WO2017088197A1 - 线圈盘及其制造方法、电磁加热设备 - Google Patents

线圈盘及其制造方法、电磁加热设备 Download PDF

Info

Publication number
WO2017088197A1
WO2017088197A1 PCT/CN2015/096054 CN2015096054W WO2017088197A1 WO 2017088197 A1 WO2017088197 A1 WO 2017088197A1 CN 2015096054 W CN2015096054 W CN 2015096054W WO 2017088197 A1 WO2017088197 A1 WO 2017088197A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire groove
carrier
coil disk
conductive layer
disk according
Prior art date
Application number
PCT/CN2015/096054
Other languages
English (en)
French (fr)
Inventor
杨玲
曹达华
何柏锋
Original Assignee
佛山市顺德区美的电热电器制造有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201520950936.0U external-priority patent/CN205249519U/zh
Priority claimed from CN201510828701.9A external-priority patent/CN106804069B/zh
Application filed by 佛山市顺德区美的电热电器制造有限公司, 美的集团股份有限公司 filed Critical 佛山市顺德区美的电热电器制造有限公司
Publication of WO2017088197A1 publication Critical patent/WO2017088197A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements

Definitions

  • the invention relates to the field of electromagnetic heating technology, in particular to a coil disk, a manufacturing method thereof and an electromagnetic heating device.
  • the heating method is generally electromagnetic heating or fuel flame heating. If the heat utilization efficiency of the heating coil disk can be improved and energy waste is reduced, Reduce the energy and energy consumed by it, so start with the heating coil, save energy and reduce consumption, and the economic benefits it generates will save a lot of energy.
  • the coils of small household appliances that are heated by IH are made by winding the enameled wire.
  • IH International name: Indirect Heating, Chinese name is indirect heating
  • the winding manufacturing process is complicated, and the coils used in the induction cooker, the electric pressure cooker and the rice cooker need to be wound according to the specific use occasions, and the materials are wasted.
  • the heating coil disk wound around the enameled wire is prone to jumper, scratch, short line and poor process during use, and has a low safety factor and a single coil form.
  • the technical problem to be solved by the invention is that the winding process of the existing small household appliances is complicated, and the problems of jumpers, scratches, short lines, poor process, low safety factor and single coil form are prone to occur during use.
  • the present invention provides a coil disk including a carrier having a wire groove extending along a predetermined winding path, and a surface of the wire groove is attached with a noble metal layer formed by an activation process. A conductive layer is attached to the noble metal layer.
  • the conductive layer comprises at least a first conductive layer, and the first conductive layer is attached to the precious metal layer by electroless plating.
  • the first conductive layer has a thickness ranging from 5 um to 10 um.
  • the conductive layer further includes a second conductive layer attached to the first conductive layer by electroplating.
  • the second conductive layer has a thickness ranging from 40 um to 70 um.
  • the conductive layer is made of at least one of copper, silver, and aluminum.
  • an anti-oxidation layer is further attached to the conductive layer.
  • the anti-oxidation layer has a thickness ranging from 5 um to 10 um.
  • the anti-oxidation layer is made of at least one of nickel, silver, aluminum, and gold.
  • the predetermined winding path of the wire trough is in a spiral shape.
  • the wire groove is formed by engraving the carrier by a laser according to a predetermined winding path.
  • the width of the wire slot ranges from 0.2 mm to 10 mm, and the spacing between adjacent turns of the wire groove ranges from 0.2 mm to 10 mm.
  • the inner surface of the wire groove is a rough surface, and the rough surface is formed while the wire groove is formed.
  • the wire trough is simultaneously formed in the forming process of the carrier or the wire trough is formed by engraving after the forming of the carrier, from the groove bottom of the trough to the direction of the notch, the trough two The side walls of the sides are respectively expanded outward.
  • the inner surface of the wire groove is a rough surface, and the rough surface is formed by roughening the inner surface of the wire groove.
  • the manner of roughening the inner surface of the wire groove is a laser engraving process.
  • the cross section of the wire groove has an inverted trapezoidal shape, an inverted triangular shape or a semi-arc shape.
  • the cross section of the wire trough is in the shape of an inverted isosceles ladder, the normal angle between the sidewall of the trough and the bottom wall is in the range of 15° to 75°, and the depth of the trough is in the range of 2 mm to 8 mm.
  • the wire groove has an isolation rib between the adjacent rings, and the cross section of the isolation rib is an isosceles trapezoid, and the width of the top of the isolation rib ranges from 0.2 mm to 1.0 mm.
  • the carrier has two mounting faces that are opposite in the thickness direction, the wire slot includes a first wire slot disposed on one of the mounting faces in a first predetermined winding path, and a second predetermined winding The path is set to the second slot on the other mounting surface.
  • the carrier is made of plastic, ceramic or a metal coated with an insulating layer.
  • the present invention also provides an electromagnetic heating apparatus comprising the coil disc, the coil disc being used for electromagnetic heating.
  • the invention further provides a method for manufacturing a coil disk, which comprises the following steps:
  • an activation treatment immersing the carrier in an activation liquid, wherein the activation solution includes a noble metal compound, and noble metal ions in the noble metal compound are reduced to noble metal particles and adsorbed on an inner surface of the wire groove to form Precious metal layer
  • the step of forming the wire groove in the step S2 is to perform laser engraving processing on the carrier by a laser according to a predetermined winding path to form a wire groove whose inner surface is a rough surface.
  • the wire groove forming in the step S2 comprises: engraving the carrier according to a predetermined winding path with a cutter; or the wire groove forming in the step S2 and the loading in the step S1
  • the body forming is the same step, and the step S1 carrier molding comprises: putting the carrier material into the mold, the inner surface of the mold is provided with a convex ring extending according to a predetermined winding path to form the surface of the carrier while the carrier is being formed A wire slot extending in accordance with a predetermined winding path is imprinted.
  • the step of attaching the conductive layer on the noble metal layer in the step S4 comprises: immersing the carrier in the electroless plating solution, and the conductive metal ions in the electroless plating solution undergo oxidation-reduction reaction under the catalytic action of the noble metal layer to generate conductive metal particles. Attached to the wire groove to form a first conductive layer;
  • the step of attaching the conductive layer on the noble metal layer in the step S4 further comprises: immersing the electroless plated carrier in a plating solution, wherein the conductive metal ions in the plating solution undergo a redox reaction under the action of a current to generate a conductive Metal particles are attached to the first conductive layer to form the second conductive layer.
  • the step S4 further comprises: attaching an anti-oxidation layer on the conductive layer by electroplating.
  • the invention provides a coil disk, a manufacturing method thereof and an electromagnetic heating device.
  • the coil is directly wound on the surface of the carrier by attaching a conductive metal layer, which has the following technical effects compared with the prior art:
  • the winding process is simple, and it is not necessary to provide a structure such as a limiting groove and a positioning rib of the clamping coil on the carrier, so that the structure of the carrier is simpler.
  • the coil form is flexible and diverse, and can coil various shapes according to the user's needs, and has the characteristics of flexible production.
  • the production efficiency is high, the manufacturing efficiency of the coil disk is much higher than that of the conventional coiled copper wire production coil disk, which is advantageous for mass production.
  • the coil disk first attaches a precious metal layer on the surface of the carrier by means of activation treatment, and then attaches a conductive layer on the noble metal layer, so that the material requirements for the carrier are greatly reduced.
  • the coil disk can avoid the problems of jumper, scratch and short-circuit process during use, and it has high safety factor and The advantages of energy saving and consumption reduction.
  • FIG. 1 is a plan view of a coil disk according to an embodiment of the present invention.
  • Figure 2 is a perspective view of a coil disk according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a double-sided wire groove-shaped coil disk according to Embodiment 2 of the present invention.
  • Figure 4 is a cross-sectional view taken along line A-A of Figure 3;
  • FIG. 5 is a schematic structural view of a single-sided wire groove coil disk according to Embodiment 2 of the present invention.
  • Figure 6 is a cross-sectional view taken along line B-B of Figure 5;
  • FIG. 7 is a schematic view showing the positional relationship between the oxidation preventing layer, the conductive layer and the noble metal layer in the second embodiment of the present invention.
  • Carrier 1 Carrier 1; conductive layer 2; wire groove 3; stopper 4; oxidation preventing layer 5; noble metal layer 6.
  • the present embodiment provides a coil disk including a carrier 1 having a wire slot 3 extending along a predetermined winding path.
  • the so-called predetermined winding path is The pre-set winding method can be flexibly set according to actual needs, and is not limited here.
  • the predetermined winding path can be spiral, also called Archimedes spiral.
  • a noble metal layer 6 formed by an activation treatment is attached to the surface of the wire groove 3, and a conductive layer 2 is adhered to the noble metal layer 6.
  • the coil disk provided in this embodiment directly winds the coil on the surface of the carrier 1 by attaching a conductive metal layer, and it is not necessary to provide a structure such as a limiting groove and a positioning rib of the clamping coil on the carrier 1 .
  • the structure of the carrier 1 is made simpler; and the coils of various shapes can be wound according to the needs of the user, and the characteristics of the flexible production are obtained.
  • the manufacturing efficiency of such a coil disk is much higher than that of the conventional copper wire production coil disk.
  • the precious metal layer 6 is first adhered to the surface of the wire tank 3 by the activation treatment, and then the conductive layer 2 is adhered to the noble metal layer 6, so that the material requirements for the carrier 1 are greatly reduced, for example, ordinary plastic can be used. , ceramics, or even metal covered with an insulating layer.
  • the second embodiment of the present invention is the same as that of the first embodiment.
  • the content disclosed in the first embodiment is also disclosed in the second embodiment.
  • the second embodiment is further refined on the basis of the first embodiment. .
  • the material of the carrier 1 in this embodiment may be plastic.
  • PC plastic that is, the carrier 1 is obtained by injection molding of PC plastic.
  • PC plastic molding has the characteristics of low shrinkage, high strength, fatigue resistance, dimensional stability, and minimal creep, and stable electrical insulation over a wide temperature and humidity range.
  • coil discs made of PC plastic are lighter and thinner than conventional coil discs.
  • the carrier 1 can also be used with other insulating plastics, such as polyphenylene ether or engineering plastics, according to requirements.
  • the material of the carrier 1 in this embodiment can be extended to ceramic or metal coated with an insulating layer. When the material of the carrier 1 is a metal coated with an insulating layer, the wire groove is formed on the insulating layer, and The insulating layer is not penetrated in the thickness direction of the carrier 1.
  • precious metals mainly refer to eight kinds of metal elements such as gold, silver and platinum group metals (ruthenium, osmium, palladium, iridium, iridium, platinum).
  • the activation treatment is specifically carried out by immersing the carrier 1 of the coil disk in an activation liquid comprising a noble metal compound, a concentrated acid, a reducing agent and a complexing agent.
  • the noble metal compound may be palladium chloride or silver chloride
  • the concentrated acid may be concentrated hydrochloric acid or concentrated sulfuric acid
  • the reducing agent may be tin dichloride
  • the complexing agent may be sodium citrate, sodium cyanide, sodium tartrate or sodium pyrophosphate. .
  • the concentrated acid is used to dissolve the precious metal compound;
  • the reducing agent is used to reduce the precious metal compound to the inner surface of the noble metal layer 6 attached to the line groove 3;
  • the complexing agent maintains the precious metal compound and the reducing agent in a suspended state, so that the precious metal compound and the reducing agent
  • the redox reaction does not occur in the solution state, and the redox reaction occurs only when it comes into contact with the inner surface of the wire groove 3.
  • the present embodiment further provides a method for specifically configuring an activation liquid: dissolving a PdCl 2 solution in a mixed solution of concentrated HCL and distilled water, and then adding SnCl 2 to the mixed solution to form a first mixed solution; The sodium citrate, NaCN, sodium tartrate or sodium pyrophosphate is dissolved in distilled water to form a second mixed liquid; the first mixed liquid and the second mixed liquid are stirred and mixed to form an activation liquid.
  • the wire groove 3 is formed by engraving the carrier 1 by a laser according to a predetermined winding path, so that the inner surface of the wire groove can be formed while the wire groove is formed, so that the precious metal layer 6 can be uniformly and firmly adhered.
  • the process of laser engraving processing of the wire groove 3 in the present embodiment is also a process of forming the wire groove 3. That is, before the wire groove 3 is roughened, the wire groove 3 is virtually present on the carrier 1, and the actually existing wire groove 3 is not visible on the carrier 1.
  • This wire groove 3 formed by laser engraving on the surface of the carrier 1 has a rectangular cross section, and the width of the wire groove 3 is much larger than the depth thereof. In general, the depth of the wire groove 3 is generally several micrometers, and the width thereof ranges from 0.2 mm to 10 mm, and the spacing between adjacent wire grooves 3 ranges from 0.2 mm to 10 mm.
  • the structure of the conductive layer 2 in this embodiment can be further optimized.
  • the conductive layer 2 includes at least a first conductive layer, and the first conductive layer is attached to the noble metal layer 6 by electroless plating.
  • the conductive layer 2 further includes a second conductive layer, and the second conductive layer is attached to the first conductive layer by electroplating.
  • the electroless plating method is: immersing the carrier 1 in the electroless plating solution, and catalyzing the noble metal layer 6 attached to the wire groove 3, the conductive metal ions in the electroless plating solution adhere to the inner surface of the wire groove 3 by the oxidation-reduction reaction. Forming a first conductive layer.
  • This electroless plating method makes it easier to adhere the first conductive layer on the very thin noble metal layer 6, and makes it easier to attach the second conductive layer on the first conductive layer by electroplating later, but the electroless plating can be adhered.
  • the thickness of the first conductive layer is very thin and can only be adapted to the case of low power heating of the coil disk.
  • the second conductive layer needs to be attached to the first conductive layer by electroplating, because the second conductive layer attached by electroplating has a relatively large thickness and a fast attachment speed.
  • the method of electroplating the second conductive layer is to pass the chemical
  • the plated carrier is immersed in the plating solution, and the conductive metal ions in the plating solution undergo a redox reaction under the action of a current, and the conductive metal particles are formed to adhere to the first conductive layer to form a second conductive layer.
  • the material used for the conductive layer 2 in this embodiment is copper because copper has good electrical conductivity.
  • the conductive layer 2 can also be made of other electrically conductive materials such as silver or aluminum.
  • the material used for the conductive layer 2 may also be a combination of the above several conductive materials. That is, the material of the conductive layer 2 may be one of copper, silver, and aluminum or a mixture of any of them.
  • the conductive layer 2 when the conductive layer 2 is made of a conductive material having poor oxidation resistance such as copper or silver, it is also required to adhere the oxidation preventing layer 5 outside the conductive layer 2, that is, an oxidation preventing layer is disposed outside the second conductive layer. 5, in order to prevent the oxidation of the conductive layer 2 from affecting the electrical conductivity of the conductive layer 2.
  • the oxidation preventing layer 5 may not be provided.
  • the material of the oxidation preventing layer 5 is nickel, and may be one of nickel, silver, aluminum, and gold or a mixture of any of them.
  • the first conductive layer has a thickness of 5 um to 10 um
  • the second conductive layer has a thickness of 40 um to 70 um
  • the oxidation preventing layer 5 has a thickness of 5 um to 10 um.
  • the thicknesses of the first conductive layer, the second conductive layer, and the oxidation preventing layer 5 can be adjusted accordingly according to actual conditions.
  • the carrier 1 has a first mounting surface and a second mounting surface opposite to each other in the thickness direction, and the slot 3 includes a first slot disposed on the first mounting surface, and a setting a second wire slot on the second mounting surface.
  • the coil disk may be arranged in a single-sided line groove shape or a double-sided wire groove shape, that is, the wire groove 3 may be disposed on one side or both sides of the carrier 1, and the conductive layer 2 is disposed in the wire groove 3.
  • the technical content of the third embodiment is the same as that of the first embodiment and the second embodiment.
  • the difference between the third embodiment and the second embodiment is the forming manner of the wire slot 3, which can be compared with the above embodiment.
  • the second embodiment can be seen as follows:
  • the wire groove 3 of the second embodiment is formed at the same time as the roughening treatment (ie, laser engraving treatment) of the carrier 1; and the wire groove 3 in the embodiment is formed at the same time as the carrier 1 is formed or formed in the carrier 1 It is then formed by a tool engraving process (such as CNC machining), and then the wire groove 3 is roughened.
  • a tool engraving process such as CNC machining
  • the wire groove 3 is roughened.
  • the material of the carrier is plastic
  • a convex ring extending along a predetermined winding path may be disposed on the inner surface of the mold, so that a surface extending along the predetermined winding path may be formed on the surface of the carrier while the carrier is injection molded. Trunking.
  • the depth of the wire groove 3 is generally several micrometers; and the depth of the wire groove 3 in the embodiment is generally several millimeters.
  • the cross section of the wire groove 3 is a rectangle, the wire groove 3 has the same opening width, and the adhesion surface of the conductive layer 2 in the second embodiment is only the bottom wall of the wire groove 3;
  • the attachment surface adds two side walls of the slot 3 in addition to the bottom wall of the slot 3. That is, the cross-sectional area of the conductive layer 2 is larger than the width of the conductive layer 2 in the second embodiment.
  • the cross-sectional area of the conductive layer 2 in this embodiment is larger than that of the above embodiment.
  • the inner surface of the wire groove 3 is relatively smooth. If the wire groove 3 is directly activated, the precious metal layer 6 is relatively difficult to uniformly adhere to the inner surface of the wire groove 3.
  • a preferred embodiment of the present embodiment is to roughen the wire groove 3 prior to the activation process to form a rough surface on the inner surface of the wire groove so that the precious metal layer 6 can be uniformly and firmly adhered to the inner surface of the wire groove 3.
  • the roughening treatment provided in this embodiment is that the wire groove is engraved in accordance with the extending direction of the wire groove by the laser. Of course, chemical roughening can also be used.
  • the cross-sectional shape of the wire groove 3 in this embodiment is an expansion shape which gradually widens from the bottom of the groove to the notch, that is, from the bottom of the groove of the wire groove.
  • the side walls on both sides of the slot are respectively expanded outward, and the slot 3 of the shape can ensure that the laser is simultaneously engraved to the bottom wall and the two side walls of the slot 3.
  • the cross section of the wire groove 3 is preferably an inverted trapezoidal shape, an inverted triangular shape or a semicircular arc shape.
  • the laser is subjected to laser engraving and roughening treatment on the wire grooves 3 of these shapes, the laser light can be simultaneously irradiated to the bottom wall and the two side walls of the wire groove 3, that is, the roughening treatment of the wire grooves 3 can be completed by one laser irradiation.
  • the laser irradiating the slot 3 at most can only be processed to one side wall and one bottom wall of the slot 3 at the same time, and it is difficult to simultaneously process the bottom wall of the slot 3 and the two.
  • the side walls, that is, the wire grooves 3 having a rectangular cross section require at least two laser irradiations to complete the roughening treatment of the wire grooves 3.
  • the cross section of the wire groove 3 of the present embodiment has an inverted isosceles shape, and the angle between the side wall of the wire groove 3 and the bottom wall is 15° to 75°.
  • the thickness h of the carrier 1 is 2-8 mm
  • the width range L1 of the bottom wall of the wire groove 3 is 0.5 mm to 1.5 mm
  • the depth of the wire groove 3 is 2 mm to 8 mm.
  • There are isolation ribs between two adjacent wire grooves 3 ie, there are isolation ribs between adjacent rings of the wire groove 3
  • the cross section of the isolation ribs is an isosceles trapezoid
  • the width of the top of the isolation ribs ranges from 0.2 mm to 1.0 mm. .
  • the above parameters can be set to make the coils in the slot have good electrical conductivity and good insulation between adjacent coils.
  • the carrier 1 is first formed by injection molding of plastic particles, and at the same time, the wire groove 3 is formed in the process of molding the carrier 1, that is, the wire groove 3 is integrally injection molded with the carrier 1.
  • the surface of the wire groove 3 is a rough surface for adsorbing the noble metal layer 6, and the carrier 1 is roughened before the surface of the wire groove 3 is activated.
  • the roughening treatment is laser laser engraving
  • the wire groove 3 is formed during the laser laser engraving process of the carrier 1. Specifically, the wire groove 3 was laser-engraved on the obtained carrier 1 by using a laser to obtain a rough surface for adsorbing the noble metal layer 6.
  • the number of turns of different slot 3 can be lasered, and then the carrier 1 is activated, and the noble metal layer 6 is formed on the inner surface of the line groove 3, and the strong surface is formed by the rough surface to make contact with the precious metal layer 6. More solid.
  • a fourth The method for the coil disk described above specifically includes the following steps:
  • the carrier 1 is formed; specifically, when the material of the carrier 1 is plastic, the molten plastic is injected into the mold to form a carrier; when the material of the carrier 1 is ceramic, the porcelain clay is first extruded into a blank through a die, and then The blank is sintered into a carrier; when the material of the carrier 1 is a metal coated with an insulating material, the metal material is first formed by stamping, and then the insulating layer is formed on the metal by spraying or injection molding.
  • step S2 forming a wire groove, forming a wire groove extending on the carrier according to a predetermined winding path; further, the wire groove in step S2 is formed by laser engraving the carrier according to a predetermined winding path to form a carrier
  • the inner surface is a rough groove. That is, the wire groove is roughened while forming the wire groove 3
  • the wire groove 3 can also be formed by engraving the carrier 1 according to a predetermined winding path after the carrier 1 is formed, for example, CNC machining the carrier 1 and the CNC machining path is a predetermined winding path. .
  • the wire groove 3 can be formed while the carrier 1 is being molded.
  • the molding process of the carrier 1 includes: feeding the carrier material into the mold, the inner surface of the mold being provided with a convex ring extending according to a predetermined winding path to imprint the surface of the carrier and extending according to a predetermined winding path while the carrier is being formed. Trunking.
  • the wire grooves formed by the two methods can increase the area of the wire-bonding conductive layer with respect to the wire groove formed by laser laser engraving without changing the surface area of the carrier, thereby reducing the resistance of the coil.
  • an activation treatment immersing the carrier 1 in an activation liquid, the activation solution comprising a noble metal compound, the noble metal ions in the noble metal compound being reduced to noble metal particles and adsorbed on the inner surface of the wire groove 3 to form a noble metal layer 6 ;
  • the activation fluid also includes concentrated acid, a reducing agent and a complexing agent.
  • the method for disposing the activation liquid in the step S3 is: S31, dissolving the precious metal compound solution in the concentrated acid solution, and adding a reducing agent thereto to form a first mixed liquid; S32, adding the network in the first mixed liquid mixture.
  • the noble metal compound is palladium chloride or silver chloride
  • the concentrated acid is concentrated hydrochloric acid or concentrated sulfuric acid
  • the reducing agent is tin dichloride
  • the complexing agent is sodium citrate, sodium cyanide, sodium tartrate or sodium pyrophosphate.
  • This step S3 can be further exemplified by the following preferred examples: 0.3 g of the PdCl 2 solution is dissolved in a mixed solution of 10 ml of concentrated HCL and 10 ml of distilled water, and 12 g of SnCl 2 is further added thereto to form a first mixed solution; and 250 g of sodium citrate is further taken. NaCN, sodium tartrate or sodium pyrophosphate is dissolved in 1.5 L of distilled water to form a second mixture; the first mixture is stirred and mixed with the second mixture. The first mixed liquid and the second mixed liquid were continuously stirred and mixed to obtain the activated colloid.
  • the main function of sodium citrate is to act as a stabilizer to complex Sn 2+ to prevent oxidation of Sn 2+ to Sn 4+ .
  • the step S4 specifically includes the following steps (refer to the following table):
  • the carrier 1 is immersed in the electroless plating solution, and the conductive metal ions in the electroless plating solution are catalyzed by the noble metal layer Oxidation-reduction reaction occurs, and conductive metal particles are formed to adhere to the line groove 3 to form a first conductive layer;
  • the implementation temperature in step S42 may be 40 ° C - 60 ° C, preferably 52 ° C, of course, the temperature The scope is not limited.
  • the electroless plating time is controlled at 60-90 minutes to achieve a sufficient reaction.
  • the implementation temperature in step S43 can be selected to be 20-60 ° C, of course, the temperature range is also not limited thereto, and according to different plating materials, different reaction time is controlled, when copper plating The time is controlled at 60-90 minutes; when nickel is electroplated, the time is controlled at 10-20 minutes.
  • the oxidation preventing layer 5 is formed on the second conductive layer by electroplating at a temperature of 55 ° C to 60 ° C, and the carrier 1 after the oxidation preventing layer 5 is plated is dried.
  • the present embodiment provides a method of fabricating a coil disk that can reduce the material requirements of the carrier 1.
  • LDS Laser Direct Structuring, Chinese name is laser direct molding technology
  • the noble metal layer 6 is adhered to the surface of the carrier 1 by means of activation treatment, and then the conductive layer 2 is adhered to the noble metal layer 6, so that the material requirements for the carrier 1 are greatly reduced, and various types and colors of ordinary plastics, ceramics, and coatings can be applied.
  • the metal material of the insulating layer is lower in cost.
  • the embodiment further provides an electromagnetic heating apparatus including the coil disk of the first to third embodiments.
  • the coil disk includes: the coil disk may include a carrier 1 having a wire groove 3 extending along a predetermined winding path, and an inner surface of the wire groove 3 is adhered with a noble metal layer 6 formed by an activation process, and the noble metal layer 6 A conductive layer 2 is attached to the upper layer.
  • the material and molding method of the coil disk carrier 1, the molding method of the wire groove 3, the composition of the conductive layer 2, and the manner in which the conductive layer 2 is attached to the inner wall of the wire groove 3 can be referred to the description of the front coil disk, and will not be described herein.
  • the coil disc can be improved, for example, a stopper 4 is further disposed at two ends of the conductive layer 2 of the coil disc, and the stopper 4 can be used as a terminal, and the material thereof can be copper or other conductive materials.
  • the electromagnetic heating device comprises an electromagnetic heating device as an induction cooker, a decocting machine, a soybean milk machine, an electric kettle, a coffee machine, an electric cooker, a rice cooker or an electric pressure cooker.
  • an electromagnetic heating device as an induction cooker, a decocting machine, a soybean milk machine, an electric kettle, a coffee machine, an electric cooker, a rice cooker or an electric pressure cooker.
  • the coil plate and the power board, the main board, the light board (manipulation display board), the temperature controller, the heat sensitive bracket, the fan, the power line, the furnace provided in the first embodiment, the second embodiment or the third embodiment are provided.
  • Panels ceramic plates, black crystal plates), plastic upper and lower covers, etc. can be assembled to form a complete induction cooker.
  • the shape of the coil disk carrier 1 will vary depending on the product of the particular application.
  • the coil disk carrier 1 is generally in the shape of a disk.
  • the shape of the coil disk carrier 1 is a hollow hemispherical shape, and can also be said to be in the shape of a bowl.
  • the coil disk carrier 1 may also have a cylindrical shape, that is, a hollow cylindrical shape. That is, the disk in the coil disk does not constitute any limitation on the shape of the coil disk. Others are the same as the first embodiment to the fourth embodiment, and are not described herein again.
  • the present invention provides a coil disk, a manufacturing method thereof, and an electromagnetic heating device.
  • the coil is directly wound on the surface of the carrier by attaching a conductive metal layer, which has the following technical effects compared with the prior art:
  • the winding process is simple, and it is not necessary to provide a structure such as a limiting groove and a positioning rib of the clamping coil on the carrier, so that the structure of the carrier is simpler.
  • the coil form is flexible and diverse, and can coil various shapes according to the user's needs, and has the characteristics of flexible production.
  • the production efficiency is high, the manufacturing efficiency of the coil disk is much higher than that of the conventional coiled copper wire production coil disk, which is advantageous for mass production.
  • the coil disk first attaches a precious metal layer on the surface of the carrier by means of activation treatment, and then attaches a conductive layer on the noble metal layer, so that the material requirements for the carrier are greatly reduced.
  • the coil disk can avoid the problems of jumper, scratch and short-circuit process during use, and it has high safety factor and The advantages of energy saving and consumption reduction.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种线圈盘及其制作方法、电磁加热设备。该线圈盘包括载体(1),载体(1)上设有按照预定绕线路径延伸的线槽(3),线槽(3)的表面附着有经过活化处理形成的贵金属层(6),贵金属层(6)上附着有导电层(2)。

Description

线圈盘及其制造方法、电磁加热设备 技术领域
本发明涉及电磁加热技术领域,尤其涉及一种线圈盘及其制作方法、电磁加热设备。
背景技术
随着现代科学技术的发展,能源的需求愈来愈高,节约能源也被世界各国及相关组织所重视,我国也相应的制定了一系列节能降耗的政策,生活电器的节能降耗是一个非常值得关注的方面,而各种加热线圈盘是每个家庭生活的必需品,其加热方式一般为电磁加热或者燃料火焰加热,如果能提高加热线圈盘的热利用效率,减少能源的浪费,就可以降低其消耗的电能和能源,所以从加热线圈盘入手,节能降耗,其产生的经济效益,节约的能源将非常可观。
目前,使用IH(英文名为Indirect Heating,中文名为间接加热)方式加热的小家电的线圈都是采用绕制漆包线的方式制作。这种绕线的制作工艺复杂,电磁炉、电压力锅及电饭煲所用的线圈需要根据具体使用场合绕制不同的线圈,浪费材料。绕制漆包线的加热线圈盘在使用过程中容易出现跳线、刮伤、短线及制程不良的问题,其安全系数低,而且线圈的形式单一。
发明内容
本发明要解决的技术问题为现有小家电绕线工艺复杂,在使用过程中容易出现跳线、刮伤、短线、制程不良、安全系数低及线圈形式单一的问题。
为了解决上述技术问题,本发明提供一种线圈盘,其包括载体,所述载体上设有按照预定绕线路径延伸的线槽,所述线槽的表面附着有经过活化处理形成的贵金属层,所述贵金属层上附着有导电层。
可选地,所述导电层至少包括第一导电层,所述第一导电层通过化学镀的方式附着在所述贵金属层上。
可选地,所述第一导电层的厚度范围为5um~10um。
可选地,所述导电层还包括第二导电层,所述第二导电层通过电镀的方式附着在所述第一导电层上。
可选地,所述第二导电层的厚度范围为40um~70um。
可选地,所述导电层的材质为铜、银和铝中的至少一种。
可选地,所述导电层上还附着有防氧化层。
可选地,所述防氧化层的厚度范围为5um~10um。
可选地,所述防氧化层的材质为镍、银、铝和金中的至少一种。
可选地,所述线槽的预定绕线路径呈涡旋状。
可选地,所述线槽是通过激光按照预定的绕线路径对所述载体进行雕刻形成。
可选地,所述线槽的宽度范围为0.2mm~10mm,线槽相邻圈之间的间距范围为0.2mm~10mm。
可选地,所述线槽的内表面为粗糙面,所述粗糙面在所述线槽形成的同时形成。
可选地,所述线槽在所述载体成型过程中同时形成或者所述线槽在载体成型后通过刀具雕刻形成,自所述线槽的槽底向槽口的方向,所述线槽两侧的侧壁分别向外扩张。
可选地,所述线槽的内表面为粗糙面,所述粗糙面通过对线槽的内表面进行粗糙化处理形成。
可选地,所述对线槽的内表面进行粗糙化处理的方式为激光雕刻处理。
可选地,所述线槽的横截面呈倒梯形状、倒三角形状或者半圆弧状。
可选地,所述线槽的横截面呈倒等腰梯形状,线槽的侧壁和底壁法向的夹角范围为15°~75°,线槽的深度范围为2mm~8mm。
可选地,所述线槽相邻圈之间具有隔离筋,隔离筋的横截面呈等腰梯形,隔离筋顶部的宽度范围为0.2mm~1.0mm。
可选地,所述载体具有沿厚度方向相对的两个安装面,所述线槽包括按照第一预定绕线路径设置在其中一个安装面上的第一线槽,以及按照第二预定绕线路径设置在另一个安装面上的第二线槽。
可选地,所述载体的材质为塑料、陶瓷或外部包覆有绝缘层的金属。
本发明还提供一种电磁加热设备,其包括所述的线圈盘,所述线圈盘用于电磁加热。
本发明又提供一种线圈盘的制作方法,其包括如下步骤为:
S1、载体成型;
S2、线槽成型,在所述载体上形成按照预定绕线路径延伸的线槽;
S3、活化处理,将所述载体浸入活化液中,所述活化液中包括贵金属化合物,所述贵金属化合物中的贵金属离子被还原为贵金属微粒并吸附在所述线槽的内表面上,以形成贵金属层;
S4、在所述贵金属层上附着导电层。
其中,步骤S2中的线槽成型的步骤为用激光按照预定的绕线路径对载体进行镭雕处理,以形成内表面为粗糙面的线槽。其中,所述步骤S2中的线槽成型包括:用刀具按照预定的绕线路径对所述载体进行雕刻处理;或者所述步骤S2中的线槽成型与所述步骤S1中的载 体成型为同一步骤,所述步骤S1载体成型包括:将载体材料投入模具中,所述模具的内表面设有按照预定的绕线路径延伸的凸环,以在载体成型的同时在载体的表面印刻出按照预定绕线路径延伸的线槽。
其中,步骤S4中在所述贵金属层上附着导电层包括:所述载体浸泡在化学镀液中,化学镀液中的导电金属离子在贵金属层的催化作用下发生氧化还原反应,生成导电金属微粒附着在所述线槽上,形成第一导电层;
步骤S4中在所述贵金属层上附着导电层还包括:将所述经过化学镀处理的载体浸入电镀液中,所述电镀液中的导电金属离子在电流的作用下发生氧化还原反应,生成导电金属微粒附着在所述第一导电层上形成所述第二导电层。
其中,步骤S4在所述贵金属层上附着导电层之后还包括:通过电镀方式在导电层上附着防氧化层。
本发明提供一种线圈盘及其制作方法、电磁加热设备,通过附着导电金属层的方式在载体的表面上直接绕制线圈,相比于现有技术其具有如下技术效果:
一、绕线工艺简单,不需要在载体上设置卡接线圈的限位槽、定位筋之类的结构,使得载体的结构更为简单。
二、线圈形式灵活多样,可以根据用户的需求来绕制各种形状的线圈,具有柔性化生产的特点。
三、生产效率高,该线圈盘的制造效率较以往的绕制铜线生产线圈盘的方式高很多,利于量产。
四、降低载体的材料要求,该线圈盘首先通过活化处理的方式在载体的表面附着贵金属层,然后在贵金属层上附着导电层,使得对载体的材料要求大大降低。
五、使用方便且安全系数高,该线圈盘相比于传统绕制漆包线的方式,其在使用过程中可实现避免出现跳线、刮伤、短线的制程不良的问题,其具有安全系数高和节能减耗的优点。
附图说明
图1是本发明实施例一线圈盘的俯视图;
图2是本发明实施例一线圈盘的立体图;
图3是本发明实施例二双面线槽状的线圈盘的结构示意图;
图4是图3的A-A剖视图;
图5是本发明实施例二单面线槽状的线圈盘的结构示意图;
图6是图5的B-B剖视图;
图7是本发明实施例二防氧化层、导电层及贵金属层的位置关系示意图。
附图标记:
载体1;导电层2;线槽3;挡块4;防氧化层5;贵金属层6。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
结合图1、图2及图7所示,本实施例提供一种线圈盘,该线圈盘包括载体1,载体1上设有按照预定绕线路径延伸的线槽3,所谓预定绕线路径为预先设置的绕线方式,其形式可根据实际需要灵活设置,在此并不局限,例如:预定绕线路径可呈涡旋状,也称之为阿基米德螺旋状。线槽3的表面附着有经过活化处理形成的贵金属层6,贵金属层6上附着有导电层2。
可见,本实施例提供的线圈盘通过附着导电金属层的方式在载体1的表面上直接绕制线圈,不仅不需要在载体1上设置卡接线圈的限位槽、定位筋之类的结构,使得载体1的结构更为简单;而且还可以根据用户的需求来绕制各种形状的线圈,具有柔性化生产的特点。此外,这种线圈盘的制造效率较以往的绕制铜线生产线圈盘的方式高很多。更重要的是,本实施例首先通过活化处理的方式在线槽3的表面附着贵金属层6,然后在贵金属层6上附着导电层2,使得对载体1的材料要求大大降低,比如可以采用普通塑料、陶瓷,甚至是覆盖有绝缘层的金属。
实施例二
本实施例二与实施例一相同的技术内容不重复描述,实施例一公开的内容也属于本实施例二公开的内容,本实施例二是在实施例一的基础上做进一步的细化所得。
首先,本实施例中载体1的材质可为塑料。比如PC塑料,即载体1通过PC塑料注塑成型得到。PC塑料的成型具有收缩率低、强度高、耐疲劳性、尺寸稳定、蠕变极少的特点,而且在较宽的温度及湿度范围内具有稳定的电绝缘性。此外,采用PC塑料制成的线圈盘比传统的线圈盘更轻薄。当然,本实施例中载体1还可以根据需求采用其他绝缘性好的塑料,如聚苯醚或工程塑料等。除了塑料之外,本实施例中载体1的材质还可拓展为陶瓷或者包覆有绝缘层的金属当载体1的材质为包覆有绝缘层的金属时,线槽开设在绝缘层上,且沿载体1厚度方向不贯穿绝缘层。
其次,本实施例通过对线槽3的内表面进行活化处理从而实现使之附着贵金属层6。其中,贵金属主要指金、银和铂族金属(钌、铑、钯、锇、铱、铂)等8种金属元素。
该活化处理的具体方式为:将线圈盘的载体1浸入活化液中,活化液包括贵金属化合物、浓酸,还原剂和络合剂。贵金属化合物可以为氯化钯或者氯化银,浓酸可以为浓盐酸或者浓硫酸,还原剂可以为二氯化锡,络合剂可以为柠檬酸纳、氰化钠,酒石酸钠或者焦磷酸钠。其中,浓酸用于溶解贵金属化合物;还原剂用于将贵金属化合物还原成贵金属层6附着在线槽3的内表面;络合剂将贵金属化合物和还原剂保持在悬浮状态,使得贵金属化合物和还原剂在溶液状态时不发生氧化还原反应,只在与线槽3内表面接触时才发生氧化还原反应。
对应的,本实施例还提供的一种具体配置活化液的方法:将PdCl2溶液溶于浓HCL和蒸馏水的混合溶液中,再向该混合液中加入SnCl2,形成第一混合液;取柠檬酸纳、NaCN,酒石酸钠或焦磷酸钠溶于蒸馏水中,形成第二混合液;将第一混合液与第二混合液搅拌混合,形成活化液。
本实施例中,线槽3通过激光按照预定的绕线路径对载体1进行雕刻处理形成,这样可以在线槽成型的同时在线槽的内表面形成粗糙面,使得贵金属层6能均匀且牢固的附着在线槽3的内表面。
值得注意的是,本实施例中对线槽3进行激光雕刻处理的过程(即粗糙化处理的过程)同时也是线槽3成型的过程。即在对线槽3进行粗糙化处理之前,这个线槽3在载体1上是虚拟存在的,在载体1上并不能看到实际存在的线槽3。这种通过激光雕刻在载体1的表面形成的线槽3横截面呈矩形状,线槽3的宽度远大于其深度。一般而言,这种线槽3的深度一般为几个微米,其宽度范围为0.2mm~10mm,相邻线槽3之间的间距范围为0.2mm~10mm。
最后,本实施例中的导电层2的结构也可以进一步优化。例如:导电层2至少包括第一导电层,第一导电层通过化学镀的方式附着在贵金属层6上。当然,导电层2还包括第二导电层,第二导电层通过电镀的方式附着在第一导电层上。
其中,化学镀的方式为:将载体1浸泡在化学镀液中,在线槽3上附着的贵金属层6催化下,化学镀液中的导电金属离子通过发生氧化还原反应附着在线槽3的内表面,形成第一导电层。这种化学镀的方式更容易在非常稀薄的贵金属层6上牢固地附着第一导电层,而且使得后续更容易通过电镀的方式在第一导电层上附着第二导电层,但化学镀能附着的第一导电层的厚度非常薄,只能适应线圈盘小功率加热的情况。当线圈盘需要实现大功率加热的时候,需要通过电镀的方式在第一导电层上附着第二导电层,因为通过电镀方式附着的第二导电层厚度比较大,而且附着速度快。电镀第二导电层的方式是将所述经过化学 镀处理的载体浸入电镀液中,电镀液中的导电金属离子在电流的作用下发生氧化还原反应,生成导电金属微粒附着在第一导电层,形成第二导电层。
本实施例中导电层2采用的材料为铜,因为铜具有良好的导电性。当然导电层2还可以采用银或铝等其它电良导体材料。导电层2采用的材料还可以为上述几种导电材料的组合。即导电层2的材质可以为铜、银和铝中的一种或者任意几种的混合形成。
如图7所示,当导电层2采用铜或者银等防氧化性能比较差的导电材料时,还需要在导电层2外附着防氧化层5,即在第二导电层外设置有防氧化层5,以防止导电层2的氧化影响导电层2的导电性能。当导电层2采用铝等防氧化性能比较好的材料时,也可以不设置防氧化层5。防氧化层5的材质为镍,也可以为镍、银、铝及金中的一种或者任意几种的混合。
具体而言,第一导电层的厚度为5um-10um,第二导电层的厚度为40um-70um,防氧化层5的厚度为5um-10um。当然还可以根据实际情况要求对第一导电层、第二导电层和防氧化层5的厚度做相应的调整。
结合图3至图6所示,本实施例中载体1具有沿厚度方向相对的第一安装面及第二安装面,线槽3包括设置于第一安装面上的第一线槽,以及设置于第二安装面上的第二线槽。线圈盘可以设置为单面线槽状或双面线槽状,即载体1的单面或两面均可设置有线槽3,线槽3内均设置导电层2。采用这种方案,由于线圈盘的两侧均设置有导电层2绕制的线圈,故可以在线圈盘载体1体积不变的情况下,将线圈盘的加热功率提高将近一倍。
实施例三
同理,本实施例三与实施例一、实施例二相同的技术内容不再赘述,本实施例三与实施例二的区别在于线槽3的成型方式,具体可通过对比本实施例与上述实施例二可知,如下:
上述实施例二的线槽3是在对载体1进行粗糙化处理(即激光雕刻处理)的同时形成;而本实施例中的线槽3则是在载体1成型的同时形成或者在载体1成型后通过刀具雕刻处理(比如CNC加工)形成,之后再对线槽3进行粗糙化处理。具体而言,当载体的材质为塑料时,可以在模具的内表面设置按照预定绕线路径延伸的凸环,这样就可以在载体注塑成型的同时在载体的表面形成按照预定绕线路径延伸的线槽。上述实施例二中线槽3的深度一般为几个微米;而本实施例中的线槽3深度一般有几个毫米。以线槽3的横截面呈矩形为例,在线槽3具有相同开口宽度的情况下,上述实施例二中的导电层2附着面仅为线槽3的底壁;而本实施例导电层2的附着面除了线槽3的底壁之外还增加了线槽3的两个侧壁。即本实施例中导电层2的横截面宽度大于上述实施例二中导电层2的宽度,在导电层2的厚度相同的情况下,本实施例中导电层2的横截面积大于上述实施例二中导电层2 的横截面积。根据电阻公式R=ρ.L/S可知,在电阻率绕线匝数不变的情况下,增大横截面积可以减少电阻。根据功率公式P=U2/R,在电压不变的情况下,降低电阻,可以提高线圈盘的加热功率。
采用这两种方式形成的线槽3,线槽3的内表面比较光滑,如果对直接对线槽3进行活化处理,贵金属层6比较难以均匀的附着在线槽3的内表面。本实施例的一个优选方案是在活化处理之前对线槽3进行粗糙化处理,以在线槽的内表面形成粗糙面,使得贵金属层6能均匀且牢固的附着在线槽3的内表面。本实施例提供的粗糙化处理为用激光按照线槽的延伸方向对线槽进行雕刻处理。当然还可以采用化学粗糙处理法。为了便于仅通过一次激光雕刻就能完成线槽的粗糙化处理,本实施例中线槽3的横截面形状为自其槽底向槽口逐渐变宽的扩张状,即自线槽的槽底向槽口的方向,线槽两侧的侧壁分别向外扩张,该形状的线槽3能够保证激光同时雕刻到线槽3的底壁和两个侧壁。
优选的,线槽3的横截面优选为倒梯形、倒三角形或者半圆弧形。激光对这些形状的线槽3进行激光雕刻粗糙化处理时,激光能同时照射到线槽3的底壁和两个侧壁,即通过一次激光照射就能完成线槽3的粗糙化处理。而对于横截面为矩形的线槽3,激光对线槽3进行一次照射至多只能同时处理到线槽3的一个侧壁和一个底壁,很难同时处理到线槽3的底壁和两个侧壁,即对于横截面为矩形的线槽3至少需要两次激光照射才能完成线槽3的粗糙化处理。
结合图4、图6所示,本实施例线槽3的横截面呈倒等腰梯形状,线槽3的侧壁和底壁法向的夹角范围为15°~75°。载体1的厚度h为2-8mm,线槽3底壁的宽度范围L1为0.5mm~1.5mm,线槽3的深度范围为2mm~8mm。相邻两个线槽3之间具有隔离筋(即线槽3相邻圈之间具有隔离筋),隔离筋的横截面呈等腰梯形,隔离筋顶部的宽度范围L2为0.2mm~1.0mm。上述参数的设置,既可以使得线槽内的线圈具有良好的导电性,又使得线圈相邻圈之间具有良好的绝缘性。
可见,本实施例中,首先利用塑料颗粒注塑成型形成载体1,同时在载体1成型的过程中形成线槽3,即线槽3与载体1一体注塑成型。线槽3的表面为用于吸附贵金属层6的粗糙面,在对线槽3表面做活化处理之前对载体1做粗糙化处理。当粗糙化处理为激光镭雕处理,线槽3在对载体1进行激光镭雕处理的过程中形成。具体的,通过使用镭射机在制得的载体1上激光雕刻线槽3以得到用于吸附贵金属层6的粗糙面。可根据不同需求,镭射不同的线槽3的圈数,然后对载体1进行活化处理,在线槽3的内表面形成贵金属层6,利用粗糙面形成强吸附力,使之与贵金属层6接触得更牢固。
实施例四
本实施例四在上述实施例一、实施例二及实施例三的基础上,还提供了一种用于制作 上述线圈盘的方法,具体包括如下步骤:
S1、载体1成型;具体的,当载体1的材质为塑料时,将熔融的塑料注入模具形成载体;当载体1的材质为陶瓷时,先将瓷泥通过模具挤压成毛坯,然后再将毛坯烧结成载体;当载体1的材质为包覆绝缘材料的金属时,先将金属材料冲压成型,然后在金属上通过喷涂或者注塑的方式形成绝缘层。
S2、线槽成型,在所述载体上形成按照预定绕线路径延伸的线槽;进一步的,步骤S2中的线槽成型为用激光按照预定的绕线路径对载体进行镭雕处理,以形成内表面为粗糙面的线槽。即在形成线槽3成型的同时对线槽做了粗糙化处理
除此之外,该线槽3还可在载体1成型后,用刀具按照预定的绕线路径对载体1进行雕刻处理形成,比如对载体1进行CNC加工,CNC加工轨迹为预定的绕线路径。或者线槽3还可以在载体1成型的同时形成。载体1的成型过程包括:将载体材料投入模具中,模具的内表面设有按照预定的绕线路径延伸的凸环,以在载体成型的同时在载体的表面印刻出按照预定绕线路径延伸的线槽。采用这两种方式形成的线槽,相对于通过激光镭雕形成的线槽,能在载体表面面积不变的情况下,增加线槽附着导电层的面积,从而降低线圈的电阻。
S3、活化处理,将所述载体1浸入活化液中,活化液包括贵金属化合物,贵金属化合物中的贵金属离子被还原为贵金属微粒并吸附在所述线槽3的内表面上,以形成贵金属层6;
该活化液还包括浓酸,还原剂和络合剂。对应的,该步骤S3中活化液的配置方法为:S31、将贵金属化合物溶液溶于浓酸溶液中,再向其中加入还原剂,形成第一混合液;S32、在第一混合液中添加络合剂。其中,贵金属化合物为氯化钯或氯化银,浓酸为浓盐酸或者浓硫酸,还原剂为二氯化锡,络合剂为柠檬酸纳、氰化钠、酒石酸钠或焦磷酸钠。
该步骤S3具体可通过如下优选实施例进一步阐述:将0.3gPdCl2溶液溶于10ml浓HCL和10ml蒸馏水的混合溶液中,再向其中加入12gSnCl2,形成第一混合液;再取250g柠檬酸纳、NaCN,酒石酸钠或焦磷酸钠溶于1.5L蒸馏水中,形成第二混合液;将第一混合液与第二混合液搅拌混合。将第一混合液和第二混合液不断搅拌混合,即得到了该次活化胶体。其中柠檬酸钠主要作用是起到稳定剂的作用,络合Sn2+,防止Sn2+被氧化成Sn4+
S4、在贵金属层6上附着导电层2。
该步骤S4中具体包括如下步骤(可参考下表):
S41、清洗经活化处理的载体1;具体可通过高压水在20-30℃条件进行清洗,可优选为25℃,当然,该温度范围并不局限。
S42、载体1浸泡在化学镀液中,化学镀液中的导电金属离子在贵金属层的催化作用下 发生氧化还原反应,生成导电金属微粒附着在线槽3上,从而形成第一导电层;进一步的,步骤S42中的实施温度可选为40℃-60℃时,优选为52℃,当然,该温度范围并不局限。而且,化学镀的时间控制在60-90分钟,以实现充分反应。
S43、将所述经过化学镀处理的载体浸入电镀液中,所述电镀液中的导电金属离子在电流的作用下发生氧化还原反应,生成导电金属微粒附着在所述第一导电层形成第二导电层,优选的,步骤S43中的实施温度可选为20-60℃,当然,该温度范围同样也不局限于此,而且,根据电镀材料的不同,控制不同的反应时间,当电镀铜时,时间控制在60-90分钟;当电镀镍时,时间控制在10-20分钟。
S44、将镀完第二导电层的载体1进行干燥,具体的,通过干燥柜选在温度为100℃时对载体1进行干燥。
此外,在步骤S43完成后,在温度为55℃-60℃时,在第二导电层上通过电镀的方式形成防氧化层5,再将镀完防氧化层5后的载体1进行干燥。
导电层金属化工艺表
工序 槽类别 t/min T/℃
清洗 高压水 25
化学镀铜 ENPLATE MID select 9060 60-90 52
电镀铜 Cupatier Elektrolyt 80L 90-150 25
电镀镍 Cupatier Elektrolyt 80L 10-20 60
干燥 干燥柜 60 100
由上述分析可知,本实施例提供制作线圈盘的方法可降低载体1的材料要求。相比于现有基于激光的选择性化镀工艺技术LDS(英文名为Laser Direct Structuring,中文名为激光直接成型技术)而言,其优势显而易见。首先通过活化处理的方式在载体1的表面附着贵金属层6,然后在贵金属层6上附着导电层2,使得对载体1的材料要求大大降低,可适用多种类和颜色的普通塑料以及陶瓷、覆绝缘层的金属材料,成本更低。
实施例五
本实施例还提供一种电磁加热设备,其中,包括实施例一至实施例三中的线圈盘。即该线圈盘包括:该线圈盘可以包括载体1,载体1上设有按照预定绕线路径延伸的线槽3,线槽3的内表面附着有经过活化处理形成的贵金属层6,贵金属层6上附着有导电层2。线圈盘载体1的材料和成型方式,线槽3的成型方式,导电层2的组成和导电层2附着于线槽3内壁的方式等均可以参照前面线圈盘的描述,此处不再赘述。此外,还可对线圈盘进步改进,例如:在线圈盘的导电层2两端还设置有挡块4,挡块4可以作为接线端,其材质可以为铜,也可以为其他导电材质。
该电磁加热设备包括电磁加热设备为电磁炉、煎拷机、豆浆机、电热水壶、咖啡机、电炖盅、电饭煲或者电压力锅。对于电磁炉来说,将实施例一、实施例二或者实施例三提供的线圈盘与功率板、主机板、灯板(操控显示板)、温控器、热敏支架、风机、电源线、炉面板(瓷板、黑晶板)、塑胶上下盖等组装起来就可以构成一个完整的电磁炉。
值得说明的是,根据具体应用的产品不同,线圈盘载体1的形状会有不同的变化。比如对于电磁炉和电热水壶来说,线圈盘载体1的形状一般为圆盘状。对于电饭煲和电压力锅而言,线圈盘载体1的形状则为空心的半球状,也可以说呈碗状。而且如果要使得线圈盘载体1直接对电饭煲和电压力锅的内锅侧壁加热的话,线圈盘载体1还可以为圆筒状,即空心的圆柱状。即线圈盘中的盘并不对线圈盘的形状构成任何限定此外。其他同实施例一至实施例四,此处不再赘述。
综上所述,本发明提供一种线圈盘及其制作方法、电磁加热设备,通过附着导电金属层的方式在载体的表面上直接绕制线圈,相比于现有技术其具有如下技术效果:
一、绕线工艺简单,不需要在载体上设置卡接线圈的限位槽、定位筋之类的结构,使得载体的结构更为简单。
二、线圈形式灵活多样,可以根据用户的需求来绕制各种形状的线圈,具有柔性化生产的特点。
三、生产效率高,该线圈盘的制造效率较以往的绕制铜线生产线圈盘的方式高很多,利于量产。
四、降低载体的材料要求,该线圈盘首先通过活化处理的方式在载体的表面附着贵金属层,然后在贵金属层上附着导电层,使得对载体的材料要求大大降低。
五、使用方便且安全系数高,该线圈盘相比于传统绕制漆包线的方式,其在使用过程中可实现避免出现跳线、刮伤、短线的制程不良的问题,其具有安全系数高和节能减耗的优点。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围

Claims (29)

  1. 一种线圈盘,其特征在于,包括:
    载体,所述载体上设有按照预定绕线路径延伸的线槽;
    贵金属层,所述贵金属层经过活化处理形成且附着在所述线槽的表面;
    导电层,所述导电层附着在所述贵金属层上。
  2. 根据权利要求1所述的线圈盘,其特征在于,所述导电层至少包括第一导电层,所述第一导电层通过化学镀的方式附着在所述贵金属层上。
  3. 根据权利要求2所述的线圈盘,其特征在于,所述第一导电层的厚度范围为5um~10um。
  4. 根据权利要求2所述的线圈盘,其特征在于:所述导电层还包括第二导电层,所述第二导电层通过电镀的方式附着在所述第一导电层上。
  5. 根据权利要求4所述的线圈盘,其特征在于,所述第二导电层的厚度范围为40um~70um。
  6. 根据权利要求1-5中任一项所述的线圈盘,其特征在于,所述导电层的材质为铜、银和铝中的至少一种。
  7. 根据权利要求1-6中任一项所述的线圈盘,其特征在于,所述导电层上还附着有防氧化层。
  8. 根据权利要求7所述的线圈盘,其特征在于,所述防氧化层的厚度范围为5um~10um。
  9. 根据权利要求7或8所述的线圈盘,其特征在于:所述防氧化层的材质为镍、银、铝和金中的至少一种。
  10. 根据权利要求1-9中任一项所述的线圈盘,其特征在于,所述线槽的预定绕线路径呈涡旋状。
  11. 根据权利要求1-10中任一项所述的线圈盘,其特征在于,所述线槽是通过激光按照预定的绕线路径对所述载体进行雕刻形成。
  12. 根据权利要求11所述的线圈盘,其特征在于,所述线槽的宽度范围为0.2mm~10mm,线槽相邻圈之间的间距范围为0.2mm~10mm。
  13. 根据权利要求11或12所述的线圈盘,其特征在于,所述线槽的内表面为粗糙面,所述粗糙面在所述线槽形成的同时形成。
  14. 根据权利要求1-10中任一项所述的线圈盘,其特征在于,所述线槽在所述载体成型过程中同时形成或者所述线槽在载体成型后通过刀具雕刻形成,自所述线槽的槽底向槽口的方向,所述线槽两侧的侧壁分别向外扩张。
  15. 根据权利要求14所述的线圈盘,其特征在于,所述线槽的内表面为粗糙面,所述粗糙面通过对线槽的内表面进行粗糙化处理形成。
  16. 根据权利要求15所述的线圈盘,其特征在于,所述对线槽的内表面进行粗糙化处理的方式为激光雕刻处理。
  17. 根据权利要求14所述的线圈盘,其特征在于,所述线槽的横截面呈倒梯形状、倒三角形状或者半圆弧状。
  18. 根据权利要求17所述的线圈盘,其特征在于,所述线槽的横截面呈倒等腰梯形状,线槽的侧壁和底壁法向的夹角范围为15°~75°,线槽的深度范围为2mm~8mm。
  19. 根据权利要求18所述的线圈盘,其特征在于,所述线槽相邻圈之间具有隔离筋,隔离筋的横截面呈等腰梯形,隔离筋顶部的宽度范围为0.2mm~1.0mm。
  20. 根据权利要求1-10中任一项所述的线圈盘,其特征在于,所述载体具有沿厚度方向相对的两个安装面,所述线槽包括按照第一预定绕线路径设置在其中一个安装面上的第一线槽,以及按照第二预定绕线路径设置在另一个安装面上的第二线槽。
  21. 根据权利要求1-20中任一项所述的线圈盘,其特征在于,所述载体的材质为塑料、陶瓷或外部包覆有绝缘层的金属。
  22. 一种电磁加热设备,其特征在于,包括如权利要求1-21中任一项所述的线圈盘,所述线圈盘用于电磁加热。
  23. 一种线圈盘的制作方法,其特征在于,包括如下步骤:
    S1、载体成型;
    S2、线槽成型,在所述载体上形成按照预定绕线路径延伸的线槽;
    S3、活化处理,将所述载体浸入活化液中,所述活化液中包括贵金属化合物,贵金属化合物中的贵金属离子被还原为贵金属微粒并吸附在所述线槽的内表面上,以形成贵金属层;
    S4、在所述贵金属层上附着导电层。
  24. 根据权利要求23所述的线圈盘的制作方法,其特征在于,步骤S2中的线槽成型的步骤为用激光按照预定的绕线路径对所述载体进行镭雕处理,以形成内表面为粗糙面的线槽。
  25. 根据权利要求23所述的线圈盘的制作方法,其特征在于,所述步骤S2中的线槽成型包括:用刀具按照预定的绕线路径对所述成型的载体进行雕刻处理;
    或者所述步骤S2中的线槽成型与所述步骤S1中的载体成型为同一步骤,所述步骤S1载体成型包括:将载体材料投入模具中,所述模具的内表面设有按照预定的绕线路径延伸的凸环,以在载体成型的同时在载体的表面印刻出按照预定绕线路径延伸的线槽。
  26. 根据权利要求23所述的线圈盘的制作方法,其特征在于,在步骤S2中的线槽成型和步骤S3中的活化处理之间还包括粗糙化处理:
    所述粗糙化处理为对按照预定绕线路径延伸的线槽进行激光镭雕处理。
  27. 根据权利要求23-26中任一项所述的线圈盘的制作方法,其特征在于,步骤S4中在所述贵金属层上附着导电层包括:
    所述载体浸泡在化学镀液中,化学镀液中的导电金属离子在贵金属层的催化作用下发生氧化还原反应,生成导电金属微粒附着在所述线槽上,形成第一导电层。
  28. 根据权利要求27所述的线圈盘的制作方法,其特征在于,步骤S4中在所述贵金属层上附着导电层还包括:
    将所述经过化学镀处理的载体浸入电镀液中,所述电镀液中的导电金属离子在电流的作用下发生氧化还原反应,生成导电金属微粒附着在所述第一导电层,形成第二导电层。
  29. 根据权利要求23-28中任一项所述的线圈盘的制作方法,其特征在于,步骤S4在所述贵金属层上附着导电层之后还包括:在所述导电层通过电镀方式附着防氧化层。
PCT/CN2015/096054 2015-11-25 2015-11-30 线圈盘及其制造方法、电磁加热设备 WO2017088197A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201520950936.0U CN205249519U (zh) 2015-11-25 2015-11-25 一种线圈盘及电磁加热设备
CN201510828701.9 2015-11-25
CN201510828701.9A CN106804069B (zh) 2015-11-25 2015-11-25 一种线圈盘及其制作方法、电磁加热设备
CN201520950936.0 2015-11-25

Publications (1)

Publication Number Publication Date
WO2017088197A1 true WO2017088197A1 (zh) 2017-06-01

Family

ID=58762859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096054 WO2017088197A1 (zh) 2015-11-25 2015-11-30 线圈盘及其制造方法、电磁加热设备

Country Status (1)

Country Link
WO (1) WO2017088197A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3634088A1 (de) * 2018-10-01 2020-04-08 BSH Hausgeräte GmbH Induktionsgargerätevorrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1144639A (zh) * 1994-11-18 1997-03-12 住友电气工业株式会社 电磁加热用金属板及其制造方法
WO2008017373A1 (de) * 2006-08-11 2008-02-14 E.G.O. Elektro-Gerätebau GmbH Spulenträger für induktoren
US20100221373A1 (en) * 2009-02-27 2010-09-02 Chung Yuan Christian University Mold heating/cooling structure
CN202282879U (zh) * 2011-04-15 2012-06-20 佐治陶器株式会社 电磁烹调器用发热板及电磁烹调器用烹调器具
CN204014143U (zh) * 2014-07-29 2014-12-10 佛山市顺德区美的电热电器制造有限公司 线圈盘和电磁炉

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1144639A (zh) * 1994-11-18 1997-03-12 住友电气工业株式会社 电磁加热用金属板及其制造方法
WO2008017373A1 (de) * 2006-08-11 2008-02-14 E.G.O. Elektro-Gerätebau GmbH Spulenträger für induktoren
US20100221373A1 (en) * 2009-02-27 2010-09-02 Chung Yuan Christian University Mold heating/cooling structure
CN202282879U (zh) * 2011-04-15 2012-06-20 佐治陶器株式会社 电磁烹调器用发热板及电磁烹调器用烹调器具
CN204014143U (zh) * 2014-07-29 2014-12-10 佛山市顺德区美的电热电器制造有限公司 线圈盘和电磁炉

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3634088A1 (de) * 2018-10-01 2020-04-08 BSH Hausgeräte GmbH Induktionsgargerätevorrichtung

Similar Documents

Publication Publication Date Title
CN108208938A (zh) 一种发热体及制备方法
CN207784280U (zh) 一种发热体
CN205249519U (zh) 一种线圈盘及电磁加热设备
CN106804069B (zh) 一种线圈盘及其制作方法、电磁加热设备
CN103002673B (zh) 一种铝基和线路层导通板的制作方法
CN105058916A (zh) 一种具有亚氧化钛中间涂层的电极材料
CN100594747C (zh) 防垢电加热管及其制备方法
WO2013082054A1 (en) Fabricating a conductive trace structure and substrate having the structure
CN106900098B (zh) 一种线圈盘及其制作方法、电磁加热设备
CN1717964A (zh) 电子零部件及其制造方法
WO2017088197A1 (zh) 线圈盘及其制造方法、电磁加热设备
TWI531688B (zh) Coating thickness uniform plating method
CN205249520U (zh) 一种线圈盘及电磁加热设备
WO2011035921A1 (en) Process for applying a metal coating to a non-conductive substrate
WO2016023162A1 (zh) 一种电镀槽及电镀装置
CN102693054B (zh) 触控机壳及其制造方法
CN106376119A (zh) 线圈盘及电磁加热设备
CN107709262A (zh) 附膜玻璃板的制造方法
CN205124121U (zh) 一种pcb线路板
CN104582278B (zh) 一种电路板及其制备方法
CN106034367B (zh) 线圈及其制备方法和应用
GB2197133A (en) Producing multi-layer circuits on a base board
CN207002846U (zh) 一种具有电场的电路板化镍金镀槽
CN201804716U (zh) 一种隔离式电子陶瓷表面局部化学镀滚筒
CN104538157A (zh) 片式电感器的端电极及其制备方法和片式电感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15909108

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.12.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15909108

Country of ref document: EP

Kind code of ref document: A1