WO2017086817A1 - Procédé de conversion de dioxyde de carbone et de méthane en méthanol à l'aide de composés intermétalliques ou de dérivés d'oxyde contenant du cuivre et des éléments de bloc f comme catalyseurs - Google Patents

Procédé de conversion de dioxyde de carbone et de méthane en méthanol à l'aide de composés intermétalliques ou de dérivés d'oxyde contenant du cuivre et des éléments de bloc f comme catalyseurs Download PDF

Info

Publication number
WO2017086817A1
WO2017086817A1 PCT/PT2016/000015 PT2016000015W WO2017086817A1 WO 2017086817 A1 WO2017086817 A1 WO 2017086817A1 PT 2016000015 W PT2016000015 W PT 2016000015W WO 2017086817 A1 WO2017086817 A1 WO 2017086817A1
Authority
WO
WIPO (PCT)
Prior art keywords
methanol
catalysts
intermetallic compounds
carbon dioxide
block elements
Prior art date
Application number
PCT/PT2016/000015
Other languages
English (en)
Inventor
Joaquim Miguel BADALO BRANCO
António Cândido LAMPREIA PEREIRA GONÇALVES
Cybelle PALMA DE OLIVEIRA SOARES
Original Assignee
Instituto Superior Técnico
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Superior Técnico filed Critical Instituto Superior Técnico
Publication of WO2017086817A1 publication Critical patent/WO2017086817A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • Methane the principal component of natural gas and of biogas, is used in the chemical industry for the production of hydrogen, methanol and synthesis gas (a mixture of hydrogen and carbon monoxide, which can be used to obtain synthetic gasoline through the Fischer-Tropsch process ⁇ , and other products (M. Behrens, et al, The Active Site of Methanol Synthesis over Cu/ZnO/A1203 Industrial Catalysts, Science 2012, 336, 893-897 . ) .
  • the conversion of methane into synthetic gas is based on the "steam reforming" reaction,- which consist in the transformation of methane at high temperature in the presence of water vapour (G. Centi, et al, Catalysis for COg conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries, Energy Environ. Sci., 2013, 6, 1711-1731).
  • the catalyst can lose its activity by formation of carbon deposits or by poisoning due to the sulfur present in the natural gas.
  • the catalysts described are completely different from those used in the present invention.
  • the patented processes involve several steps, carbon monoxide (CO, a toxic gas that all the current industrial processes try to avoid) , is used instead of CO 2 , and sometimes comprise high cost separation/purification methods of non-converted gaseous reagents and products.
  • CO carbon monoxide
  • the other patents are very old and are in Russian, which makes them difficult to read and compare the results.
  • the ideal alternative for the preparation of methanol would be to use a highly polluting gas, such as, for example , methane as reducing agent (P. Tang, et al, Methane activation: the past and future, Energy Environ. Sci. , 2014, 7, 2530-2591). Methane could act at the same time as reducing agent of the CO 2 and as source of carbon and 3 ⁇ 4 (reaction 2) .
  • a highly polluting gas such as, for example , methane as reducing agent
  • Methane could act at the same time as reducing agent of the CO 2 and as source of carbon and 3 ⁇ 4 (reaction 2) .
  • Sapienza et al (US 4614749 A) claimed a method of methanol production capable of providing 74% conversion of CO and 94% selectivity for methanol production using organometallic catalysts (complexes of the type aH-RONa-M ⁇ OAc) 2 , where M-Ni, Pd or Co and R is an alkyi group containing from 1 to 6 carbon atoms): and. mild synthesis conditions (SO - 120 °C; 4- 70 bar).
  • reaction 3 ⁇ is an impo tant factor that has to be taken i to account (P. Tang, et al, Methane activation: the past and future, Energy Environ.. Sci., 2014, 7, 2580-2591).
  • the present invention describes a catalytic process in a heterogeneous phase for the conversion of carbon dioxide (CO 2 ) and methane (CH 4 ) into .methanol (C3 ⁇ 4GH) , working at. low pressures and moderate temperatures.
  • the present invention makes possible to obtai high yields of methanol, especially when compared with the best examples described in the literature, under moderate conditions of pressure and temperature, typically 25-80 bar and 250-320 & C.
  • the present invention can be used to eliminate and/or obtain added value products from gaseous pollutants such as CG? and C.H,j, having been tested and validated under the same conditions as other catalysts already marketed for the synthesis of methanol,
  • the present invention is a process which makes a strong contribution to decreasing the greenhouse effect.
  • the product, of the present invention is also an important alternative to fossil fuels since the technology exists for the use of methanol as a fuel or fuel additive. In addition, it can be also used for the storage and safety transport of hydrogen- Detailed description of the invention
  • Figure I schematically represents the experimental set-up used in this invention, and can be divided into three parts: A) Mixing and flow control of the gaseous reagents; 3) Reactor and reaction chamber, and C) Analysis of the reaction products.
  • Methane (ChY) carbon dioxide (CO?) , hydrogen (R?) and a rare gas (He, helium, which acts as carrier gas) are mixed in well- defined proportions ⁇ 1:1:3, in the case of reaction A; " 1:3., in the case of reaction B, see Table 1) .
  • the concentration of the rare gas varies typically between 40-90% for a gas hourly space velocity (GHSV) of 20000 mLcoa/gca ⁇ h, with the mixing being done at the mixing cross (CM) to ensure a good homogenization .
  • GHSV gas hourly space velocity
  • CM mixing cross
  • the mixture is injected continuously into the reactor, and by v rying the corrtpos.it ion. of the mixture it is possible to optimize the methanol production.
  • precise control, of the flow of gases is required, and this is achieved with mass flow controllers (CF) .
  • CF mass flow controllers
  • the reactor is a , Plugs flow" type reactor, operating continuously.
  • the reaction chamber includes a safety valve (VS, with a rupture disk at 200 bar) , the reactor (R) , a particle filter (F) at the reactor outlet, and upstream pressure controller (CP), with a large working range, 1-200 bar. Downstream the reagents and products leaving the reactor at atmospheric pressure.
  • region B comprising the reactor and reaction chamber, ail tubing is heated at a temperature between 80 and 1.00 °C to avoid condensation of liquid products under TP conditions, namely, condensation of methanol which could produce erroneous results.
  • CP temperature and pressure
  • This type of material differs from. alloys by having a well-defined crystalline structure and a reproducible preparation.
  • bimetallic oxides containing f ⁇ block elements and copper can also be used, for example 3CuO. La2CUO 4 or 2CuO . ThOa .
  • the intermetallic compounds are obtained by melting stochiometric quantities of the metals at 900 °C (arc furnace or induction furnace and heating rate of 10 °C/min, while the bimetallic oxides are obtained in a subsequent step by controlled oxidation of the bimetallic compounds at 900 °C (O 2 . N 2 mixture (20:80% by -volume) and heating rate of 10 °C/min) .
  • a typical operation involves the following steps (sequential):
  • the products and reactants are analysed continuously, without interfering with the reaction process.
  • a 6 port pneumatic valve sampling system for example, from Supelco
  • a chromatographic analysis system for example, from Agilent
  • the chromatographic system contains an online detection and analysis system (AOL) allowing the simultaneous analysis of the gases (thermal conductivity detector,- TCD) and the analysis of the condensable products, for example methanol (flame ionization detector, FID) -
  • AOL online detection and analysis system
  • the present method avoids the very high temperatures and pressures that the conventional commercial process requires.
  • the reactor where the methanol is produced is a simple Plugsflow" type reactor that can operate in a wide range of pressures (1- 200 bar) at relatively moderate temperatures (25-450 °C) .
  • the method described works under milder conditions (typically 25- 80 bar and 250-320 °C) than the conventional ones (250-600 °C and 50-100 bar) ; additionally, it achieves higher yields of methanol,, providing important economic gains (in terms of lower energy for heating the reactor, lower cost material associated with the lower pressures required for the process, and higher yields of methanol) for the cost of the process.
  • the present invention can be used for the valorisation of CO ⁇ and C3 ⁇ 4, having been tested and validated under the same conditions as commercial catalysts for th synthesis of CH 3 OH.
  • the present invention allows high yields of methanol, especially when compared with the best examples described in the literature, thus opening a new route to the synthesis of methanol under moderate conditions of pressure and temperature.
  • Figure 1 shows schematically the experimental set-up used in this invention, which can be divided into three parts: A) Mixing and flow control of the gaseous reagents; B) Reactor and reaction chamber, and C) Analysis of all products and reagents.
  • Part A includes the reaction gases (He, helium CH 4 , methane; CO 2 , carbon dioxide and H 2 , hydrogen), shut-off valves (VI), mass flow controllers (CF) and non-return valves (V.A)
  • Part B consists of a mixing cross (CM) , to homogenize the gases coming from Part ⁇ , shut-off valves ⁇ VI) , the reactor (R) , a safety valve (VS) with rupture disc (200 bar), a furnace for heating the reactor, a filter (F) which retains any solid impurity at the reactor outlet (7 micrometres) and a pressure controller (CP) .
  • CM mixing cross
  • VS safety valve
  • F filter
  • Part B of the set-up is heated up to 80-100 °C to prevent condensation of some react io p oducts, i.e. methano1.
  • Fina11y, Part C consists of an on-line analysis system (AOL) to identify and quantify chromatographically all reagents and products of the reaction.
  • AOL on-line analysis system

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

Cette invention concerne un procédé catalytique en phase hétérogène qui permet de convertir du C02 et du CH4 en CH30H à basse pression et à température modérée en utilisant des oxydes intermétalliques ou bimétalliques contenant du cuivre et des éléments de bloc f (lanthanides, U et Th) comme catalyseurs. Cette invention a une application dans l'élimination et la récupération de polluants gazeux, tels que le dioxyde de carbone (C02) et le méthane (CH4), ayant été testés et validés dans les conditions expérimentales de catalyseurs commercialisés pour la synthèse du méthanol (CH30H). Cette invention permet d'obtenir des rendements élevés de CH30H, ouvrant ainsi une nouvelle voie pour sa synthèse. CH30H est une alternative importante aux combustibles fossiles, et la technologie pour le transformer en d'autres produits chimiques à valeur élevée existe. Il peut également être utilisé pour transporter et stocker de l'hydrogène. En utilisant deux polluants gazeux en tant que réactifs, cette invention contribue à la réduction de l'effet de serre.
PCT/PT2016/000015 2015-11-16 2016-11-16 Procédé de conversion de dioxyde de carbone et de méthane en méthanol à l'aide de composés intermétalliques ou de dérivés d'oxyde contenant du cuivre et des éléments de bloc f comme catalyseurs WO2017086817A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PTPT108960 2015-11-16
PT108960A PT108960A (pt) 2015-11-16 2015-11-16 Processo de conversão de dióxido de carbono e metano em metanol usando como catalisadores compostos intermetálicos ou derivados óxidos contendo cobre e elementos do bloco f

Publications (1)

Publication Number Publication Date
WO2017086817A1 true WO2017086817A1 (fr) 2017-05-26

Family

ID=57583429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/PT2016/000015 WO2017086817A1 (fr) 2015-11-16 2016-11-16 Procédé de conversion de dioxyde de carbone et de méthane en méthanol à l'aide de composés intermétalliques ou de dérivés d'oxyde contenant du cuivre et des éléments de bloc f comme catalyseurs

Country Status (2)

Country Link
PT (1) PT108960A (fr)
WO (1) WO2017086817A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110038591A (zh) * 2019-05-28 2019-07-23 中山大学 一种用于甲烷氧化制甲醇的铜-铱复合氧化物催化剂
CN110639547A (zh) * 2019-09-10 2020-01-03 中山大学 一种用于甲烷氧化制醇类产物的铱基多相复合氧化物催化剂及其制备方法
EP3988523A1 (fr) * 2020-10-21 2022-04-27 B. Braun Surgical, S.A. Procédé de production de molécules organiques fonctionnalisées et leurs utilisations

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1435253A (en) 1974-06-13 1976-05-12 Karavaev M M Method of producing methanol
US4243613A (en) 1977-09-24 1981-01-06 Chemische Werke Huls Aktiengesellschaft Process for the manufacture of mixtures of formaldehyde and methanol by partial oxidation of methane
US4614749A (en) 1985-03-12 1986-09-30 Sapienza Richard S Low temperature catalysts for methanol production
US4982023A (en) 1989-10-16 1991-01-01 Mobil Oil Corporation Oxidation of methane to methanol
US5827901A (en) 1996-02-15 1998-10-27 Metallgesellschaft Aktiengesellschaft Process of producing methanol
WO2008010743A1 (fr) 2006-05-25 2008-01-24 Obschestvo S Ogranichennoyi Otvetstvennostyu 'est-Invest' Procédé de fabrication de méthanol
RU2006132197A (ru) 2005-09-08 2008-03-20 Метанол Касале С.А. (Ch) Способ и установка для получения метанола
US8980961B2 (en) 2007-06-21 2015-03-17 University Of Southern California Conversion of carbon dioxide to methanol using bi-reforming of methane or natural gas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1435253A (en) 1974-06-13 1976-05-12 Karavaev M M Method of producing methanol
US4243613A (en) 1977-09-24 1981-01-06 Chemische Werke Huls Aktiengesellschaft Process for the manufacture of mixtures of formaldehyde and methanol by partial oxidation of methane
US4614749A (en) 1985-03-12 1986-09-30 Sapienza Richard S Low temperature catalysts for methanol production
US4982023A (en) 1989-10-16 1991-01-01 Mobil Oil Corporation Oxidation of methane to methanol
US5827901A (en) 1996-02-15 1998-10-27 Metallgesellschaft Aktiengesellschaft Process of producing methanol
RU2006132197A (ru) 2005-09-08 2008-03-20 Метанол Касале С.А. (Ch) Способ и установка для получения метанола
WO2008010743A1 (fr) 2006-05-25 2008-01-24 Obschestvo S Ogranichennoyi Otvetstvennostyu 'est-Invest' Procédé de fabrication de méthanol
US8980961B2 (en) 2007-06-21 2015-03-17 University Of Southern California Conversion of carbon dioxide to methanol using bi-reforming of methane or natural gas

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
A. BANSODE ET AL.: "Towards full one-pass conversion of carbon dioxide to methanol-derived products", JOURNAL OF CATALYSIS, vol. 309, 2014, pages 66 - 70, XP028804242, DOI: doi:10.1016/j.jcat.2013.09.005
D. JINGFA ET AL.: "A novel process for preparation of a Cu/ZnO/Al O ultrafine catalyst for methanol synthesis from CO + H : comparison of various preparation methods", APPLIED CATALYSIS A: GENERAL, vol. 139, 1996, pages 75 - 85, XP022261994, DOI: doi:10.1016/0926-860X(95)00324-X
G. CENTI ET AL.: "Catalysis for C0 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries", ENERGY ENVIRON. SCI., vol. 6, 2013, pages 1711 - 1731
M. BEHRENS ET AL.: "The Active Site of Methanol Synthesis over Cu/ZnO/A1203 Industrial Catalysts", SCIENCE, vol. 336, 2012, pages 893 - 897, XP055206348, DOI: doi:10.1126/science.1219831
M. BEHRENS ET AL.: "The Active Site of Methanol Synthesis over Cu/ZnO/Al203 Industrial Catalysts", SCIENCE, vol. 336, 2012, pages 893 - 897, XP055206348, DOI: doi:10.1126/science.1219831
M. SAITO ET AL.: "Development of copper/zinc oxide-based multicomponent catalysts for methanol synthesis from carbon dioxide and hydrogen", APPLIED CATALYSIS A: GENERAL, vol. 138, 1996, pages 311 - 318, XP022250774, DOI: doi:10.1016/0926-860X(95)00305-3
P. TANG ET AL.: "Methane activation: the past and future", ENERGY ENVIRON. SCI., vol. 7, 2014, pages 2580 - 2591
S. NATESAKHAWAT ET AL.: "Active sites and structure-activity relationships of copper-based catalysts for carbon dioxide hydrogenation to methanol", ACS CATALYSIS, vol. 2, 2012, pages 1667 - 1676

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110038591A (zh) * 2019-05-28 2019-07-23 中山大学 一种用于甲烷氧化制甲醇的铜-铱复合氧化物催化剂
CN110038591B (zh) * 2019-05-28 2022-08-09 中山大学 一种用于甲烷氧化制甲醇的铜-铱复合氧化物催化剂
CN110639547A (zh) * 2019-09-10 2020-01-03 中山大学 一种用于甲烷氧化制醇类产物的铱基多相复合氧化物催化剂及其制备方法
EP3988523A1 (fr) * 2020-10-21 2022-04-27 B. Braun Surgical, S.A. Procédé de production de molécules organiques fonctionnalisées et leurs utilisations

Also Published As

Publication number Publication date
PT108960A (pt) 2017-05-16

Similar Documents

Publication Publication Date Title
Pan et al. Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites
Ciambelli et al. Low temperature catalytic steam reforming of ethanol. 1. The effect of the support on the activity and stability of Pt catalysts
Li et al. Development of highly stable catalyst for methanol synthesis from carbon dioxide
Tada et al. Mechanistic study and catalyst development for selective carbon monoxide methanation
Vernon et al. Partial oxidation of methane to synthesis gas
Jeong et al. Hydrogen production from low temperature WGS reaction on co-precipitated Cu–CeO2 catalysts: An optimization of Cu loading
Mariño et al. Optimized CuO–CeO2 catalysts for COPROX reaction
Ribeiro et al. Combustion synthesis of copper catalysts for selective CO oxidation
WO2017086817A1 (fr) Procédé de conversion de dioxyde de carbone et de méthane en méthanol à l'aide de composés intermétalliques ou de dérivés d'oxyde contenant du cuivre et des éléments de bloc f comme catalyseurs
WO2018175535A1 (fr) Catalyseurs à oxydes mixtes pour couplage oxydant du méthane destinés pour des procédés adiabatiques
Shim et al. Petroleum like biodiesel production by catalytic decarboxylation of oleic acid over Pd/Ce-ZrO2 under solvent-free condition
Moura et al. Effect of lanthanum on the properties of copper, cerium and zirconium catalysts for preferential oxidation of carbon monoxide
Poggio-Fraccari et al. Copper and nickel catalysts supported on praseodymium-doped ceria (PDC) for the water-gas shift reaction
Schmal et al. Drifts and TPD analyses of ethanol on Pt catalysts over Al2O3 and ZrO2—partial oxidation of ethanol
Branco et al. Synthesis of methanol using copper–f block element bimetallic oxides as catalysts and greenhouse gases (CO2, CH4) as feedstock
Kunkes et al. 5.3 Methanol Chemistry
Poggio-Fraccari et al. Cu/MnOx–CeO2 and Ni/MnOx–CeO2 catalysts for the water–gas shift reaction: metal–support interaction
Gamboa-Rosales et al. Oxygen-enhanced WGS over ceria-supported Au–Co3O4 bimetallic catalysts
Moretti et al. Preferential CO oxidation (CO-PROX) over CuO-ZnO/TiO2 catalysts
Chen et al. A novel method of NaHCO 3 reduction into formic acid with N 2 H 4· H 2 O over Ni catalyst
Nieto-Márquez et al. Autothermal reforming and water–gas shift double bed reactor for H2 production from ethanol
Arapova et al. Ni (Co)-containing catalysts based on perovskite-like ferrites for steam reforming of ethanol
Gac et al. Investigation of the inhibiting role of hydrogen in the steam reforming of methanol
Bichon et al. Hydrogen from methanol steam-reforming over Cu-based catalysts with and without Pd promotion
Ghasemzadeh et al. Hydrogen production technologies from ethanol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16815688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16815688

Country of ref document: EP

Kind code of ref document: A1