回路、42 マスク回路、151~155 ローパスフィルタ。
1 optical receiver, 2 optical transmitter, 3 control unit, 11 light receiving element, 12 receiver, 13 separation circuit, 14 edge detection circuit, 50 OLT, 51, 52, 53 ONU, 15, 16, 17, 18, 33 Resistor, 20, 21, 22, 23, 34 capacitor, 24, 25, 26, 27 operational amplifier, 28 OR circuit, 30, 31 D-flip flop circuit, 32 hysteresis circuit, 40 buffer circuit, 41 AND circuit, 42 mask circuit 151-155 Low-pass filter.
Claims (11)
- 光パケットとして間欠的に受信される光信号を電流信号に変換する受光素子と、
外部から入力され、前記光パケットの先頭を前記受光素子が受信する時刻を示す情報と前記光パケットの伝送レートを示す情報とが重畳された制御信号を、前記光パケットの先頭を受信する時刻を示す第1の信号と、前記光パケットの伝送レートを示す第2の信号とに分離し、前記第1の信号および前記第2の信号を出力する分離回路と、
前記電流信号を電圧信号に変換し、前記第1の信号に応じて時定数を切替え、前記第2の信号に応じて周波数応答特性を切替える受信器と、
を備えることを特徴とする光受信器。 A light receiving element that converts an optical signal intermittently received as an optical packet into a current signal;
A control signal that is input from the outside and superimposes information indicating the time at which the light receiving element receives the head of the optical packet and information indicating the transmission rate of the optical packet, and the time at which the head of the optical packet is received. A separation circuit for separating the first signal and the second signal indicating the transmission rate of the optical packet, and outputting the first signal and the second signal;
A receiver that converts the current signal into a voltage signal, switches a time constant according to the first signal, and switches a frequency response characteristic according to the second signal;
An optical receiver comprising: - 前記光パケットは、プリアンブルおよびデータで構成され、
前記制御信号は、立ち上がりエッジおよび立ち下がりエッジのうち少なくとも一方のエッジが前記光パケットの先頭を前記受光素子が受信する時刻に対応する信号であり、前記光パケットの先頭を受信する時刻以降かつ前記データの受信を開始する前の時刻を含む期間であるレート指示期間では、前記光パケットの伝送レートを示す値を有し、
前記分離回路は、
前記制御信号の前記光パケットの先頭を受信する時刻に対応する前記エッジを検出するエッジ検出回路、
を備え、
前記エッジ検出回路から出力される信号を前記第1の信号とし、前記レート指示期間における前記制御信号の値に基づいて前記第2の信号を生成することを特徴とする請求項1に記載の光受信器。 The optical packet is composed of a preamble and data,
The control signal is a signal corresponding to a time at which at least one of a rising edge and a falling edge receives the head of the optical packet by the light receiving element, and after the time of receiving the head of the optical packet and In the rate indication period, which is a period including the time before the start of data reception, has a value indicating the transmission rate of the optical packet,
The separation circuit is
An edge detection circuit for detecting the edge corresponding to the time of receiving the head of the optical packet of the control signal;
With
2. The light according to claim 1, wherein a signal output from the edge detection circuit is the first signal, and the second signal is generated based on a value of the control signal in the rate instruction period. Receiver. - 前記エッジ検出回路は、
前記制御信号が入力されるローパスフィルタと、
正相の入力部に前記制御信号が入力され、逆相の入力部に前記ローパスフィルタを通過した後の前記制御信号が入力される演算増幅器と、
を備えることを特徴とする請求項2に記載の光受信器。 The edge detection circuit includes:
A low-pass filter to which the control signal is input;
An operational amplifier in which the control signal is input to a positive phase input unit and the control signal is input to the negative phase input unit after passing through the low pass filter;
The optical receiver according to claim 2, further comprising: - 前記エッジ検出回路は、
前記制御信号が入力されるローパスフィルタと、
逆相の入力部に前記制御信号が入力され、正相の入力部に前記ローパスフィルタを通過した後の前記制御信号が入力される演算増幅器と、
を備えることを特徴とする請求項2に記載の光受信器。 The edge detection circuit includes:
A low-pass filter to which the control signal is input;
An operational amplifier in which the control signal is input to a negative phase input unit, and the control signal after passing through the low pass filter is input to a positive phase input unit;
The optical receiver according to claim 2, further comprising: - 前記エッジ検出回路は、
前記制御信号が入力される第1のローパスフィルタと、
逆相の入力部に前記制御信号が入力され、正相の入力部に前記第1のローパスフィルタを通過した後の前記制御信号が入力される第1の演算増幅器と、
前記制御信号が入力される第2のローパスフィルタと、
正相の入力部に前記制御信号が入力され、逆相の入力部に前記第2のローパスフィルタを通過した後の前記制御信号が入力される第2の演算増幅器と、
前記第1の演算増幅器から出力される信号と、前記第2の演算増幅器から出力される信号との論理和を演算する論理和回路と、
を備えることを特徴とする請求項2に記載の光受信器。 The edge detection circuit includes:
A first low-pass filter to which the control signal is input;
A first operational amplifier in which the control signal is input to a negative phase input unit, and the control signal after passing through the first low-pass filter is input to a positive phase input unit;
A second low-pass filter to which the control signal is input;
A second operational amplifier in which the control signal is input to a positive phase input unit, and the control signal after passing through the second low-pass filter is input to a negative phase input unit;
An OR circuit that calculates a logical sum of a signal output from the first operational amplifier and a signal output from the second operational amplifier;
The optical receiver according to claim 2, further comprising: - 前記光パケットは、プリアンブルおよびデータで構成され、
前記受光素子が前記光パケットの受信を終了してから該光パケットの次の前記光パケットの受信開始までの間には、前記光パケットを受信しない期間であるガードタイムが設けられ、
前記光パケットは、第1の伝送レートまたは前記第1の伝送レートより高い伝送レートである第2の伝送レートで送信された光パケットであり、
前記制御信号は、前記第1の伝送レートまたは前記第2の伝送レートを示す2値信号であり、前記ガードタイムでは、該ガードタイムの直後に受信する前記光パケットの伝送レートを示す値とは異なる値を有し、前記光パケットの受信中は該光パケットの伝送レートを示す値を有することを特徴とする請求項5に記載の光受信器。 The optical packet is composed of a preamble and data,
Between the time when the light receiving element finishes receiving the optical packet and until the start of receiving the optical packet next to the optical packet, a guard time that is a period in which the optical packet is not received is provided,
The optical packet is an optical packet transmitted at a first transmission rate or a second transmission rate that is higher than the first transmission rate;
The control signal is a binary signal indicating the first transmission rate or the second transmission rate, and the guard time is a value indicating the transmission rate of the optical packet received immediately after the guard time. The optical receiver according to claim 5, wherein the optical receiver has different values and has a value indicating a transmission rate of the optical packet during reception of the optical packet. - 前記光パケットは、プリアンブルおよびデータで構成され、
前記制御信号は、パルス信号であり、前記光パケットごとに前記光パケットの前記データを受信するまでの間に前記光パケットの伝送レートに応じた数のパルスを有し、前記光パケットごとの前記パルスのうちの1つである先頭パルスは前記光パケットの先頭を前記受光素子が受信する時刻を示し、
前記分離回路は、
前記先頭パルスに基づいて前記第1の信号を生成し、前記光パケットごとの前記パルスの数に基づいて前記第2の信号を生成することを特徴とする請求項1に記載の光受信器。 The optical packet is composed of a preamble and data,
The control signal is a pulse signal, and has a number of pulses corresponding to a transmission rate of the optical packet before receiving the data of the optical packet for each optical packet, and The leading pulse, which is one of the pulses, indicates the time at which the light receiving element receives the head of the optical packet,
The separation circuit is
2. The optical receiver according to claim 1, wherein the first signal is generated based on the head pulse, and the second signal is generated based on the number of pulses for each optical packet. - 前記光パケットは、第1の伝送レートまたは前記第1の伝送レートより高い伝送レートである第2の伝送レートで送信された光パケットであり、
前記分離回路は、
一方の入力部に前記制御信号が入力される論理和回路と、
前記論理和回路から出力される信号がクロック入力部に入力され、自身の逆相の出力信号がD入力部に入力される第1の遅延型フリップフロップ回路と、
前記第1の遅延型フリップフロップ回路の正相の出力信号が入力されるローパスフィルタと、
前記ローパスフィルタから出力される信号が入力されるヒステリシス回路と、
前記ヒステリシス回路から出力される信号がD入力部に入力され、クロック入力部に前記制御信号が入力される第2の遅延型フリップフロップ回路と、
を備え、
前記論理和回路の他方の入力部には前記ローパスフィルタから出力される信号が入力され、
前記制御信号を、前記第1の信号として出力し、
前記第2の遅延型フリップフロップ回路の正相の出力信号を前記第2の信号として出力することを特徴とする請求項7に記載の光受信器。 The optical packet is an optical packet transmitted at a first transmission rate or a second transmission rate that is higher than the first transmission rate;
The separation circuit is
An OR circuit in which the control signal is input to one input unit;
A first delay flip-flop circuit in which a signal output from the logical sum circuit is input to a clock input unit, and an output signal of its own reverse phase is input to a D input unit;
A low-pass filter to which a positive phase output signal of the first delay flip-flop circuit is input;
A hysteresis circuit to which a signal output from the low-pass filter is input;
A second delay flip-flop circuit in which a signal output from the hysteresis circuit is input to a D input unit, and the control signal is input to a clock input unit;
With
A signal output from the low-pass filter is input to the other input portion of the OR circuit.
Outputting the control signal as the first signal;
8. The optical receiver according to claim 7, wherein a positive phase output signal of the second delay flip-flop circuit is output as the second signal. - 前記光パケットは、第1の伝送レートまたは前記第1の伝送レートより高い伝送レートである第2の伝送レートで送信された光パケットであり、
前記分離回路は、
一方の入力部に前記制御信号が入力される論理和回路と、
前記論理和回路から出力される信号がクロック入力部に入力され、自身の逆相の出力信号がD入力部に入力される第1の遅延型フリップフロップ回路と、
前記第1の遅延型フリップフロップ回路の正相の出力信号が入力されるローパスフィルタと、
前記ローパスフィルタから出力される信号が入力されるヒステリシス回路と、
前記ヒステリシス回路から出力される信号がD入力部に入力され、クロック入力部に前記制御信号が入力される第2の遅延型フリップフロップ回路と、
前記制御信号の前記先頭パルス以外のパルスをマスクして前記第1の信号として出力するマスク回路と、
を備え、
前記論理和回路の他方の入力部には前記ローパスフィルタから出力される信号が入力され、
前記第2の遅延型フリップフロップ回路の正相の出力信号を前記第2の信号として出力することを特徴とする請求項7に記載の光受信器。 The optical packet is an optical packet transmitted at a first transmission rate or a second transmission rate that is higher than the first transmission rate;
The separation circuit is
An OR circuit in which the control signal is input to one input unit;
A first delay flip-flop circuit in which a signal output from the logical sum circuit is input to a clock input unit, and an output signal of its own reverse phase is input to a D input unit;
A low-pass filter to which a positive phase output signal of the first delay flip-flop circuit is input;
A hysteresis circuit to which a signal output from the low-pass filter is input;
A second delay flip-flop circuit in which a signal output from the hysteresis circuit is input to a D input unit, and the control signal is input to a clock input unit;
A mask circuit that masks pulses other than the first pulse of the control signal and outputs the masked signal as the first signal;
With
A signal output from the low-pass filter is input to the other input portion of the OR circuit.
8. The optical receiver according to claim 7, wherein a positive phase output signal of the second delay flip-flop circuit is output as the second signal. - 光パケットの伝送レートを示す情報と前記光パケットの先頭を受信する時刻を示す情報とが重畳された制御信号を生成する制御部と、
光パケットとして間欠的に受信される光信号を受信し、前記制御信号が入力される光受信器と、
を備え、
前記光受信器は、
前記光信号を電流信号に変換する受光素子と、
前記制御信号を、前記光パケットの先頭を受信する時刻を示す第1の信号と、前記光パケットの伝送レートを示す第2の信号とに分離し、前記第1の信号および前記第2の信号を出力する分離回路と、
前記電流信号を電圧信号に変換し、前記第1の信号に応じて時定数を切替え、前記第2の信号に応じて周波数応答特性を切替える受信器と、
を備えることを特徴とする光通信装置。 A control unit that generates a control signal in which information indicating a transmission rate of the optical packet and information indicating a time at which the head of the optical packet is received are superimposed;
An optical receiver that receives an optical signal intermittently received as an optical packet and receives the control signal;
With
The optical receiver is:
A light receiving element for converting the optical signal into a current signal;
The control signal is separated into a first signal indicating a time at which a head of the optical packet is received and a second signal indicating a transmission rate of the optical packet, and the first signal and the second signal are separated. A separation circuit that outputs
A receiver that converts the current signal into a voltage signal, switches a time constant according to the first signal, and switches a frequency response characteristic according to the second signal;
An optical communication device comprising: - 光パケットとして間欠的に受信される光信号を受信する光受信器における制御方法であって、
前記光信号を電流信号に変換する第1のステップと、
外部から入力され、光パケットの伝送レートを示す情報と前記光パケットの先頭を受信する時刻を示す情報とが重畳された制御信号を、前記光パケットの先頭を受信する時刻を示す第1の信号と、前記光パケットの伝送レートを示す第2の信号とに分離し、前記第1の信号および前記第2の信号を出力する第2のステップと、
前記電流信号を電圧信号に変換し、前記第1の信号に応じて時定数を切替え、前記第2の信号に応じて周波数応答特性を切替える第3のステップと、
を含むことを特徴とする制御方法。 A control method in an optical receiver that receives an optical signal intermittently received as an optical packet,
A first step of converting the optical signal into a current signal;
A first signal indicating the time at which the head of the optical packet is received, as a control signal on which information indicating the transmission rate of the optical packet and information indicating the time at which the head of the optical packet is received are superimposed. And a second step of separating the second signal indicating a transmission rate of the optical packet and outputting the first signal and the second signal;
A third step of converting the current signal into a voltage signal, switching a time constant according to the first signal, and switching a frequency response characteristic according to the second signal;
The control method characterized by including.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580001819.2A CN107027336A (en) | 2015-11-27 | 2015-11-27 | Optical receiver, optical communication apparatus and control method |
PCT/JP2015/083491 WO2017090207A1 (en) | 2015-11-27 | 2015-11-27 | Optical receiver, optical communication device and control method |
JP2017552255A JP6524255B2 (en) | 2015-11-27 | 2015-11-27 | Optical receiver, optical communication apparatus and control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/083491 WO2017090207A1 (en) | 2015-11-27 | 2015-11-27 | Optical receiver, optical communication device and control method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017090207A1 true WO2017090207A1 (en) | 2017-06-01 |
Family
ID=58764203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/083491 WO2017090207A1 (en) | 2015-11-27 | 2015-11-27 | Optical receiver, optical communication device and control method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6524255B2 (en) |
CN (1) | CN107027336A (en) |
WO (1) | WO2017090207A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019029839A (en) * | 2017-07-31 | 2019-02-21 | 三菱電機株式会社 | Optical communication device |
EP4283688A4 (en) * | 2021-02-27 | 2024-07-24 | Huawei Tech Co Ltd | Optical receiving apparatus, optical receiving packaging apparatus, and related device and method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7043218B2 (en) * | 2017-10-26 | 2022-03-29 | シャープ株式会社 | Optical sensors, distance measuring devices, and electronic devices |
CN109495184B (en) * | 2018-12-17 | 2021-08-10 | 青岛海信宽带多媒体技术有限公司 | Optical module |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011193068A (en) * | 2010-03-12 | 2011-09-29 | Hitachi Ltd | Multirate burst mode receiver |
WO2011151922A1 (en) * | 2010-06-04 | 2011-12-08 | 三菱電機株式会社 | Receiver apparatus, data identifying/reproducing apparatus, pon system and data identifying/reproducing method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10336246A (en) * | 1997-06-05 | 1998-12-18 | Oki Electric Ind Co Ltd | Optical packet synchronization circuit |
DE19940565C1 (en) * | 1999-08-26 | 2001-02-01 | Siemens Ag | Connection path control for optic data packet transmission |
EP2096754B1 (en) * | 2006-12-21 | 2011-10-26 | Mitsubishi Electric Corporation | Optical receiver |
JP5305932B2 (en) * | 2009-01-14 | 2013-10-02 | 三菱電機株式会社 | Preamplifier |
WO2012137299A1 (en) * | 2011-04-05 | 2012-10-11 | 三菱電機株式会社 | Optical receiver |
WO2012144038A1 (en) * | 2011-04-20 | 2012-10-26 | 富士通オプティカルコンポーネンツ株式会社 | Detection device, light receiving device, detection method, and light receiving method |
JP5798807B2 (en) * | 2011-06-13 | 2015-10-21 | 富士通株式会社 | Optical communication apparatus and signal adjustment method |
-
2015
- 2015-11-27 CN CN201580001819.2A patent/CN107027336A/en active Pending
- 2015-11-27 WO PCT/JP2015/083491 patent/WO2017090207A1/en active Application Filing
- 2015-11-27 JP JP2017552255A patent/JP6524255B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011193068A (en) * | 2010-03-12 | 2011-09-29 | Hitachi Ltd | Multirate burst mode receiver |
WO2011151922A1 (en) * | 2010-06-04 | 2011-12-08 | 三菱電機株式会社 | Receiver apparatus, data identifying/reproducing apparatus, pon system and data identifying/reproducing method |
Non-Patent Citations (4)
Title |
---|
NAKAGAWA, JUNICHI ET AL.: "First demonstration of 10G-EPON and GE-PON co-existing system employing dual-rate burst-mode 3R transceiver", 2010 CONFERENCE ON (OFC/NFOEC) OPTICAL FIBER COMMUNICATION (OFC), COLLOCATED NATIONAL FIBER OPTIC ENGINEERS CONFERENCE, 21 March 2010 (2010-03-21), pages 1 - 3, XP031677202 * |
NODA, MASAKI ET AL.: "Dual-rate optical transceiver incorporating fully optimized burst-mode AGC/ATC functions for 10G-EPON systems", 2010 36TH EUROPEAN CONFERENCE AND EXHIBITION ON OPTICAL COMMUNICATION (ECOC, 19 September 2010 (2010-09-19), pages 1 - 3, XP031789554 * |
QIU, XING-ZHI ET AL.: "Fast Synchronization 3R Burst-Mode Receivers for Passive Optical Networks", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 32, no. 4, 17 October 2013 (2013-10-17), pages 644 - 659, XP011538086, DOI: doi:10.1109/JLT.2013.2285594 * |
YOSHIMA, SATOSHI ET AL.: "Recent progress of high-speed burst-mode transceiver technologies for TDM-PON systems", 2012 21ST ANNUAL WIRELESS AND OPTICAL COMMUNICATIONS CONFERENCE (WOCC, 19 April 2012 (2012-04-19), pages 59 - 62, XP032180366, DOI: doi:10.1109/WOCC.2012.6198148 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019029839A (en) * | 2017-07-31 | 2019-02-21 | 三菱電機株式会社 | Optical communication device |
EP4283688A4 (en) * | 2021-02-27 | 2024-07-24 | Huawei Tech Co Ltd | Optical receiving apparatus, optical receiving packaging apparatus, and related device and method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017090207A1 (en) | 2018-03-22 |
CN107027336A (en) | 2017-08-08 |
JP6524255B2 (en) | 2019-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017090207A1 (en) | Optical receiver, optical communication device and control method | |
US10003410B2 (en) | Optical receiver, optical termination device, and optical communication system | |
US8644713B2 (en) | Optical burst mode clock and data recovery | |
JP5481240B2 (en) | Burst mode receiver for multirate | |
US20070116465A1 (en) | Systems and methods for dynamic alignment of data bursts conveyed over a passive optical net work | |
KR101310904B1 (en) | Burst-mode optical receiver and the timing control method | |
US8149973B2 (en) | Clock recovery circuit | |
JP5305932B2 (en) | Preamplifier | |
US20110001530A1 (en) | Method and apparatus for receiving burst data without using external detection signal | |
JP4233985B2 (en) | Optical signal receiver | |
KR101519443B1 (en) | Optical receiver | |
CA2875762A1 (en) | Burst signal receiving apparatus and method, pon optical line terminal, and pon system | |
JPWO2019163135A1 (en) | Signal detection circuit, optical receiver, master station device, and signal detection method | |
JP2008148321A (en) | Burst-mode receiver and burst-mode receiving method generating on-chip reset signal | |
US8284872B2 (en) | Burst mode receiver | |
JP2010199697A (en) | Burst receiver and burst reception method | |
US20110176806A1 (en) | Optical burst receiver with a configurable ac and dc coupling interface | |
JP5132543B2 (en) | Optical receiver | |
JP2008211376A (en) | Electronic circuit and communication system | |
JP2011146966A (en) | Optical line terminal | |
JP5684344B2 (en) | Station side equipment | |
JP2012080377A (en) | Burst receiver, burst reception control method, and system | |
KR101031609B1 (en) | Clock phase aligner for burst-mode data | |
EP2015484B1 (en) | Method of data transmission and associated transceiver | |
JP6027513B2 (en) | COMMUNICATION SYSTEM, RELAY DEVICE, COMMUNICATION METHOD, AND RELAY METHOD |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15909324 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017552255 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15909324 Country of ref document: EP Kind code of ref document: A1 |