WO2017088220A1 - 液晶显示器及其显示方法 - Google Patents

液晶显示器及其显示方法 Download PDF

Info

Publication number
WO2017088220A1
WO2017088220A1 PCT/CN2015/097897 CN2015097897W WO2017088220A1 WO 2017088220 A1 WO2017088220 A1 WO 2017088220A1 CN 2015097897 W CN2015097897 W CN 2015097897W WO 2017088220 A1 WO2017088220 A1 WO 2017088220A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
dielectric layer
quantum dot
guide plate
liquid crystal
Prior art date
Application number
PCT/CN2015/097897
Other languages
English (en)
French (fr)
Inventor
程艳
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US14/901,031 priority Critical patent/US9817267B2/en
Publication of WO2017088220A1 publication Critical patent/WO2017088220A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0026Wavelength selective element, sheet or layer, e.g. filter or grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133565Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133616Front illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the present invention relates to the field of liquid crystal display technology, and in particular, to a liquid crystal display and a display method thereof.
  • FIG. 1 is a schematic structural view of a conventional total reflection liquid crystal display.
  • a conventional total reflection liquid crystal display includes a polarizer 9 with a phase difference wave film, an array substrate 7 and a color filter substrate 2 which are opposed to each other, and a liquid crystal 5 which is filled between the array substrate 7 and the color filter substrate 2.
  • the array substrate is generally provided with a reflective layer 6, a thin film transistor, a pixel electrode, a gate line, a data line and the like.
  • the color film substrate is generally provided with a color film, a black matrix or the like.
  • the display brightness of this technology is too low and cannot be displayed in a dark environment.
  • the technical problem to be solved by the present invention is to provide a liquid crystal display and a display method thereof, which can improve the brightness of a reflective liquid crystal display.
  • a technical solution adopted by the present invention is to provide a liquid crystal display including a light guide plate, a light source located on a light incident side of the light guide plate, a quantum dot dielectric layer and a first polarizer, and a polarizer is away from the highly polarized light conversion film on the surface of the light guide plate, and the quantum dot dielectric layer is located between the light source and the first polarizer; the first polarizer and the high polarization conversion film are located between the quantum dot dielectric layer and the light guide plate, and the light source The emitted light is incident on the quantum dot dielectric layer and excites the quantum dot dielectric layer to emit light.
  • a part of the light emitted by the quantum dot dielectric layer passes through the highly polarized light conversion film and the first polarizer to generate polarized light and is incident on the light guide plate, and the other part is converted by high polarization.
  • the film is reflected to the quantum dot dielectric layer and re-excites the quantum dot dielectric layer to emit light.
  • the liquid crystal display further includes a second polarizer disposed on the non-light-emitting surface of the light guide plate, a first substrate disposed on the light-emitting surface of the light guide plate, and the first a second substrate opposite to the substrate, a liquid crystal layer sandwiched between the first substrate and the second substrate, and a setting
  • the second substrate is adjacent to the reflective sheet on one side of the liquid crystal layer, and the non-light-emitting surface is parallel to the light-emitting surface.
  • the light emitted by the light guide plate is emitted from the light-emitting surface of the light guide plate and passes through the liquid crystal layer, and is reflected back to the light guide plate by the reflective sheet, wherein the reflected light is reflected back. Most of the light passes through the second polarizer into the human eye, and a small portion is absorbed by the second polarizer.
  • the light emitted by the light source is blue light and the blue light excites the quantum dot dielectric layer to emit white light.
  • the quantum dot dielectric layer comprises a medium and quantum dots disposed on the medium.
  • the liquid crystal display further comprises a phase difference wave film disposed on a side of the second polarizer away from the light guide plate.
  • the first substrate is a color filter substrate
  • the second substrate is a thin film transistor array substrate.
  • a liquid crystal display including a light guide plate, a light source located on a light incident side of the light guide plate, a quantum dot dielectric layer and a first polarizer, and a setting a highly polarized light conversion film on the surface of the first polarizer away from the light guide plate, the quantum dot dielectric layer being located between the light source and the first polarizer, the first polarizer and the high polarization conversion film being located between the quantum dot dielectric layer and the light guide plate
  • the light emitted by the light source enters the quantum dot dielectric layer and excites the quantum dot dielectric layer to emit light.
  • a part of the light emitted by the quantum dot dielectric layer passes through the highly polarized light conversion film and the first polarizer to generate polarized light and enters the light guide plate, and the other part is height-adjusted.
  • the polarized light conversion film is reflected to the quantum dot dielectric layer and re-excites the quantum dot dielectric layer to emit light.
  • the liquid crystal display further includes a second polarizer disposed on the non-light-emitting surface of the light guide plate, a first substrate disposed on the light-emitting surface of the light guide plate, a second substrate disposed opposite the first substrate, and being clamped on the first substrate a liquid crystal layer between the second substrate and a reflective sheet disposed on a side of the second substrate adjacent to the liquid crystal layer.
  • the non-light-emitting surface is parallel to the light-emitting surface, and the light emitted by the light guide plate is emitted from the light-emitting surface of the light guide plate and passes through the liquid crystal layer.
  • the reflected sheet is reflected back to the light guide plate, wherein most of the reflected light passes through the second polarizer into the human eye, and a small portion is absorbed by the second polarizer.
  • the quantum dot dielectric layer comprises a medium and quantum dots disposed on the medium.
  • the light emitted by the light source is blue light and the blue light excites the quantum dot dielectric layer to emit white light.
  • the liquid crystal display further comprises a phase difference wave film disposed on a side of the second polarizer away from the light guide plate.
  • the first substrate is a color filter substrate
  • the second substrate is a thin film transistor array substrate.
  • another technical solution adopted by the present invention is to provide a display method of a liquid crystal display, which comprises: using light emitted by a light source to enter a quantum dot dielectric layer and exciting a quantum dot dielectric layer to emit light; a first polarizer and a high polarization conversion film between the light guide plate and the quantum dot dielectric layer, such that a part of the light emitted by the quantum dot dielectric layer passes through the high polarization conversion film and the first polarizer to generate polarized light and enters the light guide plate, and A portion is reflected by the highly polarized light conversion film to the quantum dot dielectric layer and re-excites the quantum dot dielectric layer to emit light.
  • the liquid crystal display further includes a first substrate disposed on the light emitting surface of the light guide plate, a second substrate disposed opposite to the first substrate, a liquid crystal layer sandwiched between the first substrate and the second substrate, and disposed in the second
  • the substrate is adjacent to the reflective sheet on one side of the liquid crystal layer
  • the display method further comprises: reflecting the light emitted from the light exiting surface of the light guide plate and passing through the liquid crystal layer back to the light guide plate by using the reflective sheet; and controlling the second polarized light disposed on the non-light emitting surface of the light guide plate
  • the sheet is such that most of the light reflected back by the reflective sheet passes through the second polarizer into the human eye, and a small portion is absorbed by the second polarizer, wherein the light exit surface and the non-light exit surface are parallel.
  • the display method further includes: when the dark state needs to be displayed, controlling the second polarizer located on the non-light-emitting surface of the light guide plate to absorb the light leaked by the light guide plate.
  • the light emitted by the light source is blue light and the blue light excites the quantum dot dielectric layer to emit white light.
  • the invention has the beneficial effects that the first polarizer and the high polarized light conversion film are disposed between the quantum dot dielectric layer and the light guide plate, and the light emitted from the light source is incident on the quantum dot dielectric layer.
  • the quantum dot dielectric layer After the quantum dot dielectric layer is excited, a part of the light emitted by the quantum dot dielectric layer passes through the highly polarized light conversion film and the first polarizer to generate polarized light and is incident on the light guide plate, and the other part is reflected by the highly polarized light conversion film to the quantum dot dielectric layer.
  • the quantum dot dielectric layer is again excited to emit light, so that the cycle is reciprocated, the utilization of light is improved, and the display brightness of the liquid crystal display can be increased.
  • FIG. 1 is a schematic structural view of a conventional total reflection liquid crystal display
  • FIG. 2 is a schematic structural view of a preferred embodiment of a liquid crystal display of the present invention.
  • FIG. 3 is a flow chart showing a display method of a liquid crystal display of the present invention.
  • FIG. 2 is a schematic structural view of a preferred embodiment of the liquid crystal display of the present invention.
  • the liquid crystal display includes: a light guide plate 11 , a light source 12 on the light incident side of the light guide plate 11 , a quantum dot dielectric layer 13 and a first polarizer 14 , and a first polarizer 14 disposed away from the light guide plate 11 .
  • Highly polarized light conversion film 15 on the surface APCF, advanced Polarization conversion
  • the quantum dot dielectric layer 13 is located between the light source 12 and the first polarizer 14, and the first polarizer 14 and the highly polarized light conversion film 15 are located between the quantum dot dielectric layer 13 and the light guide plate 11.
  • the light emitted by the light source 12 is incident on the quantum dot dielectric layer 13 and excites the quantum dot dielectric layer 13 to emit light.
  • a part of the light emitted from the quantum dot dielectric layer 13 passes through the highly polarized light conversion film 15 and the first polarizer 14 to generate polarized light and enter the light guide plate. 11.
  • the other portion is reflected by the highly polarized light conversion film 15 to the quantum dot dielectric layer 13 and re-excites the quantum dot dielectric layer 13 to emit light.
  • the liquid crystal display further includes a second polarizer 16 disposed on the non-light-emitting surface of the light guide plate 11, a first substrate 17 disposed on the light-emitting surface of the light guide plate 12, and a second substrate 18 disposed opposite the first substrate 17. a liquid crystal layer 19 sandwiched between the first substrate 17 and the second substrate 18 and a reflective sheet 20 disposed on a side of the second substrate 18 adjacent to the liquid crystal layer 19.
  • the non-light-emitting surface is parallel to the light-emitting surface, and the light-guide plate 11 emits The light is emitted from the light-emitting surface of the light guide plate 11 and passes through the liquid crystal layer 19 and is reflected back to the light guide plate 11 by the reflection sheet 20, wherein the reflected light mostly passes through the second polarizer 16 into the human eye, and a small portion is polarized by the second. Sheet 16 is absorbed.
  • the second polarizer 16 on the non-light-emitting surface of the light guide plate 11 absorbs the light leaked from the light guide plate 11, so that the contrast of the liquid crystal display can be increased.
  • the quantum dot dielectric layer 13 includes a medium 131 and quantum dots 132 disposed on the medium 131.
  • the light emitted by the light source 12 is blue light and the blue light excites the quantum dot dielectric layer 13 to emit white light.
  • the quantum dot 132 includes a plurality of quantum dots 132 having different particle diameters, and the quantum dots 132 having different particle diameters emit monochromatic light of different colors under excitation of blue light, and the monochromatic lights are red, green, and blue, respectively, and the blue light emitted by the light source 12 Different quantum dots in the quantum dot dielectric layer 13 are excited to emit red, green and blue light, and then mixed into white light.
  • the liquid crystal display further includes a phase difference wave film 21 disposed on a side of the second polarizer 16 away from the light guide plate 11.
  • the first substrate 17 is a color filter substrate 17, and the second substrate 18 is a thin film transistor array substrate 18.
  • the liquid crystal display may further include other fixing components, such as a back frame (not shown), a middle frame (not shown) installed in the back frame, and a circuit board mounted on the middle frame (not shown)
  • the light source 12, the quantum dot dielectric layer 13, the first polarizer 14 and the highly polarized light conversion film 15 may be mounted on a circuit board, and the light guide plate 11, the first substrate 17, the second substrate 18, the liquid crystal layer 19, Both the reflection sheet 20 and the second polarizer 16 may be disposed in the back frame.
  • other installation manners may be adopted in other embodiments, which are not limited by the present invention.
  • FIG. 3 is a schematic flow chart of a display method of a liquid crystal display according to the present invention.
  • the display method of the liquid crystal display includes the following steps:
  • Step S11 The light emitted by the light source is injected into the quantum dot dielectric layer and the quantum dot dielectric layer is excited to emit light.
  • the quantum dot dielectric layer 13 includes a medium 131 and quantum dots 132 disposed on the medium 131.
  • the light emitted by the light source 12 is blue light and the blue light excites the quantum dot dielectric layer 13 to emit white light.
  • the quantum dot 132 includes a plurality of quantum dots 132 having different particle diameters, and the quantum dots 132 having different particle diameters emit monochromatic light of different colors under excitation of blue light, and the monochromatic lights are red, green, and blue, respectively, and the blue light emitted by the light source 12 Different quantum dots in the quantum dot dielectric layer 13 are excited to emit red, green and blue light, and then mixed into white light.
  • Step S12 controlling the first polarizer and the high polarization conversion film between the light guide plate and the quantum dot dielectric layer such that a part of the light emitted by the quantum dot dielectric layer passes through the highly polarized light conversion film and the first polarizer to generate polarized light.
  • the light guide plate, another portion is reflected by the highly polarized light conversion film to the quantum dot dielectric layer and re-excites the quantum dot dielectric layer to emit light.
  • step S12 preferably, the light emitted by the light source 12 is incident on the quantum dot dielectric layer 13 and the quantum dot dielectric layer 13 is excited to emit light, and a part of the light emitted by the quantum dot dielectric layer 13 passes through the highly polarized light conversion film 15 and the first polarizer.
  • the polarized light is incident on the light guide plate 11, and the other portion is reflected by the highly polarized light conversion film 15 to the quantum dot dielectric layer 13 and the quantum dot dielectric layer 13 is again excited to emit light.
  • the liquid crystal display further includes a first substrate 17 disposed on the light emitting surface of the light guide plate 11, a second substrate 18 disposed opposite to the first substrate 17, and sandwiched between the first substrate 17 and the second substrate 18.
  • the liquid crystal layer 19 and the reflective sheet 20 disposed on the side of the second substrate 18 adjacent to the liquid crystal layer 19 further include: reflecting the light emitted from the light exit surface of the light guide plate 11 and passing through the liquid crystal layer 19 back to the light guide plate by the reflection sheet 20. 11; controlling the second polarizer 16 disposed on the non-light-emitting surface of the light guide plate 11 such that most of the light reflected back by the reflective sheet 20 passes through the second polarizer 16 into the human eye, and a small portion is absorbed by the second polarizer 16. , wherein the light-emitting surface and the non-light-emitting surface are parallel.
  • the display method of the liquid crystal display may further include: controlling the second polarizer 16 located on the non-light-emitting surface of the light guide plate 11 to absorb the light leaked from the light guide plate 11 when the dark state needs to be displayed, thereby It is possible to increase the contrast of the liquid crystal display.
  • the present invention provides a first polarizer and a highly polarized light conversion film between the quantum dot dielectric layer and the light guide plate, and the light emitted from the light source is incident on the quantum dot dielectric layer and excites the quantum dot dielectric layer to emit light. Afterwards, a part of the light emitted by the quantum dot dielectric layer passes through the highly polarized light conversion film and the first polarizer to generate polarized light and enters the light guide plate, and the other part is reflected by the highly polarized light conversion film to the quantum dot dielectric layer and re-excites the quantum dot dielectric layer to emit light. In this way, the cycle is reciprocated, the utilization of light is improved, and the display brightness of the liquid crystal display can be increased.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种液晶显示器及其显示方法,其能够提高反射式液晶显示器的亮度,包括导光板(11)、光源(12)、量子点介质层(13)和第一偏光片(14)以及高度偏光转换薄膜(15),量子点介质层(13)位于光源(12)和第一偏光片(14)之间,第一偏光片(14)和高度偏光转换薄膜(15)位于量子点介质层(13)和导光板(11)之间,光源(12)发出的光线射入量子点介质层(13)并激发量子点介质层(13)发光,量子点介质层(13)发出的光线一部分穿过高度偏光转换薄膜(15)和第一偏光片(14)产生偏振光射入导光板(11),另一部分由高度偏光转换薄膜(15)反射至量子点介质层(13)并再次激发量子点介质层(13)发光。

Description

液晶显示器及其显示方法
【技术领域】
本发明涉及液晶显示技术领域,特别是涉及一种液晶显示器及其显示方法。
【背景技术】
反射式液晶显示技术是利用了光的反射进行的显示技术,请参阅图1,图1是传统的全反射液晶显示器的结构示意图。传统的全反射液晶显示器包括附有相位差波薄膜的偏光片9、相互对盒的阵列基板7和彩膜基板2,以及填充在阵列基板7、彩膜基板2之间的液晶5。其中,阵列基板上一般设置有反射层6、薄膜晶体管、像素电极、栅线、数据线等结构,彩膜基板上一般设置有彩膜、黑矩阵等结构。然而,该技术的显示亮度太低,而且无法在暗环境下显示。
因此,需要提供一种液晶显示器及其显示方法,以解决上述技术问题。
【发明内容】
本发明主要解决的技术问题是提供一种液晶显示器及其显示方法,能够提高反射式液晶显示器的亮度。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种液晶显示器,液晶显示器包括导光板、位于导光板的入光侧的光源、量子点介质层和第一偏光片以及设置在第一偏光片远离导光板的表面上的高度偏光转换薄膜,量子点介质层位于光源和第一偏光片之间,第一偏光片和高度偏光转换薄膜位于量子点介质层和导光板之间,光源发出的光线射入量子点介质层并激发量子点介质层发光,量子点介质层发出的光线一部分穿过高度偏光转换薄膜和第一偏光片产生偏振光射入导光板,另一部分由高度偏光转换薄膜反射至量子点介质层并再次激发量子点介质层发光,液晶显示器进一步包括设置在导光板的非出光面的第二偏光片、设置在导光板的出光面上的第一基板、与第一基板相对设置的第二基板、夹持在第一基板和第二基板之间的液晶层以及设置在第二基板靠近液晶层一面上的反射片,非出光面平行于出光面,导光板发出的光由导光板的出光面射出并穿过液晶层后被反射片反射回导光板,其中反射回的光线大部分穿过第二偏光片进入人眼,小部分被第二偏光片吸收,光源发出的光为蓝光且蓝光激发量子点介质层发白光。
其中,量子点介质层包括介质和设置在介质上的量子点。
其中,液晶显示器进一步包括设置在第二偏光片远离导光板的一面上的相位差波薄膜。
其中,第一基板为彩色滤光片基板,第二基板为薄膜晶体管阵列基板。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种液晶显示器,该液晶显示器包括导光板、位于导光板的入光侧的光源、量子点介质层和第一偏光片以及设置在第一偏光片远离导光板的表面上的高度偏光转换薄膜,量子点介质层位于光源和第一偏光片之间,第一偏光片和高度偏光转换薄膜位于量子点介质层和导光板之间,光源发出的光线射入量子点介质层并激发量子点介质层发光,量子点介质层发出的光线一部分穿过高度偏光转换薄膜和第一偏光片产生偏振光射入导光板,另一部分由高度偏光转换薄膜反射至量子点介质层并再次激发量子点介质层发光。
其中,液晶显示器进一步包括设置在导光板的非出光面的第二偏光片、设置在导光板的出光面上的第一基板、与第一基板相对设置的第二基板、夹持在第一基板和第二基板之间的液晶层以及设置在第二基板靠近液晶层一面上的反射片,非出光面平行于出光面,导光板发出的光由导光板的出光面射出并穿过液晶层后被反射片反射回导光板,其中反射回的光线大部分穿过第二偏光片进入人眼,小部分被第二偏光片吸收。
其中,量子点介质层包括介质和设置在介质上的量子点。
其中,光源发出的光为蓝光且蓝光激发量子点介质层发白光。
其中,液晶显示器进一步包括设置在第二偏光片远离导光板的一面上的相位差波薄膜。
其中,第一基板为彩色滤光片基板,第二基板为薄膜晶体管阵列基板。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种液晶显示器的显示方法,该显示方法包括:利用光源发出的光线射入量子点介质层并激发量子点介质层发光;控制位于导光板和量子点介质层之间的第一偏光片和高度偏光转换薄膜以使得量子点介质层发出的光线一部分穿过高度偏光转换薄膜和第一偏光片产生偏振光射入导光板,另一部分由高度偏光转换薄膜反射至量子点介质层并再次激发量子点介质层发光。
其中,液晶显示器还包括设置在导光板的出光面上的第一基板、与第一基板相对设置的第二基板、夹持在第一基板和第二基板之间的液晶层以及设置在第二基板靠近液晶层一面上的反射片,显示方法进一步包括:利用反射片将由导光板的出光面射出并穿过液晶层的光反射回导光板;控制设置在导光板的非出光面的第二偏光片以使得由反射片反射回的光线大部分穿过第二偏光片进入人眼,小部分被第二偏光片吸收,其中,出光面和非出光面平行。
其中,显示方法进一步包括:在需要显示暗态时,控制位于导光板的非出光面上的第二偏光片吸收导光板漏出的光线。
其中,光源发出的光为蓝光且蓝光激发量子点介质层发白光。
本发明的有益效果是:区别于现有技术的情况,本发明通过在量子点介质层和导光板之间设置第一偏光片和高度偏光转换薄膜,在光源发出的光线射入量子点介质层并激发量子点介质层发光后,量子点介质层发出的光线一部分穿过高度偏光转换薄膜和第一偏光片产生偏振光射入导光板,另一部分由高度偏光转换薄膜反射至量子点介质层并再次激发量子点介质层发光,如此循环往复,提高了光的利用率,可以增加液晶显示器的显示亮度。
【附图说明】
图1是传统的全反射液晶显示器的结构示意图;
图2是本发明液晶显示器的优选实施例的结构示意图;
图3是本发明液晶显示器的显示方法的流程示意图。
【具体实施方式】
下面结合附图和实施例对本发明进行详细的说明。
请参阅图2,图2是本发明液晶显示器的优选实施例的结构示意图。
在本实施例中,液晶显示器包括:导光板11、位于导光板11的入光侧的光源12、量子点介质层13和第一偏光片14以及设置在第一偏光片14远离导光板11的表面上的高度偏光转换薄膜15(APCF,advanced polarization conversion film),量子点介质层13位于光源12和第一偏光片14之间,第一偏光片14和高度偏光转换薄膜15位于量子点介质层13和导光板11之间。
光源12发出的光线射入量子点介质层13并激发量子点介质层13发光,量子点介质层13发出的光线一部分穿过高度偏光转换薄膜15和第一偏光片14产生偏振光射入导光板11,另一部分由高度偏光转换薄膜15反射至量子点介质层13并再次激发量子点介质层13发光。
优选地,液晶显示器进一步包括设置在导光板11的非出光面的第二偏光片16、设置在导光板12的出光面上的第一基板17、与第一基板17相对设置的第二基板18、夹持在第一基板17和第二基板18之间的液晶层19以及设置在第二基板18靠近液晶层19一面上的反射片20,非出光面平行于出光面,导光板11发出的光由导光板11的出光面射出并穿过液晶层19后被反射片20反射回导光板11,其中反射回的光线大部分穿过第二偏光片16进入人眼,小部分被第二偏光片16吸收。优选地,在液晶显示器显示暗态时,位于导光板11的非出光面上的第二偏光片16吸收导光板11漏出的光线,从而可以增加液晶显示器的对比度。
优选地,量子点介质层13包括介质131和设置在介质131上的量子点132。
优选地,光源12发出的光为蓝光且蓝光激发量子点介质层13发白光。量子点132包括粒径不同多种量子点132,粒径不同的量子点132在蓝光的激发下发出的不同颜色的单色光,单色光分别为红、绿、蓝,光源12发出的蓝光激发量子点介质层13中不同的量子点发出红、绿、蓝三色光然后混成白光。
优选地,液晶显示器进一步包括设置在第二偏光片16远离导光板11的一面上的相位差波薄膜21。
优选地,第一基板17为彩色滤光片基板17,第二基板18为薄膜晶体管阵列基板18。
可以理解的是,液晶显示器还可以包括其他的固定元件,例如背框(图未示)、安装在背框中的中框(图未示)、安装在中框上的电路板(图未示),而光源12、量子点介质层13、第一偏光片14和高度偏光转换薄膜15可以是安装在电路板上,而导光板11、第一基板17、第二基板18、液晶层19、反射片20以及第二偏光片16都可以设置在背框中。当然,在其他实施例中也可以采用其他的安装方式,本发明对此不做限定。
请参阅图3,图3是本发明液晶显示器的显示方法的流程示意图。在本实施例中,液晶显示器的显示方法包括以下步骤:
步骤S11:利用光源发出的光线射入量子点介质层并激发量子点介质层发光。
在步骤S11中,优选地,量子点介质层13包括介质131和设置在介质131上的量子点132。光源12发出的光为蓝光且蓝光激发量子点介质层13发白光。量子点132包括粒径不同多种量子点132,粒径不同的量子点132在蓝光的激发下发出的不同颜色的单色光,单色光分别为红、绿、蓝,光源12发出的蓝光激发量子点介质层13中不同的量子点发出红、绿、蓝三色光然后混成白光。
步骤S12:控制位于导光板和量子点介质层之间的第一偏光片和高度偏光转换薄膜以使得量子点介质层发出的光线一部分穿过高度偏光转换薄膜和第一偏光片产生偏振光射入导光板,另一部分由高度偏光转换薄膜反射至量子点介质层并再次激发量子点介质层发光。
在步骤S12中,优选地,光源12发出的光线射入量子点介质层13并激发量子点介质层13发光,量子点介质层13发出的光线一部分穿过高度偏光转换薄膜15和第一偏光片14产生偏振光射入导光板11,另一部分由高度偏光转换薄膜15反射至量子点介质层13并再次激发量子点介质层13发光。
优选地,液晶显示器还包括设置在导光板11的出光面上的第一基板17、与第一基板17相对设置的第二基板18、夹持在第一基板17和第二基板18之间的液晶层19以及设置在第二基板18靠近液晶层19一面上的反射片20,显示方法进一步包括:利用反射片20将由导光板11的出光面射出并穿过液晶层19的光反射回导光板11;控制设置在导光板11的非出光面的第二偏光片16以使得由反射片20反射回的光线大部分穿过第二偏光片16进入人眼,小部分被第二偏光片16吸收,其中,出光面和非出光面平行。
优选地,在本实施例中,液晶显示器的显示方法还可以包括:在需要显示暗态时,控制位于导光板11的非出光面上的第二偏光片16吸收导光板11漏出的光线,从而可以增加液晶显示器的对比度。
区别于现有技术的情况,本发明通过在量子点介质层和导光板之间设置第一偏光片和高度偏光转换薄膜,在光源发出的光线射入量子点介质层并激发量子点介质层发光后,量子点介质层发出的光线一部分穿过高度偏光转换薄膜和第一偏光片产生偏振光射入导光板,另一部分由高度偏光转换薄膜反射至量子点介质层并再次激发量子点介质层发光,如此循环往复,提高了光的利用率,可以增加液晶显示器的显示亮度。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (14)

  1. 一种液晶显示器,其中,所述液晶显示器包括导光板、位于所述导光板的入光侧的光源、量子点介质层和第一偏光片以及设置在所述第一偏光片远离所述导光板的表面上的高度偏光转换薄膜,所述量子点介质层位于所述光源和所述第一偏光片之间,所述第一偏光片和所述高度偏光转换薄膜位于所述量子点介质层和所述导光板之间,所述光源发出的光线射入所述量子点介质层并激发所述量子点介质层发光,所述量子点介质层发出的光线一部分穿过所述高度偏光转换薄膜和所述第一偏光片产生偏振光射入所述导光板,另一部分由所述高度偏光转换薄膜反射至所述量子点介质层并再次激发所述量子点介质层发光,所述液晶显示器进一步包括设置在所述导光板的非出光面的第二偏光片、设置在导光板的出光面上的第一基板、与所述第一基板相对设置的第二基板、夹持在所述第一基板和所述第二基板之间的液晶层以及设置在所述第二基板靠近所述液晶层一面上的反射片,所述非出光面平行于所述出光面,所述导光板发出的光由所述导光板的出光面射出并穿过所述液晶层后被所述反射片反射回所述导光板,其中反射回的光线大部分穿过所述第二偏光片进入人眼,小部分被所述第二偏光片吸收,所述光源发出的光为蓝光且所述蓝光激发所述量子点介质层发白光。
  2. 根据权利要求1所述的液晶显示器,其中,所述量子点介质层包括介质和设置在所述介质上的量子点。
  3. 根据权利要求1所述的液晶显示器,其中,所述液晶显示器进一步包括设置在所述第二偏光片远离所述导光板的一面上的相位差波薄膜。
  4. 根据权利要求1所述的液晶显示器,其中,所述第一基板为彩色滤光片基板,所述第二基板为薄膜晶体管阵列基板。
  5. 一种液晶显示器,其中,所述液晶显示器包括导光板、位于所述导光板的入光侧的光源、量子点介质层和第一偏光片以及设置在所述第一偏光片远离所述导光板的表面上的高度偏光转换薄膜,所述量子点介质层位于所述光源和所述第一偏光片之间,所述第一偏光片和所述高度偏光转换薄膜位于所述量子点介质层和所述导光板之间,所述光源发出的光线射入所述量子点介质层并激发所述量子点介质层发光,所述量子点介质层发出的光线一部分穿过所述高度偏光转换薄膜和所述第一偏光片产生偏振光射入所述导光板,另一部分由所述高度偏光转换薄膜反射至所述量子点介质层并再次激发所述量子点介质层发光。
  6. 根据权利要求5所述的液晶显示器,其中,所述液晶显示器进一步包括设置在所述导光板的非出光面的第二偏光片、设置在导光板的出光面上的第一基板、与所述第一基板相对设置的第二基板、夹持在所述第一基板和所述第二基板之间的液晶层以及设置在所述第二基板靠近所述液晶层一面上的反射片,所述非出光面平行于所述出光面,所述导光板发出的光由所述导光板的出光面射出并穿过所述液晶层后被所述反射片反射回所述导光板,其中反射回的光线大部分穿过所述第二偏光片进入人眼,小部分被所述第二偏光片吸收。
  7. 根据权利要求5所述的液晶显示器,其中,所述量子点介质层包括介质和设置在所述介质上的量子点。
  8. 根据权利要求5所述的液晶显示器,其中,所述光源发出的光为蓝光且所述蓝光激发所述量子点介质层发白光。
  9. 根据权利要求6所述的液晶显示器,其中,所述液晶显示器进一步包括设置在所述第二偏光片远离所述导光板的一面上的相位差波薄膜。
  10. 根据权利要求6所述的液晶显示器,其中,所述第一基板为彩色滤光片基板,所述第二基板为薄膜晶体管阵列基板。
  11. 一种液晶显示器的显示方法,其中,所述显示方法包括:
    利用光源发出的光线射入量子点介质层并激发所述量子点介质层发光;
    控制位于导光板和所述量子点介质层之间的第一偏光片和高度偏光转换薄膜以使得所述量子点介质层发出的光线一部分穿过高度偏光转换薄膜和所述第一偏光片产生偏振光射入所述导光板,另一部分由所述高度偏光转换薄膜反射至所述量子点介质层并再次激发所述量子点介质层发光。
  12. 根据权利要求11所述的显示方法,其中,液晶显示器还包括设置在导光板的出光面上的第一基板、与所述第一基板相对设置的第二基板、夹持在所述第一基板和所述第二基板之间的液晶层以及设置在所述第二基板靠近所述液晶层一面上的反射片,所述显示方法进一步包括:
    利用所述反射片将由所述导光板的出光面射出并穿过所述液晶层的光反射回所述导光板;
    控制设置在所述导光板的非出光面的第二偏光片以使得由所述反射片反射回的光线大部分穿过所述第二偏光片进入人眼,小部分被所述第二偏光片吸收,
    其中,所述出光面和所述非出光面平行。
  13. 根据权利要求12所述的显示方法,其中,所述显示方法进一步包括:
    在需要显示暗态时,控制位于所述导光板的非出光面上的第二偏光片吸收所述导光板漏出的光线。
  14. 根据权利要求11所述的显示方法,其中,所述光源发出的光为蓝光且所述蓝光激发所述量子点介质层发白光。
PCT/CN2015/097897 2015-11-27 2015-12-18 液晶显示器及其显示方法 WO2017088220A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/901,031 US9817267B2 (en) 2015-11-27 2015-12-18 Liquid crystal displays and the display methods thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510852657.5 2015-11-27
CN201510852657.5A CN105259699B (zh) 2015-11-27 2015-11-27 液晶显示器及其显示方法

Publications (1)

Publication Number Publication Date
WO2017088220A1 true WO2017088220A1 (zh) 2017-06-01

Family

ID=55099450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097897 WO2017088220A1 (zh) 2015-11-27 2015-12-18 液晶显示器及其显示方法

Country Status (3)

Country Link
US (1) US9817267B2 (zh)
CN (1) CN105259699B (zh)
WO (1) WO2017088220A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106681055A (zh) * 2017-03-14 2017-05-17 深圳市华星光电技术有限公司 一种显示装置
CN106969906B (zh) * 2017-04-26 2019-05-03 武汉华星光电技术有限公司 一种显示器的色度学计算方法及色度计算方法
CN107918229B (zh) * 2018-01-03 2021-03-09 京东方科技集团股份有限公司 液晶显示面板、显示装置和显示方法
KR102436671B1 (ko) 2018-01-03 2022-08-29 삼성디스플레이 주식회사 백라이트 유닛 및 이를 포함하는 표시 장치
JP6528220B1 (ja) * 2018-04-27 2019-06-12 パナソニックIpマネジメント株式会社 液晶表示装置
JP6493716B1 (ja) * 2018-04-27 2019-04-03 パナソニックIpマネジメント株式会社 液晶表示装置
CN109031787A (zh) * 2018-08-31 2018-12-18 京东方科技集团股份有限公司 一种前置光源及显示装置
CN109608687A (zh) * 2018-11-09 2019-04-12 深圳市华星光电半导体显示技术有限公司 光转换薄膜、光转换薄膜的制备方法及背光组件
CN109655959A (zh) * 2019-02-13 2019-04-19 京东方科技集团股份有限公司 一种前置光源和显示装置
CN109814310A (zh) * 2019-03-21 2019-05-28 深圳市华星光电技术有限公司 背光模组及显示装置
CN110275238A (zh) * 2019-06-24 2019-09-24 深圳市华星光电技术有限公司 量子点偏光片结构及液晶显示器
CN110703484A (zh) * 2019-09-03 2020-01-17 深圳市华星光电技术有限公司 一种量子点显示器
CN111423605A (zh) * 2020-03-30 2020-07-17 深圳市华星光电半导体显示技术有限公司 色转换薄膜制造方法、色转换薄膜以及显示面板
CN112859409A (zh) * 2021-02-09 2021-05-28 捷开通讯(深圳)有限公司 显示面板、显示面板组件及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808794A (en) * 1996-07-31 1998-09-15 Weber; Michael F. Reflective polarizers having extended red band edge for controlled off axis color
CN1504805A (zh) * 2002-12-05 2004-06-16 鸿富锦精密工业(深圳)有限公司 背光模组
CN1808238A (zh) * 2005-01-18 2006-07-26 精工电子有限公司 液晶显示装置
CN102563544A (zh) * 2010-12-17 2012-07-11 杜比实验室特许公司 量子点技术
CN103228983A (zh) * 2010-11-10 2013-07-31 纳米系统公司 量子点薄膜、照明器件及照明方法
CN103680367A (zh) * 2012-09-19 2014-03-26 杜比实验室特许公司 量子点/远程荧光显示系统改进
CN104155800A (zh) * 2014-07-11 2014-11-19 京东方科技集团股份有限公司 一种反射式液晶显示器
CN104981719A (zh) * 2013-02-08 2015-10-14 3M创新有限公司 一体式量子点光学构造

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5939004B2 (ja) * 2012-04-11 2016-06-22 ソニー株式会社 発光装置、表示装置および照明装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808794A (en) * 1996-07-31 1998-09-15 Weber; Michael F. Reflective polarizers having extended red band edge for controlled off axis color
CN1504805A (zh) * 2002-12-05 2004-06-16 鸿富锦精密工业(深圳)有限公司 背光模组
CN1808238A (zh) * 2005-01-18 2006-07-26 精工电子有限公司 液晶显示装置
CN103228983A (zh) * 2010-11-10 2013-07-31 纳米系统公司 量子点薄膜、照明器件及照明方法
CN102563544A (zh) * 2010-12-17 2012-07-11 杜比实验室特许公司 量子点技术
CN103680367A (zh) * 2012-09-19 2014-03-26 杜比实验室特许公司 量子点/远程荧光显示系统改进
CN104981719A (zh) * 2013-02-08 2015-10-14 3M创新有限公司 一体式量子点光学构造
CN104155800A (zh) * 2014-07-11 2014-11-19 京东方科技集团股份有限公司 一种反射式液晶显示器

Also Published As

Publication number Publication date
CN105259699A (zh) 2016-01-20
CN105259699B (zh) 2018-09-11
US20170199423A1 (en) 2017-07-13
US9817267B2 (en) 2017-11-14

Similar Documents

Publication Publication Date Title
WO2017088220A1 (zh) 液晶显示器及其显示方法
US9995964B2 (en) Liquid crystal display panel and display device
WO2017024600A1 (zh) 液晶显示器及其液晶显示模组
US9841628B2 (en) Liquid crystal display device and electronic equipment
WO2018166025A1 (zh) 一种显示装置
WO2016086416A1 (zh) 一种量子点背光模组以及显示装置
US20190049777A1 (en) Display panel and display device
KR20070107498A (ko) 단일 편광기를 사용하는 자발광형 액정표시장치
WO2017173700A1 (zh) 背光模组及液晶显示装置
WO2016026181A1 (zh) 彩色液晶显示模组结构及其背光模组
JP2007173002A (ja) 面状照明装置及びこの面状照明装置をバックライトとした液晶表示装置
WO2017177488A1 (zh) 双面液晶显示装置及其背光模组
WO2017024603A1 (zh) 一种液晶显示面板及其制作方法
CN105511153A (zh) 一种显示基板、显示面板和显示装置
WO2016074267A1 (zh) 背光模块及液晶显示装置
CN101310211B (zh) 液晶显示设备及其驱动方法
JP2012230384A (ja) 増強されたカラーを有する液晶表示装置
JP2000321566A (ja) 液晶表示装置
TWM258239U (en) A display device and an illumination apparatus therefor
JP2001512248A (ja) 液晶表示装置
CN105700242A (zh) 背光模组及双面液晶显示装置
CN101097347A (zh) 液晶显示器件及其制造方法
TW200419251A (en) Back light module and liquid crystal display
WO2013180349A1 (ko) 부분투명 디스플레이장치
CN105785494A (zh) 偏光片及显示面板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14901031

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15909131

Country of ref document: EP

Kind code of ref document: A1