WO2017086817A1 - Procédé de conversion de dioxyde de carbone et de méthane en méthanol à l'aide de composés intermétalliques ou de dérivés d'oxyde contenant du cuivre et des éléments de bloc f comme catalyseurs - Google Patents
Procédé de conversion de dioxyde de carbone et de méthane en méthanol à l'aide de composés intermétalliques ou de dérivés d'oxyde contenant du cuivre et des éléments de bloc f comme catalyseurs Download PDFInfo
- Publication number
- WO2017086817A1 WO2017086817A1 PCT/PT2016/000015 PT2016000015W WO2017086817A1 WO 2017086817 A1 WO2017086817 A1 WO 2017086817A1 PT 2016000015 W PT2016000015 W PT 2016000015W WO 2017086817 A1 WO2017086817 A1 WO 2017086817A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- methanol
- catalysts
- intermetallic compounds
- carbon dioxide
- block elements
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/48—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/15—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
- C07C29/151—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
- C07C29/153—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- Methane the principal component of natural gas and of biogas, is used in the chemical industry for the production of hydrogen, methanol and synthesis gas (a mixture of hydrogen and carbon monoxide, which can be used to obtain synthetic gasoline through the Fischer-Tropsch process ⁇ , and other products (M. Behrens, et al, The Active Site of Methanol Synthesis over Cu/ZnO/A1203 Industrial Catalysts, Science 2012, 336, 893-897 . ) .
- the conversion of methane into synthetic gas is based on the "steam reforming" reaction,- which consist in the transformation of methane at high temperature in the presence of water vapour (G. Centi, et al, Catalysis for COg conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries, Energy Environ. Sci., 2013, 6, 1711-1731).
- the catalyst can lose its activity by formation of carbon deposits or by poisoning due to the sulfur present in the natural gas.
- the catalysts described are completely different from those used in the present invention.
- the patented processes involve several steps, carbon monoxide (CO, a toxic gas that all the current industrial processes try to avoid) , is used instead of CO 2 , and sometimes comprise high cost separation/purification methods of non-converted gaseous reagents and products.
- CO carbon monoxide
- the other patents are very old and are in Russian, which makes them difficult to read and compare the results.
- the ideal alternative for the preparation of methanol would be to use a highly polluting gas, such as, for example , methane as reducing agent (P. Tang, et al, Methane activation: the past and future, Energy Environ. Sci. , 2014, 7, 2530-2591). Methane could act at the same time as reducing agent of the CO 2 and as source of carbon and 3 ⁇ 4 (reaction 2) .
- a highly polluting gas such as, for example , methane as reducing agent
- Methane could act at the same time as reducing agent of the CO 2 and as source of carbon and 3 ⁇ 4 (reaction 2) .
- Sapienza et al (US 4614749 A) claimed a method of methanol production capable of providing 74% conversion of CO and 94% selectivity for methanol production using organometallic catalysts (complexes of the type aH-RONa-M ⁇ OAc) 2 , where M-Ni, Pd or Co and R is an alkyi group containing from 1 to 6 carbon atoms): and. mild synthesis conditions (SO - 120 °C; 4- 70 bar).
- reaction 3 ⁇ is an impo tant factor that has to be taken i to account (P. Tang, et al, Methane activation: the past and future, Energy Environ.. Sci., 2014, 7, 2580-2591).
- the present invention describes a catalytic process in a heterogeneous phase for the conversion of carbon dioxide (CO 2 ) and methane (CH 4 ) into .methanol (C3 ⁇ 4GH) , working at. low pressures and moderate temperatures.
- the present invention makes possible to obtai high yields of methanol, especially when compared with the best examples described in the literature, under moderate conditions of pressure and temperature, typically 25-80 bar and 250-320 & C.
- the present invention can be used to eliminate and/or obtain added value products from gaseous pollutants such as CG? and C.H,j, having been tested and validated under the same conditions as other catalysts already marketed for the synthesis of methanol,
- the present invention is a process which makes a strong contribution to decreasing the greenhouse effect.
- the product, of the present invention is also an important alternative to fossil fuels since the technology exists for the use of methanol as a fuel or fuel additive. In addition, it can be also used for the storage and safety transport of hydrogen- Detailed description of the invention
- Figure I schematically represents the experimental set-up used in this invention, and can be divided into three parts: A) Mixing and flow control of the gaseous reagents; 3) Reactor and reaction chamber, and C) Analysis of the reaction products.
- Methane (ChY) carbon dioxide (CO?) , hydrogen (R?) and a rare gas (He, helium, which acts as carrier gas) are mixed in well- defined proportions ⁇ 1:1:3, in the case of reaction A; " 1:3., in the case of reaction B, see Table 1) .
- the concentration of the rare gas varies typically between 40-90% for a gas hourly space velocity (GHSV) of 20000 mLcoa/gca ⁇ h, with the mixing being done at the mixing cross (CM) to ensure a good homogenization .
- GHSV gas hourly space velocity
- CM mixing cross
- the mixture is injected continuously into the reactor, and by v rying the corrtpos.it ion. of the mixture it is possible to optimize the methanol production.
- precise control, of the flow of gases is required, and this is achieved with mass flow controllers (CF) .
- CF mass flow controllers
- the reactor is a , Plugs flow" type reactor, operating continuously.
- the reaction chamber includes a safety valve (VS, with a rupture disk at 200 bar) , the reactor (R) , a particle filter (F) at the reactor outlet, and upstream pressure controller (CP), with a large working range, 1-200 bar. Downstream the reagents and products leaving the reactor at atmospheric pressure.
- region B comprising the reactor and reaction chamber, ail tubing is heated at a temperature between 80 and 1.00 °C to avoid condensation of liquid products under TP conditions, namely, condensation of methanol which could produce erroneous results.
- CP temperature and pressure
- This type of material differs from. alloys by having a well-defined crystalline structure and a reproducible preparation.
- bimetallic oxides containing f ⁇ block elements and copper can also be used, for example 3CuO. La2CUO 4 or 2CuO . ThOa .
- the intermetallic compounds are obtained by melting stochiometric quantities of the metals at 900 °C (arc furnace or induction furnace and heating rate of 10 °C/min, while the bimetallic oxides are obtained in a subsequent step by controlled oxidation of the bimetallic compounds at 900 °C (O 2 . N 2 mixture (20:80% by -volume) and heating rate of 10 °C/min) .
- a typical operation involves the following steps (sequential):
- the products and reactants are analysed continuously, without interfering with the reaction process.
- a 6 port pneumatic valve sampling system for example, from Supelco
- a chromatographic analysis system for example, from Agilent
- the chromatographic system contains an online detection and analysis system (AOL) allowing the simultaneous analysis of the gases (thermal conductivity detector,- TCD) and the analysis of the condensable products, for example methanol (flame ionization detector, FID) -
- AOL online detection and analysis system
- the present method avoids the very high temperatures and pressures that the conventional commercial process requires.
- the reactor where the methanol is produced is a simple Plugsflow" type reactor that can operate in a wide range of pressures (1- 200 bar) at relatively moderate temperatures (25-450 °C) .
- the method described works under milder conditions (typically 25- 80 bar and 250-320 °C) than the conventional ones (250-600 °C and 50-100 bar) ; additionally, it achieves higher yields of methanol,, providing important economic gains (in terms of lower energy for heating the reactor, lower cost material associated with the lower pressures required for the process, and higher yields of methanol) for the cost of the process.
- the present invention can be used for the valorisation of CO ⁇ and C3 ⁇ 4, having been tested and validated under the same conditions as commercial catalysts for th synthesis of CH 3 OH.
- the present invention allows high yields of methanol, especially when compared with the best examples described in the literature, thus opening a new route to the synthesis of methanol under moderate conditions of pressure and temperature.
- Figure 1 shows schematically the experimental set-up used in this invention, which can be divided into three parts: A) Mixing and flow control of the gaseous reagents; B) Reactor and reaction chamber, and C) Analysis of all products and reagents.
- Part A includes the reaction gases (He, helium CH 4 , methane; CO 2 , carbon dioxide and H 2 , hydrogen), shut-off valves (VI), mass flow controllers (CF) and non-return valves (V.A)
- Part B consists of a mixing cross (CM) , to homogenize the gases coming from Part ⁇ , shut-off valves ⁇ VI) , the reactor (R) , a safety valve (VS) with rupture disc (200 bar), a furnace for heating the reactor, a filter (F) which retains any solid impurity at the reactor outlet (7 micrometres) and a pressure controller (CP) .
- CM mixing cross
- VS safety valve
- F filter
- Part B of the set-up is heated up to 80-100 °C to prevent condensation of some react io p oducts, i.e. methano1.
- Fina11y, Part C consists of an on-line analysis system (AOL) to identify and quantify chromatographically all reagents and products of the reaction.
- AOL on-line analysis system
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
Cette invention concerne un procédé catalytique en phase hétérogène qui permet de convertir du C02 et du CH4 en CH30H à basse pression et à température modérée en utilisant des oxydes intermétalliques ou bimétalliques contenant du cuivre et des éléments de bloc f (lanthanides, U et Th) comme catalyseurs. Cette invention a une application dans l'élimination et la récupération de polluants gazeux, tels que le dioxyde de carbone (C02) et le méthane (CH4), ayant été testés et validés dans les conditions expérimentales de catalyseurs commercialisés pour la synthèse du méthanol (CH30H). Cette invention permet d'obtenir des rendements élevés de CH30H, ouvrant ainsi une nouvelle voie pour sa synthèse. CH30H est une alternative importante aux combustibles fossiles, et la technologie pour le transformer en d'autres produits chimiques à valeur élevée existe. Il peut également être utilisé pour transporter et stocker de l'hydrogène. En utilisant deux polluants gazeux en tant que réactifs, cette invention contribue à la réduction de l'effet de serre.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PTPT108960 | 2015-11-16 | ||
PT108960A PT108960A (pt) | 2015-11-16 | 2015-11-16 | Processo de conversão de dióxido de carbono e metano em metanol usando como catalisadores compostos intermetálicos ou derivados óxidos contendo cobre e elementos do bloco f |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017086817A1 true WO2017086817A1 (fr) | 2017-05-26 |
Family
ID=57583429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/PT2016/000015 WO2017086817A1 (fr) | 2015-11-16 | 2016-11-16 | Procédé de conversion de dioxyde de carbone et de méthane en méthanol à l'aide de composés intermétalliques ou de dérivés d'oxyde contenant du cuivre et des éléments de bloc f comme catalyseurs |
Country Status (2)
Country | Link |
---|---|
PT (1) | PT108960A (fr) |
WO (1) | WO2017086817A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110038591A (zh) * | 2019-05-28 | 2019-07-23 | 中山大学 | 一种用于甲烷氧化制甲醇的铜-铱复合氧化物催化剂 |
CN110639547A (zh) * | 2019-09-10 | 2020-01-03 | 中山大学 | 一种用于甲烷氧化制醇类产物的铱基多相复合氧化物催化剂及其制备方法 |
EP3988523A1 (fr) * | 2020-10-21 | 2022-04-27 | B. Braun Surgical, S.A. | Procédé de production de molécules organiques fonctionnalisées et leurs utilisations |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1435253A (en) | 1974-06-13 | 1976-05-12 | Karavaev M M | Method of producing methanol |
US4243613A (en) | 1977-09-24 | 1981-01-06 | Chemische Werke Huls Aktiengesellschaft | Process for the manufacture of mixtures of formaldehyde and methanol by partial oxidation of methane |
US4614749A (en) | 1985-03-12 | 1986-09-30 | Sapienza Richard S | Low temperature catalysts for methanol production |
US4982023A (en) | 1989-10-16 | 1991-01-01 | Mobil Oil Corporation | Oxidation of methane to methanol |
US5827901A (en) | 1996-02-15 | 1998-10-27 | Metallgesellschaft Aktiengesellschaft | Process of producing methanol |
WO2008010743A1 (fr) | 2006-05-25 | 2008-01-24 | Obschestvo S Ogranichennoyi Otvetstvennostyu 'est-Invest' | Procédé de fabrication de méthanol |
RU2006132197A (ru) | 2005-09-08 | 2008-03-20 | Метанол Касале С.А. (Ch) | Способ и установка для получения метанола |
US8980961B2 (en) | 2007-06-21 | 2015-03-17 | University Of Southern California | Conversion of carbon dioxide to methanol using bi-reforming of methane or natural gas |
-
2015
- 2015-11-16 PT PT108960A patent/PT108960A/pt unknown
-
2016
- 2016-11-16 WO PCT/PT2016/000015 patent/WO2017086817A1/fr active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1435253A (en) | 1974-06-13 | 1976-05-12 | Karavaev M M | Method of producing methanol |
US4243613A (en) | 1977-09-24 | 1981-01-06 | Chemische Werke Huls Aktiengesellschaft | Process for the manufacture of mixtures of formaldehyde and methanol by partial oxidation of methane |
US4614749A (en) | 1985-03-12 | 1986-09-30 | Sapienza Richard S | Low temperature catalysts for methanol production |
US4982023A (en) | 1989-10-16 | 1991-01-01 | Mobil Oil Corporation | Oxidation of methane to methanol |
US5827901A (en) | 1996-02-15 | 1998-10-27 | Metallgesellschaft Aktiengesellschaft | Process of producing methanol |
RU2006132197A (ru) | 2005-09-08 | 2008-03-20 | Метанол Касале С.А. (Ch) | Способ и установка для получения метанола |
WO2008010743A1 (fr) | 2006-05-25 | 2008-01-24 | Obschestvo S Ogranichennoyi Otvetstvennostyu 'est-Invest' | Procédé de fabrication de méthanol |
US8980961B2 (en) | 2007-06-21 | 2015-03-17 | University Of Southern California | Conversion of carbon dioxide to methanol using bi-reforming of methane or natural gas |
Non-Patent Citations (8)
Title |
---|
A. BANSODE ET AL.: "Towards full one-pass conversion of carbon dioxide to methanol-derived products", JOURNAL OF CATALYSIS, vol. 309, 2014, pages 66 - 70, XP028804242, DOI: doi:10.1016/j.jcat.2013.09.005 |
D. JINGFA ET AL.: "A novel process for preparation of a Cu/ZnO/Al O ultrafine catalyst for methanol synthesis from CO + H : comparison of various preparation methods", APPLIED CATALYSIS A: GENERAL, vol. 139, 1996, pages 75 - 85, XP022261994, DOI: doi:10.1016/0926-860X(95)00324-X |
G. CENTI ET AL.: "Catalysis for C0 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries", ENERGY ENVIRON. SCI., vol. 6, 2013, pages 1711 - 1731 |
M. BEHRENS ET AL.: "The Active Site of Methanol Synthesis over Cu/ZnO/A1203 Industrial Catalysts", SCIENCE, vol. 336, 2012, pages 893 - 897, XP055206348, DOI: doi:10.1126/science.1219831 |
M. BEHRENS ET AL.: "The Active Site of Methanol Synthesis over Cu/ZnO/Al203 Industrial Catalysts", SCIENCE, vol. 336, 2012, pages 893 - 897, XP055206348, DOI: doi:10.1126/science.1219831 |
M. SAITO ET AL.: "Development of copper/zinc oxide-based multicomponent catalysts for methanol synthesis from carbon dioxide and hydrogen", APPLIED CATALYSIS A: GENERAL, vol. 138, 1996, pages 311 - 318, XP022250774, DOI: doi:10.1016/0926-860X(95)00305-3 |
P. TANG ET AL.: "Methane activation: the past and future", ENERGY ENVIRON. SCI., vol. 7, 2014, pages 2580 - 2591 |
S. NATESAKHAWAT ET AL.: "Active sites and structure-activity relationships of copper-based catalysts for carbon dioxide hydrogenation to methanol", ACS CATALYSIS, vol. 2, 2012, pages 1667 - 1676 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110038591A (zh) * | 2019-05-28 | 2019-07-23 | 中山大学 | 一种用于甲烷氧化制甲醇的铜-铱复合氧化物催化剂 |
CN110038591B (zh) * | 2019-05-28 | 2022-08-09 | 中山大学 | 一种用于甲烷氧化制甲醇的铜-铱复合氧化物催化剂 |
CN110639547A (zh) * | 2019-09-10 | 2020-01-03 | 中山大学 | 一种用于甲烷氧化制醇类产物的铱基多相复合氧化物催化剂及其制备方法 |
EP3988523A1 (fr) * | 2020-10-21 | 2022-04-27 | B. Braun Surgical, S.A. | Procédé de production de molécules organiques fonctionnalisées et leurs utilisations |
Also Published As
Publication number | Publication date |
---|---|
PT108960A (pt) | 2017-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pan et al. | Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites | |
Ciambelli et al. | Low temperature catalytic steam reforming of ethanol. 1. The effect of the support on the activity and stability of Pt catalysts | |
Li et al. | Development of highly stable catalyst for methanol synthesis from carbon dioxide | |
Tada et al. | Mechanistic study and catalyst development for selective carbon monoxide methanation | |
Vernon et al. | Partial oxidation of methane to synthesis gas | |
Jeong et al. | Hydrogen production from low temperature WGS reaction on co-precipitated Cu–CeO2 catalysts: An optimization of Cu loading | |
Mariño et al. | Optimized CuO–CeO2 catalysts for COPROX reaction | |
Ribeiro et al. | Combustion synthesis of copper catalysts for selective CO oxidation | |
WO2017086817A1 (fr) | Procédé de conversion de dioxyde de carbone et de méthane en méthanol à l'aide de composés intermétalliques ou de dérivés d'oxyde contenant du cuivre et des éléments de bloc f comme catalyseurs | |
WO2018175535A1 (fr) | Catalyseurs à oxydes mixtes pour couplage oxydant du méthane destinés pour des procédés adiabatiques | |
Shim et al. | Petroleum like biodiesel production by catalytic decarboxylation of oleic acid over Pd/Ce-ZrO2 under solvent-free condition | |
Moura et al. | Effect of lanthanum on the properties of copper, cerium and zirconium catalysts for preferential oxidation of carbon monoxide | |
Poggio-Fraccari et al. | Copper and nickel catalysts supported on praseodymium-doped ceria (PDC) for the water-gas shift reaction | |
Schmal et al. | Drifts and TPD analyses of ethanol on Pt catalysts over Al2O3 and ZrO2—partial oxidation of ethanol | |
Branco et al. | Synthesis of methanol using copper–f block element bimetallic oxides as catalysts and greenhouse gases (CO2, CH4) as feedstock | |
Kunkes et al. | 5.3 Methanol Chemistry | |
Poggio-Fraccari et al. | Cu/MnOx–CeO2 and Ni/MnOx–CeO2 catalysts for the water–gas shift reaction: metal–support interaction | |
Gamboa-Rosales et al. | Oxygen-enhanced WGS over ceria-supported Au–Co3O4 bimetallic catalysts | |
Moretti et al. | Preferential CO oxidation (CO-PROX) over CuO-ZnO/TiO2 catalysts | |
Chen et al. | A novel method of NaHCO 3 reduction into formic acid with N 2 H 4· H 2 O over Ni catalyst | |
Nieto-Márquez et al. | Autothermal reforming and water–gas shift double bed reactor for H2 production from ethanol | |
Arapova et al. | Ni (Co)-containing catalysts based on perovskite-like ferrites for steam reforming of ethanol | |
Gac et al. | Investigation of the inhibiting role of hydrogen in the steam reforming of methanol | |
Bichon et al. | Hydrogen from methanol steam-reforming over Cu-based catalysts with and without Pd promotion | |
Ghasemzadeh et al. | Hydrogen production technologies from ethanol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16815688 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16815688 Country of ref document: EP Kind code of ref document: A1 |