WO2017086319A1 - Protective film and wavelength conversion sheet - Google Patents

Protective film and wavelength conversion sheet Download PDF

Info

Publication number
WO2017086319A1
WO2017086319A1 PCT/JP2016/083853 JP2016083853W WO2017086319A1 WO 2017086319 A1 WO2017086319 A1 WO 2017086319A1 JP 2016083853 W JP2016083853 W JP 2016083853W WO 2017086319 A1 WO2017086319 A1 WO 2017086319A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
protective film
coating layer
barrier
film
Prior art date
Application number
PCT/JP2016/083853
Other languages
French (fr)
Japanese (ja)
Inventor
美季 福上
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to JP2017551890A priority Critical patent/JPWO2017086319A1/en
Publication of WO2017086319A1 publication Critical patent/WO2017086319A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present invention relates to a protective film and a wavelength conversion sheet using the protective film.
  • Quantum dots are light-emitting semiconductor nanoparticles with a diameter range of about 1 to 20 nm. Since quantum dots show a wide excitation spectrum and high quantum efficiency, they can be used as phosphors for LED wavelength conversion. Furthermore, there is an advantage that the wavelength of light emission can be completely adjusted over the entire visible range simply by changing the dot size or the type of semiconductor material. Therefore, quantum dots are said to have the potential to create virtually any color, especially the warm white color that is highly desired in the lighting industry. In addition, it is possible to obtain white light having a different color rendering index by combining three types of dots corresponding to emission wavelengths of red, green, and blue. When such quantum dots are used, for example, in a backlight unit of a liquid crystal display, the color tone is improved without increasing the thickness, power consumption, cost, manufacturing process, etc., compared to the conventional ones. Many can be expressed.
  • phosphors having a predetermined emission spectrum are dispersed in the layer, and the surface of the layer is sealed with a protective film.
  • the wavelength conversion sheet in which the edge portion of the layer is sealed is combined with the LED light source and the light guide plate.
  • the protective film forms a thin film by vapor deposition or the like on the surface of a substrate such as a plastic film to prevent moisture and gas from permeating.
  • the protective film is required not to have an appearance defect such as splash, scratch or wrinkle.
  • the splash is a phenomenon in which the vapor deposition material is scattered as high-temperature fine particles, and is a phenomenon in which the vapor deposition material adheres to the base material as it is during the vapor deposition and becomes a foreign substance, or a hole is made in the base material.
  • many of the conventional protective films have been used as packaging materials such as foods and medical products and packaging materials such as electronic devices, so that satisfactory performance cannot be obtained. There was a problem.
  • Patent Document 1 discloses a color conversion member in which a color conversion layer having a phosphor is provided between a pair of barrier films, and a display device using the color conversion member.
  • the present invention provides a protective film for protecting a phosphor layer, comprising a barrier film including a first base material and a first barrier layer.
  • the protective film may further include a coating layer disposed on the first substrate side of the barrier film, and further includes a support substrate disposed between the first substrate and the coating layer. You may have.
  • the first barrier layer includes a gas barrier coating layer constituting one outermost surface of the protective film, and the gas barrier coating layer includes polyvinyl alcohol and an inorganic compound.
  • the said gas-barrier coating layer has the surface treatment area
  • D I COH / I CC (1)
  • ICOH represents the intensity of the peak derived from the carbon-hydroxyl bond in the C1s waveform of the X-ray photoelectron spectrum of the surface of the protective film on the gas barrier coating layer side
  • I CC represents the C1s The intensity of the peak derived from the carbon-carbon bond in the waveform is shown.
  • the protective film has a surface treatment region having high adhesion to the resin in the gas barrier coating layer constituting one outermost surface, when used in a wavelength conversion sheet, excellent adhesion to the phosphor layer Can be obtained. Moreover, even if the wavelength conversion sheet obtained using the said protective film is preserve
  • a contact angle of the gas barrier coating layer with respect to water in the surface treatment region is 28 to 40 degrees.
  • the contact angle is within the above range, the adhesion to the phosphor layer is improved, and the above-described decrease in adhesion when stored for a long time in a high temperature and high humidity environment tends to be further suppressed.
  • the first barrier layer further includes an inorganic thin film layer, and the inorganic thin film layer is disposed between the first base material and the gas barrier coating layer.
  • the first barrier layer further includes an inorganic thin film layer, the barrier property of the protective film tends to be further improved.
  • the thickness of the inorganic thin film layer is preferably 5 to 100 nm.
  • the inorganic compound is preferably a metal alkoxide or a hydrolyzate thereof.
  • the inorganic thin film layer preferably contains at least one of silicon oxide and aluminum oxide.
  • the coating layer preferably contains a binder resin and fine particles dispersed in the binder resin.
  • the present invention also provides, in one aspect thereof, a wavelength conversion sheet comprising the protective film and a phosphor layer disposed on the outermost surface side of the protective film.
  • a wavelength conversion sheet comprising the protective film and a phosphor layer disposed on the outermost surface side of the protective film.
  • the surface treatment region of the gas barrier coating layer and the phosphor layer are in contact with each other.
  • the present invention provides a protective film for protecting a phosphor layer, comprising a barrier film including a first substrate and a first barrier layer.
  • the protective film may further include a second substrate bonded to the first barrier layer via an adhesive layer.
  • the protective film further includes a second base material and a second barrier layer laminated on one surface of the second base material, and the second barrier layer is the first barrier layer via an adhesive layer. And may be adhered.
  • the said protective film may further be provided with the coating layer formed in the surface on the opposite side to the said contact bonding layer of said 2nd base material.
  • the first base material is a polyethylene terephthalate film.
  • the surface of the first substrate opposite to the first barrier layer has a half-width of a peak of CC bond in C1s waveform separation of 1.340 to 1 when X-ray photoelectron spectroscopy is performed. It is the processing surface which processed so that it might become .560eV.
  • the contact angle of the first substrate with respect to the treated surface with respect to water is preferably 30 to 65 degrees.
  • the contact angle is within the above range, the adhesion to the phosphor layer is improved, and the above-described decrease in adhesion when stored for a long time in a high temperature and high humidity environment tends to be further suppressed.
  • the first barrier layer preferably includes an inorganic thin film layer, and further preferably includes a gas barrier coating layer.
  • the inorganic thin film layer is preferably a layer containing at least one of silicon oxide, silicon nitride, silicon nitride oxide, and aluminum oxide.
  • the said contact bonding layer contains any one of acrylic resin, urethane type resin, and ester resin.
  • the coating layer preferably has at least one optical function of an interference fringe prevention function, an antireflection function, and a diffusion function.
  • the said coating layer contains binder resin and the microparticles
  • the present invention also provides, in another aspect, a wavelength conversion sheet comprising the protective film on both sides of a phosphor layer in contact with the treated surface of the first substrate of the protective film.
  • a wavelength conversion sheet capable of improving adhesion with a phosphor layer and maintaining a good appearance and light emitting state even when stored for a long time in a high temperature and high humidity environment.
  • a manufacturable protective film and a wavelength conversion sheet obtained using the same can be provided.
  • the wavelength conversion sheet can improve the adhesion between the protective film and the phosphor layer, and thus has no poor appearance over a long period of time, and the decrease in luminous efficiency is sufficiently small. Can be provided.
  • the protective film according to the present invention can be a protective film according to the following first to third embodiments. First, the protective film according to the first embodiment of the present invention will be described.
  • FIG. 1 is a schematic cross-sectional view of a protective film according to the first embodiment of the present invention.
  • the protective film 20 includes a barrier film 10 and a coating layer 12.
  • the barrier film 10 is composed of a first base material 1 and a barrier layer 2 provided on one surface of the first base material 1.
  • the 1st base material 1 is not specifically limited, It is desirable that it is a film whose total light transmittance is 85% or more.
  • a polyethylene terephthalate film, a polyethylene naphthalate film, etc. can be used as a base material with high transparency and heat resistance, for example.
  • the thickness of the first substrate 1 is not particularly limited, and is desirably 50 ⁇ m or less in order to reduce the total thickness of the wavelength conversion sheet. In order to obtain excellent barrier properties, the thickness of the first substrate 1 is desirably 12 ⁇ m or more.
  • the barrier layer 2 includes a gas barrier coating layer 4 that constitutes one outermost surface of the protective film 20.
  • the barrier layer 2 includes an inorganic thin film layer 3 and a gas barrier coating layer 4. Yes.
  • the inorganic thin film layer 3 is disposed between the first substrate 1 and the gas barrier coating layer 4 constituting one outermost surface of the protective film 20.
  • the barrier layer 2 may have a laminated structure in which two or more inorganic thin film layers 3 and gas barrier coating layers 4 are alternately laminated.
  • the inorganic thin film layer 3 is not particularly limited, and can contain, for example, aluminum oxide, silicon oxide, or magnesium oxide. Among these, it is desirable that the inorganic thin film layer 3 contains at least one of aluminum oxide and silicon oxide from the viewpoint of barrier properties and productivity.
  • the thickness (film thickness) of the inorganic thin film layer 3 is preferably 5 to 500 nm, more preferably 5 to 100 nm, and even more preferably 10 to 100 nm.
  • the film thickness is 5 nm or more, it is easy to form a uniform film and the barrier property tends to be more easily obtained.
  • the film thickness is 500 nm or less, the inorganic thin film layer 3 can easily maintain sufficient flexibility. As a result, the inorganic thin film layer 3 tends to be more reliably prevented from cracking due to external factors such as bending and pulling after film formation.
  • the inorganic thin film layer 3 can be an inorganic vapor deposition film layer formed by a vacuum vapor deposition method from the viewpoint of productivity.
  • the inorganic thin film layer 3 can also be formed by using other thin film forming methods such as sputtering, ion plating, and plasma vapor deposition.
  • a heating means of the vacuum evaporation method it is preferable to use any one of an electron beam heating method, a resistance heating method, and an induction heating method, and an electron beam heating method is used in consideration of the wide range of selectivity of the evaporation material. Is more preferable.
  • vapor-deposit in order to improve the adhesiveness of a vapor deposition film and the 1st base material 1, and the denseness of a vapor deposition film, it is also possible to vapor-deposit using a plasma assist method or an ion beam assist method. Further, in order to increase the transparency of the deposited film, reactive deposition in which various gases such as oxygen are blown may be used.
  • the gas barrier coating layer 4 is provided in order to prevent secondary damage in the subsequent process and to impart high barrier properties to the protective film 20, and constitutes one outermost surface of the protective film 20. .
  • the gas barrier coating layer 4 contains polyvinyl alcohol and an inorganic compound.
  • PVA polyvinyl alcohol
  • excellent barrier properties are easily obtained.
  • the gas barrier coating layer 4 contains an inorganic compound, so that the moisture barrier property is increased and the effect of increasing the heat and moisture resistance is obtained.
  • the inorganic compound is preferably a metal alkoxide or a product obtained by hydrolyzing the metal alkoxide (hydrolyzate).
  • the metal alkoxide is represented by the following formula (a), for example. M (OR 1 ) m (R 2 ) nm (a)
  • R 1 and R 2 are each independently a monovalent organic group having 1 to 8 carbon atoms, preferably an alkyl group such as a methyl group or an ethyl group.
  • M represents an n-valent metal atom such as Si, Ti, Al, or Zr.
  • m is an integer of 1 to n.
  • the metal alkoxide include tetraethoxysilane [Si (OC 2 H 5 ) 4 ], triisopropoxyaluminum [Al (O-iso-C 3 H 7 ) 3 ] and the like.
  • the metal alkoxide is preferably tetraethoxysilane or triisopropoxyaluminum because it is relatively stable in an aqueous solvent after hydrolysis.
  • hydrolyzate of metal alkoxide include silicic acid (Si (OH) 4 ), which is a hydrolyzate of tetraethoxysilane, and aluminum hydroxide (Al (OH), which is a hydrolyzate of triisopropoxyaluminum. 3 ) and the like. These can be used in combination of not only one type but also a plurality of types.
  • the gas barrier coating layer 4 may further contain a water-soluble polymer different from polyvinyl alcohol.
  • water-soluble polymers include polyvinyl pyrrolidone, starch, methyl cellulose, carboxymethyl cellulose, and sodium alginate.
  • the thickness (film thickness) of the gas barrier coating layer 4 is preferably 50 to 1000 nm, and more preferably 100 to 500 nm.
  • the film thickness is 50 nm or more, a sufficient gas barrier property tends to be obtained, and when it is 1000 nm or less, the gas barrier coating layer 4 tends to be able to maintain sufficient flexibility.
  • the gas barrier coating layer 4 is formed by applying a mixed solution containing polyvinyl alcohol and an inorganic compound on the inorganic thin film layer 3 and solidifying the coating film.
  • the content of PVA in all nonvolatile components of the mixed solution is preferably 20 to 50% by mass, more preferably 25 to 40% by mass.
  • the PVA content is 20% by mass or more, the flexibility of the gas barrier coating layer is easily obtained, and the gas barrier coating layer 4 is easily formed.
  • the content of the metal alkoxide and the hydrolyzate thereof in all the non-volatile components of the mixed solution is, for example, 10 to 90% by mass (in terms of MO n / 2 ).
  • the said mixed solution contains water-soluble polymers other than PVA
  • content of the said water-soluble polymer in all the non-volatile components of the said mixed solution is 10 mass% or less, and 5 mass%. The following is more preferable.
  • the gas barrier coating layer 4 has a surface treatment region 4t on the opposite side of the coating layer 12 (the above-mentioned outermost surface side of the protective film 20).
  • the surface treatment method for forming the surface treatment region 4t include plasma treatment, corona treatment, ozone treatment, and flame treatment.
  • the surface treatment method is preferably plasma treatment, more preferably low-temperature plasma treatment performed in an atmosphere such as vacuum or argon gas, and further preferably plasma treatment using reactive ion etching (RIE). preferable.
  • RIE reactive ion etching
  • the type and amount of the functional group to be introduced can be controlled by appropriately selecting the treatment conditions.
  • the surface treatment region 4t may be formed in the thickness direction of the gas barrier coating layer 4 by the above method. There may be no clear boundary between the surface treatment region 4t and the portion of the gas barrier coating layer 4 that is not surface treated. Further, the gas barrier coating layer 4 may have the surface treatment region 4t only in a part of the surface direction or in all of it.
  • FIG. 2 is an enlarged view of an example of an X-ray photoelectron spectroscopic spectrum of the surface of the protective film on the gas barrier coating layer side, and shows a waveform (C1s waveform) of C1s (electrons of carbon atom 1s orbit). .
  • the horizontal axis in FIG. 2 indicates the binding energy (eV), and the vertical axis indicates the strength.
  • the C1s waveform P INT indicated by a solid line can be separated into a plurality of peaks indicated by a dotted line and a one-dot chain line by analysis. Since each separated peak appears at a position of binding energy shifted by the chemical state of the carbon atom, the chemical state of each carbon atom can be known from the position of the binding energy of the separated peak.
  • the kind and concentration of atoms, the kind of atoms bonded to the atoms, and their bonding state in a depth region of several nm from the surface of the measurement object can be analyzed, and the element ratio and functional group ratio can be obtained.
  • the position of the peak binding energy appearing in the X-ray photoelectron spectroscopy spectrum is unique to each chemical state (bonding species) of the carbon atom.
  • the peak PCC derived from the carbon-carbon bond ( CC bond) is 285. It appeared in the vicinity of 0 eV, carbon - peak P COH derived from hydroxyl bond (COH bonds) appears in the vicinity of 286.5 eV.
  • I COH indicates the intensity of the peak PCOH derived from the C—OH bond in the C1s waveform of the X-ray photoelectron spectroscopy spectrum, and is obtained from the intensity difference between the peak top of the peak PCOH and the baseline B. .
  • I CC represents the intensity of peak P CC derived from the CC bond in C1s waveform of the X-ray photoelectron spectroscopy, the intensity difference between the peak tops and the base line B of the peak P CC Desired.
  • the adhesion between the protective film 20 and the phosphor layer can be improved.
  • the X-ray photoelectron spectrum is obtained by analyzing the surface of the protective film 20 on the gas barrier coating layer 4 side by X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • MgK ⁇ can be used as the X-ray source, and the output can be 100 W.
  • the method for separating and analyzing the C1s waveform in the X-ray photoelectron spectrum is not particularly limited, and can be mathematically performed using a Gaussian function, a Lorentz function, or the like.
  • the intensity ratio D can be controlled by, for example, the surface treatment conditions of the gas barrier coating layer 4. That is, the intensity ratio D can be made 0.77 or less by performing sufficient surface treatment, and the intensity ratio D can be made 0.35 or more by not performing excessive surface treatment.
  • the adhesiveness between the protective film 20 and the phosphor layer is improved by setting the intensity ratio D within the above range is not necessarily clear, but the present inventors consider as follows. That is, by performing the surface treatment to such an extent that the intensity ratio D is 0.77 or less (D ⁇ 0.77), the functional group that can greatly contribute to the adhesion with the resin constituting the phosphor layer is covered with the gas barrier coating. It is thought that this is because it is introduced into the surface of the layer 4 (the surface of the protective film 20). In addition, by suppressing the surface treatment to such an extent that the intensity ratio D is 0.35 or more (0.35 ⁇ D), it is possible to prevent the introduced functional group from further changing to a state in which it does not contribute to adhesion. This is thought to be possible.
  • the contact angle ⁇ G with respect to water in the surface treatment region of the gas barrier coating layer 4 is 28 to 40 degrees (28 degrees ⁇ ⁇ G ⁇ 40). Degree).
  • the Epd value defined by Epd plasma density ⁇ treatment time is 20 V ⁇ s / m 2 or more and 20000 V ⁇ s. / M 2 or less is preferable.
  • the Epd value is 20 V ⁇ s / m 2 or more, it becomes easy to form a surface treatment region 4 t having a strength ratio D of 0.77 or less in the gas barrier coating layer 4.
  • it is 20000 V ⁇ s / m 2 or less, it becomes easy to form a surface treatment region 4t having a strength ratio D of 0.35 or more in the gas barrier coating layer 4.
  • the applied power may be about 50 to 500 W
  • the processing time may be about 0.05 to 0.3 seconds
  • the processing unit pressure May be about 1.0 to 3.0 Pa.
  • the coating layer 12 is disposed on the surface of the barrier film 10 on the first substrate 1 side, and the surface opposite to the gas barrier coating layer 4 of the protective film 20 in order to exhibit one or more optical functions or antistatic functions.
  • the optical function is not particularly limited, and examples thereof include an interference fringe (moire) prevention function, an antireflection function, and a diffusion function.
  • the coating layer 12 preferably has at least an interference fringe preventing function as an optical function. In the present embodiment, a case where the coating layer 12 has at least an interference fringe preventing function will be described.
  • the coating layer 12 may contain a binder resin and fine particles dispersed in the binder resin. Then, fine irregularities may be formed on the surface of the coating layer 12 by embedding the fine particles in the binder resin so that a part of the fine particles is exposed from the surface of the coating layer 12.
  • fine irregularities may be formed on the surface of the coating layer 12 by embedding the fine particles in the binder resin so that a part of the fine particles is exposed from the surface of the coating layer 12.
  • the binder resin is not particularly limited, and a resin excellent in optical transparency can be used. More specifically, as the binder resin, for example, polyester resin, acrylic resin, acrylic urethane resin, polyester acrylate resin, polyurethane acrylate resin, urethane resin, epoxy resin, polycarbonate resin, polyamide resin, etc.
  • Thermoplastic resins such as resins, polyimide resins, melamine resins, and phenol resins, thermosetting resins, and radiation curable resins can be used. Among these, it is desirable to use an acrylic resin excellent in light resistance and optical characteristics. These can be used in combination of not only one type but also a plurality of types.
  • the fine particles are not particularly limited.
  • inorganic fine particles such as silica, clay, talc, calcium carbonate, calcium sulfate, barium sulfate, titanium oxide, and alumina, and styrene resin, urethane resin, silicone resin, and acrylic resin.
  • Organic fine particles such as can be used. These can be used in combination of not only one type but also a plurality of types.
  • the average particle diameter of the fine particles is preferably from 0.1 to 30 ⁇ m, and more preferably from 0.5 to 10 ⁇ m.
  • the average particle size of the fine particles is 0.1 ⁇ m or more, an excellent interference fringe prevention function tends to be obtained, and when it is 30 ⁇ m or less, the transparency tends to be further improved.
  • the content of fine particles in the coating layer 12 is preferably 0.5 to 30% by mass, more preferably 3 to 10% by mass based on the total amount of the coating layer 12.
  • the content of the fine particles is 0.5% by mass or more, the light diffusion function and the effect of preventing the generation of interference fringes tend to be further improved, and when the content is 30% by mass or less, the luminance is hardly reduced.
  • the coating layer 12 can be formed by applying a coating liquid containing the above-described binder resin and fine particles on the surface of the barrier film 10 and drying and curing it.
  • the coating method include a wet coating method using a gravure coater, a dip coater, a reverse coater, a wire bar coater, and a die coater.
  • the thickness of the coating layer 12 is preferably 0.1 to 20 ⁇ m, and more preferably 0.3 to 10 ⁇ m.
  • the thickness of the coating layer 12 is 0.1 ⁇ m or more, there is a tendency that a uniform film can be easily obtained and an optical function can be sufficiently easily obtained.
  • the coating layer 12 has a thickness of 20 ⁇ m or less, when fine particles are used for the coating layer 12, the fine particles are exposed to the surface of the coating layer 12, and the unevenness imparting effect tends to be easily obtained.
  • the protective film 20 may not include the coating layer 12.
  • the protective film 20 when the protective film 20 includes both the barrier film 10 and the coating layer 12, the protective film 20 has a gas barrier property by the barrier film 10, an optical function by the coating layer 12, and an antistatic function. It can use suitably for protection of the fluorescent substance layer of a wavelength conversion sheet as a protective film for conversion sheets.
  • FIG. 3 is a schematic cross-sectional view of a protective film according to a second embodiment of the present invention.
  • the protective film 20 which concerns on 2nd Embodiment differs from 1st Embodiment by the point further provided with the support base material 14.
  • FIG. The support substrate 14 is disposed between the first substrate 1 and the coating layer 12. More specifically, as shown in FIG. 3, the support base material 14 is provided on the other surface (surface opposite to the surface treatment region 4t) of the first base material 1 with an adhesive layer 16 interposed therebetween.
  • the layer 12 is formed on the surface of the support substrate 14 opposite to the barrier film 10.
  • the support base material 14 is not particularly limited like the first base material 1 and is preferably a film having a total light transmittance of 85% or more.
  • a polyethylene terephthalate film, a polyethylene naphthalate film, or the like can be used as a substrate having high transparency and excellent heat resistance.
  • the thickness of the support substrate 14 is not particularly limited, and is desirably 50 ⁇ m or less in order to reduce the total thickness of the wavelength conversion sheet. Further, the thickness of the support substrate 14 is desirably 12 ⁇ m or more in order to obtain excellent barrier properties.
  • the adhesive layer 16 can be formed of, for example, an adhesive or pressure sensitive adhesive such as an acrylic material, a urethane material, and a polyester material. More specifically, the adhesive layer 16 can be formed using any of an acrylic adhesive, an acrylic adhesive, a urethane adhesive, and an ester adhesive.
  • Examples of the method for applying the adhesive or the pressure-sensitive adhesive include coating methods using a gravure coater, a dip coater, a reverse coater, a wire bar coater, and a die coater.
  • the thickness of the adhesive layer 16 is not particularly limited, and is desirably 10 ⁇ m or less in order to reduce the total thickness of the protective film for wavelength conversion sheet. On the other hand, the thickness is desirably 3 ⁇ m or more from the viewpoint of obtaining better adhesiveness.
  • the barrier film 10 is obtained in the same manner as in the first embodiment, and the barrier film 10 and the support base material 14 are bonded together via the adhesive layer 16.
  • the barrier film 10 and the support base material 14 are bonded so that the surface treatment region 4t of the barrier film 10 faces the side opposite to the support base material 14.
  • aging can be performed as necessary. Aging is performed at 20 to 80 ° C. for 1 to 10 days, for example.
  • FIG. 4 is a schematic cross-sectional view of a protective film according to a third embodiment of the present invention.
  • the protective film 20 which concerns on 3rd Embodiment differs from 1st Embodiment by the point further provided with another barrier film. That is, the protective film 20 according to this embodiment includes the first barrier film 10a, the second barrier film 10b, and the coating layer 12.
  • the protective film 20 includes two barrier films, the barrier property of the protective film 20 tends to be further improved.
  • the first barrier film 10a and the first base material 1a and the first barrier layer 2a (the first inorganic thin film layer 3a and the first gas barrier coating layer 4a) constituting the first barrier film 10a are the first and second embodiments. It is the same as the barrier film 10 in the form and the first base material 1 and the barrier layer 2 (the inorganic thin film layer 3 and the gas barrier coating layer 4) constituting the same, respectively.
  • the second barrier film 10b and the second base material 1b and the second barrier layer 2b (the second inorganic thin film layer 3b and the second gas barrier coating layer 4b) constituting the second barrier film 10b are the barriers in the first and second embodiments.
  • the film 10 is the same as the inorganic thin film layer 3 and the gas barrier coating layer 4 constituting the film 10, respectively.
  • the second gas barrier coating layer 4b does not necessarily have the surface treatment region 4t, and the surface treatment region is not shown in the second gas barrier coating layer 4b in FIG.
  • the present invention can be carried out even if the second gas barrier coating layer 4b has the surface treatment region 4t.
  • the second barrier film 10 b is disposed between the first barrier film 10 a and the coating layer 12. More specifically, the second barrier film 10b is formed on the surface of the first barrier film 10a on the first substrate 1a side (the surface opposite to the surface treatment region 4t) with the adhesive layer 16 interposed therebetween.
  • the material 1a and the second gas barrier coating layer 4b are provided so as to face each other, and the coating layer 12 is formed on the surface of the second barrier film 10b on the second substrate 1b side.
  • the barrier film 10 of 1st embodiment except the point which does not form the 1st barrier film 10a obtained similarly to the barrier film 10 of 1st embodiment, and a surface treatment area
  • the second barrier film 10 b obtained in the same manner as above is bonded through the adhesive layer 16.
  • the first barrier film 10a and the second barrier film 10b are bonded so that the surface treatment region 4t of the first barrier film 10a faces the opposite side to the second barrier film 10b.
  • it after bonding the 1st barrier film 10a and the 2nd barrier film 10b, it can age as needed. Aging is performed at 20 to 80 ° C. for 1 to 10 days, for example.
  • FIG. 5 is a schematic cross-sectional view of a wavelength conversion sheet according to an embodiment of the present invention.
  • the wavelength conversion sheet is a sheet that can convert some wavelengths of light from the light source of the backlight unit for liquid crystal display.
  • the wavelength conversion sheet 100 includes a phosphor layer 30 and a protective film 20 provided as a first protective film and a second protective film on one surface side and the other surface side of the phosphor layer 30, respectively. , 20. That is, the protective film 20, the phosphor layer 30, and the protective film 20 are laminated in this order.
  • the wavelength conversion sheet 100 has a structure in which the phosphor layer 30 is encapsulated (that is, sealed) between the pair of protective films 20 and 20.
  • the pair of protective films 20 and 20 are arranged such that each gas barrier coating layer 4 (surface treatment region 4t) faces the phosphor layer 30 side, and the surface treatment region 4t of the gas barrier coating layer 4 and the phosphor layer 30 are disposed. And is touching.
  • the phosphor layer 30 is a thin film having a thickness of several tens to several hundreds of ⁇ m, and includes a sealing resin 24 and a phosphor 22 as shown in FIG. Inside the sealing resin 24, one or more phosphors 22 are sealed in a mixed state. When the phosphor layer 30 and the pair of protective films 20 and 20 are laminated, the sealing resin 24 plays a role of bonding them and filling these gaps.
  • the phosphor layer 30 may be formed by stacking two or more phosphor layers in which only one kind of phosphor 22 is sealed. As the two or more kinds of phosphors 22 used in the one or more phosphor layers, those having the same excitation wavelength are selected.
  • This excitation wavelength is selected based on the wavelength of light emitted by the light source L.
  • the fluorescent colors of the two or more types of phosphors 22 are different from each other. When a blue light emitting diode (blue LED) is used as the light source, the fluorescent colors are red and green.
  • the wavelength of each fluorescence and the wavelength of light emitted from the light source are selected based on the spectral characteristics of the color filter. The peak wavelengths of fluorescence are, for example, 610 nm for red and 550 nm for green.
  • sealing resin 24 for example, a thermoplastic resin, a thermosetting resin, an ultraviolet curable resin, or the like can be used. These resins can be used singly or in combination of two or more.
  • thermoplastic resin examples include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose; vinyl acetate and copolymers thereof, vinyl chloride and copolymers thereof, and vinylidene chloride and copolymers thereof.
  • Acetal resins such as polyvinyl formal and polyvinyl butyral; Acrylic resins and copolymers thereof, Acrylic resins such as methacrylic resins and copolymers; Polystyrene resins; Polyamide resins; Linear polyester resins; Fluorine Resin; and polycarbonate resin etc.
  • thermosetting resin examples include phenol resin, urea melamine resin, polyester resin, and silicone resin.
  • the ultraviolet curable resin examples include photopolymerizable prepolymers such as epoxy acrylate, urethane acrylate, and polyester acrylate. Further, these photopolymerizable prepolymers can be the main components, and monofunctional or polyfunctional monomers can be used as diluents.
  • Quantum dots are preferably used as the phosphor 22.
  • the quantum dots include those in which a core as a light emitting portion is coated with a shell as a protective film.
  • the core include cadmium selenide (CdSe), and examples of the shell include zinc sulfide (ZnS). Quantum efficiency is improved by covering surface defects of CdSe particles with ZnS having a large band gap.
  • the phosphor 22 may be one in which the core is double-coated with the first shell and the second shell. In this case, CsSe can be used for the core, zinc selenide (ZnSe) can be used for the first shell, and ZnS can be used for the second shell.
  • YAG: Ce etc. can also be used as phosphors 22 other than quantum dots.
  • the average particle diameter of the phosphor 22 is preferably 1 to 20 nm.
  • the thickness of the phosphor layer 30 is preferably 1 to 500 ⁇ m.
  • the content of the phosphor 22 in the phosphor layer 30 is preferably 1 to 20% by mass, and more preferably 3 to 10% by mass based on the total amount of the phosphor layer 30.
  • the protective film 20 was provided in both surfaces of the fluorescent substance layer 30, you may be provided only in one side of the fluorescent substance layer 30.
  • the protective film 20 may be provided as a first protective film on one surface of the phosphor layer 30, and another protective film may be provided as a second protective film on the other surface.
  • the method for producing the wavelength conversion sheet 100 is not particularly limited, and examples include the following method. For example, after the phosphor 22 is dispersed in the sealing resin 24 and the prepared phosphor dispersion is applied on the surface of the protective film 20 on the surface treatment region 4t side, another protective film 20 is bonded to the application surface.
  • the wavelength conversion sheet 100 can be manufactured by curing the phosphor dispersion liquid to form the phosphor layer 30.
  • FIG. 6 is a schematic cross-sectional view of a backlight unit obtained using the wavelength conversion sheet.
  • the backlight unit 200 includes a light source L and a wavelength conversion sheet 100.
  • the wavelength conversion sheet 100, the light guide plate G, and the reflection plate R are arranged in this order, and the light source L is arranged on the side of the light guide plate G (surface direction of the light guide plate G).
  • the thickness of the light guide plate G is, for example, 100 to 1000 ⁇ m.
  • the light guide plate G and the reflection plate R efficiently reflect and guide the light emitted from the light source L, and a known material is used.
  • a known material is used as the light guide plate G.
  • the light guide plate G for example, acrylic, polycarbonate, cycloolefin film, or the like is used.
  • the light source L is provided with a plurality of blue light emitting diode elements, for example.
  • the light emitting diode element may be a violet light emitting diode or a light emitting diode having a lower wavelength.
  • the light emitted from the light source L enters the light guide plate G (D1 direction), and then enters the phosphor layer 30 (D2 direction) with reflection and refraction.
  • the light that has passed through the phosphor layer 30 becomes white light by mixing the yellow light generated in the phosphor layer 30 with the light before passing through the phosphor layer 30.
  • the protective film according to the present invention may be a protective film according to the following fourth to sixth embodiments.
  • 7, 8 and 9 are schematic cross-sectional views showing the overall structure of the protective film according to the fourth to sixth embodiments, respectively. Since the fourth embodiment shown in FIG. 7 is a basic form of the fifth and sixth embodiments, first, the fourth embodiment shown in FIG. 7 will be described.
  • the protective film 230 has a first base material 201 (hereinafter sometimes referred to as a base material or a first base material), and one surface (first surface) of the base material 201.
  • a first barrier layer hereinafter also referred to as a barrier layer
  • an inorganic thin film layer 203 and a gas barrier coating layer 204 are laminated in this order.
  • the other surface (second surface) (surface opposite to the first barrier layer) of the base material 201 is a surface in contact with the phosphor layer (not shown).
  • a treated surface 210 is processed to improve adhesion.
  • the above constitutes the barrier film 220 (hereinafter sometimes referred to as a gas barrier film) as a whole.
  • the protective film 230 includes a second base material 202 (hereinafter, also referred to as a base material or a second base material), and the gas barrier coating layer 204 on the base material 201 and one of the base materials 202 are provided. It is bonded via an adhesive layer 205 so that the surface faces the surface. That is, the base material 202 is bonded to the gas barrier coating layer 204 (first barrier layer) via the adhesive layer 205.
  • a second base material 202 hereinafter, also referred to as a base material or a second base material
  • the gas barrier coating layer 204 on the base material 201 and one of the base materials 202 are provided. It is bonded via an adhesive layer 205 so that the surface faces the surface. That is, the base material 202 is bonded to the gas barrier coating layer 204 (first barrier layer) via the adhesive layer 205.
  • FIG. 7 shows the case where the inorganic thin film layer 203 and the gas barrier coating layer 204 are laminated in this order as an example of the barrier layer, but the barrier layer may be a layer including at least one inorganic thin film layer. That's fine.
  • the protective film 231 according to the fifth embodiment shown in FIG. 8 interferes with the surface opposite to the surface facing the adhesive layer 205 of the base material 202.
  • a coating layer 206 having an optical function such as a fringe prevention function, an antireflection function, a diffusion function, or an antistatic function is formed. That is, the coating layer 206 is formed on the surface of the substrate 202 opposite to the adhesive layer 205.
  • the structure of both surfaces of the base material 201 is the same as the case of 4th Embodiment shown by FIG. 7, and comprises the gas barrier film 220.
  • the barrier layer an inorganic thin film layer 203 and a gas barrier coating layer 204 are laminated in this order on one surface of the substrate 202, and these constitute a gas barrier film 221.
  • the coating layer 206 is formed on the other surface of the base material 202 as in the fifth embodiment shown in FIG. Further, the gas barrier coating layer 204 on the base material 201 and the gas barrier coating layer 204 on the base material 202 are bonded via an adhesive layer 205.
  • FIG. 9 shows the case where the inorganic thin film layer 203 and the gas barrier coating layer 204 are laminated in this order as the barrier layer laminated on the base material 202.
  • the barrier layer includes at least one inorganic thin film. What is necessary is just a layer containing a layer.
  • the protective film can be, for example, a barrier film in which a first base material and a first barrier layer are laminated.
  • the coating layer 206 is omitted (not shown).
  • the inorganic thin film layer 203 and the gas barrier coating layer 204 are each one layer. Although it is configured, two or more layers can be alternately stacked as required.
  • the substrate 201 is a polyethylene terephthalate (PET) film (usually uniaxial or biaxial stretching), and is a film having a treatment surface 210 on at least one side.
  • PET polyethylene terephthalate
  • the thickness of the film base material 201 is not specifically limited, In order to make the total thickness of a wavelength conversion sheet thin, it is desirable to set it as 50 micrometers or less. Moreover, in order to obtain excellent barrier properties, it is desirable that the thickness be 12 ⁇ m or more.
  • FIG. 10 is an enlarged view of an example of an X-ray photoelectron spectroscopic spectrum of the surface of the gas barrier film used for the protective film on the first base material side, and shows a waveform (C1s waveform) of C1s (electrons of carbon atom 1s orbit). It is shown.
  • the horizontal axis in FIG. 10 indicates the binding energy (eV), and the vertical axis indicates the strength.
  • a C1s waveform P INT indicated by a solid line can be separated into a plurality of peaks indicated by a dotted line and a one-dot chain line by analysis. Since each separated peak appears at a position of binding energy shifted by the chemical state of the carbon atom, the chemical state of each carbon atom can be known from the position of the binding energy of the separated peak.
  • X-ray photoelectron spectroscopy In the measurement by X-ray photoelectron spectroscopy (XPS), the kind and concentration of atoms, the kind of atoms bonded to the atoms, and their bonding state in a depth region of several nm from the surface of the substance to be measured Analysis can be performed, and the element ratio and functional group ratio can be obtained.
  • the XPS measurement conditions applied in the fourth to sixth embodiments are as follows.
  • the position of the peak binding energy appearing in the X-ray photoelectron spectroscopy spectrum is unique to each chemical state (bonding species) of the carbon atom.
  • the peak PCC derived from the carbon-carbon bond ( CC bond) is 285. It appeared in the vicinity of 0 eV, carbon - peak P COH derived from hydroxyl bond (COH bonds) appears in the vicinity of 286.5 eV.
  • the half width of the peak derived from the CC bond on the PET film substrate surface in the C1s waveform separation is 1.220 eV. It will be about.
  • a PET film substrate having such a half-value width surface has relatively low adhesion to the phosphor layer, and can cause delamination in long-term storage.
  • the half width W of the peak PCC derived from the CC bond on the PET film substrate surface in the C1s waveform separation is effective to use a PET film having a treated surface 210 such that CC is in the range of 1.340 to 1.560 eV.
  • the half width W CC is at least 1.340EV, excellent adhesion as compared with PET films untreated, delamination is less likely to occur in long-term storage. Further, when the half width W CC is 1.560 eV or less, the PET film surface is hardly deteriorated and the adhesion is easily maintained.
  • the film surface is reactive. It is effective to perform plasma treatment using ion etching (RIE). By performing plasma treatment using RIE, it is possible to chemically change the surface structure of the PET film using the generated radicals or ions, and the half width of the peak PCC derived from the CC bond W CC can be controlled.
  • RIE ion etching
  • the half width W CC of the peak PCC derived from the CC bond on the surface of the PET film substrate (treated surface 210).
  • the contact angle to water of the PET film substrate surface (processing surface 210) when measured the contact angle theta P is in the range of 30 to 65 degrees (30 ° ⁇ ⁇ P ⁇ 65 degrees) is preferable.
  • the processing conditions indicated by the processing speed and energy level when performing the RIE process can be set as appropriate.
  • the Epd value is 20 V ⁇ s ⁇ m ⁇ 2 or more, the PET film can be sufficiently treated and adhesion can be easily obtained.
  • the Epd value is 20000 V ⁇ s ⁇ m ⁇ 2 or less, the treatment does not become too strong, and the PET film surface is hardly deteriorated or the adhesiveness is hardly lowered.
  • the flow rate differs between the introduction and effective components depending on the performance or mounting position of the pump. is there.
  • the substrate 202 is not particularly limited, but is preferably a film having a total light transmittance of 85% or more.
  • a PET film, a polyethylene naphthalate film, or the like which is a substrate having high transparency and excellent heat resistance, can be used.
  • the thickness of the base material 202 is not particularly limited, but is desirably 50 ⁇ m or less in order to reduce the total thickness of the wavelength conversion sheet. In order to obtain excellent barrier properties, the thickness of the base material 202 is desirably 12 ⁇ m or more.
  • the barrier layer is a layer for imparting gas barrier properties to the gas barrier film.
  • oxygen barrier properties are required in order to prevent deterioration of the phosphor layer.
  • the gas barrier layer may be either an inorganic material or an organic material, but preferably includes at least one inorganic thin film layer having a high gas barrier property.
  • the gas barrier coating layer by disposing the gas barrier coating layer so as to be adjacent to the inorganic thin film layer, an effect of compensating for defects in the inorganic thin film layer also occurs.
  • a plurality of inorganic thin film layers and gas barrier coating layers may be provided.
  • the inorganic thin film layer (inorganic oxide thin film layer) 203 is not particularly limited.
  • aluminum oxide, silicon oxide, silicon nitride, silicon nitride oxide, magnesium oxide, or a mixture thereof can be used. .
  • the film thickness of the inorganic thin film layer 203 is preferably in the range of 5 to 500 nm, more preferably in the range of 10 to 100 nm.
  • the film thickness is 5 nm or more, it is easy to form a uniform film and to easily perform a gas barrier function.
  • the film thickness is 500 nm or less, sufficient flexibility can be maintained by the thin film, and it is possible to more reliably prevent the thin film from being cracked due to external factors such as bending or pulling after the film formation. There is a tendency to be able to.
  • an inorganic oxide on a plastic substrate there are various methods for forming an inorganic oxide on a plastic substrate, and examples include a method of forming by an ordinary vacuum deposition method. Further, a sputtering method, an ion plating method, a plasma vapor deposition method (CVD), or the like can be used. However, in consideration of productivity, the vacuum deposition method is the best. As the heating means of the vacuum deposition method, it is preferable to use any one of an electron beam heating method, a resistance heating method, and an induction heating method, but considering the wide range of selectivity of the evaporation material, the electron beam heating method is used. More preferably, it is used.
  • the gas barrier coating layer 204 is provided in order to prevent various secondary damages in the subsequent process and to impart high barrier properties.
  • This gas barrier coating layer 204 is composed of at least one selected from the group consisting of a hydroxyl group-containing polymer compound, a metal alkoxide, a metal alkoxide hydrolyzate, and a metal alkoxide polymer from the viewpoint of obtaining excellent barrier properties. It is preferable to contain.
  • hydroxyl group-containing polymer compound examples include water-soluble polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, and starch, and particularly excellent barrier properties are obtained when polyvinyl alcohol is used.
  • the metal alkoxide is represented by the general formula: Me (OR) x (Me represents a metal atom such as Si, Ti, Al or Zr, R represents an alkyl group such as —CH 3 or —C 2 H 5 , and x represents Me. Represents an integer corresponding to the valence of.
  • Specific examples of the metal alkoxide include tetraethoxysilane [Si (OC 2 H 5 ) 4 ], triisopropoxyaluminum [Al (O-iso-C 3 H 7 ) 3 ] and the like. Tetraethoxysilane or triisopropoxyaluminum is preferable because it is relatively stable in an aqueous solvent after hydrolysis.
  • hydrolyzate and polymer of metal alkoxide examples include, for example, silicic acid (Si (OH) 4 ), which is a hydrolyzate or polymer of tetraethoxysilane, and a hydrolyzate or polymer of triisopropoxyaluminum. And aluminum hydroxide (Al (OH) 3 ).
  • the film thickness of the gas barrier coating layer 204 is preferably in the range of 50 to 1000 nm, and more preferably in the range of 100 to 500 nm.
  • the film thickness is 50 nm or more, there is a tendency that a more sufficient gas barrier property can be obtained, and when it is 1000 nm or less, there is a tendency that sufficient flexibility can be maintained by the layer.
  • the adhesive layer 205 is provided to bond the base material 202 and the gas barrier film 220 or the gas barrier films 220 and 221 together. Although it does not specifically limit as the contact bonding layer 205, Adhesives or adhesives, such as an acryl-type material, a urethane type material, and a polyester-type material, can be used. More specifically, any of an acrylic pressure-sensitive adhesive, an acrylic adhesive, a urethane adhesive, and an ester adhesive can be used.
  • the thickness of the adhesive layer 205 is not particularly limited, but is desirably 10 ⁇ m or less in order to reduce the total thickness of the protective film. On the other hand, from the viewpoint of obtaining better adhesiveness, the thickness of the adhesive layer 205 is desirably 3 ⁇ m or more.
  • the treatment surface 210 of the base material 201 of the gas barrier film 220 is bonded so as to face away from the adhesive layer 205.
  • the coating layer 206 is provided on the outermost surface opposite to the treatment surface 210 of the protective films 231 and 232 in order to exhibit an optical function or an antistatic function.
  • the optical function is not particularly limited, and examples thereof include an interference fringe (moire) prevention function, an antireflection function, and a diffusion function.
  • the coating layer 206 preferably has at least an interference fringe preventing function. In the following embodiment, a case where the coating layer 206 has at least an interference fringe preventing function will be described.
  • the coating layer 206 may include a binder resin and fine particles. Further, by embedding the fine particles in the binder resin so that a part of the fine particles is exposed from the surface of the coating layer 206, fine irregularities are generated on the surface of the coating layer 206. By providing such a coating layer on the outermost surfaces of the protective films 231 and 232, generation of interference fringes such as Newton rings can be sufficiently prevented.
  • the binder resin is not particularly limited, but a resin excellent in optical transparency can be used. More specifically, as the binder resin, polyester resin, acrylic resin, acrylic urethane resin, polyester acrylate resin, polyurethane acrylate resin, urethane resin, epoxy resin, polycarbonate resin, polyamide resin, Thermoplastic resins such as polyimide resins, melamine resins, and phenol resins, thermosetting resins, or radiation curable resins can be used. Among these, it is desirable to use an acrylic resin excellent in light resistance or optical properties. These can be used in combination of not only one type but also a plurality of types.
  • the fine particles are not particularly limited.
  • inorganic fine particles such as silica, clay, talc, calcium carbonate, calcium sulfate, barium sulfate, titanium oxide, and alumina, styrene resin, urethane resin, and silicone resin.
  • Organic fine particles such as acrylic resin can be used. These can be used in combination of not only one type but also a plurality of types.
  • the average particle diameter of the fine particles is preferably from 0.1 to 30 ⁇ m, and more preferably from 0.5 to 10 ⁇ m.
  • the average particle size of the fine particles is 0.1 ⁇ m or more, an interference fringe prevention function tends to be obtained, and when it is 30 ⁇ m or less, the transparency tends to be improved.
  • the content of fine particles in the coating layer 206 is preferably 0.5 to 30% by mass, more preferably 3 to 10% by mass based on the total amount of the coating layer.
  • the content of the fine particles is 0.5% by mass or more, the light diffusion function and the effect of preventing the generation of interference fringes tend to be further improved.
  • the content is 30% by mass or less, the luminance is not reduced. .
  • FIG. 12, and FIG. 13 are schematic cross-sectional views showing the overall configuration of three embodiments of the wavelength conversion sheet according to another aspect of the present invention.
  • the wavelength conversion sheets 300, 400, and 500 according to another aspect of the present invention are configured to include the phosphor layer 209 and the protective films 230, 231, and 232 described above on both sides of the phosphor layer 209, respectively. . As a result, the phosphor layer 209 is enclosed between the protective films 230, 231 and 232.
  • the phosphor layer 209 and the protective films 230, 231 and 232 provided on both sides thereof are laminated so that the treatment surface 210 of the base material 201 of the protective films 230, 231 and 232 and the phosphor layer 209 face each other. .
  • the phosphor layer 209 may be sandwiched between protective films having the same configuration, or may be sandwiched between protective films having different configurations. It may be.
  • the phosphor layer 209 is a layer including the phosphor 207 and the sealing resin 208. Inside the phosphor layer 209, one or more phosphors 207 are mixed and sealed. The sealing resin 208 plays a role of filling these gaps when the phosphor layer 209 and the protective films 230, 231, and 232 are laminated.
  • the phosphor layer 209 may be a laminate in which two or more phosphor layers in which only one kind of phosphor is sealed are stacked. As the two or more kinds of phosphors used in the one or two or more phosphor layers, those having the same excitation wavelength are selected. This excitation wavelength is selected based on the wavelength of light emitted by the LED light source.
  • the thickness of the phosphor layer 209 is preferably 1 to 500 ⁇ m.
  • the average particle size of the phosphor 207 is preferably 1 to 20 nm.
  • the content of the phosphor 207 in the phosphor layer 209 is preferably 1 to 20% by mass, and more preferably 3 to 10% by mass based on the total amount of the phosphor layer 209.
  • Quantum dots are preferably used as the phosphor 207.
  • the quantum dots include those in which a core as a light emitting portion is coated with a shell as a protective film.
  • the core include cadmium selenide (CdSe), and examples of the shell include zinc sulfide (ZnS). Quantum efficiency is improved by covering surface defects of CdSe particles with ZnS having a large band gap.
  • the phosphor may be one in which a core is doubly covered with a first shell and a second shell. In this case, CsSe can be used for the core, zinc selenide (ZnSe) can be used for the first shell, and ZnS can be used for the second shell.
  • YAG: Ce etc. can also be used as fluorescent substance other than a quantum dot.
  • sealing resin 208 for example, a thermoplastic resin, a thermosetting resin, an ultraviolet curable resin, or the like can be used. These resins can be used alone or in combination of two or more.
  • thermoplastic resin examples include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose and methylcellulose; vinyl acetate homopolymers and copolymers, vinyl chloride homopolymers and copolymers, and Vinyl resins such as vinylidene chloride homopolymers and copolymers; Acetal resins such as polyvinyl formal and polyvinyl butyral; Acrylic resins and copolymers thereof, Acrylic resins such as methacrylic resins and copolymers thereof; Polystyrene resins Polyamide resin; linear polyester resin; fluororesin; and polycarbonate resin can be used.
  • cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose and methylcellulose
  • vinyl acetate homopolymers and copolymers vinyl chloride homopolymers and copolymers
  • Vinyl resins such as vinylidene chloride homopolymers and
  • thermosetting resin examples include phenol resin, urea melamine resin, polyester resin, and silicone resin.
  • the ultraviolet curable resin examples include photopolymerizable prepolymers such as epoxy acrylate, urethane acrylate, and polyester acrylate. Further, these photopolymerizable prepolymers can be the main components, and monofunctional or polyfunctional monomers can be used as diluents.
  • Example 1-1 On one side of a 25 ⁇ m thick polyethylene terephthalate (PET) film as the first substrate 1, silicon oxide as the inorganic thin film layer 3 was provided in a thickness of 250 mm by vacuum deposition. Further, a mixed solution containing tetraethoxysilane and polyvinyl alcohol was applied onto the inorganic thin film layer 3 by a wet coating method to form a gas barrier coating layer having a thickness of 0.3 ⁇ m.
  • PET polyethylene terephthalate
  • a plasma treatment was performed on the surface of the gas barrier coating layer in an argon gas atmosphere to provide a surface treatment region 4t on the gas barrier coating layer.
  • the barrier film 10 in which the barrier layer 2 including the inorganic thin film layer 3 and the surface-treated gas barrier coating layer 4 was formed on the first substrate 1 was produced.
  • reactive ion etching RIE
  • a coating liquid containing an acrylic resin and silica fine particles (average particle size of 3 ⁇ m) is applied to the surface (surface on the first base material 1 side) opposite to the surface treatment region 4t of the barrier film 10 by a wet coating method.
  • the protective film 20 of Example 1-1 was produced by forming the coating layer 12 having a thickness of 5 ⁇ m.
  • Example 1-2 A protective film 20 of Example 1-2 was produced in the same manner as in Example 1-1, except that when the surface treatment region 4t was provided, the applied power of plasma treatment was changed to 60W.
  • Example 1-3 A barrier film 10 was obtained in the same manner as in Example 1-1 except that when the surface treatment region 4t was provided, the applied power of the plasma treatment was changed to 500W.
  • a coating solution containing an acrylic resin and silica fine particles (average particle size: 3 ⁇ m) is applied to one side of a 25 ⁇ m-thick polyethylene terephthalate (PET) film as the support substrate 14 by a wet coating method, and the thickness is 5 ⁇ m.
  • PET polyethylene terephthalate
  • Acrylic resin adhesive is formed on the surface opposite to the gas barrier coating layer 4 of the barrier film 10 obtained above (the surface on the first substrate 1 side) and the surface opposite to the coating layer 12 of the support substrate 14.
  • a protective film 20 of Example 1-3 was used to obtain a protective film 20 of Example 1-3.
  • Comparative Example 1-1 A protective film of Comparative Example 1-1 was produced in the same manner as in Example 1-1 except that the plasma treatment was not performed and the surface treatment region 4t was not provided.
  • Comparative Example 1-2 A protective film of Comparative Example 1-2 was produced in the same manner as in Example 1-1, except that when the surface treatment region was provided, the applied power for plasma treatment was 250 W and the treatment time was 0.5 seconds. did.
  • Comparative Example 1-3 A protective film of Comparative Example 1-3 was produced in the same manner as in Example 1-3, except that when the surface treatment region was provided, the applied power of plasma treatment was 30 W and the treatment time was 0.1 second. did.
  • the charge correction was performed with the CC bond peak position derived from the benzene ring being 285.0 eV. And intensity I CC of the peak P CC derived from the waveform separation analysis CC bond to obtain the intensity I COH peak P COH derived from COH binding was calculated intensity ratio D from these values.
  • the calculated intensity ratios D are shown in Table 1, respectively.
  • Example 1-1 ⁇ Production of wavelength conversion sheet>
  • CdSe / ZnS 530 (trade name) manufactured by SIGMA-ALDRICH was mixed with an epoxy-based photosensitive resin, and the mixed solution was applied to the surface on the gas barrier coating layer side of the protective film prepared in Example 1-1.
  • the quantum dot layer (phosphor layer) was formed by coating.
  • a wavelength conversion sheet using the protective film of Example 1-1 was obtained by laminating a protective film having the same structure on the quantum dot layer so that the gas barrier coating layers face each other and performing UV curing lamination.
  • wavelength conversion sheets using the protective films of Examples 1-2 to 1-3 and Comparative Examples 1-1 to 1-3 were obtained.
  • the wavelength conversion sheets using the protective films of Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-3 were stored for 100 hours in an environment of 65 ° C. and 95% RH.
  • the wavelength conversion sheet after storage was irradiated with UV light having a wavelength of 254 nm with a UV lamp, the wavelength conversion sheet was visually observed from the opposite side of the irradiated surface, and the light emission state was evaluated according to the following criteria.
  • the evaluation results of the light emission state are shown in Table 1.
  • B Spotted patterns or streaks were observed in the UV light observed through the wavelength conversion sheet.
  • ⁇ Appearance evaluation> The wavelength conversion sheets using the protective films of Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-3 were stored for 100 hours in an environment of 65 ° C. and 95% RH. The appearance of the wavelength conversion sheet after storage was visually confirmed and evaluated according to the following criteria. Table 1 shows the appearance evaluation results. A: No defect in appearance was observed in the wavelength conversion sheet. B: Floating was observed between the phosphor layer of the wavelength conversion sheet and the protective film.
  • Example 2-1 On one side of a 25 ⁇ m-thick polyethylene terephthalate (PET) film as the base material 201, silicon oxide is provided as an inorganic thin film layer 203 to a thickness of 25 nm by a vacuum deposition method, and a coating liquid containing tetraethoxysilane and polyvinyl alcohol is wetted. Coating was performed on the inorganic thin film layer 203 by a coating method to form a gas barrier coating layer 204 having a thickness of 300 nm.
  • PET polyethylene terephthalate
  • a processing unit is disposed on the surface opposite to the surface on which the gas barrier coating layer 204 of the PET film is formed in an argon gas atmosphere.
  • Plasma treatment was performed under the conditions of a pressure of 2.0 Pa, an applied power of 100 W, and a treatment time of 0.1 seconds to form a treatment surface 210 to obtain a gas barrier film 220.
  • a coating liquid containing an acrylic resin as a binder resin and silica fine particles (average particle size of 3 ⁇ m) is applied to one side of a polyethylene terephthalate (PET) film having a thickness of 25 ⁇ m as the base material 202 by a wet coating method, A coating layer 206 having a thickness of 5 ⁇ m was formed.
  • PET polyethylene terephthalate
  • the surface on the gas barrier coating layer 204 side of the barrier film 220 prepared above and the surface opposite to the coating layer 206 of the base material 202 (the surface on which the base material 202 is exposed) are used.
  • the protective film 231 having the configuration shown in FIG.
  • Example 2-2 A protective film was produced in the same manner as in Example 2-1, except that the applied power of the plasma treatment was changed to 500 W in the formation of the treatment surface 210.
  • Example 2-1 A protective film was produced in the same manner as in Example 2-1, except that the plasma treatment was not performed and the treatment surface 210 was not formed.
  • Example 2-2 A protective film was produced in the same manner as in Example 2-1, except that the treated surface was formed by performing corona treatment instead of plasma treatment.
  • a mixed function of a Gaussian function and a Lorentz function was used for the waveform separation analysis of the C1s waveform, and the charge correction was performed with the peak derived from the CC bond of the benzene ring being 285.0 eV. From the waveform separation of the C1s waveform, the half width W CC of the peak PCC derived from the CC bond was calculated.
  • the contact angle ⁇ P with respect to the water on the surface of the first base material side of the protective film obtained in Examples 2-1 to 2-2 and Comparative Examples 2-1 to 2-2 was determined by the Japanese Industrial Standard JIS R3257 “Substrate Glass”.
  • JIS R3257 “Substrate Glass”.
  • Example 2-1 ⁇ Production of wavelength conversion sheet> After mixing CdSe / ZnS 530 (trade name, manufactured by SIGMA-ALDRICH) as a quantum dot with an epoxy-based photosensitive resin as a sealing resin, the mixed solution is used for the protective film 231 obtained in Example 2-1.
  • a phosphor layer 209 is formed by coating on one substrate 201 side, and a protective film 231 having the same configuration is laminated on the phosphor layer 209 so that the first substrates 201 face each other, and UV curable laminate
  • a wavelength conversion sheet 400 having the configuration of FIG. 5 in which the phosphor layer 209 was wrapped between the protective films 231 of Example 2-1 was produced.
  • a wavelength conversion sheet using the protective films of Example 2-2 and Comparative Examples 2-1 and 2-2 was obtained.
  • Table 2 shows the calculated value of the half width W CC , the measured value of the contact angle ⁇ P , the measured value of the laminate strength, the light emission state evaluation result, and the appearance evaluation result.
  • the protection of Examples 1 and 2 in which the half width W CC of the peak PCC derived from the CC bond in the C1s waveform separation is in the range of 1.340 to 1.560 eV.
  • the wavelength conversion sheet using a film has strong adhesion between the protective film and the phosphor layer, and thus a wavelength conversion sheet that maintains a good light emitting state and appearance even after a storage test can be obtained.
  • a backlight unit with little decrease in luminous efficiency can be obtained over a long period of time, and durability can be obtained by using the backlight unit. It is possible to manufacture a display with excellent properties. According to the protective film in another aspect of the present invention and the wavelength conversion sheet using the protective film, it is possible to obtain a backlight unit with little decrease in luminous efficiency over a long period of time. Further, by using the backlight unit, a display having excellent durability can be manufactured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Optical Filters (AREA)

Abstract

The present invention provides a protective film for protecting a phosphor layer, provided with a barrier film including a first substrate and a first barrier layer. The first barrier layer includes a gas-barrier covering layer forming one outermost surface of the protective film. The gas-barrier covering layer contains a polyvinyl alcohol and an inorganic compound. The gas-barrier covering layer has on the outermost surface side a surface-treated area in which a strength ratio D represented by the following Formula (1) is 0.35 or more to 0.77 or less. D=ICOH/ICC (1)

Description

保護フィルム及び波長変換シートProtective film and wavelength conversion sheet
 本発明は、保護フィルム、及びそれを用いた波長変換シートに関する。 The present invention relates to a protective film and a wavelength conversion sheet using the protective film.
 近年、量子ドットを用いたナノサイズの蛍光体が製品化されている。量子ドットとは、発光性の半導体ナノ粒子で、直径の範囲は1~20nm程度である。量子ドットは幅広い励起スペクトルを示し量子効率が高いため、LED波長変換用蛍光体として使用することができる。さらに、ドットサイズ又は半導体材料の種類を変更するだけで、発光の波長を可視域全体にわたって完全に調整することができるという利点がある。そのため、量子ドットは事実上あらゆる色、特に照明業界で強く望まれている暖かい白色を作り出せる可能性を秘めているといわれている。加えて、発光波長が赤、緑、青に対応する3種類のドットを組み合わせることにより、演色評価数の異なる白色光を得ることが可能となる。このような量子ドットを例えば液晶ディスプレイのバックライトユニットに用いた場合、従来のものよりも厚み、消費電力、コスト、及び製造プロセス等を増やすことなく、色調が向上し、人が識別できる色の多くを表現可能になる。 In recent years, nano-sized phosphors using quantum dots have been commercialized. Quantum dots are light-emitting semiconductor nanoparticles with a diameter range of about 1 to 20 nm. Since quantum dots show a wide excitation spectrum and high quantum efficiency, they can be used as phosphors for LED wavelength conversion. Furthermore, there is an advantage that the wavelength of light emission can be completely adjusted over the entire visible range simply by changing the dot size or the type of semiconductor material. Therefore, quantum dots are said to have the potential to create virtually any color, especially the warm white color that is highly desired in the lighting industry. In addition, it is possible to obtain white light having a different color rendering index by combining three types of dots corresponding to emission wavelengths of red, green, and blue. When such quantum dots are used, for example, in a backlight unit of a liquid crystal display, the color tone is improved without increasing the thickness, power consumption, cost, manufacturing process, etc., compared to the conventional ones. Many can be expressed.
 上述したような量子ドットを用いたバックライトユニットは、所定の発光スペクトルを持つ蛍光体(量子ドット及びYAG(Ce等))を層内に分散させ、層の表面を保護フィルムにて封止し、場合によっては層のエッジ部も封止した波長変換シートを、LED光源及び導光板と組み合わせた構成を有する。 In the backlight unit using quantum dots as described above, phosphors having a predetermined emission spectrum (quantum dots and YAG (Ce, etc.)) are dispersed in the layer, and the surface of the layer is sealed with a protective film. In some cases, the wavelength conversion sheet in which the edge portion of the layer is sealed is combined with the LED light source and the light guide plate.
 上記保護フィルムは、プラスチックフィルム等の基材の表面に蒸着等によって薄膜を形成して、水分や気体の透過を防ぐものである。保護フィルムには、透明性及びバリア性の他に、スプラッシュ、キズ又はシワといった外観不良を持たないことが要求される。ここで、スプラッシュとは、蒸着材料が高温の微細な粒のまま飛散する現象であり、蒸着時にそのまま基材に付着して異物になったり、基材に穴を開けたりする現象をいう。このような要求に対し、従来の保護フィルムは、その多くが食品や医療品等の包装材料や電子デバイス等のパッケージ材料として用いられてきたものであるため、満足できる性能を得ることができないという課題があった。特許文献1には、蛍光体を有する色変換層が一対のバリアフィルム間に設けられた色変換部材とこれを用いた表示装置が開示されている。 The protective film forms a thin film by vapor deposition or the like on the surface of a substrate such as a plastic film to prevent moisture and gas from permeating. In addition to transparency and barrier properties, the protective film is required not to have an appearance defect such as splash, scratch or wrinkle. Here, the splash is a phenomenon in which the vapor deposition material is scattered as high-temperature fine particles, and is a phenomenon in which the vapor deposition material adheres to the base material as it is during the vapor deposition and becomes a foreign substance, or a hole is made in the base material. In response to such demands, many of the conventional protective films have been used as packaging materials such as foods and medical products and packaging materials such as electronic devices, so that satisfactory performance cannot be obtained. There was a problem. Patent Document 1 discloses a color conversion member in which a color conversion layer having a phosphor is provided between a pair of barrier films, and a display device using the color conversion member.
特開2011-013567号公報JP 2011-013567 A
 しかしながら、本発明者の検討によれば、特許文献1に記載のバリアフィルムを用いた場合、蛍光体層(色変換層)との十分な密着性が得られず、色変換部材を高温高湿環境下で長期間保存した場合に、良好な外観や蛍光体の発光状態を維持することが困難であるという問題があった。本発明は上記問題に鑑みてなされたものであり、蛍光体層との密着性を向上し、高温高湿環境下で長期間保存したときでも良好な外観及び発光状態を維持することができる波長変換シートを製造可能な保護フィルム、及びこれを用いて得られる波長変換シートを提供することを目的とする。 However, according to the study of the present inventor, when the barrier film described in Patent Document 1 is used, sufficient adhesion with the phosphor layer (color conversion layer) cannot be obtained, and the color conversion member is not hot and humid. There has been a problem that it is difficult to maintain a good appearance and the light emission state of the phosphor when stored in the environment for a long period of time. The present invention has been made in view of the above problems, and improves the adhesion with the phosphor layer, and can maintain a good appearance and light emitting state even when stored for a long time in a high temperature and high humidity environment. It aims at providing the protective film which can manufacture a conversion sheet, and the wavelength conversion sheet obtained using this.
 本発明は、その一側面において、第一基材及び第一バリア層を含むバリアフィルムを備える、蛍光体層を保護するための保護フィルムを提供する。上記保護フィルムは、上記バリアフィルムの上記第一基材側に配置されたコーティング層をさらに備えていてもよく、上記第一基材と上記コーティング層との間に配置された支持基材をさらに備えていてもよい。 In one aspect, the present invention provides a protective film for protecting a phosphor layer, comprising a barrier film including a first base material and a first barrier layer. The protective film may further include a coating layer disposed on the first substrate side of the barrier film, and further includes a support substrate disposed between the first substrate and the coating layer. You may have.
 上記保護フィルムにおいて、上記第一バリア層は上記保護フィルムの一方の最表面を構成するガスバリア性被覆層を含み、上記ガスバリア性被覆層はポリビニルアルコール及び無機化合物を含有する。また、上記ガスバリア性被覆層は、下記式(1)で表される強度比Dが0.35以上0.77以下となる表面処理領域を上記最表面側に有する。
   D=ICOH/ICC  ・・・(1)
[式(1)中、ICOHは上記保護フィルムの上記ガスバリア性被覆層側の面のX線光電子分光スペクトルのC1s波形における炭素-水酸基結合に由来するピークの強度を示し、ICCは上記C1s波形における炭素-炭素結合に由来するピークの強度を示す。]
In the protective film, the first barrier layer includes a gas barrier coating layer constituting one outermost surface of the protective film, and the gas barrier coating layer includes polyvinyl alcohol and an inorganic compound. Moreover, the said gas-barrier coating layer has the surface treatment area | region where the intensity ratio D represented by following formula (1) becomes 0.35 or more and 0.77 or less on the said outermost surface side.
D = I COH / I CC (1)
[In formula (1), ICOH represents the intensity of the peak derived from the carbon-hydroxyl bond in the C1s waveform of the X-ray photoelectron spectrum of the surface of the protective film on the gas barrier coating layer side, and I CC represents the C1s The intensity of the peak derived from the carbon-carbon bond in the waveform is shown. ]
 上記保護フィルムは一方の最表面を構成するガスバリア性被覆層に樹脂との高い密着性を有する表面処理領域を有することから、波長変換シートに用いたとき、蛍光体層に対して優れた密着性を得ることができる。また、上記保護フィルムを用いて得られた波長変換シートを高温高湿環境下で長期間保存しても、保護フィルムの剥離等がなく、良好な外観及び発光状態を維持することができる。 Since the protective film has a surface treatment region having high adhesion to the resin in the gas barrier coating layer constituting one outermost surface, when used in a wavelength conversion sheet, excellent adhesion to the phosphor layer Can be obtained. Moreover, even if the wavelength conversion sheet obtained using the said protective film is preserve | saved for a long time in a high-temperature, high-humidity environment, there is no peeling of a protective film, etc., and a favorable external appearance and a light emission state can be maintained.
 上記保護フィルムにおいて、上記ガスバリア性被覆層の上記表面処理領域の水に対する接触角は28~40度であることが好ましい。接触角が上記範囲内にあることにより、蛍光体層との密着性が向上し、高温高湿環境下で長時間保存したときの上記密着性の低下をさらに抑制できる傾向がある。 In the protective film, it is preferable that a contact angle of the gas barrier coating layer with respect to water in the surface treatment region is 28 to 40 degrees. When the contact angle is within the above range, the adhesion to the phosphor layer is improved, and the above-described decrease in adhesion when stored for a long time in a high temperature and high humidity environment tends to be further suppressed.
 上記保護フィルムにおいて、上記第一バリア層が無機薄膜層をさらに含み、上記無機薄膜層が上記第一基材と上記ガスバリア性被覆層との間に配置されていることが好ましい。第一バリア層が無機薄膜層をさらに含むことにより、保護フィルムのバリア性が一層向上する傾向がある。上記無機薄膜層の厚さは5~100nmであることが好ましい。 In the protective film, it is preferable that the first barrier layer further includes an inorganic thin film layer, and the inorganic thin film layer is disposed between the first base material and the gas barrier coating layer. When the first barrier layer further includes an inorganic thin film layer, the barrier property of the protective film tends to be further improved. The thickness of the inorganic thin film layer is preferably 5 to 100 nm.
 上記保護フィルムにおいて、上記無機化合物は金属アルコキシド又はその加水分解物であることが好ましい。上記無機薄膜層は酸化ケイ素及び酸化アルミニウムの少なくとも一方を含有することが好ましい。また、上記コーティング層は、バインダー樹脂、及び、該バインダー樹脂中に分散された微粒子を含有することが好ましい。 In the protective film, the inorganic compound is preferably a metal alkoxide or a hydrolyzate thereof. The inorganic thin film layer preferably contains at least one of silicon oxide and aluminum oxide. The coating layer preferably contains a binder resin and fine particles dispersed in the binder resin.
 本発明はまた、その一側面において、上記保護フィルムと、上記保護フィルムの上記最表面側に配置された蛍光体層とを備える、波長変換シートを提供する。上記波長変換シートにおいて、上記ガスバリア性被覆層の上記表面処理領域と上記蛍光体層とが接している。 The present invention also provides, in one aspect thereof, a wavelength conversion sheet comprising the protective film and a phosphor layer disposed on the outermost surface side of the protective film. In the wavelength conversion sheet, the surface treatment region of the gas barrier coating layer and the phosphor layer are in contact with each other.
 本発明は、別の側面において、第一基材及び第一バリア層を含むバリアフィルムを備える、蛍光体層を保護するための保護フィルムを提供する。上記保護フィルムは、接着層を介して上記第一バリア層と接着された第二基材をさらに備えていてもよい。また、上記保護フィルムは、第二基材と、上記第二基材の一方の面に積層された第二バリア層をさらに備え、接着層を介して上記第二バリア層が上記第一バリア層と接着されていてもよい。また、上記保護フィルムは、上記第二基材の上記接着層と反対側の面に形成されたコーティング層をさらに備えていてもよい。 In another aspect, the present invention provides a protective film for protecting a phosphor layer, comprising a barrier film including a first substrate and a first barrier layer. The protective film may further include a second substrate bonded to the first barrier layer via an adhesive layer. The protective film further includes a second base material and a second barrier layer laminated on one surface of the second base material, and the second barrier layer is the first barrier layer via an adhesive layer. And may be adhered. Moreover, the said protective film may further be provided with the coating layer formed in the surface on the opposite side to the said contact bonding layer of said 2nd base material.
 上記保護フィルムにおいて、上記第一基材はポリエチレンテレフタレートフィルムである。さらに、この第一基材の上記第一バリア層と反対側の面は、X線光電子分光測定を行ったときに、C1s波形分離におけるC-C結合のピークの半値幅が1.340~1.560eVとなるように処理を施した処理面である。 In the protective film, the first base material is a polyethylene terephthalate film. Further, the surface of the first substrate opposite to the first barrier layer has a half-width of a peak of CC bond in C1s waveform separation of 1.340 to 1 when X-ray photoelectron spectroscopy is performed. It is the processing surface which processed so that it might become .560eV.
 上記保護フィルムにおいて、上記第一基材の上記処理面の水に対する接触角は30~65度であることが好ましい。接触角が上記範囲内にあることにより、蛍光体層との密着性が向上し、高温高湿環境下で長時間保存したときの上記密着性の低下をさらに抑制できる傾向がある。 In the protective film, the contact angle of the first substrate with respect to the treated surface with respect to water is preferably 30 to 65 degrees. When the contact angle is within the above range, the adhesion to the phosphor layer is improved, and the above-described decrease in adhesion when stored for a long time in a high temperature and high humidity environment tends to be further suppressed.
 上記保護フィルムにおいて、上記第一バリア層は無機薄膜層を含むことが好ましく、ガスバリア性被覆層をさらに含むことが好ましい。また、上記無機薄膜層が、酸化珪素、窒化珪素、窒化酸化珪素及び酸化アルミニウムの少なくとも一種を含有する層であることが好ましい。また、上記接着層が、アクリル系樹脂、ウレタン系樹脂及びエステル系樹脂のいずれか一種を含有することが好ましい。また、上記コーティング層は、干渉縞防止機能、反射防止機能及び拡散機能のうちの少なくとも一種の光学的機能を有することが好ましい。また、上記コーティング層が、バインダー樹脂と、該バインダー樹脂中に分散された微粒子とを含有することが好ましい。 In the protective film, the first barrier layer preferably includes an inorganic thin film layer, and further preferably includes a gas barrier coating layer. The inorganic thin film layer is preferably a layer containing at least one of silicon oxide, silicon nitride, silicon nitride oxide, and aluminum oxide. Moreover, it is preferable that the said contact bonding layer contains any one of acrylic resin, urethane type resin, and ester resin. The coating layer preferably has at least one optical function of an interference fringe prevention function, an antireflection function, and a diffusion function. Moreover, it is preferable that the said coating layer contains binder resin and the microparticles | fine-particles disperse | distributed in this binder resin.
 本発明はまた、別の側面において、蛍光体層の両面に、上記保護フィルムを、該保護フィルムの上記第一基材の上記処理面と接して備えている、波長変換シートを提供する。 The present invention also provides, in another aspect, a wavelength conversion sheet comprising the protective film on both sides of a phosphor layer in contact with the treated surface of the first substrate of the protective film.
 本発明によれば、その一側面において、蛍光体層との密着性を向上し、高温高湿環境下で長期間保存したときでも良好な外観及び発光状態を維持することができる波長変換シートを製造可能な保護フィルム、及びこれを用いて得られる波長変換シートを提供することができる。また、本発明によれば、別の側面において、保護フィルムと蛍光体層との密着性を向上させることができ、これにより長期間にわたって外観不良がなく、発光効率の低下も十分小さい波長変換シートを提供することができる。 According to the present invention, in one aspect thereof, there is provided a wavelength conversion sheet capable of improving adhesion with a phosphor layer and maintaining a good appearance and light emitting state even when stored for a long time in a high temperature and high humidity environment. A manufacturable protective film and a wavelength conversion sheet obtained using the same can be provided. Further, according to the present invention, in another aspect, the wavelength conversion sheet can improve the adhesion between the protective film and the phosphor layer, and thus has no poor appearance over a long period of time, and the decrease in luminous efficiency is sufficiently small. Can be provided.
本発明の第1実施形態に係る保護フィルムの模式断面図である。It is a schematic cross section of the protective film which concerns on 1st Embodiment of this invention. 保護フィルムのガスバリア性被覆層側の面のX線光電子分光スペクトル及び分析結果の一例の拡大図である。It is an enlarged view of an example of the X-ray photoelectron spectroscopy spectrum and analysis result of the surface of the protective film on the gas barrier coating layer side. 本発明の第2実施形態に係る保護フィルムの模式断面図である。It is a schematic cross section of the protective film which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る保護フィルムの模式断面図である。It is a schematic cross section of the protective film which concerns on 3rd Embodiment of this invention. 本発明の一側面に係る波長変換シートの模式断面図である。It is a schematic cross section of the wavelength conversion sheet concerning one side of the present invention. 本発明の一側面に係る波長変換シートを用いて得られるバックライトユニットの模式断面図である。It is a schematic cross section of the backlight unit obtained using the wavelength conversion sheet concerning one side of the present invention. 本発明の第4実施形態に係る保護フィルムの模式断面図である。It is a schematic cross section of the protective film which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る保護フィルムの模式断面図である。It is a schematic cross section of the protective film which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る保護フィルムの模式断面図である。It is a schematic cross section of the protective film which concerns on 6th Embodiment of this invention. 保護フィルムに第一基材側の面のX線光電子分光スペクトル及び分析結果の一例の拡大図である。It is an enlarged view of an example of the X-ray photoelectron spectroscopy spectrum and analysis result of the surface at the side of the first substrate on the protective film. 本発明の別の側面に係る波長変換シートの模式断面図である。It is a schematic cross section of the wavelength conversion sheet concerning another side of the present invention. 本発明の別の側面に係る波長変換シートの模式断面図である。It is a schematic cross section of the wavelength conversion sheet concerning another side of the present invention. 本発明の別の側面に係る波長変換シートの模式断面図である。It is a schematic cross section of the wavelength conversion sheet concerning another side of the present invention.
 以下、図面を参照しながら本発明の複数の実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は図示の比率に限られるものではない。 Hereinafter, a plurality of embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.
[保護フィルム]
 <第1実施形態>
 本発明に係る保護フィルムは、その一側面において、下記第1~第3実施形態に係る保護フィルムであることができる。まず、本発明の第1実施形態に係る保護フィルムについて説明する。図1は本発明の第1実施形態に係る保護フィルムの模式断面図である。図1において、保護フィルム20は、バリアフィルム10とコーティング層12とを備える。
[Protective film]
<First Embodiment>
In one aspect, the protective film according to the present invention can be a protective film according to the following first to third embodiments. First, the protective film according to the first embodiment of the present invention will be described. FIG. 1 is a schematic cross-sectional view of a protective film according to the first embodiment of the present invention. In FIG. 1, the protective film 20 includes a barrier film 10 and a coating layer 12.
 本実施形態において、バリアフィルム10は、第一基材1及び該第一基材1の一方の面上に設けられたバリア層2から構成されている。第一基材1は、特に限定されず、全光線透過率が85%以上のフィルムであることが望ましい。第一基材1としては、例えば透明性が高く、耐熱性に優れた基材として、ポリエチレンテレフタレートフィルム、及びポリエチレンナフタレートフィルムなどを用いることができる。 In this embodiment, the barrier film 10 is composed of a first base material 1 and a barrier layer 2 provided on one surface of the first base material 1. The 1st base material 1 is not specifically limited, It is desirable that it is a film whose total light transmittance is 85% or more. As the 1st base material 1, a polyethylene terephthalate film, a polyethylene naphthalate film, etc. can be used as a base material with high transparency and heat resistance, for example.
 第一基材1の厚さは、特に限定されず、波長変換シートの総厚を薄くするために、50μm以下とすることが望ましい。また、優れたバリア性を得るために、第一基材1の厚さは12μm以上とすることが望ましい。 The thickness of the first substrate 1 is not particularly limited, and is desirably 50 μm or less in order to reduce the total thickness of the wavelength conversion sheet. In order to obtain excellent barrier properties, the thickness of the first substrate 1 is desirably 12 μm or more.
 バリア層2は保護フィルム20の一方の最表面を構成するガスバリア性被覆層4を含んで構成され、図1では、具体的には、無機薄膜層3とガスバリア性被覆層4とから構成されている。無機薄膜層3は、第一基材1と、保護フィルム20の一方の最表面を構成するガスバリア性被覆層4との間に配置されている。バリア層2は、無機薄膜層3とガスバリア性被覆層4とがそれぞれ交互に2層以上積層された積層構成とすることもできる。 The barrier layer 2 includes a gas barrier coating layer 4 that constitutes one outermost surface of the protective film 20. Specifically, in FIG. 1, the barrier layer 2 includes an inorganic thin film layer 3 and a gas barrier coating layer 4. Yes. The inorganic thin film layer 3 is disposed between the first substrate 1 and the gas barrier coating layer 4 constituting one outermost surface of the protective film 20. The barrier layer 2 may have a laminated structure in which two or more inorganic thin film layers 3 and gas barrier coating layers 4 are alternately laminated.
 無機薄膜層3としては、特に限定されず、例えば、酸化アルミニウム、酸化ケイ素、又は酸化マグネシウムを含有することができる。これらの中でも、バリア性及び生産性の観点から、無機薄膜層3は酸化アルミニウム及び酸化珪素の少なくとも一方を含有することが望ましい。 The inorganic thin film layer 3 is not particularly limited, and can contain, for example, aluminum oxide, silicon oxide, or magnesium oxide. Among these, it is desirable that the inorganic thin film layer 3 contains at least one of aluminum oxide and silicon oxide from the viewpoint of barrier properties and productivity.
 無機薄膜層3の厚さ(膜厚)は、5~500nmとすることが好ましく、5~100nmであることがより好ましく、10~100nmとすることがさらに好ましい。ここで、上記膜厚が5nm以上であると、均一な膜を形成しやすく、よりバリア性が得られやすくなる傾向がある。一方、上記膜厚が500nm以下であると、無機薄膜層3により十分なフレキシビリティを保持させやすくなる。その結果、成膜後の折り曲げ及び引っ張りなどの外的要因により、無機薄膜層3に亀裂が生じることをより確実に防ぐことができる傾向がある。 The thickness (film thickness) of the inorganic thin film layer 3 is preferably 5 to 500 nm, more preferably 5 to 100 nm, and even more preferably 10 to 100 nm. Here, when the film thickness is 5 nm or more, it is easy to form a uniform film and the barrier property tends to be more easily obtained. On the other hand, when the film thickness is 500 nm or less, the inorganic thin film layer 3 can easily maintain sufficient flexibility. As a result, the inorganic thin film layer 3 tends to be more reliably prevented from cracking due to external factors such as bending and pulling after film formation.
 無機薄膜層3は生産性の観点から真空蒸着法により形成された無機蒸着膜層であることができる。また、無機薄膜層3は、その他の薄膜形成方法であるスパッタリング法やイオンプレーティング法、プラズマ気相成長法などを用いて形成することも可能である。真空蒸着法の加熱手段としては電子線加熱方式、抵抗加熱方式、及び誘導加熱方式のいずれかの方式を用いることが好ましく、蒸着材料の選択性の幅広さを考慮すると電子線加熱方式を用いることがより好ましい。また蒸着膜と第一基材1との密着性、及び蒸着膜の緻密性を向上させるために、プラズマアシスト法やイオンビームアシスト法を用いて蒸着することも可能である。また、蒸着膜の透明性を上げるために、酸素等の各種ガスなどを吹き込む反応蒸着を用いても構わない。 The inorganic thin film layer 3 can be an inorganic vapor deposition film layer formed by a vacuum vapor deposition method from the viewpoint of productivity. The inorganic thin film layer 3 can also be formed by using other thin film forming methods such as sputtering, ion plating, and plasma vapor deposition. As a heating means of the vacuum evaporation method, it is preferable to use any one of an electron beam heating method, a resistance heating method, and an induction heating method, and an electron beam heating method is used in consideration of the wide range of selectivity of the evaporation material. Is more preferable. Moreover, in order to improve the adhesiveness of a vapor deposition film and the 1st base material 1, and the denseness of a vapor deposition film, it is also possible to vapor-deposit using a plasma assist method or an ion beam assist method. Further, in order to increase the transparency of the deposited film, reactive deposition in which various gases such as oxygen are blown may be used.
 ガスバリア性被覆層4は、後工程での二次的な各種損傷を防止するとともに、保護フィルム20に高いバリア性を付与するために設けられ、保護フィルム20の一方の最表面を構成している。本実施形態において、ガスバリア性被覆層4は、ポリビニルアルコール及び無機化合物を含有している。ガスバリア性被覆層4がポリビニルアルコール(以下、PVAということがある)を含有することにより、優れたバリア性が得られやすくなる。また、ガスバリア性被覆層4が無機化合物を含有することにより、水蒸気バリア性が高くなることに加え、耐湿熱性が上がるという効果が得られる。 The gas barrier coating layer 4 is provided in order to prevent secondary damage in the subsequent process and to impart high barrier properties to the protective film 20, and constitutes one outermost surface of the protective film 20. . In the present embodiment, the gas barrier coating layer 4 contains polyvinyl alcohol and an inorganic compound. When the gas barrier coating layer 4 contains polyvinyl alcohol (hereinafter sometimes referred to as PVA), excellent barrier properties are easily obtained. Moreover, the gas barrier coating layer 4 contains an inorganic compound, so that the moisture barrier property is increased and the effect of increasing the heat and moisture resistance is obtained.
 上記無機化合物は金属アルコキシド又はこれを加水分解して得られるもの(加水分解物)であることが好ましい。金属アルコキシドは、例えば、下記式(a)で表される。
  M(OR(Rn-m ・・・(a)
The inorganic compound is preferably a metal alkoxide or a product obtained by hydrolyzing the metal alkoxide (hydrolyzate). The metal alkoxide is represented by the following formula (a), for example.
M (OR 1 ) m (R 2 ) nm (a)
 上記式(a)中、R及びRはそれぞれ独立に炭素数1~8の1価の有機基であり、メチル基、エチル基等のアルキル基であることが好ましい。MはSi、Ti、Al、Zr等のn価の金属原子を示す。mは1~nの整数である。金属アルコキシドとしては、例えば、テトラエトキシシラン[Si(OC]、トリイソプロポキシアルミニウム[Al(O-iso-C]等が挙げられる。金属アルコキシドは、加水分解後、水系の溶媒中において比較的安定であることから、テトラエトキシシラン又はトリイソプロポキシアルミニウムであることが好ましい。金属アルコキシドの加水分解物としては、例えば、テトラエトキシシランの加水分解物であるケイ酸(Si(OH))、及び、トリイソプロポキシアルミニウムの加水分解物である水酸化アルミニウム(Al(OH))等が挙げられる。これらは、1種だけでなく、複数種を組み合わせて使用することもできる。 In the formula (a), R 1 and R 2 are each independently a monovalent organic group having 1 to 8 carbon atoms, preferably an alkyl group such as a methyl group or an ethyl group. M represents an n-valent metal atom such as Si, Ti, Al, or Zr. m is an integer of 1 to n. Examples of the metal alkoxide include tetraethoxysilane [Si (OC 2 H 5 ) 4 ], triisopropoxyaluminum [Al (O-iso-C 3 H 7 ) 3 ] and the like. The metal alkoxide is preferably tetraethoxysilane or triisopropoxyaluminum because it is relatively stable in an aqueous solvent after hydrolysis. Examples of the hydrolyzate of metal alkoxide include silicic acid (Si (OH) 4 ), which is a hydrolyzate of tetraethoxysilane, and aluminum hydroxide (Al (OH), which is a hydrolyzate of triisopropoxyaluminum. 3 ) and the like. These can be used in combination of not only one type but also a plurality of types.
 ガスバリア性被覆層4はさらにポリビニルアルコールとは異なる水溶性高分子を含有していてもよい。このような水溶性高分子としては、ポリビニルピロリドン、デンプン、メチルセルロース、カルボキシメチルセルロース、及びアルギン酸ナトリウム等が挙げられる。 The gas barrier coating layer 4 may further contain a water-soluble polymer different from polyvinyl alcohol. Examples of such water-soluble polymers include polyvinyl pyrrolidone, starch, methyl cellulose, carboxymethyl cellulose, and sodium alginate.
 ガスバリア性被覆層4の厚さ(膜厚)は、50~1000nmとすることが好ましく、100~500nmとすることがより好ましい。ここで、上記膜厚が50nm以上であると、より十分なガスバリア性を得ることができる傾向があり、1000nm以下であると、ガスバリア性被覆層4により十分なフレキシビリティを保持できる傾向がある。 The thickness (film thickness) of the gas barrier coating layer 4 is preferably 50 to 1000 nm, and more preferably 100 to 500 nm. Here, when the film thickness is 50 nm or more, a sufficient gas barrier property tends to be obtained, and when it is 1000 nm or less, the gas barrier coating layer 4 tends to be able to maintain sufficient flexibility.
 本実施形態において、ガスバリア性被覆層4は、ポリビニルアルコール及び無機化合物を含有する混合溶液を無機薄膜層3上に塗布し、塗膜を固化することにより形成される。上記混合溶液の全不揮発成分中のPVAの含有量は、好ましくは20~50質量%であり、より好ましくは25~40質量%である。PVAの含有量が20質量%以上であると、ガスバリア性被覆層の柔軟性が得られやすく、ガスバリア性被覆層4を形成しやすくなる。また、PVAの含有量が50質量%以下であると、バリアフィルムにより十分なバリア性を付与することができる傾向がある。 In this embodiment, the gas barrier coating layer 4 is formed by applying a mixed solution containing polyvinyl alcohol and an inorganic compound on the inorganic thin film layer 3 and solidifying the coating film. The content of PVA in all nonvolatile components of the mixed solution is preferably 20 to 50% by mass, more preferably 25 to 40% by mass. When the PVA content is 20% by mass or more, the flexibility of the gas barrier coating layer is easily obtained, and the gas barrier coating layer 4 is easily formed. Moreover, there exists a tendency which can provide sufficient barrier property with a barrier film as content of PVA is 50 mass% or less.
 上記混合溶液の全不揮発成分中の金属アルコキシド及びその加水分解物の含有量は、例えば、10~90質量%(MOn/2換算)である。 The content of the metal alkoxide and the hydrolyzate thereof in all the non-volatile components of the mixed solution is, for example, 10 to 90% by mass (in terms of MO n / 2 ).
 また、上記混合溶液がPVA以外の水溶性高分子を含有する場合、上記混合溶液の全不揮発成分中の当該水溶性高分子の含有量は、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。上記水溶性高分子の含有量を10質量%以下とすることにより、後述する表面処理領域のX線光電子分光スペクトルにおける強度比Dを所定の範囲に制御しやすくなる。 Moreover, when the said mixed solution contains water-soluble polymers other than PVA, it is preferable that content of the said water-soluble polymer in all the non-volatile components of the said mixed solution is 10 mass% or less, and 5 mass%. The following is more preferable. By setting the content of the water-soluble polymer to 10% by mass or less, the intensity ratio D in the X-ray photoelectron spectrum of the surface treatment region described later can be easily controlled within a predetermined range.
 保護フィルム20において、ガスバリア性被覆層4はコーティング層12の反対側(保護フィルム20の上記最表面側)に表面処理領域4tを有している。表面処理領域4tを形成するための表面処理の方法としては、プラズマ処理、コロナ処理、オゾン処理及びフレーム処理等が挙げられる。表面処理方法はプラズマ処理であることが好ましく、真空中又はアルゴンガス等の雰囲気中で行う低温プラズマ処理であることがより好ましく、リアクティブイオンエッチング(RIE)を利用したプラズマ処理であることがさらに好ましい。上記表面処理、特にRIEを利用したプラズマ処理を行うことで、ラジカル又はイオンを発生させ、これを利用して、ガスバリア性被覆層の表面に官能基を導入する等、その表面構造を化学的に変化させることが可能である。さらに、処理条件を適切に選択することによって、導入される官能基の種類及び量等を制御することができる。図1において、表面処理領域4tは上記方法によりガスバリア性被覆層4の厚さ方向に形成されてもよい。表面処理領域4tとガスバリア性被覆層4の表面処理されていない部分との間には明確な境界がなくてもよい。また、ガスバリア性被覆層4は表面処理領域4tを面方向の一部にのみ有していてもよく、全部に有していてもよい。 In the protective film 20, the gas barrier coating layer 4 has a surface treatment region 4t on the opposite side of the coating layer 12 (the above-mentioned outermost surface side of the protective film 20). Examples of the surface treatment method for forming the surface treatment region 4t include plasma treatment, corona treatment, ozone treatment, and flame treatment. The surface treatment method is preferably plasma treatment, more preferably low-temperature plasma treatment performed in an atmosphere such as vacuum or argon gas, and further preferably plasma treatment using reactive ion etching (RIE). preferable. By performing the above surface treatment, particularly plasma treatment using RIE, radicals or ions are generated, and this is used to chemically introduce the surface structure such as introducing functional groups to the surface of the gas barrier coating layer. It is possible to change. Furthermore, the type and amount of the functional group to be introduced can be controlled by appropriately selecting the treatment conditions. In FIG. 1, the surface treatment region 4t may be formed in the thickness direction of the gas barrier coating layer 4 by the above method. There may be no clear boundary between the surface treatment region 4t and the portion of the gas barrier coating layer 4 that is not surface treated. Further, the gas barrier coating layer 4 may have the surface treatment region 4t only in a part of the surface direction or in all of it.
 図2は、保護フィルムのガスバリア性被覆層側の面のX線光電子分光スペクトルの一例の拡大図であり、C1s(炭素原子の1s軌道の電子)ピークの波形(C1s波形)を示すものである。図2の横軸は結合エネルギー(eV)を示し、縦軸は強度を示す。図2において、実線で示されるC1s波形PINTは、分析により点線及び一点鎖線で示される複数のピークに分離することができる。分離されたそれぞれのピークは炭素原子の化学状態によってシフトした結合エネルギーの位置に現れることから、分離されたピークの結合エネルギーの位置によってそれぞれの炭素原子の化学状態を知ることができる。 FIG. 2 is an enlarged view of an example of an X-ray photoelectron spectroscopic spectrum of the surface of the protective film on the gas barrier coating layer side, and shows a waveform (C1s waveform) of C1s (electrons of carbon atom 1s orbit). . The horizontal axis in FIG. 2 indicates the binding energy (eV), and the vertical axis indicates the strength. In FIG. 2, the C1s waveform P INT indicated by a solid line can be separated into a plurality of peaks indicated by a dotted line and a one-dot chain line by analysis. Since each separated peak appears at a position of binding energy shifted by the chemical state of the carbon atom, the chemical state of each carbon atom can be known from the position of the binding energy of the separated peak.
 X線光電子分光法による測定(XPS測定)では、測定対象の表面から数nmの深さ領域での、原子の種類及び濃度、並びに、その原子と結合している原子の種類及びそれらの結合状態が分析でき、元素比率及び官能基比率などを求めることができる。 In the measurement by X-ray photoelectron spectroscopy (XPS measurement), the kind and concentration of atoms, the kind of atoms bonded to the atoms, and their bonding state in a depth region of several nm from the surface of the measurement object Can be analyzed, and the element ratio and functional group ratio can be obtained.
 X線光電子分光スペクトルに現れるピークの結合エネルギーの位置は炭素原子の化学状態(結合種)ごとに固有であり、例えば、炭素-炭素結合(C-C結合)に由来するピークPCCは285.0eV付近に現れ、炭素-水酸基結合(C-OH結合)に由来するピークPCOHは286.5eV付近に現れる。図2では具体的に、C1s波形PINTが、C-C結合に由来するピークPCC、C-OH結合に由来するピークPCOH、及び、炭素-酸素二重結合及び炭素-酸素結合(O-C=O結合)に由来するピークPCOOに分離されている。 The position of the peak binding energy appearing in the X-ray photoelectron spectroscopy spectrum is unique to each chemical state (bonding species) of the carbon atom. For example, the peak PCC derived from the carbon-carbon bond ( CC bond) is 285. It appeared in the vicinity of 0 eV, carbon - peak P COH derived from hydroxyl bond (COH bonds) appears in the vicinity of 286.5 eV. Specifically, in FIG. 2, the C1s waveform P INT includes a peak P CC derived from a C—C bond, a peak P COH derived from a C—OH bond, and a carbon-oxygen double bond and a carbon-oxygen bond (O It is separated into a peak PCOO derived from (-C = O bond).
 本実施形態に係る保護フィルムから得られる上記X線光電子分光スペクトルでは、下記式(1)で表される強度比Dが0.35以上0.77以下(0.35≦D≦0.77)となる。
   D=ICOH/ICC  ・・・(1)
 式(1)中、ICOHはX線光電子分光スペクトルのC1s波形におけるC-OH結合に由来するピークPCOHの強度を示し、ピークPCOHのピークトップとベースラインBとの強度差から求められる。また、式(1)中、ICCはX線光電子分光スペクトルのC1s波形におけるC-C結合に由来するピークPCCの強度を示し、ピークPCCのピークトップとベースラインBとの強度差から求められる。
In the X-ray photoelectron spectroscopy spectrum obtained from the protective film according to this embodiment, the intensity ratio D represented by the following formula (1) is 0.35 or more and 0.77 or less (0.35 ≦ D ≦ 0.77). It becomes.
D = I COH / I CC (1)
In formula (1), I COH indicates the intensity of the peak PCOH derived from the C—OH bond in the C1s waveform of the X-ray photoelectron spectroscopy spectrum, and is obtained from the intensity difference between the peak top of the peak PCOH and the baseline B. . In the formula (1), I CC represents the intensity of peak P CC derived from the CC bond in C1s waveform of the X-ray photoelectron spectroscopy, the intensity difference between the peak tops and the base line B of the peak P CC Desired.
 強度比Dが0.35以上0.77以下(0.35≦D≦0.77)であることにより、保護フィルム20と蛍光体層との密着性を向上させることができる。 When the intensity ratio D is 0.35 or more and 0.77 or less (0.35 ≦ D ≦ 0.77), the adhesion between the protective film 20 and the phosphor layer can be improved.
 上記X線光電子分光スペクトルは、保護フィルム20のガスバリア性被覆層4側の面をX線光電子分光法(XPS)で分析することにより得られる。分析では、X線源としてMgKαを用いることができ、出力は100Wとすることができる。X線光電子分光スペクトル中のC1s波形の分離・解析方法は特に限定されず、ガウシアン関数及びローレンツ関数等を用いて数学的に行うことができる。 The X-ray photoelectron spectrum is obtained by analyzing the surface of the protective film 20 on the gas barrier coating layer 4 side by X-ray photoelectron spectroscopy (XPS). In the analysis, MgKα can be used as the X-ray source, and the output can be 100 W. The method for separating and analyzing the C1s waveform in the X-ray photoelectron spectrum is not particularly limited, and can be mathematically performed using a Gaussian function, a Lorentz function, or the like.
 強度比Dは、例えば、ガスバリア性被覆層4の表面処理条件により制御することができる。すなわち、十分な表面処理を行うことにより強度比Dを0.77以下とすることができ、過剰な表面処理を行わないことにより強度比Dを0.35以上とすることができる。 The intensity ratio D can be controlled by, for example, the surface treatment conditions of the gas barrier coating layer 4. That is, the intensity ratio D can be made 0.77 or less by performing sufficient surface treatment, and the intensity ratio D can be made 0.35 or more by not performing excessive surface treatment.
 強度比Dを上記範囲内とすることにより、保護フィルム20と蛍光体層との密着性が向上する理由は必ずしも明らかではないが、本発明者らは以下のように考える。すなわち、強度比Dが0.77以下(D≦0.77)となる程度に表面処理を行うことにより、蛍光体層を構成する樹脂との密着性により大きく寄与し得る官能基がガスバリア性被覆層4の表面(保護フィルム20の表面)に導入されるためであると考えられる。また、強度比Dが0.35以上(0.35≦D)となる程度に表面処理を抑えることにより、導入された官能基が密着性に寄与しにくい状態にさらに変化することを抑制することができるためであると考えられる。 The reason why the adhesiveness between the protective film 20 and the phosphor layer is improved by setting the intensity ratio D within the above range is not necessarily clear, but the present inventors consider as follows. That is, by performing the surface treatment to such an extent that the intensity ratio D is 0.77 or less (D ≦ 0.77), the functional group that can greatly contribute to the adhesion with the resin constituting the phosphor layer is covered with the gas barrier coating. It is thought that this is because it is introduced into the surface of the layer 4 (the surface of the protective film 20). In addition, by suppressing the surface treatment to such an extent that the intensity ratio D is 0.35 or more (0.35 ≦ D), it is possible to prevent the introduced functional group from further changing to a state in which it does not contribute to adhesion. This is thought to be possible.
 また、保護フィルム20と蛍光体層との密着性をより強固にする点から、ガスバリア性被覆層4の表面処理領域の水に対する接触角θは28~40度(28度≦θ≦40度)にあることが好ましい。 Further, from the viewpoint of further strengthening the adhesion between the protective film 20 and the phosphor layer, the contact angle θ G with respect to water in the surface treatment region of the gas barrier coating layer 4 is 28 to 40 degrees (28 degrees ≦ θ G ≦ 40). Degree).
 強度比Dが上記範囲内にあり、且つ、表面処理領域4tの接触角θが40度以下である(θ≦40度)と、より優れた密着性が得られる傾向がある。接触角θが40度以下である表面処理領域4tには密着性に寄与しうる官能基がより効果的に導入されているためであると考えられる。強度比Dが上記範囲内にあり、且つ、接触角θが28度以上である(28度≦θ)と、高温高湿環境下で長期間保存したときの密着性の低下をさらに抑制できる傾向がある。接触角θが28度以上である表面処理領域4tには密着性に寄与しつつも親水性が高くなりすぎない種類又は量の官能基が導入されているためであると考えられる。 When the intensity ratio D is in the above range and the contact angle θ G of the surface treatment region 4t is 40 degrees or less (θ G ≦ 40 degrees), better adhesion tends to be obtained. This is probably because functional groups that can contribute to adhesion are more effectively introduced into the surface treatment region 4t having a contact angle θ G of 40 degrees or less. When the strength ratio D is in the above range and the contact angle θ G is 28 degrees or more (28 degrees ≦ θ G ), the deterioration of adhesion when stored for a long time in a high temperature and high humidity environment is further suppressed. There is a tendency to be able to. This is probably because the surface treatment region 4t having a contact angle θ G of 28 degrees or more is introduced with a kind or amount of functional groups that contribute to adhesion but do not become too hydrophilic.
 リアクティブイオンエッチング(RIE)を利用したプラズマ処理で表面処理領域4tを形成する場合、処理条件は、Epd=プラズマ密度×処理時間で定義されるEpd値が20V・s/m以上20000V・s/m以下であることが好ましい。Epd値が20V・s/m以上であると、ガスバリア性被覆層4に強度比Dが0.77以下となるような表面処理領域4tを形成しやすくなる。また、20000V・s/m以下であると、ガスバリア性被覆層4に強度比Dが0.35以上となるような表面処理領域4tを形成しやすくなる。また、強度比Dを上記範囲内とする観点から、例えば、印加電力は50~500W程度であってもよく、処理時間は0.05~0.3秒程度であってもよく、処理ユニット圧力は1.0~3.0Pa程度であってもよい。 When the surface treatment region 4t is formed by plasma treatment using reactive ion etching (RIE), the treatment conditions are as follows. The Epd value defined by Epd = plasma density × treatment time is 20 V · s / m 2 or more and 20000 V · s. / M 2 or less is preferable. When the Epd value is 20 V · s / m 2 or more, it becomes easy to form a surface treatment region 4 t having a strength ratio D of 0.77 or less in the gas barrier coating layer 4. In addition, when it is 20000 V · s / m 2 or less, it becomes easy to form a surface treatment region 4t having a strength ratio D of 0.35 or more in the gas barrier coating layer 4. From the viewpoint of setting the intensity ratio D within the above range, for example, the applied power may be about 50 to 500 W, the processing time may be about 0.05 to 0.3 seconds, and the processing unit pressure May be about 1.0 to 3.0 Pa.
 コーティング層12はバリアフィルム10の第一基材1側の面上に配置され、1以上の光学的機能又は帯電防止機能を発揮させるために、保護フィルム20のガスバリア性被覆層4と反対の表面に配置されている。ここで、光学的機能としては、特に限定されず、干渉縞(モアレ)防止機能、反射防止機能及び拡散機能等が挙げられる。これらの中でも、コーティング層12は、光学的機能として少なくとも干渉縞防止機能を有することが好ましい。本実施形態では、コーティング層12が少なくとも干渉縞防止機能を有するものである場合について説明する。 The coating layer 12 is disposed on the surface of the barrier film 10 on the first substrate 1 side, and the surface opposite to the gas barrier coating layer 4 of the protective film 20 in order to exhibit one or more optical functions or antistatic functions. Is arranged. Here, the optical function is not particularly limited, and examples thereof include an interference fringe (moire) prevention function, an antireflection function, and a diffusion function. Among these, the coating layer 12 preferably has at least an interference fringe preventing function as an optical function. In the present embodiment, a case where the coating layer 12 has at least an interference fringe preventing function will be described.
 コーティング層12は、バインダー樹脂、及び、該バインダー樹脂中に分散された微粒子を含有していてもよい。そして、コーティング層12の表面から微粒子の一部が露出するように微粒子がバインダー樹脂に埋め込まれることにより、コーティング層12の表面には微細な凹凸が生じていてもよい。このようにコーティング層12を保護フィルム20の表面に設けることにより、ニュートンリング等の干渉縞の発生をより十分に防止することができる。 The coating layer 12 may contain a binder resin and fine particles dispersed in the binder resin. Then, fine irregularities may be formed on the surface of the coating layer 12 by embedding the fine particles in the binder resin so that a part of the fine particles is exposed from the surface of the coating layer 12. Thus, by providing the coating layer 12 on the surface of the protective film 20, it is possible to more sufficiently prevent the occurrence of interference fringes such as Newton rings.
 バインダー樹脂としては、特に限定されず、光学的透明性に優れた樹脂を用いることができる。バインダー樹脂としては、より具体的には、例えば、ポリエステル系樹脂、アクリル系樹脂、アクリルウレタン系樹脂、ポリエステルアクリレート系樹脂、ポリウレタンアクリレート系樹脂、ウレタン系樹脂、エポキシ系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、メラミン系樹脂、及びフェノール系樹脂などの熱可塑性樹脂、熱硬化性樹脂、並びに放射線硬化性樹脂などを用いることができる。これらの中でも耐光性や光学特性に優れるアクリル系樹脂を使用することが望ましい。これらは、1種だけでなく、複数種を組み合わせて使用することもできる。 The binder resin is not particularly limited, and a resin excellent in optical transparency can be used. More specifically, as the binder resin, for example, polyester resin, acrylic resin, acrylic urethane resin, polyester acrylate resin, polyurethane acrylate resin, urethane resin, epoxy resin, polycarbonate resin, polyamide resin, etc. Thermoplastic resins such as resins, polyimide resins, melamine resins, and phenol resins, thermosetting resins, and radiation curable resins can be used. Among these, it is desirable to use an acrylic resin excellent in light resistance and optical characteristics. These can be used in combination of not only one type but also a plurality of types.
 微粒子としては、特に限定されず、例えば、シリカ、クレー、タルク、炭酸カルシウム、硫酸カルシウム、硫酸バリウム、酸化チタン、及びアルミナなどの無機微粒子、並びに、スチレン樹脂、ウレタン樹脂、シリコーン樹脂、及びアクリル樹脂などの有機微粒子を用いることができる。これらは、1種だけでなく、複数種を組み合わせて使用することもできる。 The fine particles are not particularly limited. For example, inorganic fine particles such as silica, clay, talc, calcium carbonate, calcium sulfate, barium sulfate, titanium oxide, and alumina, and styrene resin, urethane resin, silicone resin, and acrylic resin. Organic fine particles such as can be used. These can be used in combination of not only one type but also a plurality of types.
 微粒子の平均粒径は、0.1~30μmであることが好ましく、0.5~10μmであることがより好ましい。微粒子の平均粒径が0.1μm以上であると、優れた干渉縞防止機能が得られる傾向があり、30μm以下であると、透明性がより向上する傾向がある。 The average particle diameter of the fine particles is preferably from 0.1 to 30 μm, and more preferably from 0.5 to 10 μm. When the average particle size of the fine particles is 0.1 μm or more, an excellent interference fringe prevention function tends to be obtained, and when it is 30 μm or less, the transparency tends to be further improved.
 コーティング層12における微粒子の含有量は、コーティング層12全量を基準として0.5~30質量%であることが好ましく、3~10質量%であることがより好ましい。微粒子の含有量が0.5質量%以上であると、光拡散機能と干渉縞の発生を防止する効果がより向上する傾向があり、30質量%以下であると、輝度が低減しにくくなる。 The content of fine particles in the coating layer 12 is preferably 0.5 to 30% by mass, more preferably 3 to 10% by mass based on the total amount of the coating layer 12. When the content of the fine particles is 0.5% by mass or more, the light diffusion function and the effect of preventing the generation of interference fringes tend to be further improved, and when the content is 30% by mass or less, the luminance is hardly reduced.
 コーティング層12は、上述したバインダー樹脂及び微粒子を含む塗布液をバリアフィルム10の表面上に塗布し、乾燥硬化させることで形成することができる。塗布方法としては、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、及びダイコーター等によるウエットコーティング法が挙げられる。 The coating layer 12 can be formed by applying a coating liquid containing the above-described binder resin and fine particles on the surface of the barrier film 10 and drying and curing it. Examples of the coating method include a wet coating method using a gravure coater, a dip coater, a reverse coater, a wire bar coater, and a die coater.
 コーティング層12の厚さは、0.1~20μmであることが好ましく、0.3~10μmであることがより好ましい。コーティング層12の厚さが0.1μm以上であることにより、均一な膜が得られやすく、光学的機能を十分に得やすくなる傾向がある。一方、コーティング層12の厚さが20μm以下であることにより、コーティング層12に微粒子を用いた場合、コーティング層12の表面へ微粒子が露出して、凹凸付与効果が得られやすくなる傾向がある。 The thickness of the coating layer 12 is preferably 0.1 to 20 μm, and more preferably 0.3 to 10 μm. When the thickness of the coating layer 12 is 0.1 μm or more, there is a tendency that a uniform film can be easily obtained and an optical function can be sufficiently easily obtained. On the other hand, when the coating layer 12 has a thickness of 20 μm or less, when fine particles are used for the coating layer 12, the fine particles are exposed to the surface of the coating layer 12, and the unevenness imparting effect tends to be easily obtained.
 本発明において、保護フィルム20はコーティング層12を備えていなくてもよい。しかし、保護フィルム20がバリアフィルム10とコーティング層12の両方を備える場合、保護フィルム20は、バリアフィルム10によるガスバリア性と、コーティング層12による光学的機能や帯電防止機能とを有することから、波長変換シート用保護フィルムとして、波長変換シートの蛍光体層の保護に好適に用いることができる。 In the present invention, the protective film 20 may not include the coating layer 12. However, when the protective film 20 includes both the barrier film 10 and the coating layer 12, the protective film 20 has a gas barrier property by the barrier film 10, an optical function by the coating layer 12, and an antistatic function. It can use suitably for protection of the fluorescent substance layer of a wavelength conversion sheet as a protective film for conversion sheets.
 <第2実施形態>
 次に、本発明の第2実施形態に係る保護フィルムについて説明する。図3は本発明の第2実施形態に係る保護フィルムの模式断面図である。図3において、第2実施形態に係る保護フィルム20は、支持基材14をさらに備える点で第1実施形態と異なる。支持基材14は第一基材1とコーティング層12との間に配置される。より具体的には、図3に示すように、支持基材14は第一基材1の他方の面(表面処理領域4tと反対側の面)上に接着層16を介して設けられ、コーティング層12は支持基材14のバリアフィルム10と反対側の面上に形成される。保護フィルム20が支持基材14を備えることにより、保護フィルム20のバリア性を一層向上でき、さらに製造の際にシワの発生を低減できる傾向がある。
Second Embodiment
Next, the protective film which concerns on 2nd Embodiment of this invention is demonstrated. FIG. 3 is a schematic cross-sectional view of a protective film according to a second embodiment of the present invention. In FIG. 3, the protective film 20 which concerns on 2nd Embodiment differs from 1st Embodiment by the point further provided with the support base material 14. FIG. The support substrate 14 is disposed between the first substrate 1 and the coating layer 12. More specifically, as shown in FIG. 3, the support base material 14 is provided on the other surface (surface opposite to the surface treatment region 4t) of the first base material 1 with an adhesive layer 16 interposed therebetween. The layer 12 is formed on the surface of the support substrate 14 opposite to the barrier film 10. When the protective film 20 includes the support base material 14, the barrier property of the protective film 20 can be further improved, and the generation of wrinkles during the production tends to be reduced.
 支持基材14は、第一基材1と同様に特に限定されず、全光線透過率が85%以上のフィルムであることが望ましい。支持基材14としては、例えば透明性が高く、耐熱性に優れた基材として、ポリエチレンテレフタレートフィルム、及びポリエチレンナフタレートフィルムなどを用いることができる。 The support base material 14 is not particularly limited like the first base material 1 and is preferably a film having a total light transmittance of 85% or more. As the support substrate 14, for example, a polyethylene terephthalate film, a polyethylene naphthalate film, or the like can be used as a substrate having high transparency and excellent heat resistance.
 支持基材14の厚さは、特に限定されず、波長変換シートの総厚を薄くするために、50μm以下とすることが望ましい。また、支持基材14の厚さは、優れたバリア性を得るために、12μm以上とすることが望ましい。 The thickness of the support substrate 14 is not particularly limited, and is desirably 50 μm or less in order to reduce the total thickness of the wavelength conversion sheet. Further, the thickness of the support substrate 14 is desirably 12 μm or more in order to obtain excellent barrier properties.
 接着層16は、例えば、アクリル系材料、ウレタン系材料、及びポリエステル系材料などの接着剤や粘着剤から形成することができる。接着層16は、より具体的には、アクリル系粘着剤、アクリル系接着剤、ウレタン系接着剤、及びエステル系接着剤のいずれかを用いて形成されることができる。 The adhesive layer 16 can be formed of, for example, an adhesive or pressure sensitive adhesive such as an acrylic material, a urethane material, and a polyester material. More specifically, the adhesive layer 16 can be formed using any of an acrylic adhesive, an acrylic adhesive, a urethane adhesive, and an ester adhesive.
 接着剤又は粘着剤の塗布方法としては、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、及びダイコーター等による塗布方法が挙げられる。 Examples of the method for applying the adhesive or the pressure-sensitive adhesive include coating methods using a gravure coater, a dip coater, a reverse coater, a wire bar coater, and a die coater.
 接着層16の厚さは、特に限定されず、波長変換シート用保護フィルムの総厚を薄くするために、10μm以下とすることが望ましい。一方、より良好な接着性を得る観点から、3μm以上であることが望ましい。 The thickness of the adhesive layer 16 is not particularly limited, and is desirably 10 μm or less in order to reduce the total thickness of the protective film for wavelength conversion sheet. On the other hand, the thickness is desirably 3 μm or more from the viewpoint of obtaining better adhesiveness.
 本実施形態の保護フィルム20の製造では、第一実施形態と同様にしてバリアフィルム10を得て、バリアフィルム10と支持基材14とが接着層16を介して貼り合わせられる。バリアフィルム10と支持基材14とは、バリアフィルム10の表面処理領域4tが支持基材14と反対側を向くように、貼り合せられる。 In the production of the protective film 20 of the present embodiment, the barrier film 10 is obtained in the same manner as in the first embodiment, and the barrier film 10 and the support base material 14 are bonded together via the adhesive layer 16. The barrier film 10 and the support base material 14 are bonded so that the surface treatment region 4t of the barrier film 10 faces the side opposite to the support base material 14.
 バリアフィルム10と支持基材14とを貼り合せた後、必要に応じてエージングすることができる。エージングは、例えば、20~80℃で1~10日間行われる。 After the barrier film 10 and the support base material 14 are bonded together, aging can be performed as necessary. Aging is performed at 20 to 80 ° C. for 1 to 10 days, for example.
 <第3実施形態>
 次に、本発明の第3実施形態に係る保護フィルムについて説明する。図4は本発明の第3実施形態に係る保護フィルムの模式断面図である。図4において、第3実施形態に係る保護フィルム20は、別のバリアフィルムをさらに備える点で第1実施形態と異なる。すなわち、本実施形態に係る保護フィルム20は、第一バリアフィルム10aと第二バリアフィルム10bとコーティング層12とを備える。保護フィルム20が2つのバリアフィルムを備えることにより、保護フィルム20のバリア性を一層向上できる傾向がある。
<Third Embodiment>
Next, a protective film according to a third embodiment of the present invention will be described. FIG. 4 is a schematic cross-sectional view of a protective film according to a third embodiment of the present invention. In FIG. 4, the protective film 20 which concerns on 3rd Embodiment differs from 1st Embodiment by the point further provided with another barrier film. That is, the protective film 20 according to this embodiment includes the first barrier film 10a, the second barrier film 10b, and the coating layer 12. When the protective film 20 includes two barrier films, the barrier property of the protective film 20 tends to be further improved.
 本実施形態において、第一バリアフィルム10a並びにこれを構成する第一基材1a及び第一バリア層2a(第一無機薄膜層3a及び第一ガスバリア性被覆層4a)は、第1及び第2実施形態におけるバリアフィルム10並びにこれを構成する第一基材1及びバリア層2(無機薄膜層3及びガスバリア性被覆層4)とそれぞれ同様である。また、第二バリアフィルム10b並びにこれを構成する第二基材1b及び第二バリア層2b(第二無機薄膜層3b及び第二ガスバリア性被覆層4b)は、第1及び第2実施形態におけるバリアフィルム10並びにこれを構成する無機薄膜層3及びガスバリア性被覆層4とそれぞれ同様である。本実施形態において、第二ガスバリア性被覆層4bは必ずしも表面処理領域4tを有している必要はなく、図4においても第二ガスバリア性被覆層4b中に表面処理領域を図示していない。しかし、第二ガスバリア性被覆層4bが表面処理領域4tを有していても本発明を実施することは可能である。 In the present embodiment, the first barrier film 10a and the first base material 1a and the first barrier layer 2a (the first inorganic thin film layer 3a and the first gas barrier coating layer 4a) constituting the first barrier film 10a are the first and second embodiments. It is the same as the barrier film 10 in the form and the first base material 1 and the barrier layer 2 (the inorganic thin film layer 3 and the gas barrier coating layer 4) constituting the same, respectively. The second barrier film 10b and the second base material 1b and the second barrier layer 2b (the second inorganic thin film layer 3b and the second gas barrier coating layer 4b) constituting the second barrier film 10b are the barriers in the first and second embodiments. The film 10 is the same as the inorganic thin film layer 3 and the gas barrier coating layer 4 constituting the film 10, respectively. In the present embodiment, the second gas barrier coating layer 4b does not necessarily have the surface treatment region 4t, and the surface treatment region is not shown in the second gas barrier coating layer 4b in FIG. However, the present invention can be carried out even if the second gas barrier coating layer 4b has the surface treatment region 4t.
 図4に示すように、第二バリアフィルム10bは第一バリアフィルム10aとコーティング層12との間に配置される。より具体的には、第一バリアフィルム10aの第一基材1a側の面(表面処理領域4tと反対側の面)上に、接着層16を介して、第二バリアフィルム10bが第一基材1aと第二ガスバリア性被覆層4bとが対向するように設けられ、コーティング層12は第二バリアフィルム10bの第二基材1b側の面上に形成される。 As shown in FIG. 4, the second barrier film 10 b is disposed between the first barrier film 10 a and the coating layer 12. More specifically, the second barrier film 10b is formed on the surface of the first barrier film 10a on the first substrate 1a side (the surface opposite to the surface treatment region 4t) with the adhesive layer 16 interposed therebetween. The material 1a and the second gas barrier coating layer 4b are provided so as to face each other, and the coating layer 12 is formed on the surface of the second barrier film 10b on the second substrate 1b side.
 本実施形態の保護フィルム20の製造では、第一実施形態のバリアフィルム10と同様にして得た第一バリアフィルム10aと、表面処理領域を形成しない点を除いて第一実施形態のバリアフィルム10と同様にして得た第二バリアフィルム10bとが接着層16を介して貼り合わせられる。第一バリアフィルム10aと第二バリアフィルム10bとは、第一バリアフィルム10aの表面処理領域4tが第二バリアフィルム10bと反対側を向くように貼り合せられる。本実施形態においても、第一バリアフィルム10aと第二バリアフィルム10bとを貼り合せた後、必要に応じてエージングすることができる。エージングは、例えば、20~80℃で1~10日間行われる。 In manufacture of the protective film 20 of this embodiment, the barrier film 10 of 1st embodiment except the point which does not form the 1st barrier film 10a obtained similarly to the barrier film 10 of 1st embodiment, and a surface treatment area | region. The second barrier film 10 b obtained in the same manner as above is bonded through the adhesive layer 16. The first barrier film 10a and the second barrier film 10b are bonded so that the surface treatment region 4t of the first barrier film 10a faces the opposite side to the second barrier film 10b. Also in this embodiment, after bonding the 1st barrier film 10a and the 2nd barrier film 10b, it can age as needed. Aging is performed at 20 to 80 ° C. for 1 to 10 days, for example.
[波長変換シート]
 以下に、本発明の一側面に係る波長変換シートについて説明する。図5は、本発明の一実施形態に係る波長変換シートの模式断面図である。波長変換シートは液晶ディスプレイ用バックライトユニットの光源からの光の一部の波長を変換可能なシートである。図5において、波長変換シート100は、蛍光体層30と、蛍光体層30の一方の面側及び他方の面側に、第一保護フィルム及び第二保護フィルムとして、それぞれ設けられた保護フィルム20,20とを備える。すなわち、保護フィルム20、蛍光体層30及び保護フィルム20がこの順で積層されている。波長変換シート100は、一対の保護フィルム20,20の間に蛍光体層30が包み込まれた(すなわち、封止された)構造となっている。一対の保護フィルム20,20は、それぞれのガスバリア性被覆層4(表面処理領域4t)が蛍光体層30側を向くように配置され、ガスバリア性被覆層4の表面処理領域4tと蛍光体層30とが接している。
[Wavelength conversion sheet]
The wavelength conversion sheet according to one aspect of the present invention will be described below. FIG. 5 is a schematic cross-sectional view of a wavelength conversion sheet according to an embodiment of the present invention. The wavelength conversion sheet is a sheet that can convert some wavelengths of light from the light source of the backlight unit for liquid crystal display. In FIG. 5, the wavelength conversion sheet 100 includes a phosphor layer 30 and a protective film 20 provided as a first protective film and a second protective film on one surface side and the other surface side of the phosphor layer 30, respectively. , 20. That is, the protective film 20, the phosphor layer 30, and the protective film 20 are laminated in this order. The wavelength conversion sheet 100 has a structure in which the phosphor layer 30 is encapsulated (that is, sealed) between the pair of protective films 20 and 20. The pair of protective films 20 and 20 are arranged such that each gas barrier coating layer 4 (surface treatment region 4t) faces the phosphor layer 30 side, and the surface treatment region 4t of the gas barrier coating layer 4 and the phosphor layer 30 are disposed. And is touching.
 蛍光体層30は、厚さ数十~数百μmの薄膜であり、図5に示すように封止樹脂24と蛍光体22とを含む。封止樹脂24の内部には、蛍光体22が一種以上混合された状態で封止されている。封止樹脂24は、蛍光体層30と一対の保護フィルム20,20とを積層する際に、これらを接合するとともに、これらの空隙を埋める役割を果たす。蛍光体層30は、一種類の蛍光体22のみが封止された蛍光体層が二層以上積層されたものであってもよい。それら一層又は二層以上の蛍光体層に用いられる二種類以上の蛍光体22は、励起波長が同一のものが選択される。この励起波長は、光源Lが照射する光の波長に基づいて選択される。二種類以上の蛍光体22の蛍光色は相互に異なる。光源に青色発光ダイオード(青色LED)を用いる場合、各蛍光色は、赤色、緑色である。各蛍光の波長、及び光源が照射する光の波長は、カラーフィルタの分光特性に基づき選択される。蛍光のピーク波長は、例えば赤色が610nm、緑色が550nmである。 The phosphor layer 30 is a thin film having a thickness of several tens to several hundreds of μm, and includes a sealing resin 24 and a phosphor 22 as shown in FIG. Inside the sealing resin 24, one or more phosphors 22 are sealed in a mixed state. When the phosphor layer 30 and the pair of protective films 20 and 20 are laminated, the sealing resin 24 plays a role of bonding them and filling these gaps. The phosphor layer 30 may be formed by stacking two or more phosphor layers in which only one kind of phosphor 22 is sealed. As the two or more kinds of phosphors 22 used in the one or more phosphor layers, those having the same excitation wavelength are selected. This excitation wavelength is selected based on the wavelength of light emitted by the light source L. The fluorescent colors of the two or more types of phosphors 22 are different from each other. When a blue light emitting diode (blue LED) is used as the light source, the fluorescent colors are red and green. The wavelength of each fluorescence and the wavelength of light emitted from the light source are selected based on the spectral characteristics of the color filter. The peak wavelengths of fluorescence are, for example, 610 nm for red and 550 nm for green.
 封止樹脂24としては、例えば、熱可塑性樹脂、熱硬化性樹脂、及び紫外線硬化型樹脂等を使用することができる。これらの樹脂は、一種を単独で又は二種以上を組み合わせて用いることができる。 As the sealing resin 24, for example, a thermoplastic resin, a thermosetting resin, an ultraviolet curable resin, or the like can be used. These resins can be used singly or in combination of two or more.
 熱可塑性樹脂としては、例えば、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース及びメチルセルロース等のセルロース誘導体;酢酸ビニルとその共重合体、塩化ビニルとその共重合体、及び塩化ビニリデンとその共重合体等のビニル系樹脂;ポリビニルホルマール及びポリビニルブチラール等のアセタール樹脂;アクリル樹脂とその共重合体、メタアクリル樹脂とその共重合体等のアクリル系樹脂;ポリスチレン樹脂;ポリアミド樹脂;線状ポリエステル樹脂;フッ素樹脂;並びに、ポリカーボネート樹脂等を用いることができる。熱硬化性樹脂としては、フェノール樹脂、尿素メラミン樹脂、ポリエステル樹脂、及びシリコーン樹脂等が挙げられる。紫外線硬化型樹脂としては、エポキシアクリレート、ウレタンアクリレート、及びポリエステルアクリレート等の光重合性プレポリマーが挙げられる。また、これら光重合性プレポリマーを主成分とし、希釈剤として単官能や多官能のモノマーを使用することもできる。 Examples of the thermoplastic resin include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose; vinyl acetate and copolymers thereof, vinyl chloride and copolymers thereof, and vinylidene chloride and copolymers thereof. Acetal resins such as polyvinyl formal and polyvinyl butyral; Acrylic resins and copolymers thereof, Acrylic resins such as methacrylic resins and copolymers; Polystyrene resins; Polyamide resins; Linear polyester resins; Fluorine Resin; and polycarbonate resin etc. can be used. Examples of the thermosetting resin include phenol resin, urea melamine resin, polyester resin, and silicone resin. Examples of the ultraviolet curable resin include photopolymerizable prepolymers such as epoxy acrylate, urethane acrylate, and polyester acrylate. Further, these photopolymerizable prepolymers can be the main components, and monofunctional or polyfunctional monomers can be used as diluents.
 蛍光体22としては、量子ドットが好ましく用いられる。量子ドットとしては、例えば、発光部としてのコアが保護膜としてのシェルにより被膜されたものが挙げられる。コアとしては、例えば、セレン化カドミウム(CdSe)等が挙げられ、シェルとしては、例えば、硫化亜鉛(ZnS)等が挙げられる。CdSeの粒子の表面欠陥がバンドギャップの大きいZnSにより被覆されることで量子効率が向上する。また、蛍光体22は、コアが第一シェル及び第二シェルにより二重に被覆されたものであってもよい。この場合、コアにはCsSe、第一シェルにはセレン化亜鉛(ZnSe)、第二シェルにはZnSが使用できる。また、量子ドット以外の蛍光体22として、YAG:Ce等を用いることもできる。 Quantum dots are preferably used as the phosphor 22. Examples of the quantum dots include those in which a core as a light emitting portion is coated with a shell as a protective film. Examples of the core include cadmium selenide (CdSe), and examples of the shell include zinc sulfide (ZnS). Quantum efficiency is improved by covering surface defects of CdSe particles with ZnS having a large band gap. Further, the phosphor 22 may be one in which the core is double-coated with the first shell and the second shell. In this case, CsSe can be used for the core, zinc selenide (ZnSe) can be used for the first shell, and ZnS can be used for the second shell. Moreover, YAG: Ce etc. can also be used as phosphors 22 other than quantum dots.
 蛍光体22の平均粒子径は、好ましくは1~20nmである。蛍光体層30の厚さは、好ましくは1~500μmである。蛍光体層30における蛍光体22の含有量は、蛍光体層30全量を基準として、1~20質量%であることが好ましく、3~10質量%であることがより好ましい。 The average particle diameter of the phosphor 22 is preferably 1 to 20 nm. The thickness of the phosphor layer 30 is preferably 1 to 500 μm. The content of the phosphor 22 in the phosphor layer 30 is preferably 1 to 20% by mass, and more preferably 3 to 10% by mass based on the total amount of the phosphor layer 30.
 なお、波長変換シート100の上記実施形態において、保護フィルム20は、蛍光体層30の両面に設けられていたが、蛍光体層30の一方の面のみに設けられていてもよい。すなわち、蛍光体層30の一方の面には第一保護フィルムとして保護フィルム20が設けられ、他方の面には第二保護フィルムとして別の保護フィルムが設けられていてもよい。 In addition, in the said embodiment of the wavelength conversion sheet 100, although the protective film 20 was provided in both surfaces of the fluorescent substance layer 30, you may be provided only in one side of the fluorescent substance layer 30. FIG. That is, the protective film 20 may be provided as a first protective film on one surface of the phosphor layer 30, and another protective film may be provided as a second protective film on the other surface.
 波長変換シート100の製造方法としては、特に限定されず、以下の方法が挙げられる。例えば、封止樹脂24に蛍光体22を分散させ、調製した蛍光体分散液を保護フィルム20の表面処理領域4t側の面上に塗布した後、塗布面に別の保護フィルム20を貼り合わせ、蛍光体分散液を硬化して蛍光体層30とすることにより、波長変換シート100を製造することができる。 The method for producing the wavelength conversion sheet 100 is not particularly limited, and examples include the following method. For example, after the phosphor 22 is dispersed in the sealing resin 24 and the prepared phosphor dispersion is applied on the surface of the protective film 20 on the surface treatment region 4t side, another protective film 20 is bonded to the application surface. The wavelength conversion sheet 100 can be manufactured by curing the phosphor dispersion liquid to form the phosphor layer 30.
 図6は、上記波長変換シートを用いて得られるバックライトユニットの模式断面図である。図6において、バックライトユニット200は光源Lと波長変換シート100とを備える。詳細には、バックライトユニット200は、波長変換シート100、導光板G及び反射板Rがこの順で配置され、光源Lは上記導光板Gの側方(導光板Gの面方向)に配置される。導光板Gの厚さは、例えば、100~1000μmである。 FIG. 6 is a schematic cross-sectional view of a backlight unit obtained using the wavelength conversion sheet. In FIG. 6, the backlight unit 200 includes a light source L and a wavelength conversion sheet 100. Specifically, in the backlight unit 200, the wavelength conversion sheet 100, the light guide plate G, and the reflection plate R are arranged in this order, and the light source L is arranged on the side of the light guide plate G (surface direction of the light guide plate G). The The thickness of the light guide plate G is, for example, 100 to 1000 μm.
 導光板G及び反射板Rは、光源Lから照射された光を効率的に反射し、導くものであり、公知の材料が使用される。導光板Gとしては、例えば、アクリル、ポリカーボネート、及びシクロオレフィンフィルム等が使用される。光源Lには、例えば、青色発光ダイオード素子が複数個設けられている。この発光ダイオード素子は、紫色発光ダイオード、又はさらに低波長の発光ダイオードであってもよい。光源Lから照射された光は、導光板G(D1方向)に入射した後、反射及び屈折等を伴って蛍光体層30(D2方向)に入射する。蛍光体層30を通過した光は、蛍光体層30を通過する前の光に蛍光体層30で発生した黄色光が混ざることで、白色光となる。 The light guide plate G and the reflection plate R efficiently reflect and guide the light emitted from the light source L, and a known material is used. As the light guide plate G, for example, acrylic, polycarbonate, cycloolefin film, or the like is used. The light source L is provided with a plurality of blue light emitting diode elements, for example. The light emitting diode element may be a violet light emitting diode or a light emitting diode having a lower wavelength. The light emitted from the light source L enters the light guide plate G (D1 direction), and then enters the phosphor layer 30 (D2 direction) with reflection and refraction. The light that has passed through the phosphor layer 30 becomes white light by mixing the yellow light generated in the phosphor layer 30 with the light before passing through the phosphor layer 30.
[保護フィルム]
 <保護フィルムの全体構成>
 本発明に係る保護フィルムは、別の側面において、下記第4~第6実施形態に係る保護フィルムであり得る。図7、図8及び図9はそれぞれ、第4~第6の実施形態に係る保護フィルムの全体構成を示す断面模式図である。図7に示される第4実施形態は、第5及び第6実施形態の基本となる形態であるため、まず図7に示される第4実施形態について説明する。
[Protective film]
<Overall configuration of protective film>
In another aspect, the protective film according to the present invention may be a protective film according to the following fourth to sixth embodiments. 7, 8 and 9 are schematic cross-sectional views showing the overall structure of the protective film according to the fourth to sixth embodiments, respectively. Since the fourth embodiment shown in FIG. 7 is a basic form of the fifth and sixth embodiments, first, the fourth embodiment shown in FIG. 7 will be described.
 図7に示される本実施形態に係る保護フィルム230は第一基材201(以下、基材又は第1の基材ということがある)を有し、基材201の一方の面(第1面)に第一バリア層(以下、バリア層ということがある)の一例として、無機薄膜層203及びガスバリア性被覆層204がこの順で積層されている。本実施形態において、基材201のもう一方の面(第2面)(第一バリア層と反対側の面)は蛍光体層(図示せず)と接する面となるため、蛍光体層との密着性を向上するために処理が施された処理面210となっている。以上が全体としてバリアフィルム220(以下、ガスバリアフィルムということがある)を構成している。さらに保護フィルム230は第二基材202(以下、基材又は第2の基材ということがある)を有し、上記基材201上のガスバリア性被覆層204と、上記基材202の一方の面とが対向する形で、接着層205を介して接着されている。すなわち、基材202がガスバリア性被覆層204(第一バリア層)と接着層205を介して接着されている。 The protective film 230 according to this embodiment shown in FIG. 7 has a first base material 201 (hereinafter sometimes referred to as a base material or a first base material), and one surface (first surface) of the base material 201. As an example of the first barrier layer (hereinafter also referred to as a barrier layer), an inorganic thin film layer 203 and a gas barrier coating layer 204 are laminated in this order. In the present embodiment, the other surface (second surface) (surface opposite to the first barrier layer) of the base material 201 is a surface in contact with the phosphor layer (not shown). A treated surface 210 is processed to improve adhesion. The above constitutes the barrier film 220 (hereinafter sometimes referred to as a gas barrier film) as a whole. Further, the protective film 230 includes a second base material 202 (hereinafter, also referred to as a base material or a second base material), and the gas barrier coating layer 204 on the base material 201 and one of the base materials 202 are provided. It is bonded via an adhesive layer 205 so that the surface faces the surface. That is, the base material 202 is bonded to the gas barrier coating layer 204 (first barrier layer) via the adhesive layer 205.
 なお、図7ではバリア層の一例として、無機薄膜層203及びガスバリア性被覆層204がこの順で積層されている場合を示したが、バリア層は少なくとも1層の無機薄膜層を含む層であればよい。 Note that FIG. 7 shows the case where the inorganic thin film layer 203 and the gas barrier coating layer 204 are laminated in this order as an example of the barrier layer, but the barrier layer may be a layer including at least one inorganic thin film layer. That's fine.
 図8に示される第5実施形態に係る保護フィルム231は、図7に示される保護フィルム230の形態に加えて、基材202の接着層205と対向する側の面と反対側の面に干渉縞防止機能、反射防止機能、及び拡散機能などの光学的機能、又は、帯電防止機能を有するコーティング層206が形成されている。すなわち、基材202の接着層205と反対側の面上に、コーティング層206が形成されている。 In addition to the form of the protective film 230 shown in FIG. 7, the protective film 231 according to the fifth embodiment shown in FIG. 8 interferes with the surface opposite to the surface facing the adhesive layer 205 of the base material 202. A coating layer 206 having an optical function such as a fringe prevention function, an antireflection function, a diffusion function, or an antistatic function is formed. That is, the coating layer 206 is formed on the surface of the substrate 202 opposite to the adhesive layer 205.
 図9に示される第6実施形態においては、基材201の両面の構成は図7に示される第4実施形態の場合と同じであり、ガスバリアフィルム220を構成している。すなわち、第6実施形態において、ガスバリアフィルム220の構成は第4実施形態におけるガスバリアフィルム220の構成と同様である。基材202の一方の面には、バリア層の一例として、無機薄膜層203及びガスバリア性被覆層204がこの順で積層され、これらがガスバリアフィルム221を構成している。第6実施形態においても、基材202のもう一方の面には、図8に示される第5実施形態と同じくコーティング層206が形成されている。さらに、基材201上のガスバリア性被覆層204と、基材202上のガスバリア性被覆層204とが、接着層205を介して接着されている。 In 6th Embodiment shown by FIG. 9, the structure of both surfaces of the base material 201 is the same as the case of 4th Embodiment shown by FIG. 7, and comprises the gas barrier film 220. FIG. That is, in the sixth embodiment, the configuration of the gas barrier film 220 is the same as the configuration of the gas barrier film 220 in the fourth embodiment. As one example of the barrier layer, an inorganic thin film layer 203 and a gas barrier coating layer 204 are laminated in this order on one surface of the substrate 202, and these constitute a gas barrier film 221. Also in the sixth embodiment, the coating layer 206 is formed on the other surface of the base material 202 as in the fifth embodiment shown in FIG. Further, the gas barrier coating layer 204 on the base material 201 and the gas barrier coating layer 204 on the base material 202 are bonded via an adhesive layer 205.
 なお、図9では基材202に積層されるバリア層として、無機薄膜層203及びガスバリア性被覆層204がこの順で積層されている場合を示したが、該バリア層は少なくとも1層の無機薄膜層を含む層であればよい。 FIG. 9 shows the case where the inorganic thin film layer 203 and the gas barrier coating layer 204 are laminated in this order as the barrier layer laminated on the base material 202. However, the barrier layer includes at least one inorganic thin film. What is necessary is just a layer containing a layer.
 また、第4~第6実施形態では、保護フィルムが第二基材202を有する構成について説明したが、保護フィルムは第二基材202を有していなくてもよい。したがって、この場合、保護フィルムは例えば第一基材と第一バリア層とが積層されたバリアフィルムであることもできる。さらに、図8~9に示される第5~第6実施形態の変形として、コーティング層206を省略した形態もあり得る(図示省略)。 Further, in the fourth to sixth embodiments, the configuration in which the protective film has the second base material 202 has been described, but the protective film may not have the second base material 202. Therefore, in this case, the protective film can be, for example, a barrier film in which a first base material and a first barrier layer are laminated. Furthermore, as a modification of the fifth to sixth embodiments shown in FIGS. 8 to 9, there may be a form in which the coating layer 206 is omitted (not shown).
 図7、図8及び図9に示される第4~第6実施形態に係る保護フィルムの一部であるガスバリアフィルム220,221において、無機薄膜層203とガスバリア性被覆層204は各々1層ずつで構成されているが、必要に応じて各々2層以上交互に積層することもできる。 In the gas barrier films 220 and 221 which are part of the protective films according to the fourth to sixth embodiments shown in FIGS. 7, 8 and 9, the inorganic thin film layer 203 and the gas barrier coating layer 204 are each one layer. Although it is configured, two or more layers can be alternately stacked as required.
 以下、図7、図8及び図9に示される第4~第6実施形態を構成する各要素について説明する。 Hereinafter, each element constituting the fourth to sixth embodiments shown in FIGS. 7, 8, and 9 will be described.
 <基材201(第1の基材)>
 基材201はポリエチレンテレフタレート(PET)フィルム(通常、一軸又は二軸延伸)であり、少なくとも片面に処理面210を持つフィルムである。フィルム基材201の厚さは、特に限定されるものではないが、波長変換シートの総厚を薄くするために、50μm以下とすることが望ましい。また、優れたバリア性を得るために、12μm以上とすることが望ましい。
<Base material 201 (first base material)>
The substrate 201 is a polyethylene terephthalate (PET) film (usually uniaxial or biaxial stretching), and is a film having a treatment surface 210 on at least one side. Although the thickness of the film base material 201 is not specifically limited, In order to make the total thickness of a wavelength conversion sheet thin, it is desirable to set it as 50 micrometers or less. Moreover, in order to obtain excellent barrier properties, it is desirable that the thickness be 12 μm or more.
 図10は、保護フィルムに用いるガスバリアフィルムの第一基材側の面のX線光電子分光スペクトルの一例の拡大図であり、C1s(炭素原子の1s軌道の電子)ピークの波形(C1s波形)を示すものである。図10の横軸は結合エネルギー(eV)を示し、縦軸は強度を示す。図10において、実線で示されるC1s波形PINTは、分析により点線及び一点鎖線で示される複数のピークに分離することができる。分離されたそれぞれのピークは炭素原子の化学状態によってシフトした結合エネルギーの位置に現れることから、分離されたピークの結合エネルギーの位置によってそれぞれの炭素原子の化学状態を知ることができる。 FIG. 10 is an enlarged view of an example of an X-ray photoelectron spectroscopic spectrum of the surface of the gas barrier film used for the protective film on the first base material side, and shows a waveform (C1s waveform) of C1s (electrons of carbon atom 1s orbit). It is shown. The horizontal axis in FIG. 10 indicates the binding energy (eV), and the vertical axis indicates the strength. In FIG. 10, a C1s waveform P INT indicated by a solid line can be separated into a plurality of peaks indicated by a dotted line and a one-dot chain line by analysis. Since each separated peak appears at a position of binding energy shifted by the chemical state of the carbon atom, the chemical state of each carbon atom can be known from the position of the binding energy of the separated peak.
 X線光電子分光法(XPS)による測定では、被測定物質の表面から数nmの深さ領域での、原子の種類と濃度、その原子と結合している原子の種類、及びそれらの結合状態が分析でき、元素比率及び官能基比率などを求めることができる。なお、第4~第6実施形態で適用するXPSの測定条件は下記のとおりである。
  X線源:MgKα、出力:100W・・・(条件1)
In the measurement by X-ray photoelectron spectroscopy (XPS), the kind and concentration of atoms, the kind of atoms bonded to the atoms, and their bonding state in a depth region of several nm from the surface of the substance to be measured Analysis can be performed, and the element ratio and functional group ratio can be obtained. The XPS measurement conditions applied in the fourth to sixth embodiments are as follows.
X-ray source: MgKα, output: 100 W (Condition 1)
 X線光電子分光スペクトルに現れるピークの結合エネルギーの位置は炭素原子の化学状態(結合種)ごとに固有であり、例えば、炭素-炭素結合(C-C結合)に由来するピークPCCは285.0eV付近に現れ、炭素-水酸基結合(C-OH結合)に由来するピークPCOHは286.5eV付近に現れる。図10では具体的に、C1s波形PINTが、C-C結合に由来するピークPCC、C-OH結合に由来するピークPCOH、及び、炭素-酸素二重結合及び炭素-酸素結合(O-C=O結合)に由来するピークPCOOに分離されている。 The position of the peak binding energy appearing in the X-ray photoelectron spectroscopy spectrum is unique to each chemical state (bonding species) of the carbon atom. For example, the peak PCC derived from the carbon-carbon bond ( CC bond) is 285. It appeared in the vicinity of 0 eV, carbon - peak P COH derived from hydroxyl bond (COH bonds) appears in the vicinity of 286.5 eV. Specifically, in FIG. 10, the C1s waveform P INT includes a peak P CC derived from a C—C bond, a peak P COH derived from a C—OH bond, and a carbon-oxygen double bond and a carbon-oxygen bond (O It is separated into a peak PCOO derived from (-C = O bond).
 各種表面処理の施されていない未処理の二軸延伸PETフィルムの場合、条件1で測定すると、C1s波形分離におけるPETフィルム基材表面のC-C結合に由来するピークの半値幅は1.220eV程度となる。このような半値幅の表面を有するPETフィルム基材は、蛍光体層との密着性が比較的低く、長期保存においてはデラミネーションを引き起こし得る。 In the case of an untreated biaxially stretched PET film that has not been subjected to various surface treatments, when measured under Condition 1, the half width of the peak derived from the CC bond on the PET film substrate surface in the C1s waveform separation is 1.220 eV. It will be about. A PET film substrate having such a half-value width surface has relatively low adhesion to the phosphor layer, and can cause delamination in long-term storage.
 PETフィルム基材と蛍光体層との密着性を向上させるためには、フィルム表面のXPS測定において、C1s波形分離におけるPETフィルム基材表面のC-C結合に由来するピークPCCの半値幅WCCが1.340~1.560eVの範囲であるような処理面210を持つPETフィルムを使用することが有効である。半値幅WCCが1.340eV以上であると、未処理のPETフィルムと比べて密着性に優れ、長期保存においてデラミネーションが起きにくくなる。また、半値幅WCCが1.560eV以下であると、PETフィルム表面の劣化が起こりにくく、密着を保持しやすくなる。 In order to improve the adhesion between the PET film substrate and the phosphor layer, in the XPS measurement of the film surface, the half width W of the peak PCC derived from the CC bond on the PET film substrate surface in the C1s waveform separation. It is effective to use a PET film having a treated surface 210 such that CC is in the range of 1.340 to 1.560 eV. When the half width W CC is at least 1.340EV, excellent adhesion as compared with PET films untreated, delamination is less likely to occur in long-term storage. Further, when the half width W CC is 1.560 eV or less, the PET film surface is hardly deteriorated and the adhesion is easily maintained.
 上記測定条件で、表面のC-C結合に由来するピークPCCの半値幅WCCが1.340~1.560eVの範囲となるようなPETフィルム基材を得るために、フィルム表面にリアクティブイオンエッチング(RIE)を利用したプラズマ処理を施すことが有効である。RIEを利用したプラズマ処理を行うことで、発生したラジカル又はイオンを利用してPETフィルムの表面構造を化学的に変化させることが可能であり、C-C結合に由来するピークPCCの半値幅WCCを制御することができる。 Under the above measurement conditions, in order to obtain a PET film substrate in which the half width W CC of the peak PCC derived from the surface CC bond is in the range of 1.340 to 1.560 eV, the film surface is reactive. It is effective to perform plasma treatment using ion etching (RIE). By performing plasma treatment using RIE, it is possible to chemically change the surface structure of the PET film using the generated radicals or ions, and the half width of the peak PCC derived from the CC bond W CC can be controlled.
 PETフィルム基材の表面と蛍光体層との密着強度をより強固なものにする点から、PETフィルム基材表面(処理面210)のC-C結合に由来するピークPCCの半値幅WCCが上記範囲内にあることに加えて、そのPETフィルム基材表面(処理面210)の水に対する接触角を測定したときに、その接触角θが30~65度の範囲内(30度≦θ≦65度)にあることが好ましい。 From the point that the adhesion strength between the surface of the PET film substrate and the phosphor layer is made stronger, the half width W CC of the peak PCC derived from the CC bond on the surface of the PET film substrate (treated surface 210). there, in addition to be within the above range, the contact angle to water of the PET film substrate surface (processing surface 210) when measured, the contact angle theta P is in the range of 30 to 65 degrees (30 ° ≦ θ P ≦ 65 degrees) is preferable.
 処理面210における半値幅WCCが上記範囲にあり、且つ、接触角θが65度以下である(θ≦65度)と、より優れた密着性が得られる傾向がある。接触角θが65度以下である処理面は、表面処理による化学変化がより効果的に行われているためであると考えられる。処理面210における半値幅WCCが上記範囲にあり、且つ、接触角θが30度以上である(30度≦θ)と、高温高湿環境下で長期間保存したときの密着性の低下をさらに抑制できる傾向がある。接触角θが30度以上である処理面210には密着性に寄与しつつも親水性が高くなりすぎない化学変化が起こっているためであると考えられる。 When the full width at half maximum W CC in the processing surface 210 is in the above range and the contact angle θ P is 65 degrees or less (θ P ≦ 65 degrees), more excellent adhesion tends to be obtained. Treated surface contact angle theta P is less than 65 degrees is believed to be due to chemical changes due to the surface treatment is performed more effectively. When the full width at half maximum W CC on the processing surface 210 is in the above range and the contact angle θ P is 30 degrees or more (30 degrees ≦ θ P ), the adhesiveness when stored for a long time in a high temperature and high humidity environment. There exists a tendency which can further suppress a fall. This is probably because a chemical change that does not increase the hydrophilicity of the treated surface 210 having a contact angle θ P of 30 degrees or more while contributing to the adhesiveness occurs.
 RIE処理を行う際の加工速度及びエネルギーレベルなどで示される処理条件は、適宜設定することができる。ただし、Epd=プラズマ密度×処理時間で定義されるEpd値が20V・s・m-2以上20000V・s・m-2以下にすることが好ましい。Epd値が20V・s・m-2以上であると、PETフィルムに十分な処理を施すことができ、密着性が得られやすくなる。また、Epd値が20000V・s・m-2以下であると、処理が強くなりすぎず、PETフィルム表面の劣化、又は、密着性の低下が起こりにくくなる。プラズマ用の気体及びその混合比などに関しては、ポンプの性能又は取り付け位置などによって、導入分と実効分とでは流量等が異なるため、用途、基材、及び装置特性に応じて適宜設定するべきである。 The processing conditions indicated by the processing speed and energy level when performing the RIE process can be set as appropriate. However, the Epd value defined by Epd = plasma density × processing time is preferably 20 V · s · m −2 or more and 20000 V · s · m −2 or less. When the Epd value is 20 V · s · m −2 or more, the PET film can be sufficiently treated and adhesion can be easily obtained. When the Epd value is 20000 V · s · m −2 or less, the treatment does not become too strong, and the PET film surface is hardly deteriorated or the adhesiveness is hardly lowered. Regarding the gas for plasma and its mixing ratio, etc., the flow rate differs between the introduction and effective components depending on the performance or mounting position of the pump. is there.
 <基材202(第2の基材)>
 基材202は、特に限定されるものではないが、全光線透過率が85%以上のフィルムであることが望ましい。例えば、基材202としては、透明性が高く、耐熱性に優れた基材である、PETフィルム及びポリエチレンナフタレートフィルムなどを用いることができる。
<Substrate 202 (second substrate)>
The substrate 202 is not particularly limited, but is preferably a film having a total light transmittance of 85% or more. For example, as the substrate 202, a PET film, a polyethylene naphthalate film, or the like, which is a substrate having high transparency and excellent heat resistance, can be used.
 また、基材202の厚さは、特に限定されるものではないが、波長変換シートの総厚を薄くするために、50μm以下とすることが望ましい。また、優れたバリア性を得るために、基材202の厚さは12μm以上とすることが望ましい。 Further, the thickness of the base material 202 is not particularly limited, but is desirably 50 μm or less in order to reduce the total thickness of the wavelength conversion sheet. In order to obtain excellent barrier properties, the thickness of the base material 202 is desirably 12 μm or more.
<バリア層(1層の場合は図示せず)>
 バリア層はガスバリアフィルムにガスバリア性を持たせるための層であり、特に本実施形態では蛍光体層の劣化を防ぐために、酸素遮断性が求められる。ガスバリア層は無機材料、有機材料の別を問わないが、ガスバリア性の高い無機薄膜層を少なくとも1層以上備えていることが好ましい。また、無機薄膜層を保護するために、ガスバリア性被覆層を設けることが好ましい。特に無機薄膜層に隣接するようにガスバリア性被覆層を配置することで、無機薄膜層の欠陥を補填する効果も生じる。無機薄膜層及びガスバリア性被覆層は複数設けられてもよい。
<Barrier layer (not shown in the case of a single layer)>
The barrier layer is a layer for imparting gas barrier properties to the gas barrier film. In particular, in this embodiment, oxygen barrier properties are required in order to prevent deterioration of the phosphor layer. The gas barrier layer may be either an inorganic material or an organic material, but preferably includes at least one inorganic thin film layer having a high gas barrier property. In order to protect the inorganic thin film layer, it is preferable to provide a gas barrier coating layer. In particular, by disposing the gas barrier coating layer so as to be adjacent to the inorganic thin film layer, an effect of compensating for defects in the inorganic thin film layer also occurs. A plurality of inorganic thin film layers and gas barrier coating layers may be provided.
 <無機薄膜層203>
 無機薄膜層(無機酸化物薄膜層)203としては、特に限定されるものではないが、例えば、酸化アルミニウム、酸化珪素、窒化珪素、窒化酸化珪素、酸化マグネシウム、あるいはそれらの混合物を用いることができる。これらの中でも、バリア性又は生産性の観点から、酸化アルミニウム、又は酸化珪素を用いることが望ましい。
<Inorganic thin film layer 203>
The inorganic thin film layer (inorganic oxide thin film layer) 203 is not particularly limited. For example, aluminum oxide, silicon oxide, silicon nitride, silicon nitride oxide, magnesium oxide, or a mixture thereof can be used. . Among these, it is desirable to use aluminum oxide or silicon oxide from the viewpoint of barrier properties or productivity.
 無機薄膜層203の膜厚は、5~500nmの範囲内とすることが好ましく、10~100nmの範囲内とすることがより好ましい。ここで、膜厚が5nm以上であると、均一な膜を形成しやすく、ガスバリア性の機能を果たしやすくなる。一方、膜厚が500nm以下であると、薄膜により十分なフレキシビリティを保持させることができ、成膜後の折り曲げ又は引っ張りなどの外的要因により、薄膜に亀裂を生じることをより確実に防ぐことができる傾向がある。 The film thickness of the inorganic thin film layer 203 is preferably in the range of 5 to 500 nm, more preferably in the range of 10 to 100 nm. Here, when the film thickness is 5 nm or more, it is easy to form a uniform film and to easily perform a gas barrier function. On the other hand, when the film thickness is 500 nm or less, sufficient flexibility can be maintained by the thin film, and it is possible to more reliably prevent the thin film from being cracked due to external factors such as bending or pulling after the film formation. There is a tendency to be able to.
 無機酸化物をプラスチック基材上に形成する方法としては種々あるが、通常の真空蒸着法により形成する方法が挙げられる。また、スパッタリング法、イオンプレーティング法、又はプラズマ気相成長法(CVD)などを用いることも可能である。ただし、生産性を考慮すれば、真空蒸着法が最も優れている。真空蒸着法の加熱手段としては、電子線加熱方式、抵抗加熱方式、及び誘導加熱方式のいずれかの方式を用いることが好ましいが、蒸発材料の選択性の幅広さを考慮すると電子線加熱方式を用いることがより好ましい。また、無機薄膜層と基材との密着性、及び無機薄膜層の緻密性を向上させるために、プラズマアシスト法又はイオンビームアシスト法を併用して蒸着することも可能である。また、蒸着膜の透明性を上げるために蒸着の際、酸素等の各種ガスを吹き込む反応性蒸着を用いても構わない。 There are various methods for forming an inorganic oxide on a plastic substrate, and examples include a method of forming by an ordinary vacuum deposition method. Further, a sputtering method, an ion plating method, a plasma vapor deposition method (CVD), or the like can be used. However, in consideration of productivity, the vacuum deposition method is the best. As the heating means of the vacuum deposition method, it is preferable to use any one of an electron beam heating method, a resistance heating method, and an induction heating method, but considering the wide range of selectivity of the evaporation material, the electron beam heating method is used. More preferably, it is used. Moreover, in order to improve the adhesiveness of an inorganic thin film layer and a base material, and the denseness of an inorganic thin film layer, it is also possible to vapor-deposit together using a plasma assist method or an ion beam assist method. Moreover, in order to raise the transparency of a vapor deposition film, you may use the reactive vapor deposition which blows in various gases, such as oxygen, in the case of vapor deposition.
 <ガスバリア性被覆層204>
 ガスバリア性被覆層204は、上述のように、後工程での二次的な各種損傷を防止するとともに、高いバリア性を付与するために設けられるものである。このガスバリア性被覆層204は、優れたバリア性を得る観点から、水酸基含有高分子化合物、金属アルコキシド、金属アルコキシド加水分解物、及び金属アルコキシド重合物からなる群より選択される少なくとも1種を成分として含有していることが好ましい。
<Gas barrier coating layer 204>
As described above, the gas barrier coating layer 204 is provided in order to prevent various secondary damages in the subsequent process and to impart high barrier properties. This gas barrier coating layer 204 is composed of at least one selected from the group consisting of a hydroxyl group-containing polymer compound, a metal alkoxide, a metal alkoxide hydrolyzate, and a metal alkoxide polymer from the viewpoint of obtaining excellent barrier properties. It is preferable to contain.
 水酸基含有高分子化合物としては、例えば、ポリビニルアルコール、ポリビニルピロリドン、及びデンプン等の水溶性高分子が挙げられるが、ポリビニルアルコールを用いた場合に特に優れたバリア性が得られる。 Examples of the hydroxyl group-containing polymer compound include water-soluble polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, and starch, and particularly excellent barrier properties are obtained when polyvinyl alcohol is used.
 金属アルコキシドは、一般式:Me(OR)(MeはSi、Ti、Al又はZr等の金属原子を示し、Rは-CH又は-C等のアルキル基を示し、xはMeの価数に対応した整数を示す)で表される化合物である。金属アルコキシドとしては、具体的には、テトラエトキシシラン〔Si(OC〕、トリイソプロポキシアルミニウム〔Al(O-iso-C〕などが挙げられる。テトラエトキシシラン又はトリイソプロポキシアルミニウムは、加水分解後、水系の溶媒中において比較的安定であるので好ましい。また、金属アルコキシドの加水分解物及び重合物としては、例えば、テトラエトキシシランの加水分解物又は重合物であるケイ酸(Si(OH))、及びトリイソプロポキシアルミニウムの加水分解物又は重合物である水酸化アルミニウム(Al(OH))などが挙げられる。 The metal alkoxide is represented by the general formula: Me (OR) x (Me represents a metal atom such as Si, Ti, Al or Zr, R represents an alkyl group such as —CH 3 or —C 2 H 5 , and x represents Me. Represents an integer corresponding to the valence of. Specific examples of the metal alkoxide include tetraethoxysilane [Si (OC 2 H 5 ) 4 ], triisopropoxyaluminum [Al (O-iso-C 3 H 7 ) 3 ] and the like. Tetraethoxysilane or triisopropoxyaluminum is preferable because it is relatively stable in an aqueous solvent after hydrolysis. Examples of the hydrolyzate and polymer of metal alkoxide include, for example, silicic acid (Si (OH) 4 ), which is a hydrolyzate or polymer of tetraethoxysilane, and a hydrolyzate or polymer of triisopropoxyaluminum. And aluminum hydroxide (Al (OH) 3 ).
 ガスバリア性被覆層204の膜厚は、50~1000nmの範囲内とすることが好ましく、100~500nmの範囲内とすることがより好ましい。ここで、膜厚が50nm以上であると、より十分なガスバリア性を得ることができる傾向があり、1000nm以下であると、層により十分なフレキシビリティを保持できる傾向がある。 The film thickness of the gas barrier coating layer 204 is preferably in the range of 50 to 1000 nm, and more preferably in the range of 100 to 500 nm. Here, when the film thickness is 50 nm or more, there is a tendency that a more sufficient gas barrier property can be obtained, and when it is 1000 nm or less, there is a tendency that sufficient flexibility can be maintained by the layer.
<接着層205>
 接着層205は、基材202とガスバリアフィルム220、もしくはガスバリアフィルム220,221同士を貼り合わせるために設けられている。接着層205としては、特に限定されるものではないが、アクリル系材料、ウレタン系材料、及びポリエステル系材料などの接着剤又は粘着剤を用いることができる。より具体的には、アクリル系粘着剤、アクリル系接着剤、ウレタン系接着剤、及びエステル系接着剤のいずれかを用いることができる。
<Adhesive layer 205>
The adhesive layer 205 is provided to bond the base material 202 and the gas barrier film 220 or the gas barrier films 220 and 221 together. Although it does not specifically limit as the contact bonding layer 205, Adhesives or adhesives, such as an acryl-type material, a urethane type material, and a polyester-type material, can be used. More specifically, any of an acrylic pressure-sensitive adhesive, an acrylic adhesive, a urethane adhesive, and an ester adhesive can be used.
 接着層205の厚さとしては、特に限定されるものではないが、保護フィルムの総厚を薄くするために、10μm以下とすることが望ましい。一方、より良好な接着性を得る観点から、接着層205の厚さは3μm以上であることが望ましい。 The thickness of the adhesive layer 205 is not particularly limited, but is desirably 10 μm or less in order to reduce the total thickness of the protective film. On the other hand, from the viewpoint of obtaining better adhesiveness, the thickness of the adhesive layer 205 is desirably 3 μm or more.
 ガスバリアフィルム220を貼り合せる際には、ガスバリアフィルム220の基材201の処理面210は接着層205とは反対向きになるように貼り合わされる。 When the gas barrier film 220 is bonded, the treatment surface 210 of the base material 201 of the gas barrier film 220 is bonded so as to face away from the adhesive layer 205.
 <コーティング層206>
 コーティング層206は、光学的機能又は帯電防止機能を発揮させるために、保護フィルム231,232の処理面210と反対側の最表面に設けられる。ここで、光学的機能としては、特に限定されるものではないが、干渉縞(モアレ)防止機能、反射防止機能、及び拡散機能等が挙げられる。これらの中でも、コーティング層206は少なくとも干渉縞防止機能を有することが好ましい。以下の実施形態では、コーティング層206が少なくとも干渉縞防止機能を有する場合について説明する。
<Coating layer 206>
The coating layer 206 is provided on the outermost surface opposite to the treatment surface 210 of the protective films 231 and 232 in order to exhibit an optical function or an antistatic function. Here, the optical function is not particularly limited, and examples thereof include an interference fringe (moire) prevention function, an antireflection function, and a diffusion function. Among these, the coating layer 206 preferably has at least an interference fringe preventing function. In the following embodiment, a case where the coating layer 206 has at least an interference fringe preventing function will be described.
 コーティング層206は、バインダー樹脂と微粒子とを含んで構成されていてもよい。さらに、コーティング層206の表面から微粒子の一部が露出するように微粒子をバインダー樹脂に埋め込むことにより、コーティング層206の表面には微細な凹凸が生じる。このようなコーティング層を保護フィルム231,232の最表面に設けることにより、ニュートンリング等の干渉縞の発生を十分に防止することができる。 The coating layer 206 may include a binder resin and fine particles. Further, by embedding the fine particles in the binder resin so that a part of the fine particles is exposed from the surface of the coating layer 206, fine irregularities are generated on the surface of the coating layer 206. By providing such a coating layer on the outermost surfaces of the protective films 231 and 232, generation of interference fringes such as Newton rings can be sufficiently prevented.
 上記バインダー樹脂としては、特に限定されるものではないが、光学的透明性に優れた樹脂を用いることができる。バインダー樹脂としては、より具体的には、ポリエステル系樹脂、アクリル系樹脂、アクリルウレタン系樹脂、ポリエステルアクリレート系樹脂、ポリウレタンアクリレート系樹脂、ウレタン系樹脂、エポキシ系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、メラミン系樹脂、及びフェノール系樹脂などの熱可塑性樹脂、熱硬化性樹脂、又は放射線硬化性樹脂などを用いることができる。これらの中でも耐光性又は光学特性に優れるアクリル系樹脂を使用することが望ましい。これらは1種だけでなく、複数種を組み合わせて使用することもできる。 The binder resin is not particularly limited, but a resin excellent in optical transparency can be used. More specifically, as the binder resin, polyester resin, acrylic resin, acrylic urethane resin, polyester acrylate resin, polyurethane acrylate resin, urethane resin, epoxy resin, polycarbonate resin, polyamide resin, Thermoplastic resins such as polyimide resins, melamine resins, and phenol resins, thermosetting resins, or radiation curable resins can be used. Among these, it is desirable to use an acrylic resin excellent in light resistance or optical properties. These can be used in combination of not only one type but also a plurality of types.
 上記微粒子としては、特に限定されるものではないが、例えば、シリカ、クレー、タルク、炭酸カルシウム、硫酸カルシウム、硫酸バリウム、酸化チタン、アルミナなどの無機微粒子の他、スチレン樹脂、ウレタン樹脂、シリコーン樹脂、アクリル樹脂などの有機微粒子を用いることができる。これらは1種だけでなく、複数種を組み合わせて使用することもできる。 The fine particles are not particularly limited. For example, in addition to inorganic fine particles such as silica, clay, talc, calcium carbonate, calcium sulfate, barium sulfate, titanium oxide, and alumina, styrene resin, urethane resin, and silicone resin. Organic fine particles such as acrylic resin can be used. These can be used in combination of not only one type but also a plurality of types.
 微粒子の平均粒径は、0.1~30μmであることが好ましく、0.5~10μmであることがより好ましい。微粒子の平均粒径が0.1μm以上であると、干渉縞防止機能が得られる傾向があり、30μm以下であると、透明性が向上する傾向がある。 The average particle diameter of the fine particles is preferably from 0.1 to 30 μm, and more preferably from 0.5 to 10 μm. When the average particle size of the fine particles is 0.1 μm or more, an interference fringe prevention function tends to be obtained, and when it is 30 μm or less, the transparency tends to be improved.
 コーティング層206における微粒子の含有量は、コーティング層の全量を基準として0.5~30質量%であることが好ましく、3~10質量%であることがより好ましい。微粒子の含有量が0.5質量%以上であると、光拡散機能と干渉縞の発生を防止する効果がより向上する傾向があり、30質量%以下であると、輝度を低減させることがない。 The content of fine particles in the coating layer 206 is preferably 0.5 to 30% by mass, more preferably 3 to 10% by mass based on the total amount of the coating layer. When the content of the fine particles is 0.5% by mass or more, the light diffusion function and the effect of preventing the generation of interference fringes tend to be further improved. When the content is 30% by mass or less, the luminance is not reduced. .
 <波長変換シートの全体構成>
 図11、図12、及び図13は、本発明の別の側面に係る波長変換シートの3つの実施形態の全体構成を示す断面模式図である。本発明の別の側面に係る波長変換シート300,400,500は、蛍光体層209と、該蛍光体層209の両面にそれぞれ上述の保護フィルム230,231,232とを備えて構成されている。これによって、保護フィルム230,231,232の間に蛍光体層209が包み込まれた構造となっている。
<Whole structure of wavelength conversion sheet>
11, FIG. 12, and FIG. 13 are schematic cross-sectional views showing the overall configuration of three embodiments of the wavelength conversion sheet according to another aspect of the present invention. The wavelength conversion sheets 300, 400, and 500 according to another aspect of the present invention are configured to include the phosphor layer 209 and the protective films 230, 231, and 232 described above on both sides of the phosphor layer 209, respectively. . As a result, the phosphor layer 209 is enclosed between the protective films 230, 231 and 232.
 蛍光体層209と、その両面に設けられた保護フィルム230,231,232は、保護フィルム230,231,232の基材201の処理面210と蛍光体層209が対向するように積層されている。 The phosphor layer 209 and the protective films 230, 231 and 232 provided on both sides thereof are laminated so that the treatment surface 210 of the base material 201 of the protective films 230, 231 and 232 and the phosphor layer 209 face each other. .
 本発明の別の側面における波長変換シートは、図11~図13に示されるように、蛍光体層209が同一構成の保護フィルムによって挟まれていてもよく、また異なる構成の保護フィルムによって挟まれていてもよい。 In the wavelength conversion sheet according to another aspect of the present invention, as shown in FIGS. 11 to 13, the phosphor layer 209 may be sandwiched between protective films having the same configuration, or may be sandwiched between protective films having different configurations. It may be.
 <蛍光体層>
 蛍光体層209は、蛍光体207及び封止樹脂208を含む層である。蛍光体層209の内部には、蛍光体207が1種以上混合された状態で封止されている。封止樹脂208は、蛍光体層209と保護フィルム230,231,232を積層する際に、これらの空隙を埋める役割を果たす。また、蛍光体層209は、1種類の蛍光体のみが封止された蛍光体層が2層以上積層されたものであってもよい。それら1層又は2層以上の蛍光体層に用いられる2種類以上の蛍光体は、励起波長が同一のものが選択される。この励起波長は、LED光源が照射する光の波長に基づいて選択される。
<Phosphor layer>
The phosphor layer 209 is a layer including the phosphor 207 and the sealing resin 208. Inside the phosphor layer 209, one or more phosphors 207 are mixed and sealed. The sealing resin 208 plays a role of filling these gaps when the phosphor layer 209 and the protective films 230, 231, and 232 are laminated. The phosphor layer 209 may be a laminate in which two or more phosphor layers in which only one kind of phosphor is sealed are stacked. As the two or more kinds of phosphors used in the one or two or more phosphor layers, those having the same excitation wavelength are selected. This excitation wavelength is selected based on the wavelength of light emitted by the LED light source.
 上記蛍光体層209の厚さは、好ましくは1~500μmである。また、蛍光体207の平均粒子径は、好ましくは1~20nmである。 The thickness of the phosphor layer 209 is preferably 1 to 500 μm. The average particle size of the phosphor 207 is preferably 1 to 20 nm.
 蛍光体層209における蛍光体207の含有量は、蛍光体層209の全量を基準として、1~20質量%であることが好ましく、3~10質量%であることがより好ましい。 The content of the phosphor 207 in the phosphor layer 209 is preferably 1 to 20% by mass, and more preferably 3 to 10% by mass based on the total amount of the phosphor layer 209.
 蛍光体207としては、量子ドットが好ましく用いられる。量子ドットとしては、例えば、発光部としてのコアが保護膜としてのシェルにより被膜されたものが挙げられる。上記コアとしては、例えば、セレン化カドミウム(CdSe)等が挙げられ、上記シェルとしては、例えば、硫化亜鉛(ZnS)等が挙げられる。CdSeの粒子の表面欠陥がバンドギャップの大きいZnSにより被覆されることで量子効率が向上する。また、蛍光体は、コアが第1シェル及び第2シェルにより二重に被覆されたものであってもよい。この場合、コアにはCsSe、第1シェルにはセレン化亜鉛(ZnSe)、第2シェルにはZnSが使用できる。また、量子ドット以外の蛍光体として、YAG:Ce等を用いることもできる。 Quantum dots are preferably used as the phosphor 207. Examples of the quantum dots include those in which a core as a light emitting portion is coated with a shell as a protective film. Examples of the core include cadmium selenide (CdSe), and examples of the shell include zinc sulfide (ZnS). Quantum efficiency is improved by covering surface defects of CdSe particles with ZnS having a large band gap. In addition, the phosphor may be one in which a core is doubly covered with a first shell and a second shell. In this case, CsSe can be used for the core, zinc selenide (ZnSe) can be used for the first shell, and ZnS can be used for the second shell. Moreover, YAG: Ce etc. can also be used as fluorescent substance other than a quantum dot.
 封止樹脂208としては、例えば、熱可塑性樹脂、熱硬化性樹脂、及び紫外線硬化型樹脂等を使用することができる。これらの樹脂は1種を単独で、又は2種以上を組み合わせて用いることができる。 As the sealing resin 208, for example, a thermoplastic resin, a thermosetting resin, an ultraviolet curable resin, or the like can be used. These resins can be used alone or in combination of two or more.
 上記熱可塑性樹脂としては、例えば、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース及びメチルセルロース等のセルロース誘導体;酢酸ビニルの単独重合体と共重合体、塩化ビニルの単独重合体と共重合体、及び塩化ビニリデンの単独重合体と共重合体等のビニル系樹脂;ポリビニルホルマール及びポリビニルブチラール等のアセタール樹脂;アクリル樹脂とその共重合体、メタアクリル樹脂とその共重合体等のアクリル系樹脂;ポリスチレン樹脂;ポリアミド樹脂;線状ポリエステル樹脂;フッ素樹脂;並びに、ポリカーボネート樹脂等を用いることができる。 Examples of the thermoplastic resin include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose and methylcellulose; vinyl acetate homopolymers and copolymers, vinyl chloride homopolymers and copolymers, and Vinyl resins such as vinylidene chloride homopolymers and copolymers; Acetal resins such as polyvinyl formal and polyvinyl butyral; Acrylic resins and copolymers thereof, Acrylic resins such as methacrylic resins and copolymers thereof; Polystyrene resins Polyamide resin; linear polyester resin; fluororesin; and polycarbonate resin can be used.
 上記熱硬化性樹脂としては、フェノール樹脂、尿素メラミン樹脂、ポリエステル樹脂、及びシリコーン樹脂等が挙げられる。 Examples of the thermosetting resin include phenol resin, urea melamine resin, polyester resin, and silicone resin.
 上記紫外線硬化型樹脂としては、エポキシアクリレート、ウレタンアクリレート、及びポリエステルアクリレート等の光重合性プレポリマーが挙げられる。また、これら光重合性プレポリマーを主成分とし、希釈剤として単官能又は多官能のモノマーを使用することもできる。 Examples of the ultraviolet curable resin include photopolymerizable prepolymers such as epoxy acrylate, urethane acrylate, and polyester acrylate. Further, these photopolymerizable prepolymers can be the main components, and monofunctional or polyfunctional monomers can be used as diluents.
 以下に実施例を用いて本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail using examples, but the present invention is not limited to the following examples.
<第1~第3実施形態に係る保護フィルムの作製>
(実施例1-1)
 第一基材1としての厚み25μmのポリエチレンテレフタレート(PET)フィルムの片面に、無機薄膜層3としての酸化珪素を真空蒸着法により250Åの厚みに設けた。さらに、テトラエトキシシランとポリビニルアルコールとを含む混合溶液をウエットコーティング法により無機薄膜層3上に塗工し、0.3μmの厚みのガスバリア性被覆層を形成した。
<Preparation of protective film according to first to third embodiments>
Example 1-1
On one side of a 25 μm thick polyethylene terephthalate (PET) film as the first substrate 1, silicon oxide as the inorganic thin film layer 3 was provided in a thickness of 250 mm by vacuum deposition. Further, a mixed solution containing tetraethoxysilane and polyvinyl alcohol was applied onto the inorganic thin film layer 3 by a wet coating method to form a gas barrier coating layer having a thickness of 0.3 μm.
 続いて、ガスバリア性被覆層の表面にアルゴンガス雰囲気下でプラズマ処理を施して、ガスバリア性被覆層に表面処理領域4tを設けた。このようにして、第一基材1上に、無機薄膜層3及び表面処理されたガスバリア性被覆層4からなるバリア層2が形成されたバリアフィルム10を作製した。上記プラズマ処理には、印加電力120W、処理時間0.1秒、処理ユニット圧力2.0Pa、プラズマ密度2500V/mの条件での、リアクティブイオンエッチング(RIE)を採用した。RIE処理の電源には周波数13.56MHzの高周波電源を用いた。 Subsequently, a plasma treatment was performed on the surface of the gas barrier coating layer in an argon gas atmosphere to provide a surface treatment region 4t on the gas barrier coating layer. Thus, the barrier film 10 in which the barrier layer 2 including the inorganic thin film layer 3 and the surface-treated gas barrier coating layer 4 was formed on the first substrate 1 was produced. For the plasma treatment, reactive ion etching (RIE) was applied under the conditions of an applied power of 120 W, a treatment time of 0.1 second, a treatment unit pressure of 2.0 Pa, and a plasma density of 2500 V / m 2 . A high frequency power supply with a frequency of 13.56 MHz was used as the power supply for the RIE process.
 次に、バリアフィルム10の表面処理領域4tとは反対の面(第一基材1側の面)にアクリル樹脂とシリカ微粒子(平均粒径3μm)とを含む塗液をウエットコーティング法により塗工し、5μmの厚みのコーティング層12を形成することにより、実施例1-1の保護フィルム20を作製した。 Next, a coating liquid containing an acrylic resin and silica fine particles (average particle size of 3 μm) is applied to the surface (surface on the first base material 1 side) opposite to the surface treatment region 4t of the barrier film 10 by a wet coating method. Then, the protective film 20 of Example 1-1 was produced by forming the coating layer 12 having a thickness of 5 μm.
(実施例1-2)
 表面処理領域4tを設ける際に、プラズマ処理の印加電力を60Wにしたこと以外は、実施例1-1と同様の方法で、実施例1-2の保護フィルム20を作製した。
Example 1-2
A protective film 20 of Example 1-2 was produced in the same manner as in Example 1-1, except that when the surface treatment region 4t was provided, the applied power of plasma treatment was changed to 60W.
(実施例1-3)
 表面処理領域4tを設ける際に、プラズマ処理の印加電力を500Wにしたこと以外は、実施例1-1と同様の方法で、バリアフィルム10を得た。
(Example 1-3)
A barrier film 10 was obtained in the same manner as in Example 1-1 except that when the surface treatment region 4t was provided, the applied power of the plasma treatment was changed to 500W.
 次に、支持基材14としての厚み25μmのポリエチレンテレフタレート(PET)フィルムの片面に、アクリル樹脂とシリカ微粒子(平均粒径3μm)とを含む塗液をウエットコーティング法により塗工し、5μmの厚みのコーティング層12を形成した。 Next, a coating solution containing an acrylic resin and silica fine particles (average particle size: 3 μm) is applied to one side of a 25 μm-thick polyethylene terephthalate (PET) film as the support substrate 14 by a wet coating method, and the thickness is 5 μm. The coating layer 12 was formed.
 上記で得たバリアフィルム10のガスバリア性被覆層4と反対側の面(第一基材1側の面)と、支持基材14のコーティング層12と反対側の面とを、アクリル樹脂接着剤を用いて貼り合わせることにより、実施例1-3の保護フィルム20を得た。 Acrylic resin adhesive is formed on the surface opposite to the gas barrier coating layer 4 of the barrier film 10 obtained above (the surface on the first substrate 1 side) and the surface opposite to the coating layer 12 of the support substrate 14. Was used to obtain a protective film 20 of Example 1-3.
(比較例1-1)
 プラズマ処理を行わず、表面処理領域4tを設けなかったこと以外は、実施例1-1と同様の方法で、比較例1-1の保護フィルムを作製した。
(Comparative Example 1-1)
A protective film of Comparative Example 1-1 was produced in the same manner as in Example 1-1 except that the plasma treatment was not performed and the surface treatment region 4t was not provided.
(比較例1-2)
 表面処理領域を設ける際に、プラズマ処理の印加電力を250W、処理時間を0.5秒にしたこと以外は、実施例1-1と同様の方法で、比較例1-2の保護フィルムを作製した。
(Comparative Example 1-2)
A protective film of Comparative Example 1-2 was produced in the same manner as in Example 1-1, except that when the surface treatment region was provided, the applied power for plasma treatment was 250 W and the treatment time was 0.5 seconds. did.
(比較例1-3)
 表面処理領域を設ける際に、プラズマ処理の印加電力を30W、処理時間を0.1秒にしたこと以外は、実施例1-3と同様の方法で、比較例1-3の保護フィルムを作製した。
(Comparative Example 1-3)
A protective film of Comparative Example 1-3 was produced in the same manner as in Example 1-3, except that when the surface treatment region was provided, the applied power of plasma treatment was 30 W and the treatment time was 0.1 second. did.
<ガスバリア性被覆層の表面の分析>
 実施例1-1~1-3及び比較例1-1~1-3で得られた保護フィルムのガスバリア性被覆層側の表面を、X線光電子分光法(装置:日本電子株式会社製JPS-90MXV)により分析し、X線光電子分光スペクトルを得た。X線源として非単色化MgKα(1253.6eV)を使用し、出力を100W(10kV-10mA)として分析した。X線光電子分光スペクトルにおけるC1s波形を、ガウシアン関数とローレンツ関数の混合関数を使用して結合種ごとに分離解析した。なお、ベンゼン環に由来するC-C結合ピーク位置を285.0eVとして帯電補正した。波形分離解析よりC-C結合に由来するピークPCCの強度ICCと、C-OH結合に由来するピークPCOHの強度ICOHを求め、これらの値より強度比Dを算出した。算出した強度比Dをそれぞれ表1に示す。
<Analysis of the surface of the gas barrier coating layer>
The surface of the protective film obtained in Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-3 on the gas barrier coating layer side was subjected to X-ray photoelectron spectroscopy (apparatus: JPS- manufactured by JEOL Ltd.). 90MXV) to obtain an X-ray photoelectron spectrum. Non-monochromated MgKα (1253.6 eV) was used as the X-ray source, and the output was analyzed as 100 W (10 kV-10 mA). The C1s waveform in the X-ray photoelectron spectrum was separated and analyzed for each bond type using a mixed function of a Gaussian function and a Lorentz function. The charge correction was performed with the CC bond peak position derived from the benzene ring being 285.0 eV. And intensity I CC of the peak P CC derived from the waveform separation analysis CC bond to obtain the intensity I COH peak P COH derived from COH binding was calculated intensity ratio D from these values. The calculated intensity ratios D are shown in Table 1, respectively.
<接触角測定>
 実施例1-1~1-3及び比較例1-1~1-3で得られた保護フィルムのガスバリア性被覆層側の表面の水に対する接触角θを、日本工業規格JIS R3257「基板ガラス表面のぬれ性試験方法」の中の静滴法で規定されている試験方法に従って、試験測定器(協和界面科学(株)製、「CA-V型」)を用いて温度25℃、湿度50%の環境下にて測定した。測定した接触角θをそれぞれ表1に示す。
<Contact angle measurement>
The contact angle θ G with respect to water on the gas barrier coating layer side surface of the protective film obtained in Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-3 was determined according to Japanese Industrial Standard JIS R3257 “Substrate Glass”. In accordance with the test method prescribed by the sessile drop method in “Surface wettability test method”, using a test measuring instrument (Kyowa Interface Science Co., Ltd., “CA-V type”), temperature 25 ° C., humidity 50 % In an environment. It shows the measured contact angle theta G to Table 1, respectively.
<波長変換シートの作製>
 量子ドットとして、SIGMA-ALDRICH社製CdSe/ZnS 530(商品名)をエポキシ系感光性樹脂と混合後、混合液を実施例1-1で作製した保護フィルムのガスバリア性被覆層側の面上に塗布し、量子ドット層(蛍光体層)を形成した。量子ドット層上に同じ構成の保護フィルムをガスバリア性被覆層同士が対向するように積層し、UV硬化ラミネートすることにより、実施例1-1の保護フィルムを使用した波長変換シートを得た。実施例1-1と同様にして、実施例1-2~1-3及び比較例1-1~1-3の保護フィルムを使用した波長変換シートを得た。
<Production of wavelength conversion sheet>
As a quantum dot, CdSe / ZnS 530 (trade name) manufactured by SIGMA-ALDRICH was mixed with an epoxy-based photosensitive resin, and the mixed solution was applied to the surface on the gas barrier coating layer side of the protective film prepared in Example 1-1. The quantum dot layer (phosphor layer) was formed by coating. A wavelength conversion sheet using the protective film of Example 1-1 was obtained by laminating a protective film having the same structure on the quantum dot layer so that the gas barrier coating layers face each other and performing UV curing lamination. In the same manner as Example 1-1, wavelength conversion sheets using the protective films of Examples 1-2 to 1-3 and Comparative Examples 1-1 to 1-3 were obtained.
<ラミネート強度測定>
 実施例1-1~1-3及び比較例1-1~1-3の保護フィルムを使用した波長変換シートにおける、保護フィルムと量子ドット層との間のラミネート強度を、オリエンテック社テンシロン万能試験機RTC-1250を用いて、JIS Z1707のヒートシール強さ試験方法に準拠して、測定した。ラミネート強度の測定結果を表1に示す。
<Measurement of laminate strength>
In the wavelength conversion sheets using the protective films of Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-3, the laminate strength between the protective film and the quantum dot layer was tested using Orientec Tensilon Universal Test. Measurement was performed using a machine RTC-1250 in accordance with the heat seal strength test method of JIS Z1707. The measurement results of the laminate strength are shown in Table 1.
<発光状態評価>
 実施例1-1~1-3及び比較例1-1~1-3の保護フィルムを使用した波長変換シートを、65℃95%RHの環境下にて100時間保存した。保存後の波長変換シートにUVランプにて254nmの波長のUV光を照射して、照射面の反対側から波長変換シートを目視にて観察し、下記基準に従って発光状態を評価した。発光状態の評価結果を表1に示す。
A:波長変換シートを通して観察したUV光にムラが観察されなかった。
B:波長変換シートを通して観察したUV光に斑点模様又はスジが観察された。
<Light emission state evaluation>
The wavelength conversion sheets using the protective films of Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-3 were stored for 100 hours in an environment of 65 ° C. and 95% RH. The wavelength conversion sheet after storage was irradiated with UV light having a wavelength of 254 nm with a UV lamp, the wavelength conversion sheet was visually observed from the opposite side of the irradiated surface, and the light emission state was evaluated according to the following criteria. The evaluation results of the light emission state are shown in Table 1.
A: Unevenness was not observed in the UV light observed through the wavelength conversion sheet.
B: Spotted patterns or streaks were observed in the UV light observed through the wavelength conversion sheet.
<外観評価>
 実施例1-1~1-3及び比較例1-1~1-3の保護フィルムを使用した波長変換シートを、65℃95%RHの環境下にて100時間保存した。保存後の波長変換シートの外観を目視にて確認し、下記基準に従って評価した。外観の評価結果を表1に示す。
A:波長変換シートに外観上の不良は観察されなかった。
B:波長変換シートの蛍光体層と保護フィルムとの間に浮きが観察された。
<Appearance evaluation>
The wavelength conversion sheets using the protective films of Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-3 were stored for 100 hours in an environment of 65 ° C. and 95% RH. The appearance of the wavelength conversion sheet after storage was visually confirmed and evaluated according to the following criteria. Table 1 shows the appearance evaluation results.
A: No defect in appearance was observed in the wavelength conversion sheet.
B: Floating was observed between the phosphor layer of the wavelength conversion sheet and the protective film.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果から明らかなように、実施例1-1~1-3の保護フィルムを使用した波長変換シートでは、保護フィルムと量子ドット層との間の密着が強く、これにより保存試験後でも良好な発光状態及び外観を保つことが可能な波長変換シートを得ることができた。 As is clear from the results shown in Table 1, in the wavelength conversion sheet using the protective film of Examples 1-1 to 1-3, the adhesion between the protective film and the quantum dot layer is strong, which results in a storage test. It was possible to obtain a wavelength conversion sheet capable of maintaining a good light emission state and appearance even later.
<第4~第6実施形態に係る保護フィルムの作製>
(実施例2-1)
 基材201としての厚み25μmのポリエチレンテレフタレート(PET)フィルムの片面に、無機薄膜層203として酸化珪素を真空蒸着法により25nmの厚みに設け、さらにテトラエトキシシランとポリビニルアルコールとを含む塗液をウエットコーティング法により無機薄膜層203上に塗工し、300nmの厚みのガスバリア性被覆層204を形成した。
<Production of Protective Film According to Fourth to Sixth Embodiments>
Example 2-1
On one side of a 25 μm-thick polyethylene terephthalate (PET) film as the base material 201, silicon oxide is provided as an inorganic thin film layer 203 to a thickness of 25 nm by a vacuum deposition method, and a coating liquid containing tetraethoxysilane and polyvinyl alcohol is wetted. Coating was performed on the inorganic thin film layer 203 by a coating method to form a gas barrier coating layer 204 having a thickness of 300 nm.
 続いて、電源周波数13.56MHzのリアクティブイオンエッチング(RIE)装置を用いて、上記PETフィルムのガスバリア性被覆層204を形成した面とは反対側の面に、アルゴンガス雰囲気中で、処理ユニット圧力2.0Pa、印加電力100W、処理時間0.1秒の条件にてプラズマ処理を施し、処理面210を形成してガスバリアフィルム220を得た。 Subsequently, using a reactive ion etching (RIE) apparatus having a power supply frequency of 13.56 MHz, a processing unit is disposed on the surface opposite to the surface on which the gas barrier coating layer 204 of the PET film is formed in an argon gas atmosphere. Plasma treatment was performed under the conditions of a pressure of 2.0 Pa, an applied power of 100 W, and a treatment time of 0.1 seconds to form a treatment surface 210 to obtain a gas barrier film 220.
 次に、基材202として厚み25μmのポリエチレンテレフタレート(PET)フィルムの片面に、バインダー樹脂としてのアクリル樹脂と、シリカ微粒子(平均粒径3μm)とを含む塗液をウエットコーティング法により塗工し、5μmの厚みのコーティング層206を形成した。 Next, a coating liquid containing an acrylic resin as a binder resin and silica fine particles (average particle size of 3 μm) is applied to one side of a polyethylene terephthalate (PET) film having a thickness of 25 μm as the base material 202 by a wet coating method, A coating layer 206 having a thickness of 5 μm was formed.
 上記で作製したバリアフィルム220のガスバリア性被覆層204側の面と、基材202のコーティング層206とは反対側の面(基材202が露出した面)とを、アクリル樹脂接着剤を用いて貼り合わせ、図8に示される構成を持つ保護フィルム231を作製した。 Using the acrylic resin adhesive, the surface on the gas barrier coating layer 204 side of the barrier film 220 prepared above and the surface opposite to the coating layer 206 of the base material 202 (the surface on which the base material 202 is exposed) are used. The protective film 231 having the configuration shown in FIG.
(実施例2-2)
 処理面210の形成において、プラズマ処理の印加電力を500Wにしたこと以外は、実施例2-1と同様の方法にて保護フィルムを作製した。
(Example 2-2)
A protective film was produced in the same manner as in Example 2-1, except that the applied power of the plasma treatment was changed to 500 W in the formation of the treatment surface 210.
(比較例2-1)
 プラズマ処理を行わず、処理面210を形成しなかったこと以外は、実施例2-1と同様の方法にて保護フィルムを作製した。
(Comparative Example 2-1)
A protective film was produced in the same manner as in Example 2-1, except that the plasma treatment was not performed and the treatment surface 210 was not formed.
(比較例2-2)
 プラズマ処理ではなく、コロナ処理を行って処理面を形成したこと以外は、実施例2-1と同様の方法にて保護フィルムを作製した。
(Comparative Example 2-2)
A protective film was produced in the same manner as in Example 2-1, except that the treated surface was formed by performing corona treatment instead of plasma treatment.
<処理面のXPS分析>
 実施例2-1~2-2及び比較例2-1~2-2で作製した4種の保護フィルムの基材201側の面(処理面)を、X線光電子分光法(XPS)(装置:日本電子株式会社製JPS-90MXV)により分析し、X線光電子分光スペクトルを得た。X線源には非単色化MgKα(1253.6eV)を使用し、出力を100W(10kV-10mA)として測定した。定量分析にはO1sで2.28、C1sで1.00の相対感度因子を用いて計算を行った。C1s波形の波形分離解析にはガウシアン関数とローレンツ関数の混合関数を使用し、帯電補正はベンゼン環のC-C結合に由来するピークを285.0eVとして行った。C1s波形の波形分離から、C-C結合に由来するピークPCCの半値幅WCCを算出した。
<XPS analysis of treated surface>
Surfaces (treated surfaces) on the substrate 201 side of the four types of protective films prepared in Examples 2-1 to 2-2 and Comparative Examples 2-1 to 2-2 were subjected to X-ray photoelectron spectroscopy (XPS) (apparatus) : JPS-90MXV manufactured by JEOL Ltd.) to obtain an X-ray photoelectron spectrum. Non-monochromated MgKα (1253.6 eV) was used as the X-ray source, and the output was measured at 100 W (10 kV-10 mA). For quantitative analysis, calculation was performed using a relative sensitivity factor of 2.28 for O1s and 1.00 for C1s. A mixed function of a Gaussian function and a Lorentz function was used for the waveform separation analysis of the C1s waveform, and the charge correction was performed with the peak derived from the CC bond of the benzene ring being 285.0 eV. From the waveform separation of the C1s waveform, the half width W CC of the peak PCC derived from the CC bond was calculated.
<接触角測定>
 実施例2-1~2-2及び比較例2-1~2-2で得られた保護フィルムの第一基材側の表面の水に対する接触角θを、日本工業規格JIS R3257「基板ガラス表面のぬれ性試験方法」の中の静滴法で規定されている試験方法に従って、試験測定器(協和界面科学(株)製、「CA-V型」)を用いて温度25℃、湿度50%の環境下にて測定した。
<Contact angle measurement>
The contact angle θ P with respect to the water on the surface of the first base material side of the protective film obtained in Examples 2-1 to 2-2 and Comparative Examples 2-1 to 2-2 was determined by the Japanese Industrial Standard JIS R3257 “Substrate Glass”. In accordance with the test method prescribed by the sessile drop method in “Surface wettability test method”, using a test measuring instrument (Kyowa Interface Science Co., Ltd., “CA-V type”), temperature 25 ° C., humidity 50 % In an environment.
<波長変換シートの作製>
 量子ドットとしてCdSe/ZnS 530(商品名、SIGMA-ALDRICH社製)を封止樹脂としてのエポキシ系感光性樹脂と混合した後、混合液を実施例2-1で得られた保護フィルム231の第一基材201側に塗布して蛍光体層209を形成し、さらに該蛍光体層209上に、同じ構成の保護フィルム231を第一基材201どうしが対向するように積層し、UV硬化ラミネートにより、実施例2-1の保護フィルム231の間に蛍光体層209が包み込まれた、図5の構成を持つ波長変換シート400を作製した。実施例2-1と同様にして、実施例2-2及び比較例2-1~2-2の保護フィルムを使用した波長変換シートを得た。
<Production of wavelength conversion sheet>
After mixing CdSe / ZnS 530 (trade name, manufactured by SIGMA-ALDRICH) as a quantum dot with an epoxy-based photosensitive resin as a sealing resin, the mixed solution is used for the protective film 231 obtained in Example 2-1. A phosphor layer 209 is formed by coating on one substrate 201 side, and a protective film 231 having the same configuration is laminated on the phosphor layer 209 so that the first substrates 201 face each other, and UV curable laminate Thus, a wavelength conversion sheet 400 having the configuration of FIG. 5 in which the phosphor layer 209 was wrapped between the protective films 231 of Example 2-1 was produced. In the same manner as in Example 2-1, a wavelength conversion sheet using the protective films of Example 2-2 and Comparative Examples 2-1 and 2-2 was obtained.
<ラミネート強度測定>
 実施例2-1~2-2及び比較例2-1~2-2を使用して作製した4種の波長変換シートの保護フィルムと蛍光体層の間のラミネート強度を、オリエンテック社テンシロン万能試験機RTC-1250を用いて測定した(JIS Z1707準拠)。
<Measurement of laminate strength>
The laminate strength between the protective film and the phosphor layer of the four types of wavelength conversion sheets prepared using Examples 2-1 to 2-2 and Comparative Examples 2-1 to 2-2 is Measurement was performed using a testing machine RTC-1250 (conforming to JIS Z1707).
<保存後の発光状態評価>
 実施例2-1~2-2及び比較例2-1~2-2を使用して作製した4種の波長変換シートを、それぞれ65℃95%RHの環境下にて100時間保存した。保存後の各波長変換シートに、UVランプにて254nmの波長のUV光を当て、目視にて発光状態を観察した。斑点模様やスジが見られたものをB、それらが見られず正常に発光していたものをAと判定した。
<Evaluation of luminous state after storage>
The four wavelength conversion sheets prepared using Examples 2-1 to 2-2 and Comparative Examples 2-1 to 2-2 were each stored for 100 hours in an environment of 65 ° C. and 95% RH. Each wavelength conversion sheet after storage was irradiated with UV light having a wavelength of 254 nm with a UV lamp, and the light emission state was visually observed. A spot pattern or streak was observed as B, and those that were not observed as normal light emission were determined as A.
<保存後の外観評価>
 実施例2-1~2-2及び比較例2-1~2-2を使用して作製した各波長変換シートを65℃95%RHの環境下にて100時間保存した。保存後の各波長変換シートの外観を目視にて確認した。浮きが発生したものをB、発生しなかったものをAと判定した。
<Appearance evaluation after storage>
Each wavelength conversion sheet prepared using Examples 2-1 to 2-2 and Comparative Examples 2-1 to 2-2 was stored for 100 hours in an environment of 65 ° C. and 95% RH. The appearance of each wavelength conversion sheet after storage was visually confirmed. It was determined that B was lifted and A was not generated.
 以上、半値幅WCCの算出値、接触角θの測定値、ラミネート強度の測定値、発光状態評価結果、外観評価結果を表2に示す。 Table 2 shows the calculated value of the half width W CC , the measured value of the contact angle θ P , the measured value of the laminate strength, the light emission state evaluation result, and the appearance evaluation result.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示した結果から明らかなように、C1s波形分離におけるC-C結合に由来するピークPCCの半値幅WCCが1.340~1.560eVの範囲にある実施例1~2の保護フィルムを使用した波長変換シートは、保護フィルムと蛍光体層との間の密着が強く、これにより保存試験後でも良好な発光状態と外観を保つ波長変換シートを得ることができた。 As is clear from the results shown in Table 2, the protection of Examples 1 and 2 in which the half width W CC of the peak PCC derived from the CC bond in the C1s waveform separation is in the range of 1.340 to 1.560 eV. The wavelength conversion sheet using a film has strong adhesion between the protective film and the phosphor layer, and thus a wavelength conversion sheet that maintains a good light emitting state and appearance even after a storage test can be obtained.
 本発明の一側面における保護フィルム及びこの保護フィルムを使用した波長変換シートによれば、長期間にわたって発光効率の低下の少ないバックライトユニットを得ることができ、このバックライトユニットを使用することにより耐久性に優れたディスプレイを製造することが可能である。本発明の別の側面における保護フィルム、及び該保護フィルムを使用した波長変換シートによれば、長期間にわたって発光効率の低下の少ないバックライトユニットを得ることができる。また、該バックライトユニットを使用することで、耐久性に優れたディスプレイを製造することが可能である。 According to the protective film in one aspect of the present invention and the wavelength conversion sheet using the protective film, a backlight unit with little decrease in luminous efficiency can be obtained over a long period of time, and durability can be obtained by using the backlight unit. It is possible to manufacture a display with excellent properties. According to the protective film in another aspect of the present invention and the wavelength conversion sheet using the protective film, it is possible to obtain a backlight unit with little decrease in luminous efficiency over a long period of time. Further, by using the backlight unit, a display having excellent durability can be manufactured.
 1…第一基材、2…バリア層、3…無機薄膜層、4…ガスバリア性被覆層、4t…表面処理領域、10…バリアフィルム、12…コーティング層、14…支持基材、20…保護フィルム、30…蛍光体層、100…波長変換シート、200…バックライトユニット、PINT…C1s波形、ICC…C-C結合に由来するピークの強度、ICOH…C-OH結合に由来するピークの強度、201…第一基材、202…第二基材、203…無機薄膜層、204…ガスバリア性被覆層、205…接着層、206…コーティング層、207…蛍光体、208…封止樹脂、209…蛍光体層、210…処理面、220,221…ガスバリアフィルム、230,231,232…保護フィルム、300,400,500…波長変換シート。 DESCRIPTION OF SYMBOLS 1 ... 1st base material, 2 ... Barrier layer, 3 ... Inorganic thin film layer, 4 ... Gas barrier coating layer, 4t ... Surface treatment area | region, 10 ... Barrier film, 12 ... Coating layer, 14 ... Support base material, 20 ... Protection Film: 30 ... phosphor layer, 100 ... wavelength conversion sheet, 200 ... backlight unit, P INT ... C1s waveform, I CC ... intensity of peak derived from CC bond, I COH ... derived from C-OH bond Peak intensity, 201 ... first substrate, 202 ... second substrate, 203 ... inorganic thin film layer, 204 ... gas barrier coating layer, 205 ... adhesive layer, 206 ... coating layer, 207 ... phosphor, 208 ... sealing Resin, 209... Phosphor layer, 210... Treated surface, 220, 221... Gas barrier film, 230, 231, 232.

Claims (19)

  1.  第一基材及び第一バリア層を含むバリアフィルムを備える、蛍光体層を保護するための保護フィルムであって、
     前記第一バリア層は前記保護フィルムの一方の最表面を構成するガスバリア性被覆層を含み、
     前記ガスバリア性被覆層はポリビニルアルコール及び無機化合物を含有し、
     前記ガスバリア性被覆層は、下記式(1)で表される強度比Dが0.35以上0.77以下となる表面処理領域を前記最表面側に有する、保護フィルム。
       D=ICOH/ICC  ・・・(1)
    [式(1)中、ICOHは前記保護フィルムの前記ガスバリア性被覆層側の面のX線光電子分光スペクトルのC1s波形における炭素-水酸基結合に由来するピークの強度を示し、ICCは前記C1s波形における炭素-炭素結合に由来するピークの強度を示す。]
    A protective film for protecting a phosphor layer, comprising a barrier film comprising a first substrate and a first barrier layer,
    The first barrier layer includes a gas barrier coating layer constituting one outermost surface of the protective film,
    The gas barrier coating layer contains polyvinyl alcohol and an inorganic compound,
    The said gas-barrier coating layer is a protective film which has the surface treatment area | region where the intensity ratio D represented by following formula (1) will be 0.35 or more and 0.77 or less in the said outermost surface side.
    D = I COH / I CC (1)
    [In the formula (1), ICOH represents the intensity of a peak derived from a carbon-hydroxyl bond in the C1s waveform of the X-ray photoelectron spectrum of the surface of the protective film on the gas barrier coating layer side, and I CC represents the C1s. The intensity of the peak derived from the carbon-carbon bond in the waveform is shown. ]
  2.  前記ガスバリア性被覆層の前記表面処理領域の水に対する接触角が28~40度である、請求項1に記載の保護フィルム。 The protective film according to claim 1, wherein a contact angle with respect to water of the surface treatment region of the gas barrier coating layer is 28 to 40 degrees.
  3.  前記バリアフィルムの前記第一基材側に配置されたコーティング層をさらに備える、請求項1又は2に記載の保護フィルム。 The protective film according to claim 1 or 2, further comprising a coating layer disposed on the first substrate side of the barrier film.
  4.  前記コーティング層が、バインダー樹脂、及び、該バインダー樹脂中に分散された微粒子を含有する、請求項3に記載の保護フィルム。 The protective film according to claim 3, wherein the coating layer contains a binder resin and fine particles dispersed in the binder resin.
  5.  前記第一基材と前記コーティング層との間に配置された支持基材をさらに備える、請求項3又は4に記載の保護フィルム。 The protective film according to claim 3 or 4, further comprising a support base disposed between the first base and the coating layer.
  6.  前記無機化合物が金属アルコキシド又はその加水分解物である、請求項1~5のいずれか一項に記載の保護フィルム。 The protective film according to any one of claims 1 to 5, wherein the inorganic compound is a metal alkoxide or a hydrolyzate thereof.
  7.  前記第一バリア層が無機薄膜層をさらに含み、
     前記無機薄膜層が前記第一基材と前記ガスバリア性被覆層との間に配置され、
     前記無機薄膜層の厚さが5~100nmである、請求項1~6のいずれか一項に記載の保護フィルム。
    The first barrier layer further comprises an inorganic thin film layer;
    The inorganic thin film layer is disposed between the first base material and the gas barrier coating layer,
    The protective film according to any one of claims 1 to 6, wherein the inorganic thin film layer has a thickness of 5 to 100 nm.
  8.  前記無機薄膜層が酸化ケイ素及び酸化アルミニウムの少なくとも一方を含有する、請求項7に記載の保護フィルム。 The protective film according to claim 7, wherein the inorganic thin film layer contains at least one of silicon oxide and aluminum oxide.
  9.  請求項1~8のいずれか一項に記載の保護フィルムと、前記保護フィルムの前記ガスバリア性被覆層側に配置された蛍光体層とを備え、前記ガスバリア性被覆層の前記表面処理領域と前記蛍光体層とが接している、波長変換シート。 A protective film according to any one of claims 1 to 8, and a phosphor layer disposed on the gas barrier coating layer side of the protective film, the surface treatment region of the gas barrier coating layer, and the A wavelength conversion sheet in contact with the phosphor layer.
  10.  第一基材及び第一バリア層を含むバリアフィルムを備える、蛍光体層を保護するための保護フィルムであって、
     前記第一基材はポリエチレンテレフタレートフィルムであり、
     前記第一基材の前記第一バリア層と反対側の面はX線光電子分光測定を行ったときに、C1s波形分離におけるC-C結合に由来するピークの半値幅が1.340~1.560eVとなるように処理を施した処理面である、蛍光体層を保護するための保護フィルム。
    A protective film for protecting a phosphor layer, comprising a barrier film comprising a first substrate and a first barrier layer,
    The first substrate is a polyethylene terephthalate film,
    When the surface of the first substrate opposite to the first barrier layer is measured by X-ray photoelectron spectroscopy, the half width of the peak derived from the CC bond in the C1s waveform separation is 1.340-1. A protective film for protecting the phosphor layer, which is a treated surface that has been treated to 560 eV.
  11.  前記第一基材の前記処理面の水に対する接触角が30~65度である、請求項10に記載の保護フィルム。 The protective film according to claim 10, wherein a contact angle of the first substrate with respect to the treated surface with respect to water is 30 to 65 degrees.
  12.  前記第一バリア層は無機薄膜層とガスバリア性被覆層とを含む、請求項10又は11に記載の保護フィルム。 The protective film according to claim 10 or 11, wherein the first barrier layer includes an inorganic thin film layer and a gas barrier coating layer.
  13.  前記無機薄膜層が、酸化珪素、窒化珪素、窒化酸化珪素及び酸化アルミニウムの少なくとも一種を含有する層である、請求項12に記載の保護フィルム。 The protective film according to claim 12, wherein the inorganic thin film layer is a layer containing at least one of silicon oxide, silicon nitride, silicon nitride oxide, and aluminum oxide.
  14.  第二基材をさらに備え、
     前記第二基材が、前記第一バリア層と、アクリル系樹脂、ウレタン系樹脂及びエステル系樹脂のいずれか一種を含有する接着層を介して接着されている、請求項10~13のいずれか一項に記載の保護フィルム。
    Further comprising a second substrate;
    The second base material is bonded to the first barrier layer through an adhesive layer containing any one of an acrylic resin, a urethane resin, and an ester resin. The protective film according to one item.
  15.  第二基材と、
     前記第二基材の一方の面に積層され、少なくとも1層の無機薄膜層を含む第二バリア層とをさらに備え、
     該第二バリア層が、前記第一バリア層と、アクリル系樹脂、ウレタン系樹脂及びエステル系樹脂のいずれか一種を含む接着層を介して接着されている、請求項10~13のいずれか一項に記載の保護フィルム。
    A second substrate;
    A second barrier layer that is laminated on one surface of the second substrate and includes at least one inorganic thin film layer;
    The second barrier layer is bonded to the first barrier layer via an adhesive layer containing any one of acrylic resin, urethane resin, and ester resin. The protective film according to Item.
  16.  前記第二バリア層はガスバリア性被覆層をさらに含む、請求項15に記載の保護フィルム。 The protective film according to claim 15, wherein the second barrier layer further includes a gas barrier coating layer.
  17.  前記第二基材の前記接着層と反対側の面に形成されたコーティング層をさらに備え、
     前記コーティング層は、干渉縞防止機能、反射防止機能及び拡散機能のうちの少なくとも一種の光学的機能を有する、請求項14~16のいずれか一項に記載の保護フィルム。
    A coating layer formed on the surface of the second substrate opposite to the adhesive layer;
    The protective film according to any one of claims 14 to 16, wherein the coating layer has at least one optical function of an interference fringe prevention function, an antireflection function, and a diffusion function.
  18.  前記コーティング層が、バインダー樹脂と、該バインダー樹脂中に分散された微粒子とを含有する、請求項17に記載の保護フィルム。 The protective film according to claim 17, wherein the coating layer contains a binder resin and fine particles dispersed in the binder resin.
  19.  蛍光体層の両面に、請求項10~18のいずれか一項に記載の保護フィルムを、該保護フィルムの前記第一基材の前記処理面と接して備えている、波長変換シート。 A wavelength conversion sheet comprising the protective film according to any one of claims 10 to 18 in contact with the treated surface of the first substrate of the protective film on both surfaces of the phosphor layer.
PCT/JP2016/083853 2015-11-18 2016-11-15 Protective film and wavelength conversion sheet WO2017086319A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017551890A JPWO2017086319A1 (en) 2015-11-18 2016-11-15 Protective film and wavelength conversion sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-225676 2015-11-18
JP2015225676 2015-11-18
JP2016-138590 2016-07-13
JP2016138590 2016-07-13

Publications (1)

Publication Number Publication Date
WO2017086319A1 true WO2017086319A1 (en) 2017-05-26

Family

ID=58718799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083853 WO2017086319A1 (en) 2015-11-18 2016-11-15 Protective film and wavelength conversion sheet

Country Status (2)

Country Link
JP (1) JPWO2017086319A1 (en)
WO (1) WO2017086319A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017448A1 (en) * 2017-07-19 2019-01-24 凸版印刷株式会社 Wavelength conversion sheet and method for manufacturing same
WO2019130582A1 (en) * 2017-12-28 2019-07-04 日立化成株式会社 Laminate, wavelength conversion member, backlight unit, and image display device
US20200230915A1 (en) * 2017-10-05 2020-07-23 Toppan Printing Co., Ltd. Phosphor protection film, wavelength conversion sheet, and light-emitting unit
JPWO2020196607A1 (en) * 2019-03-27 2020-10-01

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013544018A (en) * 2010-11-10 2013-12-09 ナノシス・インク. Quantum dot film, illumination device, and illumination method
JP2015008266A (en) * 2013-05-31 2015-01-15 三菱樹脂株式会社 Method for producing phosphor-containing silicone sheet
JP2015065158A (en) * 2013-08-26 2015-04-09 富士フイルム株式会社 Light conversion member, backlight unit, liquid crystal display device, and method of manufacturing light conversion member
WO2016010116A1 (en) * 2014-07-18 2016-01-21 凸版印刷株式会社 Protective film for wavelength conversion sheet, wavelength conversion sheet and backlight unit
WO2016140340A1 (en) * 2015-03-04 2016-09-09 コニカミノルタ株式会社 Optical film, and optical device in which same is used

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013544018A (en) * 2010-11-10 2013-12-09 ナノシス・インク. Quantum dot film, illumination device, and illumination method
JP2015008266A (en) * 2013-05-31 2015-01-15 三菱樹脂株式会社 Method for producing phosphor-containing silicone sheet
JP2015065158A (en) * 2013-08-26 2015-04-09 富士フイルム株式会社 Light conversion member, backlight unit, liquid crystal display device, and method of manufacturing light conversion member
WO2016010116A1 (en) * 2014-07-18 2016-01-21 凸版印刷株式会社 Protective film for wavelength conversion sheet, wavelength conversion sheet and backlight unit
WO2016140340A1 (en) * 2015-03-04 2016-09-09 コニカミノルタ株式会社 Optical film, and optical device in which same is used

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017448A1 (en) * 2017-07-19 2019-01-24 凸版印刷株式会社 Wavelength conversion sheet and method for manufacturing same
JPWO2019017448A1 (en) * 2017-07-19 2020-05-28 凸版印刷株式会社 Wavelength conversion sheet and manufacturing method thereof
JP7173008B2 (en) 2017-07-19 2022-11-16 凸版印刷株式会社 Method for manufacturing wavelength conversion sheet
US20200230915A1 (en) * 2017-10-05 2020-07-23 Toppan Printing Co., Ltd. Phosphor protection film, wavelength conversion sheet, and light-emitting unit
US11642869B2 (en) * 2017-10-05 2023-05-09 Toppan Printing Co., Ltd. Phosphor protection film, wavelength conversion sheet, and light-emitting unit
WO2019130582A1 (en) * 2017-12-28 2019-07-04 日立化成株式会社 Laminate, wavelength conversion member, backlight unit, and image display device
CN111566521A (en) * 2017-12-28 2020-08-21 日立化成株式会社 Laminate, wavelength conversion member, backlight unit, and image display device
US10960651B2 (en) 2017-12-28 2021-03-30 Showa Denko Materials Co., Ltd. Laminate, wavelength conversion member, backlight unit, and image display device
JPWO2020196607A1 (en) * 2019-03-27 2020-10-01
WO2020196607A1 (en) * 2019-03-27 2020-10-01 富士フイルム株式会社 Functional film and production method for functional film
JP7132431B2 (en) 2019-03-27 2022-09-06 富士フイルム株式会社 Functional film and method for producing functional film

Also Published As

Publication number Publication date
JPWO2017086319A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP5900719B1 (en) Protective film for wavelength conversion sheet, wavelength conversion sheet and backlight unit
CN106133562B (en) Wavelength conversion sheet, backlight unit, and protective film for phosphor
JP6202074B2 (en) Wavelength conversion sheet
JP2016122213A (en) Quantum dot protective film, quantum dot film using the same and backlight unit
WO2017179513A1 (en) Barrier film laminate, method for producing same, wavelength conversion sheet, backlight unit, and electroluminescent light emitting unit
WO2017086319A1 (en) Protective film and wavelength conversion sheet
CN107430303B (en) Quantum dot protective film, and wavelength conversion sheet and backlight unit obtained using same
JP5900720B1 (en) Quantum dot protective film, quantum dot film and backlight unit using the same
WO2017126609A1 (en) Light-emitting body protection film and method for manufacturing same, wavelength conversion sheet, and light emission unit
JP7259755B2 (en) Phosphor protection film, wavelength conversion sheet and light emitting unit
JP6954298B2 (en) Gas barrier film and color conversion member
JP2017100350A (en) Barrier film, wavelength conversion sheet using the same, and display
JP2016213369A (en) Protective film for wavelength conversion sheet, wavelength conversion sheet, and backlight unit
WO2022064895A1 (en) Gas barrier film and wavelength conversion sheet
JP2016218339A (en) Phosphor protective film, wavelength conversion sheet and backlight unit
JP6710908B2 (en) Gas barrier laminate, wavelength conversion sheet and backlight unit
JP2018008421A (en) Protective film and wavelength conversion sheet
JP2019171661A (en) Gas barrier laminated film and wavelength conversion sheet
JP7533221B2 (en) Method for producing wavelength conversion sheet, phosphor protective film, and wavelength conversion sheet with release film
JP6776591B2 (en) Wavelength conversion sheet and backlight unit
JP2017127990A (en) Emitter protective film, wavelength conversion sheet, backlight unit, and electroluminescent light-emitting unit
JP6705156B2 (en) Barrier film laminate, wavelength conversion sheet and backlight unit
JP6690429B2 (en) Barrier film laminate and manufacturing method thereof, wavelength conversion sheet, backlight unit, and electroluminescence light emitting unit
JP2020140082A (en) Wavelength conversion sheet and backlight unit
JP2017189878A (en) Barrier film laminate and method for producing the same, wavelength conversion sheet, backlight unit, and electroluminescent light-emitting unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551890

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866320

Country of ref document: EP

Kind code of ref document: A1