WO2017088758A1 - 吸收式制冷单元水流接口、制冷单元和制冷矩阵 - Google Patents

吸收式制冷单元水流接口、制冷单元和制冷矩阵 Download PDF

Info

Publication number
WO2017088758A1
WO2017088758A1 PCT/CN2016/106927 CN2016106927W WO2017088758A1 WO 2017088758 A1 WO2017088758 A1 WO 2017088758A1 CN 2016106927 W CN2016106927 W CN 2016106927W WO 2017088758 A1 WO2017088758 A1 WO 2017088758A1
Authority
WO
WIPO (PCT)
Prior art keywords
water flow
flow interface
refrigeration unit
absorption refrigeration
combined
Prior art date
Application number
PCT/CN2016/106927
Other languages
English (en)
French (fr)
Inventor
邱伟
杨如民
武祥辉
武维建
刘彦武
Original Assignee
四川捷元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川捷元科技有限公司 filed Critical 四川捷元科技有限公司
Publication of WO2017088758A1 publication Critical patent/WO2017088758A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the invention relates to the field of production of a lithium bromide absorption refrigerating machine, in particular to a small absorption refrigerating machine capable of being a separate unit of a refrigerating matrix and a water flow interface, an absorption refrigerating unit and a refrigerating matrix therein.
  • the absorption chiller has the advantages of energy saving, environmental protection, etc. It is easy to use new energy such as solar energy and industrial waste heat waste heat, and has been continuously developed. Miniaturization and familyization will be another trend after it has been put into industrial applications.
  • the present invention has been made to solve the above problems, to provide a standardized water flow interface, and to provide a refrigeration unit using the water flow interface, and a refrigeration matrix composed of the above refrigeration unit.
  • the so-called absorption refrigeration unit refers to a small lithium bromide absorption chiller with a complete refrigeration function, which can be used alone or in combination with the ability to expand into a large-scale refrigeration matrix.
  • the specific technical solutions are as follows:
  • An absorption flow unit water flow interface for providing hot water, cold water and cooling water in the absorption refrigeration unit with a channel port connected to the outside;
  • the absorption refrigeration unit is provided with at least two groups of water flow interfaces composed of a plurality of water flow interfaces, each set of water flow interface groups including a hot water inlet, a hot water outlet, a cold water inlet, a cold water outlet, a cooling water inlet and a cooling water outlet.
  • the water flow interface has the same structure and is a standard water flow interface.
  • the absorption refrigeration unit is provided with at least two combined surfaces; each group of water flow interface groups are distributed on the combined surface; adjacent absorption refrigeration units are connected to each other through a water flow interface on the combination surface.
  • the body of the absorption refrigeration unit is a rectangular parallelepiped, and the upper, lower, left and right sides of the six outer surfaces of the rectangular parallelepiped are collectively referred to as a combined surface; each combined surface is provided with a group of water flow interface groups.
  • the water flow interface includes a socket and a plug; both ends of the plug are provided with a barb and an O-ring; the barb is inserted and engaged on the inner wall of the water flow interface on both sides to form a self-locking structure,
  • the O-ring gasket is disposed between the two-way joint and the water flow interface for sealing purposes.
  • the water flow interfaces of the absorption refrigeration unit are connected to each other through the water flow pipe system in the body of the absorption refrigeration unit, so that the combined flow surfaces can be simultaneously or The hot water, cold water and cooling water are separately introduced.
  • the water flow interface is connected with a movable joint, and the movable joint is respectively a two-way joint and a cut-off joint; when the two-way joint is connected, the water flow interface is turned on; when the cut-off joint is connected, the The water flow interface is closed.
  • the two ends of the two-way joint are the water flow interface plug; one end of the cut-off joint is the water flow interface plug, and the other end is closed.
  • the position of the water flow interface of the upper combined surface is mirror symmetrical with the position of the water flow interface of the lower combined surface, so that when the two absorption refrigeration units are combined up and down, the corresponding combination
  • the water flow interface on the surface is directly inserted through the two-way joint.
  • the position of the water flow interface of the left combined face is mirror symmetrical with the position of the water flow interface of the right combined face, so that when the two absorption refrigeration units are combined left and right, the corresponding combination
  • the water flow interface on the surface is directly inserted through the two-way joint.
  • the invention also provides an absorption refrigeration unit, the absorption refrigeration unit is provided with a plurality of combined surfaces, and the combined surface is provided with a plurality of absorption refrigeration units as described above Water flow interface.
  • the invention also provides an absorption refrigeration matrix comprising a plurality of absorption refrigeration units
  • the absorption refrigeration unit is provided with a plurality of combined surfaces on which a plurality of absorption flow units of the absorption refrigeration unit as described above are provided.
  • the water flow interface of the absorption refrigeration unit of the invention unifies the interface specifications of the small lithium bromide absorption refrigeration unit; standardizes the small absorption refrigerator unit; and makes the absorption refrigeration unit more convenient to access and extract hot water, cold water and cooling water At the same time, the small absorption refrigeration unit has the ability to be combined and expandable into a large absorption refrigeration matrix with doubled cooling power.
  • FIG. 1 is a schematic perspective view showing the structure of an absorption refrigeration unit of the present invention
  • Figure 2 is an exploded view of the assembly of the absorption refrigeration unit of the present invention
  • Figure 3A is a schematic structural view of the single two-way joint of Figure 2;
  • Figure 3B is a cross-sectional enlarged view of the two-way joint connection structure of Figure 3A;
  • Figure 4 is a schematic view showing the cutoff state of the water flow interface of the present invention.
  • Hot water inlet pipe 211
  • Cooling water inlet pipe 215
  • Cooling water outlet pipe 216 Cooling water outlet pipe 216.
  • a print mark 432 is reserved.
  • FIG. 1 is a schematic perspective view showing the structure of an absorption refrigeration unit of the present invention
  • a single lithium bromide absorption refrigeration unit is a rectangular parallelepiped structure.
  • the inside is provided with heat exchange components such as a regenerator, an evaporator, an absorber, and a condenser.
  • the basic working principle is: using lithium bromide solution + pure water as the working medium pair, pure water as the refrigerant water, lithium bromide solution as the absorption liquid, relying on pure water to evaporate and absorb heat in a high vacuum environment to achieve refrigeration.
  • the refrigerant absorbs heat and evaporates into a vapor.
  • the refrigerant vapor no longer has a phase change endothermic capacity and, therefore, is absorbed by the lithium bromide solution and then regenerated by heating with the lithium bromide solution.
  • the refrigerant water After the refrigerant water absorbs heat and evaporates, it becomes a refrigerant vapor. After it has been condensed and returned to the liquid state, the refrigerant water can absorb heat again.
  • the refrigerant water absorbs heat and absorbs - absorption - regeneration - condensation - and then absorbs heat and evaporates, so that the source continuously performs the refrigeration cycle.
  • the refrigeration unit uses cold water, cooling water and cold water piping systems to circulate and exchange cold water, hot water and cooling water between the evaporator, regenerator, absorber and condenser components to complete the refrigeration process and realize the The outside world gains energy, releases heat to the outside world, and supplies cold to the outside world.
  • the absorption refrigeration unit shown in Figure 1 has independent hot water, cold water, cooling water piping system, and solution circulation system. It is an independent and complete refrigeration machine that can be installed and operated separately to provide basic unit cooling power. At the same time, it has a multi-unit combination to form the capacity of a large combined cooling matrix.
  • the present invention provides a set of water flow interface groups on the upper combined surface 110, the lower combined surface 120, the left combined surface 130, and the right combined surface 140 of the absorption refrigeration unit: a hot water inlet, a hot water outlet, Cold water inlet, cold water outlet, cooling water outlet and cooling water inlet.
  • the right combined surface 140 is also provided with a hot water inlet 141, a hot water outlet 142, a cold water inlet 143, a cold water outlet 144, a cooling water outlet 145, and a cooling water inlet 146.
  • the lower combined surface 120 opposite to the upper combined surface 110 is provided with six identical water flow interfaces that are mirror-symmetrical to the upper combined surface 110, and the left combined surface 130 opposite to the right combined surface 140 is provided with the right combined surface 140.
  • Six identical water flow interfaces mirrored symmetrically. The symmetrical design of the upper and lower sides makes the corresponding water flow interfaces align and connect together as a whole when the two absorption refrigeration units are combined up and down or left and right.
  • each combined surface is provided with a set of interface groups for use with adjacent refrigeration units (or The boundary energy medium is connected.
  • Each group of interface groups includes six water flow interfaces. In actual use, according to the actual situation, four water flow interfaces or other number of water flow interfaces may be used as one interface group on one combined surface.
  • Figure 2 is a partially enlarged view showing the assembly explosion of the absorption refrigeration unit of the present invention.
  • Figure 2 shows the positional relationship of the different water flow interfaces on the upper combined face 110 of the absorption refrigeration unit and its corresponding water supply pipe.
  • a hot water inlet pipe 211 below the hot water inlet 111, a hot water inlet pipe 211 is provided, and the hot water inflow pipe 211 forms a deformed "S" shaped passage on the upper combined surface 110, the right combined surface 140 and the front surface.
  • hot water is introduced from the inlets 111, 141, through the deformed "S" shaped 230 channels, and then from the regenerator inlet 220 into the refrigeration unit regenerator tube (not shown); from the regenerator tube,
  • the low-temperature hot water that has lost heat after heat exchange flows out of the regenerator hot water outlet 221, and passes through another mutated "S" type hot water outlet pipe 212, and the hot water outlet 111 and the right combination surface of the upper combined surface
  • the hot water outlet 141 is connected.
  • Other water supply pipes such as cold water inlet pipe 213, cold water outlet pipe 214, cooling water inlet pipe 215 and cooling water outlet pipe 216, are similar to hot water inlet pipe 211, hot water outlet pipe 212, and so on.
  • the lower combined surface 120 has the same structure as the upper combined surface 110, and the water flow interface layout is mirror-symmetrical with the upper combined surface 110.
  • the left combined surface 130 has a structure similar to the right combined surface 140, and the water flow interface layout and the right combination are combined.
  • the surface 140 is mirror-symmetrical to the left and right.
  • the upper combined surface 110 and the corresponding pipe disposed in the right combined surface 140 are in communication with each other; the upper combined surface 110 and the left combined surface 130, the lower combined surface 120 and the right combined surface 140, the lower combined surface 120 and the left combined surface
  • the corresponding pipes provided in 130 are also in communication with each other.
  • the water flow interface on the four surfaces together with the built-in water flow pipe forms a four-way joint that allows the refrigeration unit to independently introduce or extract hot water, cold water, and cooling water from all four surfaces.
  • FIG. 3A is a schematic view showing the structure of a two-way joint; and FIG. 3B is an enlarged cross-sectional view showing the joint structure of the two-way joint of FIG. 3A.
  • Figure 3A shows a schematic view of the two-way joint structure; when the absorption refrigeration unit 313 needs to When the other absorption refrigeration unit 314 is in communication, the structure of its connection interface is as shown in FIG. 3B.
  • the other water flow interfaces are the same.
  • the hot water inlet 111 needs to be connected to the hot water source, the corresponding hot water inlet 111 of the two adjacent absorption refrigeration units is connected to the two-way joint 310; the two-way joint 310 is provided with a barb 311, and the O-ring 312 315.
  • the barb 311 is engaged with the inner wall of the water flow interface where the refrigeration units 313, 314 are located, ensuring that the two-way joint 310 does not disengage from the port under the action of water pressure; and is ensured to be connected by two O-rings 312, 315
  • the airtightness of the two water flow ports 111 is ensured.
  • Figure 4 is a schematic view showing the cutoff state of the water flow interface of the present invention.
  • the interface When a certain water flow interface on the combination surface of the absorption refrigeration unit does not need to communicate with the outside world, since the inside of the water flow interface is electrically connected with the corresponding water flow interface of other combined surfaces, in order to prevent the liquid from flowing out, the interface must be closed. In fact, the water flow interface on all the combined surfaces (110, 120, 130, 140) is initially sealed by injection molding. When an interface is required to be connected to the outside world, the interface is opened with a special tool.
  • a special tool positioning hole 431 and a reserved circular mark 432 are preliminarily left on the closed interface, and the interface can be opened along the circular mark 432 by using a special tool (not shown), and then connected by the two-way connector 310. .
  • the interface is first opened and connected to the two-way joint 310 using a special tool; the hot water inlet 141 is closed when it is not needed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

提供一种吸收式制冷单元水流接口及使用该水流接口的吸收式制冷单元和吸收式制冷矩阵。该水流接口用于为吸收式制冷单元内的热水、冷水和冷却水提供与外界相导通的通道端口,吸收式制冷单元机身为长方体,长方体机身的六个外表面中的上下左右四个面为组合面(110、120、130、140);水流接口分别设置在每个组合面上,每个组合面(110、120、130、140)上的水流接口分别为热水入口、热水出口、冷水入口、冷水出口、冷却水出口和冷却水入口。该吸收式制冷单元水流接口实现接口规格统一化,小型吸收式制冷单元具备可组合、可扩展成制冷矩阵的能力。

Description

吸收式制冷单元水流接口、制冷单元和制冷矩阵 技术领域
本发明涉及溴化锂吸收式制冷机生产领域,特别涉及到能够作为制冷矩阵独立单元的小型吸收式制冷机及其内部的水流接口、吸收式制冷单元和制冷矩阵。
背景技术
吸收式制冷机具有节能、环保等优点,易于使用太阳能和工业余热废热等新型能源,得到了不断的发展。小型化、家庭化将会是其付诸工业应用领域后的又一趋势。
传统的溴化锂吸收式制冷机一般是单机工作,不同型号或规格的单机其外部的供水端口的大小、形状和型号也不相同,这种单机单型号的制冷机往往是根据某特定的用户定制。当用户需求发生变化时,或者当面对更大制冷功率的应用场合时,往往只能更换机型,重新设计制造。所以传统的吸收式制冷机每个型号只适用于一个特定的、狭窄的用户群体,需要根据订单进行生产,生产周期长,无法预先组织资源进行大批量的生产,制约了制冷机行业的发展。
发明内容
本发明为解决以上技术问题的目的,提供一种标准化的水流接口,同时提供一种使用该水流接口的制冷单元,以及由上述制冷单元组成的制冷矩阵。所谓吸收式制冷单元,指的是具有完整制冷功能的小型溴化锂吸收式制冷机,可以单独使用,也具备组合扩展成大规模制冷矩阵的能力,具体技术方案如下:
一种吸收式制冷单元水流接口,用于为所述吸收式制冷单元内的热水、冷水和冷却水提供与外界相连接的通道端口;
所述吸收式制冷单元设有至少两组由若干水流接口组成的水流接口群,每组水流接口群包括热水入口、热水出口、冷水入口、冷水出口、冷却水入口和冷却水出口。
进一步的,所述水流接口结构相同,是标准水流接口。
进一步的,所述吸收式制冷单元设有至少两个组合面;各组水流接口群分布在组合面上;相邻的吸收式制冷单元通过组合面上的水流接口相互连接。
进一步的,所述吸收式制冷单元的机身为长方体,该长方体六个外表面中的上下左右四个面,均被称为组合面;每个组合面上设有一组水流接口群。
进一步的,所述水流接口包括插座与插头;所述插头两端都设有倒勾和O型密封圈;所述倒勾插入并卡合在两侧所述水流接口的内壁形成自锁结构,所述O型密封圈垫设在二通接头和所述水流接口之间,用于达到密封的目的。
进一步的,所述吸收式制冷单元的上下左右四个组合面上,所述水流接口分别通过所述吸收式制冷单元机身内的水流管道系统相互连通,使得从任何一个组合面均可同时或分别引入引出热水、冷水和冷却水。
进一步的,所述水流接口连接有活动接头,所述活动接头分别为二通接头和截止接头两种结构;当连接二通接头时,所述水流接口导通;当连接截止接头时,所述水流接口关闭。
进一步的,所述二通接头两端为所述水流接口插头;所述截止接头一端为所述水流接口插头,另一端封闭。
进一步的,所述四个组合面中,上组合面所述水流接口的位置与下组合面所述水流接口的位置镜像对称,从而使得当两个所述吸收式制冷单元上下组合时,相应组合面上的水流接口通过二通接头直接插接。
进一步的,所述四个组合面中,左组合面所述水流接口的位置与右组合面所述水流接口的位置镜像对称,从而使得当两个所述吸收式制冷单元左右组合时,相应组合面上的水流接口通过二通接头直接插接。
本发明的还提供一种吸收式制冷单元,所述吸收式制冷单元设有若干组合面,在所述组合面上设有若干如前文所述的吸收式制冷单元 水流接口。
本发明的还提供一种吸收式制冷矩阵,包括若干个吸收式制冷单元;
所述吸收式制冷单元设有若干组合面,在所述组合面上设有若干如前文所述吸收式制冷单元水流接口。
本发明的有益效果在于:
本发明的吸收式制冷单元的水流接口使小型溴化锂吸收式制冷单元的接口规格统一化;使小型吸收式制冷机单元标准化;使吸收式制冷单元接入和引出热水、冷水和冷却水更加方便;同时使小型吸收式制冷单元具备了可组合、可扩展成制冷功率倍增的大型吸收式制冷矩阵的能力。
附图说明
图1是本发明吸收式制冷单元立体结构示意图;
图2是本发明吸收式制冷单元的装配爆炸图;
图3A是图2中单个二通接头结构示意图;
图3B是图3A的二通接头连接结构剖视放大图;
图4为本发明的水流接口截止状态示意图。
其中,部分部件的标记如下:
吸收式制冷单元100;
上组合面110;
下组合面120;
左组合面130;
右组合面140;
上组合面110上的热水入口111;
上组合面110上的热水出口112;
上组合面110上的冷水入口113;
上组合面110上的冷水出口114;
上组合面110上的冷却水出口115;
上组合面110上的冷却水入口116;
右组合面140上的热水入口141;
右组合面140上的热水出口142;
右组合面140上的冷水入口143;
右组合面140上的冷水出口144;
右组合面140上的冷却水出口145;
右组合面140上的冷却水入口146;
热水进水管道211;
热水出水管道212;
冷水进水管道213;
冷水出水管道214;
冷却水进水管道215;
冷却水出水管道216。
二通接头310;
专用工具定位孔431;
预留印痕432。
具体实施方式
附图构成本说明书的一部分;下面将参考附图对本发明的各种具体实施方式进行描述。应能理解的是,为了方便说明,本发明使用了表示方向的术语,诸如“前”、“后”、“上”、“下”、“左”、“右”等来描述本发明的各种示例结构部分和元件,但这些方向术语仅仅是依据附图中所显示的示例方位来确定的。由于本发明所公开的实施例可以按照不同的方向设置,所以这些表示方向的术语只是作为说明而不应视作为限制。在可能的情况下,本发明中使用的相同或者相类似的附图标记,指的是相同的部件。
图1是本发明吸收式制冷单元立体结构示意图;
如图1所示为单个的溴化锂吸收式制冷单元,其为长方体结构, 内部设有再生器、蒸发器、吸收器、冷凝器等热交换部件。其基本工作原理是:以溴化锂溶液+纯水为工质对,以纯水为冷媒水,溴化锂溶液为吸收液,依靠纯水在高真空环境下蒸发吸热实现制冷。冷媒吸热后蒸发变成蒸气。冷媒蒸气不再具有相变吸热能力,因此,要被溴化锂溶液吸收,然后再与溴化锂溶液一起加热再生。冷媒水吸热蒸发后变为冷媒蒸气,必须被冷凝而重新变回液态后,冷媒水才能再次吸热蒸发。冷媒水吸热蒸发—吸收—再生—冷凝—再吸热蒸发,如此源源不断进行制冷循环。制冷单元分别通过热水、冷却水和冷水的管道系统使冷水、热水和冷却水在蒸发器、再生器、吸收器、冷凝器各个部件之间流通和进行热交换以完成制冷流程并实现从外界获得能源、向外界释放热量、以及向外界供给冷量。
图1所示的吸收式制冷单元具有独立的热水、冷水、冷却水管道系统、溶液循环系统,是一台独立完整的制冷机,可单独安装运行,提供基本单元制冷功率。同时,又具备多单元组合,以构成大型组合式制冷矩阵的能力。
为适应这种组合,本发明在吸收式制冷单元的上组合面110、下组合面120、左组合面130和右组合面140上分别设置有一组水流接口群:热水入口、热水出口、冷水入口、冷水出口、冷却水出口和冷却水入口。以图1能看见的上组合面110和右组合面140为例:在上组合面110上分别设有热水入口111、热水出口112、冷水入口113、冷水出口114、冷却水出口115和冷却水入口116;在右组合面140同样设有热水入口141、热水出口142、冷水入口143、冷水出口144、冷却水出口145和冷却水入口146。在与上组合面110相对的下组合面120设有与上组合面110呈镜像对称的6个相同的水流接口,在与右组合面140相对的左组合面130设有与右组合面140呈镜像对称的6个相同的水流接口。这种上下左右相对称的设计,使得当两个吸收式制冷单元在上下组合或是左右组合时,相应的水流接口能够相互对准并连接成一个整体。
事实上,长方体的制冷单元6个面中至少有2个面可以设置成组合面,每个组合面设置有一组接口群,用于与相邻的制冷单元(或外 界能量媒介)相连接。每组接口群包括有6个水流接口,实际使用中,根据实际情况,用其中4个水流接口或其他个数的水流接口作为一个接口群设置在一个组合面上亦可。
图2是本发明吸收式制冷单元的装配爆炸局部放大图。
图2可见吸收式制冷单元的上组合面110上不同水流接口与其对应的供水管道的位置关系。
以热水为例:在热水入水口111的下面,设有热水入水管道211,热水流入管道211在上组合面110、右组合面140以及前表面构成一个变形的“S”形通道230,热水从入口111、141引入,经过变形的“S”形230通道,再从再生器入口220流入制冷单元再生器管程(图中未画出);从再生器管程流出的、经过热交换后失热的低温热水,从再生器热水出水口221流出,再经过另一个变异“S”型热水出水管道212,与上组合面的热水出水口111、右组合面的热水出水口141相连通。
其它供水管道,如冷水入水管道213,冷水出水管道214,冷却水入水管道215及冷却水出水管道216,与热水入水管道211,热水出水管道212相似,以此类推。
下组合面120具有与上组合面110完全相同的结构,其水流接口布局与上组合面110呈上下镜像对称,左组合面130具有与右组合面140相似的结构,其水流接口布局与右组合面140成左右镜像对称。
因此,机身上组合面110与右组合面140内设的相应的管道相互连通;上组合面110和左组合面130、下组合面120与右组合面140、下组合面120与左组合面130内设置的相应的管道也相互连通。四个表面上的水流接口与内置的水流管道一起构成一个四通接头,使制冷单元从四个表面中均可以独立地引入或引出热水、冷水、及冷却水。
图3A是二通接头结构示意图;图3B是图3A的二通接头连结结构剖视放大图。
图3A示出了二通接头结构示意图;当吸收式制冷单元313需要与 另一个吸收式制冷单元314连通时,其连接接口的结构即如图3B所示。
以热水入口111为例,其他水流接口与之相同。当热水入口111需要连接热水源时,将相邻两台吸收式制冷单元上对应的热水入口111连接二通接头310;二通接头310上设有倒勾311,和O型密封圈312、315。连接时,倒勾311卡合在制冷单元313、314所在的水流接口的内壁,确保二通接头310不会在水压作用下脱离端口;并由两个O型密封圈312、315保证被连接的两个水流端口111的密闭性。
图4为本发明的水流接口截止状态示意图。
当吸收式制冷单元组合面上的某个水流接口不需要与外界相连通时,因水流接口内部是与其他组合面相应水流接口相导通的,为防止液体流出,必须使接口处于封闭状态。事实上,所有组合面(110、120、130、140)上的水流接口,初始状态均采用注塑方式整体密封,当需要某接口与外界相连时,再使用专用工具把该接口打开。
封闭的接口上预先留有专用工具定位孔431及预留圆形印记432,采用专用工具(图中未画出)可沿圆形印记432处将该接口打开,再使用二通接头310予以连接。
仍以热水入口111、141为例,安装时需要使用热水入口111,则首先使用专用工具将该接口打开并连接二通接头310;热水入口141不需要使用,则处于封闭状态。
尽管参考附图中出示的具体实施方式将对本发明进行描述,但是应当理解,在不背离本发明教导的精神、范围和背景下,本发明的吸收式制冷单元水流接口及使用所述水流接口的吸收式制冷单元和吸收式制冷矩阵,可以有许多变化形式,例如改变每个组合面上水流接口的布局位置等。本领域技术内普通技术人员还将意识到有不同的方式来改变本发明所公开的实施例中的参数、尺寸,但这均落入本发明和权利要求的精神和范围内。

Claims (13)

  1. 一种吸收式制冷单元水流接口,用于为所述吸收式制冷单元内的热水、冷水和冷却水提供与外界相连接的通道端口,其特征在于:
    所述吸收式制冷单元设有至少两组水流接口群,每组水流接口群包括水流接口,所述水流接口包括热水入口、热水出口、冷水入口、冷水出口、冷却水入口和冷却水出口。
  2. 如权利要求1所述的吸收式制冷单元水流接口,其特征在于:
    多个所述水流接口结构相同,并且所述水流接口是标准水流接口。
  3. 如权利要求1或2所述的吸收式制冷单元水流接口,其特征在于:
    所述吸收式制冷单元设有至少两个组合面;至少两组所述水流接口群分别分布在至少两个所述组合面上;
    相邻的吸收式制冷单元通过所述组合面上的所述水流接口相互连接。
  4. 如权利要求3所述的吸收式制冷单元水流接口,其特征在于:
    所述吸收式制冷单元的机身为长方体,该长方体六个外表面中的上下左右四个面,均称为组合面;每个所述组合面上设有一组所述水流接口群。
  5. 如权利要求2所述的吸收式制冷单元水流接口,其特征在于:
    所述水流接口包括插座与插头;
    所述插头端部设有倒勾;
    所述倒勾插入并卡合在所述插座的内壁,形成自锁结构。
  6. 如权利要求5所述的吸收式制冷单元水流接口,其特征在于:
    所述水流接口插头的端部设有O型密封圈;
    所述O型密封圈垫设在所述插头与插座之间,用于达到密封的目 的。
  7. 如权利要求4所述的吸收式制冷单元水流接口,其特征在于:
    所述吸收式制冷单元包括上组合面、下组合面、左组合面、右组合面四个组合面,所述水流接口分别通过所述吸收式制冷单元机身内的水流管道系统相互连通,使得从所述四个组合面任何一个均可同时或分别引入引出热水、冷水和冷却水。
  8. 如权利要求4所述的吸收式制冷单元水流接口,其特征在于:
    所述水流接口连接有活动接头,所述活动接头分别为二通接头和截止接头两种结构;
    当连接二通接头时,所述水流接口导通;当连接截止接头时,所述水流接口关闭。
  9. 如权利要求8所述的吸收式制冷单元水流接口,其特征在于:
    所述二通接头两端为所述水流接口的所述插头;
    所述截止接头一端为所述水流接口的所述插头,另一端封闭。
  10. 如权利要求4所述的吸收式制冷单元水流接口,其特征在于:
    所述四个组合面中,上组合面的所述水流接口的位置与下组合面的所述水流接口的位置镜像对称,从而使得当两个所述吸收式制冷单元上下组合时,相应组合面上的水流接口通过二通接头直接插接。
  11. 如权利要求4所述的吸收式制冷单元水流接口,其特征在于:
    所述四个组合面中,左组合面的所述水流接口的位置与右组合面的所述水流接口的位置镜像对称,从而使得当两个所述吸收式制冷单元左右组合时,相应组合面上的水流接口通过二通接头直接插接。
  12. 一种吸收式制冷单元,其特征在于:
    所述吸收式制冷单元设有多个组合面,在所述组合面上设有多个 如权利要求1-11任一项所述的吸收式制冷单元水流接口。
  13. 一种吸收式制冷矩阵,其特征在于:
    包括多个吸收式制冷单元;
    所述吸收式制冷单元设有若干组合面,在所述组合面上设有多个如权利要求1-11任一项所述的吸收式制冷单元水流接口。
PCT/CN2016/106927 2015-11-26 2016-11-23 吸收式制冷单元水流接口、制冷单元和制冷矩阵 WO2017088758A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510847026.4A CN106802016B (zh) 2015-11-26 2015-11-26 吸收式制冷单元水流接口
CN201510847026.4 2015-11-26

Publications (1)

Publication Number Publication Date
WO2017088758A1 true WO2017088758A1 (zh) 2017-06-01

Family

ID=58763014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106927 WO2017088758A1 (zh) 2015-11-26 2016-11-23 吸收式制冷单元水流接口、制冷单元和制冷矩阵

Country Status (2)

Country Link
CN (1) CN106802016B (zh)
WO (1) WO2017088758A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202254467U (zh) * 2011-07-25 2012-05-30 杭州国电机械设计研究院有限公司 模块组合式溴化锂吸收式热泵系统
WO2015059563A2 (de) * 2013-10-21 2015-04-30 Solarfrost Labs Pty Ltd Modulare absorptionskältemaschine in plattenbauweise
CN205279504U (zh) * 2015-11-26 2016-06-01 四川捷元科技有限公司 吸收式制冷单元水流接口
CN205279503U (zh) * 2015-11-26 2016-06-01 四川捷元科技有限公司 吸收式制冷单元一体式水流管道系统
CN205425504U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 单元组合式制冷矩阵
CN205425506U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 吸收式制冷单元

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4955435A (en) * 1987-04-08 1990-09-11 Du Pont Canada, Inc. Heat exchanger fabricated from polymer compositions
JP2007271197A (ja) * 2006-03-31 2007-10-18 Daikin Ind Ltd 吸収式冷凍装置
JP2012141101A (ja) * 2010-12-29 2012-07-26 Makoto Izumi 吸収式冷凍機
CN102200399A (zh) * 2011-05-10 2011-09-28 天津大学 非金属微细管束换热器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202254467U (zh) * 2011-07-25 2012-05-30 杭州国电机械设计研究院有限公司 模块组合式溴化锂吸收式热泵系统
WO2015059563A2 (de) * 2013-10-21 2015-04-30 Solarfrost Labs Pty Ltd Modulare absorptionskältemaschine in plattenbauweise
CN205279504U (zh) * 2015-11-26 2016-06-01 四川捷元科技有限公司 吸收式制冷单元水流接口
CN205279503U (zh) * 2015-11-26 2016-06-01 四川捷元科技有限公司 吸收式制冷单元一体式水流管道系统
CN205425504U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 单元组合式制冷矩阵
CN205425506U (zh) * 2015-11-26 2016-08-03 四川捷元科技有限公司 吸收式制冷单元

Also Published As

Publication number Publication date
CN106802016B (zh) 2023-04-21
CN106802016A (zh) 2017-06-06

Similar Documents

Publication Publication Date Title
CN205279503U (zh) 吸收式制冷单元一体式水流管道系统
US20170248373A1 (en) Plate heat exchanger and heat pump outdoor unit
CN205279504U (zh) 吸收式制冷单元水流接口
CN109269327B (zh) 换热单元及换热矩阵
CN205425505U (zh) 吸收式制冷单元内置式溶液热交换器
JP5663330B2 (ja) 四方切換弁
WO2017088758A1 (zh) 吸收式制冷单元水流接口、制冷单元和制冷矩阵
CN215572306U (zh) 一种用于空调热泵一体机的塑料材质结构的套管换热器
KR20140107751A (ko) 볼 밸브 어셈블리 및 이를 구비하는 공기조화기
WO2017088773A1 (zh) 吸收式制冷单元一体式水流管道系统、制冷单元及其矩阵
CN215295918U (zh) 一种换热器
WO2022110745A1 (zh) 散热系统、热管理设备及其工作方法
WO2017088766A1 (zh) 吸收式制冷单元和吸收式制冷矩阵
CN103673176A (zh) 一种相变零能耗数据中心机房降温机组
CN207165991U (zh) 一种用于全封闭组合电器导体内部发热冷却的装置
WO2017088770A1 (zh) 吸收式制冷单元内置式溶液热交换器、制冷单元和制冷矩阵
CN207335502U (zh) 一种冲压式冷板组件
CN203518054U (zh) 压缩机及具有其的空调器
CN104949195A (zh) 多联式空调机组
KR101416207B1 (ko) 공기열 및 수열을 이용하는 3원사이클 히트펌프 시스템
WO2023221638A1 (zh) 一种散热装置、连接结构及电子设备
WO2022083674A1 (zh) 一种换热器、换热组件及一种热管理系统
CN207388795U (zh) 水冷式斯特林驻车空调
CN221036961U (zh) 一种复合冷凝器与经济器的钎焊板式换热器
CN113375364B (zh) 热泵系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16867981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16867981

Country of ref document: EP

Kind code of ref document: A1