WO2017086215A1 - 蓄電デバイス用バインダー、蓄電デバイス用バインダー組成物 - Google Patents
蓄電デバイス用バインダー、蓄電デバイス用バインダー組成物 Download PDFInfo
- Publication number
- WO2017086215A1 WO2017086215A1 PCT/JP2016/083131 JP2016083131W WO2017086215A1 WO 2017086215 A1 WO2017086215 A1 WO 2017086215A1 JP 2016083131 W JP2016083131 W JP 2016083131W WO 2017086215 A1 WO2017086215 A1 WO 2017086215A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- monomer
- group
- binder
- mass
- meth
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/14—Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1808—C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/26—Esters containing oxygen in addition to the carboxy oxygen
- C08F220/28—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
- C08F220/285—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
- C08F220/286—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety and containing polyethylene oxide in the alcohol moiety, e.g. methoxy polyethylene glycol (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/42—Acrylic resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
- H01M50/434—Ceramics
- H01M50/437—Glass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/451—Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2800/00—Copolymer characterised by the proportions of the comonomers expressed
- C08F2800/20—Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2227—Oxides; Hydroxides of metals of aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
- H01M50/434—Ceramics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a binder for a storage battery device, and a binder composition for a storage battery device.
- a microporous membrane (separator) is provided between positive and negative electrodes in an electricity storage device.
- the separator has a function of preventing direct contact between the positive and negative electrodes, and transmitting ions through the electrolyte held in the fine pores.
- a layer containing an inorganic filler and a resin binder on the surface of the separator substrate (hereinafter referred to as “porous layer” or “filler porous layer” in order to impart various properties to the separator while securing the electrical characteristics and safety of the lithium ion secondary battery
- separator is also proposed in which it is arranged (also referred to as “patent document 1).
- Patent Document 1 discloses a resin composition including a polymer particle formed of a first monomer having an acidic functional group, a second monomer having an amide group, and a third monomer having a polyoxyalkylene group, and an inorganic filler. Is coated on the separator to form a protective layer on the separator (Synthesis Example 6, Formulation Example 6 and Example 16).
- polyalkylene glycol groups are known as functional groups that enhance the ion permeability of solid electrolytes, and were commonly used in organic solvents when incorporated into copolymers for non-aqueous electrolytes.
- emulsion polymerization is generally used to obtain aqueous copolymers.
- the polyalkylene glycol group When a polyalkylene glycol group is incorporated into an aqueous copolymer, the polyalkylene glycol group is hydrophilic, and therefore, when used in a large amount, an aqueous dispersion of particulate copolymer can not be obtained during emulsion polymerization, or water in the drying step There is a problem that it is difficult to remove.
- the separator base material represented by the microporous polyolefin membrane has a property that the separator base material shrinks when heated, it is difficult to thermally dry at a temperature of 100 ° C. or higher as in the formation of the electrode active material layer. It is essential to carry out the removal at low temperature.
- Patent Document 1 a resin containing a polymer particle formed of a first monomer having an acidic functional group, a second monomer having an amide group, and a third monomer having a polyalkylene glycol group, and an inorganic filler It is described that the composition is coated on the negative electrode or separator to form a protective layer on the negative electrode or separator.
- methoxypolyethylene glycol methacrylate (MOEMA) having a molecular weight of about 200 is used as the third monomer constituting the polymer particles, and the average number (n) of repeating units of ethylene glycol units in MOEMA is It is about 2 when calculated based on the molecular weight (Synthesis example 6, Formulation example 6 and Example 16).
- Patent Document 1 function to point-bond the inorganic fillers in the resin composition with each other to form a protective layer for the separator, but the separator described in Patent Document 1 is There is still room for improvement from the viewpoint of achieving both the rate characteristics of the storage device and the safety.
- the present invention provides a binder for a storage battery device and a binder composition for a storage battery device having excellent adhesiveness and ion permeability, and a storage battery device having excellent battery characteristics using the same, such as lithium ion secondary
- the purpose is to provide a battery.
- An ethylenically unsaturated monomer (P) comprising a copolymer having an ethylenically unsaturated monomer (P) having a polyalkylene glycol group as a monomer unit, and having the above polyalkylene glycol group
- the binder for electrical storage devices whose average repeating unit number (n) of a polyalkylene glycol group is three or more.
- the above copolymer comprises an ethylenically unsaturated monomer (P) having 2 to 50% by mass of the above polyalkylene glycol group with respect to 100% by mass of the above copolymer, and the above polyalkylene glycol group
- P ethylenically unsaturated monomer
- the binder for electrical storage devices of item 1 which has a monomer which does not have a polyalkylene glycol group which can be copolymerized with the ethylenically unsaturated monomer (P) which it has as a monomer unit.
- the above copolymer comprises an ethylenically unsaturated monomer (P) having 10 to 50% by mass of the above polyalkylene glycol group with respect to 100% by mass of the above copolymer, and the above polyalkylene glycol group
- P ethylenically unsaturated monomer
- the binder for electrical storage devices of item 1 which has a monomer which does not have a polyalkylene glycol group which can be copolymerized with the ethylenically unsaturated monomer (P) which it has as a monomer unit.
- the above-mentioned monomer having no polyalkylene glycol group is an ethylenically unsaturated monomer (b1) having a carboxyl group, an ethylenically unsaturated monomer (b2) having an amide group, and hydroxyl Item 2 comprising 0.1 to 10% by mass, relative to 100% by mass of the copolymer, of at least one monomer selected from the group consisting of ethylenically unsaturated monomers (b3) having a group Or the binder for electrical storage devices as described in 3.
- the binder for a storage battery device according to any one of Items 2 to 4, wherein the monomer having no polyalkylene glycol group contains a crosslinkable monomer (b4).
- the above-mentioned monomer not having a polyalkylene glycol group contains an ethylenically unsaturated monomer (A) having a cycloalkyl group and a (meth) acrylic acid ester monomer (b5) ,
- the (meth) acrylic acid ester monomer (b5) is a (meth) acrylic acid ester monomer consisting of an alkyl group having 4 or more carbon atoms and a (meth) acryloyloxy group, and having the above-mentioned cycloalkyl group
- the total content ratio of the ethylenically unsaturated monomer (A) and the (meth) acrylic acid ester monomer (b5) is 50 to 98% by mass with respect to 100% by mass of the copolymer.
- a binder for a storage battery device according to any one of to 5.
- the (meth) acrylic acid ester monomer (b5) is a (meth) acrylic acid ester monomer consisting of an alkyl group having 6 or more carbon atoms and a (meth) acryloyloxy group Storage device binder.
- the ethylenically unsaturated monomer (A) having a cycloalkyl group is cyclohexyl acrylate or cyclohexyl methacrylate.
- a slurry for forming a filler porous layer for an electricity storage device comprising water, the filler porous layer-forming binder according to item 9, and an inorganic filler.
- a filler porous layer for a storage battery device comprising the binder for forming a filler porous layer according to item 9 and an inorganic filler.
- a separator for a storage battery comprising the filler porous layer for a storage battery according to Item 11.
- a separator for a storage battery device comprising the filler porous layer for a storage battery device according to item 11 and a polyolefin porous substrate.
- a lithium ion secondary battery including the filler porous layer for an electricity storage device according to Item 11.
- a binder for a storage battery device and a binder composition for a storage battery device which are excellent in adhesion and ion permeability, and a storage battery device having excellent battery characteristics, such as a lithium ion secondary battery, using the same.
- the binder according to the embodiment of the present invention to manufacture an electricity storage device, for example, a lithium ion secondary battery, battery characteristics can be dramatically improved.
- FIG. 1 is a graph showing the peel strength (N / cm) of the coated layer with respect to the number of PEG group repeating units, for a representative separator in the example.
- the binder for a storage battery device comprises a copolymer having, as a monomer unit, an ethylenically unsaturated monomer having a polyalkylene glycol group, and the ethylenically unsaturated monomer having the polyalkylene glycol group
- the average number of repeating units (n) of the polyalkylene glycol group is 3 or more.
- the binder for a storage battery device of the present invention is excellent in adhesiveness and has an effect of reducing the ionic resistance of the binder itself by having the above-mentioned configuration, and as a result, the battery characteristics can be improved. Furthermore, since the amount of binder in the electrode can be increased while suppressing the increase in ion resistance, it is possible to suppress the separation and breakage of the active material layer during battery assembly and the destruction of the active material layer due to charge and discharge, long-term battery characteristics and safety Sex is also effective.
- the binder for a storage battery device of the present invention may be used for a separator of a storage battery device or may be used for an electrode.
- the binder for electrical storage devices is used for the electrode of an electrical storage device, it is also called “the binder for electrodes" in this-application specification.
- the binder for electrodes can be applied to either or both of the positive electrode and the negative electrode.
- the copolymer contained in the binder for a storage battery device of the present invention has an ethylenically unsaturated monomer (P) having a polyalkylene glycol group as a monomer unit.
- ethylenically unsaturated monomer means a monomer having one or more ethylenically unsaturated bonds in the molecule.
- a copolymer having an ethylenically unsaturated monomer having a polyalkylene glycol group (also referred to as “polyoxyalkylene group”) as a monomer unit is abbreviated as polyether unit (hereinafter "PEU") in its structure. ) (Hereinafter also referred to as “PEU-containing thermoplastic copolymer”).
- PEU polyether unit
- the oxygen atom in the polyalkylene glycol group of the PEU-containing thermoplastic copolymer coordinates with lithium (Li) ion to promote the diffusion of Li ion, which is effective in improving the ion permeability of the electrode and the separator.
- the polyalkylene glycol group of the PEU-containing thermoplastic copolymer has high hydration power, when the PEU-containing thermoplastic copolymer is applied as a water-based paint on the base of the separator or on the current collector of the electrode, The rapid drying of the plastic copolymer is suppressed, the coatability of the water-based paint is secured, and the binding strength between the base material and the coating layer tends to increase.
- An ethylenically unsaturated monomer having an average number of repeating units of 3 or more of the polyalkylene glycol group is copolymerizable with a monomer having no polyalkylene glycol group.
- the polyoxyalkylene group is also called an oxyalkylene group, and may be, for example, an oxymethylene group, an oxyethylene group, an oxypropylene group, an oxybutylene group or the like.
- the carbon number of the oxyalkylene group is preferably 1 to 6, more preferably 1 to 3, and still more preferably 2.
- the hydrocarbon group in the polyoxyalkylene group may be linear or branched.
- the average repeating unit number (n) of the polyalkylene glycol group in the ethylenically unsaturated monomer (P) having a polyalkylene glycol group is preferably 3 or more.
- the average number of repeating units (n) is preferably 100 or less, more preferably 30 or less, still more preferably 23 or less, and still more preferably 15 or less, from the viewpoint of achieving both the rate characteristics of the storage device and safety. Eight or less is most preferable.
- the average number of repeating units (n) is 8 or less, the copolymerizability at the time of emulsion polymerization with a monomer having no polyalkylene glycol group tends to be improved.
- the PEU-containing thermoplastic copolymer has, as monomer units, an ethylenically unsaturated monomer (P) having a polyalkylene glycol chain having an average repeating unit number (n) of 3 or more.
- P ethylenically unsaturated monomer
- n average repeating unit number
- the binder for a storage battery device of the present invention can reduce ion resistance as compared to a conventional acrylic binder, and when the binder for a storage battery device of the present invention is used for a filler porous layer or an electrode active material layer, These strengths and dusting properties or softness can be improved.
- the PEU-containing thermoplastic copolymer is a slurry containing an inorganic filler or an electrode active material and the binder for an electricity storage device of the present invention depending on the surface activity of a polyalkylene glycol chain having an average repeating unit number (n) of 3 or more. It is possible to improve the dispersion of As a result, since the uniform inorganic coating layer is formed on the separator substrate, the peeling strength of the coating layer is enhanced, and the binding property between the polyolefin substrate and the inorganic coating layer is improved. It is possible to improve the safety of the storage device.
- the binder for a storage battery device of the present invention when used for an electrode, the active material and the binder are uniformly dispersed, so that the binding property with the current collector is excellent, and the safety and the battery characteristics are improved. Can.
- the binder for a storage battery device of the present invention is presumed to contribute to the balance between the rate characteristics and the safety of the storage battery device.
- ethylenically unsaturated monomer (P) having a polyoxyalkylene group for example, polyalkylene glycol mono (meth) acrylate, polyalkylene glycol di (meth) acrylate, or polyalkylene glycol group and allyl group in the molecule
- monomers having a reactive substituent such as
- (meth) acrylic means “acrylic” and “methacrylic” corresponding thereto
- (meth) acrylate” means “acrylate” and corresponding "methacrylate”
- (Meth) acryloyl” means “acryloyl” and the corresponding "methacryloyl”.
- polyalkylene glycol mono (meth) acrylates examples include polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, polyethylene glycol-polypropylene glycol (meth) acrylate, polyethylene glycol-polybutylene glycol (meth) acrylate, and polypropylene glycol -Polybutylene glycol (meth) acrylate, 2-ethylhexyl polyethylene glycol mono (meth) acrylate, phenoxy diethylene glycol mono (meth) acrylate, phenoxy polyethylene glycol mono (meth) acrylate, methoxy polyethylene glycol (meth) acrylate, methoxy diethylene glycol mono (meth) ) Acrylate, ethoxypolye Reglycol (meth) acrylate, butoxy polyethylene glycol (meth) acrylate, octoxy polyethylene glycol (meth) acrylate, lauroxy polyethylene glycol (meth)
- the reactive surfactant described in the following paragraph also includes one having a polyalkylene glycol group.
- methoxydiethylene glycol mono (meth) acrylate methoxypolyethylene glycol mono (meth) acrylate, butoxypolyethylene glycol mono (meth) acrylate is preferable in that polymerization stability at the time of copolymer preparation is good.
- 2-ethylhexyl polyethylene glycol mono (meth) acrylate and methoxypolypropylene glycol mono (meth) acrylate are preferred.
- polyalkylene glycol di (meth) acrylates examples include polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyethylene glycol-polypropylene glycol di (meth) acrylate and the like.
- Examples of the monomer having a polyalkylene glycol group and an allyl group in the molecule include, for example, polyalkylene glycol monoallyl ether etc. Specifically, polyethylene glycol monoallyl ether, polypropylene glycol monoallyl ether etc. are used You may
- the lower limit value of the ethylenic unsaturated monomer (P) content ratio (copolymerization ratio) in which the number of repeating units (n) of the polyalkylene glycol group is 3 or more is Preferably it is 2 mass% or more with respect to 100 mass% of copolymers, More preferably, it is 5 mass% or more, More preferably, it is 10 mass% or more.
- the upper limit value is preferably 50% by mass or less, more preferably 40% by mass or less, more preferably 30% by mass or less, and more preferably 20% by mass or less.
- the content rate of the ethylenically unsaturated monomer (P) which has a polyalkylene glycol group exists in this range, since the ion permeability of a separator improves, it is preferable. Furthermore, since the dispersibility of the filler and the binder in the slurry is improved, not only can a uniform coating layer with a good coating layer strength be formed, but also the base material and the coating layer by the effect of the polyalkylene glycol group There is also a tendency for the cohesion between When the content of the ethylenically unsaturated monomer (P) having a polyalkylene glycol group is 50% by mass or less, the copolymerizability at the time of emulsion polymerization and the stability at the time of neutralizing the aqueous dispersion are improved. Because it is preferable. If the copolymerization is incomplete, separation may occur depending on the conditions.
- the copolymer in the present embodiment is an ethylenically unsaturated monomer (P: average number of repeating units (n) of polyalkylene glycol chain is 3 or more) from the viewpoint of achieving both the rate characteristics and safety of the storage device. It is preferable to design so as to include, as a copolymerization component, a) and a monomer not having a polyalkylene glycol group.
- the (meth) acrylate monomer which has a cyclic group is mentioned, for example.
- the (meth) acrylate monomer having a cyclic group is preferable from the viewpoint of improving the copolymerizability with the monomer (P).
- the copolymer in the present embodiment preferably has an ethylenically unsaturated monomer (A) having a cycloalkyl group as a monomer unit.
- the ethylenically unsaturated monomer (A) having a cycloalkyl group is a monomer different from the monomer (P).
- ethylenically unsaturated monomer (A) which has a cycloalkyl group What has a cycloalkyl group and has one ethylenically unsaturated bond is mentioned.
- More preferable examples of the ethylenically unsaturated monomer (A) having a cycloalkyl group are, more specifically, from the viewpoint of more effectively and surely solving the problems according to the present invention, cyclohexyl acrylate, cyclohexyl methacrylate, isobol (Meth) acrylic acid ester monomers having a cycloalkyl group such as nyl acrylate, isobornyl methacrylate, adamantyl acrylate, adamantyl methacrylate and the like.
- the ethylenically unsaturated monomer (A) having a cycloalkyl group is more preferably a (meth) acrylic acid ester monomer consisting of a cycloalkyl group and a (meth) acryloyloxy group.
- the number of carbon atoms constituting the alicyclic group of the cycloalkyl group is preferably 4 to 8, more preferably 6 and 7, and particularly preferably 6.
- the cycloalkyl group may or may not have a substituent. Examples of the substituent include a methyl group and a tertiary butyl group.
- cyclohexyl acrylate and cyclohexyl methacrylate are preferable in that they have good copolymerizability at the time of emulsion polymerization with the monomer (P). These may be used alone or in combinations of two or more.
- the above-mentioned copolymer has other monomer (B) other than monomer (P) and monomer (A) as a monomer unit in order to improve various quality and physical properties. May be
- the other monomer (B) is a monomer different from the above monomers (A) and (P), and is a monomer copolymerizable with the monomer (P).
- the other monomer (B) is not particularly limited, and, for example, an ethylenically unsaturated monomer (b1) having a carboxyl group, an ethylenically unsaturated monomer (b2) having an amide group, a hydroxyl group Ethylenically unsaturated monomer (b3) having crosslinkable monomer (b4), (meth) acrylic acid ester monomer (b5), ethylenic unsaturated monomer having cyano group, aromatic group And other ethylenically unsaturated monomers.
- the other monomers (B) may be used alone or in combination of two or more.
- the other monomer (B) may simultaneously belong to two or more of the above-mentioned respective monomers. That is, the other monomer (B) is an ethylenically unsaturated monomer having two or more groups selected from the group consisting of a carboxyl group, an amido group, a hydroxyl group, a cyano group and an aromatic group, It may be a crosslinkable monomer having two or more groups selected from the group consisting of a carboxyl group, an amido group, a hydroxyl group, a cyano group and an aromatic group together with an ethylenically unsaturated bond.
- another monomer (B) contains the ethylenically unsaturated monomer (b1) which has a carboxyl group from a viewpoint of a binding improvement with a filler or an electrode active material.
- the ethylenically unsaturated monomer (b1) having a carboxyl group include monocarboxylic acid monomers such as acrylic acid, methacrylic acid, itaconic acid half ester, maleic acid half ester and fumaric acid half ester And dicarboxylic acid monomers such as itaconic acid, fumaric acid and maleic acid. These may be used alone or in combinations of two or more. Among them, from the same viewpoint, acrylic acid, methacrylic acid and itaconic acid are preferable, and acrylic acid and methacrylic acid are more preferable.
- the other monomer (B) contains an ethylenically unsaturated monomer (b2) having an amide group, from the viewpoint of improving the binding property with the filler and the electrode active material.
- the ethylenically unsaturated monomer (b2) having an amide group is not particularly limited, and examples thereof include acrylamide, methacrylamide, N, N-methylenebisacrylamide, diacetone acrylamide, diacetone methacrylamide, maleic acid amide and the like And maleimide. These may be used alone or in combinations of two or more. Among them, acrylamide and methacrylamide are preferred. The use of acrylamide and / or methacrylamide also tends to improve the bondability between the substrate and the coating layer.
- the other monomer (B) contains an ethylenically unsaturated monomer (b3) having a hydroxyl group from the viewpoint of improving the binding property with the filler and the electrode active material.
- the ethylenically unsaturated monomer (b3) having a hydroxyl group include (meth) acrylates having a hydroxyl group such as hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate and the like. These may be used alone or in combinations of two or more. Among them, preferred are hydroxyethyl acrylate and hydroxyethyl methacrylate. The use of hydroxyethyl acrylate and / or hydroxyethyl methacrylate tends to improve the bondability with the filler and the electrode active material.
- another monomer (B) contains a crosslinkable monomer (b4) from a viewpoint of making the insoluble matter with respect to electrolyte solution into a suitable quantity.
- the crosslinkable monomer (b4) is not particularly limited, but, for example, a monomer having two or more radically polymerizable double bonds, a functional group giving a self-crosslinking structure during or after polymerization The monomer which it has is mentioned. These may be used alone or in combinations of two or more.
- Examples of the monomer having two or more radically polymerizable double bonds include divinyl benzene and polyfunctional (meth) acrylate.
- polyfunctional (meth) acrylates are preferable from the viewpoint of being able to express better resistance to an electrolytic solution even in a small amount.
- the polyfunctional (meth) acrylate may be difunctional (meth) acrylate, trifunctional (meth) acrylate or tetrafunctional (meth) acrylate.
- trimethylolpropane triacrylate and trimethylolpropane trimethacrylate are preferable from the same viewpoint as described above.
- a monomer having a functional group giving a self-crosslinking structure during polymerization or after polymerization for example, an ethylenically unsaturated monomer having an epoxy group, an ethylenic monomer having a methylol group, ethylene having an alkoxymethyl group And unsaturated ethylenically unsaturated monomers having hydrolyzable silyl groups. These may be used alone or in combinations of two or more.
- Examples of the ethylenically unsaturated monomer having an epoxy group include glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, methyl glycidyl acrylate, and methyl glycidyl methacrylate. These may be used alone or in combinations of two or more. Among them, preferred is glycidyl methacrylate.
- Examples of the ethylenically unsaturated monomer having a methylol group include N-methylol acrylamide, N-methylol methacrylamide, dimethylol acrylamide, and dimethylol methacrylamide. These may be used alone or in combinations of two or more.
- Examples of the ethylenically unsaturated monomer having an alkoxymethyl group include N-methoxymethyl acrylamide, N-methoxymethyl methacrylamide, N-butoxymethyl acrylamide, and N-butoxymethyl methacrylamide. These may be used alone or in combinations of two or more.
- Examples of the ethylenically unsaturated monomer having a hydrolyzable silyl group include vinylsilane, ⁇ -acryloxypropyltrimethoxysilane, ⁇ -acryloxypropyltriethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, and ⁇ -Methacryloxypropyl triethoxysilane is mentioned. These may be used alone or in combinations of two or more.
- crosslinkable monomers (b4) polyfunctional (meth) acrylates are particularly preferable in that variation in the degree of crosslinking is small.
- another monomer (B) contains a (meth) acrylic acid ester monomer (b5) from a viewpoint of making the oxidation resistance of the thermoplastic polymer containing this copolymer favorable.
- the (meth) acrylic acid ester monomer (b5) is a monomer different from the monomers (b1) to (b4).
- Examples of the (meth) acrylic acid ester monomer (b5) include (meth) acrylic acid esters having one ethylenically unsaturated bond, and more specifically, methyl acrylate, ethyl acrylate, propyl acrylate Isopropyl acrylate, butyl acrylate, isobutyl acrylate, t-butyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl acrylate, butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate (Meth) monomers having alkyl groups such as n-hexyl methacrylate, 2-ethylhexyl methacrylate and lauryl methacrylate Lilate (more preferably (meth) acrylate consisting
- (meth) acrylic acid ester monomers comprising an alkyl group having 4 or more carbon atoms and a (meth) acryloyloxy group are preferable from the viewpoint of improving the copolymerizability at the time of emulsion polymerization, and having 6 or more carbon atoms
- the (meth) acrylic acid ester monomer which consists of an alkyl group and (meth) acryloyloxy group of these is more preferable.
- methyl methacrylate, butyl acrylate, butyl methacrylate and 2-ethylhexyl acrylate are preferable, butyl acrylate, butyl methacrylate and 2-ethylhexyl acrylate are more preferable, and 2-ethylhexyl acrylate is still more preferable.
- These (meth) acrylic acid ester monomers (b5) may be used alone or in combination of two or more.
- Examples of ethylenically unsaturated monomers having a cyano group include acrylonitrile and methacrylonitrile.
- examples of the ethylenically unsaturated monomer having an aromatic group include styrene, vinyl toluene and ⁇ -methylstyrene. Among them, preferred is styrene.
- an ethylenically unsaturated monomer having a repeating unit number (n) of a polyalkylene glycol group of 3 or more is generally not suitable for emulsion polymerization, but in the present embodiment, repeating of the polyalkylene glycol group is
- repeating of the polyalkylene glycol group is
- the total content of the (meth) acrylic acid ester monomer is preferably based on the mass of the PEU-containing thermoplastic copolymer, from the viewpoint of enhancing the binding property between the current collector and the active material layer. Is 50 to 99.9% by mass, more preferably 60 to 99.9% by mass, still more preferably 70 to 99.9% by mass, and still more preferably 80 to 99.9% by mass. is there.
- the (meth) acrylic acid ester monomer is one corresponding to the (meth) acrylic acid ester monomer among the ethylenically unsaturated monomers (P) having a polyalkylene glycol group, and a cycloalkyl Among the ethylenic unsaturated monomers (A) having a group, those corresponding to (meth) acrylic acid ester monomers and all of (meth) acrylic acid ester monomers (b5) are contained.
- the content ratio of the (meth) acrylic acid ester monomer is in the above range, when the separator or the electrode is used for a non-aqueous electrolytic solution secondary battery, the performance in the above viewpoint can be compatible, and further, The oxidation resistance of the thermoplastic polymer tends to be better.
- the binder for a storage battery comprises, as a monomer having no polyalkylene glycol group, an ethylenically unsaturated monomer (A) having a cycloalkyl group, and a single amount of (meth) acrylic acid ester And the total content of the ethylenically unsaturated monomer (A) having a cycloalkyl group and the (meth) acrylic acid ester monomer (b5) containing the compound (b5) relative to 100% by mass of the copolymer The content is preferably 50 to 98% by mass.
- the (meth) acrylic acid ester monomer (b5) is preferably a (meth) acrylic acid ester monomer consisting of an alkyl group having 4 or more carbon atoms and a (meth) acryloyloxy group, and an alkyl having 6 or more carbon atoms
- a (meth) acrylic acid ester monomer consisting of a group and a (meth) acryloyloxy group is more preferred.
- the content ratio of (b1) in the copolymer is 100% by mass of the copolymer, It is preferably 0.1 to 10% by mass, more preferably 0.1 to 5% by mass, and still more preferably 0.1 to 3% by mass.
- the bondability between the fillers tends to be improved when the total content ratio of the above three types is 0.1% by mass or more, and the dispersion stability of the aqueous dispersion is improved when the content is 5% by mass or less
- the content ratio of the total of (b1), (b2) and (b3) in the copolymer is preferably 0.1 to 10% by mass with respect to 100% by mass of the copolymer. is there. If the total content ratio of the above three types is 0.1% by mass or more, the binding property between the fillers tends to be improved, and if it is 10% by mass or less, the water is removed from the aqueous dispersion. It tends to be easier.
- the content ratio of the crosslinkable monomer (b4) in the copolymer is preferably 100% by mass of the copolymer.
- the amount is 0.01 to 10% by mass, more preferably 0.1 to 5% by mass, and still more preferably 0.1 to 3% by mass.
- the content of the crosslinkable monomer (b4) is 0.01% by mass or more, the electrolytic solution resistance is further improved, and when it is 5% by mass or less, the decrease in binding property between the fillers is further suppressed. it can.
- the glass transition temperature (hereinafter also referred to as “Tg”) of the binder for an electricity storage device of the present invention is preferably ⁇ 50 ° C. or higher, more preferably ⁇ 40 to 10 ° C.
- Tg glass transition temperature
- the heat resistance of the separator including the filler layer and the strength of the electrode active material layer tend to be further improved.
- the glass transition temperature is determined from the DSC curve obtained by differential scanning calorimetry (DSC). Specifically, it is determined by the intersection of a straight line in which the baseline on the low temperature side in the DSC curve is extended to the high temperature side and a tangent at the inflection point of the step change portion of the glass transition.
- DSC differential scanning calorimetry
- glass transition refers to that to which the calorie
- Stepwise change indicates a portion of the DSC curve until the curve moves away from the baseline on the low temperature side to the baseline on the new high temperature side. A combination of step change and peak is also included in step change.
- the “inflection point” indicates a point at which the slope of the DSC curve of the step change portion is maximized.
- the step change portion when the heat generation side is on the upper side, it can also be expressed as a point at which the upward convex curve changes to a downward convex curve.
- Peak refers to the portion of the DSC curve from when the curve leaves the baseline on the cold side and returns to the same baseline again.
- Baseline indicates a DSC curve in a temperature range where no transition and reaction occur in the test piece.
- the glass transition temperature (Tg) of the thermoplastic polymer of the present embodiment can be suitably adjusted, for example, by changing the monomer components used in producing the thermoplastic polymer and the charging ratio of each monomer. That is, for each monomer used for producing a thermoplastic polymer, the Tg of the homopolymer (generally described in, for example, “A Polymers Handbook” (A WILEY-INTERSCIENCE PUBLICATION)) and the compounding ratio of the monomer generally indicated. An outline of the glass transition temperature can be estimated.
- the Tg of a copolymer having a high proportion of monomers such as methyl methacrylate, acrylonitrile, methacrylic acid and the like giving a homopolymer having a Tg of about 100 ° C. becomes high; for example, a homo of a Tg of about -50 ° C.
- Copolymers obtained by copolymerizing monomers such as n-butyl acrylate and 2-ethylhexyl acrylate giving a polymer have a low Tg.
- Tg (K) is the Tg of the copolymer
- Tgi (K) is the Tg of the homopolymer of monomer i
- Wi is the mass fraction of each monomer. It can also be approximated by the formula of FOX represented by ⁇ .
- Tg glass transition temperature of the thermoplastic polymer in the present embodiment, a value measured by the above-mentioned method using DSC is adopted.
- the average particle diameter of the particulate PEU-containing thermoplastic copolymer particles is preferably 30 nm or more, more preferably 100 nm or more.
- the average particle diameter of the particulate PEU-containing thermoplastic copolymer particles is preferably 1000 nm or less, more preferably 800 nm or less, and still more preferably 700 nm or less.
- the average particle diameter of the particulate PEU-containing thermoplastic copolymer particles is 30 nm or more, the ion permeability is unlikely to be reduced, and it is easy to give an electricity storage device with high output characteristics. Furthermore, even when the temperature rise during abnormal heat generation is fast, it is easy to obtain an electricity storage device that exhibits smooth shutdown characteristics and high safety.
- the average particle diameter of the particulate PEU-containing thermoplastic copolymer particles is 800 nm or less, and further, a good binding property is expressed, and the multilayer porous film Heat shrinkage, that is, the safety of the battery is improved.
- the thickness of a coating layer can be flexibly controlled, but when it uses as an electrode binder, drop-off
- the average particle size of the copolymer particles can be measured according to the method described in the following examples.
- thermoplastic copolymer having as the ethylenically unsaturated monomer monomer unit having a polyalkylene glycol group having an average repeating unit number (n) of 3 or more in the binder for a storage battery device of the present invention
- thermoplastic polymers other than PEU-containing thermoplastic copolymers may be blended.
- thermoplastic polymer other than the PEU-containing thermoplastic copolymer is not particularly limited, but a polymer which is insoluble in the electrolyte of the lithium ion secondary battery and is electrochemically stable in the range of use of the lithium ion secondary battery It is preferable to use
- thermoplastic polymers other than PEU-containing thermoplastic copolymers include, for example, polyolefins such as polyethylene and polypropylene; fluorine-containing resins such as polyvinylidene fluoride and polytetrafluoroethylene; vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene Copolymers, fluorine-containing rubbers such as ethylene-tetrafluoroethylene copolymers; styrene-butadiene copolymers and their hydrides, acrylonitrile-butadiene copolymers and their hydrides, acrylonitrile-butadiene-styrene copolymers and their hydrides, methacrylic acid ester-acrylic acid esters Copolymer, styrene-acrylate copolymer, acrylonitrile-acrylate copolymer, ethylene propylene rubber, Rubbers such as polyvinyl alcohol and polyvinyl
- a polymer having a glass transition temperature of less than 20 ° C. for a binder for a storage battery, from the viewpoint of wettability to a microporous polyolefin membrane, bonding between a polyolefin microporous film and a binder for a storage battery, and adhesion with an electrode Is more preferably blended, and from the viewpoint of blocking resistance and ion permeability, it is more preferred that polymers having a glass transition temperature of 20 ° C. or more are also blended.
- the thermoplastic polymer may have at least two glass transition temperatures.
- the thermoplastic polymer may have at least two glass transition temperatures.
- the “core-shell structure” is a polymer in the form of a double structure in which the polymer belonging to the central portion and the polymer belonging to the outer shell portion are different in composition.
- the glass transition temperature of the entire thermoplastic polymer can be controlled. Also, multiple functions can be imparted to the entire thermoplastic polymer.
- PEU-containing thermoplastic copolymer ⁇ Method of Manufacturing Binder for Storage Device> [Method for producing copolymer (PEU-containing thermoplastic copolymer)]
- the PEU-containing thermoplastic copolymers described above can be prepared by known polymerization methods, except using the monomers described above.
- a polymerization method for example, an appropriate method such as solution polymerization, emulsion polymerization, bulk polymerization can be adopted.
- An emulsion polymerization method is preferred for the purpose of obtaining as a particle-shaped dispersion.
- a dispersion system containing the above-mentioned monomer, surfactant, radical polymerization initiator, and other additive components used as needed in an aqueous medium as basic composition components, it comprises the above-mentioned monomers
- a copolymer is obtained by polymerizing the monomer composition.
- a method of making the composition of the monomer composition to be supplied constant throughout the polymerization process, and a morphological composition change of particles of the resin dispersion formed by changing sequentially or continuously in the polymerization process can be used as needed, such as the method of providing When the copolymer is obtained by emulsion polymerization, it may be, for example, in the form of an aqueous dispersion (latex) containing water and a particulate copolymer dispersed in the water.
- the surfactant is a compound having at least one or more hydrophilic groups and one or more lipophilic groups in one molecule.
- the surfactant for example, non-reactive alkyl sulfate, polyoxyethylene alkyl ether sulfate, alkyl benzene sulfonate, alkyl naphthalene sulfonate, alkyl sulfo succinate, alkyl diphenyl ether di sulfonate, naphthalene sulfo Acidic formalin condensate, polyoxyethylene polycyclic phenyl ether sulfate, polyoxyethylene distyrenated phenyl ether sulfate, fatty acid salt, alkyl phosphate, polyoxyethylene alkyl phenyl ether sulfate, etc.
- anionic interface Activator and non-reactive polyoxyethylene alkyl ether, polyoxyalkylene alkyl ether, polyoxyethylene polycyclic phenyl ether, polyoxyethylene disty Fluorinated phenyl ether, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, glycerin fatty acid ester, polyoxyethylene fatty acid ester, polyoxyethylene alkylamine, alkyl alkanolamide, polyoxyethylene alkyl phenyl ether, etc.
- nonionic surfactants Besides these, a so-called reactive surfactant may be used in which an ethylenic double bond is introduced into the chemical structural formula of a surfactant having a hydrophilic group and a lipophilic group.
- the anionic surfactant in the reactive surfactant includes, for example, an ethylenically unsaturated monomer having a sulfonic acid group, a sulfonate group or a sulfuric acid ester group and a salt thereof, and a sulfonic acid group or It is preferable that it is a compound which has the group (ammonium sulfonate group or alkali metal sulfonate group) which is the ammonium salt or alkali metal salt.
- nonionic surfactant in the reactive surfactant for example, ⁇ - [1-[(allyloxy) methyl] -2- (nonylphenoxy) ethyl] - ⁇ -hydroxypolyoxyethylene (eg, Adekaria Soap NE-20, NE-30, NE-40 manufactured by ADEKA Co., Ltd., polyoxyethylene alkylpropenyl phenyl ether (eg, Aqualon RN-10, RN-20, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., RN-30, RN-50, etc.), ⁇ - [2-[(Allyloxy) -1- (alkyloxymethyl) ethyl] - ⁇ -hydroxypolyoxyethylene (for example, Adekaria soap ER manufactured by ADEKA Corporation) -10, and polyoxyethylene polyoxybutylene (3-methyl-3-butenyl) ester.
- Ether for example, Kao Corp. LATEMUL PD-420.
- reactive surfactants preferred are reactive surfactants, more preferred are anionic reactive surfactants, and more preferred are reactive surfactants having a sulfonic acid group.
- the surfactant is preferably used in an amount of 0.1 to 5 parts by mass with respect to 100 parts by mass of the monomer composition.
- the surfactant may be used alone or in combination of two or more.
- radical polymerization initiator radical decomposition is carried out by heat or a reducing substance to initiate addition polymerization of the monomer, and either an inorganic initiator or an organic initiator can be used.
- an inorganic initiator or an organic initiator can be used.
- the radical polymerization initiator a water-soluble or oil-soluble polymerization initiator can be used. Examples of the water-soluble polymerization initiator include peroxodisulfates, peroxides, water-soluble azobis compounds, and peroxide-reducing agent redox systems.
- Peroxodisulfates include, for example, potassium peroxodisulfate (KPS), sodium peroxodisulfate (NPS), and ammonium peroxodisulfate (APS), and peroxides include, for example, hydrogen peroxide, t- And butyl hydroperoxide, t-butylperoxymaleic acid, succinic acid peroxide, and benzoyl peroxide.
- KPS potassium peroxodisulfate
- NPS sodium peroxodisulfate
- APS ammonium peroxodisulfate
- peroxides include, for example, hydrogen peroxide, t- And butyl hydroperoxide, t-butylperoxymaleic acid, succinic acid peroxide, and benzoyl peroxide.
- water-soluble azobis compound include 2,2-azobis (N-hydroxyethyl isobutyramide), 2 And 2-azobis (2-amidinopropane) hydrogen chloride
- peroxide-reducing agent redox systems include sodium and the above peroxides.
- the radical polymerization initiator can be used preferably in an amount of 0.05 to 2 parts by mass with respect to 100 parts by mass of the monomer composition.
- a radical polymerization initiator is used individually by 1 type or in combination of 2 or more types.
- P ethylenically unsaturated monomer having a polyalkylene glycol group
- A ethylenically unsaturated monomer having a cycloalkyl group
- B another monomer
- the dispersion is preferably adjusted to a pH in the range of 5 to 12 in order to maintain long-term dispersion stability. It is preferable to use amines, such as ammonia, sodium hydroxide, potassium hydroxide, and dimethylaminoethanol, for adjustment of pH, and it is more preferable to adjust pH with ammonia (water) or sodium hydroxide.
- amines such as ammonia, sodium hydroxide, potassium hydroxide, and dimethylaminoethanol
- the aqueous dispersion in the present embodiment includes, as particles (copolymer particles) dispersed in water, a copolymer obtained by copolymerizing a monomer composition containing the specific monomer.
- the water dispersion may contain, in addition to water and the copolymer, solvents such as methanol, ethanol and isopropyl alcohol, dispersants, lubricants, thickeners, bactericides and the like.
- the binder composition for electrical storage devices in this invention contains water and the copolymer in this embodiment, and it is more preferable that it is a water dispersion containing water and the copolymer in this embodiment.
- an emulsion polymerization is used to form an aqueous dispersion of the particulate PEU-containing thermoplastic polymer, and the resulting emulsion (aqueous dispersion) of the particulate PEU-containing thermoplastic copolymer is applied as an aqueous latex Good. Since the layer containing the binder for electrical storage devices of this invention can be easily formed by this, it is preferable.
- the binder for a storage battery device of the present invention may be used as a separator for a storage battery device.
- the storage device separator can include a porous substrate and a thermoplastic polymer layer disposed on at least a portion of at least one side of the porous substrate.
- the thermoplastic polymer layer preferably contains the PEU-containing thermoplastic polymer of the present invention.
- the storage device separator may be composed of only the porous substrate and the thermoplastic polymer layer, and may further have a filler porous layer in addition to these.
- the filler porous layer preferably contains the binder for a storage battery device of the present invention as a resin binder.
- the filler porous layer is disposed on one side or both sides of the polyolefin porous substrate.
- the filler porous layer and the thermoplastic polymer layer are disposed on the polyolefin porous substrate, the mutual positional relationship between them is optional, but from the viewpoint of achieving both the rate characteristics and the safety of the electricity storage device, at least The thermoplastic polymer layer may be disposed so as to expose a portion, and is preferably disposed on the filler porous layer.
- the porous substrate may itself be one conventionally used as a separator. It is preferable that the base material is a fine porous membrane having a pore size, which has no electron conductivity, is ion conductive, and has high resistance to an organic solvent.
- a porous membrane for example, a microporous membrane comprising a resin such as a polyolefin (for example, polyethylene, polypropylene, polybutene and polyvinyl chloride), and a mixture or copolymer thereof, polyethylene terephthalate, Microporous membrane containing a resin such as polycycloolefin, polyethersulfone, polyamide, polyimide, polyimide amide, polyaramide, polycycloolefin, nylon, polytetrafluoroethylene, etc. as a main component, woven of polyolefin fibers (woven fabric And polyolefin fiber non-woven fabric, paper, and an aggregate of insulating material particles.
- a resin such as a polyolefin (for example, polyethylene, polypropylene, polybutene and polyvinyl chloride), and a mixture or copolymer thereof, polyethylene terephthalate
- Microporous membrane containing a resin such as polycycloo
- a microporous polyolefin membrane containing a polyolefin resin as a main component is preferable.
- "containing as a main component” means containing more than 50% by mass, preferably 75% by mass or more, more preferably 85% by mass or more, still more preferably 90% by mass or more, still more preferably More preferably, it is 95 mass% or more, especially preferably 98 mass% or more, and 100 mass% may be sufficient.
- the polyolefin resin is not particularly limited, but may be a polyolefin resin used for ordinary extrusion, injection, inflation, blow molding, etc., and ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and Homopolymers and copolymers such as 1-octene, multistage polymers, etc. can be used. Also, polyolefins selected from the group consisting of these homopolymers and copolymers, and multistage polymers can be used alone or in combination.
- polystyrene resin examples include, but are not limited to, for example, low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, ultrahigh molecular weight polyethylene, isotactic polypropylene, atactic polypropylene, ethylene-propylene Random copolymers, polybutene, ethylene propylene rubber and the like can be mentioned.
- a resin mainly composed of high density polyethylene As a material of the polyolefin porous substrate used as a separator for a storage battery device, it is preferable to use a resin mainly composed of high density polyethylene, because it has a low melting point and high strength. Moreover, these polyethylenes may mix 2 or more types for the purpose of providing a softness
- the polymerization catalyst used in the production of these polyethylenes is also not particularly limited, and examples thereof include Ziegler-Natta catalysts, Phillips catalysts and metallocene catalysts.
- a porous film made of a resin composition containing polypropylene and a polyolefin resin other than polypropylene.
- polypropylene is not limited, and may be any of isotactic polypropylene, syndiotactic polypropylene and atactic polypropylene.
- the proportion of polypropylene to the total polyolefin in the polyolefin resin composition is not particularly limited, but is preferably 1 to 35% by mass, more preferably 3 to 20% by mass, from the viewpoint of achieving both heat resistance and a good shutdown function. %, More preferably 4 to 10% by mass.
- the polymerization catalyst is also not particularly limited, and examples thereof include Ziegler-Natta catalysts and metallocene catalysts.
- polyolefin resins other than polypropylene include, but are not limited to, homopolymers or copolymers of olefin hydrocarbons such as ethylene, 1-butene, 4-methyl-1-pentene, 1-hexene and 1-octene.
- polyolefin resins other than polypropylene polyethylene, polybutene, ethylene-propylene random copolymer and the like can be mentioned.
- polyethylene From the viewpoint of shutdown characteristics in which the pores of the polyolefin porous substrate are clogged by heat melting, low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene, ultrahigh molecular weight polyethylene, etc. as polyolefin resins other than polypropylene It is preferred to use polyethylene. Among these, from the viewpoint of strength, it is more preferable to use polyethylene having a density of 0.93 g / cm 3 or more as measured according to JIS K7112.
- the viscosity average molecular weight of the polyolefin resin constituting the polyolefin porous substrate is not particularly limited, but is preferably 30,000 or more and 12,000,000 or less, more preferably 50,000 or more and less than 2,000,000, and still more preferably 100,000. More than 1 million.
- the viscosity average molecular weight is 30,000 or more, the melt tension at the time of melt molding becomes large and the formability becomes good, and it is preferable because it tends to become high strength due to the entanglement of polymers.
- the viscosity average molecular weight is 12,000,000 or less, it becomes easy to melt and knead uniformly, which is preferable because it tends to be excellent in sheet formability, particularly thickness stability.
- the viscosity average molecular weight is less than 1,000,000 because the pores tend to be clogged when the temperature rises and a good shutdown function tends to be obtained.
- a polyolefin having a viscosity average molecular weight of less than 1,000,000 is a mixture of a polyolefin having a viscosity average molecular weight of 2,000,000 and a polyolefin having a viscosity average molecular weight of 270,000 and having a viscosity average molecular weight of less than 1,000,000. You may use.
- the polyolefin porous substrate in the present embodiment can contain any additive.
- additives are not particularly limited, and, for example, polymers other than polyolefins; inorganic particles; antioxidants such as phenol type, phosphorus type, and sulfur type; metal soaps such as calcium stearate and zinc stearate; Agents; light stabilizers; antistatic agents; antifogging agents; color pigments and the like.
- the total content of these additives is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and still more preferably 5 parts by mass or less with respect to 100 parts by mass of the polyolefin resin composition.
- the viscosity average molecular weight (Mv) is calculated according to ASTM-D4020 from the limiting viscosity [135] measured at a measurement temperature of 135 ° C. using decalin as a solvent according to the following equation.
- Polyethylene: [ ⁇ ] 6.77 ⁇ 10 -4 Mv 0.67 (Chiang's formula)
- Polypropylene: [ ⁇ ] 1.10 ⁇ 10 -4 Mv 0.80
- the porosity of the polyolefin porous substrate is not particularly limited, but is preferably 20% or more, more preferably 35% or more, and preferably 90% or less, preferably 80% or less. Setting the porosity to 20% or more is preferable from the viewpoint of securing the permeability of the separator. On the other hand, setting the porosity to 90% or less is preferable from the viewpoint of securing the piercing strength.
- the air permeability of the polyolefin porous substrate is not particularly limited, but is preferably 10 seconds / 100 cc or more, more preferably 50 seconds / 100 cc or more, preferably 1,000 seconds / 100 cc or less, more preferably 500 seconds It is less than / 100 cc. Setting the air permeability to 10 seconds / 100 cc or more is preferable from the viewpoint of suppressing self-discharge of the power storage device. On the other hand, setting the air permeability to 1,000 seconds / 100 cc or less is preferable from the viewpoint of obtaining good charge and discharge characteristics.
- the air permeability is an air resistance measured in accordance with JIS P-8117. The air permeability can be adjusted by changing the stretching temperature and / or the stretching ratio of the porous substrate.
- the average pore diameter of the polyolefin porous substrate is preferably 0.15 ⁇ m or less, more preferably 0.1 ⁇ m or less, and preferably 0.01 ⁇ m or more as the lower limit. Setting the average pore diameter to 0.15 ⁇ m or less is preferable from the viewpoint of suppressing the self discharge of the power storage device and suppressing the capacity decrease.
- the average pore size can be adjusted by, for example, changing the draw ratio at the time of producing the polyolefin porous substrate.
- the puncture strength of the polyolefin porous substrate is not particularly limited, but is preferably 200 g / 20 ⁇ m or more, more preferably 300 g / 20 ⁇ m or more, preferably 2,000 g / 20 ⁇ m or less, more preferably 1,000 g / 20 ⁇ m or less It is. It is preferable that the piercing strength is 200 g / 20 ⁇ m or more from the viewpoint of suppressing the membrane breakage due to the dropped active material and the like at the time of battery winding, and also from the viewpoint of suppressing the concern . On the other hand, a piercing strength of 2,000 g / 20 ⁇ m or less is preferable from the viewpoint of reducing the width contraction due to the relaxation of the orientation during heating. The puncture strength is measured by the method described in the examples below.
- the puncture strength can be adjusted by adjusting the stretching ratio and / or stretching temperature of the polyolefin porous substrate.
- the thickness of the polyolefin porous substrate is not particularly limited, but is preferably 2 ⁇ m or more, more preferably 5 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 60 ⁇ m or less, still more preferably 50 ⁇ m or less. Adjusting the thickness to 2 ⁇ m or more is preferable from the viewpoint of improving the mechanical strength. On the other hand, adjusting the film thickness to 100 ⁇ m or less is preferable because the occupied volume of the separator in the battery is reduced, which tends to be advantageous in increasing the capacity of the battery.
- the filler porous layer contains an inorganic filler and a resin binder.
- the inorganic filler used for the filler porous layer is not particularly limited, but preferred is one having a melting point of 200 ° C. or higher, having high electrical insulation, and being electrochemically stable in the use range of the lithium ion secondary battery .
- the inorganic filler is not particularly limited, but, for example, oxide-based ceramics such as alumina, silica, titania, zirconia, magnesia, ceria, yttria, zinc oxide and iron oxide; nitrides such as silicon nitride, titanium nitride and boron nitride Based ceramics; Silicon carbide, calcium carbonate, magnesium sulfate, aluminum sulfate, aluminum hydroxide, aluminum hydroxide oxide, potassium titanate, talc, kaolinite, dicite, nacrite, halloysite, pyrophyllite, montmorillonite, cericite, mica, Ceramics such as amesite, bentonite, asbestos, zeolite, calcium silicate, magnesium silicate, diatomaceous earth, silica sand, glass fibers, etc. may be mentioned. These may be used alone or in combination of two or more.
- oxide-based ceramics such as alumina, silica, titan
- aluminum oxide compounds such as alumina and aluminum hydroxide oxide
- ion exchange capacities such as kaolinite, dicite, nacrite, halloysite and pyrophyllite Preferred are aluminum silicate compounds having no
- alumina has many crystal forms such as ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, etc., any of them can be suitably used. Among these, ⁇ -alumina is preferable because it is thermally and chemically stable.
- aluminum hydroxide oxide AlO (OH)
- boehmite is more preferable from the viewpoint of preventing an internal short circuit caused by the generation of lithium dendrite.
- particles containing boehmite as a main component as the inorganic filler constituting the porous layer it is possible to realize a very lightweight porous layer while maintaining high permeability, and in addition to the porous film in the thinner porous layer The heat shrinkage at high temperature is suppressed, and the heat resistance tends to be developed.
- synthetic boehmite capable of reducing ionic impurities that adversely affect the properties of the electrochemical device.
- kaolin composed mainly of kaolin mineral is more preferable since it is inexpensive and easily available.
- kaolin wet kaolin and calcined kaolin obtained by calcining the same are known.
- calcined kaolin is particularly preferred.
- Calcined kaolin is particularly preferable from the viewpoint of electrochemical stability because crystal water is released during the calcining treatment and impurities are also removed.
- the average particle size of the inorganic filler is preferably more than 0.01 ⁇ m and not more than 4.0 ⁇ m, more preferably more than 0.2 ⁇ m and not more than 3.5 ⁇ m, and more than 0.4 ⁇ m and not more than 3.0 ⁇ m It is more preferable that it is the following. It is preferable to adjust the average particle diameter of the inorganic filler to the above range from the viewpoint of suppressing the thermal contraction at high temperature even if the thickness of the porous filler layer is thin (for example, 7 ⁇ m or less).
- Examples of the method of adjusting the particle size of the inorganic filler and the distribution thereof include a method of reducing the particle size by pulverizing the inorganic filler using an appropriate pulverizing apparatus such as a ball mill, bead mill, jet mill and the like. .
- an inorganic filler plate shape, scale shape, needle shape, columnar shape, spherical shape, polyhedron shape, lump shape etc. are mentioned, for example. You may use combining the multiple types of the inorganic filler which has these shapes.
- the proportion of the inorganic filler in the porous filler layer can be appropriately determined from the viewpoint of the binding property of the inorganic filler, the permeability of the separator, the heat resistance, and the like.
- the proportion of the inorganic filler in the filler porous layer is preferably 20% by mass or more and less than 100% by mass, more preferably 50% by mass or more and 99.99% by mass or less, still more preferably 80% by mass or more and 99.9% by mass % Or less, particularly preferably 90% by mass or more and 99% by mass or less.
- resin binder As the resin binder, it is preferable to use a resin latex binder (that is, a resin binder in the form of "water-based latex").
- a resin latex binder that is, a resin binder in the form of "water-based latex”
- the separator having the filler porous layer containing the resin binder and the inorganic filler binds the resin binder onto the porous film through the process of applying the resin binder solution on the substrate Compared to the separators, it is difficult to reduce the ion permeability and tends to give a storage device having high output characteristics. Furthermore, an electricity storage device having a separator formed using a resin latex binder tends to exhibit smooth shutdown characteristics and easily obtain high safety even when the temperature rise during abnormal heat generation is fast.
- the binder for a storage battery device of the present invention as a resin binder in the filler porous layer.
- the thickness of the filler porous layer is preferably 0.5 ⁇ m or more from the viewpoint of improving the heat resistance and the insulating property, and preferably 50 ⁇ m or less from the viewpoint of improving the capacity and permeability of the battery.
- the layer density of the filler porous layer is preferably 0.5 g / cm 3 to 3.0 g / cm 3 , and more preferably 0.7 g / cm 3 to 2.0 g / cm 3 .
- the layer density of the filler porous layer is 0.5 g / cm 3 or more, the thermal shrinkage at high temperatures tends to be good, and when it is 3.0 g / cm 3 or less, the air permeability tends to be reduced. It is in.
- the method of coating the coating liquid containing an inorganic filler and a resin binder can be mentioned, for example on the at least single side
- the coating liquid may contain a solvent, a dispersant and the like in order to improve the dispersion stability and the coatability.
- the method for applying the coating liquid to the substrate is not particularly limited as long as the required layer thickness and coating area can be realized.
- a filler raw material containing a resin binder and a polymer base material may be laminated and extruded by a co-extrusion method, or the base material and the porous filler membrane may be separately prepared and then bonded.
- the storage device separator may optionally have a thermoplastic polymer layer in addition to the polyolefin porous substrate and the filler porous layer.
- the thermoplastic polymer layer preferably contains the PEU-containing thermoplastic polymer of the present invention from the viewpoint of improving the adhesion to the separator and reducing the ionic resistance.
- the thermoplastic polymer layer may be disposed on one side or both sides of the polyolefin porous substrate, or on the filler porous layer, and is preferably disposed such that at least a portion of the filler porous layer is exposed.
- the area ratio of the thermoplastic polymer layer to the total area of the side of the porous substrate on which the thermoplastic polymer layer is disposed is 100% or less, 80% or less, 75% or less, or 70%
- the area ratio is preferably 5% or more, 10% or more, or 15% or more.
- Setting the coating area of the thermoplastic polymer layer to 100% or less is preferable from the viewpoint of further suppressing the blockage of the pores of the substrate by the thermoplastic polymer and further improving the permeability of the separator.
- thermoplastic polymer layer is a layer in which the inorganic filler is mixed
- the total area of the thermoplastic polymer and the inorganic filler is 100% to calculate the existing area of the thermoplastic polymer.
- thermoplastic polymer layer When the thermoplastic polymer layer is disposed only on part of the surface of the polyolefin porous substrate and the inorganic filler layer, examples of the disposition pattern of the thermoplastic polymer layer include dots, stripes, grids, stripes, and turtle shells. And random, etc., and combinations thereof.
- the thickness of the thermoplastic polymer layer disposed on the polyolefin porous substrate is preferably 0.01 ⁇ m to 5 ⁇ m per one side of the substrate, more preferably 0.1 ⁇ m to 3 ⁇ m, and 0. More preferably, it is 1 to 1 ⁇ m.
- the thermoplastic polymer layer comprises a thermoplastic polymer.
- the thermoplastic polymer layer may contain preferably 60% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, particularly preferably 98% by mass or more of the thermoplastic polymer based on the total amount thereof. .
- the thermoplastic polymer layer may contain other components in addition to the thermoplastic polymer.
- thermoplastic polymer examples include: polyolefin resins such as polyethylene, polypropylene and ⁇ -polyolefin; fluorine polymers such as polyvinylidene fluoride and polytetrafluoroethylene or copolymers containing these; conjugated dienes such as butadiene and isoprene Diene polymers containing as monomer units or copolymers containing these, or hydrides thereof; Acrylic polymers containing (meth) acrylate etc.
- polyolefin resins such as polyethylene, polypropylene and ⁇ -polyolefin
- fluorine polymers such as polyvinylidene fluoride and polytetrafluoroethylene or copolymers containing these
- conjugated dienes such as butadiene and isoprene Diene polymers containing as monomer units or copolymers containing these, or hydrides thereof
- a diene polymer, an acrylic polymer, or a fluorine-based polymer is preferable from the viewpoint of adhesion to an electrode active material, flexibility, and ion permeability of a polymer.
- the glass transition temperature (Tg) of the thermoplastic polymer is preferably ⁇ 50 ° C. or higher, and more preferably in the range of ⁇ 50 ° C. to 150 ° C. from the viewpoint of adhesion to the electrode and ion permeability. .
- thermoplastic polymer layer from the viewpoint of wettability to the polyolefin microporous membrane, bonding between the polyolefin microporous membrane and the thermoplastic polymer layer, and adhesion to the electrode.
- thermoplastic polymer layer from the viewpoint of wettability to the polyolefin microporous membrane, bonding between the polyolefin microporous membrane and the thermoplastic polymer layer, and adhesion to the electrode.
- polymers having a glass transition temperature of 20 ° C. or more are also blended.
- thermoplastic polymer having at least two glass transition temperatures can be achieved by, but is not limited to, a method of blending two or more types of thermoplastic polymers, a method of using a thermoplastic polymer having a core-shell structure, and the like.
- the core-shell structure is a polymer in the form of a double structure in which the polymer belonging to the central part and the polymer belonging to the outer shell part have different compositions.
- the glass transition temperature of the entire thermoplastic polymer can be controlled. Also, multiple functions can be imparted to the entire thermoplastic polymer.
- thermoplastic copolymer is preferably in the form of particles when the glass transition temperature is room temperature (eg, 20 ° C., 25 ° C., or 30 ° C.) or more from the viewpoint of the blocking inhibition property and the ion permeability of the separator.
- the porosity of the thermoplastic polymer layer disposed on the substrate and the blocking resistance of the separator can be secured.
- the average particle size of the particulate thermoplastic copolymer is preferably 10 nm or more, more preferably 50 nm or more, still more preferably 100 nm or more, particularly preferably 130 nm or more, particularly preferably 150 nm or more, most preferably 200 nm or more.
- 2,000 nm or less is preferable, more preferably 1,500 nm or less, still more preferably 1,000 nm or less, particularly preferably 800 nm or less, particularly preferably 800 nm or less, and most preferably 750 nm or less.
- the average particle diameter of the particulate thermoplastic polymer can be measured according to the method described in the following examples.
- the particulate thermoplastic polymers described above can be prepared by known polymerization methods using the corresponding monomers or comonomers.
- a polymerization method for example, an appropriate method such as solution polymerization, emulsion polymerization, bulk polymerization can be adopted.
- thermoplastic polymer layer can be easily formed by coating, it is preferable to form a particulate thermoplastic polymer by emulsion polymerization, whereby the resulting thermoplastic polymer emulsion is used as an aqueous latex.
- thermoplastic polymer layer may contain only the thermoplastic polymer, or may contain other optional components in addition to the thermoplastic polymer.
- the inorganic filler etc. which were demonstrated above, for example, in order to form a filler porous layer are mentioned.
- the method for producing the porous substrate is not particularly limited, and a known production method can be adopted.
- a method of making porous by extracting the plasticizer, melt-kneading a polyolefin resin composition and high draw A method of making porous by peeling off the polyolefin crystal interface by heat treatment and stretching after extrusion at a ratio, melt-kneading a polyolefin resin composition and an inorganic filler to form on a sheet, then stretching the polyolefin and the inorganic filler by stretching.
- the method of producing the nonwoven fabric or paper as a base material may be a well-known thing.
- a method for producing the same for example, a chemical bonding method in which a web is dipped in a binder and dried to bond between fibers; a heat melting fiber is mixed in the web and a thermal bonding method in which the fibers are partially melted to be bonded between fibers
- a needle-punching method in which a needle with a barb is repeatedly pierced in the web and mechanical entanglement of fibers is carried out;
- the polyolefin resin composition and the plasticizer are melt-kneaded.
- a polyolefin resin and optionally other additives are introduced into a resin-kneading apparatus such as an extruder, kneader, laboplast mill, kneading roll, Banbury mixer, etc., while heating and melting resin components.
- mixing a plasticizer in the ratio of it is preferable to previously knead the polyolefin resin, the other additives and the plasticizer in a predetermined ratio in advance using a Henschel mixer or the like before charging the resin kneader to the resin kneader. More preferably, only a part of the plasticizer is charged in the pre-kneading, and the remaining plasticizer is kneaded while being side fed to the resin kneading apparatus.
- a non-volatile solvent capable of forming a homogeneous solution above the melting point of the polyolefin can be used.
- non-volatile solvents include hydrocarbons such as liquid paraffin and paraffin wax; esters such as dioctyl phthalate and dibutyl phthalate; and higher alcohols such as oleyl alcohol and stearyl alcohol. Of these, liquid paraffin is preferred.
- the ratio of the polyolefin resin composition to the plasticizer is not particularly limited as long as they can be melt-kneaded uniformly and molded into a sheet.
- the mass fraction of the plasticizer in the composition comprising the polyolefin resin composition and the plasticizer is preferably 30 to 80% by mass, more preferably 40 to 70% by mass.
- the mass fraction of the plasticizer in this range it is preferable from the viewpoint that the melt tension at the time of melt molding and the formability of a uniform and fine pore structure are compatible.
- melt-kneaded product is formed into a sheet.
- a melt-kneaded product is extruded into a sheet form through a T die or the like, brought into contact with a heat conductor and cooled to a temperature sufficiently lower than the crystallization temperature of the resin component
- a heat conductor used for cooling and solidification, metal, water, air, plasticizer itself and the like can be used, but a metal roll is preferable because it has high efficiency of heat conduction.
- a sheet orientates, membrane strength increases, and surface smoothness of a sheet is also improved, and is more preferred. It is preferable that it is 400 micrometers-3000 micrometers at the time of extruding to a sheet form from T die
- the sheet-like molded product thus obtained is then preferably stretched.
- stretching process either uniaxial stretching or biaxial stretching can be used suitably.
- Biaxial stretching is preferable from the viewpoint of the strength and the like of the obtained porous substrate.
- the stretching method include methods such as simultaneous biaxial stretching, sequential biaxial stretching, multistage stretching, and multiple stretching. Simultaneous biaxial stretching is preferable from the viewpoint of improvement in puncture strength, uniformity of stretching, and shutdown properties.
- the stretching ratio is preferably in the range of 20 times to 100 times in area ratio, and more preferably in the range of 25 times to 50 times.
- the stretching ratio in each axial direction is preferably in the range of 4 to 10 in the MD direction and 4 to 10 in the TD direction, preferably 5 to 8 in the MD direction and 5 in the TD direction. More preferably, it is in the range of 8 times or more.
- the sheet-like compact obtained as described above may be further rolled.
- the rolling can be carried out by, for example, a press method using a double belt press or the like. Rolling can in particular increase the orientation of the surface part.
- the rolling area magnification is preferably more than 1 and 3 or less, and more preferably more than 1 and 2 or less. By setting the rolling ratio in this range, the membrane strength of the finally obtained porous substrate is increased, and it is preferable in that a uniform porous structure can be formed in the thickness direction of the membrane.
- the plasticizer is removed from the sheet-like molded product to obtain a porous substrate.
- a method of removing a plasticizer the method of immersing a sheet-like molded object in an extraction solvent, extracting a plasticizer, and making it fully dry is mentioned, for example.
- the plasticizer may be extracted either batchwise or continuously.
- extraction solvent it is preferable to use one which is a poor solvent for the polyolefin resin and a good solvent for the plasticizer and has a boiling point lower than the melting point of the polyolefin resin.
- extraction solvents include hydrocarbons such as n-hexane and cyclohexane; halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane; non-chlorinated such as hydrofluoroether and hydrofluorocarbon Halogenated solvents; alcohols such as ethanol and isopropanol; ethers such as diethyl ether and tetrahydrofuran; and ketones such as acetone and methyl ethyl ketone. These extraction solvents may be recovered by distillation or the like and reused.
- heat treatment such as heat setting or thermal relaxation may be performed after the stretching step or after the formation of the porous substrate.
- the porous substrate may be subjected to post-treatments such as hydrophilization treatment with a surfactant or the like, crosslinking treatment with an ionizing radiation or the like.
- the coating liquid can be easily applied thereafter and the adhesion between the polyolefin porous substrate and the filler porous layer or the thermoplastic polymer layer is improved.
- the surface treatment method include corona discharge treatment, plasma treatment, mechanical surface roughening, solvent treatment, acid treatment, and ultraviolet oxidation.
- the filler porous layer is coated on at least one side of the substrate by, for example, applying a coating liquid containing an inorganic filler, a resin binder, and optionally, additional components such as a solvent (for example, water) and a dispersant. Can be placed.
- the resin binder may be synthesized by emulsion polymerization, and the obtained emulsion may be used as it is as a coating liquid.
- the method for applying the coating liquid to the substrate is not particularly limited as long as the required layer thickness and coating area can be realized.
- the coating method for example, gravure coater method, small diameter gravure coater method, reverse roll coater method, transfer roll coater method, kiss coater method, dip coater method, knife coater method, air doctor coater method, blade coater method, rod coater method And squeeze coater method, cast coater method, die coater method, screen printing method, spray coating method, ink jet coating method and the like.
- the gravure coater method is preferable because the degree of freedom of the coating shape is high.
- the filler raw material containing the resin binder and the polymer base material may be laminated and extruded by a co-extrusion method, or the base material and the filler porous membrane may be laminated after being separately produced.
- the method of removing the solvent from the coating film after coating is not limited as long as the substrate and the porous layer are not adversely affected.
- there is a method of drying at a temperature equal to or lower than the melting point of the substrate while fixing the substrate a method of drying under reduced pressure at a low temperature, and the like.
- thermoplastic polymer layer The thermoplastic polymer can be disposed on the substrate, for example, by applying a coating liquid containing a thermoplastic polymer to the substrate.
- a thermoplastic polymer may be synthesized by emulsion polymerization, and the obtained emulsion (water dispersion) may be used as it is as a coating liquid.
- the coating solution preferably contains a poor solvent such as water and a mixed solvent of water and a water-soluble organic medium (for example, methanol or ethanol).
- a method of applying a coating liquid containing a thermoplastic polymer onto a polyolefin porous substrate there is no particular limitation as long as it is a method that can realize a desired coating pattern, a coating thickness, and a coating area. Absent.
- the coating method described above may be used to apply the inorganic filler-containing coating solution.
- the gravure coater method or the spray coating method is preferable from the viewpoint that the degree of freedom of the coating shape of the thermoplastic polymer is high and a preferable area ratio is easily obtained.
- the method for removing the solvent from the coating film after coating is not particularly limited as long as the method does not adversely affect the porous substrate and the polymer layer.
- a method of drying at a temperature lower than its melting point while fixing a polyolefin porous substrate, a method of vacuum drying at a low temperature, or immersing in a poor solvent for a thermoplastic polymer to coagulate the thermoplastic polymer into particles The method etc. which extract a solvent simultaneously are mentioned.
- the air permeability of the electric storage device separator is preferably 10 seconds / 100 cc or more and 650 seconds / 100 cc or less, more preferably 20 seconds / 100 cc or more and 500 seconds / 100 cc or less, still more preferably 30 seconds / 100 cc or more and 450 seconds / 100 cc or less, particularly preferably 50 seconds / 100 cc or more and 400 seconds / 100 cc or less.
- This air permeability like the air permeability of the polyolefin porous substrate, is the air resistance measured according to JIS P-8117.
- the air permeability is 10 seconds / 100 cc or more
- the self-discharge tends to decrease when used as a battery separator, and when 650 seconds / 100 cc or less, good charge / discharge characteristics tend to be obtained.
- the electric storage device separator exhibits high ion permeability when applied to a lithium ion secondary battery by exhibiting such a very high air permeability.
- the final thickness of the separator is preferably 2 ⁇ m or more and 200 ⁇ m or less, more preferably 5 ⁇ m or more and 100 ⁇ m or less, and still more preferably 7 ⁇ m or more and 30 ⁇ m or less.
- the thickness is 2 ⁇ m or more, the mechanical strength tends to be sufficient, and when the thickness is 200 ⁇ m or less, the occupied volume of the separator is reduced, which tends to be advantageous in increasing the capacity of the battery.
- the storage device has a positive electrode, a separator for the storage device, and a negative electrode.
- An electricity storage device of the present invention includes the binder for an electricity storage device of the present invention.
- the configuration other than the inclusion of the binder for an electricity storage device of the present invention may be the same as that of a conventionally known electricity storage device.
- batteries such as non-aqueous electrolyte solution secondary battery, a capacitor, and a capacitor are mentioned.
- the storage device is preferably a battery, more preferably a non-aqueous electrolyte secondary battery, and more preferably a lithium ion secondary battery, from the viewpoint that the benefits of the effects according to the present invention can be obtained more effectively. It is further preferred that Hereinafter, the suitable aspect about the case where an electrical storage device is a non-aqueous electrolyte solution secondary battery is demonstrated.
- a positive electrode in which a positive electrode active material layer containing a positive electrode active material is formed on a positive electrode current collector can be suitably used.
- the positive electrode current collector for example, aluminum foil etc .
- the positive electrode active material for example, lithium-containing composite oxides such as LiCoO 2 , LiNiO 2 , spinel type LiMnO 4 , olivine type LiFePO 4 etc .; it can.
- the positive electrode active material layer may contain, in addition to the positive electrode active material, the binder for an electricity storage device of the present invention, a conductive material, and the like.
- a negative electrode in which a negative electrode active material layer containing a negative electrode active material is formed on a negative electrode current collector can be suitably used.
- the negative electrode current collector for example, copper foil etc .
- the negative electrode active material for example, carbon materials such as graphitic, non-graphitizable carbonaceous, graphitizable carbonaceous, composite carbon etc .; silicon, tin, metallic lithium , Various alloy materials etc. can be mentioned respectively.
- the negative electrode active material layer may contain, in addition to the negative electrode active material, the binder for a storage battery device of the present invention, a conductive material, and the like.
- a storage device separator including the storage device binder of the present invention may be used.
- the non-aqueous electrolytic solution is not particularly limited, but an electrolytic solution in which an electrolyte is dissolved in an organic solvent can be used.
- the organic solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and the like.
- the electrolyte include lithium salts such as LiClO 4 , LiBF 4 and LiPF 6 .
- the method for producing the storage device is not particularly limited. For example, the following method can be illustrated.
- An electric storage device separator is manufactured as an elongated separator having a width of 10 to 500 mm (preferably 80 to 500 mm) and a length of 200 to 4,000 m (preferably 1,000 to 4,000 m), and the separator is used as a positive electrode.
- -Separator-negative electrode-separator or negative electrode-separator-positive electrode-separator stacked in this order and wound into a circular or flat spiral shape to obtain a wound body, and the wound body is housed in a battery can, It can be manufactured by injecting an electrolytic solution.
- a laminate formed of a sheet-like separator and an electrode, or an electrode and a separator folded to form a wound body is placed in a battery container (for example, a film made of aluminum) and manufactured by a method of injecting an electrolyte.
- a separator for a storage battery, a current collector, and an electrode having an active material layer formed on at least one surface of the current collector, a thermoplastic polymer layer on the former separator for a storage battery and a current collector are collected.
- the layers can be stacked and pressed so as to face the active material layer on the body.
- the pressing temperature may be 25 ° C. or more and 120 ° C. or less, or 50 ° C. to 100 ° C.
- the press can be performed using a known press such as a roll press or a surface press as appropriate.
- the lithium ion secondary battery manufactured as described above has a coated layer excellent in heat resistance and strength, and has a separator with reduced ionic resistance, so that it has excellent safety and battery characteristics (especially rate). Characteristic).
- the outermost surface of the separator is provided with a thermoplastic polymer, since it exhibits excellent adhesion to the electrode, peeling between the electrode and the separator associated with charge and discharge is suppressed, and uniform charge and discharge are achieved. Therefore, it is excellent in long-term continuous operation tolerance.
- Second-stage temperature reduction program Temperature reduction at a rate of 110 ° C to 40 ° C per minute. Maintain for 5 minutes after reaching -50 ° C.
- 3rd step temperature rising program Temperature rising to 130 ° C at a rate of 15 ° C per minute from -50 ° C.
- Acquired DSC and DDSC data at the time of the third temperature rise.
- the glass transition temperature is the intersection point of the baseline (a straight line extending the baseline to the high temperature side in the obtained DSC curve) and the tangent at the inflection point (the point where the upward convex curve turns into a downward convex curve) Tg).
- Thickness Cut a sample of 10 cm ⁇ 10 cm from a polyolefin porous substrate or separator, select 9 places (3 points ⁇ 3 points) in a grid, and use a micro thickness gauge (Type Toyo Seiki Co., Ltd. Type KBM) to room temperature The film thickness was measured at 23 ⁇ 2 ° C. The average value of the obtained nine measured values was calculated as the film thickness of the sample. Furthermore, the filler porous layer can be calculated by subtracting the thickness of the polyolefin porous substrate from the thickness of the separator having the filler porous layer.
- Porosity (1-mass / volume / 0.95) x 100 Calculated by
- Air permeability (second / 100 cc) The air permeability was measured according to JIS P-8117 using a Gurley-type air permeability meter G-B2 (trademark) manufactured by Toyo Seiki Co., Ltd. as the air permeability.
- Inorganic filler particle size ( ⁇ m)
- the particle size distribution of the coating liquid containing the inorganic filler is measured using a laser type particle size distribution measuring apparatus (Microtrac MT3300EX manufactured by Nikkiso Co., Ltd.), and the particle size at which the cumulative frequency becomes 50% is the average particle size ( ⁇ m ).
- Thickness of coated layer (10) Thickness of coated layer ( ⁇ m)
- a sample of MD10 cm ⁇ TD 10 cm is cut out from the coated membrane and the microporous polyolefin membrane base, and 9 places (3 points ⁇ 3 points) are selected in a grid, and the film thickness is dial gauge (Ozaki Mfg. PEACOCK No. 25 (registration It measured using trademark (trademark), and made the average value of the measured value of nine places the film thickness (micrometer) of a coating film and a base material. Moreover, the difference of the film thickness of the coating film and base material which were measured in this way was made into the thickness (micrometer) of a coating layer.
- Peeling strength of coated layer (N / cm) A double-sided tape was attached to a slide glass having a width of 26 mm and a length of 76 mm, and a separator was attached thereon so that the coated surface was on the double-sided tape side. Fix slide glass using Force Gauge ZP5N and MX2-500N (product name) manufactured by Imada Co., Ltd., and carry out 180 ° peel test at a peeling speed of 300 mm / min by the method of holding and pulling the separator, peeling The intensity was measured. At this time, the average value of the peeling strength in the peeling test for 40 mm in length performed on said conditions was employ
- the resistance value obtained here is R1.
- the measurement container was disassembled, and the remaining five impregnated samples were stacked and set in the container, reassembled, and the resistance at six sheets was measured under the same conditions.
- the film resistance obtained here is R6.
- the film resistance R ( ⁇ ⁇ cm 2 ) per sample was calculated according to the following formula (1) from the obtained R1 and R6.
- the slurry is coated on one side of a 20 ⁇ m thick aluminum foil serving as a positive electrode current collector using a die coater, dried at 130 ° C. for 3 minutes, and then compression molded using a roll press to obtain a positive electrode.
- the coating amount of the positive electrode active material at this time was 109 g / m 2 .
- the slurry was coated on one side of a 12 ⁇ m thick copper foil serving as a negative electrode current collector with a die coater, dried at 120 ° C. for 3 minutes, and compression molded using a roll press to produce a negative electrode.
- the coating amount of the negative electrode active material at this time was 5.2 g / m 2 .
- the power storage device separator obtained in each Example and Comparative Example was cut into a circle having a diameter of 24 mm, and the positive electrode and the negative electrode having a diameter of 16 mm.
- the negative electrode, the separator, and the positive electrode were stacked in this order so that the positive electrode and the active material surface of the negative electrode face each other, and pressed or heat pressed, and the resultant was housed in a stainless steel container with a lid.
- the container and the lid were insulated, and the container was in contact with the copper foil of the negative electrode, and the lid was in contact with the aluminum foil of the positive electrode.
- the battery was assembled by injecting 0.4 ml of the non-aqueous electrolyte into the container and sealing the container.
- the discharge capacity when discharged to a battery voltage of 3.0 V at a current value of 6 mA was taken as a 1 C discharge capacity (mAh).
- a total of about 3 can be achieved by starting to squeeze the current value from 6 mA while holding 4.2 V. The time was charged.
- the discharge capacity when discharged to a battery voltage of 3.0 V at a current value of 12 mA (about 2.0 C) was taken as a 2 C discharge capacity (mAh).
- the ratio of 2 C discharge capacity to 1 C discharge capacity was calculated, and this value was made into the rate characteristic.
- Rate characteristic (%) (2C discharge capacity / 1C discharge capacity) x 100 Evaluation criteria for rate characteristics (%) were as follows. ⁇ (very good): Rate characteristics are 95% or more. ⁇ (Good): Rate characteristics are 85% or more and less than 95%. X (defect): The rate characteristic is less than 85%.
- the emulsion liquid is 25 mass parts of cyclohexyl methacrylates (It describes with "CHMA” in the table. The following is same.)
- a monomer which comprises a cycloalkyl group containing monomer unit (A) a carboxyl group containing monomer unit ( 1 part by mass of methacrylic acid (denoted as “MAA” in the table. The same applies hereinafter.) 1 part by mass, acrylic acid (denoted as "AA” in the table. the same as the following) 1 part by mass as a monomer constituting b1).
- acrylamide (indicated as "AM” in the table, and the same applies hereinafter) as a monomer constituting the monomer unit (b2) and 2- (2-) as a monomer constituting the hydroxyl group-containing monomer unit (b3) 5 parts by mass of hydroxyethyl methacrylate (denoted as "2HEMA” in the table, and the same applies in the following), and trimethylol propayl as a monomer constituting the crosslinkable monomer unit (b4) Triacrylate (A-TMPT, trade name of Shin-Nakamura Chemical Co., Ltd., in the table, "A-TMPT", hereinafter the same.) 0.5 parts by mass, (meth) acrylic acid ester monomers other than the above 4.9 parts by mass of methyl methacrylate (denoted as "MMA” in the table, hereinafter the same) as a monomer constituting the unit (b5), butyl methacrylate (denoted as "BMA” in the table,
- AM acryl
- the temperature inside the reaction vessel was maintained for 90 minutes while being kept at 80 ° C., and then cooled to room temperature.
- the average particle diameter and the glass transition temperature (Tg) of the copolymer in the obtained aqueous dispersion a1 were measured by the above method. The obtained results are shown in Table 1.
- Examples 1 to 27 and Comparative Examples 2 to 4 water dispersions A1 to A27, a2 to a4 were obtained in substantially the same manner as in Synthesis Example 1 except that the types and blending ratios of the raw materials were changed as shown in Tables 1 to 5.
- ammonia water was added during the preparation of the aqueous dispersions A13 and A22, a phenomenon in which the aqueous dispersion solidified was observed, so the aqueous dispersions A13 and A22 were used without adding ammonia.
- the particle diameter and the glass transition temperature (Tg) of the resulting aqueous dispersions A1 to A27 and a1 to a4 were measured by the above method. The obtained results are shown in Tables 1 to 5.
- the composition of the raw material is on a mass basis.
- the ethylenic unsaturated monomer (P) which has the used polyalkylene glycol group is put together in Table 6.
- Polyolefin porous substrate B1 45 parts by mass of homopolymer high density polyethylene having an Mv of 700,000, 45 parts by mass of homopolymer high density polyethylene having an Mv of 300,000, and 5 parts by mass of homopolymer polypropylene having an Mv of 400,000 Were dry blended using a tumbler blender.
- Example 28 (Separator S1)] 96.0 parts by mass of aluminum hydroxide oxide (average particle diameter: 1.0 ⁇ m), 3.0 parts by mass of binder A1 for an electric storage device, and 1.0 parts by mass of ammonium polycarboxylate aqueous solution (SN Disperse 5468 manufactured by Sannopco) was uniformly dispersed in 100 parts by mass of water to prepare a coating solution. Subsequently, the coating solution was applied to the surface of the polyolefin porous substrate B1 using a gravure coater. Thereafter, it was dried at 60 ° C. to remove water. Thus, a separator S1 was obtained by forming an aluminum hydroxide oxide layer (porous layer of inorganic filler) with a thickness of 4 ⁇ m on the polyolefin porous substrate B1.
- the lithium ion secondary battery was assembled as described above using the obtained separator, and various evaluations were performed. The evaluation results are shown in Tables 8 to 12. Moreover, the graph showing the peeling strength (N / cm) of the coating layer with respect to a representative separator with respect to the PEG group repeating unit number is shown in FIG.
- the slurry is applied on one side of a 20 ⁇ m thick aluminum foil serving as a positive electrode current collector using a die coater, dried at 120 ° C. for 3 minutes, and compression molded using a roll press to obtain a positive electrode. Made.
- the application amount of the positive electrode active material at this time was 109 g / m 2 .
- the slurry was applied to one side of a 12 ⁇ m thick copper foil serving as a negative electrode current collector by a die coater, dried at 120 ° C. for 3 minutes, and compression molded by a roll press to produce a negative electrode.
- the amount of negative electrode active material applied at this time was 5.2 g / m 2 .
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Composite Materials (AREA)
- Cell Separators (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
〔1〕 ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)を単量体単位として有する共重合体を含み、上記ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)のポリアルキレングリコール基の平均繰り返し単位数(n)が3以上である、蓄電デバイス用バインダー。
〔2〕 上記共重合体が、上記共重合体100質量%に対して2~50質量%の上記ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)と、上記ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)と共重合可能な、ポリアルキレングリコール基を有していない単量体と、を単量体単位として有する、項目1に記載の蓄電デバイス用バインダー。
〔3〕 上記共重合体が、上記共重合体100質量%に対して10~50質量%の上記ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)と、上記ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)と共重合可能な、ポリアルキレングリコール基を有していない単量体と、を単量体単位として有する、項目1に記載の蓄電デバイス用バインダー。
〔4〕 上記ポリアルキレングリコール基を有していない単量体が、カルボキシル基を有するエチレン性不飽和単量体(b1)、アミド基を有するエチレン性不飽和単量体(b2)、及びヒドロキシル基を有するエチレン性不飽和単量体(b3)から成る群より選択される少なくとも1種の単量体を、上記共重合体100質量%に対して0.1~10質量%含む、項目2又は3に記載の蓄電デバイス用バインダー。
〔5〕 上記ポリアルキレングリコール基を有していない単量体が、架橋性単量体(b4)を含む、項目2~4のいずれか一項に記載の蓄電デバイス用バインダー。
〔6〕 上記ポリアルキレングリコール基を有していない単量体が、シクロアルキル基を有するエチレン性不飽和単量体(A)と、(メタ)アクリル酸エステル単量体(b5)とを含み、
上記(メタ)アクリル酸エステル単量体(b5)は、炭素数4以上のアルキル基及び(メタ)アクリロイルオキシ基から成る(メタ)アクリル酸エステル単量体であり、かつ
上記シクロアルキル基を有するエチレン性不飽和単量体(A)及び上記(メタ)アクリル酸エステル単量体(b5)の合計含有割合が、上記共重合体100質量%に対して50~98質量%である、項目1~5のいずれか一項に記載の蓄電デバイス用バインダー。
〔7〕 上記(メタ)アクリル酸エステル単量体(b5)が、炭素数6以上のアルキル基及び(メタ)アクリロイルオキシ基から成る(メタ)アクリル酸エステル単量体である、項目6に記載の蓄電デバイス用バインダー。
〔8〕 上記シクロアルキル基を有するエチレン性不飽和単量体(A)が、シクロヘキシルアクリレート又はシクロヘキシルメタクリレートである、項目6又は7に記載の蓄電デバイス用バインダー。
〔9〕 上記蓄電デバイス用バインダーがフィラー多孔層形成用バインダーである、項目1~8のいずれか一項に記載の蓄電デバイス用バインダー。
〔10〕 水と、項目9に記載のフィラー多孔層形成用バインダーと、無機フィラーとを含む、蓄電デバイス用フィラー多孔層形成用スラリー。
〔11〕 項目9に記載のフィラー多孔層形成用バインダーと、無機フィラーとを含む、蓄電デバイス用フィラー多孔層。
〔12〕 項目11に記載の蓄電デバイス用フィラー多孔層を有する、蓄電デバイス用セパレータ。
〔13〕 項目11に記載の蓄電デバイス用フィラー多孔層と、ポリオレフィン多孔性基材とを含む、蓄電デバイス用セパレータ。
〔14〕 項目11に記載の蓄電デバイス用フィラー多孔層を含む、リチウムイオン二次電池。
〔15〕 上記蓄電デバイス用バインダーが電極用バインダーである、項目1~8のいずれか一項に記載の蓄電デバイス用バインダー。
本発明の蓄電デバイス用バインダーは、ポリアルキレングリコール基を有するエチレン性不飽和単量体を単量体単位として有する共重合体を含み、前記ポリアルキレングリコール基を有するエチレン性不飽和単量体のポリアルキレングリコール基の平均繰り返し単位数(n)が3以上である。
本発明の蓄電デバイス用バインダーに含まれる共重合体は、ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)を単量体単位として有する。ここで、「エチレン性不飽和単量体」とは、分子内にエチレン性不飽和結合を1つ以上有する単量体を意味する。
CH2=C(R1)-CO-O-(CH2-CH2-O)n-R2
{式中、R1及びR2は、それぞれ独立に、水素原子又はメチル基であり、かつnは、3>n>1を満たす数である}
で表される化合物等が挙げられる。
1/Tg=W1/Tg1+W2/Tg2+・・・・・・+Wi/Tgi+・・・・・・Wn/Tgn (1)
{式中、Tg(K)はコポリマーのTgであり、Tgi(K)はモノマーiのホモポリマーのTgであり、Wiは各モノマーの質量分率である。}で表されるFOXの式によっても、概算することができる。ただし、本実施形態における熱可塑性ポリマーのガラス転移温度(Tg)としては、上記DSCを用いる方法により測定した値を採用する。
[共重合体(PEU含有熱可塑性コポリマー)の製造方法]
上記で説明したPEU含有熱可塑性コポリマーは、上記で説明したモノマーを使用すること以外は、既知の重合方法によって製造することができる。重合方法としては、例えば、溶液重合、乳化重合、塊状重合等の適宜の方法を採用することができる。
本発明の蓄電デバイス用バインダーは、蓄電デバイス用セパレータに使用してもよい。蓄電デバイス用セパレータは、多孔性基材、及び該多孔性基材の少なくとも片面の少なくとも一部に配置された熱可塑性ポリマー層を含むことができる。熱可塑性ポリマー層は、本発明におけるPEU含有熱可塑性ポリマーを含むことが好ましい。この蓄電デバイス用セパレータは、多孔性基材及び熱可塑性ポリマー層のみから成っていてもよいし、これら以外にフィラー多孔層を更に有していてもよい。フィラー多孔層は、本発明の蓄電デバイス用バインダーを樹脂バインダーとして含むことが好ましい。
多孔性基材は、それ自体が、従来セパレータとして用いられていたものであってもよい。基材としては、電子伝導性がなくイオン伝導性があり、有機溶媒の耐性が高い、孔径の微細な多孔質膜であると好ましい。そのような多孔質膜としては、例えば、ポリオレフィン系(例えば、ポリエチレン、ポリプロピレン、ポリブテン及びポリ塩化ビニル)、及びそれらの混合物又は共重合体等の樹脂を主成分として含む微多孔膜、ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルホン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ポリシクロオレフィン、ナイロン、ポリテトラフルオロエチレン等の樹脂を主成分として含む微多孔膜、ポリオレフィン系の繊維を織ったもの(織布)、ポリオレフィン系の繊維の不織布、紙、並びに、絶縁性物質粒子の集合体が挙げられる。これらの中でも、塗工工程を経てポリマー層を得る場合に塗工液の塗工性に優れ、セパレータの膜厚をより薄くして、電池等の蓄電デバイス内の活物質比率を高めて体積当たりの容量を増大させる観点から、ポリオレフィン系の樹脂を主成分として含むポリオレフィン微多孔膜が好ましい。なお、ここで「主成分として含む」とは、50質量%を超えて含むことを意味し、好ましくは75質量%以上、より好ましくは85質量%以上、更に好ましくは90質量%以上、なおも更に好ましくは95質量%以上、特に好ましくは98質量%以上含み、100質量%であってもよい。
ポリエチレン:[η]=6.77×10-4Mv0.67(Chiangの式)
ポリプロピレン:[η]=1.10×10-4Mv0.80
気孔率=(体積-質量/膜密度)/体積×100
により求めることができる。ここで、例えばポリエチレンから成るポリオレフィン多孔性基材の場合には、膜密度を0.95(g/cm3)と仮定して計算することができる。気孔率は、ポリオレフィン多孔性基材の延伸倍率の変更等により調節可能である。
フィラー多孔層は、無機フィラー及び樹脂バインダーを含む。
フィラー多孔層に使用する無機フィラーとしては、特に限定されないが、200℃以上の融点を持ち、電気絶縁性が高く、かつリチウムイオン二次電池の使用範囲で電気化学的に安定であるものが好ましい。
樹脂バインダーとしては、樹脂ラテックスバインダー(すなわち、「水系ラテックス」の形態の樹脂バインダー)を用いることが好ましい。樹脂バインダーとして樹脂ラテックスバインダーを用いた場合、樹脂バインダー及び無機フィラーを含むフィラー多孔層を具備するセパレータは、樹脂バインダー溶液を基材上に塗工する工程を経て樹脂バインダーを多孔膜上に結着させたセパレータと比較して、イオン透過性が低下し難く、出力特性の高い蓄電デバイスを与える傾向にある。更に、樹脂ラテックスバインダーを用いて形成されたセパレータを有する蓄電デバイスは、異常発熱時の温度上昇が速い場合においても、円滑なシャットダウン特性を示し、高い安全性が得られ易い傾向にある。
蓄電デバイス用セパレータは、所望により、ポリオレフィン多孔性基材及びフィラー多孔層に加えて、熱可塑性ポリマー層を有していてもよい。熱可塑性ポリマー層は、セパレータとの接着性を向上させ、かつイオン抵抗を低下させる観点から、本発明におけるPEU含有熱可塑性ポリマーを含有することが好ましい。熱可塑性ポリマー層は、ポリオレフィン多孔性基材の片面若しくは両面上に、又はフィラー多孔層上に配置されてよく、フィラー多孔層の少なくとも一部が露出するように配置されていても好ましい。
熱可塑性ポリマー層は、熱可塑性ポリマーを含む。熱可塑性ポリマー層は、その全量に対して、好ましくは60質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上、特に好ましくは98質量%以上の熱可塑性ポリマーを含んでよい。熱可塑性ポリマー層は、熱可塑性ポリマーに加えて、その他の成分を含んでもよい。
熱可塑性ポリマー層は、熱可塑性ポリマーのみを含有していてもよいし、熱可塑性ポリマーに加えて、これ以外の任意成分を含んでいてもよい。任意成分としては、例えば、フィラー多孔層を形成するために上記で説明された無機フィラー等が挙げられる。
[多孔性基材の製造方法]
多孔性基材を製造する方法は、特に限定されず、公知の製造方法を採用することができる。例えば、ポリオレフィン樹脂組成物と可塑剤とを溶融混練してシート状に成形後、場合により延伸した後、可塑剤を抽出することにより多孔化させる方法、ポリオレフィン樹脂組成物を溶融混練して高ドロー比で押出した後、熱処理と延伸によってポリオレフィン結晶界面を剥離させることにより多孔化させる方法、ポリオレフィン樹脂組成物と無機充填材とを溶融混練してシート上に成形後、延伸によってポリオレフィンと無機充填材との界面を剥離させることにより多孔化させる方法、ポリオレフィン樹脂組成物を溶解後、ポリオレフィンに対する貧溶媒に浸漬させポリオレフィンを凝固させると同時に溶剤を除去することにより多孔化させる方法等が挙げられる。
フィラー多孔層は、例えば、無機フィラー、樹脂バインダー、及び所望により、溶剤(例えば水)、分散剤等の追加成分を含む塗工液を基材の少なくとも片面に塗工することにより、基材上に配置することができる。樹脂バインダーを乳化重合によって合成し、得られたエマルジョンをそのまま塗工液として使用してもよい。
熱可塑性ポリマーは、例えば、熱可塑性ポリマーを含む塗工液を基材に塗工することにより基材上に配置されることができる。熱可塑性ポリマーを乳化重合によって合成し、得られたエマルジョン(水分散体)をそのまま塗工液として使用してもよい。塗工液は、水、水と水溶性有機媒体(例えば、メタノール又はエタノール)の混合溶媒等の貧溶媒を含むことが好ましい。
蓄電デバイス用セパレータの透気度は、10秒/100cc以上650秒/100cc以下であることが好ましく、より好ましくは20秒/100cc以上500秒/100cc以下、さらに好ましくは30秒/100cc以上450秒/100cc以下、特に好ましくは50秒/100cc以上400秒/100cc以下である。この透気度は、ポリオレフィン多孔性基材の透気度と同じく、JIS P-8117に準拠して測定される透気抵抗度である。
蓄電デバイスは、一般に、正極、蓄電デバイス用セパレータ、及び負極を有する。本発明の蓄電デバイスは、本発明の蓄電デバイス用バインダーを含む。本発明の蓄電デバイス用バインダーを含むこと以外の構成は、従来知られている蓄電デバイスと同様であってもよい。蓄電デバイスとしては、特に限定されないが、例えば、非水系電解液二次電池等の電池、コンデンサー及びキャパシタが挙げられる。それらの中でも、本発明による作用効果による利益がより有効に得られる観点から、蓄電デバイスは、電池であることが好ましく、非水系電解液二次電池であることがより好ましく、リチウムイオン二次電池であることが更に好ましい。以下、蓄電デバイスが非水系電解液二次電池である場合についての好適な態様について説明する。
(1)固形分
得られた共重合体の水分散体をアルミ皿上に約1g精秤し、このとき量り取った水分散体の質量を(a)gとした。それを、130℃の熱風乾燥機で1時間乾燥し、乾燥後の共重合体の乾燥質量を(b)gとした。下記式により固形分を算出した。
固形分=(b)/(a)×100 [%]
ポリマー粒子の平均粒径は、粒子径測定装置(日機装株式会社製、Microtrac UPA150)を使用し、測定した。測定条件としては、ローディングインデックス=0.15~0.3、測定時間300秒とし、得られたデータにおける50%粒子径の数値を粒子径として記載した。
共重合体を含む水分散体(固形分=38~42質量%、pH=9.0)を、アルミ皿に適量取り、130℃の熱風乾燥機で30分間乾燥した。乾燥後の乾燥皮膜試料約17mgを測定用アルミ容器に詰め、DSC測定装置(島津製作所社製、DSC6220)にて窒素雰囲気下におけるDSC曲線及びDDSC曲線を得た。測定条件は下記の通りとした。
1段目昇温プログラム:70℃スタート、毎分15℃の割合で昇温。110℃に到達後5分間維持。
2段目降温プログラム:110℃から毎分40℃の割合で降温。-50℃に到達後5分間維持。
3段目昇温プログラム:-50℃から毎分15℃の割合で130℃まで昇温。この3段目の昇温時にDSC及びDDSCのデータを取得。
ベースライン(得られたDSC曲線におけるベースラインを高温側に延長した直線)と、変曲点(上に凸の曲線が下に凸の曲線に変わる点)における接線との交点をガラス転移温度(Tg)とした。
ASRM-D4020に準拠して、デカリン溶剤中、135℃における極限粘度[η]を求めた。この[η]値を用いて、下記数式の関係から粘度平均分子量Mvを算出した。
ポリエチレンの場合:[η]=0.00068×Mv0.67
ポリプロピレンの場合:[η]=1.10×Mv0.80
ポリオレフィン多孔性基材又はセパレータから10cm×10cm角の試料を切り取り、格子状に9箇所(3点×3点)を選んで、微小測厚器(株式会社東洋精機製作所 タイプKBM)を用いて室温23±2℃で膜厚を測定した。得られた9箇所の測定値の平均値を試料の膜厚として算出した。さらに、フィラー多孔層を有するセパレータの厚さからポリオレフィン多孔性基材の厚さを引くことによりフィラー多孔層を算出することができる。
ポリオレフィン多孔性基材から10cm×10cm角のサンプルを切り取り、その体積(cm3)及び質量(g)を求めた。これらの値を用い、該多孔性基材の密度を0.95(g/cm3)として、気孔率を下記数式:
気孔率(%)=(1-質量/体積/0.95)×100
により計算した。
JIS P-8117に準拠し、東洋精器(株)製のガーレー式透気度計G-B2(商標)により測定した透気抵抗度を透気度とした。
カトーテック製のハンディー圧縮試験器KES-G5(商標)を用いて、開口部の直径11.3mmの試料ホルダーでポリオレフィン多孔性基材を固定した。次に、固定された多孔性基材の中央部を、先端の曲率半径0.5mmの針を用いて、突刺速度2mm/秒で、25℃雰囲気下において突刺試験を行うことにより、最大突刺荷重として突刺強度(g)を得た。
無機フィラーを含む塗工液について、レーザー式粒度分布測定装置(日機装(株)製マイクロトラックMT3300EX)を用いて粒径分布を測定し、累積頻度が50%となる粒径を平均粒径(μm)とした。
塗工膜膜及びポリオレフィン微多孔膜基材からMD10cm×TD10cmのサンプルを切り出し、格子状に9箇所(3点×3点)を選んで、膜厚をダイヤルゲージ(尾崎製作所PEACOCK No,25(登録商標))を用いて測定し、9箇所の測定値の平均値を塗工膜及び基材の膜厚(μm)とした。また、このように測定された塗工膜及び基材の膜厚の差を塗工層の厚み(μm)とした。
幅26mm、長さ76mmのスライドガラスに両面テープを張り付け、その上に塗工面が両面テープ側にくるようにセパレータを張り付けた。(株)イマダ製のフォースゲージZP5N及びMX2-500N(製品名)を用いて、スライドガラスを固定し、セパレータを把持して引っ張る方式によって剥離速度300mm/分にて180°剥離試験を行い、剥離強度を測定した。このとき、上記の条件で行った長さ40mm分の剥離試験における剥離強度の平均値を剥離強度として採用し、以下の基準で評価した。
◎(著しく良好):剥離強度が2.0N/cm以上
○(良好):剥離強度が1.0N/cm以上2.0N/cm未満
△(許容):剥離強度が0.45N/cm以上1.0N/cm未満
×(不良):剥離強度が0.45N/cm未満
22mmφに切り出した測定サンプル6枚を、電解液(1M 過塩素酸リチウム プロピレンカーボネート/ジメチルカーボネート=1/1)に十分に浸し、そのうちの1枚を蓋付きステンレス金属製容器に収容した。容器と蓋とはテフロン(登録商標)パッキン及び15.95mmφのテフロン(登録商標)ガイドによって直接接触することなく絶縁されており、SUS製の電極抑えによってのみ接していた。蓋はトルクレンチ(締め付けトルク:0.8Nm)を使用して閉めた。日置電機製「3522-50 LCRハイテスター」を用いて、周波数100Hz、開放電圧0.01Vの条件下、-30℃の恒温槽内に測定セルを設置して測定した。ここで得られた抵抗値をR1とする。次に、測定容器を分解し、含浸させていた残りのサンプル5枚を容器内に重ねてセットし、再度組立てた後、同様の条件にて、6枚での抵抗を測定した。ここで得られた膜抵抗をR6とする。得られたR1及びR6から下記式(1)に従って、サンプル1枚あたりの膜抵抗R(Ω・cm2)を算出した。
R=(R6-R1)/5 (1)
式より得られたセパレータの交流電気抵抗(Ω/cm2)を20μm膜厚に換算した抵抗値として算出し、塗工前の基材の交流電気抵抗Raと塗工後の交流電気抵抗Rbから下記の式(2)に従って抵抗上昇率を求めた。
抵抗上昇率(%)={(Rb-Ra)/Ra}×100 (2)
抵抗上昇率を以下の評価基準に従ってランク分けした。
◎(著しく良好):抵抗上昇率が50%未満
○(良好):抵抗上昇率が50%以上100%未満
×(不良):抵抗上昇率が100%以上
a.正極の作製
正極活物質としてニッケル、マンガン、コバルト複合酸化物(NMC)(Ni:Mn:Co=1:1:1(元素比)、密度4.70g/cm3)を90.4質量%、導電助材としてグラファイト粉末(KS6)(密度2.26g/cm3、数平均粒子径6.5μm)を1.6質量%及びアセチレンブラック粉末(AB)(密度1.95g/cm3、数平均粒子径48nm)を3.8質量%、並びにバインダーとしてポリフッ化ビニリデン(PVDF)(密度1.75g/cm3)を4.2質量%の比率で混合し、これらをN-メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを、正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターを用いて塗工し、130℃において3分間乾燥した後、ロールプレス機を用いて圧縮成形することにより、正極を作製した。この時の正極活物質塗工量は109g/m2であった。
負極活物質としてグラファイト粉末A(密度2.23g/cm3、数平均粒子径12.7μm)を87.6質量%及びグラファイト粉末B(密度2.27g/cm3、数平均粒子径6.5μm)を9.7質量%、並びにバインダーとしてカルボキシメチルセルロースのアンモニウム塩1.4質量%(固形分換算)(固形分濃度1.83質量%水溶液)及びジエンゴム系ラテックス1.7質量%(固形分換算)(固形分濃度40質量%水溶液)を精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗工し、120℃において3分間乾燥した後、ロールプレス機で圧縮成形することにより、負極を作製した。この時の負極活物質塗工量は5.2g/m2であった。
エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPF6を濃度1.0mol/Lとなるように溶解させることにより、非水電解液を調製した。
各実施例及び比較例で得られた蓄電デバイス用セパレータを24mmφ、正極及び負極をそれぞれ16mmφの円形に切り出した。正極と負極の活物質面とが対向するように、負極、セパレータ、正極の順に重ね、プレス又はヒートプレスをして、蓋付きステンレス金属製容器に収容した。容器と蓋とは絶縁されており、容器は負極の銅箔と、蓋は正極のアルミニウム箔と、それぞれ接していた。この容器内に前記非水電解液を0.4ml注入して密閉することにより、電池を組み立てた。
d.で組み立てた簡易電池を、25℃において、電流値3mA(約0.5C)で電池電圧4.2Vまで充電した後、4.2Vを保持するようにして電流値を3mAから絞り始めるという方法により、電池作成後の最初の充電を合計約6時間行った。その後、電流値3mAで電池電圧3.0Vまで放電した。
次に、25℃において、電流値6mA(約1.0C)で電池電圧4.2Vまで充電した後、4.2Vを保持するようにして電流値を6mAから絞り始めるという方法により、合計約3時間充電を行った。その後、電流値6mAで電池電圧3.0Vまで放電した時の放電容量を1C放電容量(mAh)とした。
次に、25℃において、電流値6mA(約1.0C)で電池電圧4.2Vまで充電した後、4.2Vを保持するようにして電流値を6mAから絞り始めるという方法により、合計約3時間充電を行った。その後、電流値12mA(約2.0C)で電池電圧3.0Vまで放電した時の放電容量を2C放電容量(mAh)とした。
そして、1C放電容量に対する2C放電容量の割合を算出し、この値をレート特性とした。
レート特性(%)=(2C放電容量/1C放電容量)×100
レート特性(%)の評価基準は以下のとおりとした。
◎(著しく良好):レート特性が95%以上である。
○(良好):レート特性が85%以上95%未満である。
×(不良):レート特性が85%未満である。
[比較例1(水分散体a1)]
撹拌機、還流冷却器、滴下槽及び温度計を取りつけた反応容器に、イオン交換水70.4質量部と、乳化剤として「アクアロンKH1025」(登録商標、第一工業製薬株式会社製25%水溶液、表中「KH1025」と表記。以下同様。)0.5質量部と、「アデカリアソープSR1025」(登録商標、株式会社ADEKA製25%水溶液、表中「SR1025」と表記。以下同様。)0.5質量部とを投入した。次いで、反応容器内部の温度を80℃に昇温し、80℃の温度を保ったまま、過硫酸アンモニウムの2%水溶液(表中「APS(aq)と表記。以下同様。」)を7.5質量部添加した。過硫酸アンモニウム水溶液を添加終了した5分後に、乳化液を滴下槽から反応容器に150分かけて滴下した。
原材料の種類及び配合比を表1~表5に示すように変更した以外は、おおむね合成例1と同様にして、水分散体A1~A27、a2~a4を得た。
水分散体A13及びA22の調製の際、アンモニア水を加えると、水分散体が固化する現象が見られたので、水分散体A13及びA22はアンモニアを加えず使用した。
(乳化剤)
KH1025:アクアロンKH1025、商品名、第一工業製薬株式会社製、25質量%水溶液
SR1025:アデカリアソープSR1025、商品名、株式会社ADEKA製、25質量%水溶液、
NaSS:p-スチレンスルホン酸ナトリウム
(開始剤)
APS:過硫酸アンモニウム(2質量%水溶液)
(中和剤)
AW:水酸化アンモニウム
(単量体)
シクロアルキル基含有単量体(A)
CHMA:シクロヘキシルメタクリレート
カルボキシル基含有単量体(b1)
MAA:メタクリル酸
AA:アクリル酸
アミド基含有単量体(b2)
AM:アクリルアミド
ヒドロキシル基含有単量体(b3)
HEMA:メタクリル酸2-ヒドロキシエチル
架橋性単量体(b4)
GMA:メタクリル酸グリシジル
A-TMPT:トリメチロールプロパントリアクリレート
MAPTMS:メタクリルオキシプロピルトリメトキシシラン
アクリル酸エステル単量体(b5)
MMA:メタクリル酸メチル
BMA:ブチルメタクリレート
BA:アクリル酸n-ブチル
2EHA:2-エチルヘキシルアクリレート
[ポリオレフィン多孔性基材B1]
Mvが70万であるホモポリマーの高密度ポリエチレンを45質量部と、Mvが30万であるホモポリマーの高密度ポリエチレンを45質量部と、Mvが40万であるホモポリマーのポリプロピレン5質量部とを、タンブラーブレンダーを用いてドライブレンドした。得られたポリオレフィン混合物99質量部に酸化防止剤としてテトラキス-[メチレン-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタンを1質量部添加し、再度タンブラーブレンダーを用いてドライブレンドすることにより、混合物を得た。得られた混合物を、窒素雰囲気下で二軸押出機へフィーダーにより供給した。また、流動パラフィン(37.78℃における動粘度7.59×10-5m2/s)を押出機シリンダーにプランジャーポンプにより注入した。押し出される全混合物中の、流動パラフィンの割合が65質量部、及びポリマー濃度が35質量部となるように、フィーダー及びポンプの運転条件を調整した。
[実施例28(セパレータS1)]
水酸化酸化アルミニウム(平均粒径1.0μm)96.0質量部、蓄電デバイス用バインダーA1を3.0質量部、及びポリカルボン酸アンモニウム水溶液(サンノプコ社製 SNディスパーサント5468)1.0質量部を100質量部の水に均一に分散させて塗布液を調製した。続いて、その塗布液を、ポリオレフィン多孔性基材B1の表面にグラビアコーターを用いて塗布した。その後、60℃において乾燥して水を除去した。このようにして、ポリオレフィン多孔性基材B1上に水酸化酸化アルミニウム層(無機フィラーの多孔層)を厚さ4μmで形成することにより、セパレータS1を得た。
S1と同様の方法で、表8~表12に従ってセパレータS2~S46を作製した。セパレータS13、S22及びS23は、セパレータの作製後に、グラビア塗工機の液受け部分にゼリー状の分離物が確認された。
[実施例67]
(正極の製造例)
正極活物質としてニッケル、マンガン、コバルト複合酸化物(NMC)(Ni:Mn:Co=1:1:1(元素比)、密度4.70g/cm3)を90.4質量%、導電助材としてグラファイト粉末(KS6)(密度2.26g/cm3、数平均粒子径6.5μm)を1.6質量%及びアセチレンブラック粉末(AB)(密度1.95g/cm3、数平均粒子径48nm)を3.8質量%、並びにバインダーとして水分散体A8を4.2質量%の比率で水中で混合しスラリーを調製した。このスラリーを、正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターを用いて塗布し、120℃において3分間乾燥した後、ロールプレス機を用いて圧縮成形することにより、正極を作製した。この時の正極活物質塗布量は109g/m2であった。
負極活物質としてグラファイト粉末A(密度2.23g/cm3、数平均粒子径12.7μm)を87.6質量%及びグラファイト粉末B(密度2.27g/cm3、数平均粒子径6.5μm)を9.7質量%、並びにバインダーとして、カルボキシメチルセルロースのアンモニウム塩1.4質量%(固形分換算)(固形分濃度1.83質量%水溶液)及び水分散体A8を1.7質量%(固形分換算)(固形分濃度40質量%水溶液)を精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗布し、120℃において3分間乾燥した後、ロールプレス機で圧縮成形することにより、負極を作製した。この時の負極活物質塗布量は5.2g/m2であった。
上述のようにして製造した正極及び負極と、セパレータとして実施例29で作製したセパレータS2を用いてリチウムイオン二次電池を組み立て、各種の評価を行なった。評価結果は表13に示す。
Claims (15)
- ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)を単量体単位として有する共重合体を含み、前記ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)のポリアルキレングリコール基の平均繰り返し単位数(n)が3以上である、蓄電デバイス用バインダー。
- 前記共重合体が、前記共重合体100質量%に対して2~50質量%の前記ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)と、前記ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)と共重合可能な、ポリアルキレングリコール基を有していない単量体と、を単量体単位として有する、請求項1に記載の蓄電デバイス用バインダー。
- 前記共重合体が、前記共重合体100質量%に対して10~50質量%の前記ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)と、前記ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)と共重合可能な、ポリアルキレングリコール基を有していない単量体と、を単量体単位として有する、請求項1に記載の蓄電デバイス用バインダー。
- 前記ポリアルキレングリコール基を有していない単量体が、カルボキシル基を有するエチレン性不飽和単量体(b1)、アミド基を有するエチレン性不飽和単量体(b2)、及びヒドロキシル基を有するエチレン性不飽和単量体(b3)から成る群より選択される少なくとも1種の単量体を、前記共重合体100質量%に対して0.1~10質量%含む、請求項2又は3に記載の蓄電デバイス用バインダー。
- 前記ポリアルキレングリコール基を有していない単量体が、架橋性単量体(b4)を含む、請求項2~4のいずれか一項に記載の蓄電デバイス用バインダー。
- 前記ポリアルキレングリコール基を有していない単量体が、シクロアルキル基を有するエチレン性不飽和単量体(A)と、(メタ)アクリル酸エステル単量体(b5)とを含み、
前記(メタ)アクリル酸エステル単量体(b5)は、炭素数4以上のアルキル基及び(メタ)アクリロイルオキシ基から成る(メタ)アクリル酸エステル単量体であり、かつ
前記シクロアルキル基を有するエチレン性不飽和単量体(A)及び前記(メタ)アクリル酸エステル単量体(b5)の合計含有割合が、前記共重合体100質量%に対して50~98質量%である、請求項1~5のいずれか一項に記載の蓄電デバイス用バインダー。 - 前記(メタ)アクリル酸エステル単量体(b5)が、炭素数6以上のアルキル基及び(メタ)アクリロイルオキシ基から成る(メタ)アクリル酸エステル単量体である、請求項6に記載の蓄電デバイス用バインダー。
- 前記シクロアルキル基を有するエチレン性不飽和単量体(A)が、シクロヘキシルアクリレート又はシクロヘキシルメタクリレートである、請求項6又は7に記載の蓄電デバイス用バインダー。
- 前記蓄電デバイス用バインダーがフィラー多孔層形成用バインダーである、請求項1~8のいずれか一項に記載の蓄電デバイス用バインダー。
- 水と、請求項9に記載のフィラー多孔層形成用バインダーと、無機フィラーとを含む、蓄電デバイス用フィラー多孔層形成用スラリー。
- 請求項9に記載のフィラー多孔層形成用バインダーと、無機フィラーとを含む、蓄電デバイス用フィラー多孔層。
- 請求項11に記載の蓄電デバイス用フィラー多孔層を有する、蓄電デバイス用セパレータ。
- 請求項11に記載の蓄電デバイス用フィラー多孔層と、ポリオレフィン多孔性基材とを含む、蓄電デバイス用セパレータ。
- 請求項11に記載の蓄電デバイス用フィラー多孔層を含む、リチウムイオン二次電池。
- 前記蓄電デバイス用バインダーが電極用バインダーである、請求項1~8のいずれか一項に記載の蓄電デバイス用バインダー。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680053184.5A CN108028380B (zh) | 2015-11-19 | 2016-11-08 | 蓄电设备用粘合剂、蓄电设备用粘合剂组合物 |
JP2017551833A JP6502523B2 (ja) | 2015-11-19 | 2016-11-08 | 蓄電デバイス用バインダー、蓄電デバイス用バインダー組成物 |
EP16866217.9A EP3379623B1 (en) | 2015-11-19 | 2016-11-08 | Binder for electricity storage device and binder composition for electricity storage device |
KR1020187006524A KR102056052B1 (ko) | 2015-11-19 | 2016-11-08 | 축전 디바이스용 바인더, 축전 디바이스용 바인더 조성물 |
US15/760,349 US10770706B2 (en) | 2015-11-19 | 2016-11-08 | Binder for electricity storage device and binder composition for electricity storage device |
PL16866217T PL3379623T3 (pl) | 2015-11-19 | 2016-11-08 | Spoiwo do urządzenia magazynującego energię elektryczną i kompozycja spoiwa do urządzenia magazynującego energię elektryczną |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015226598 | 2015-11-19 | ||
JP2015-226598 | 2015-11-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017086215A1 true WO2017086215A1 (ja) | 2017-05-26 |
Family
ID=58718795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/083131 WO2017086215A1 (ja) | 2015-11-19 | 2016-11-08 | 蓄電デバイス用バインダー、蓄電デバイス用バインダー組成物 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10770706B2 (ja) |
EP (1) | EP3379623B1 (ja) |
JP (1) | JP6502523B2 (ja) |
KR (1) | KR102056052B1 (ja) |
CN (1) | CN108028380B (ja) |
HU (1) | HUE049555T2 (ja) |
PL (1) | PL3379623T3 (ja) |
WO (1) | WO2017086215A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019017479A1 (ja) * | 2017-07-20 | 2019-01-24 | 株式会社大阪ソーダ | 電極用バインダー、電極用バインダー組成物、電極材料、電極、及び蓄電デバイス |
US20200144577A1 (en) * | 2017-08-31 | 2020-05-07 | Asahi Kasei Kabushiki Kaisha | Polyolefin Microporous Membrane |
JP2020077605A (ja) * | 2018-11-09 | 2020-05-21 | 株式会社リコー | 電極、電極素子、非水電解液蓄電素子 |
CN111566858A (zh) * | 2017-12-26 | 2020-08-21 | 株式会社大阪曹達 | 电极用粘合剂、电极以及蓄电器件 |
JP2021504914A (ja) * | 2018-01-18 | 2021-02-15 | エルジー・ケム・リミテッド | 二次電池用分離膜及びこれを含むリチウム二次電池 |
JP2021504905A (ja) * | 2018-01-18 | 2021-02-15 | エルジー・ケム・リミテッド | リチウム二次電池用分離膜及びこれを含むリチウム二次電池 |
CN115466359A (zh) * | 2022-10-28 | 2022-12-13 | 深圳新源邦科技有限公司 | 一种陶瓷涂覆隔膜专用核壳乳液、隔膜及其制备方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HUE059906T2 (hu) * | 2015-11-19 | 2023-01-28 | Zeon Corp | Elektród lítiumion szekunder akkumulátorhoz |
KR102570263B1 (ko) * | 2016-10-14 | 2023-08-24 | 삼성에스디아이 주식회사 | 리튬 전지용 전극, 이를 포함하는 리튬 전지, 및 상기 리튬 전지의 제조방법 |
CN109983599B (zh) * | 2016-11-24 | 2022-12-16 | 日本瑞翁株式会社 | 非水系二次电池、功能层用组合物及功能层 |
JP6567126B2 (ja) * | 2017-04-28 | 2019-08-28 | 住友化学株式会社 | 非水電解液二次電池用絶縁性多孔質層 |
CN112094372B (zh) * | 2019-06-17 | 2023-07-14 | 荒川化学工业株式会社 | 锂离子电池用粘合剂水溶液、负极用浆料、负极、负极用材料以及锂离子电池及其制造方法 |
JP7442922B2 (ja) * | 2020-09-21 | 2024-03-05 | エルジー・ケム・リミテッド | 二次電池負極用バインダ、二次電池負極および二次電池 |
KR102711390B1 (ko) * | 2020-09-21 | 2024-09-27 | 주식회사 엘지화학 | 이차 전지 음극용 바인더, 이차 전지 음극 및 이차 전지 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS578872B2 (ja) | 1972-03-31 | 1982-02-18 | ||
JP2001176483A (ja) * | 1999-12-21 | 2001-06-29 | Mitsubishi Paper Mills Ltd | 電池用セパレータおよび電池 |
JP2001332265A (ja) * | 2000-05-22 | 2001-11-30 | Nippon Zeon Co Ltd | リチウムイオン二次電池電極用バインダーおよびその利用 |
JP2003268053A (ja) * | 2002-03-13 | 2003-09-25 | Hitachi Chem Co Ltd | 電池用バインダ樹脂、これを含有する電極及び電池 |
WO2006033173A1 (ja) * | 2004-09-22 | 2006-03-30 | Hitachi Chemical Company, Ltd. | 非水電解液系エネルギーデバイス電極用バインダ樹脂組成物、非水電解液系エネルギーデバイス電極及び非水電解液系エネルギーデバイス |
JP2015061900A (ja) * | 2013-08-19 | 2015-04-02 | 学校法人福岡大学 | 組成物、リチウム2次電池用セパレータ、リチウム2次電池用固体電解質、及びポリエチレン製品 |
JP2015135773A (ja) * | 2014-01-17 | 2015-07-27 | 東洋インキScホールディングス株式会社 | 二次電池電極形成用組成物、二次電池用電極および二次電池 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS578872A (en) | 1980-06-17 | 1982-01-18 | Fuji Electric Co Ltd | Dividing device |
CN102473923B (zh) * | 2009-08-14 | 2014-06-18 | 株式会社Lg化学 | 具有优异胶粘力的二次电池用粘合剂 |
KR101934706B1 (ko) * | 2011-02-25 | 2019-01-03 | 제온 코포레이션 | 이차 전지용 다공막, 이차 전지 다공막용 슬러리 및 이차 전지 |
US9758629B2 (en) * | 2012-09-11 | 2017-09-12 | Jsr Corporation | Composition for producing protective film, protective film, and electrical storage device |
CN104871352B (zh) * | 2013-01-29 | 2017-07-07 | 株式会社大阪曹达 | 电池电极用粘接剂及使用了该粘接剂的电极及电池 |
WO2014157715A1 (ja) | 2013-03-27 | 2014-10-02 | Jsr株式会社 | 蓄電デバイス用バインダー組成物 |
JP5708872B1 (ja) | 2013-09-24 | 2015-04-30 | 東洋インキScホールディングス株式会社 | 非水二次電池用バインダー、非水二次電池用樹脂組成物、非水二次電池セパレータ、非水二次電池電極および非水二次電池 |
WO2015064570A1 (ja) * | 2013-10-29 | 2015-05-07 | ダイソー株式会社 | 電池電極用バインダー、およびそれを用いた電極ならびに電池 |
-
2016
- 2016-11-08 JP JP2017551833A patent/JP6502523B2/ja active Active
- 2016-11-08 KR KR1020187006524A patent/KR102056052B1/ko active IP Right Grant
- 2016-11-08 CN CN201680053184.5A patent/CN108028380B/zh active Active
- 2016-11-08 US US15/760,349 patent/US10770706B2/en active Active
- 2016-11-08 PL PL16866217T patent/PL3379623T3/pl unknown
- 2016-11-08 WO PCT/JP2016/083131 patent/WO2017086215A1/ja active Application Filing
- 2016-11-08 EP EP16866217.9A patent/EP3379623B1/en active Active
- 2016-11-08 HU HUE16866217A patent/HUE049555T2/hu unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS578872B2 (ja) | 1972-03-31 | 1982-02-18 | ||
JP2001176483A (ja) * | 1999-12-21 | 2001-06-29 | Mitsubishi Paper Mills Ltd | 電池用セパレータおよび電池 |
JP2001332265A (ja) * | 2000-05-22 | 2001-11-30 | Nippon Zeon Co Ltd | リチウムイオン二次電池電極用バインダーおよびその利用 |
JP2003268053A (ja) * | 2002-03-13 | 2003-09-25 | Hitachi Chem Co Ltd | 電池用バインダ樹脂、これを含有する電極及び電池 |
WO2006033173A1 (ja) * | 2004-09-22 | 2006-03-30 | Hitachi Chemical Company, Ltd. | 非水電解液系エネルギーデバイス電極用バインダ樹脂組成物、非水電解液系エネルギーデバイス電極及び非水電解液系エネルギーデバイス |
JP2015061900A (ja) * | 2013-08-19 | 2015-04-02 | 学校法人福岡大学 | 組成物、リチウム2次電池用セパレータ、リチウム2次電池用固体電解質、及びポリエチレン製品 |
JP2015135773A (ja) * | 2014-01-17 | 2015-07-27 | 東洋インキScホールディングス株式会社 | 二次電池電極形成用組成物、二次電池用電極および二次電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3379623A4 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110832683B (zh) * | 2017-07-20 | 2023-03-14 | 株式会社大阪曹達 | 电极用粘结剂、电极用粘结剂组合物、电极材料、电极、以及蓄电装置 |
JP7215420B2 (ja) | 2017-07-20 | 2023-01-31 | 株式会社大阪ソーダ | 電極用バインダー、電極用バインダー組成物、電極材料、電極、及び蓄電デバイス |
CN110832683A (zh) * | 2017-07-20 | 2020-02-21 | 株式会社大阪曹達 | 电极用粘结剂、电极用粘结剂组合物、电极材料、电极、以及蓄电装置 |
WO2019017479A1 (ja) * | 2017-07-20 | 2019-01-24 | 株式会社大阪ソーダ | 電極用バインダー、電極用バインダー組成物、電極材料、電極、及び蓄電デバイス |
JPWO2019017479A1 (ja) * | 2017-07-20 | 2020-07-30 | 株式会社大阪ソーダ | 電極用バインダー、電極用バインダー組成物、電極材料、電極、及び蓄電デバイス |
US20200144577A1 (en) * | 2017-08-31 | 2020-05-07 | Asahi Kasei Kabushiki Kaisha | Polyolefin Microporous Membrane |
US11837693B2 (en) * | 2017-08-31 | 2023-12-05 | Asahi Kasei Kabushiki Kaisha | Polyolefin microporous membrane with improved puncture elongation and thermomechanical properties and method for manufacturing the same |
CN111566858B (zh) * | 2017-12-26 | 2023-11-21 | 株式会社大阪曹達 | 电极用粘合剂、电极以及蓄电器件 |
CN111566858A (zh) * | 2017-12-26 | 2020-08-21 | 株式会社大阪曹達 | 电极用粘合剂、电极以及蓄电器件 |
JP2021504914A (ja) * | 2018-01-18 | 2021-02-15 | エルジー・ケム・リミテッド | 二次電池用分離膜及びこれを含むリチウム二次電池 |
JP7045561B2 (ja) | 2018-01-18 | 2022-04-01 | エルジー エナジー ソリューション リミテッド | 二次電池用分離膜及びこれを含むリチウム二次電池 |
JP2021504905A (ja) * | 2018-01-18 | 2021-02-15 | エルジー・ケム・リミテッド | リチウム二次電池用分離膜及びこれを含むリチウム二次電池 |
JP7045560B2 (ja) | 2018-01-18 | 2022-04-01 | エルジー エナジー ソリューション リミテッド | リチウム二次電池用分離膜及びこれを含むリチウム二次電池 |
JP2020077605A (ja) * | 2018-11-09 | 2020-05-21 | 株式会社リコー | 電極、電極素子、非水電解液蓄電素子 |
JP7447406B2 (ja) | 2018-11-09 | 2024-03-12 | 株式会社リコー | 電極、電極素子、非水電解液蓄電素子 |
CN115466359A (zh) * | 2022-10-28 | 2022-12-13 | 深圳新源邦科技有限公司 | 一种陶瓷涂覆隔膜专用核壳乳液、隔膜及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US10770706B2 (en) | 2020-09-08 |
HUE049555T2 (hu) | 2020-09-28 |
US20180261815A1 (en) | 2018-09-13 |
CN108028380A (zh) | 2018-05-11 |
PL3379623T3 (pl) | 2020-09-07 |
JP6502523B2 (ja) | 2019-04-17 |
KR102056052B1 (ko) | 2020-01-22 |
CN108028380B (zh) | 2021-04-09 |
EP3379623B1 (en) | 2020-04-15 |
KR20180037260A (ko) | 2018-04-11 |
JPWO2017086215A1 (ja) | 2018-05-31 |
EP3379623A1 (en) | 2018-09-26 |
EP3379623A4 (en) | 2018-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6502523B2 (ja) | 蓄電デバイス用バインダー、蓄電デバイス用バインダー組成物 | |
JP6431621B2 (ja) | 蓄電デバイス用セパレータ並びにそれを用いた電極体及び蓄電デバイス | |
JP6872932B2 (ja) | 蓄電デバイス用セパレータ | |
JP6856988B2 (ja) | 蓄電デバイス用セパレータ及びそれを用いた積層体、捲回体、リチウムイオン二次電池又は蓄電デバイス | |
JP2019179698A (ja) | 蓄電デバイス用セパレータ及びそれを用いた積層体、捲回体、リチウムイオン二次電池、並びに蓄電デバイス | |
KR102208408B1 (ko) | 축전 디바이스용 세퍼레이터, 및 이를 사용한 적층체, 권회체 및 이차 전지 | |
JP2016072247A (ja) | 蓄電デバイス用セパレータ | |
JP6316879B2 (ja) | 蓄電デバイス用セパレータ、蓄電デバイス、リチウムイオン二次電池及び共重合体 | |
JP6903090B2 (ja) | 蓄電デバイス用セパレータ、及びそれを用いた捲回体、リチウムイオン二次電池、並びに蓄電デバイス | |
JP5968347B2 (ja) | 積層体、蓄電デバイス及びリチウムイオン二次電池 | |
JP6574602B2 (ja) | 蓄電デバイス用セパレータ、蓄電デバイス、及びリチウムイオン二次電池 | |
JP2015103482A (ja) | 蓄電デバイス用セパレータ、蓄電デバイス、リチウムイオン二次電池及び共重合体 | |
JP6580234B1 (ja) | 蓄電デバイス用セパレータ、及びそれを用いた捲回体、リチウムイオン二次電池、並びに蓄電デバイス | |
JP6423939B2 (ja) | 蓄電デバイス用セパレータ、蓄電デバイス及びリチウムイオン二次電池 | |
JP6419247B2 (ja) | 蓄電デバイス用セパレータ、蓄電デバイス及びリチウムイオン二次電池 | |
JP2022157163A (ja) | 蓄電デバイス用セパレータ | |
JP2016167456A (ja) | 蓄電デバイス用セパレータ、蓄電デバイス及びリチウムイオン二次電池 | |
JP2015141837A (ja) | 蓄電デバイス用セパレータ、蓄電デバイス、リチウムイオン二次電池及び共重合体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16866217 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017551833 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20187006524 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15760349 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |