WO2017086085A1 - 磁界センサ及びこれを備える磁界検出装置 - Google Patents

磁界センサ及びこれを備える磁界検出装置 Download PDF

Info

Publication number
WO2017086085A1
WO2017086085A1 PCT/JP2016/081103 JP2016081103W WO2017086085A1 WO 2017086085 A1 WO2017086085 A1 WO 2017086085A1 JP 2016081103 W JP2016081103 W JP 2016081103W WO 2017086085 A1 WO2017086085 A1 WO 2017086085A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic body
sensor
magnetic sensor
magnetic field
Prior art date
Application number
PCT/JP2016/081103
Other languages
English (en)
French (fr)
Inventor
裕己 浅妻
圭 田邊
晶裕 海野
篤史 松田
将司 ▲高▼橋
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to US15/776,234 priority Critical patent/US11022659B2/en
Priority to CN201680067969.8A priority patent/CN108291947B/zh
Priority to DE112016005336.3T priority patent/DE112016005336T5/de
Publication of WO2017086085A1 publication Critical patent/WO2017086085A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/025Compensating stray fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0005Geometrical arrangement of magnetic sensor elements; Apparatus combining different magnetic sensor types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0011Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a magnetic field sensor and a magnetic field detection device including the same, and more particularly to a magnetic field sensor capable of reducing the influence of a disturbance magnetic field while ensuring high detection sensitivity and a magnetic field detection device including the same.
  • Magnetic sensors using magnetoresistive elements are widely used in ammeters and magnetic encoders.
  • the magnetic sensor may be provided with a magnetic body for collecting magnetic flux on the sensor chip (see Patent Document 1).
  • a magnetic body for collecting magnetic flux is provided on the sensor chip, it is possible to increase sensitivity to a magnetic field in the vertical direction.
  • the sensor chip since the sensor chip may be exposed to a disturbance magnetic field as noise in addition to the detection magnetic field to be detected, the detection sensitivity may be reduced by the disturbance magnetic field.
  • a method of shielding the disturbance magnetic field by arranging another magnetic body on the sensor chip or in the vicinity thereof can be considered.
  • an object of the present invention is to provide a magnetic field sensor capable of reducing the influence of a disturbance magnetic field while ensuring high detection sensitivity, and a magnetic field detection apparatus including the magnetic field sensor.
  • a magnetic sensor includes a sensor chip having an element formation surface on which a first magnetic detection element is formed, and a height with respect to the element formation surface as a reference.
  • a first magnetic body having a height and a second height lower than the first height, the first magnetic body being provided on a side opposite to the first magnetic body as viewed from the first magnetic sensing element. And a second magnetic body.
  • the detection magnetic field attracted to the second magnetic body is blocked while the disturbance magnetic field is shielded by the second magnetic body. Can be reduced. As a result, it is possible to reduce the influence of the disturbance magnetic field while ensuring high detection sensitivity.
  • the second magnetic body is disposed on the element formation surface. According to this, it becomes possible to fix the relative positional relationship between the first magnetic body, the first magnetic detection element, and the second magnetic body.
  • a second magnetic detection element is further formed on the element forming surface of the sensor chip, and the first magnetic body includes the first magnetic detection element and the second magnetic detection element. It is preferable that they are arranged between the elements. According to this, it is possible to detect the intensity of the detected magnetic field based on the difference between the output signal from the first magnetic detection element and the output signal from the second magnetic detection element.
  • the first and second magnetic detection elements when the arrangement direction of the first and second magnetic detection elements is the width direction, and the direction parallel to the element formation surface and orthogonal to the width direction is the length direction, the first and second magnetic detection elements
  • the size of the second magnetic body in the length direction is preferably larger than the size in the width direction. According to this, the detection range for the magnetic field in the vertical direction can be expanded. Furthermore, the size of the magnetic sensor can be reduced.
  • At least one of the first and second magnetic bodies may be larger in size in the length direction than in the length direction of the sensor chip.
  • the first and second magnetic bodies may have different sizes in the length direction.
  • the first and second magnetic bodies may have different sizes in the width direction.
  • the second magnetic body may be divided into a plurality of pieces in the length direction.
  • a distance in the width direction between the first magnetic detection element and the second magnetic body is larger than a distance in the width direction between the first magnetic detection element and the first magnetic body. It doesn't matter. According to this, the detection magnetic field attracted to the second magnetic body can be reduced.
  • the distance in the width direction between the first magnetic detection element and the first magnetic body and the distance in the width direction between the first magnetic detection element and the second magnetic body may be equal to each other. I do not care. According to this, it becomes possible to reduce the size of the sensor chip.
  • the magnetic sensor according to the present invention preferably detects a residual magnetic field of a magnetic medium that moves in the width direction relative to the sensor chip. According to this, it becomes possible to apply to, for example, a bill identifying device.
  • the magnetic sensor according to the present invention is provided on the side opposite to the first magnetic body as viewed from the second magnetic detection element, and has a third magnetic property having a third height lower than the first height. It is preferable to further comprise a body. According to this, since the disturbance magnetic field is shielded by the second and third magnetic bodies, the influence of the disturbance magnetic field can be further reduced.
  • the magnetic sensor according to the present invention is a protective member that fills a space between the first magnetic body and the second magnetic body and seals the first and second magnetic bodies. It is preferable to further include a protective member having a lower magnetic permeability than the first and second magnetic bodies. According to this, it is possible to protect the first and second magnetic bodies without reducing the detection sensitivity.
  • a magnetic field detection apparatus includes the above-described magnetic sensor and a signal processing circuit that extracts a predetermined frequency component from an output signal of the magnetic sensor.
  • the magnetic field detection device preferably further includes a magnetic field generation circuit that applies a cancel magnetic field to the magnetic sensor based on a cancel signal generated based on the predetermined frequency component. According to this, it becomes possible to detect the detected magnetic field in a state where the disturbance magnetic field such as geomagnetism is canceled.
  • a magnetic field sensor capable of reducing the influence of a disturbance magnetic field while ensuring high detection sensitivity
  • a magnetic field detection apparatus including the magnetic field sensor
  • FIG. 1 is a schematic plan view showing the configuration of the magnetic sensor 10A according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view along the line AA shown in FIG.
  • FIG. 3 is a schematic perspective view showing the appearance of the magnetic sensor 10A.
  • FIG. 4 is a circuit diagram for explaining a connection relationship between the magnetic detection elements MR1 to MR4.
  • FIG. 5 is a schematic diagram illustrating an example of a magnetic field detection apparatus using the magnetic sensor 10A.
  • FIG. 6 is a schematic view showing a state before and after the soft magnetic body 40M passes through the sensor module 42.
  • FIG. 7 is a schematic diagram for explaining how the disturbance magnetic field 49 is shielded.
  • FIG. 1 is a schematic plan view showing the configuration of the magnetic sensor 10A according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view along the line AA shown in FIG.
  • FIG. 3 is a schematic perspective view showing the appearance of the magnetic sensor 10A
  • FIG. 8 is a schematic plan view showing the configuration of the magnetic sensor 10B according to the second embodiment of the present invention.
  • FIG. 9 is a schematic perspective view showing the appearance of the magnetic sensor 10B.
  • FIG. 10 is a schematic plan view showing the configuration of a magnetic sensor 10C according to the third embodiment of the present invention.
  • FIG. 11 is a schematic perspective view showing the appearance of the magnetic sensor 10C.
  • FIG. 12 is a schematic plan view showing the configuration of a magnetic sensor 10D according to the fourth embodiment of the present invention.
  • FIG. 13 is a schematic perspective view showing the appearance of the magnetic sensor 10D.
  • FIG. 14 is a schematic plan view showing the configuration of a magnetic sensor 10E according to the fifth embodiment of the present invention.
  • 15 is a schematic cross-sectional view along the line EE shown in FIG. FIG.
  • FIG. 16 is a schematic plan view showing the configuration of the magnetic sensor 10F according to the sixth embodiment of the present invention.
  • FIG. 17 is a schematic cross-sectional view along the line FF shown in FIG.
  • FIG. 18 is a schematic plan view showing the configuration of a magnetic sensor 10G according to the seventh embodiment of the present invention.
  • FIG. 19 is a schematic perspective view showing the appearance of the magnetic sensor 10G.
  • FIG. 20 is a schematic plan view showing the configuration of the magnetic sensor 10H according to the eighth embodiment of the present invention.
  • FIG. 21 is a schematic cross-sectional view along the line HH shown in FIG.
  • FIG. 22 is a block diagram of a magnetic field detection apparatus including a signal processing circuit 61 that removes a DC noise component.
  • FIG. 23 is a schematic plan view showing the configuration of the magnetic sensor 10I according to the ninth embodiment of the present invention.
  • FIG. 24 is a schematic cross-sectional view along the line II shown in FIG.
  • FIG. 25 is a schematic perspective view showing the appearance of the magnetic sensor 10I.
  • FIG. 26 is a schematic diagram for explaining how the disturbance magnetic field 49 is shielded.
  • FIG. 27 is a schematic plan view showing the configuration of the magnetic sensor 10J according to the tenth embodiment of the present invention.
  • FIG. 28 is a schematic perspective view showing the appearance of the magnetic sensor 10J.
  • FIG. 29 is a schematic plan view showing the configuration of the magnetic sensor 10K according to the eleventh embodiment of the present invention.
  • FIG. 30 is a schematic perspective view showing the appearance of the magnetic sensor 10K.
  • FIG. 31 is a schematic plan view showing the configuration of a magnetic sensor 10L according to the twelfth embodiment of the present invention.
  • FIG. 32 is a schematic cross-sectional view along the line LL shown in FIG.
  • FIG. 33 is a schematic plan view showing the configuration of the magnetic sensor 10M according to the thirteenth embodiment of the present invention.
  • FIG. 34 is a schematic cross-sectional view along the line MM shown in FIG.
  • FIG. 35 is a schematic plan view showing the configuration of the magnetic sensor 10N according to the fourteenth embodiment of the present invention.
  • FIG. 36 is a schematic perspective view showing the appearance of the magnetic sensor 10N.
  • FIG. 37 is a schematic plan view showing the configuration of the magnetic sensor 10O according to the fifteenth embodiment of the present invention.
  • FIG. 38 is a schematic cross-sectional view along the line OO shown in FIG.
  • FIG. 39 is a schematic cross-sectional view showing the configuration of the magnetic sensor 10P according to the sixteenth embodiment of the present invention.
  • FIG. 1 is a schematic plan view showing the configuration of the magnetic sensor 10A according to the first embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view along the line AA shown in FIG.
  • FIG. 3 is a schematic perspective view showing the appearance of the magnetic sensor 10A.
  • the magnetic sensor 10A includes a sensor chip 20 and first and second magnetic bodies 31 and 32.
  • the sensor chip 20 has a substantially rectangular parallelepiped shape, and includes a substrate 21 on which the magnetic detection elements MR1 to MR4 are formed, and an insulating layer 22 that covers the element formation surface 20S.
  • the element formation surface 20S constitutes an xy plane.
  • MR elements magnetoresistive elements
  • the magnetization fixing directions of the magnetic detection elements MR1 to MR4 are all aligned with the direction indicated by the arrow P in FIG.
  • the first and second magnetic bodies 31 and 32 are placed on the element formation surface 20S of the sensor chip 20 via the insulating layer 22.
  • the first and second magnetic bodies 31 and 32 are blocks made of a high magnetic permeability material such as ferrite.
  • the first magnetic body 31 is disposed between the magnetic detection elements MR1 and MR2 and the magnetic detection elements MR3 and MR4.
  • the second magnetic body 32 is provided on the side opposite to the first magnetic body 31 when viewed from the magnetic detection elements MR3 and MR4.
  • the first magnetic body 31 plays a role of collecting the magnetic flux ⁇ in the vertical direction (z direction), and the magnetic flux ⁇ collected by the first magnetic body 31 is approximately left and right in the x direction. Evenly distributed. For this reason, the magnetic flux ⁇ in the vertical direction is almost equally applied to the magnetic detection elements MR1 to MR4.
  • the second magnetic body 32 plays a role of shielding a disturbance magnetic field.
  • the second magnetic body 32 is disposed on the element formation surface 20S of the sensor chip 20. However, as long as the relative positional relationship with the magnetic detection elements MR1 to MR4 is ensured, the second magnetic body 32 is provided.
  • the magnetic body 32 may be fixed to a member other than the sensor chip 20.
  • the first magnetic body 31 has a width W1 in the x direction, a length L1 in the y direction, and a height H1 in the z direction.
  • the second magnetic body 32 has a width in the x direction of W2, a length in the y direction of L2, and a height in the z direction of H2.
  • the x direction is a width direction defined by the arrangement direction of the magnetic detection elements MR1 and MR3 (the arrangement direction of the magnetic detection elements MR2 and MR4)
  • the y direction is the element formation.
  • the length direction is parallel to the surface 20S and orthogonal to the x direction
  • the z direction is a height direction perpendicular to the element formation surface 20S.
  • the detection range of the magnetic flux in the z direction can be widened in the length direction (y direction).
  • the width W1 is small, the distance between the magnetic detection elements MR1 and MR2 and the magnetic detection elements MR3 and MR4 can be reduced, and the size can be reduced.
  • the distance D2 between the magnetic detection elements MR3 and MR4 and the second magnetic body 32 in the x direction is larger than the distance D1 between the magnetic detection elements MR3 and MR4 and the first magnetic body 31 in the x direction. .
  • FIG. 4 is a circuit diagram for explaining the connection relationship of the magnetic detection elements MR1 to MR4.
  • the magnetic detection element MR1 is connected between the terminal electrodes E11 and E13
  • the magnetic detection element MR2 is connected between the terminal electrodes E12 and E14
  • the magnetic detection element MR3 is connected between the terminal electrodes E12 and E13
  • the magnetic detection element MR4 is connected between the terminal electrodes E11 and E14.
  • a predetermined voltage is applied by the constant voltage source 51 between the terminal electrodes E11 and E12.
  • a voltage detection circuit 52 is connected between the terminal electrodes E13 and E14, whereby the level of the output voltage appearing between the terminal electrodes E13 and E14 is detected.
  • the magnetic detection elements MR1 and MR2 are arranged on the left side (minus side in the x direction) as viewed from the first magnetic body 31 in plan view, and the magnetic detection elements MR3 and MR4 are viewed from the first magnetic body 31 in plan view. Since it is arranged on the right side (plus side in the x direction), the magnetic detection elements MR1 to MR4 form a differential bridge circuit, and the electric resistance change of the magnetic detection elements MR1 to MR4 according to the magnetic flux density is highly sensitive. Can be detected.
  • the z-direction magnetic flux ⁇ shown in FIG. 2 passes through the first magnetic body 31 in the z-direction and then returns to the magnetic flux generation source around both sides in the x-direction.
  • the magnetic detection elements MR1 to MR4 all have the same magnetization fixed direction, the resistance change amount of the magnetic detection elements MR1 and MR2 located on the left side when viewed from the first magnetic body 31 in plan view.
  • FIG. 5 is a schematic diagram showing an example of a magnetic field detection apparatus using the magnetic sensor 10A.
  • the magnetic field detection device shown in FIG. 5 is a device that detects a soft magnetic body 40M included in a magnetic medium 40, and includes a permanent magnet 41 that magnetizes the soft magnetic body 40M and a sensor module 42 that includes a magnetic sensor 10A. .
  • the magnetic medium 40 is transported in the x direction by a transport mechanism (not shown), and the banknote corresponds to the magnetic medium 40 in the banknote identification apparatus. Instead of conveying the magnetic medium 40 in the x direction, the permanent magnet 41 and the sensor module 42 may be scanned in the x direction.
  • the soft magnetic body 40M is magnetized by the permanent magnet 41, and the magnetic component is detected when the magnetized soft magnetic body 40M passes through the sensor module 42. .
  • FIG. 6A shows a state immediately before the soft magnetic body 40M passes through the sensor module 42.
  • the magnetic flux ⁇ generated from the soft magnetic body 40M is in a direction perpendicular to the magnetic sensor 10A (z direction), and is thus detected by the magnetic detection elements MR1 to MR4 included in the magnetic sensor 10A. For example, a positive output voltage is generated.
  • FIG. 6B at the timing when the soft magnetic body 40M is located immediately below the sensor module 42, the magnetic flux ⁇ generated from the soft magnetic body 40M is in the horizontal direction with respect to the magnetic sensor 10A ( x direction).
  • the magnetic flux incident on the magnetic sensor 10A is not limited to that generated from the soft magnetic body 40M, and magnetic flux generated by a disturbance magnetic field is also incident on the magnetic sensor 10A.
  • the magnetic field detection device is used for a bill identification device
  • a motor for transporting bills or the like is a source of the disturbance magnetic field.
  • the second magnetic body 32 is provided in the magnetic sensor 10A according to the present embodiment.
  • the disturbance magnetic field 49 is shielded by the second magnetic body 32, so that the disturbance magnetic field 49 incident on the magnetic detection elements MR1 to MR4 is reduced as compared with the conventional case. It becomes possible.
  • a disturbance magnetic field easily enters from the x direction, which is the banknote transport direction, and thus the magnetic sensor 10A according to the present embodiment is particularly suitable for such applications.
  • the second magnetic body 32 is lower in height in the z direction than the first magnetic body 31, the magnetic flux ⁇ that should be detected is not easily taken away by the second magnetic body 32. For this reason, it is also possible to suppress a decrease in detection sensitivity due to the second magnetic body 32.
  • FIG. 8 is a schematic plan view showing the configuration of the magnetic sensor 10B according to the second embodiment of the present invention
  • FIG. 9 is a schematic perspective view showing the appearance of the magnetic sensor 10B.
  • the magnetic sensor 10B according to the second embodiment is different from the first embodiment in that the lengths L1 and L2 in the y direction of the first and second magnetic bodies 31 and 32 are larger than the length L0 in the y direction of the sensor chip 20.
  • a larger amount of magnetic flux ⁇ in the vertical direction can be collected, so that higher detection sensitivity can be obtained.
  • FIG. 10 is a schematic plan view showing the configuration of a magnetic sensor 10C according to the third embodiment of the present invention
  • FIG. 11 is a schematic perspective view showing the appearance of the magnetic sensor 10C.
  • the magnetic sensor 10C according to the third embodiment is different in that the length L2 of the second magnetic body 32 in the y direction is shorter than the length L1 of the first magnetic body 31 in the y direction. 3 is different from the magnetic sensor 10A according to the first embodiment shown in FIG. That means L1> L2 It is. Since the other points are the same as those of the magnetic sensor 10A according to the first embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the present embodiment is suitable when priority is given to detection sensitivity over the disturbance magnetic field blocking effect.
  • the length L1 of the first magnetic body 31 in the y direction may be larger than the length L0 of the sensor chip 20 in the y direction. In this case, the detection sensitivity can be further increased.
  • FIG. 12 is a schematic plan view showing the configuration of the magnetic sensor 10D according to the fourth embodiment of the present invention
  • FIG. 13 is a schematic perspective view showing the appearance of the magnetic sensor 10D.
  • the magnetic sensor 10D according to the fourth embodiment is different in that the length L2 of the second magnetic body 32 in the y direction is longer than the length L1 of the first magnetic body 31 in the y direction. 3 is different from the magnetic sensor 10A according to the first embodiment shown in FIG. That means L1 ⁇ L2 It is. Since the other points are the same as those of the magnetic sensor 10A according to the first embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the disturbance magnetic field shielding effect by the second magnetic body 32 is further enhanced. Therefore, this embodiment is suitable when giving priority to the disturbance magnetic field blocking effect over the detection sensitivity.
  • the length L2 of the second magnetic body 32 in the y direction may be smaller than the length L0 of the sensor chip 20 in the y direction according to the necessary shielding ability.
  • the length L1 of the first magnetic body 31 in the y direction and the length L2 of the second magnetic body 32 in the y direction are different from each other.
  • One or both may be larger than the length L0 of the sensor chip 20 in the y direction.
  • FIG. 14 is a schematic plan view showing the configuration of a magnetic sensor 10E according to the fifth embodiment of the present invention
  • FIG. 15 is a schematic cross-sectional view along the line EE shown in FIG.
  • the magnetic sensor 10E according to the fifth embodiment is shown in FIGS. 1 to 3 in that the width W2 of the second magnetic body 32 in the x direction is narrower than the width W1 of the first magnetic body 31 in the x direction. This is different from the magnetic sensor 10A according to the first embodiment shown. That means W1> W2 It is. Since the other points are the same as those of the magnetic sensor 10A according to the first embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the present embodiment is suitable when priority is given to detection sensitivity over the disturbance magnetic field blocking effect.
  • the length L2 in the y direction of the second magnetic body 32 is shortened and the length L1 in the y direction of the first magnetic body 31 is shortened. It doesn't matter. In this case, the detection sensitivity can be further increased.
  • FIG. 16 is a schematic plan view showing the configuration of a magnetic sensor 10F according to the sixth embodiment of the present invention
  • FIG. 17 is a schematic cross-sectional view along the line FF shown in FIG.
  • a magnetic sensor 10F according to the sixth embodiment is shown in FIGS. 1 to 3 in that the width W2 of the second magnetic body 32 in the x direction is wider than the width W1 of the first magnetic body 31 in the x direction. This is different from the magnetic sensor 10A according to the first embodiment shown. That means W1 ⁇ W2 It is. Since the other points are the same as those of the magnetic sensor 10A according to the first embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the disturbance magnetic field shielding effect by the second magnetic body 32 is further increased. Therefore, this embodiment is suitable when giving priority to the disturbance magnetic field blocking effect over the detection sensitivity.
  • the length L2 of the second magnetic body 32 in the y direction is set longer than the length L1 of the first magnetic body 31 in the y direction. It doesn't matter. In this case, the shielding effect can be further enhanced.
  • FIG. 18 is a schematic plan view showing the configuration of a magnetic sensor 10G according to the seventh embodiment of the present invention
  • FIG. 19 is a schematic perspective view showing the appearance of the magnetic sensor 10G.
  • the magnetic sensor 10G according to the seventh embodiment is different from the first embodiment shown in FIGS. 1 to 3 in that the second magnetic body 32 is divided into two magnetic bodies 32A and 32B in the y direction. This is different from the magnetic sensor 10A. Since the other points are the same as those of the magnetic sensor 10A according to the first embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the division interval D3 between the magnetic bodies 32A and 32B is equal to the interval between the magnetic detection elements MR3 and MR4, but this point is not essential. However, it is preferable that the y coordinate of the intermediate position of the gap between the magnetic body 32A and the magnetic body 32B and the y coordinate of the intermediate position of the magnetic detection elements MR3 and MR4 coincide with each other. Thus, the number of the second magnetic body 32 is not necessarily one, and may be divided into two or more.
  • FIG. 20 is a schematic plan view showing the configuration of the magnetic sensor 10H according to the eighth embodiment of the present invention
  • FIG. 21 is a schematic cross-sectional view along the line HH shown in FIG.
  • the size of the sensor chip 20 in the x direction can be further reduced.
  • the magnetic detection elements MR3 and MR4 and the second magnetic body 32 are strongly affected by a uniform magnetic field such as geomagnetism. DC noise components such as geomagnetism can be removed using a signal processing circuit.
  • FIG. 22 is a block diagram of a magnetic field detection apparatus including a signal processing circuit 61 that removes a DC noise component.
  • the signal processing circuit 61 shown in FIG. 22 serves to separate the output signal from the magnetic sensor 10H into a DC component and an AC component.
  • the DC component is a component due to geomagnetism
  • the influence of geomagnetism is eliminated, and only the detected magnetic field can be detected correctly.
  • the extracted DC component is fed back to the magnetic field generation circuit 62 as a cancel signal and a cancel magnetic field is given to the magnetic sensor 10H, the geomagnetism can be canceled. According to this, since the magnetic sensor 10H is not saturated by geomagnetism, highly sensitive detection can be performed.
  • FIG. 23 is a schematic plan view showing the configuration of the magnetic sensor 10I according to the ninth embodiment of the present invention
  • FIG. 24 is a schematic cross-sectional view along the line II shown in FIG.
  • FIG. 25 is a schematic perspective view showing the appearance of the magnetic sensor 10I.
  • the magnetic sensor 10I according to the present embodiment is different from the magnetic sensor 10A according to the first embodiment shown in FIGS. 1 to 3 in that a third magnetic body 33 is provided. . Since the other points are the same as those of the magnetic sensor 10A according to the first embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the third magnetic body 33 is provided on the side opposite to the first magnetic body 31 when viewed from the magnetic detection elements MR1 and MR2, and, like the second magnetic body 32, plays a role of shielding a disturbance magnetic field.
  • FIG. 27 is a schematic plan view showing the configuration of the magnetic sensor 10J according to the tenth embodiment of the present invention
  • FIG. 28 is a schematic perspective view showing the appearance of the magnetic sensor 10J.
  • the lengths L2 and L3 of the second and third magnetic bodies 32 and 33 in the y direction are longer than the length L1 of the first magnetic body 31 in the y direction.
  • the magnetic flux ⁇ attracted to the second and third magnetic bodies 32, 33 is reduced, so that the detection sensitivity is reduced by the second and third magnetic bodies 32, 33. Can be further suppressed. Therefore, the present embodiment is suitable when priority is given to detection sensitivity over the disturbance magnetic field blocking effect.
  • the length L2 of the second magnetic body 32 in the y direction and the length L3 of the third magnetic body 33 in the y direction may be different from each other. Further, the length L1 of the first magnetic body 31 in the y direction may be larger than the length L0 of the sensor chip 20 in the y direction.
  • FIG. 29 is a schematic plan view showing the configuration of the magnetic sensor 10K according to the eleventh embodiment of the present invention
  • FIG. 30 is a schematic perspective view showing the appearance of the magnetic sensor 10K.
  • the lengths L2 and L3 of the second and third magnetic bodies 32 and 33 in the y direction are longer than the length L1 of the first magnetic body 31 in the y direction.
  • This is different from the magnetic sensor 10I according to the ninth embodiment shown in FIGS. That means L1 ⁇ L2 L1 ⁇ L3 It is. Since the other points are the same as those of the magnetic sensor 10I according to the ninth embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the shielding effect of the disturbance magnetic field by the second and third magnetic bodies 32 and 33 becomes higher. Therefore, this embodiment is suitable when giving priority to the disturbance magnetic field blocking effect over the detection sensitivity.
  • the length L2 of the second magnetic body 32 in the y direction and the length L3 of the third magnetic body 33 in the y direction may be different from each other. Further, the lengths L2 and L3 in the y direction of the second and third magnetic bodies 32 and 33 may be larger than the length L0 of the sensor chip 20 in the y direction.
  • FIG. 31 is a schematic plan view showing the configuration of the magnetic sensor 10L according to the twelfth embodiment of the present invention
  • FIG. 32 is a schematic cross-sectional view along the line LL shown in FIG.
  • the widths W2 and W3 of the second and third magnetic bodies 32 and 33 in the x direction are narrower than the width W1 of the first magnetic body 31 in the x direction.
  • the present embodiment since the magnetic flux ⁇ attracted to the second and third magnetic bodies 32 and 33 is reduced, the detection sensitivity is reduced by the second and third magnetic bodies 32 and 33. Can be further suppressed. Therefore, the present embodiment is suitable when priority is given to detection sensitivity over the disturbance magnetic field blocking effect.
  • the width W2 in the x direction of the second magnetic body 32 and the width W3 in the x direction of the third magnetic body 33 may be different from each other.
  • the lengths L2, L3 in the y direction of the second and third magnetic bodies 32, 33 are set to The length L1 of one magnetic body 31 in the y direction. In this case, the detection sensitivity can be further increased.
  • FIG. 33 is a schematic plan view showing the configuration of the magnetic sensor 10M according to the thirteenth embodiment of the present invention
  • FIG. 34 is a schematic cross-sectional view along the line MM shown in FIG.
  • the widths W2, W3 in the x direction of the second and third magnetic bodies 32, 33 are wider than the width W1 in the x direction of the first magnetic body 31.
  • the shielding effect of the disturbance magnetic field by the second and third magnetic bodies 32 and 33 is further increased. Therefore, this embodiment is suitable when giving priority to the disturbance magnetic field blocking effect over the detection sensitivity.
  • the width W2 in the x direction of the second magnetic body 32 and the width W3 in the x direction of the third magnetic body 33 may be different from each other.
  • the lengths L2 and L3 in the y direction of the second and third magnetic bodies 32 and 33 are set to be the first.
  • the length L1 in the y direction of one magnetic body 31 may be increased. In this case, the shielding effect can be further enhanced.
  • FIG. 35 is a schematic plan view showing the configuration of the magnetic sensor 10N according to the fourteenth embodiment of the present invention
  • FIG. 36 is a schematic perspective view showing the appearance of the magnetic sensor 10N.
  • the second magnetic body 32 is divided into two magnetic bodies 32A and 32B in the y direction
  • the third magnetic body 33 is divided into two magnetic bodies in the y direction. It is different from the magnetic sensor 10I according to the ninth embodiment shown in FIGS. 23 to 25 in that it is divided into 33A and 33B. Since the other points are the same as those of the magnetic sensor 10I according to the ninth embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the division interval D3 between the magnetic bodies 32A and 32B is equal to the interval between the magnetic detection elements MR3 and MR4, and the division interval D4 between the magnetic bodies 33A and 33B is equal to the interval between the magnetic detection elements MR1 and MR2.
  • This point is not essential.
  • the y coordinate of the intermediate position of the gap between the magnetic bodies 32A and 32B, the y coordinate of the intermediate position of the gap between the magnetic bodies 33A and 33B, the y coordinate of the intermediate positions of the magnetic detection elements MR3 and MR4 It is preferable that the y-coordinates of the intermediate positions of the magnetic detection elements MR1 and MR2 coincide with each other.
  • the third magnetic body 33 does not have to be one, and may be divided into two or more. Further, only one of the second and third magnetic bodies 32 and 33 may be divided into two or more.
  • FIG. 37 is a schematic plan view showing the configuration of the magnetic sensor 10O according to the fifteenth embodiment of the present invention
  • FIG. 38 is a schematic cross-sectional view taken along the line OO shown in FIG.
  • the magnetic sensor 10O includes a distance D1 between the magnetic detection elements MR3 and MR4 and the first magnetic body 31 in the x direction, and a distance between the magnetic detection elements MR3 and MR4 and the second magnetic body 32 in the x direction.
  • D2 is equal to each other
  • the distance D5 between the magnetic detection elements MR1 and MR2 and the first magnetic body 31 in the x direction is equal to the distance D6 between the magnetic detection elements MR1 and MR2 and the third magnetic body 33 in the x direction.
  • the size of the sensor chip 20 in the x direction can be further reduced.
  • the magnetic detection elements MR1 to MR4 are strongly influenced by a uniform magnetic field such as geomagnetism, but this can be removed using a signal processing circuit as described with reference to FIG. .
  • FIG. 39 is a schematic cross-sectional view showing the configuration of the magnetic sensor 10P according to the sixteenth embodiment of the present invention.
  • the magnetic sensor 10P according to the sixteenth embodiment differs from the magnetic sensor 10I according to the ninth embodiment shown in FIGS. 23 to 25 in that it includes a protective member 70 that covers the element formation surface 20S. Since the other points are the same as those of the magnetic sensor 10I according to the ninth embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the protective member 70 is made of a material having a lower magnetic permeability than the first to third magnetic bodies 31 to 33, such as resin.
  • the protection member 70 seals the first to third magnetic bodies 31 to 33 and covers the element formation surface 20S so as to fill a space located between the first to third magnetic bodies 31 to 33. Provided. If such a protection member 70 is provided, the first to third magnetic bodies 31 to 33 can be physically protected without lowering the detection sensitivity.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

本発明の磁界センサは、磁気検出素子(MR3)が形成された素子形成面(20S)を有するセンサチップ(20)と、素子形成面(20S)上に配置され、素子形成面(20S)を基準とした高さがH1である第1の磁性体(31)と、磁気検出素子(MR3)から見て第1の磁性体(31)とは反対側に設けられ、高さH1よりも低い高さH2を有する第2の磁性体(32)とを備える。本発明によれば、第2の磁性体(32)の高さH2が第1の磁性体(31)よりも低いことから、外乱磁界を第2の磁性体(32)によって遮蔽しつつ、第2の磁性体(32)に吸い寄せられる検出磁界(φ)を低減することができる。これにより、高い検出感度を確保しつつ外乱磁界の影響を低減することが可能となる。

Description

磁界センサ及びこれを備える磁界検出装置
 本発明は磁界センサ及びこれを備える磁界検出装置に関し、特に、高い検出感度を確保しつつ外乱磁界の影響を低減することが可能な磁界センサ及びこれを備える磁界検出装置に関する。
 磁気抵抗効果素子などを用いた磁気センサは、電流計や磁気エンコーダなどに広く用いられている。磁気センサには、センサチップに磁束を集めるための磁性体が設けられることがある(特許文献1参照)。磁束を集めるための磁性体をセンサチップに設けると、垂直方向の磁界に対する感度を高めることが可能となる。
特開2009-276159号公報
 しかしながら、センサチップには検出対象である検出磁界の他に、ノイズである外乱磁界に晒されることがあるため、外乱磁界によって検出感度が低下するおそれがあった。外乱磁界の影響を低減するためには、センサチップ上またはその近傍に別の磁性体を配置することによって、外乱磁界を遮蔽する方法が考えられる。
 この方法に関し、本発明者らが検討を行ったところ、遮蔽用の磁性体のサイズや位置によっては、本来検出したい検出磁界がこの磁性体に吸い寄せられ、その結果、かえって検出感度が低下しうることが明らかになった。
 したがって、本発明の目的は、高い検出感度を確保しつつ外乱磁界の影響を低減することが可能な磁界センサ及びこれを備える磁界検出装置を提供することである。
 本発明による磁気センサは、第1の磁気検出素子が形成された素子形成面を有するセンサチップと、前記素子形成面上に配置され、前記素子形成面を基準とした高さが第1の高さを有する第1の磁性体と、前記第1の磁気検出素子から見て前記第1の磁性体とは反対側に設けられ、前記第1の高さよりも低い第2の高さを有する第2の磁性体と、を備えることを特徴とする。
 本発明によれば、第2の磁性体の高さが第1の磁性体よりも低いことから、外乱磁界を第2の磁性体によって遮蔽しつつ、第2の磁性体に吸い寄せられる検出磁界を低減することができる。これにより、高い検出感度を確保しつつ外乱磁界の影響を低減することが可能となる。
 本発明において、前記第2の磁性体は、前記素子形成面上に配置されていることが好ましい。これによれば、第1の磁性体及び第1の磁気検出素子と第2の磁性体との相対的な位置関係を固定することが可能となる。
 本発明において、前記センサチップの前記素子形成面には、第2の磁気検出素子がさらに形成されており、前記第1の磁性体は、前記第1の磁気検出素子と前記第2の磁気検出素子の間に配置されていることが好ましい。これによれば、第1の磁気検出素子からの出力信号と第2の磁気検出素子からの出力信号の差分によって検出磁界の強度を検出することが可能となる。
 本発明において、前記第1及び第2の磁気検出素子の配列方向を幅方向とし、前記素子形成面と平行であって前記幅方向と直交する方向を長さ方向とした場合、前記第1及び第2の磁性体は、前記幅方向におけるサイズよりも前記長さ方向におけるサイズの方が大きいことが好ましい。これによれば、垂直方向の磁界に対する検出範囲を広げることができる。さらに、磁気センサのサイズを小型化することも可能となる。
 この場合、前記第1及び第2の磁性体の少なくとも一方は、前記長さ方向におけるサイズが前記センサチップの前記長さ方向におけるサイズよりも大きくても構わない。また、前記第1及び第2の磁性体は、前記長さ方向におけるサイズが互いに異なっていても構わない。さらに、前記第1及び第2の磁性体は、前記幅方向におけるサイズが互いに異なっていても構わない。さらに、前記第2の磁性体は、前記長さ方向において複数個に分割されていても構わない。
 本発明において、前記第1の磁気検出素子と前記第2の磁性体の前記幅方向における距離は、前記第1の磁気検出素子と前記第1の磁性体の前記幅方向における距離よりも大きくても構わない。これによれば、第2の磁性体に吸い寄せられる検出磁界を低減することができる。或いは、前記第1の磁気検出素子と前記第1の磁性体の前記幅方向における距離と、前記第1の磁気検出素子と前記第2の磁性体の前記幅方向における距離は、互いに等しくても構わない。これによれば、センサチップを小型化することが可能となる。
 本発明による磁気センサは、前記センサチップに対して相対的に前記幅方向に移動する磁気媒体の残留磁界を検出することが好ましい。これによれば、例えば紙幣の識別装置などに適用することが可能となる。
 本発明による磁気センサは、前記第2の磁気検出素子から見て前記第1の磁性体とは反対側に設けられ、前記第1の高さよりも低い第3の高さを有する第3の磁性体をさらに備えることが好ましい。これによれば、外乱磁界が第2及び第3の磁性体によって遮蔽されることから、外乱磁界の影響をより低減することが可能となる。
 本発明による磁気センサは、前記第1の磁性体と前記第2の磁性体の間の空間を満たし、且つ、前記第1及び第2の磁性体を封止する保護部材であって、前記第1及び第2の磁性体よりも透磁率の低い保護部材をさらに備えることが好ましい。これによれば、検出感度を低下させることなく、第1及び第2の磁性体を保護することが可能となる。
 本発明による磁界検出装置は、上記の磁気センサと、前記磁気センサの出力信号から所定の周波数成分を抽出する信号処理回路とを備えることを特徴とする。
 本発明によれば、複数の磁気センサを用いることなく、地磁気などの外乱磁界成分を除去することが可能となる。
 本発明による磁界検出装置は、前記所定の周波数成分に基づき生成されたキャンセル信号に基づいて、前記磁気センサにキャンセル磁界を与える磁界発生回路をさらに備えることが好ましい。これによれば、地磁気などの外乱磁界がキャンセルされた状態で、検出磁界の検出を行うことが可能となる。
 本発明によれば、高い検出感度を確保しつつ外乱磁界の影響を低減することが可能な磁界センサ及びこれを備える磁界検出装置を提供することが可能となる。
図1は、本発明の第1の実施形態による磁気センサ10Aの構成を示す略平面図である。 図2は、図1に示すA-A線に沿った略断面図である。 図3は、磁気センサ10Aの外観を示す略斜視図である。 図4は、磁気検出素子MR1~MR4の接続関係を説明するための回路図である。 図5は、磁気センサ10Aを用いた磁界検出装置の一例を示す模式図である。 図6は、軟磁性体40Mがセンサモジュール42を通過する前後の状態を示す模式図である。 図7は、外乱磁界49が遮蔽される様子を説明するための模式図である。 図8は、本発明の第2の実施形態による磁気センサ10Bの構成を示す略平面図である。 図9は、磁気センサ10Bの外観を示す略斜視図である。 図10は、本発明の第3の実施形態による磁気センサ10Cの構成を示す略平面図である。 図11は、磁気センサ10Cの外観を示す略斜視図である。 図12は、本発明の第4の実施形態による磁気センサ10Dの構成を示す略平面図である。 図13は、磁気センサ10Dの外観を示す略斜視図である。 図14は、本発明の第5の実施形態による磁気センサ10Eの構成を示す略平面図である。 図15は、図14に示すE-E線に沿った略断面図である。 図16は、本発明の第6の実施形態による磁気センサ10Fの構成を示す略平面図である。 図17は、図16に示すF-F線に沿った略断面図である。 図18は、本発明の第7の実施形態による磁気センサ10Gの構成を示す略平面図である。 図19は、磁気センサ10Gの外観を示す略斜視図である。 図20は、本発明の第8の実施形態による磁気センサ10Hの構成を示す略平面図である。 図21は、図20に示すH-H線に沿った略断面図である。 図22は、直流ノイズ成分を除去する信号処理回路61を備えた磁界検出装置のブロック図である。 図23は、本発明の第9の実施形態による磁気センサ10Iの構成を示す略平面図である。 図24は、図23に示すI-I線に沿った略断面図である。 図25は、磁気センサ10Iの外観を示す略斜視図である。 図26は、外乱磁界49が遮蔽される様子を説明するための模式図である。 図27は、本発明の第10の実施形態による磁気センサ10Jの構成を示す略平面図である。 図28は、磁気センサ10Jの外観を示す略斜視図である。 図29は、本発明の第11の実施形態による磁気センサ10Kの構成を示す略平面図である。 図30は、磁気センサ10Kの外観を示す略斜視図である。 図31は、本発明の第12の実施形態による磁気センサ10Lの構成を示す略平面図である。 図32は、図31に示すL-L線に沿った略断面図である。 図33は、本発明の第13の実施形態による磁気センサ10Mの構成を示す略平面図である。 図34は、図33に示すM-M線に沿った略断面図である。 図35は、本発明の第14の実施形態による磁気センサ10Nの構成を示す略平面図である。 図36は、磁気センサ10Nの外観を示す略斜視図である。 図37は、本発明の第15の実施形態による磁気センサ10Oの構成を示す略平面図である。 図38は、図37に示すO-O線に沿った略断面図である。 図39は、本発明の第16の実施形態による磁気センサ10Pの構成を示す略断面図である。
 以下、添付図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。
 図1は、本発明の第1の実施形態による磁気センサ10Aの構成を示す略平面図であり、図2は、図1に示すA-A線に沿った略断面図である。また、図3は、磁気センサ10Aの外観を示す略斜視図である。
 図1~図3に示すように、本実施形態による磁気センサ10Aは、センサチップ20と第1及び第2の磁性体31,32を備えている。
 センサチップ20は略直方体形状を有しており、磁気検出素子MR1~MR4が形成された基板21と、素子形成面20Sを覆う絶縁層22とを有している。素子形成面20Sはxy面を構成している。磁気検出素子MR1~MR4としては、磁界の向きに応じて電気抵抗が変化する磁気抵抗効果素子(MR素子)を用いることが好ましい。磁気検出素子MR1~MR4の磁化固定方向は、図1の矢印Pが示す方向に全て揃えられている。
 センサチップ20の素子形成面20Sには、絶縁層22を介して第1及び第2の磁性体31,32が載置されている。第1及び第2の磁性体31,32は、フェライトなどの高透磁率材料からなるブロックである。第1の磁性体31は、磁気検出素子MR1,MR2と磁気検出素子MR3,MR4との間に配置される。これに対し、第2の磁性体32は、磁気検出素子MR3,MR4から見て第1の磁性体31とは反対側に設けられる。
 図2に示すように、第1の磁性体31は垂直方向(z方向)の磁束φを集める役割を果たし、第1の磁性体31によって集磁された磁束φは、x方向において左右にほぼ均等に分配される。このため、垂直方向の磁束φは、磁気検出素子MR1~MR4に対してほぼ均等に与えられることになる。一方、第2の磁性体32は、外乱磁界を遮蔽する役割を果たす。本実施形態においては、第2の磁性体32がセンサチップ20の素子形成面20S上に配置されているが、磁気検出素子MR1~MR4との相対的な位置関係が確保される限り、第2の磁性体32をセンサチップ20以外の他の部材に固定しても構わない。
 図1及び図2に示すように、第1の磁性体31は、x方向における幅がW1であり、y方向における長さがL1であり、z方向における高さがH1である。また、第2の磁性体32は、x方向における幅がW2であり、y方向における長さがL2であり、z方向における高さがH2である。ここで、x方向とは、磁気検出素子MR1と磁気検出素子MR3の配列方向(磁気検出素子MR2と磁気検出素子MR4の配列方向)により定義される幅方向であり、y方向とは、素子形成面20Sと平行であってx方向と直交する長さ方向であり、z方向とは、素子形成面20Sに対して垂直な高さ方向である。
 そして、本実施形態では、
  W1=W2
  L1=L2
  H1>H2
である。つまり、幅(x方向)と長さ(y方向)については第1の磁性体31と第2の磁性体32は互いに同じであるが、高さ(z方向)については、第1の磁性体31よりも第2の磁性体32の方が低い。かかる構成により、第1の磁性体31と第2の磁性体32の高さを同じとした場合(H1=H2である場合)と比べ、検出すべき磁束φが第2の磁性体32に吸い寄せられにくくなる。これにより、高い検出感度を確保しつつ、第2の磁性体32によって外乱磁界の影響を低減することが可能となる。
 また、第1の磁性体31は、幅W1よりも長さL1の方が大きいことから、z方向の磁束の検出範囲を長さ方向(y方向)に広くすることができる。しかも、幅W1が小さいことから、磁気検出素子MR1,MR2と磁気検出素子MR3,MR4との距離を狭くすることができ、小型化することが可能となる。
 さらに、本実施形態では、磁気検出素子MR3,MR4と第2の磁性体32のx方向における距離D2は、磁気検出素子MR3,MR4と第1の磁性体31のx方向における距離D1よりも大きい。これにより、検出対象物が第1の磁性体31の近傍に位置する場合であっても、検出すべき磁束φが第2の磁性体32に吸い寄せられにくくなる。
 図4は、磁気検出素子MR1~MR4の接続関係を説明するための回路図である。
 図4に示すように、磁気検出素子MR1は端子電極E11,E13間に接続され、磁気検出素子MR2は端子電極E12,E14間に接続され、磁気検出素子MR3は端子電極E12,E13間に接続され、磁気検出素子MR4は端子電極E11,E14間に接続されている。そして、端子電極E11,E12間には、定電圧源51によって所定の電圧が印加される。また、端子電極E13,E14間には電圧検出回路52が接続され、これによって端子電極E13,E14間に現れる出力電圧のレベルが検出される。
 そして、磁気検出素子MR1,MR2は平面視で第1の磁性体31からみて左側(x方向におけるマイナス側)に配置され、磁気検出素子MR3,MR4は平面視で第1の磁性体31からみて右側(x方向におけるプラス側)に配置されていることから、磁気検出素子MR1~MR4は差動ブリッジ回路を構成し、磁束密度に応じた磁気検出素子MR1~MR4の電気抵抗の変化を高感度に検出することが可能となる。
 具体的には、図2に示すz方向の磁束φは、第1の磁性体31をz方向に通過した後、x方向の両側を回って磁束の発生源に戻る。この時、磁気検出素子MR1~MR4は、全て同一の磁化固定方向を有していることから、平面視で第1の磁性体31からみて左側に位置する磁気検出素子MR1,MR2の抵抗変化量と、平面視で第1の磁性体31からみて右側に位置する磁気検出素子MR3,MR4の抵抗変化量との間には差が生じる。この差は、図4に示した差動ブリッジ回路によって増幅され、電圧検出回路52によって検出される。
 図5は、磁気センサ10Aを用いた磁界検出装置の一例を示す模式図である。
 図5に示す磁界検出装置は、磁気媒体40に含まれる軟磁性体40Mを検出する装置であり、軟磁性体40Mを着磁する永久磁石41と、磁気センサ10Aを含むセンサモジュール42とを備える。磁気媒体40は図示しない搬送機構によってx方向に搬送されるものであり、紙幣の識別装置においては紙幣が磁気媒体40に相当する。尚、磁気媒体40をx方向に搬送する代わりに、永久磁石41及びセンサモジュール42をx方向にスキャンする構成であっても構わない。
 このような構成を有する磁界検出装置においては、まず、永久磁石41によって軟磁性体40Mが着磁され、着磁された軟磁性体40Mがセンサモジュール42を通過する際に磁気成分が検出される。
 図6(a)には、軟磁性体40Mがセンサモジュール42を通過する直前の状態が示されている。このタイミングにおいては、軟磁性体40Mを発生源とする磁束φが磁気センサ10Aに対して垂直方向(z方向)となるため、磁気センサ10Aに含まれる磁気検出素子MR1~MR4によってこれが検出され、例えばプラスの出力電圧が発生する。一方、図6(b)に示すように、軟磁性体40Mがセンサモジュール42の直下に位置するタイミングにおいては、軟磁性体40Mを発生源とする磁束φが磁気センサ10Aに対して水平方向(x方向)となる。この場合、磁気センサ10Aに対して垂直方向(z方向)の磁束がないため、磁気検出素子MR1~MR4の出力電圧はほぼゼロとなる。そして、図6(c)に示すように、軟磁性体40Mがセンサモジュール42を通過した直後のタイミングにおいては、軟磁性体40Mを発生源とする磁束φが磁気センサ10Aに対して再び垂直方向(z方向)となる。このため、磁気センサ10Aに含まれる磁気検出素子MR1~MR4によってこれが検出され、例えばマイナスの出力電圧が発生する。このようなメカニズムによって、x方向に移動する磁気媒体40の残留磁界が検出される。
 しかしながら、磁気センサ10Aに入射する磁束は、軟磁性体40Mを発生源とするものだけでなく、外乱磁界による磁束も磁気センサ10Aに入射される。例えば、磁界検出装置を紙幣の識別装置に用いる場合、紙幣を搬送するためのモータなどが外乱磁界の発生源となる。このような外乱磁界を遮蔽すべく、本実施形態による磁気センサ10Aにおいては、第2の磁性体32が設けられている。これにより、図7に示すように、外乱磁界49の少なくとも一部が第2の磁性体32によって遮蔽されることから、磁気検出素子MR1~MR4に入射される外乱磁界49を従来よりも低減することが可能となる。特に、紙幣の識別装置においては、紙幣の搬送方向であるx方向から外乱磁界が入りやすいため、本実施形態による磁気センサ10Aは、このような用途に用いることが特に好適である。
 しかも、第2の磁性体32は、z方向における高さが第1の磁性体31よりも低いことから、本来検出すべき磁束φが第2の磁性体32に奪われにくい。このため、第2の磁性体32による検出感度の低下を抑えることも可能となる。
 以下、本発明の他の実施形態について説明する。
 図8は、本発明の第2の実施形態による磁気センサ10Bの構成を示す略平面図であり、図9は、磁気センサ10Bの外観を示す略斜視図である。
 第2の実施形態による磁気センサ10Bは、第1及び第2の磁性体31,32のy方向における長さL1,L2がセンサチップ20のy方向における長さL0よりも大きい点において、図1~図3に示した第1の実施形態による磁気センサ10Aと相違する。つまり、
  L0<L1=L2
である。その他の点については、第1の実施形態による磁気センサ10Aと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
 本実施形態による磁気センサ10Bによれば、より垂直方向の磁束φをより多く集磁することができることから、より高い検出感度を得ることが可能となる。
 図10は、本発明の第3の実施形態による磁気センサ10Cの構成を示す略平面図であり、図11は、磁気センサ10Cの外観を示す略斜視図である。
 第3の実施形態による磁気センサ10Cは、第1の磁性体31のy方向における長さL1よりも第2の磁性体32のy方向における長さL2の方が短い点において、図1~図3に示した第1の実施形態による磁気センサ10Aと相違する。つまり、
  L1>L2
である。その他の点については、第1の実施形態による磁気センサ10Aと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
 本実施形態による磁気センサ10Cによれば、第2の磁性体32に吸い寄せられる磁束φがより少なくなることから、第2の磁性体32による検出感度の低下をより抑えることが可能となる。したがって、本実施形態は、外乱磁界の遮断効果よりも、検出感度を優先させる場合に好適である。尚、本実施形態において、第1の磁性体31のy方向における長さL1をセンサチップ20のy方向における長さL0よりも大きくしても構わない。この場合、検出感度をより高めることが可能となる。
 図12は、本発明の第4の実施形態による磁気センサ10Dの構成を示す略平面図であり、図13は、磁気センサ10Dの外観を示す略斜視図である。
 第4の実施形態による磁気センサ10Dは、第1の磁性体31のy方向における長さL1よりも第2の磁性体32のy方向における長さL2の方が長い点において、図1~図3に示した第1の実施形態による磁気センサ10Aと相違する。つまり、
  L1<L2
である。その他の点については、第1の実施形態による磁気センサ10Aと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
 本実施形態による磁気センサ10Dによれば、第2の磁性体32による外乱磁界の遮蔽効果がより高められる。したがって、本実施形態は、検出感度よりも外乱磁界の遮断効果を優先させる場合に好適である。尚、必要となる遮蔽能力に応じて、第2の磁性体32のy方向における長さL2をセンサチップ20のy方向における長さL0よりも小さくしても構わない。
 上述した第2~第4の実施形態にて例示したように、第1の磁性体31のy方向における長さL1と、第2の磁性体32のy方向における長さL2は、互いに異なっていても構わないし、一方又は両方がセンサチップ20のy方向における長さL0よりも大きくても構わない。
 図14は、本発明の第5の実施形態による磁気センサ10Eの構成を示す略平面図であり、図15は、図14に示すE-E線に沿った略断面図である。
 第5の実施形態による磁気センサ10Eは、第1の磁性体31のx方向における幅W1よりも第2の磁性体32のx方向における幅W2の方が狭い点において、図1~図3に示した第1の実施形態による磁気センサ10Aと相違する。つまり、
  W1>W2
である。その他の点については、第1の実施形態による磁気センサ10Aと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
 本実施形態による磁気センサ10Eによれば、第2の磁性体32に吸い寄せられる磁束φがより少なくなることから、第2の磁性体32による検出感度の低下をより抑えることが可能となる。したがって、本実施形態は、外乱磁界の遮断効果よりも、検出感度を優先させる場合に好適である。尚、第2の磁性体32のx方向における幅W2を狭くするのに加え、第2の磁性体32のy方向における長さL2を第1の磁性体31のy方向における長さL1を短くしても構わない。この場合、検出感度をより高めることが可能となる。
 図16は、本発明の第6の実施形態による磁気センサ10Fの構成を示す略平面図であり、図17は、図16に示すF-F線に沿った略断面図である。
 第6の実施形態による磁気センサ10Fは、第1の磁性体31のx方向における幅W1よりも第2の磁性体32のx方向における幅W2の方が広い点において、図1~図3に示した第1の実施形態による磁気センサ10Aと相違する。つまり、
  W1<W2
である。その他の点については、第1の実施形態による磁気センサ10Aと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
 本実施形態による磁気センサ10Fによれば、第2の磁性体32による外乱磁界の遮蔽効果がより大きくなる。したがって、本実施形態は、検出感度よりも外乱磁界の遮断効果を優先させる場合に好適である。尚、第2の磁性体32のx方向における幅W2を広くするのに加え、第2の磁性体32のy方向における長さL2を第1の磁性体31のy方向における長さL1を長くしても構わない。この場合、遮蔽効果をより高めることが可能となる。
 図18は、本発明の第7の実施形態による磁気センサ10Gの構成を示す略平面図であり、図19は、磁気センサ10Gの外観を示す略斜視図である。
 第7の実施形態による磁気センサ10Gは、第2の磁性体32がy方向において2個の磁性体32A,32Bに分割されている点において、図1~図3に示した第1の実施形態による磁気センサ10Aと相違する。その他の点については、第1の実施形態による磁気センサ10Aと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
 本実施形態においては、磁性体32A,32Bの分割間隔D3が磁気検出素子MR3,MR4の間隔と等しいが、この点は必須でない。但し、磁性体32Aと磁性体32Bの隙間の中間位置のy座標と、磁気検出素子MR3,MR4の中間位置のy座標は、互いに一致していることが好ましい。このように、第2の磁性体32は1個である必要はなく、2個以上に分割されていても構わない。
 図20は、本発明の第8の実施形態による磁気センサ10Hの構成を示す略平面図であり、図21は、図20に示すH-H線に沿った略断面図である。
 第8の実施形態による磁気センサ10Hは、磁気検出素子MR3,MR4と第1の磁性体31のx方向における距離D1と、磁気検出素子MR3,MR4と第2の磁性体32のx方向における距離D2が互いに等しい点において、図1~図3に示した第1の実施形態による磁気センサ10Aと相違する。つまり、
  D1=D2
である。その他の点については、第1の実施形態による磁気センサ10Aと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
 本実施形態では距離D2が短いことから、センサチップ20のx方向におけるサイズをより小型化することが可能となる。但し、磁気検出素子MR3,MR4と第2の磁性体32との距離が近いことから、磁気検出素子MR3,MR4は地磁気のような一様な磁界の影響を強く受ける。地磁気のような直流ノイズ成分については信号処理回路を用いて除去することが可能である。
 図22は、直流ノイズ成分を除去する信号処理回路61を備えた磁界検出装置のブロック図である。
 図22に示す信号処理回路61は、磁気センサ10Hからの出力信号をDC成分とAC成分に分離する役割を果たす。このうち、DC成分は地磁気に起因する成分であることから、AC成分だけを抽出すれば地磁気の影響が排除され、検出磁界だけを正しく検出することが可能となる。また、抽出されたDC成分をキャンセル信号として磁界発生回路62にフィードバックし、これによって磁気センサ10Hにキャンセル磁界を与えれば、地磁気を打ち消すことができる。これによれば、地磁気によって磁気センサ10Hが飽和することがないため、高感度な検出を行うことが可能となる。
 図23は、本発明の第9の実施形態による磁気センサ10Iの構成を示す略平面図であり、図24は、図23に示すI-I線に沿った略断面図である。また、図25は、磁気センサ10Iの外観を示す略斜視図である。
 図23~図25に示すように、本実施形態による磁気センサ10Iは、第3の磁性体33を備える点において、図1~図3に示した第1の実施形態による磁気センサ10Aと相違する。その他の点については、第1の実施形態による磁気センサ10Aと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
 第3の磁性体33は、磁気検出素子MR1,MR2から見て第1の磁性体31とは反対側に設けられており、第2の磁性体32と同様、外乱磁界を遮蔽する役割を果たす。そして、第3の磁性体33のx方向における幅をW3とし、y方向における長さをL3とし、z方向における高さをH3とした場合、本実施形態では、
  W1=W2=W3
  L1=L2=L3
  H1>H2=H3
である。つまり、第3の磁性体33は第2の磁性体32と同じサイズを有している。
 かかる構成により、図26に示すように、磁気媒体40に含まれる軟磁性体40Mを検出する場合において、x方向における両側からの外乱磁界49の少なくとも一部が第2及び第3の磁性体32,33によって遮蔽される。このため、磁気検出素子MR1~MR4に入射される外乱磁界49をよりいっそう低減することが可能となる。
 図27は、本発明の第10の実施形態による磁気センサ10Jの構成を示す略平面図であり、図28は、磁気センサ10Jの外観を示す略斜視図である。
 第10の実施形態による磁気センサ10Jは、第1の磁性体31のy方向における長さL1よりも、第2及び第3の磁性体32,33のy方向における長さL2,L3の方が短い点において、図23~図25に示した第9の実施形態による磁気センサ10Iと相違する。つまり、
  L1>L2
  L1>L3
である。その他の点については、第9の実施形態による磁気センサ10Iと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
 本実施形態による磁気センサ10Jによれば、第2及び第3の磁性体32,33に吸い寄せられる磁束φがより少なくなることから、第2及び第3の磁性体32,33による検出感度の低下をより抑えることが可能となる。したがって、本実施形態は、外乱磁界の遮断効果よりも、検出感度を優先させる場合に好適である。尚、本実施形態において、第2の磁性体32のy方向における長さL2と、第3の磁性体33のy方向における長さL3が互いに異なっていても構わない。また、第1の磁性体31のy方向における長さL1がセンサチップ20のy方向における長さL0よりも大きくても構わない。
 図29は、本発明の第11の実施形態による磁気センサ10Kの構成を示す略平面図であり、図30は、磁気センサ10Kの外観を示す略斜視図である。
 第11の実施形態による磁気センサ10Kは、第1の磁性体31のy方向における長さL1よりも第2及び第3の磁性体32,33のy方向における長さL2,L3の方が長い点において、図23~図25に示した第9の実施形態による磁気センサ10Iと相違する。つまり、
  L1<L2
  L1<L3
である。その他の点については、第9の実施形態による磁気センサ10Iと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
 本実施形態による磁気センサ10Kによれば、第2及び第3の磁性体32,33による外乱磁界の遮蔽効果がより高くなる。したがって、本実施形態は、検出感度よりも外乱磁界の遮断効果を優先させる場合に好適である。尚、本実施形態において、第2の磁性体32のy方向における長さL2と、第3の磁性体33のy方向における長さL3が互いに異なっていても構わない。また、第2及び第3の磁性体32,33のy方向における長さL2,L3がセンサチップ20のy方向における長さL0よりも大きくても構わない。
 図31は、本発明の第12の実施形態による磁気センサ10Lの構成を示す略平面図であり、図32は、図31に示すL-L線に沿った略断面図である。
 第12の実施形態による磁気センサ10Lは、第1の磁性体31のx方向における幅W1よりも第2及び第3の磁性体32,33のx方向における幅W2,W3の方が狭い点において、図23~図25に示した第9の実施形態による磁気センサ10Iと相違する。つまり、
  W1>W2
  W1>W3
である。その他の点については、第9の実施形態による磁気センサ10Iと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
 本実施形態による磁気センサ10Lによれば、第2及び第3の磁性体32,33に吸い寄せられる磁束φがより少なくなることから、第2及び第3の磁性体32,33による検出感度の低下をより抑えることが可能となる。したがって、本実施形態は、外乱磁界の遮断効果よりも、検出感度を優先させる場合に好適である。尚、本実施形態において、第2の磁性体32のx方向における幅W2と、第3の磁性体33のx方向における幅W3が互いに異なっていても構わない。さらに、第2及び第3の磁性体32,33のx方向における幅W2,W3を狭くするのに加え、第2及び第3の磁性体32,33のy方向における長さL2,L3を第1の磁性体31のy方向における長さL1を短くしても構わない。この場合、検出感度をより高めることが可能となる。
 図33は、本発明の第13の実施形態による磁気センサ10Mの構成を示す略平面図であり、図34は、図33に示すM-M線に沿った略断面図である。
 第13の実施形態による磁気センサ10Mは、第1の磁性体31のx方向における幅W1よりも第2及び第3の磁性体32,33のx方向における幅W2,W3の方が広い点において、図23~図25に示した第9の実施形態による磁気センサ10Iと相違する。つまり、
  W1<W2
  W1<W3
である。その他の点については、第9の実施形態による磁気センサ10Iと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
 本実施形態による磁気センサ10Mによれば、第2及び第3の磁性体32,33による外乱磁界の遮蔽効果がより大きくなる。したがって、本実施形態は、検出感度よりも外乱磁界の遮断効果を優先させる場合に好適である。尚、本実施形態において、第2の磁性体32のx方向における幅W2と、第3の磁性体33のx方向における幅W3が互いに異なっていても構わない。さらに、第2及び第3の磁性体32,33のx方向における幅W2,W3を広くするのに加え、第2及び第3の磁性体32,33のy方向における長さL2,L3を第1の磁性体31のy方向における長さL1を長くしても構わない。この場合、遮蔽効果をより高めることが可能となる。
 図35は、本発明の第14の実施形態による磁気センサ10Nの構成を示す略平面図であり、図36は、磁気センサ10Nの外観を示す略斜視図である。
 第14の実施形態による磁気センサ10Nは、第2の磁性体32がy方向において2個の磁性体32A,32Bに分割され、且つ、第3の磁性体33がy方向において2個の磁性体33A,33Bに分割されている点において、図23~図25に示した第9の実施形態による磁気センサ10Iと相違する。その他の点については、第9の実施形態による磁気センサ10Iと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
 本実施形態においては、磁性体32A,32Bの分割間隔D3が磁気検出素子MR3,MR4の間隔と等しく、且つ、磁性体33A,33Bの分割間隔D4が磁気検出素子MR1,MR2の間隔と等しいが、この点は必須でない。但し、磁性体32Aと磁性体32Bの隙間の中間位置のy座標と、磁性体33Aと磁性体33Bの隙間の中間位置のy座標と、磁気検出素子MR3,MR4の中間位置のy座標と、磁気検出素子MR1,MR2の中間位置のy座標は、いずれも一致していることが好ましい。このように、第3の磁性体33は1個である必要はなく、2個以上に分割されていても構わない。また、第2及び第3の磁性体32,33の一方のみを2個以上に分割しても構わない。
 図37は、本発明の第15の実施形態による磁気センサ10Oの構成を示す略平面図であり、図38は、図37に示すO-O線に沿った略断面図である。
 第15の実施形態による磁気センサ10Oは、磁気検出素子MR3,MR4と第1の磁性体31のx方向における距離D1と、磁気検出素子MR3,MR4と第2の磁性体32のx方向における距離D2が互いに等しく、且つ、磁気検出素子MR1,MR2と第1の磁性体31のx方向における距離D5と、磁気検出素子MR1,MR2と第3の磁性体33のx方向における距離D6が互いに等しい点において、図23~図25に示した第9の実施形態による磁気センサ10Iと相違する。つまり、
  D1=D2
  D5=D6
である。好ましくは、
  D1=D2=D5=D6
である。その他の点については、第9の実施形態による磁気センサ10Iと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
 本実施形態では距離D2,D6が短いことから、センサチップ20のx方向におけるサイズをより小型化することが可能となる。この場合、磁気検出素子MR1~MR4は地磁気のような一様な磁界の影響を強く受けるが、これについては図22を用いて説明したとおり、信号処理回路を用いて除去することが可能である。
 図39は、本発明の第16の実施形態による磁気センサ10Pの構成を示す略断面図である。
 第16の実施形態による磁気センサ10Pは、素子形成面20Sを覆う保護部材70を備える点において、図23~図25に示した第9の実施形態による磁気センサ10Iと相違する。その他の点については、第9の実施形態による磁気センサ10Iと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
 保護部材70は、例えば樹脂のように第1~第3の磁性体31~33よりも透磁率の低い材料からなる。保護部材70は、第1~第3の磁性体31~33を封止するとともに、第1~第3の磁性体31~33の間に位置する空間を満たすよう、素子形成面20Sを覆って設けられる。このような保護部材70を設ければ、検出感度を低下させることなく、第1~第3の磁性体31~33を物理的に保護することが可能となる。
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
10A~10P  磁気センサ
20   センサチップ
20S  素子形成面
21   基板
22   絶縁層
31   第1の磁性体
32   第2の磁性体
33   第3の磁性体
40   磁気媒体
40M  軟磁性体
41   永久磁石
42   センサモジュール
49   外乱磁界
51   定電圧源
52   電圧検出回路
61   信号処理回路
62   磁界発生回路
70   保護部材
E11~E14  端子電極
MR1~MR4  磁気検出素子
φ    磁束

Claims (15)

  1.  第1の磁気検出素子が形成された素子形成面を有するセンサチップと、
     前記素子形成面上に配置され、前記素子形成面を基準とした高さが第1の高さを有する第1の磁性体と、
     前記第1の磁気検出素子から見て前記第1の磁性体とは反対側に設けられ、前記第1の高さよりも低い第2の高さを有する第2の磁性体と、を備えることを特徴とする磁気センサ。
  2.  前記第2の磁性体は、前記素子形成面上に配置されていることを特徴とする請求項1に記載の磁気センサ。
  3.  前記センサチップの前記素子形成面には、第2の磁気検出素子がさらに形成されており、
     前記第1の磁性体は、前記第1の磁気検出素子と前記第2の磁気検出素子の間に配置されていることを特徴とする請求項1又は2に記載の磁気センサ。
  4.  前記第1及び第2の磁気検出素子の配列方向を幅方向とし、前記素子形成面と平行であって前記幅方向と直交する方向を長さ方向とした場合、前記第1及び第2の磁性体は、前記幅方向におけるサイズよりも前記長さ方向におけるサイズの方が大きいことを特徴とする請求項3に記載の磁気センサ。
  5.  前記第1及び第2の磁性体の少なくとも一方は、前記長さ方向におけるサイズが前記センサチップの前記長さ方向におけるサイズよりも大きいことを特徴とする請求項4に記載の磁気センサ。
  6.  前記第1及び第2の磁性体は、前記長さ方向におけるサイズが互いに異なることを特徴とする請求項4又は5に記載の磁気センサ。
  7.  前記第1及び第2の磁性体は、前記幅方向におけるサイズが互いに異なることを特徴とする請求項4乃至6のいずれか一項に記載の磁気センサ。
  8.  前記第2の磁性体は、前記長さ方向において複数個に分割されていることを特徴とする請求項4乃至7のいずれか一項に記載の磁気センサ。
  9.  前記第1の磁気検出素子と前記第2の磁性体の前記幅方向における距離は、前記第1の磁気検出素子と前記第1の磁性体の前記幅方向における距離よりも大きいことを特徴とする請求項4乃至8のいずれか一項に記載の磁気センサ。
  10.  前記第1の磁気検出素子と前記第1の磁性体の前記幅方向における距離と、前記第1の磁気検出素子と前記第2の磁性体の前記幅方向における距離は、互いに等しいことを特徴とする請求項4乃至8のいずれか一項に記載の磁気センサ。
  11.  前記センサチップに対して相対的に前記幅方向に移動する磁気媒体の残留磁界を検出することを特徴とする請求項4乃至10のいずれか一項に記載の磁気センサ。
  12.  前記第2の磁気検出素子から見て前記第1の磁性体とは反対側に設けられ、前記第1の高さよりも低い第3の高さを有する第3の磁性体をさらに備えることを特徴とする請求項3乃至11のいずれか一項に記載の磁気センサ。
  13.  前記第1の磁性体と前記第2の磁性体の間の空間を満たし、且つ、前記第1及び第2の磁性体を封止する保護部材であって、前記第1及び第2の磁性体よりも透磁率の低い保護部材をさらに備えることを特徴とする請求項1乃至12のいずれか一項に記載の磁気センサ。
  14.  請求項1乃至13のいずれか一項に記載の磁気センサと、
     前記磁気センサの出力信号から所定の周波数成分を抽出する信号処理回路と、を備えることを特徴とする磁界検出装置。
  15.  前記所定の周波数成分に基づき生成されたキャンセル信号に基づいて、前記磁気センサにキャンセル磁界を与える磁界発生回路をさらに備えることを特徴とする請求項14に記載の磁界検出装置。
PCT/JP2016/081103 2015-11-20 2016-10-20 磁界センサ及びこれを備える磁界検出装置 WO2017086085A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/776,234 US11022659B2 (en) 2015-11-20 2016-10-20 Magnetic sensor and magnetic-field detection device including the same
CN201680067969.8A CN108291947B (zh) 2015-11-20 2016-10-20 磁场传感器以及具备其的磁场检测装置
DE112016005336.3T DE112016005336T5 (de) 2015-11-20 2016-10-20 Magnetsensor und diesen umfassende Magnetfeld-Detektionseinrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-227853 2015-11-20
JP2015227853A JP6699139B2 (ja) 2015-11-20 2015-11-20 磁界センサ及びこれを備える磁界検出装置

Publications (1)

Publication Number Publication Date
WO2017086085A1 true WO2017086085A1 (ja) 2017-05-26

Family

ID=58718820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081103 WO2017086085A1 (ja) 2015-11-20 2016-10-20 磁界センサ及びこれを備える磁界検出装置

Country Status (5)

Country Link
US (1) US11022659B2 (ja)
JP (1) JP6699139B2 (ja)
CN (1) CN108291947B (ja)
DE (1) DE112016005336T5 (ja)
WO (1) WO2017086085A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111198341A (zh) * 2018-11-16 2020-05-26 Tdk株式会社 磁传感器及位置检测装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155701A1 (ja) * 2017-02-27 2018-08-30 Tdk株式会社 磁気センサ
JP2019056685A (ja) * 2017-09-21 2019-04-11 Tdk株式会社 磁気センサ
US10768246B2 (en) * 2017-09-21 2020-09-08 Tdk Corporation Magnetic sensor with elongated soft magnetic body
JP2020071096A (ja) * 2018-10-30 2020-05-07 Tdk株式会社 磁気センサ
JP2020071095A (ja) * 2018-10-30 2020-05-07 Tdk株式会社 磁気センサ
WO2023204135A1 (ja) * 2022-04-19 2023-10-26 Tdk株式会社 磁気検出システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH112671A (ja) * 1997-06-11 1999-01-06 Toshiba Corp Squid磁束計
WO2003038452A1 (fr) * 2001-11-01 2003-05-08 Asahi Kasei Emd Corporation Capteur de courant et procede de fabrication associe
JP2009276159A (ja) * 2008-05-14 2009-11-26 Sae Magnetics (Hk) Ltd 磁気センサ
WO2011068146A1 (ja) * 2009-12-02 2011-06-09 アルプス電気株式会社 磁気センサ
CN102353911A (zh) * 2011-08-31 2012-02-15 中国科学院上海微系统与信息技术研究所 基于扰动补偿的环境场下高灵敏度磁测量装置及实现方法
JP2013172040A (ja) * 2012-02-22 2013-09-02 Alps Electric Co Ltd 磁気センサとその製造方法
US20160202329A1 (en) * 2015-01-13 2016-07-14 Stmicroelectronics S.R.L. Amr-type integrated magnetoresistive sensor for detecting magnetic fields perpendicular to the chip

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11194159A (ja) * 1997-11-07 1999-07-21 Sumitomo Electric Ind Ltd 磁気センサ
DE102011121298A1 (de) * 2011-12-19 2013-06-20 Micronas Gmbh Integrierter Magnetfeldsensor und Verfahren für eine Messung der Lage eines ferromagnetischen Werkstückes mit einem integrierten Magnetfeldsensor
JP5876583B2 (ja) * 2013-03-26 2016-03-02 旭化成エレクトロニクス株式会社 磁気センサ及びその磁気検出方法
CN108351390B (zh) * 2015-11-04 2021-08-27 Tdk株式会社 磁场检测装置及磁场检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH112671A (ja) * 1997-06-11 1999-01-06 Toshiba Corp Squid磁束計
WO2003038452A1 (fr) * 2001-11-01 2003-05-08 Asahi Kasei Emd Corporation Capteur de courant et procede de fabrication associe
JP2009276159A (ja) * 2008-05-14 2009-11-26 Sae Magnetics (Hk) Ltd 磁気センサ
WO2011068146A1 (ja) * 2009-12-02 2011-06-09 アルプス電気株式会社 磁気センサ
CN102353911A (zh) * 2011-08-31 2012-02-15 中国科学院上海微系统与信息技术研究所 基于扰动补偿的环境场下高灵敏度磁测量装置及实现方法
JP2013172040A (ja) * 2012-02-22 2013-09-02 Alps Electric Co Ltd 磁気センサとその製造方法
US20160202329A1 (en) * 2015-01-13 2016-07-14 Stmicroelectronics S.R.L. Amr-type integrated magnetoresistive sensor for detecting magnetic fields perpendicular to the chip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111198341A (zh) * 2018-11-16 2020-05-26 Tdk株式会社 磁传感器及位置检测装置

Also Published As

Publication number Publication date
US20200256932A1 (en) 2020-08-13
DE112016005336T5 (de) 2018-08-02
CN108291947B (zh) 2020-10-23
JP6699139B2 (ja) 2020-05-27
JP2017096714A (ja) 2017-06-01
CN108291947A (zh) 2018-07-17
US11022659B2 (en) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2017086085A1 (ja) 磁界センサ及びこれを備える磁界検出装置
US11644517B2 (en) Magnetic sensor
WO2013153986A1 (ja) 磁気センサ装置
KR101376987B1 (ko) 자기 센서 장치
JP5516773B2 (ja) 磁気センサ装置
US10001532B2 (en) Magnetic sensor device
CN103748474A (zh) 电流传感器
JP2012255770A (ja) 磁気センサ装置
KR20140051385A (ko) 측정 장치의 주위 환경들의 자기 특성들을 측정하기 위한 측정 장치
JP2011163831A5 (ja)
WO2015190468A1 (ja) 磁気センサ装置
CN106537166B (zh) 磁性传感器装置
JP2007226674A (ja) 紙葉類識別センサ
CN111198341B (zh) 磁传感器及位置检测装置
JP5799882B2 (ja) 磁気センサ装置
JP2012215405A (ja) 磁気センサ装置
JP5861551B2 (ja) 磁気センサ装置
JP2011174775A (ja) 電流センサ
JP2016095138A (ja) 磁気センサ
WO2010035860A1 (ja) 磁気センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866087

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016005336

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866087

Country of ref document: EP

Kind code of ref document: A1