JP6419247B2 - 蓄電デバイス用セパレータ、蓄電デバイス及びリチウムイオン二次電池 - Google Patents

蓄電デバイス用セパレータ、蓄電デバイス及びリチウムイオン二次電池 Download PDF

Info

Publication number
JP6419247B2
JP6419247B2 JP2017076366A JP2017076366A JP6419247B2 JP 6419247 B2 JP6419247 B2 JP 6419247B2 JP 2017076366 A JP2017076366 A JP 2017076366A JP 2017076366 A JP2017076366 A JP 2017076366A JP 6419247 B2 JP6419247 B2 JP 6419247B2
Authority
JP
Japan
Prior art keywords
separator
monomer
storage device
copolymer
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017076366A
Other languages
English (en)
Other versions
JP2017162821A (ja
Inventor
博 宮澤
博 宮澤
圭太郎 飴山
圭太郎 飴山
孝一郎 東
孝一郎 東
昌敏 池見
昌敏 池見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2017076366A priority Critical patent/JP6419247B2/ja
Publication of JP2017162821A publication Critical patent/JP2017162821A/ja
Application granted granted Critical
Publication of JP6419247B2 publication Critical patent/JP6419247B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、蓄電デバイス用セパレータ、蓄電デバイス、リチウムイオン二次電池及び共重合体に関する。
近年、リチウムイオン電池を中心とした非水電解液電池の開発が活発に行われている。通常、非水電解液電池には、微多孔膜(セパレータ)が正負極間に設けられている。このようなセパレータは、正負極間の直接的な接触を防ぎ、微多孔中に保持した電解液を通じイオンを透過させる機能を有する。
非水電解液電池のサイクル特性や安全性を向上するために、セパレータの改良が検討されている。また、近年、ポータブル機器の小型化、薄型化により、リチウムイオン二次電池などの蓄電デバイスにも小型化、薄型化が求められている。一方で、長時間携帯することを可能にするために体積エネルギー密度を向上させることによる高容量化も図られている。
従来、セパレータには、異常加熱した場合には速やかに電池反応が停止される特性(ヒューズ特性)、高温になっても形状を維持して正極物質と負極物質が直接反応する危険な事態を防止する性能(ショート特性)等の、安全性に関する性能が求められている。それらに加えて、最近では、充放電電流の均一化、及びリチウムデンドライト抑制の観点から、セパレータには電極との密着性の向上も求められている。
セパレータと電池電極との密接性を良くすることにより、充放電電流の不均一化が起こりにくくなり、また、リチウムデンドライトが析出しにくくなるため、結果として充放電サイクル寿命を長くすることが可能となる。
このような事情のもと、セパレータに密着性(接着性)を持たせる試みとして、例えば、特許文献1では、電極/セパレータ間に十分な接着性を有すると共に、電解液による膨潤性にすぐれ、内部抵抗が低く、高レート特性にすぐれた電池を製造するために好適に用いることができるセパレータのための架橋性ポリマーを担持させた多孔質フィルム等の提供を意図して、特定のオキシアルキレン基を有する架橋性ポリマーを多孔質フィルムに担持させてなる電池用セパレータのための架橋性ポリマー担持多孔質フィルムが提案されている。
特開2008−311126号公報
しかしながら、特許文献1に記載された架橋性ポリマー担持多孔質フィルムを始めとする従来のフィルムを用いたセパレータは、そこに用いられるポリマーの膨潤度が高いために、膨潤状態での強度が低下しやすく、電極との密着性(接着性)が十分とはいえない。また、膨潤度の高いポリマーを用いると、その体積膨張がイオン抵抗の妨げになるため、レート特性にも改善の余地がある。
本発明は上記事情に鑑みてなされたものであり、電極との密着性及びレート特性の両方に優れた蓄電デバイス用セパレータ、蓄電デバイス、リチウムイオン二次電池及び共重合体を提供することを目的とする。
本発明者らは上記目的を達成すべく鋭意検討した結果、基材の少なくとも片面の少なくとも一部に特定のポリマーを有する蓄電デバイス用セパレータであれば、上記の課題を解決し得ることを見出し、本発明を完成するに至った。
すなわち、本発明は下記のとおりである。
[1]基材と、その基材の少なくとも片面上の少なくとも一部に形成された熱可塑性ポリマーを含有する層と、を備える蓄電デバイス用セパレータであって、
前記熱可塑性ポリマーがガラス転移温度を少なくとも2つ有しており、
前記ガラス転移温度のうち少なくとも一つは20℃未満の領域に存在し、
前記ガラス転移温度のうち少なくとも一つは20℃以上の領域に存在し、
前記熱可塑性ポリマーが、炭素原子数が4〜7の直鎖状の炭化水素基を有するメタクリル酸エステルと、前記メタクリル酸エステルと共重合可能なその他の単量体と、を単量体単位として有する共重合体を含み、
前記その他の単量体が、架橋性単量体を含み、
前記熱可塑性ポリマーは、ガラス転移温度が20℃以上の領域に存在する前記熱可塑性ポリマーと、ガラス転移温度が20℃未満の領域に存在する前記熱可塑性ポリマーとのブレンドである、蓄電デバイス用セパレータ。
[2]前記メタクリル酸エステルが、n−ブチルメタクリレートである、上記蓄電デバイス用セパレータ。
[3]ガラス転移温度が20℃未満の領域に存在する前記熱可塑性ポリマーが、(メタ)アクリル酸エステル単量体を単量体単位として有する共重合体を含む、上記蓄電デバイス用セパレータ。
[4]前記その他の単量体が、カルボキシル基を有するエチレン性不飽和単量体を含む、上記蓄電デバイス用セパレータ。
[5]前記蓄電デバイス用セパレータを2枚重ねて、その積層方向に、温度25℃、圧力5MPaで3分間加圧した後の90°剥離強度が40mN/mm以下である、上記蓄電デバイス用セパレータ。
[6]前記基材が、ポリオレフィン微多孔膜である、上記蓄電デバイス用セパレータ。
[7]上記蓄電デバイス用セパレータを備える蓄電デバイス。
[8]上記蓄電デバイス用セパレータを備えるリチウムイオン二次電池。
本発明によれば、電極との密着性及びレート特性の両方に優れた蓄電デバイス用セパレータ、蓄電デバイス、リチウムイオン二次電池及び共重合体を提供することができる。
(A)〜(E)は、本発明のセパレータが備える熱可塑性ポリマーを含有する層の平面形状を示す模式図である。
以下、本発明を実施するための形態(以下、「本実施形態」と略記する。)について詳細に説明する。なお、本発明は、以下の本実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。また、本明細書における「(メタ)アクリル」とは「アクリル」及びそれに対応する「メタクリル」を意味し、「(メタ)アクリレート」とは「アクリレート」及びそれに対応する「メタクリレート」を意味し、「(メタ)アクリロイル」とは「アクリロイル」及びそれに対応する「メタクリロイル」を意味する。
本実施形態の共重合体は、炭素原子数が4〜7の直鎖状の炭化水素基を有するメタクリル酸エステルである単量体(A)と、そのメタクリル酸エステルと共重合可能なその他の単量体と、を単量体単位として有する共重合体であり、また、本実施形態の蓄電デバイス用セパレータは、基材と、その基材の少なくとも片面上の少なくとも一部に形成された熱可塑性ポリマーを含有する層(以下、「ポリマー層」という。)を備えており、上記熱可塑性ポリマーが、炭素原子数が4〜7の直鎖状の炭化水素基を有するメタクリル酸エステルと、そのメタクリル酸エステルと共重合可能なその他の単量体とを単量体単位として有する共重合体を含むものである。ここで、「エチレン性不飽和単量体」とは、分子内にエチレン性不飽和結合を1つ以上有する単量体を意味する。
炭素原子数が4〜7の直鎖状の炭化水素基を有するメタクリル酸エステルとしては、例えば、炭素原子数が4〜7の直鎖状の炭化水素基を有し、かつ、エチレン性不飽和結合を1つ有するメタクリル酸エステルが挙げられ、より具体的には、n−ブチルメタクリレート、n−ペンチルメタクリレート、n−ヘキシルメタクリレート、及びn−ヘプチルメタクリレートが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。これらの中では、本発明による作用効果をより有効かつ確実に奏する観点から、n−ブチルメタクリレートが好ましい。
上記共重合体は、様々な品質及び物性を改良するために、その他の単量体(B)を単量体単位として有していてもよい。その他の単量体(B)は、上記単量体(A)とは異なる単量体である。その他の単量体(B)としては、特に限定されないが、例えば、カルボキシル基を有するエチレン性不飽和単量体(b1)、アミド基を有するエチレン性不飽和単量体(b2)、ヒドロキシル基を有するエチレン性不飽和単量体(b3)、架橋性単量体(b4)、(メタ)アクリル酸エステル単量体(b5)、シクロアルキル基を有するエチレン性不飽和単量体、シアノ基を有するエチレン性不飽和単量体、芳香族基を有するエチレン性不飽和単量体、その他のエチレン性不飽和単量体が挙げられる。その他の単量体(B)は、1種を単独で又は2種以上を組み合わせて用いられる。また、その他の単量体(B)は、上記各単量体のうち2種以上に同時に属するものであってもよい。すなわち、その他の単量体(B)は、カルボキシル基、アミド基、ヒドロキシル基、シクロアルキル基、シアノ基及び芳香族基からなる群より選ばれる2種以上の基を有するエチレン性不飽和単量体であってもよく、カルボキシル基、アミド基、ヒドロキシル基、シクロアルキル基、シアノ基及び芳香族基からなる群より選ばれる2種以上の基をエチレン性不飽和結合と共に有する架橋性単量体であってもよい。
なかでも、膨潤状態でのクッション性向上の観点から、その他の単量体(B)は、カルボキシル基を有するエチレン性不飽和単量体(b1)を含むことが好ましい。カルボキシル基を有するエチレン性不飽和単量体(b1)としては、例えば、アクリル酸、メタクリル酸、イタコン酸のハーフエステル、マレイン酸のハーフエステル及びフマール酸のハーフエステルなどのモノカルボン酸単量体、並びに、イタコン酸、フマール酸及びマレイン酸などのジカルボン酸単量体が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。なかでも、同様の観点から、好ましくはアクリル酸、メタクリル酸及びイタコン酸であり、より好ましくはアクリル酸及びメタクリル酸である。
また、電極(電極活物質)との密着性向上の観点から、その他の単量体(B)はアミド基を有するエチレン性不飽和単量体(b2)を含むことが好ましい。アミド基を有するエチレン性不飽和単量体(b2)としては、特に限定されないが、例えば、アクリルアミド、メタクリルアミド、N,N−メチレンビスアクリルアミド、ダイアセトンアクリルアミド、ダイアセトンメタクリルアミド、マレイン酸アミド及びマレイミドが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。なかでも、好ましくはアクリルアミド及びメタクリルアミドである。アクリルアミド及び/又はメタクリルアミドを使用することで、セパレータの電極(電極活物質)との密着性が更に向上する傾向がある。
また、共重合体の重合安定性向上の観点から、その他の単量体(B)はヒドロキシル基を有するエチレン性不飽和単量体(b3)を含むことが好ましい。ヒドロキシル基を有するエチレン性不飽和単量体(b3)としては、例えば、ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート、ポリエチレングリコールアクリレート及びポリエチレングリコールメタクリレートなどのヒドロキシル基を有する(メタ)アクリレートが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。なかでも、好ましくはヒドロキシエチルアクリレート及びヒドロキシエチルメタクリレートである。ヒドロキシエチルアクリレート及び/又はヒドロキシエチルメタクリレートを使用することで、共重合体の重合安定性が向上する傾向にある。
また、電解液に対する不溶分を適度な量にする観点から、その他の単量体(B)は架橋性単量体(b4)を含むことが好ましい。架橋性単量体(b4)としては、特に限定されないが、例えば、ラジカル重合性の二重結合を2個以上有している単量体、重合中又は重合後に自己架橋構造を与える官能基を有する単量体が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
ラジカル重合性の二重結合を2個以上有している単量体としては、例えば、ジビニルベンゼン及び多官能(メタ)アクリレートが挙げられる。なかでも、少量でもより良好な耐電解液性を発現できる観点から、多官能(メタ)アクリレートが好ましい。
多官能(メタ)アクリレートとしては、2官能(メタ)アクリレート、3官能(メタ)アクリレート、4官能(メタ)アクリレートであってもよく、例えば、ポリオキシエチレンジアクリレート、ポリオキシエチレンジメタクリレート、ポリオキシプロピレンジアクリレート、ポリオキシプロピレンジメタクリレート、ネオペンチルグリコールジアクリレート、ネオペンチルグリコールジメタクリレート、ブタンジオールジアクリレート、ブタンジオールジメタクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールテトラアクリレート、及びペンタエリスリトールテトラメタクリレートが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。なかでも、上記と同様の観点から、トリメチロールプロパントリアクリレート及びトリメチロールプロパントリメタクリレートが好ましい。
重合中又は重合後に自己架橋構造を与える官能基を有する単量体としては、例えば、エポキシ基を有するエチレン性不飽和単量体、メチロール基を有するエチレン性単量体、アルコキシメチル基を有するエチレン性不飽和単量体、及び加水分解性シリル基を有するエチレン性不飽和単量体が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
エポキシ基を有するエチレン性不飽和単量体としては、例えば、グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル、メチルグリシジルアクリレート、及びメチルグリシジルメタクリレートが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。なかでも、好ましくはグリシジルメタクリレートである。
メチロール基を有するエチレン性不飽和単量体としては、例えば、N−メチロールアクリルアミド、N−メチロールメタクリルアミド、ジメチロールアクリルアミド、及びジメチロールメタクリルアミドが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
アルコキシメチル基を有するエチレン性不飽和単量体としては、例えば、N−メトキシメチルアクリルアミド、N−メトキシメチルメタクリルアミド、N−ブトキシメチルアクリルアミド、及びN−ブトキシメチルメタクリルアミドが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
加水分解性シリル基を有するエチレン性不飽和単量体としては、例えば、ビニルシラン、γ−アクリロキシプロピルトリメトキシシラン、γ−アクリロキシプロピルトリエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、及びγ−メタクリロキシプロピルトリエトキシシランが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
架橋性単量体(b4)の中でも、多官能(メタ)アクリレートが架橋度のばらつきが少ない点で特に好ましい。
また、該共重合体を含む熱可塑性ポリマーの耐酸化性を良好にする観点から、その他の単量体(B)は(メタ)アクリル酸エステル単量体(b5)を含むことが好ましい。(メタ)アクリル酸エステル単量体(b5)は上記単量体(b1)〜(b4)とは異なる単量体である。(メタ)アクリル酸エステル単量体(b5)としては、例えば、エチレン性不飽和結合を1つ有する(メタ)アクリル酸エステルが挙げられ、より具体的には、メチルアクリレート、エチルアクリレート、プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、イソブチルアクリレート、t−ブチルアクリレート、2−エチルヘキシルアクリレート、n−ペンチルアクリレート、n−ヘキシルアクリレート、n−ヘプチルアクリレート、ラウリルアクリレート、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、イソプロピルアクリレート、イソブチルメタクリレート、t−ブチルメタクリレート、2−エチルヘキシルメタクリレート、ラウリルメタクリレートなどの、単量体(A)以外のアルキル基を有する(メタ)アクリレート(より好ましくはアルキル基と(メタ)アクリロイルオキシ基とからなる(メタ)アクリレート)、ベンジルアクリレート、フェニルアクリレート、ベンジルメタクリレート、フェニルメタクリレートなどの芳香環を有する(メタ)アクリレート(より好ましくは芳香環と(メタ)アクリロイルオキシ基とからなる(メタ)アクリレート)が挙げられる。これらの中では、電極(電極活物質)との密着性向上の観点から、メチルメタクリレート、メチルアクリレート、炭素原子数8以上のアルキル基と(メタ)アクリロイルオキシ基とからなる(メタ)アクリル酸エステル単量体がより好ましい。より具体的には、メチルメタクリレート、及び2−エチルヘキシルアクリレートが好ましく、2−エチルヘキシルアクリレートがより好ましい。なお、炭素原子数が8以上のアルキル基における炭素原子数の上限は特に限定されず、例えば14であってもよい。これら(メタ)アクリル酸エステル単量体(b5)は、1種を単独で又は2種以上を組み合わせて用いられる。
シクロアルキル基を有するエチレン性不飽和単量体としては、特に限定されないが、シクロアルキル基を有し、かつエチレン性不飽和結合を1つ有するものが挙げられる。この単量体としては、より具体的には、シクロヘキシルアクリレート、シクロヘキシルメタクリレート、イソボルニルアクリレート、イソボルニルメタクリレート、アダマンチルアクリレート、アダマンチルメタクリレートなどの、シクロアルキル基を有する(メタ)アクリル酸エステル単量体が挙げられ、本発明による課題をより有効かつ確実に解決する観点から、これらが好ましい。シクロアルキル基を有するエチレン性不飽和単量体は、より好ましくは、シクロアルキル基と(メタ)アクリロイルオキシ基とからなる(メタ)アクリル酸エステル単量体である。シクロアルキル基の脂環を構成する炭素原子の数は、4〜8が好ましく、6及び7がより好ましく、6が特に好ましい。また、シクロアルキル基は置換基を有していても有していなくてもよい。置換基としては、例えば、メチル基、ターシャリーブチル基が挙げられる。シクロアルキル基を有するエチレン性不飽和単量体の中では、シクロヘキシルアクリレート、シクロヘキシルメタクリレートが共重合体調製時の重合安定性が良好である点で好ましい。これらは1種を単独で又は2種以上を組み合わせて用いられる。
シアノ基を有するエチレン性不飽和単量体としては、例えば、アクリロニトリル、及びメタクリロニトリルが挙げられる。また、芳香族基を有するエチレン性不飽和単量体としては、例えば、スチレン、ビニルトルエン及びα−メチルスチレンが挙げられる。なかでも、好ましくはスチレンである。
上記共重合体における炭素原子数が4〜7の直鎖状の炭化水素基を有するメタクリル酸エステルである単量体(A)の含有割合は、共重合体100質量%に対して、好ましくは5〜90質量%である。その下限値は、より好ましくは10質量%であり、更に好ましくは20質量%であり、なおも更に好ましくは30質量%であり、特に好ましくは40質量%であり、なおも特に好ましくは50質量%である。単量体(A)の含有割合が該範囲内にあると、セパレータの電極(電極活物質)との密着性が向上し、しかもそのセパレータを用いた蓄電デバイスのレート特性も向上するため好ましい。一方、より好ましい上限値は80質量%である。単量体(A)の含有割合が80質量%以下であると、共重合体調製時の重合安定性が向上するため好ましい。なお、上記を言い換えれば、共重合体におけるその他の単量体(B)の含有割合は、共重合体100質量%に対して、好ましくは90〜5質量%である。上限値は、より好ましくは90質量%であり、更に好ましくは80質量%であり、なおも更に好ましくは70質量%であり、特に好ましくは60質量%であり、なおも特に好ましくは50質量%である。一方、より好ましい下限値は20質量%である。
上記共重合体における(メタ)アクリル酸エステル単量体の含有割合は、共重合体100質量%に対して、好ましくは50〜99.9質量%であり、より好ましくは60〜99.9質量%であり、更に好ましくは70〜99.9質量%であり、なおも更に好ましくは80〜99.9質量%である。この段落において、(メタ)アクリル酸エステル単量体は、炭素原子数が4〜7の直鎖状の炭化水素基を有するメタクリル酸エステルである単量体(A)及びそれ以外の(メタ)アクリル酸エステル単量体の両方を意味する。(メタ)アクリル酸エステル単量体の含有割合が上記範囲内にあると、セパレータが非水系電解液二次電池に用いられる場合、熱可塑性ポリマーの耐酸化性がより良好になる。
その他の単量体(B)がカルボキシル基を有するエチレン性不飽和単量体(b1)を含む場合、共重合体におけるカルボキシル基を有するエチレン性不飽和単量体(b1)の含有割合は、共重合体100質量%に対して、好ましくは0.1〜5質量%である。カルボキシル基を有するエチレン性不飽和単量体の含有割合が、0.1質量%以上であると、セパレータは膨潤状態でのクッション性が向上する傾向にあり、5質量%以下であると、重合安定性が良好な傾向にある。
その他の単量体(B)がアミド基を有するエチレン性不飽和単量体(b2)を含む場合、共重合体におけるアミド基を有するエチレン性不飽和単量体(b2)の含有割合は、共重合体100質量%に対して、好ましくは0.1〜10質量%であり、より好ましくは2〜10質量%である。アミド基を有するエチレン性不飽和単量体(b2)の含有割合が0.1質量%以上であると、電極(電極活物質)との密着性が更に向上する傾向にあり、10質量%以下であると、共重合体を調製する際の重合安定性がより向上する傾向にある。
その他の単量体(B)がヒドロキシル基を有するエチレン性不飽和単量体(b3)を含む場合、共重合体におけるヒドロキシル基を有するエチレン性不飽和単量体(b3)の含有割合は、共重合体100質量%に対して、好ましくは0.1〜10質量%であり、より好ましくは1〜10質量%である。ヒドロキシル基を有するエチレン性不飽和単量体(b3)の含有割合が上記範囲内にあると、共重合体を調製する際の重合安定性がより向上する傾向にある。
その他の単量体(B)が架橋性単量体(b4)を含む場合、共重合体における架橋性単量体(b4)の含有割合は、共重合体100質量%に対して、好ましくは0.01〜10質量%であり、より好ましくは0.1〜5質量%であり、さらに好ましくは0.1〜3質量%である。架橋性単量体(b4)の含有割合が0.01質量%以上であると耐電解液性がさらに向上し、5質量%以下であると膨潤状態でのクッション性の低下をより抑制することができる。
共重合体のガラス転移温度(以下、「Tg」とも表記する。)は、特に限定されないが、−50℃以上であってもよく、好ましくは−30℃以上であり、より好ましくは−30℃〜120℃であり、さらに好ましくは−20℃〜70℃である。共重合体のTgが−30℃以上であると、上記共重合体を含むポリマー層を備えるセパレータの最表面がべたつくのを抑制でき、ハンドリング性が向上する傾向にある。また、Tgが120℃以下であると、セパレータの電極(電極活物質)との密着性がより良好になる傾向にある。
また、共重合体がガラス転移温度を少なくとも2つ有しており、それらガラス転移温度のうち少なくとも1つは20℃未満の領域に存在し、それらのガラス転移温度のうち少なくとも1つは20℃以上の領域に存在することが好ましい。共重合体のガラス転移温度のうち少なくとも1つが20℃未満の領域に存在することにより、基材が微多孔膜である場合に、微多孔膜との密着性に優れ、その結果、セパレータと電極との密着性に更に優れるという効果を奏する傾向にある。同様の観点から、共重合体のガラス転移温度のうち少なくとも1つは15℃以下の領域に存在することがより好ましく、更に好ましくは−30℃以上15℃以下の領域に存在する。上記20℃未満の領域に存在するガラス転移温度は、共重合体と微多孔膜との密着性を一層高めつつ、ハンドリング性を更に良好に保持する点から、−30℃以上15℃以下の領域にのみ存在することが好ましい。
さらに、共重合体のガラス転移温度のうち少なくとも1つが20℃以上の領域に存在することにより、セパレータと電極との接着性及びハンドリング性に更に優れるという効果を奏する傾向にある。同様の観点から、共重合体のガラス転移温度のうち少なくとも1つが20℃以上120℃以下の領域に存在することがより好ましく、更に好ましくは50℃以上120℃以下の領域に存在する。上記範囲にガラス転移温度が存在することで、更に良好なハンドリング性を付与できる。さらに、電池作製時の加圧により発現する電極とセパレータとの間の密着性を一層高めることができる。上記20℃以上の領域に存在するガラス転移温度は、共重合体と微多孔膜との密着性を一層高めつつ、ハンドリング性を更に良好に保持する点から、20℃以上120℃以下の領域にのみ存在することが好ましい。
ここで、ガラス転移温度は、示差走査熱量測定(DSC)で得られるDSC曲線から決定される。具体的には、DSC曲線における低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の変曲点における接線との交点により決定される。
また、「ガラス転移」はDSCにおいて試験片であるポリマーの状態変化に伴う熱量変化が吸熱側に生じたものを指す。このような熱量変化はDSC曲線において階段状変化の形状として観測される。「階段状変化」とは、DSC曲線において、曲線がそれまでの低温側のベースラインから離れ新たな高温側のベースラインに移行するまでの部分を示す。なお、階段状変化とピークとが組み合わされたものも階段状変化に含まれることとする。
さらに、「変曲点」とは、階段状変化部分のDSC曲線のこう配が最大になるような点を示す。また、階段状変化部分において、上側を発熱側とした場合に、上に凸の曲線が下に凸の曲線に変わる点と表現することもできる。「ピーク」とは、DSC曲線において、曲線が低温側のベースラインから離れてから再度同じベースラインに戻るまでの部分を示す。「ベースライン」とは、試験片に転移及び反応を生じない温度領域のDSC曲線のことを示す。
本実施形態において、共重合体又は熱可塑性ポリマー(以下「共重合体等」という。)のガラス転移温度、すなわちTgは、例えば、共重合体等を製造するのに用いるモノマーの種類及び各モノマーの配合比を変更することにより適宜調整できる。共重合体等のTgは、共重合体又は熱可塑性ポリマーの製造に用いられる各モノマーについて一般に示されているそのホモポリマーのTg(例えば、「ポリマーハンドブック」(A WILEY−INTERSCIENCE PUBLICATION)に記載)とモノマーの配合比から概略で推定することができる。例えば約100℃のTgのポリマーを与えるスチレン、メチルメタクリレ−ト、及びアクリルニトリルなどのモノマーを高比率で配合した共重合体等は、高いTgを有する。また、例えば約−80℃のTgのポリマーを与えるブタジエンや約−50℃のTgのポリマーを与えるn−ブチルアクリレ−ト及び2−エチルヘキシルアクリレ−トなどのモノマーを高い比率で配合した共重合体等は、低いTgを有する。
また、ポリマーのTgはFOXの式(下記式(2))より概算することができる。なお、共重合体等のガラス転移温度としては、上記DSCを用いた方法により測定したものを採用する。
1/Tg=W1/Tg1+W2/Tg2+‥‥+Wi/Tgi+‥‥Wn/Tgn (2)
ここで、式(2)中において、Tg(K)は、コポリマーのTgを示し、Tgi(K)は、各モノマーiのホモポリマーのTgを示し、Wiは、各モノマーの質量分率を示す。
本実施形態のセパレータにおいて、エチレンカーボネートとジエチルカーボネートとの混合溶媒(質量比2:3)に対する共重合体の膨潤度は、6.0倍以下であると好ましく、5.9倍以下であるとより好ましく、5.5倍以下であると特に好ましい。この膨潤度が6.0倍以下であることにより、蓄電デバイスの信頼性をより高めることができる。なお、ポリマー層が2種以上の共重合体を含む場合、膨潤度は、各々の共重合体の膨潤度の加重平均とする。
共重合体は、例えば、通常の乳化重合法によって得られる。乳化重合の方法に関しては特に制限はなく、従来公知の方法を用いることができる。例えば、水性媒体中で上述の単量体、界面活性剤、ラジカル重合開始剤、及び必要に応じて用いられる他の添加剤成分を基本組成成分とする分散系において、上記各単量体からなる単量体組成物を重合することにより共重合体が得られる。重合に際しては、供給する単量体組成物の組成を全重合過程で一定にする方法や、重合過程で逐次又は連続的に変化させることによって、生成する樹脂分散体の粒子の形態的な組成変化を与える方法等、必要に応じて様々な方法が利用できる。共重合体を乳化重合により得る場合、例えば、水と、その水中に分散した粒子状の共重合体とを含む水分散体(ラテックス)の形態であってもよい。
界面活性剤は、一分子中に少なくとも1つ以上の親水基と1つ以上の親油基とを有する化合物である。界面活性剤としては、例えば、非反応性のアルキル硫酸エステル、ポリオキシエチレンアルキルエーテル硫酸エステル塩、アルキルベンゼンスルフォン酸塩、アルキルナフタレンスルフォン酸塩、アルキルスルホコハク酸塩、アルキルジフェニルエーテルジスルフォン酸塩、ナフタレンスルフォン酸ホルマリン縮合物、ポリオキシエチレン多環フェニルエーテル硫酸エステル塩、ポリオキシエチレンジスチレン化フェニルエーテル硫酸エステル塩、脂肪酸塩、アルキルリン酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩等のアニオン性界面活性剤、及び、非反応性のポリオキシエチレンアルキルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレン多環フェニルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルキルアミン、アルキルアルカノールアミド、ポリオキシエチレンアルキルフェニルエーテル等のノニオン性界面活性剤が挙げられる。これらの他に、親水基と親油基とを有する界面活性剤の化学構造式の中にエチレン性不飽和二重結合を導入した、いわゆる反応性界面活性剤を用いてもよい。
反応性界面活性剤の中のアニオン性界面活性剤としては、例えば、スルホン酸基、スルホネート基又は硫酸エステル基及びこれらの塩を有するエチレン性不飽和単量体が挙げられ、スルホン酸基、又はそのアンモニウム塩若しくはアルカリ金属塩である基(アンモニウムスルホネート基、又はアルカリ金属スルホネート基)を有する化合物であることが好ましい。具体的には、例えば、アルキルアリルスルホコハク酸塩(例えば、三洋化成株式会社製エレミノール(商標)JS−20、花王株式会社製ラテムル(商標。以下同様。)S−120、S−180A、S−180が挙げられる。)、ポリオキシエチレンアルキルプロペニルフェニルエーテル硫酸エステル塩(例えば、第一工業製薬株式会社製アクアロン(商標。以下同様。)HS−10が挙げられる。)、α−〔1−〔(アリルオキシ)メチル〕−2−(ノニルフェノキシ)エチル〕−ω−ポリオキシエチレン硫酸エステル塩(例えば、株式会社ADEKA製アデカリアソープ(商標。以下同様。)SE−10Nが挙げられる。)、アンモニウム=α−スルホナト−ω−1−(アリルオキシメチル)アルキルオキシポリオキシエチレン(例えば、第一工業製薬株式会社製アクアロンKH−10が挙げられる。)、スチレンスルホン酸塩(例えば、東ソー有機化学株式会社製スピノマー(商標)NaSSが挙げられる。)、α−〔2−〔(アリルオキシ)−1−(アルキルオキシメチル)エチル〕−ω−ポリオキシエチレン硫酸エステル塩(例えば、株式会社ADEKA製アデカリアソープSR−10が挙げられる。)、ポリオキシエチレンポリオキシブチレン(3−メチル−3−ブテニル)エーテルの硫酸エステル塩(例えば、花王株式会社製ラテムルPD−104が挙げられる。)が挙げられる。
また、反応性界面活性剤の中のノニオン性界面活性剤としては、例えば、α−〔1−〔(アリルオキシ)メチル〕−2−(ノニルフェノキシ)エチル〕−ω−ヒドロキシポリオキシエチレン(例えば、株式会社ADEKA製アデカリアソープNE−20、NE−30、NE−40が挙げられる。)、ポリオキシエチレンアルキルプロペニルフェニルエーテル(例えば、第一工業製薬株式会社製アクアロンRN−10、RN−20、RN−30、RN−50が挙げられる。)、α−〔2−〔(アリルオキシ)−1−(アルキルオキシメチル)エチル〕−ω−ヒドロキシポリオキシエチレン(例えば、株式会社ADEKA製アデカリアソープER−10が挙げられる。)、ポリオキシエチレンポリオキシブチレン(3−メチル−3−ブテニル)エーテル(例えば、花王株式会社製ラテムルPD−420が挙げられる。)が挙げられる。
上記各種界面活性剤の中でも、反応性界面活性剤が好ましく、より好ましくはアニオン性の反応性界面活性剤であり、さらに好ましくはスルホン酸基を有する反応性界面活性剤である。界面活性剤は、単量体組成物100質量部に対して0.1〜5質量部用いることが好ましい。界面活性剤は1種を単独で又は2種以上を組み合わせて用いられる。
ラジカル重合開始剤としては、熱又は還元性物質によりラジカル分解して単量体の付加重合を開始させるものであり、無機系開始剤及び有機系開始剤のいずれも用いることができる。ラジカル重合開始剤としては、水溶性又は油溶性の重合開始剤を用いることができる。水溶性の重合開始剤としては、例えば、ペルオキソ二硫酸塩、過酸化物、水溶性のアゾビス化合物、過酸化物−還元剤のレドックス系が挙げられる。ペルオキソ二硫酸塩としては、例えば、ペルオキソ二硫酸カリウム(KPS)、ペルオキソ二硫酸ナトリウム(NPS)、及びペルオキソ二硫酸アンモニウム(APS)が挙げられ、過酸化物としては、例えば、過酸化水素、t−ブチルハイドロパーオキサイド、t―ブチルパーオキシマレイン酸、コハク酸パーオキシド、及び過酸化ベンゾイルが挙げられ、水溶性のアゾビス化合物としては、例えば、2,2−アゾビス(N−ヒドロキシエチルイソブチルアミド)、2、2−アゾビス(2−アミジノプロパン)2塩化水素、4,4−アゾビス(4−シアノペンタン酸)が挙げられ、過酸化物−還元剤のレドックス系としては、例えば、上記過酸化物にナトリウムスルホオキシレートホルムアルデヒド、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、ヒドロキシメタンスルフィン酸ナトリウム、L−アスコルビン酸、及びその塩、第一銅塩、並びに第一鉄塩等の還元剤の1種又は2種以上を組み合わせたものが挙げられる。
ラジカル重合開始剤は、単量体組成物100質量部に対して、好ましくは0.05〜2質量部用いることができる。ラジカル重合開始剤は1種を単独で又は2種以上を組み合わせて用いられる。
なお、炭素原子数が4〜7の直鎖状の炭化水素基を有するメタクリル酸エステルである単量体(A)と、その他の単量体(B)とを含む単量体組成物を乳化重合し、重合体粒子が溶媒(水)中に分散した分散体を形成する場合、得られた分散体の固形分としては、30質量%〜70質量%であることが好ましい。
また、分散体は、長期の分散安定性を保つため、そのpHを5〜12の範囲に調整されることが好ましい。pHの調整には、アンモニア、水酸化ナトリウム、水酸化カリウム、及びジメチルアミノエタノール等のアミン類を用いることが好ましく、アンモニア(水)又は水酸化ナトリウムによりpHを調整することがより好ましい。
本実施形態の水分散体は、上記特定の単量体を含む単量体組成物を共重合して得られる共重合体を、水中に分散した粒子(共重合体粒子)として含む。水分散体には、水及び共重合体以外に、メタノール、エタノール、イソプロピルアルコール等の溶媒や、分散剤、滑剤、増粘剤、殺菌剤等が含まれていてもよい。
共重合体粒子の平均粒径は、好ましくは50〜250nm、より好ましくは100〜200nm、更に好ましくは130〜180nmである。共重合体粒子の平均粒径を50nm以上とすることは、ポリマー層と、その層を担持した後述の基材とを備えるセパレータの透気度を、より良好に維持できることから好ましい。また、共重合体粒子の平均粒径を250nm以下とすることは、水分散体の分散安定性を確保する観点から好ましい。共重合体粒子の平均粒径は、下記実施例に記載の方法に準じて測定することができる。
なお、共重合体が単量体単位として炭素原子数が4〜7の直鎖状の炭化水素基を有するメタクリル酸エステルである単量体(A)を有することは、熱分解ガスクロマトグラフィーによって確認できる。より具体的には、単量体(A)のホモポリマーを熱分解ガスクロマトグラフィーによって測定し、予め、その熱分解物の保持時間を決定する。次いで、共重合体を熱分解ガスクロマトグラフィーによって同様の条件にて測定し、同じ保持時間に熱分解物のピークを有する場合、同共重合体単量体単位として単量体(A)を有していると推定できる。また、単量体(A)のホモポリマーを内部標準とすることで、共重合体単量体単位中の単量体(A)の割合を求めることも可能である。
本実施形態のセパレータは、基材の少なくとも片面の少なくとも一部にポリマー層を有するので、熱プレスの工程を経て、電極及びセパレータ間を接着させることができる。すなわち、ポリマー層は、接着層として機能し得るものである。
熱可塑性ポリマーは、その全量に対して、好ましくは60質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上、特に好ましくは98質量%以上、上記共重合体を含む。その熱可塑性ポリマーは、上記共重合体以外に、本発明の課題解決を損なわない程度の、その他の成分を含んでもよい。
本実施形態に用いる基材は、それ自体が、従来セパレータとして用いられていたものであってもよい。基材としては、電子伝導性がなくイオン伝導性があり、有機溶媒の耐性が高い、孔径の微細な多孔質膜であると好ましい。そのような多孔質膜としては、例えば、ポリオレフィン系(例えば、ポリエチレン、ポリプロピレン、ポリブテン及びポリ塩化ビニル)、及びそれらの混合物又は共重合体等の樹脂を主成分として含む微多孔膜、ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルフォン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ポリシクロオレフィン、ナイロン、ポリテトラフルオロエチレン等の樹脂を主成分として含む微多孔膜、ポリオレフィン系の繊維を織ったもの(織布)、ポリオレフィン系の繊維の不織布、紙、並びに、絶縁性物質粒子の集合体が挙げられる。これらの中でも、塗工工程を経てポリマー層を得る場合に塗工液の塗工性に優れ、セパレータの膜厚をより薄くして、電池等の蓄電デバイス内の活物質比率を高めて体積当たりの容量を増大させる観点から、ポリオレフィン系の樹脂を主成分として含むポリオレフィン微多孔膜が好ましい。なお、ここで「主成分として含む」とは、50質量%を超えて含むことを意味し、好ましくは75質量%以上、より好ましくは85質量%以上、更に好ましくは90質量%以上、なおも更に好ましくは95質量%以上、特に好ましくは98質量%以上含み、100質量%であってもよい。
基材の厚さは、好ましくは0.5〜40μmであり、より好ましくは1〜30μmであり、更に好ましくは1〜10μmである。基材の厚さがこの範囲内にあると、電池等の蓄電デバイス内でのセパレータによる抵抗がより小さくなり、また、ポリマー層を、塗工工程を経て得る場合に、基材への塗工時の作業性が更に良好になる。
本実施形態において、基材の材料として用いられるポリオレフィン系の樹脂としては、例えば、ポリエチレン、ポリプロピレン等のホモポリマー、コポリマー、更にはこれらの混合物が挙げられる。ポリエチレンとしては、低密度、中密度、高密度のポリエチレンが挙げられ、突き刺し強度や機械的な強度の観点から、高密度のポリエチレンが好ましい。また、これらのポリエチレンは柔軟性を付与する目的から2種以上を混合してもよい。これらポリエチレンの製造の際に用いられる重合触媒も特に制限はなく、例えば、チーグラー・ナッタ系触媒、フィリップス系触媒及びメタロセン系触媒が挙げられる。高機械強度と高透過性とを両立させる観点から、ポリエチレンの粘度平均分子量は10万以上1200万以下であると好ましく、より好ましくは20万以上300万以下である。
なお、粘度平均分子量(Mv)は、ASTM−D4020に基づき、溶剤としてデカリンを用い、測定温度135℃で測定された極限粘度[η]から、下記式により算出される。
ポリエチレン:[η]=6.77×10-4Mv0.67(Chiangの式)
ポリプロピレン:[η]=1.10×10-4Mv0.80
ポリプロピレンとしては、ホモポリマー、ランダムコポリマー、ブロックコポリマーが挙げられ、1種類又は2種類以上を混合して用いることができる。また、重合触媒も特に制限はなく、例えば、チーグラー・ナッタ系触媒及びメタロセン系触媒が挙げられる。また、ポリプロピレンの立体規則性にも特に制限はなく、アイソタクチック、シンジオタクチック及びアタクチックのいずれであってもよい。ただし、安価である点からアイソタクチックポリプロピレンを用いるのが好ましい。さらに本発明による効果を損なわない範囲で、基材にはポリエチレン及びポリプロピレン以外のポリオレフィン、及び酸化防止剤、核剤などの添加剤を適量添加してもよい。
ポリオレフィン系の樹脂を主成分として含む基材を作製する方法は、公知のものであってもよい。その作製方法としては、例えば、乾式の作製方法及び湿式の作製方法が挙げられる。乾式の作製方法では、例えば、まず、ポリプロピレン又はポリエチレンなどのポリオレフィン系の樹脂を溶融押出によりフィルムを製膜する。その後に、低温でフィルムをアニーリングして結晶ドメインを成長させ、この状態で延伸して非晶領域を延ばすことで基材としての微多孔膜を形成する。また、湿式の作製方法では、例えば、まず、炭化水素溶媒やその他の低分子材料とポリプロピレン又はポリエチレンなどのポリオレフィン系の樹脂を混合した後にフィルム状に成形する。次いで、非晶相に溶媒や低分子材料が集まり島相を形成し始めたフィルムを、それらの溶媒や低分子材料を他の揮発しやすい溶媒を用いて除去することで、基材としての微多孔膜を形成する。
基材としての不織布又は紙を作製する方法は、公知のものであってもよい。その作製方法としては、例えば、ウェブをバインダーに浸漬、乾燥して繊維間結合させるケミカルボンド法;ウェブに熱溶融性繊維を混ぜ込み、その繊維を部分的に溶融し繊維間結合させるサーマルボンド法;ウェブに刺のあるニードルを繰り返し突き刺し、繊維を機械的に絡めるニードルパンチ法;高圧の水流をノズルからネット(スクリーン)を介してウェブに噴射し、繊維間を絡める水流交絡法が挙げられる。
本実施形態に用いる基材は、強度や硬度、熱収縮率を制御する目的で、フィラー(無機フィラー又は有機フィラー)や繊維化合物を含んでもよい。また、基材が非導電性粒子及び結着剤を含む多孔膜の層を積層したものである場合に、密着性を向上させたり、電解液との表面張力を下げて液の含浸性を向上させる目的で、予め低分子化合物や高分子化合物で基材表面を被覆処理したり、紫外線などの電磁線処理、コロナ放電・プラズマガスなどのプラズマ処理を基材表面に施してもよい。特に、電解液の含浸性が高く、非導電性粒子及び結着剤を含む多孔膜の層との密着性を得やすい点から、カルボン酸基、水酸基及びスルホン酸基などの極性基を含有する高分子化合物で被覆処理するのが好ましい。
本実施形態に用いる基材は、引き裂き強度や、突刺強度を高める目的で、上述の基材同士を重ねた多層構造であってもよい。具体的には、ポリエチレン微多孔膜とポリプロピレン微多孔膜との積層膜、不織布とポリオレフィン系微多孔膜との積層膜が挙げられる。
基材の透気度は、特に限定されないが、蓄電デバイスの性能を高める観点から、好ましくは10sec/100cc以上、より好ましくは50sec/100cc以上であり、好ましくは1000sec/100cc以下、より好ましくは500sec/100cc以下である。透気度を10sec/100cc以上とすることは、蓄電デバイスの自己放電をより抑制する観点から好ましい。一方、1000sec/100cc以下とすることは、更に良好な充放電特性を得る観点から好ましい。
また、同様の観点から、基材の気孔率は、蓄電デバイスの性能を高めると共に機械的強度を向上させる観点から好ましくは20%以上、より好ましくは35%以上であり、好ましくは90%以下、好ましくは80%以下である。気孔率を20%以上とすることは、更に優れたセパレータの透過性を確保する観点から好ましい。一方、90%以下とすることは、更に優れた突刺強さを確保する観点から好ましい。
さらに、基材の突刺強度は、セパレータとしての信頼性向上の観点及び熱収縮を抑制する観点から、好ましくは200g/20μm以上、より好ましくは300g/20μm以上であり、好ましくは2000g/20μm以下、より好ましくは1000g/20μm以下である。突刺強度が200g/20μm以上であることは、電池捲回時における脱落した活物質等による破膜を一層抑制する観点から好ましい。また、充放電に伴う電極の膨張収縮によって短絡する懸念を更に抑制する観点からも好ましい。一方、2000g/20μm以下とすることは、加熱時の配向緩和による幅収縮をより低減できる観点から好ましい。
これら透気度、気孔率及び突刺強度は、実施例に記載の方法に準じて測定される。
(ポリマー層の基材に対する担持量)
本実施形態におけるポリマー層の基材に対する担持量は、固形分で0.05g/m2以上1.0g/m2以下が好ましく、より好ましくは0.07g/m2以上0.80g/m2以下であり、さらに好ましくは0.1g/m2以上0.70g/m2以下である。その層の基材に対する担持量を0.05g/m2以上1.0g/m2以下とすることは、得られるセパレータにおいて、ポリマー層と基材との接着力を一層向上させる一方で、基材の孔を閉塞することによるサイクル特性(透過性)の低下を一層抑制する観点から好ましい。
ポリマー層の基材に対する担持量は、例えば、塗布液の熱可塑性ポリマー又は共重合体濃度や熱可塑性ポリマー溶液の塗布量を変更することにより調整することができる。ただし、担持量の調整方法は上記に限定されない。
(表面被覆率)
本実施形態では、ポリマー層が5%以上の表面被覆率で基材の表面上に存在することが好ましい。表面被覆率を5%以上とすることは、電極との接着性を一層向上する観点から好ましい。
本実施形態におけるポリマー層の表面被覆率は、例えば、後述のセパレータの製造方法において、基材に塗布する塗布液中の熱可塑性ポリマー又は共重合体濃度、塗布液の塗布量、塗布方法及び塗布条件を変更することにより調整することができる。ただし、表面被覆率の調整方法は、それらに限定されない。また、本実施形態におけるポリマー層の表面被覆率は、下記実施例に記載の方法に準じて測定される。
(ポリマー層の平均厚さ)
本実施形態のセパレータにおけるポリマー層の平均厚さは、特に限定されないが、2.0μm以下であることが好ましく、より好ましくは1.0μm以下、更に好ましくは0.5μm以下である。ポリマー層の平均厚さを2.0μm以下とすることは、ポリマー層による透過性低下を抑制すると共に、セパレータをロールとして保管した際のポリマー層同士又はポリマー層と基材との貼り付きを効果的に抑制する観点から好ましい。本実施形態におけるポリマー層の平均厚さは、例えば、基材に塗布する塗布液における熱可塑性ポリマー又は共重合体濃度や塗布液の塗布量、塗布方法及び塗布条件を変更することにより調整することができる。ただし、ポリマー層の平均厚さの調整方法は、それらに限定されない。
(基材上のポリマー層の存在形態)
本実施形態におけるポリマー層の基材上での存在形態(パターン)は、特に限定されず、基材の全面に亘って存在してもよく、あるいは、例えば図1に黒塗りで示す平面形状を有していてもよい。すなわち、ポリマー層は、例えば、ドット状(例えば図1の(A))、格子目状(例えば図1の(B))、線状(例えば図1の(C))、縞状(例えば図1の(D))、亀甲模様状(例えば図1の(E))等のような平面形状で存在してもよい。
これらの中では、透過性を確保する観点、及び電極との均一な接着性を一層向上させる観点から、ポリマー層が基材の少なくとも片面上にドット状に存在することが好ましい。「ドット状」とは、基材上にポリマー層が島状に存在し、ポリマー層が存在しない部分が海状になっている海島構造の状態を示す。
ポリマー層が島状に独立して存在する場合、島状のドットの間隔(隣り合う島状ドットの端部間の距離)は、5μm〜500μmであることが、電極への密着性とサイクル特性との両立の点から好ましい。また、ドットの大きさ(1つのドットの最も長い径;長径)は、特に限定されないが、平均で、20μm以上1000μm以下が好ましく、より好ましくは30μm以上800μm以下、更に好ましくは50μm以上500μm以下である。当該ポリマー層のドットの平均長径を20μm以上1000μm以下とすることは、電極との接着性を確保する観点から好ましい。
ポリマー層のドットの平均長径は、例えば、塗布液の共重合体又は熱可塑性ポリマー濃度、塗布液の塗布量、塗布方法、及び塗布条件を変更することにより調整することができる。ただし、ポリマー層のドットの平均長径を調整する方法は、それらに限定されない。
また、本実施形態では、熱可塑性ポリマーがガラス転移温度を少なくとも2つ有していることが好ましい。これにより、電極への接着性とハンドリング性とのバランスをより良好に両立することができる。
本実施形態では、用いる熱可塑性ポリマーのガラス転移温度のうち少なくとも1つが20℃未満の領域に存在することが好ましい。これにより、基材との密着性に一層優れ、その結果、セパレータは電極との密着性により優れるという効果を奏する。同様の観点から、用いる熱可塑性ポリマーのガラス転移温度のうち少なくとも1つが、15℃以下の領域に存在することがより好ましく、更に好ましくは−30℃以上15℃以下の領域に存在する。熱可塑性ポリマーと基材との密着性を高めつつ、ハンドリング性を更に良好に保持する点から、20℃未満の領域に存在するガラス転移温度が−30℃以上15℃以下の領域にのみ存在することが好ましい。
本実施形態では、用いる熱可塑性ポリマーのガラス転移温度のうち少なくとも1つが20℃以上の領域に存在することが好ましい。これにより、セパレータと電極との接着性及びハンドリング性に更に優れるという効果を奏する。また、用いる熱可塑性ポリマーのガラス転移温度のうち少なくとも1つが20℃以上120℃以下の領域に存在することがより好ましく、更に好ましくは50℃以上120℃以下である。上記範囲にガラス転移温度が存在することで、更に良好なハンドリング性を付与できる。さらに、電池作製時の加圧により発現する電極とセパレータとの間の密着性を一層高めることができる。熱可塑性ポリマーと基材との密着性を一層高めつつ、ハンドリング性を更に良好に保持する点から、20℃以上の領域に存在するガラス転移温度は、20℃以上120℃以下の領域にのみ存在することが好ましく、50℃以上120℃以下の領域にのみ存在することがより好ましい。
熱可塑性ポリマーがガラス転移温度を少なくとも2つ有することは、例えば、2種類以上の熱可塑性ポリマーをブレンドする方法や、コアシェル構造を備える熱可塑性ポリマーを用いる方法によって達成できるが、これらの方法に限定されない。コアシェル構造とは、中心部分に属するポリマーと、外殻部分に属するポリマーが異なる組成からなる、二重構造の形態をしたポリマーである。
特に、ポリマーブレンドやコアシェル構造は、ガラス転移温度の高いポリマーと低いポリマーとを組み合せることにより、熱可塑性ポリマー全体のガラス転移温度を制御できる。また、熱可塑性ポリマー全体に複数の機能を付与できる。例えば、ブレンドの場合は、特にガラス転移温度が20℃以上の領域に存在するポリマーと、ガラス転移温度が20℃未満の領域に存在するポリマーとを、2種類以上ブレンドすることで、耐ベタツキ性と基材への塗れ性とを更に良好に両立することができる。ブレンドする場合の混合比としてはガラス転移温度が20℃以上の領域に存在するポリマーと、ガラス転移温度が20℃未満の領域に存在するポリマーとの比が0.1:99.9〜99.9:0.1の範囲であることが好ましく、より好ましくは、5:95〜95:5であり、更に好ましくは50:50〜95:5であり、特に好ましくは60:40〜90:10である。コアシェル構造の場合は、外殻ポリマーの種類を変えることにより、ポリオレフィン微多孔膜など他材料に対する接着性や相溶性の調整ができ、中心部分に属するポリマーの種類を変更することで、例えば熱プレス後の電極への接着性を高めたポリマーに調整することができる。また、粘性の高いポリマーと弾性の高いポリマーとを組み合わせて粘弾性の制御をすることもできる。
なお、コアシェル構造を備える熱可塑性ポリマーのシェルのガラス転移温度は、特に限定されないが、20℃未満が好ましく、15℃以下がより好ましく、−30℃以上15℃以下が更に好ましい。また、コアシェル構造を備える熱可塑性ポリマーのコアのガラス転移温度は、特に限定されないが、20℃以上が好ましく、20℃以上120℃以下がより好ましく、50℃以上120℃以下が更に好ましい。
本実施形態におけるセパレータは、耐熱性の指標であるショート温度が、好ましくは150℃以上であり、より好ましくは160℃以上である。ショート温度を150℃以上とすることは、蓄電デバイスの安全性の観点から好ましい。なお、ショート温度は、特許第4733232号公報に記載の方法により測定される。
(熱可塑性ポリマー担持蓄電デバイス用セパレータの製造方法)
本実施形態において、共重合体を含む熱可塑性ポリマーを基材の少なくとも一方の面(片面)に担持する方法は、特に限定されない。例えば、熱可塑性ポリマーを含有する塗布液を基材の少なくとも一方の面に塗布した後、必要に応じて塗布液の溶媒又は分散媒を除去する方法が挙げられる。
塗布液に含まれる溶媒又は分散媒は、特に限定されないが、水が好ましい。塗布液を基材に塗布する際に、塗布液が基材の内部にまで入り込んでしまうと、共重合体を含む熱可塑性ポリマーが、基材の孔の表面及び内部を閉塞し透過性が低下しやすくなる。この点、塗布液の溶媒又は分散媒として水を用いる場合には、基材の内部に塗布液が入り込み難くなり、共重合体を含む熱可塑性ポリマーは主に基材の外表面上に存在しやすくなるため、透過性の低下をより効果的に抑制できるので好ましい。また、水と併用可能な溶媒又は分散媒としては、例えば、エタノール及びメタノールを挙げることができる。
塗布液を基材に塗布する方法については、必要とする層厚や塗布面積を実現できる方法であれば特に限定はなく、例えば、グラビアコーター法、小径グラビアコーター法、リバースロールコーター法、トランスファロールコーター法、キスコーター法、ディップコーター法、ナイフコーター法、エアドクタコーター法、ブレードコーター法、ロッドコーター法、スクイズコーター法、キャストコーター法、ダイコーター法、スクリーン印刷法、スプレー塗布法が挙げられる。
本実施形態においては、塗布液の塗布に先立ち、基材表面に表面処理を施すことが、塗布液をより塗布しやすくなると共に基材と熱可塑性ポリマーとの接着性が向上するため、好ましい。表面処理の方法は、基材の構造(例えばポリオレフィン微多孔膜の多孔質構造)を著しく損なわない方法であれば特に限定はなく、例えば、コロナ放電処理法、プラズマ処理法、機械的粗面化法、溶剤処理法、酸処理法、及び紫外線酸化法が挙げられる。
本実施形態において、基材に塗布した塗布液から溶媒を除去する場合には、基材に悪影響を及ぼさない方法であれば特に限定はない。例えば、基材としてポリオレフィン微多孔膜を用いる場合、基材を固定しながらその融点以下の温度にて乾燥する方法、低温で減圧乾燥する方法、共重合体に対する貧溶媒に浸漬して共重合体を凝固させると同時に溶媒を抽出する方法が挙げられる。
また、共重合体が共重合体粒子を含み、基材がポリオレフィン微多孔膜である場合、上記共重合体の粒子と基材であるポリオレフィン微多孔膜との密着性を高める目的で、ガラス転移温度(Tg)が20℃以下である共重合体粒子を混合して用いることもできる。Tgが20℃以下の共重合体粒子は、共重合体粒子の全量に対して5〜40質量%含まれることが好ましい。また、上記Tgが20℃以下の共重合体の膨潤度は、特に限定されないが、密着性をより有効に発現する観点から、6.0倍以下であることが好ましい。
[蓄電デバイス用セパレータ]
本実施形態の蓄電デバイス用セパレータを備える蓄電デバイスは、特に限定されないが、例えば、非水系電解液二次電池等の電池、コンデンサー及びキャパシタが挙げられる。それらの中でも、本発明による作用効果による利益がより有効に得られる観点から、電池が好ましく、非水系電解液二次電池がより好ましく、リチウムイオン二次電池が更に好ましい。本実施形態の蓄電デバイス用セパレータは、基材上にポリマー層を備えるため、捲回時のハンドリング性、電極活物質との接着性、及び透過性にも優れる。
また、本実施形態におけるセパレータは、後述の実施例に記載の方法で測定される、2枚重ねて、その積層方向に、温度25℃、圧力5MPaで3分間加圧した後の90°剥離強度(以下、「常温剥離強度」ともいう。)が40mN/mm以下であることが好ましく、30mN/mm以下であることがより好ましい。これにより、セパレータ表面のベタツキ性が更に抑制され、ハンドリング性により優れると共に、スリット性や捲回性にも更に優れるという効果が得られる。
本実施形態のセパレータは、特に限定されないが、後述の実施例に記載の方法で測定される、ポリマー層側を正極集電体のアルミニウム箔に80℃、10MPaの圧力で2分間加圧した場合の剥離強度(以下、「加熱剥離強度」ともいう。)が4mN/mm以上であることが好ましい。加熱剥離強度が上記範囲にあるセパレータは、後述の蓄電デバイスに適用する際に、電極とセパレータとの密着性に優れる点で好ましい。
さらに驚くべきことに、本発明者らは常温剥離強度及び加熱剥離強度が上記範囲内であることで、本実施形態のセパレータを電極に加熱プレスした際の密着性が更に向上することを見出した。このような効果が得られる理由は定かでないが、常温剥離強度が上記範囲内にあることは、本実施形態のセパレータの熱可塑性ポリマーを含有する層において、その最表面側にガラス転移温度の高い熱可塑性樹脂が多く存在し、かつ、基材側にガラス転移温度の低い熱可塑性樹脂が多く存在していることを示していると考えられる。すなわち、熱可塑性ポリマーを含有する層の最表面側にガラス転移温度の高い熱可塑性樹脂が多く存在することでベタツキ性が更に抑制され、また、ガラス転移温度の高い熱可塑性樹脂は電極との密着性に優れるため、結果としてベタツキ性が低く、かつ電極への密着性に優れたセパレータが得られたものと考えられる。一方、熱可塑性ポリマーを含有する層の基材側にガラス転移温度の低い熱可塑性樹脂が多く存在することで、基材と熱可塑性樹脂との接着性が向上する結果、基材と熱可塑性樹脂との界面における剥離が抑制され、結果として電極への密着性に優れたセパレータが得られたものと考えられる。
[積層体]
本実施形態に係る積層体は、上記セパレータと電極とが積層したものである。本実施形態のセパレータは、電極と接着することにより積層体として用いることができる。ここで、「接着」とは、セパレータと電極との剥離強度が、好ましくは4mN/mm以上、より好ましくは6mN/mm以上、更に好ましくは8mN/mm以上であることをいう。
積層体は、捲回時のハンドリング性及び蓄電デバイスのレート特性に優れ、さらには、熱可塑性ポリマーと基材との接着性及び透過性にも優れる。そのため、積層体の用途としては、特に限定されないが、例えば、非水電解液二次電池等の電池やコンデンサー、キャパシタ等の蓄電デバイス等に好適に用いられる。
本実施形態の積層体に用いられる電極としては、後述の蓄電デバイスの項目に記載のものを用いることができる。
本実施形態のセパレータを用いて積層体を製造する方法は、特に限定されないが、例えば、本実施形態のセパレータと電極とを重ね、必要に応じて加熱及び/又はプレスして製造することができる。上記加熱及び/又はプレスは電極とセパレータとを重ねる際に行うことができる。また、電極とセパレータとを重ねた後に円または扁平な渦巻き状に巻回して得られる巻回体に対して加熱及び/又はプレスを行うことで製造することもできる。
また、積層体は、正極−セパレータ−負極−セパレータ、又は負極−セパレータ−正極−セパレータの順に平板状に積層し、必要に応じて加熱及び/又はプレスして製造することもできる。
より具体的には、本実施形態のセパレータを幅10〜500mm(好ましくは80〜500mm)、長さ200〜4000m(好ましくは1000〜4000m)の縦長形状のセパレータとして作製し、当該セパレータを、正極−セパレータ−負極−セパレータ、又は負極−セパレータ−正極−セパレータの順で重ね、必要に応じて加熱及び/又はプレスして製造することができる。
上記加熱時の温度としては、40〜120℃が好ましい。加熱時間は5秒〜30分が好ましい。上記プレス時の圧力としては、1〜30MPaが好ましい。プレス時間は5秒〜30分が好ましい。また、加熱とプレスの順序は、加熱をしてからプレスをしても、プレスをしてから加熱をしても、プレスと加熱を同時に行ってもよい。このなかでも、プレスと加熱を同時に行うことが好ましい。
[蓄電デバイス]
本実施形態のセパレータは、電池やコンデンサー、キャパシタ等におけるセパレータや物質の分離に用いることができる。特に、非水電解液電池用セパレータとして用いた場合に、電極への密着性と優れた電池性能を付与することが可能である。本実施形態の蓄電デバイスは、蓄電デバイス用セパレータを備えるものであり、それ以外の構成は、従来知られているものと同様であってもよい。蓄電デバイスは、特に限定されないが、例えば、非水系電解液二次電池等の電池、コンデンサー及びキャパシタが挙げられる。それらの中でも、本発明による作用効果による利益がより有効に得られる観点から、電池が好ましく、非水系電解液二次電池がより好ましく、リチウムイオン二次電池が更に好ましい。以下、蓄電デバイスが非水系電解液二次電池である場合についての好適な態様について説明する。
本実施形態のセパレータを備える非水系電解液二次電池は、そのセパレータ以外に、正極、負極及び非水電解液を備える。正極、負極及び非水電解液は特に限定されず、公知のものを用いることができる。
正極材料(正極活物質)としては、特に限定されないが、例えば、LiCoO2、LiNiO2、スピネル型LiMnO4、オリビン型LiFePO4等のリチウム含有複合酸化物が挙げられる。また、負極材料としては、特に限定されないが、例えば、黒鉛質、難黒鉛化炭素質、易黒鉛化炭素質、複合炭素体等の炭素材料;シリコン、スズ、金属リチウム、各種合金材料が挙げられる。正極及び負極はそれぞれ集電体を備えてもよく、正極集電体としては、例えばアルミニウム箔が挙げられ、負極集電体としては、例えば銅箔が挙げられる。
非水電解液としては、特に限定されないが、電解質を有機溶媒に溶解した電解液を用いることができ、有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートが挙げられる。また、電解質としては、例えば、LiClO4、LiBF4、LiPF6等のリチウム塩が挙げられる。
本実施形態の蓄電デバイスは、特に限定されないが、例えば、下記のようにして製造される。すなわち、本実施形態のセパレータを幅10〜500mm(好ましくは80〜500mm)、長さ200〜4000m(好ましくは1000〜4000m)の縦長形状のセパレータとして作製する。次に、当該セパレータを、正極及び負極と共に、正極−セパレータ−負極−セパレータ、又は負極−セパレータ−正極−セパレータの順で重ねて積層物を得る。次いで、その積層物を、円筒形の又は扁平な渦巻状に巻回して巻回体を得る。そして、当該巻回体を電池缶内に収納し、更に電解液を注入することにより、蓄電デバイスが得られる。また、本実施形態の蓄電デバイスは、正極−セパレータ−負極−セパレータ−正極、又は負極−セパレータ−正極−セパレータ−負極の順に平板状に積層して積層物を得た後、袋状のフィルム内に収容してラミネートし、そこに電解液を注入する工程を経て製造することもできる。また、上記巻回体として上述の積層体を円又は扁平な渦巻き状に巻回したものを用いて製造することもできる。また、蓄電デバイスは、正極−セパレータ−負極−セパレータ、又は負極−セパレータ−正極−セパレータの順に平板状に積層したもの、または上述の積層体を袋状のフィルムでラミネートし、電解液を注入する工程と、場合によって加熱及び/又はプレスを行う工程を経て製造することもできる。上記の加熱及び/又はプレスを行う工程は、上記電解液を注入する工程の前及び/又は後に行うことができる。
なお、上述した各種パラメータについては、特に断りのない限り、後述する実施例における測定法に準じて測定される値である。
以下、本発明を実施例に基づいて詳細に説明をするが、本発明は実施例に限定されるものではない。以下の合成例、製造例、実施例及び比較例において用いられた各種物性の測定方法や評価方法は、以下のとおりである。なお、特に記載のない限り各種測定及び評価は、室温23℃、1気圧、相対湿度50%の条件で行った。
[測定方法]
(1)固形分
得られた共重合体の水分散体をアルミ皿上に約1g精秤し、このとき量り取った水分散体の質量を(a)gとした。それを、130℃の熱風乾燥機で1時間乾燥し、乾燥後の共重合体の乾燥質量を(b)gとした。下記式により固形分を算出した。
固形分=(b)/(a)×100 [%]
(2)共重合体粒子の平均粒径
光散乱法による粒径測定装置(LEED&NORTHRUP社製、商品名「MICROTRAC UPA150」)を用い、50%粒径(nm)を測定し、平均粒径とした。
(3)基材(ポリオレフィン微多孔膜)の目付
10cm×10cm角の試料を基材から切り取り、株式会社島津製作所製の電子天秤AEL−200(商品名)を用いて質量を測定した。得られた質量を100倍することで1m2当たりの膜の目付(g/m2)を算出した。
(4)基材(ポリオレフィン微多孔膜)の気孔率
10cm×10cm角の試料を基材から切り取り、その体積(cm3)と質量(g)を求め、膜密度を0.95(g/cm3)として下記式を用いて計算した。
気孔率=(1−質量/体積/0.95)×100
(5)基材(ポリオレフィン微多孔膜)の透気度
JIS P−8117に準拠し、東洋精器株式会社製のガーレー式透気度計、G−B2(商標)により測定した透気抵抗度を透気度とした。
(6)基材(ポリオレフィン微多孔膜)の突刺強度
カトーテック製のハンディー圧縮試験器KES−G5(商標)を用いて、開口部の直径11.3mmの試料ホルダーで基材を固定した。次に固定された基材の中央部に対して、先端の曲率半径が0.5mmである針を用い、突刺速度2mm/secの条件で、25℃の雰囲気下にて突刺試験を行うことにより、最大突刺荷重として突刺強度(g)を得た。
(7)基材(ポリオレフィン微多孔膜)の平均孔径
キャピラリー内部の流体は、流体の平均自由工程がキャピラリーの孔径より大きいときはクヌーセンの流れに、小さい時はポアズイユの流れに従うことが知られている。そこで、基材の透気度測定における空気の流れがクヌーセンの流れに、また、基材の透水度測定における水の流れがポアズイユの流れに従うと仮定した。
平均孔径d(μm)は、空気の透過速度定数Rgas(m3/(m2・sec・Pa))、水の透過速度定数Rliq(m3/(m2・sec・Pa))、空気の分子速度ν(m/sec)、水の粘度η(Pa・sec)、標準圧力Ps(=101325Pa)、気孔率ε(%)、膜厚L(μm)から、下記式を用いて求めた。
d=2ν×(Rliq/Rgas)×(16η/3Ps)×106
ここで、Rgasは透気度(秒)から下記式を用いて求めた。
gas=0.0001/(透気度×(6.424×10-4)×(0.01276×101325))
また、Rliqは透水度(cm3/(cm2・sec・Pa))から下記式を用いて求めた。
liq=透水度/100
なお、透水度は次のようにして求めた。直径41mmのステンレス製の透液セルに、予めエタノールに浸しておいた基材をセットし、その基材のエタノールを水で洗浄した後、約50000Paの差圧で基材に水を透過させ、120秒間経過した際の透水量(cm3)より、単位時間・単位圧力・単位面積当たりの透水量を計算し、これを透水度とした。
また、νは気体定数R(=8.314)、絶対温度T(K)、円周率π、空気の平均分子量M(=2.896×10-2kg/mol)から下記式を用いて求めた。
ν=((8R×T)/(π×M))1/2
(8)ポリマー層の平均厚さ
走査型電子顕微鏡(SEM)「型式S−4800、HITACHI社製」を用い、セパレータの断面観察により測定した。より具体的には、セパレータを1.5mm×2.0mm程度に切り取り、ルテニウム染色した。ゼラチンカプセル内に染色後のサンプルとエタノールとを収容し、液体窒素により凍結させた後、ハンマーでサンプルを割断した。次いで、サンプルをオスミウム蒸着し、加速電圧1.0kV、30000倍にて観察し、ポリマー層の平均厚さを算出した。なお、SEM画像にて基材(ポリオレフィン微多孔膜)断面の多孔構造が見えない最表面領域をポリマー層領域とした。
(9)共重合体のガラス転移温度
共重合体を含む水分散体(固形分=38〜42質量%、pH=9.0)を、アルミ皿に適量とり、130℃の熱風乾燥機で30分間乾燥した。乾燥後の乾燥皮膜約17mgを測定用アルミ容器に詰め、DSC測定装置(島津製作所社製、型番:DSC6220)にて窒素雰囲気下におけるDSC曲線及びDDSC曲線を得た。なお、測定条件は下記の通りとした。
(1段目昇温プログラム)
70℃で開始し、毎分15℃の速度で昇温した。110℃に到達後、その温度で5分間維持した。
(2段目降温プログラム)
110℃から毎分30℃の速度で降温した。−50℃に到達後、その温度で4分間維持した。
(3段目昇温プログラム)
−50℃から毎分15℃の速度で130℃まで昇温した。この3段目の昇温時にDSC及びDDSCのデータを取得した。
得られたDSC曲線におけるベースラインを高温側に延長した直線と、変曲点における接線との交点をガラス転移温度(Tg)とした。
(10)共重合体の電解液に対する膨潤度
共重合体を含む水分散体を130℃のオーブン中に1時間静置して乾燥させた。乾燥させて得られた共重合体の膜を0.5gになるように切り取った。切り取ったサンプルを、エチレンカーボネート:ジエチルカーボネート=2:3(質量比)の混合溶媒10gと一緒に50mLのバイアル瓶に入れ、1日混合溶媒を浸透させた後、サンプルを取り出し、上記混合溶媒にて洗浄し、質量(Wa:g)を測定した。その後、サンプルを150℃のオーブン中に1時間静置してから、質量を測定し(Wb:g)、下記式より共重合体の電解液に対する膨潤度を算出した。
共重合体の電解液に対する膨潤度(倍)=(Wa−Wb)÷(Wb)
(11)ポリマー層の基材に対する担持量
基材(ポリオレフィン微多孔膜)及びセパレータのそれぞれについて、10cm×10cmに切り出したサンプル3枚の総質量を測定し、下記式により、サンプル中のポリマー層の担持量(固形分)を測定した。
ポリマー層の担持量(g/m2)=[(セパレータ3枚の総質量)−(基材3枚の総質量)]÷3×100
[評価方法]
(12)セパレータと電極との密着性
セパレータと電極との密着性は、以下の手順で評価した。
(正極の作製)
正極活物質としてリチウムコバルト複合酸化物(LiCoO2)92.2質量%、導電材としてリン片状グラファイトとアセチレンブラックそれぞれ2.3質量%、バインダーとしてポリフッ化ビニリデン(PVDF)3.2質量%を、N−メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターで塗布し、130℃で3分間乾燥後、ロールプレス機で圧縮成形した。この時、正極の活物質塗布量は250g/m2、活物質嵩密度は3.00g/cm3になるようにした。
(負極の作製)
負極活物質として人造グラファイト96.9質量%、バインダーとしてカルボキシメチルセルロースのアンモニウム塩1.4質量%とスチレン−ブタジエンコポリマー水分散体1.7質量%を、精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗布し、120℃で3分間乾燥後、ロールプレス機で圧縮成形した。この時、負極の活物質塗布量は106g/m2、活物質嵩密度は1.35g/cm3になるようにした。
(密着性試験)
上記方法により得られた電極を幅17mm、長さ50mmに切断した。一方、エチレンカーボネートとジエチルカーボネートとを2:3の比率(体積比)にて混合した電解液(富山薬品工業製)に、セパレータ(サイズ:幅20mm、長さ100mm)を浸漬して十分に濡らした後に引き上げた。次いで、上記電極と十分に濡らしたセパレータとを重ねた後にアルミニウム製のジップ付き袋に入れ、80℃、10MPaの条件で、2分間プレスを行った。その後、電極とセパレータとの積層体を袋から取り出して密着性試験用のサンプルとした。得られた試験用サンプルの基材と電極との間の90°剥離強度を、(株)イマダ製のフォースゲージZP5N及びMX2−500N(製品名)を用いて、引張速度50mm/分で測定した。剥離強度の値に基づいて、下記の評価基準により評価した。
<評価基準>
6mN/mm以上…◎
4mN/mm以上6mN/mm未満…○
4mN/mm未満…×
(13)加熱剥離強度試験
(条件1)
被着体として正極集電体(冨士加工紙(株)製アルミニウム箔、厚さ:20μm)を30mm×150mmに切り取った。一方、エチレンカーボネートとジエチルカーボネートとを2:3の比率(体積比)にて混合した電解液(富山薬品工業製)に、セパレータ(サイズ:幅20mm、長さ100mm)を浸漬して十分に濡らした後に引き上げた。次いで、上記集電体に十分に濡らしたセパレータをそのポリマー層側から重ね合わせた後、それらを2枚のテフロン(登録商標)シート(ニチアス(株)製ナフロンPTFEシート TOMBO−No.9000(製品名))で挟んだ。それらに対して80℃、10MPaの条件で、2分間プレスを行って得られた積層体を加熱剥離強度試験用(条件1)のサンプルとした。得られた試験用サンプルのセパレータと集電体との間の90°剥離強度を、(株)イマダ製のフォースゲージZP5N及びMX2−500N(製品名)を用いて、引張速度50mm/分で測定した。
(条件2)
被着体として正極集電体(冨士加工紙(株)製アルミニウム箔、厚さ:20μm)を30mm×150mmに切り取り、その集電体にセパレータ(サイズ:幅20mm、長さ100mm)をそのポリマー層側から重ね合せた後、それらを2枚のテフロン(登録商標)シート(ニチアス(株)製ナフロンPTFEシート TOMBO−No.9000(製品名))で挟んだ。これらに対して80℃、10MPaの条件で、2分間プレスを行って得られた積層体を加熱剥離強度試験用(条件2)のサンプルとした。得られた試験用サンプルのセパレータと集電体との間の90°剥離強度を、(株)イマダ製のフォースゲージZP5N及びMX2−500N(製品名)を用いて、引張速度50mm/分で測定した。
上記条件1及び条件2にて測定した剥離強度の値に基づいて、下記の評価基準により評価した。
条件1及び条件2の少なくとも一方の剥離強度が4mN/mm以上の場合…○
条件1及び条件2の剥離強度がいずれも4mN/mm未満の場合…×
(14)セパレータのハンドリング性(耐ブロッキング性;常温剥離強度試験)
20mm×100mmに切り取ったセパレータ2枚を準備し、それらの熱可塑性ポリマーを含有する層同士を重ね合わせた後、温度25℃、圧力5MPaの条件で3分間プレスを行った。プレス後のサンプルにおけるセパレータ同士の90°剥離強度を、(株)イマダ製のフォースゲージZP5N及びMX2−500N(製品名)を用いて、引張速度50mm/分で測定した。剥離強度の値に基づいて、下記の評価基準により評価した。
<評価基準>
40mN/mm以下…○
40mN/mm超…×
(15)レート特性
セパレータを18mmφ、上記「(12)セパレータと電極との密着性」にて作製した正極及び上記負極を16mmφの円形(円板)に切り出し、正極と負極との活物質面が対向するよう、正極、セパレータ及び負極の順に積層した後、蓋付きステンレス金属製容器に収納した。容器と蓋とは絶縁されており、容器は負極の銅箔と、蓋は正極のアルミニウム箔と接するように配置した。この容器内に上記電解液を注入して密閉し、その状態で室温にて1日放置した。なお、電解液は、エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPF6を濃度1.0mL/Lとなるように溶解させて調製したものを用いた。その後、25℃雰囲気下、2mA(0.3C)の電流値で電池電圧が4.2Vになるまで充電し、その電圧に到達後、そのまま4.2Vを保持するようにして、電流値を3mAから絞り始めるという方法により、合計8時間、電池作製後の最初の充電を行った。続いて、6mA(1C)の電流値で電池電圧が3.0Vになるまで放電(定電流放電)して放電容量を測定した。次いで、上記と同様にして充電を行った後、12mA(2C)の電流値で電池電圧が3.0Vになるまで放電(定電流放電)して放電容量を測定した。
前者(1C)の放電容量に対する後者(2C)の放電容量の割合を容量維持率(%)と定義し、容量維持率が50%以上の場合を○、50%未満の場合を×として、レート特性を評価した。
[合成例1]
(水分散体A1)
撹拌機、還流冷却器、滴下槽及び温度計を取りつけた反応容器に、イオン交換水70.4質量部と、乳化剤として「アクアロンKH1025」(登録商標、第一工業製薬株式会社製25%水溶液、表中「KH1025」と表記。以下同様。)0.5質量部と、「アデカリアソープSR1025」(登録商標、株式会社ADEKA製25%水溶液、表中「SR1025」と表記。以下同様。)0.5質量部とを投入した。次いで、反応容器内部の温度を80℃に昇温し、80℃の温度を保ったまま、過硫酸アンモニウムの2%水溶液(表中「APS(aq)と表記。以下同様。」)を7.5質量部添加した。過硫酸アンモニウム水溶液を添加終了した5分後に、乳化液を滴下槽から反応容器に150分かけて滴下した。なお、乳化液は、炭素原子数が4〜7の直鎖状の炭化水素基を有するメタクリル酸エステルである単量体(A)(表中、「直鎖炭化水素基含有単量体(A)」と表記。以下同様。)として、ブチルメタクリレート(表中、「BMA」と表記。以下同様。)78質量部、カルボキシル基を有するエチレン性不飽和単量体(b1)(表中、「カルボキシル基含有単量体(b1)」と表記。)としてアクリル酸(表中、「AA」と表記。以下同様。)1.0質量部、メタクリル酸(表中、「MAA」と表記。以下同様。)1.0質量部、架橋性単量体(b4)(表中、「架橋性単量体(b4)」と表記。以下同様。)としてトリメチロールプロパントリアクリレート(A−TMPT、新中村化学工業株式会社製商品名、表中、「A−TMPT」と表記。以下同様。)1.0質量部、γ−メタクリロキシプロピルトリメトキシシラン(表中、「AcSi」と表記。以下同様)0.5質量部、上記以外の(メタ)アクリル酸エステル単量体(b5)(表中、「上記以外の(メタ)アクリル酸エステル単量体(b5)」と表記。以下同様。)としてメチルメタクリレート(表中、「MMA」と表記。以下同様。)20質量部、乳化剤として「アクアロンKH1025」(登録商標、第一工業製薬株式会社製25%水溶液)2.0質量部、過硫酸アンモニウムの2%水溶液7.5質量部、及びイオン交換水52質量部の混合物をホモミキサーにより5分間混合させて作製した。
乳化液の滴下終了後、反応容器内部の温度を80℃に保ったまま90分間維持し、その後室温まで冷却した。得られたエマルジョンを、水酸化アンモニウム水溶液(25%水溶液)でpH=9.0に調整し、濃度40%の水分散体を得た(水分散体A1)。得られた水分散体A1中の共重合体について、上記方法により、Tg、平均粒径、及び電解液に対する膨潤度を測定した。得られた結果を表1に示す。
[合成例2〜10]
(水分散体A2〜A10)
原材料の種類及び配合比を表1に示すように変更した以外は、合成例1と同様にして、水分散体A2〜A10を得た、なお、表中、「BA」は、上記以外の(メタ)アクリル酸エステル単量体(b5)の1種であるブチルアクリレートを意味する。得られた水分散体A2〜A10中の共重合体について、上記方法により、Tg、粒子径、及び電解液に対する膨潤度を測定した。得られた結果を表1に示す。なお、表中、原材料の組成は質量基準である。
Figure 0006419247
[製造例1]
(基材B1の製造)
Mvが70万であり、ホモポリマーの高密度ポリエチレンを45質量部と、Mvが30万であり、ホモポリマーの高密度ポリエチレンを45質量部と、Mvが40万であるホモポリマーのポリプロピレンとMvが15万であるホモポリマーのポリプロピレンとの混合物(質量比=4:3)10質量部とを、タンブラーブレンダーを用いてドライブレンドした。得られたポリオレフィン混合物99質量部に酸化防止剤としてテトラキス−[メチレン−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタンを1質量部添加し、再度タンブラーブレンダーを用いてドライブレンドすることにより、混合物を得た。得られた混合物を、窒素雰囲気下で二軸押出機へフィーダーにより供給した。また、流動パラフィン(37.78℃における動粘度7.59×10−5m2/s)を押出機シリンダーにプランジャーポンプにより注入した。押し出される全混合物中に占める流動パラフィンの割合が65質量部となるように、すなわち、ポリマー濃度が35質量部となるように、フィーダー及びポンプの運転条件を調整した。
次いで、それらを二軸押出機内で230℃に加熱しながら溶融混練し、得られた溶融混練物を、T−ダイを経て表面温度80℃に制御された冷却ロール上に押し出し、その押出物を冷却ロールに接触させ成形(cast)して冷却固化することにより、シート状成形物を得た。このシートを同時二軸延伸機にて倍率7×6.4倍、温度112℃下で延伸した後、塩化メチレンに浸漬して、流動パラフィンを抽出除去後乾燥し、テンター延伸機にて温度130℃、横方向に2倍延伸した。その後、この延伸シートを幅方向に約10%緩和して熱処理を行い、基材B1を得た。
得られた基材B1について、上記方法により各種物性を測定した。その結果、目付は、7.0g/m2、膜厚は12μm、気孔率は40%、透気度は150s/100cc、突刺強度は320g、平均孔径は0.075μmであった。
[製造例2]
[基材B2の製造]
水酸化酸化アルミニウム(平均粒径1.0μm)96.0質量部と、アクリルラテックス(固形分濃度40%、平均粒径145nm、最低成膜温度0℃以下)4.0質量部と、ポリカルボン酸アンモニウム水溶液(サンノプコ社製、製品名「SNディスパーサント5468」)1.0質量部とを100質量部の水に均一に分散させて塗布液を調製した。得られた塗布液を、基材B1の表面にマイクログラビアコーターを用いて塗布した。その後、60℃にて乾燥して水を除去し、基材B1上に多孔層を2μmの厚さで形成した基材B2を得た。
[実施例1]
固形分で80質量部の水分散体A1と、固形分で20質量部の水分散体A7とを、水に均一に分散させて、熱可塑性ポリマーを含む塗布液(固形分30質量%)を調製した。次いで、基材B1の片面にマイクログラビアコーターを用いて、ポリマー層がドット状になるように塗布液を塗布した。その後、60℃にて塗布後の塗布液を乾燥して水を除去した。さらに、基材B1のもう片面にも同様に塗布液を塗布し、再度上記と同様にして乾燥させた。こうして、基材B1の両面にポリマー層を形成したセパレータを得た。なお、このセパレータにおいて、ポリマー層の平均厚さは1μm、基材への担持量は0.5g/m2であった。
得られたセパレータについて、上記方法により、耐ブロッキング性、密着性及びレート特性を評価した。得られた結果を表2に示す。
[実施例2〜6、比較例1〜4]
水分散体の種類及び混合割合(質量%)、ポリマー層のパターン、基材の種類、並びに、塗布液中の固形分(質量部)を表2に示すように変更した以外は実施例1と同様にして塗布液を調製し、セパレータを作製した。なお、比較例4では、塗布液を用いなかった。得られたセパレータの各種物性及び評価・試験結果を表2に示す。
Figure 0006419247
本発明によれば、電極(電極活物質)との密着性及びレート特性の両方に優れたセパレータを提供できる。したがって、本発明は、非水系電解液二次電池等の電池やコンデンサー、キャパシタ等の蓄電デバイス用セパレータとして有用であり、これらの分野に産業上の利用可能性がある。

Claims (8)

  1. 基材と、その基材の少なくとも片面上の少なくとも一部に形成された熱可塑性ポリマーを含有する層と、を備える蓄電デバイス用セパレータであって、
    前記熱可塑性ポリマーがガラス転移温度を少なくとも2つ有しており、
    前記ガラス転移温度のうち少なくとも一つは20℃未満の領域に存在し、
    前記ガラス転移温度のうち少なくとも一つは20℃以上の領域に存在し、
    前記熱可塑性ポリマーが、炭素原子数が4〜7の直鎖状の炭化水素基を有するメタクリル酸エステルと、前記メタクリル酸エステルと共重合可能なその他の単量体と、を単量体単位として有する共重合体を含み、
    前記その他の単量体が、架橋性単量体を含み、
    前記熱可塑性ポリマーは、ガラス転移温度が20℃以上の領域に存在する前記熱可塑性ポリマーと、ガラス転移温度が20℃未満の領域に存在する前記熱可塑性ポリマーとのブレンドである、蓄電デバイス用セパレータ。
  2. 前記メタクリル酸エステルが、n−ブチルメタクリレートである、請求項1記載の蓄電デバイス用セパレータ。
  3. ガラス転移温度が20℃未満の領域に存在する前記熱可塑性ポリマーが、(メタ)アクリル酸エステル単量体を単量体単位として有する共重合体を含む、請求項1又は2に記載の蓄電デバイス用セパレータ。
  4. 前記その他の単量体が、カルボキシル基を有するエチレン性不飽和単量体を含む、請求項1〜3のいずれか1項に記載の蓄電デバイス用セパレータ。
  5. 前記蓄電デバイス用セパレータを2枚重ねて、その積層方向に、温度25℃、圧力5MPaで3分間加圧した後の90°剥離強度が40mN/mm以下である、請求項1〜4のいずれか1項に記載の蓄電デバイス用セパレータ。
  6. 前記基材が、ポリオレフィン微多孔膜である、請求項1〜5のいずれか1項に記載の蓄電デバイス用セパレータ。
  7. 請求項1〜6のいずれか1項に記載の蓄電デバイス用セパレータを備える蓄電デバイス。
  8. 請求項1〜6のいずれか1項に記載の蓄電デバイス用セパレータを備えるリチウムイオン二次電池。
JP2017076366A 2017-04-07 2017-04-07 蓄電デバイス用セパレータ、蓄電デバイス及びリチウムイオン二次電池 Active JP6419247B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017076366A JP6419247B2 (ja) 2017-04-07 2017-04-07 蓄電デバイス用セパレータ、蓄電デバイス及びリチウムイオン二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017076366A JP6419247B2 (ja) 2017-04-07 2017-04-07 蓄電デバイス用セパレータ、蓄電デバイス及びリチウムイオン二次電池

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016077801A Division JP2016167456A (ja) 2016-04-08 2016-04-08 蓄電デバイス用セパレータ、蓄電デバイス及びリチウムイオン二次電池

Publications (2)

Publication Number Publication Date
JP2017162821A JP2017162821A (ja) 2017-09-14
JP6419247B2 true JP6419247B2 (ja) 2018-11-07

Family

ID=59857206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017076366A Active JP6419247B2 (ja) 2017-04-07 2017-04-07 蓄電デバイス用セパレータ、蓄電デバイス及びリチウムイオン二次電池

Country Status (1)

Country Link
JP (1) JP6419247B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5670626B2 (ja) * 2009-07-15 2015-02-18 日立マクセル株式会社 電気化学素子用セパレータ、電気化学素子およびその製造方法
JP5646831B2 (ja) * 2009-09-04 2014-12-24 日立マクセル株式会社 リチウム二次電池およびその製造方法、並びにリチウム二次電池用セパレータ
WO2013047853A1 (ja) * 2011-09-26 2013-04-04 住友化学株式会社 二次電池用接着樹脂組成物

Also Published As

Publication number Publication date
JP2017162821A (ja) 2017-09-14

Similar Documents

Publication Publication Date Title
US10811659B2 (en) Separator for electricity storage device, laminate and porous film
JP6502523B2 (ja) 蓄電デバイス用バインダー、蓄電デバイス用バインダー組成物
JP5877213B2 (ja) 積層体、蓄電デバイス用セパレータ、蓄電デバイス、リチウムイオン二次電池および共重合体
JP7166773B2 (ja) 蓄電デバイス用セパレータ及びそれを用いた積層体、捲回体、リチウムイオン二次電池、並びに蓄電デバイス
JP6431621B2 (ja) 蓄電デバイス用セパレータ並びにそれを用いた電極体及び蓄電デバイス
JP6698326B2 (ja) 多層多孔膜及び蓄電デバイス用セパレータ
JP6856988B2 (ja) 蓄電デバイス用セパレータ及びそれを用いた積層体、捲回体、リチウムイオン二次電池又は蓄電デバイス
JP6316879B2 (ja) 蓄電デバイス用セパレータ、蓄電デバイス、リチウムイオン二次電池及び共重合体
JP2016072247A (ja) 蓄電デバイス用セパレータ
JP2015141838A (ja) 蓄電デバイス用セパレータ、蓄電デバイス、リチウムイオン二次電池及び共重合体
JP5968347B2 (ja) 積層体、蓄電デバイス及びリチウムイオン二次電池
JP2018170281A (ja) 蓄電デバイス用セパレータ、蓄電デバイス及びリチウムイオン二次電池
JP6016757B2 (ja) 蓄電デバイス用セパレータ、蓄電デバイス、リチウムイオン二次電池及び共重合体
JP5848783B2 (ja) 積層体、蓄電デバイス及びリチウムイオン二次電池
JP2016071963A (ja) 蓄電デバイス用セパレータ
JP6903090B2 (ja) 蓄電デバイス用セパレータ、及びそれを用いた捲回体、リチウムイオン二次電池、並びに蓄電デバイス
JP6580234B1 (ja) 蓄電デバイス用セパレータ、及びそれを用いた捲回体、リチウムイオン二次電池、並びに蓄電デバイス
JP6574602B2 (ja) 蓄電デバイス用セパレータ、蓄電デバイス、及びリチウムイオン二次電池
JP2015141840A (ja) 蓄電デバイス用セパレータ、蓄電デバイス及びリチウムイオン二次電池
JP6423939B2 (ja) 蓄電デバイス用セパレータ、蓄電デバイス及びリチウムイオン二次電池
JP6227696B2 (ja) 蓄電デバイス用セパレータ、蓄電デバイス及びリチウムイオン二次電池
JP6630620B2 (ja) 蓄電デバイス用セパレータ、蓄電デバイス及びリチウムイオン二次電池
JP6419247B2 (ja) 蓄電デバイス用セパレータ、蓄電デバイス及びリチウムイオン二次電池
JP2016167456A (ja) 蓄電デバイス用セパレータ、蓄電デバイス及びリチウムイオン二次電池
JP2015141837A (ja) 蓄電デバイス用セパレータ、蓄電デバイス、リチウムイオン二次電池及び共重合体

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181009

R150 Certificate of patent or registration of utility model

Ref document number: 6419247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150