WO2017085831A1 - Luminescent object and production process therefor - Google Patents

Luminescent object and production process therefor Download PDF

Info

Publication number
WO2017085831A1
WO2017085831A1 PCT/JP2015/082541 JP2015082541W WO2017085831A1 WO 2017085831 A1 WO2017085831 A1 WO 2017085831A1 JP 2015082541 W JP2015082541 W JP 2015082541W WO 2017085831 A1 WO2017085831 A1 WO 2017085831A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
carbon dot
insulator
dots
value
Prior art date
Application number
PCT/JP2015/082541
Other languages
French (fr)
Japanese (ja)
Inventor
望月 誠
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to PCT/JP2015/082541 priority Critical patent/WO2017085831A1/en
Publication of WO2017085831A1 publication Critical patent/WO2017085831A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials

Definitions

  • the present invention relates to a light emitter and a method for manufacturing the same.
  • a fluorescent material excited by light of a specific wavelength is used for a wavelength conversion layer of various lighting devices, a labeled probe for fluorescently labeling a specific biological substance, or the like.
  • an organic dye is generally used as such a fluorescent material.
  • organic dyes have low light resistance, and have problems such as deterioration due to irradiation with excitation light over a long period of time and reduction in fluorescence intensity.
  • Quantum dots which are inorganic semiconductor materials, as fluorescent materials. Quantum dots are excellent in light resistance and have an advantage that the fluorescence intensity is hardly lowered even when irradiated with excitation light for a long period of time.
  • quantum dots those exhibiting a high quantum yield often contain cadmium and indium, and there have been problems in terms of influence on the living body and consideration for the environment.
  • carbon phosphors such as carbon nanoparticles (carbon dots) and graphene nanosheets as a phosphor material is also being studied.
  • the carbon phosphor does not contain cadmium, indium or the like, and hardly affects the living body or the environment.
  • the carbon phosphor also has an advantage of high light resistance.
  • carbon phosphors may not have sufficient emission lifetime and quantum yield, and these improvements have been demanded.
  • Patent Document 1 discloses forming a layer made of an insulator on the surface of the graphene sheet as a method for increasing the quantum yield of the graphene nanosheet which is a carbon phosphor.
  • Non-Patent Document 1 as a method for efficiently producing carbon dots, a carbon compound is injected into pores of porous silica having pores, and the carbon compound is sintered in the pores of porous silica. It has been shown to tie. According to the manufacturing method of Non-Patent Document 1, a light emitter in which carbon dots are accommodated in the pores of porous silica can be obtained.
  • an object of the present invention is to provide a light emitter including a carbon dot inclusion body having a high quantum yield, uniform fluorescence intensity, high color purity of emitted fluorescence, and a long emission lifetime.
  • the first of the present invention is the following light emitter.
  • a light emitting body including a carbon dot inclusion body having carbon dots and an insulator covering the carbon dots, and a variation coefficient of a particle size of the carbon dots is 20% or less.
  • the carbon dot inclusion body is a carbon dot single inclusion particle in which the carbon dot is covered with the insulator, and the light emitter is in a powder form or a slurry form.
  • Luminous body [3]
  • the carbon dot inclusion body is a carbon dot multiple inclusion body in which two or more carbon dots are coated with the insulator, and the luminous body is in a powder form, a slurry form, or a bulk form. 1].
  • the second of the present invention lies in the following method for producing a light emitter.
  • the carbon dot inclusion body included in the light emitter of the present invention has a high quantum yield and a uniform fluorescence intensity. Moreover, the color purity of the fluorescence emitted from the carbon dots contained in each carbon dot inclusion body is high, and the emission lifetime is also long. Therefore, the light emitter of the present invention can be applied to various uses such as a fluorescent probe and a material for a wavelength conversion layer of an illumination device.
  • FIGS. 1A to 1C are schematic views each showing a structure of a carbon dot inclusion body as a light emitter or a carbon dot inclusion body included in the light emitter according to an embodiment of the present invention.
  • FIG. 2 is an image diagram of an embodiment of a fluorescent probe to which a carbon dot inclusion body included in a light emitter is applied.
  • FIG. 3 is a schematic cross-sectional view of an embodiment of an LED device in which a carbon dot inclusion body included in a light emitter is applied to a wavelength conversion layer.
  • 4A is a schematic diagram for explaining the configuration of the projection display device
  • FIG. 4B is a projection display device in which the carbon dot inclusions included in the light emitter are applied to the light adjustment layer.
  • FIGS. 5A to 5D are schematic cross-sectional views of an embodiment of a backlight device in which carbon dot inclusions included in a light emitter are applied to a wavelength conversion layer.
  • FIG. 6 is a schematic cross-sectional view of an embodiment of a photoelectric conversion device in which a carbon dot inclusion body included in a light emitter is applied to a wavelength conversion layer.
  • Luminescent body The luminous body according to the embodiment of the present invention includes a carbon dot inclusion body in which one or a plurality of carbon dots having a variation value of a particle size of a certain value or less are covered with an insulator.
  • the carbon dot is covered with an insulator means that the carbon dot is included in the insulator in a state of being in close contact with the insulator, and the carbon dot inclusion body has a carbon dot on the surface thereof.
  • “The carbon dots are not substantially exposed” means that the carbon dots are not exposed at all, or the exposure is suppressed to the extent that the outflow of excited electrons from the carbon dot surface is sufficiently suppressed. This means that the exposure of carbon dots is at most 30% or less, preferably 20% or less, more preferably 10% or less. The degree of exposure can be measured by a BET adsorption method or the like.
  • the said light-emitting body laminate
  • the size of the graphene sheet included in each light emitter varies, the chromaticity of the fluorescence emitted from each light emitter varies, and the peak of the obtained fluorescence spectrum tends to be broad.
  • a light emitter is applied to, for example, a fluorescent probe, it is difficult to grasp the amount of the target substance based on the fluorescence intensity.
  • the signal / noise ratio tends to be low, and high-precision measurement is difficult.
  • chromaticity variation and luminance variation are likely to occur in the light emitting surface of the lighting device.
  • the carbon dots are held in such a state that they are detached from the pores when vibration is applied. It is presumed that the carbon dot surface is exposed from the porous silica and is not in close contact with the porous silica in many regions. For this reason, excited electrons easily flow out from the carbon dot surface, and it is difficult to sufficiently increase the quantum yield and light emission lifetime of the light emitter.
  • the carbon dots are covered with an insulator, and the outflow of excited electrons of the carbon dots is sufficiently suppressed. Therefore, according to the carbon dot inclusion body, a high quantum yield and a long emission lifetime can be obtained. Further, the carbon dots included in each carbon dot inclusion body have a small particle size variation, and there is little variation in the intensity and chromaticity of the fluorescence emitted by each carbon dot.
  • the light emitter of this embodiment by controlling the number of carbon dots included in each carbon dot inclusion, the fluorescence intensity emitted by each carbon dot inclusion can be adjusted to the intended intensity. it can. Therefore, it becomes easy to make the fluorescence intensity of each carbon dot inclusion body uniform. For this reason, the light emitter of this embodiment can be used in a wide range of applications, and is particularly useful as a material for a fluorescent probe, a wavelength conversion layer of various lighting devices, and the like.
  • the carbon dot inclusion body may be in the form of particles or a bulk such as a sheet as described later.
  • the light emitter may be composed only of the carbon dot inclusions described above, or may contain other components such as a dispersion medium in addition to the carbon dot inclusions. That is, the light emitter of the present embodiment can take various embodiments such as powder, bulk, or slurry.
  • the carbon dot inclusion body will be described, and then other components that the light emitter may contain will be described.
  • the carbon dot inclusion body included in the light emitter of the present embodiment includes carbon dots and an insulator that covers the carbon dots.
  • a schematic diagram of the carbon dot inclusion is shown in FIG.
  • the carbon dot inclusion body 3 may be a carbon dot single inclusion particle 3a in which only one carbon dot 1 is included in an insulator 2 as shown in FIG.
  • the carbon dot inclusion 3 has a core-shell structure in which the carbon dot is a core and the insulator is a shell.
  • the carbon dot inclusion body is a carbon dot multiple inclusion body 3b in which a plurality (three in FIG. 1B) of carbon dots 1 are included in an insulator 2.
  • the shape of the carbon dot inclusion body is not limited to a particle shape, and may be a bulk shape such as a sheet shape as shown in FIG.
  • Carbon dot should just be the particle
  • the carbon dots may be, for example, fine particles made of graphene oxide (graphene oxide) in which carbon atoms are bonded by sp 2 bonds and arranged in the same plane. Strictly speaking, graphite with a single layer structure should be defined as graphene, but in this specification, graphite with a multilayer structure is also included in the concept of graphene.
  • the carbon dots may be obtained by reducing graphene oxide fine particles.
  • Examples of the reduction treatment of graphene oxide fine particles include heat treatment, light irradiation, treatment with a reducing agent, exposure to a reducing atmosphere, and the like.
  • the carbon dots may be those obtained by introducing a hydroxyl group, a carboxy group, or an epoxy group on the surface of the graphene oxide fine particles, or an acid anhydride that is a dehydrated body of two adjacent carboxy groups.
  • the carbon dot has a carboxy group on its surface, it becomes easy to chemically bond with an insulator described later, and the quantum yield is likely to increase.
  • the method for introducing a hydroxyl group or a carboxy group is not particularly limited.
  • a desired functional group can be introduced by appropriately selecting a carbon compound for preparing a carbon dot.
  • the hydroxyl group, the carboxy group, the epoxy group, the acid anhydride group, and the like are preferably introduced in a range where the amount of oxygen contained in the carbon dot is 2 to 50% by mass with respect to the mass of the carbon dot. .
  • the amount of oxygen with respect to the mass of the carbon dots is more preferably 2 to 47% by mass, and further preferably 5 to 47% by mass. If the carbon dot contains the above-mentioned range, hydroxyl group or carboxy group, these are likely to chemically bond at the interface between the insulator and graphene oxide fine particles (carbon dots) described later, and the quantum yield is likely to increase.
  • the oxygen content can be specified by XPS (X-ray photoelectron spectroscopy) or energy dispersive X-ray analysis combining SEM (scanning electron microscope) and TEM (transmission electron microscope). .
  • the carbon dots may have both a graphene structure part having high crystallinity derived from graphite and an amorphous structure part.
  • the quantum yield is likely to be higher than that in the case where the light emitter is formed only of the graphene structure portion having high crystallinity.
  • Carbon dots with high crystallinity have a graphene layer and a graphene layer laminated densely, and it is considered that the quantum yield is reduced due to a loss resulting from a new path of electron transfer between layers.
  • the presence or absence of the amorphous structure portion can be determined from the presence or absence of lattice fringes in the image observed with a transmission microscope (hereinafter also referred to as “TEM”), the peak height of the Raman spectrum, and the like.
  • TEM transmission microscope
  • the carbon dot of the present embodiment has a variation coefficient of particle size (hereinafter also referred to as “CV value”) of 20% or less, preferably 15% or less, and more preferably 10% or less.
  • the CV value is a numerical value representing variation in statistics, and is represented by the following formula.
  • CV value [%] ( ⁇ / D) ⁇ 100
  • represents a standard deviation
  • D represents an average particle diameter of carbon dots.
  • the particle size of the carbon dots is a value obtained by image observation by TEM, and the standard deviation and average particle size are obtained when 100 particles randomly selected by image observation by TEM are observed. Value.
  • the “particle diameter” in the coefficient of variation of the particle diameter refers to the long diameter of the particles.
  • the major axis of the particles can be determined by the method described later.
  • the smaller the CV value the higher the uniformity of the particle size.
  • the CV value of the carbon dots is 20% or less, the intensity of the fluorescence emitted by each carbon dot is less varied, and its color Purity is also likely to increase.
  • the shape of the carbon dots is not particularly limited, but the ratio (b / a) of the major axis (b) to the minor axis (a) of the particles (hereinafter also referred to as “aspect ratio”) is 1.0 to 1.5. Preferably, it is in the range of 1.0 to 1.4, more preferably in the range of 1.0 to 1.3.
  • the aspect ratio is in the above range, when the insulator is formed around the carbon dots, the insulator is hardly distorted, and the insulator is difficult to peel off from the carbon dot surface.
  • the above aspect ratio can be measured as follows, but is not limited to this method. First, a dispersion liquid in which carbon dots are dispersed in a dispersion medium is prepared, and the dispersion liquid is dropped on a slide glass and dried. Thereby, a carbon dot can be fixed so that a Z-axis direction may become a short axis. Subsequently, an image is observed from the X-axis / Y-axis surfaces of the carbon dot particles by TEM to obtain the major diameter (b) of the carbon dots. And about this sample, a short axis (a) is calculated
  • AFM atomic force microscope
  • the short diameter (a) and the long diameter (b) of the carbon dot are not particularly limited as long as the carbon dot is excited by light of a specific wavelength and emits fluorescence, but the long diameter ( b) is preferably from 0.5 to 30.0 nm, more preferably from 2.0 to 10.0 nm.
  • the minor axis (a) is preferably 0.4 to 25.0 nm, and more preferably 1.0 to 10.0 nm.
  • the type of insulator covering the carbon dots is not particularly limited as long as it can transmit the fluorescence emitted by the carbon dots and is made of a material having a higher band gap than the carbon dots.
  • the insulator material may be, for example, an organic resin, an inorganic compound, or a composite material thereof. If the carbon dots are covered with an insulator having a band gap higher than that of the carbon dots, the excited electrons of the carbon dots hardly flow out to the outside, and the quantum yield can be increased. In general, when the fluorescent substance is at a high concentration, the molecules interact with each other and concentration quenching is likely to occur.
  • the carbon dots are isolated from each other by an insulator. Therefore, the carbon dots do not interact with each other, and concentration quenching hardly occurs. Furthermore, it is possible to obtain an effect that particles are hardly aggregated by covering the carbon dots with an insulator.
  • insulator materials include epsilon caprolactam, acrylic acid polymer, cellulose resin, polyvinyl resin, polyurethane resin, acrylic resin, polyester resin, silicone resin, polyethylene glycol or polyethylene oxide, polyimide resin, polycarbonate resin, Polyamide resins, melamine resins, metalloxane compounds having a metalloxane skeleton, and the like are included. Only one of these may be included in the insulator, or two or more thereof may be included. These may be combined.
  • the insulator material preferably has a group capable of bonding with a functional group on the surface of the carbon dot. If the functional group present on the surface of the carbon dot is freely movable, when the carbon dot is excited, the excitation energy is easily converted into rotational energy or vibration energy, and energy loss is likely to occur. That is, the quantum yield tends to decrease. On the other hand, if they are chemically bonded at the interface between the insulator and the carbon dots, energy loss is unlikely to occur, and a high quantum yield is easily obtained.
  • Examples of materials that can be chemically bonded to the functional group on the carbon dot surface include materials having a hydroxyl group, a mercapto group, or an amino group. Hydroxyl groups and mercapto groups react with carboxy groups present on the surface of carbon dots to form ester bonds.
  • the amino group reacts with a carboxy group present on the carbon dot surface to form an amide bond.
  • the amino group reacts with an acid anhydride group which is a dehydrated carboxy group present on the surface of the carbon dot to form an imide bond.
  • the quantum yield is particularly likely to increase when an amide bond or an imide bond is included at the interface between the insulator and the carbon dots. Therefore, it is preferable that the insulator contains a compound having an amino group in its structure, such as a melamine resin or a cured product of an amino group-containing silane coupling agent.
  • the insulator contains a metalloxane compound.
  • a metalloxane bond is included in the component constituting the insulator, the strength of the insulator is easily increased, and the wet heat resistance of the carbon dot inclusion body is easily increased.
  • the metalloxane bond is rigid, a functional group that becomes the emission center of the carbon dot can be immobilized. As a result, energy loss due to rotation and vibration of the functional group serving as the emission center is suppressed, and the quantum yield is improved.
  • a metalloxane type compound will not be restrict
  • the type of metal contained in the metalloxane bond is not particularly limited, but Si, Al, Zn, Ti, and Zr are preferable from the viewpoints of light transmittance, strength, wet heat resistance, and the like of the insulator.
  • the amount of the insulator included in the carbon dot inclusion body is not particularly limited as long as it can be included so that the carbon dots are not substantially exposed.
  • the mass of the insulator is preferably 10 to 100,000 parts by mass with respect to the mass of the carbon dots (100 parts by mass). More preferably, it is ⁇ 10,000 parts by mass.
  • the mass of the insulator is 20 to 200,000 parts by mass with respect to the total amount (100 parts by mass) of carbon dots contained in each of the carbon dot inclusions. It is preferably 100 to 20000 parts by mass.
  • the amount of the insulator in the carbon dot inclusion is equal to or more than the lower limit value, the carbon dots are difficult to be exposed on the surface of the carbon dot inclusion.
  • the amount of the insulator is less than or equal to the upper limit value, the light transmittance and the like of the insulator are improved, and the fluorescence emitted by the carbon dots is easily taken out of the carbon dot inclusion body.
  • the shape of the carbon dot inclusion body is appropriately selected according to its use and the number of carbon dots included in the carbon dot inclusion body.
  • the shape of the carbon dot-inclusive particles in which only one carbon dot is covered with an insulator is not particularly limited, but is preferably substantially spherical.
  • the average particle size of the carbon dot-containing particles is preferably 1 to 100 nm, and more preferably 2 to 50 nm.
  • the carbon dot single inclusion particles can be easily applied to various uses such as a fluorescent probe.
  • the method for measuring the average particle size of the carbon dot-inclusive particles can be the same as the method for measuring the average particle size of the carbon dots described above.
  • the CV value is preferably 30% or less, and more preferably 20% or less.
  • the calculation method of the CV value of the carbon dot single inclusion particle may be the same as the calculation method of the CV value of the carbon dot described above.
  • the shape of the carbon dot inclusion body in which a plurality of carbon dots are covered with an insulator is not particularly limited.
  • the carbon dot multiple inclusion body may be in the form of particles, for example, but may be in the form of a bulk such as a sheet.
  • each carbon dot multiple inclusion preferably includes 2 to 100 carbon dots, more preferably 5 to 80 carbon dots, and preferably 10 to 50 carbon dots. Further preferred.
  • the number of carbon dots contained in a plurality of carbon dot inclusions is within the above range, the particle size can be sufficiently reduced, and the carbon dot inclusions can be easily applied to various applications.
  • the number of carbon dots included in each carbon dot multiple inclusion body may vary, but is preferably substantially uniform. Thereby, the fluorescence intensity which each carbon dot multiple inclusion body emits can be arrange
  • the shape is not particularly limited, but is preferably substantially spherical.
  • the average particle diameter of the carbon dot multiple inclusions is preferably 2 to 500 nm, and more preferably 10 to 100 nm.
  • the measuring method of the average particle diameter of the carbon dot multiple inclusion body can be the same as the measuring method of the average particle diameter of the carbon dots described above.
  • the carbon dot multiple inclusion body is in the form of particles, it is preferable that the variation in the particle diameter is small, and the CV value is preferably 40% or less, and preferably 30% or less.
  • the calculation method of the CV value of the carbon dot multiple inclusion body may be the same as the calculation method of the CV value of the carbon dots described above.
  • the carbon dot plural inclusions are in a bulk shape such as a sheet shape
  • the number of carbon dots included in the carbon dot plural inclusions is appropriately selected according to the size, thickness, and shape of the carbon dot plural inclusions.
  • the shape of the carbon dot multiple inclusion body is also appropriately selected according to the application.
  • the light emitter may contain components other than carbon dot inclusions as necessary.
  • examples of other components include a dispersion medium.
  • the luminous body is a slurry in which carbon dot inclusions are dispersed in a dispersion medium, the carbon dot inclusions can be easily applied to various substrates.
  • the dispersion medium for dispersing the carbon dot inclusion body is not particularly limited as long as it is a solvent capable of sufficiently dispersing the carbon dot inclusion body.
  • the dispersion medium is not particularly limited as long as it is compatible with the insulator on the surface of the carbon dot inclusion body and can be uniformly dispersed.
  • water, high polarity solvent, amphiphilic solvent, low polarity can be a solvent.
  • the amount is appropriately selected according to the use of the light emitter.
  • the above-described luminous body can be manufactured by performing a process of preparing carbon dots and a process of covering the carbon dots with an insulator.
  • the manufacturing method of a light-emitting body may include other steps as necessary.
  • Carbon dot preparation process In the manufacturing method of a light-emitting body, first, carbon dots having a CV value of 20% or less are prepared.
  • the method for preparing carbon dots having a CV value of 20% or less is not particularly limited.
  • carbon dots may be prepared by a known method and classified to make the CV value 20% or less.
  • carbon dots having a uniform particle size may be prepared by a hot injection method or a carbon dot synthesis method using a template.
  • a carbon dot synthesis method using a template is particularly preferable from the viewpoint that carbon dots having a uniform particle size are easily obtained and that production efficiency is high.
  • the preparation method of a carbon dot is not restricted to the method concerned.
  • a template having a uniform pore system is prepared.
  • the material of the mold is not particularly limited, but is preferably a mold made of mesoporous silica or zeolite from the viewpoint of heat resistance and the like.
  • a mold made of mesoporous silica, which is porous silica having nano-sized pores, is preferable from the viewpoint that the pore size can be controlled.
  • a template made of sub-nano-sized porous silica shown in Non-Patent Document 1 may be used.
  • a mold made of mesoporous silica can be produced as follows. First, a surfactant, a silica source such as tetraethoxysilane (hereinafter also referred to as “TEOS”), and an acid or base catalyst are mixed. Then, the silica source is subjected to a sol-gel reaction in a state where the surfactant forms micelles, that is, in a state where the silica source is adsorbed around the surfactant. Next, by firing this, the surfactant is thermally decomposed to obtain mesoporous silica having uniform pores. The pore diameter of mesoporous silica can be easily controlled by changing the alkyl chain length of the surfactant.
  • TEOS tetraethoxysilane
  • mesoporous silica can also be prepared by a method described in, for example, International Publication No. 2011/108649. Further, commercially available mesoporous silica may be applied. Examples of commercially available mesoporous silica include meso pure series manufactured by Mitsubishi Chemical and reagent grade mesoporous silica manufactured by Sigma-Aldrich.
  • Carbon dots are obtained by filling the mold with a carbon compound and sintering the carbon compound in this state.
  • the carbon compound is not particularly limited as long as it can be introduced into the pores of the mesoporous silica and is carbonized by sintering to become carbon dots.
  • Examples of such carbon compounds include carboxylic acids such as citric acid, tartaric acid, oxalic acid and melitonic acid; monosaccharides such as glucose, fructose and mannose; polysaccharides such as glycogen, dextrin and cellulose; lysine, leucine and methionine. Amino acids; resins such as acrylic resins, epoxy resins, polycarbonate resins; and the like.
  • the carbon compound is preferably a carboxylic acid, and particularly preferably citric acid, from the viewpoint of appropriately containing oxygen in the molecule and having a carboxy group.
  • the method for introducing the carbon compound into the above-described template is not particularly limited.
  • a method can be used in which the template is immersed in an aqueous solution in which the carbon compound is dispersed in water.
  • a method can be used in which the template is immersed in the carbon compound or an aqueous solution of the carbon hydrogen compound.
  • a method can be used in which the template is allowed to stand in an atmosphere containing the raw material carbon compound and the carbon compound is allowed to enter the template.
  • a method of immersing the template in an aqueous solution of a solid or liquid carbon compound is particularly preferable.
  • the particle size distribution of the carbon dot obtained can be adjusted with the density
  • excess carbon compound attached to the mold surface may be removed.
  • the method for removing excess carbon compounds include a method of washing the template with a lower aliphatic alcohol such as ethanol or methanol.
  • the carbon compound is carbonized to form carbon dots.
  • the temperature and time during sintering are appropriately selected according to the type and amount of the carbon compound.
  • the sintering temperature is usually preferably 200 ° C. or higher, more preferably 200 to 500 ° C., and further preferably 250 to 400 ° C.
  • the temperature is raised from room temperature to a predetermined sintering temperature, and the temperature is maintained for a certain period of time. It is possible to adjust the ratio. Specifically, the aspect ratio can be reduced by decreasing (slowing) the rate of temperature increase during temperature increase.
  • the sintering (carbonization) time is usually preferably about 0.5 to 20 hours, more preferably 2 to 5 hours.
  • the atmosphere at the time of sintering is particularly preferably an air atmosphere containing oxygen atoms.
  • the atmosphere is not particularly limited as long as it is an atmosphere partially containing oxygen, and oxygen gas is added to an atmosphere of nitrogen gas or rare gas. The introduced atmosphere may be used.
  • the carbon dots sintered in the mold are taken out from the mold by applying vibration by ultrasonic treatment or the like. Then, you may classify the carbon dot taken out from the casting_mold
  • Carbon dot coating step with an insulator The carbon dot obtained in the above step is coated with an insulator.
  • the method for coating the carbon dots with the insulator is not particularly limited, and is appropriately selected according to the type of the insulator and the shape of the desired carbon dot inclusion body.
  • carbon dots are placed in the pores of a porous bead made of an insulator (inorganic material or organic resin). And then sealing the pores of the porous bead with the same material as the porous bead, (ii) adding carbon dots to the precursor of the insulator, and then adding the carbon dots to the precursor of the insulator And (iii) a method of preparing carbon dots using a mold made of an insulator and filling the pores of the mold with the same material as the mold. . In addition, (iv) a method in which resin beads having pores in the interior are swollen and carbon dots are taken in, or (v) a method in which alternate adsorption of polyions is used to adsorb carbon dots can be applied. .
  • the method (ii) or (iii) is preferable from the viewpoint that the number of carbon dots in the insulator can be easily controlled, and that the carbon dots can be easily covered completely.
  • the particle size of the carbon dot inclusion body can be easily adjusted.
  • the porous beads and the carbon dots made of an insulator are stirred in a solvent, etc., in the pores of the porous beads. Carbon dots can be placed. Further, the number of carbon dots arranged in each porous bead is adjusted by the number of pores of the porous bead. Then, by filling the pores of the porous beads with an inorganic material or organic resin that constitutes the porous beads, or a precursor thereof, the carbon dots are coated with an insulator by curing the filler. An inclusion body is obtained.
  • the method of filling the porous beads with an inorganic material, an organic resin, or a precursor thereof is not particularly limited, and may be injected with a syringe or the like.
  • the porous beads may be dispersed in a solution containing an inorganic material, an organic resin, or a precursor thereof, and filled in the pores of the porous beads.
  • the method for curing the porous material after filling the pores of the porous beads with an inorganic material or an organic resin, or a precursor thereof is appropriately selected according to the type of the inorganic material, the organic resin, or the precursor, One example is heating.
  • an insulator precursor inorganic material or organic resin precursor
  • carbon dots are mixed and a shearing force is applied.
  • a carbon dot can be coat
  • the method for applying the shearing force is not particularly limited, and may be, for example, a stirring process, an ultrasonic process, a process using a bead mill, a process repeatedly passing through a narrow channel, a process using a rotating disk, or the like.
  • covered with the insulator is obtained by hardening the precursor of an insulator.
  • the method for curing the insulator precursor is appropriately selected according to the type of the insulator precursor, and heating is an example.
  • the functional group of the insulator precursor and the functional group on the surface of the carbon dot may be chemically reacted simultaneously with the coating of the carbon dots with the insulator precursor. Thereby, the carbon dot inclusion body in which these are chemically bonded at the interface between the carbon dots and the insulator is obtained.
  • Such a chemical reaction can be performed by the method described in JP-A-2015-108572.
  • carbon dots are produced in a mold such as mesoporous silica as described in the carbon dot preparation method. And the inorganic material which comprises a casting_mold
  • the method for filling the inorganic material constituting the template or its precursor into the pores of the template is not particularly limited, and can be the same method as in the above (i). Further, in the method of closing the pores of the template, the template itself may be heated and melted if the fluorescence characteristics of the carbon dots do not deteriorate.
  • the method for preparing the resin beads is not particularly limited and may be a known method. And it can be set as the method of making the said resin bead swell by heating, moistening, etc., and taking in a carbon dot.
  • carbon dot inclusions are obtained by the method (v), for example, when carbon dots having a polar group such as a carboxy group on the surface are dispersed in water, they are negatively charged.
  • an insulator having a positively chargeable polar group is dispersed in a solvent and positively charged. When these are mixed, the insulator is adsorbed around the carbon dots, so that a carbon dot inclusion body in which the carbon dots are included in the insulator is obtained.
  • the combination of the carbon dots and the insulator is not particularly limited as long as it is a combination of positive and negative at the time of charging. A carbon dot that is positively charged and a negatively charged insulator may be used. .
  • the carbon dot inclusion body when the carbon dot inclusion body is made into a bulk shape, the carbon dot inclusion body can be produced by the same method as in the above (ii).
  • the manufacturing method of the light-emitting body mentioned above is a process which dries the carbon dot inclusion body obtained by the said process as needed, a carbon dot inclusion body, and a solvent, And the like.
  • the quantum yield of carbon dots is very high. Further, the intensity of the fluorescence emitted by each carbon dot is uniform. Furthermore, the chromaticity of the fluorescence emitted by each carbon dot has little variation and the light emission life is long. Therefore, the light emitter of the present embodiment can be applied to various uses.
  • the carbon dot inclusions contained in the luminescent material are used as materials for fluorescent probes, LED devices, projection display wheels, backlight devices, and photoelectric conversion devices will be described.
  • Applications of the luminescent material of the present invention Is not limited to these.
  • the carbon dot inclusion body included in the above-described luminescent material is applied to a fluorescent probe for fluorescently labeling a target biomolecule.
  • the fluorescent probe 4 has an antibody for specifically binding to a target biomolecule (antigen) 5 and a carbon dot inclusion body 3 bound to the antibody. Can do.
  • the fluorescent probe When a fluorescent probe is administered to a living cell or biological tissue having a target biomolecule, the fluorescent probe specifically binds to or specifically adsorbs to the target biomolecule. Then, when excitation light (radiation) having a predetermined wavelength is irradiated to the position where the fluorescent probe is administered, the carbon dots included in the fluorescent probe are excited to emit fluorescence having a predetermined wavelength. Therefore, by detecting the fluorescence, it is possible to detect the position of the target biomolecule and grasp the detection amount. In particular, by controlling the number of carbon dots contained in each carbon dot inclusion and adjusting the fluorescence intensity emitted by each carbon dot inclusion to the intended intensity, the fluorescence intensity of each carbon dot inclusion can be made uniform. Thus, the accuracy of quantitative measurement can be improved.
  • Such a fluorescent probe can be obtained by covalently bonding (for example, an amide bond) a functional group on the surface of the carbon dot inclusion body and a functional group of the target-directing molecule (antibody).
  • a targeting molecule is a molecule having a function of specifically binding to a specific tissue or cell.
  • the kind of target-directed molecule is not particularly limited, and is appropriately selected according to the target substance. Examples of targeting molecules include the following:
  • the target-directed molecule is an antibody against them (for example, HER2 antibody, cancer-specific antibody, blood vessel Endothelial cell-specific antibody, tissue-specific antibody, phosphorylated protein antibody, etc.) or an affinity substance thereof, folic acid, transferrin, transferrin-binding peptide and the like.
  • the target-directing molecule can be a protein (for example, lectin) having binding properties with the sugar chain.
  • target-directing molecules include, for example, cell membrane affinity substances, viral cell recognition sites, lipophilic tracers, virus particles having no replication function, and organelle affinity substances (eg, DNA, mitochondria, cytoskeleton) Molecule, Golgi apparatus, lysosome, endosome, autophagosome, etc.).
  • organelle affinity substances eg, DNA, mitochondria, cytoskeleton
  • Molecule Golgi apparatus, lysosome, endosome, autophagosome, etc.
  • the fluorescence intensity of the carbon dots included in each carbon dot inclusion body is uniform, and the color purity thereof is high. Therefore, the amount of target biomolecules can be accurately determined by using, for example, carbon dot single inclusion particles containing only one carbon dot, or multiple inclusions of carbon dots in which the number of carbon dots contained is evenly arranged in a fluorescent probe. It becomes possible to measure. Moreover, since the color purity of the fluorescence emitted from the carbon dots is high, the signal / noise ratio when the fluorescence spectrum is measured can be sufficiently increased. Therefore, it is possible to specify the position and amount of the target biomolecule with high accuracy.
  • the LED device 50 is an LED device using the carbon dot inclusions included in the above-described light emitter as a material for forming the wavelength conversion layer of the LED device.
  • a schematic cross-sectional view of the LED device of the present embodiment is shown in FIG.
  • the LED device 50 includes a substrate 10, an LED element 20 disposed on the substrate 10, and a wavelength conversion layer 30 that covers the LED element 20.
  • a part of light emitted from the LED element 20 is converted into light having a specific wavelength by the wavelength conversion layer 30, so that the color of light emitted from the LED device 50 is set to a desired color.
  • the wavelength conversion layer 30 includes a carbon dot inclusion body that emits yellow fluorescence when excited by the blue light, thereby transmitting the wavelength conversion layer 30.
  • the resulting light is white.
  • the wavelength of the light emitted from the LED element 20 is not particularly limited as long as it is a wavelength that can excite the carbon dots, and can be blue light, near ultraviolet light, or the like.
  • the color of the fluorescence emitted by the carbon dots is not particularly limited, and may be any color such as red, green, blue, and yellow.
  • the combination of the color of light emitted from the LED element 20 and the color of fluorescence emitted from the carbon dots is appropriately selected according to the use of the LED device 50 and the like.
  • the wavelength conversion layer 30 may include only one type of carbon dot inclusion body, or may include two or more types.
  • the wavelength conversion layer 30 can be a layer in which carbon dot inclusions are bound by a binder.
  • the binder is not particularly limited as long as it has light transmittance and can sufficiently bind the carbon dot inclusion body, and may be made of an inorganic material or a resin. Good.
  • the binder can be a transparent resin such as an epoxy resin or a silicone resin, or a translucent ceramic such as polysiloxane.
  • Such a wavelength conversion layer 30 can be obtained by applying the above-described phosphor and a composition containing the binder or its precursor by a known method and curing the composition.
  • the composition for forming the wavelength conversion layer 30 may contain a solvent as necessary.
  • the intensity and chromaticity of the fluorescence emitted by each carbon dot can be made uniform. Accordingly, by including such carbon dot single inclusion particles containing only one carbon dot or a plurality of carbon dot inclusion bodies in which the number of carbon dots contained is evenly arranged in the wavelength conversion layer, the light is emitted from the LED device. Light color and brightness are likely to be uniform. In addition, since the color purity of the fluorescence emitted by each carbon dot is high, the effect that the chromaticity of the light emitted from the LED device easily falls within a desired range is also obtained.
  • Color wheel for projection display device the carbon dot inclusions included in the above-described light emitter are used for the light adjustment layer of a color wheel for projection display device (hereinafter also referred to as “color wheel”). Used as a material.
  • a schematic diagram of a projection display device incorporating a color wheel is shown in FIG.
  • the projection display device 120 includes at least a light source 110, a color wheel 100, and a projection optical system 114.
  • the light emitted from the light source 110 is collected by the lens 111 and the like, and is applied to the color wheel 100 described above. At this time, light from the light source is diffused or wavelength-converted by a light adjustment layer (not shown) of the color wheel 100.
  • the light transmitted through the color wheel 100 is guided to the projection optical system 114 via the lens 112, the mirror 113, and the like, and is projected by the projection optical system 114 to display an image on the screen.
  • the carbon dot inclusions included in the above-described light emitter are materials for color wheels of such a projection display device, more specifically, as materials for converting light from the light source 110 into light of other wavelengths. Can be included in the color wheel.
  • the color wheel 100 of the projection display device has a structure in which a substrate 101 and a light adjustment layer 102 including a carbon dot inclusion body are laminated.
  • the color wheel 100 is installed between the light source 110 and the projection optical system 114 in the projection display device, and diffuses the light from the light source 110 or converts the light from the light source 110 into light of another specific wavelength. It performs the function to do.
  • a plurality of types of light adjustment layers 102a to 102c are formed on one color wheel 100 as shown in FIG. 4B. May be.
  • the light adjustment layer 102a including the carbon dot inclusion that emits blue light by receiving the ultraviolet light, and emits green light by receiving the ultraviolet light.
  • the light source is only one type. Even so, the three primary colors of light can be reproduced.
  • the type of the light adjustment layer 102 included in the color wheel 100, the region where the light adjustment layer 102 is formed, and the like, the type of the projection display device 120, the wavelength of light emitted from the light source 110, and the projection display device It is appropriately selected according to the structure and the like.
  • the light adjustment layer 102 may be a layer in which carbon dot inclusions are bound by a binder.
  • the binder included in the light adjustment layer 102 can be the same as the binder included in the wavelength conversion layer of the LED device described above.
  • the formation method of the light adjustment layer 102 can also be made to be the same as the formation method of the wavelength conversion layer of the LED device. Note that it is preferable to apply a light-emitting body in the form of powder or slurry to the formation of the light adjustment layer 102. By using a light emitting body in the form of powder or slurry, the carbon dot inclusions can be uniformly dispersed in the light adjustment layer 102.
  • the intensity and chromaticity of the fluorescence emitted by each carbon dot can be made uniform. Therefore, by including such a carbon dot single inclusion particle containing only one carbon dot or a plurality of carbon dot inclusion bodies in which the number of carbon dots contained is evenly arranged in the light adjustment layer, the projection display device can The brightness of the emitted light is likely to be uniform, and color unevenness is less likely to occur. Moreover, since the color purity of the fluorescence emitted from each carbon dot is high, the color reproducibility of the image projected from the projection display device is good.
  • the color wheel is a transmissive color wheel
  • the carbon dot inclusion body included in the light emitter described above can also be applied to the reflective color wheel.
  • the carbon dot inclusions included in the above-described light emitter are used in a backlight device mounted on various displays and the like, specifically, the wavelength of the backlight device. It is also used as a material for the conversion layer. Examples of the backlight device of this embodiment are shown in FIGS.
  • the backlight device 200 is a planar light emitting device provided on the back surface of a liquid crystal panel (not shown), for example, and irradiates the liquid crystal panel with light.
  • the carbon dot inclusions included in the above-described light emitter are for converting a part of light from the light source 202 into light of other wavelengths, more specifically, a material for the wavelength conversion layer of such a backlight device. It can be applied to any material.
  • the light emitted from the light source 202 is converted by the wavelength conversion layer 201, so that light of a desired color can be irradiated onto the liquid crystal panel.
  • the configuration of the backlight device 200 is appropriately selected according to its use.
  • a configuration including a light source 202 and a wavelength conversion layer 201 disposed on the side of the light source 202 can be employed.
  • a light guide 203 for diffusing light emitted from the light source 202 or light converted in wavelength by the wavelength conversion layer 201 is provided. It can also be configured. In this case, light emitted from the light source 202 or the wavelength conversion layer 201 is diffused by the light guide 203.
  • the light source 202 (202a, 202b, 202c) and the wavelength conversion layer 201 may be arranged with a gap therebetween.
  • the wavelength conversion layer 201 can be a layer in which carbon dot inclusions are bound by a binder.
  • the binder is not particularly limited as long as it has optical transparency and can sufficiently bind the carbon dot inclusion body.
  • Such a binder can be the same as the binder included in the wavelength conversion layer of the LED device described above.
  • the method for forming the wavelength conversion layer 201 of the backlight device 200 can be the same as the method for forming the wavelength conversion layer of the LED device.
  • the intensity and chromaticity of the fluorescence emitted by each carbon dot can be made uniform. Therefore, by including such carbon dot single inclusion particles containing only one carbon dot or a plurality of carbon dot inclusions with a uniform number of carbon dots contained in the wavelength conversion layer, the light is emitted from the backlight device. The color and brightness of the light is likely to be uniform. Moreover, since the color purity of the fluorescence emitted from each carbon dot is high, the effect that the chromaticity of the light emitted from the backlight device easily falls within a desired range is also obtained.
  • FIG. 6 illustrates an example of a photoelectric conversion device.
  • the photoelectric conversion device 300 has a structure in which an electrode layer 302, a P-type semiconductor layer 303, an N-type semiconductor layer 304, a transparent electrode layer 305, and a wavelength conversion layer 310 are stacked on a substrate 301.
  • the light emitter carbon dot inclusion body
  • the light emitter can be used as a material for forming the wavelength conversion layer 310. More specifically, a material for converting light entering the photoelectric conversion layer into light having a desired wavelength can be used.
  • a carbon dot inclusion body in the wavelength conversion layer 310 of the photoelectric conversion device 300, the power generation efficiency of the photoelectric conversion device 300 can be improved.
  • fluorescence is obtained by exciting carbon dots in the carbon dot inclusion body with light having a wavelength not used for photoelectric conversion.
  • the amount of light having a wavelength that can be used for photoelectric conversion increases, and the power generation efficiency of the photoelectric conversion device 300 is likely to increase.
  • the wavelength conversion layer 310 included in the photoelectric conversion device 300 can be a layer in which carbon dot inclusions are bound by a binder.
  • the binder is not particularly limited as long as it has optical transparency and can sufficiently bind the carbon dot inclusion body.
  • Such a binder can be the same as the binder included in the wavelength conversion layer of the LED device described above.
  • the formation method of the wavelength conversion layer 310 of the photoelectric conversion apparatus 300 can also be made to be the same as the formation method of the wavelength conversion layer of the LED device. Note that it is preferable to apply a light emitting body in the form of powder or slurry in the formation of the wavelength conversion layer 310 of the photoelectric conversion device 300. By using a powder-form or slurry-form illuminant, the carbon dot inclusions can be uniformly dispersed in the wavelength conversion layer 310.
  • the pore size distribution of mesoporous silica was derived by the BET adsorption method using the phenomenon that the pressure changes according to the pore size when the nitrogen gas adsorbed in the pores is condensed.
  • the peak value of the pore size distribution at this time was defined as the pore size.
  • BELSORP-MR6 manufactured by Microtrack Bell was used for BET adsorption measurement.
  • n mesoporous silica represents the chain length of the hydrocarbon group of the surfactant used in producing the template silica, and the pore size of the template It becomes an index of size.
  • carbon dot dispersion A carbon dot dispersion was prepared by the following method. In addition, the CV value, average particle diameter, and aspect ratio (minor axis / major axis ratio) of the obtained carbon dots were confirmed by the following method.
  • the carbon dot dispersion liquid was dropped on a slide glass and dried to fix the carbon dots so that the Z-axis direction had a short diameter. Subsequently, an image was observed from the X-axis / Y-axis surfaces of the carbon dot particles using TEM (JEM-2500SE, manufactured by JEOL), and the major axis was obtained. Subsequently, the short diameter of the carbon dots was determined using AFM (Dimension Icon, manufactured by BRUKER) of the same sample. The aspect ratio of the carbon dots was determined from the ratio of the major axis and the minor axis. Here, the same measurement was performed 10 times for the samples of each example and comparative example, and the maximum value and the minimum value of the aspect ratio were confirmed.
  • carbon dot dispersion 2 (carbon dot dispersion having a particle size of 1.0 nm) by a template method Except that C8 mesoporous silica was used instead of C12 mesoporous silica, the same as the preparation of carbon dot dispersion 1
  • a carbon dot dispersion was prepared to obtain a carbon dot dispersion 2 in which carbon dots having a CV value of 10%, a particle size of 1.0 nm, and an aspect ratio of 1.0 to 1.3 were dispersed in EtOH.
  • carbon dot dispersion liquid 3 (carbon dot dispersion liquid having a particle size of 2.6 nm) by a template method Except for using C16 mesoporous silica instead of C12 mesoporous silica, the same as the preparation of carbon dot dispersion liquid 1 A carbon dot dispersion was prepared to obtain a carbon dot dispersion 3 in which carbon dots having a CV value of 20%, a particle size of 2.6 nm, and an aspect ratio of 1.0 to 1.5 were dispersed in EtOH.
  • carbon dot dispersion liquid 4 carbon dot dispersion liquid having a particle size of 3.0 nm
  • a template method except that C18 mesoporous silica was used instead of C12 mesoporous silica, the same as the preparation of carbon dot dispersion liquid 1
  • a carbon dot dispersion was prepared to obtain a carbon dot dispersion 4 in which carbon dots having a CV value of 25%, a particle size of 3.0 nm, and an aspect ratio of 1.0 to 1.6 were dispersed in EtOH.
  • Carbon dot dispersion E having a CV value of 30% (aspect ratio 1.0 to 1.6)
  • Carbon dot dispersion 2 carbon dot dispersion with a particle size of 1.0 nm
  • carbon dot dispersion 1 Carbon dot dispersion liquid with a particle diameter of 1.8 nm
  • carbon dot dispersion liquid 4 carbon dot dispersion liquid with a particle diameter of 3.0 nm
  • Carbon dot dispersion E (CV value 30%, aspect ratio 1.0 to 1.6) was obtained.
  • Carbon dot dispersion F having a CV value of 40% (aspect ratio 1.0 to 1.6)
  • Carbon dot dispersion 2 carbon dot dispersion with a particle size of 1.0 nm
  • carbon dot dispersion 1 Carbon dot dispersion liquid with a particle diameter of 1.8 nm
  • carbon dot dispersion liquid 4 carbon dot dispersion liquid with a particle diameter of 3.0 nm
  • Carbon dot dispersion F (CV value 40%, aspect ratio 1.0 to 1.6) was obtained.
  • Production of carbon dot inclusion body (1) Production of luminous body 1 (Example 1) 5 parts of the above carbon dot dispersion A (carbon dot dispersion having a CV value of 10% according to the template method), 10 parts of methyl methacrylate, 5 parts of anionic emulsifier Eleminol MON-7 (manufactured by Sanyo Chemical), and polymerization initiator Hydrogen peroxide water (0.1 part), water (500 parts), and toluene (500 parts) were mixed and stirred at 40 ° C. for 10 minutes to effect emulsion polymerization of methyl methacrylate. Subsequently, the product was filtered and the surface was washed with EtOH. Subsequently, by drying in vacuum for 10 hours, carbon dots having a CV value of 10% and an aspect ratio of 1.0 to 1.3 each containing carbon dot single inclusion particles encapsulated with an insulator are used for powdery light emission Body 1 was obtained.
  • luminous body 1 Example 1
  • Example 2 Production of luminous body 2 (Example 2) Except for using carbon dot dispersion B (carbon dot dispersion having a CV value of 15% according to the template method) instead of carbon dot dispersion A (carbon dot dispersion having a CV value of 10% according to the template method), the light emitter 1.
  • Example 4 Production of luminous body 4 (Example 4) Mix 5 parts of carbon dot dispersion A (carbon dot dispersion with 10% CV value by template method) and 0.5 part of 3- (2-aminoethylamino) propyldimethoxymethylsilane, and react at 220 ° C. for 10 minutes. I let you. Subsequently, a powder-form light-emitting body including carbon dot single inclusion particles in which carbon dots having a CV value of 10% and an aspect ratio of 1.0 to 1.3 are included in an insulator by vacuum drying for 10 hours. 4 was obtained.
  • the light emitter 4 is a powder-like light-emitting body that includes the same carbon dot-encapsulated particles in which carbon dots having a CV value of 15% and an aspect ratio of 1.0 to 1.4 are each encapsulated with an insulator. 5 was obtained.
  • the light emitter 4 is a powder-like light-emitting body that includes the same carbon dot-encapsulated particles in which carbon dots having a CV value of 20% and an aspect ratio of 1.0 to 1.5 are each encapsulated with an insulator. 6 was obtained.
  • the reaction mixture was placed in a centrifuge tube and centrifuged at 12000 rpm for 20 minutes in a centrifuge to remove the supernatant. Then, the precipitate was redispersed in 1 mL of pure water to obtain a dispersion of resin particles.
  • the obtained dispersion was put in an autoclave, heated at a rate of temperature increase of 10 ° C./min, held at 100 ° C. for 10 minutes, and then cooled at a rate of temperature decrease of 10 ° C./min. Then, by drying in vacuum for 10 hours, a powder-form light-emitting body containing carbon dot single inclusion particles in which carbon dots having a CV value of 10% and an aspect ratio of 1.0 to 1.3 are each included in an insulator 10 was obtained.
  • the light emitter 10 is a powdery luminescent material that includes the same carbon dot-encapsulated particles in which carbon dots having a CV value of 15% and an aspect ratio of 1.0 to 1.4 are each encapsulated with an insulator. 11 was obtained.
  • the light emitter 10 is a powdery luminescent material that includes the same carbon dot-encapsulated particles in which carbon dots having a CV value of 20% and an aspect ratio of 1.0 to 1.5 are each encapsulated with an insulator. 12 was obtained.
  • Carbon dot dispersion liquid A (carbon dot dispersion liquid with a CV value of 10% according to the mold method) is vacuum-dried to obtain a carbon dot powder having a CV value of 10%, a particle size of 2 nm, and an aspect ratio of 1.0 to 1.3 (light emitting body). 15) was obtained.
  • the CV value and aspect ratio of the carbon dots of the illuminant 37 were considered to be the same as the carbon dot values in the carbon dot dispersion 2 prepared using C8 mesoporous silica, as in this experimental example.
  • the in-plane chromaticity variation of the sheet (bulk body) sample was determined by measuring light emission when the blue LED was used as a backlight from the back surface of the sheet (bulk body).
  • the measuring device was a spectral radiance meter (CS-1000A, manufactured by Konica Minolta Sensing).
  • the chromaticity (x value and y value) at 10 locations was measured (z was omitted) for the light emission from the bulk body, and the standard deviations of the x value and the y value were obtained. And the average value of the standard deviation of x value and the standard deviation of y value was calculated, and the average value was evaluated according to the following criteria. If the standard deviation is small, it can be said that the chromaticity variation is small. If the standard deviation is less than 0.03, there is no chromaticity variation and there is no practical problem. The criteria are shown below. Standard deviation is less than 0.02 ... The standard deviation is 0.02 or more and less than 0.03 ... The standard deviation is 0.03 or more and less than 0.04 ... ⁇ Standard deviation is 0.04 or more.
  • Fluorescence quantum yield evaluation For each phosphor, fluorescence quantum yield measurement was performed with an absolute PL quantum yield measuring apparatus (Quantaurus-QY C11347-01; manufactured by Hamamatsu Photonics). And the measured value was evaluated on the following reference
  • each of the light emitters 1 to 12 including carbon dot single inclusion particles in which one carbon dot having a CV value (coefficient of variation) of 20% or less is coated with an insulator is included.
  • CV value coefficient of variation
  • the insulator was an aminosilane coupling agent or melamine resin
  • the quantum yield was likely to increase (light emitters 4 to 12).
  • an amide bond is formed at the interface between the carbon dots of the carbon dot-only inclusion particles and the insulator. Therefore, it is presumed that the functional group on the carbon dot surface was fixed and it was difficult for energy loss to occur.
  • the component constituting the insulator contains a siloxane bond, the resistance to wet heat by the insulator is increased (for example, the light emitters 4 to 6).
  • the carbon dot inclusion body included in the light emitter of the present invention has a high quantum yield and a uniform fluorescence intensity.
  • the chromaticity of the fluorescence emitted by the carbon dots included in each carbon dot inclusion is small, and the light emission life is long. Therefore, the light emitter of the present invention can be applied to various uses such as a fluorescent probe and an illumination device.

Abstract

The purpose of the present invention is to provide a luminescent object including carbon-dot-containing particles which has a high quantum yield, evenness of fluorescence intensity, and a long luminescence life and which emits fluorescence having a high color purity. In order to achieve the purpose, a luminescent object is configured so as to include carbon-dot-containing particles which each comprise one or more carbon dots and an insulating material which covers the carbon dots, the carbon dots having a coefficient of variation in particle diameter of 20% or less.

Description

発光体及びその製造方法Luminescent body and manufacturing method thereof
 本発明は、発光体及びその製造方法に関する。 The present invention relates to a light emitter and a method for manufacturing the same.
 従来、特定波長の光等によって励起される蛍光材料を、各種照明装置の波長変換層や、特定の生体物質を蛍光標識するための標識プローブ等に用いることが知られている。このような蛍光材料としては、有機色素が一般的である。しかしながら、有機色素は耐光性が低く、長期間に亘る励起光の照射により劣化して、蛍光強度が低下する等の課題があった。 Conventionally, it is known that a fluorescent material excited by light of a specific wavelength is used for a wavelength conversion layer of various lighting devices, a labeled probe for fluorescently labeling a specific biological substance, or the like. As such a fluorescent material, an organic dye is generally used. However, organic dyes have low light resistance, and have problems such as deterioration due to irradiation with excitation light over a long period of time and reduction in fluorescence intensity.
 これに対し、無機の半導体材料である量子ドットを蛍光材料とすることが検討されている。量子ドットは、耐光性に優れ、長期間励起光を照射しても蛍光強度が低下し難いという利点がある。ただし、このような量子ドットのうち、高い量子収率を示すものはカドミウムやインジウムを含むことが多く、生体に対する影響や、環境への配慮という観点で課題があった。 On the other hand, it has been studied to use quantum dots, which are inorganic semiconductor materials, as fluorescent materials. Quantum dots are excellent in light resistance and have an advantage that the fluorescence intensity is hardly lowered even when irradiated with excitation light for a long period of time. However, among such quantum dots, those exhibiting a high quantum yield often contain cadmium and indium, and there have been problems in terms of influence on the living body and consideration for the environment.
 そこで、炭素ナノ粒子(炭素ドット)やグラフェンナノシート等のカーボン蛍光体を蛍光体材料とすることも検討されている。カーボン蛍光体は、カドミウムやインジウム等を含まず、生体や環境に対して影響を及ぼし難い。また、カーボン蛍光体は、耐光性が高いという利点もある。ただし、カーボン蛍光体は、その発光寿命や量子収率が十分でないことがあり、これらの改善が求められていた。 Therefore, the use of carbon phosphors such as carbon nanoparticles (carbon dots) and graphene nanosheets as a phosphor material is also being studied. The carbon phosphor does not contain cadmium, indium or the like, and hardly affects the living body or the environment. The carbon phosphor also has an advantage of high light resistance. However, carbon phosphors may not have sufficient emission lifetime and quantum yield, and these improvements have been demanded.
 ここで、特許文献1には、カーボン蛍光体であるグラフェンナノシートの量子収率を高める方法として、グラフェンシート表面に絶縁体からなる層を形成することが示されている。一方、非特許文献1には、炭素ドットを効率良く製造する方法として、細孔を有する多孔質シリカの細孔内に、炭素化合物を注入し、多孔質シリカの細孔内で炭素化合物を焼結させることが示されている。非特許文献1の製造方法によれば、多孔質シリカの細孔内に、炭素ドットが収容された発光体が得られる。 Here, Patent Document 1 discloses forming a layer made of an insulator on the surface of the graphene sheet as a method for increasing the quantum yield of the graphene nanosheet which is a carbon phosphor. On the other hand, in Non-Patent Document 1, as a method for efficiently producing carbon dots, a carbon compound is injected into pores of porous silica having pores, and the carbon compound is sintered in the pores of porous silica. It has been shown to tie. According to the manufacturing method of Non-Patent Document 1, a light emitter in which carbon dots are accommodated in the pores of porous silica can be obtained.
特開2013-023670号公報JP 2013-023670 A
 前述の特許文献1の技術によれば、絶縁体によって、グラフェンシートから励起電子が外部に流出することがある程度抑制されるため、その発光寿命や量子収率を多少高め得るものと想定される。しかしながら、特許文献1の技術では、グラフェンシートの端部で絶縁体が剥離しやすく、発光寿命や量子収率を十分に高めることは難しかった。また、特許文献1の技術では、各発光体(グラフェンシートの積層体)が含むグラフェンシートのサイズを均一化し難い。そのため、各発光体が発する蛍光強度にばらつきが生じやすい。また、さらに発光体から得られる蛍光の色純度が低いため、その用途が制限されるとの課題もあった。 According to the technique of the above-mentioned Patent Document 1, it is assumed that the emission lifetime and the quantum yield can be somewhat increased because the insulator suppresses the excitation electrons from flowing out of the graphene sheet to some extent. However, in the technique of Patent Document 1, the insulator is easily peeled off at the end of the graphene sheet, and it has been difficult to sufficiently increase the light emission lifetime and the quantum yield. Moreover, in the technique of patent document 1, it is difficult to make uniform the size of the graphene sheet which each light-emitting body (laminated body of a graphene sheet) contains. Therefore, the fluorescence intensity emitted from each light emitter tends to vary. In addition, since the color purity of the fluorescence obtained from the illuminant is low, there is a problem that its use is limited.
 一方、非特許文献1の技術で得られる、多孔質シリカの細孔内に炭素ドットが収容された発光体では、炭素ドットの多くの表面が絶縁体である多孔質シリカから露出していることに起因して、発光寿命や量子収率が十分に高まらない、との課題があった。 On the other hand, in the luminous body in which carbon dots are accommodated in the pores of porous silica obtained by the technique of Non-Patent Document 1, many surfaces of carbon dots are exposed from porous silica that is an insulator. As a result, there has been a problem that the light emission lifetime and the quantum yield are not sufficiently increased.
 本発明は、上記課題を鑑みてなされたものである。すなわち本発明の目的は、量子収率が高く、蛍光強度が均一であり、発する蛍光の色純度が高く、発光寿命の長い炭素ドット内包体を含む発光体を提供することを目的とする。 The present invention has been made in view of the above problems. That is, an object of the present invention is to provide a light emitter including a carbon dot inclusion body having a high quantum yield, uniform fluorescence intensity, high color purity of emitted fluorescence, and a long emission lifetime.
 すなわち、本発明の第一は、以下の発光体にある。
 [1]炭素ドットと、前記炭素ドットを被覆する絶縁体と、を有する炭素ドット内包体を含み、前記炭素ドットの粒径の変動係数が20%以下である、発光体。
 [2]前記炭素ドット内包体が、前記絶縁体で前記炭素ドット1個を被覆した炭素ドット単独内包粒子であり、前記発光体が、粉体状またはスラリー状である、[1]に記載の発光体。
 [3]前記炭素ドット内包体が、前記絶縁体で前記炭素ドット2個以上を被覆した炭素ドット複数内包体であり、前記発光体が、粉体状、スラリー状、またはバルク状である、[1]に記載の発光体。
That is, the first of the present invention is the following light emitter.
[1] A light emitting body including a carbon dot inclusion body having carbon dots and an insulator covering the carbon dots, and a variation coefficient of a particle size of the carbon dots is 20% or less.
[2] The carbon dot inclusion body is a carbon dot single inclusion particle in which the carbon dot is covered with the insulator, and the light emitter is in a powder form or a slurry form. Luminous body.
[3] The carbon dot inclusion body is a carbon dot multiple inclusion body in which two or more carbon dots are coated with the insulator, and the luminous body is in a powder form, a slurry form, or a bulk form. 1].
 [4]前記炭素ドットの短径aと長径bとの比(b/a)が、1.0~1.5の範囲にある、[1]~[3]のいずれかに記載の発光体。
 [5]前記炭素ドット及び前記絶縁体の界面で、前記炭素ドット及び前記絶縁体が化学結合している、[1]~[4]のいずれかに記載の発光体。
 [6]前記化学結合が、アミド結合である、[5]に記載の発光体。
 [7]前記絶縁体が、メタロキサン結合を含む、[1]~[6]のいずれかに記載の発光体。
[4] The luminous body according to any one of [1] to [3], wherein a ratio (b / a) between a short diameter a and a long diameter b of the carbon dots is in a range of 1.0 to 1.5. .
[5] The light emitter according to any one of [1] to [4], wherein the carbon dots and the insulator are chemically bonded at an interface between the carbon dots and the insulator.
[6] The light emitter according to [5], wherein the chemical bond is an amide bond.
[7] The light emitter according to any one of [1] to [6], wherein the insulator includes a metalloxane bond.
 本発明の第二は、以下の発光体の製造方法にある。
 [8]前記[1]~[7]のいずれかに記載の発光体の製造方法であって、メソポーラスシリカの細孔内で、炭素化合物を焼結させて、前記炭素ドットを得る工程と、前記炭素ドットを前記絶縁体で被覆する工程と、を含む、発光体の製造方法。
The second of the present invention lies in the following method for producing a light emitter.
[8] The method for producing a luminescent material according to any one of [1] to [7], wherein the carbon dots are obtained by sintering a carbon compound in the pores of mesoporous silica; Covering the carbon dots with the insulator.
 本発明の発光体が含む炭素ドット内包体は、量子収率が高く、蛍光強度が均一である。また各炭素ドット内包体が含む炭素ドットが発する蛍光の色純度が高く、発光寿命も長い。したがって、本発明の発光体は、蛍光プローブや照明装置の波長変換層用の材料等、種々の用途に適用が可能である。 The carbon dot inclusion body included in the light emitter of the present invention has a high quantum yield and a uniform fluorescence intensity. Moreover, the color purity of the fluorescence emitted from the carbon dots contained in each carbon dot inclusion body is high, and the emission lifetime is also long. Therefore, the light emitter of the present invention can be applied to various uses such as a fluorescent probe and a material for a wavelength conversion layer of an illumination device.
図1(a)~(c)はそれぞれ、本発明の一実施形態である発光体としての炭素ドット内包体、あるいは、発光体が含む炭素ドット内包体の構造を示す模式図である。FIGS. 1A to 1C are schematic views each showing a structure of a carbon dot inclusion body as a light emitter or a carbon dot inclusion body included in the light emitter according to an embodiment of the present invention. 図2は、発光体が含む炭素ドット内包体を適用した、蛍光プローブの一実施形態のイメージ図である。FIG. 2 is an image diagram of an embodiment of a fluorescent probe to which a carbon dot inclusion body included in a light emitter is applied. 図3は、発光体が含む炭素ドット内包体を波長変換層に適用した、LED装置の一実施形態の概略断面図である。FIG. 3 is a schematic cross-sectional view of an embodiment of an LED device in which a carbon dot inclusion body included in a light emitter is applied to a wavelength conversion layer. 図4(a)は、投射型表示装置の構成を説明するための模式図であり、図4(b)は、発光体が含む炭素ドット内包体を光調整層に適用した、投射型表示装置用カラーホイールの一実施形態の正面図である。4A is a schematic diagram for explaining the configuration of the projection display device, and FIG. 4B is a projection display device in which the carbon dot inclusions included in the light emitter are applied to the light adjustment layer. It is a front view of one embodiment of the color wheel for use. 図5(a)~(d)は、発光体が含む炭素ドット内包体を波長変換層に適用した、バックライト装置の一実施形態の概略断面図である。FIGS. 5A to 5D are schematic cross-sectional views of an embodiment of a backlight device in which carbon dot inclusions included in a light emitter are applied to a wavelength conversion layer. 図6は、発光体が含む炭素ドット内包体を波長変換層に適用した、光電変換装置の一実施形態の概略断面図である。FIG. 6 is a schematic cross-sectional view of an embodiment of a photoelectric conversion device in which a carbon dot inclusion body included in a light emitter is applied to a wavelength conversion layer.
 以下、本発明の実施の形態を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内であれば種々に変更して実施することができる。なお、本願において、数値範囲を表す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the invention. In the present application, “˜” representing a numerical range is used in a sense including numerical values described before and after the numerical value as a lower limit value and an upper limit value.
 1.発光体
 本発明の実施の形態である発光体は、粒径の変動値が一定以下である1個もしくは複数個の炭素ドットが絶縁体によって被覆された炭素ドット内包体を含む。本明細書において、「炭素ドットが絶縁体で被覆されている」とは、炭素ドットが絶縁体に密着した状態で絶縁体に内包されており、当該炭素ドット内包体の表面には、炭素ドットが実質的に露出していないことを意味するものとする。「炭素ドットが実質的に露出していない」とは、炭素ドットが全く露出していないか、炭素ドット表面からの励起電子の流出が十分抑制される程度に露出が抑えられていることを意味し、炭素ドットの露出が多くとも30%以下、好ましくは20%以下、より好ましくは10%以下とされていることを意味する。露出の度合いは、BET吸着法等で測定することができる。
1. Luminescent body The luminous body according to the embodiment of the present invention includes a carbon dot inclusion body in which one or a plurality of carbon dots having a variation value of a particle size of a certain value or less are covered with an insulator. In this specification, “the carbon dot is covered with an insulator” means that the carbon dot is included in the insulator in a state of being in close contact with the insulator, and the carbon dot inclusion body has a carbon dot on the surface thereof. Means substantially unexposed. “The carbon dots are not substantially exposed” means that the carbon dots are not exposed at all, or the exposure is suppressed to the extent that the outflow of excited electrons from the carbon dot surface is sufficiently suppressed. This means that the exposure of carbon dots is at most 30% or less, preferably 20% or less, more preferably 10% or less. The degree of exposure can be measured by a BET adsorption method or the like.
 前述のように、公知のグラフェンナノシートに絶縁体を積層した発光体では、絶縁体を積層する際に、グラフェンナノシートのエッジ部に応力がかかりやすい。そのため、エッジ部側から絶縁体が剥離しやすい。そして、絶縁体が剥離した部分から励起電子が流出し、発光体の量子収率や発光寿命が十分に高まり難い、との課題がある。また、当該発光体(グラフェンシートの積層体)では、各発光体が含むグラフェンシートのサイズを均一化することが難しく、各発光体が発する蛍光強度にばらつきが生じやすい。また、各発光体が含むグラフェンシートのサイズがばらつくことで、各発光体が発する蛍光の色度にばらつきが生じ、得られる蛍光スペクトルのピークがブロードになりやすい。そして、このような発光体を、例えば蛍光プローブに適用すると、蛍光強度に基づいて標的物質の量を把握することが難しい。またシグナル/ノイズ比が低くなりやすく、高精度な測定が難しい。一方、このような発光体を照明装置の波長変換層等に用いると、照明装置の発光面内で色度ばらつきや輝度ばらつきが生じやすくなる。 As described above, in a light-emitting body in which an insulator is stacked on a known graphene nanosheet, stress is easily applied to the edge portion of the graphene nanosheet when the insulator is stacked. Therefore, the insulator is easily peeled from the edge portion side. And the excitation electron flows out from the part which the insulator peeled, and there exists a subject that the quantum yield and light emission lifetime of a light-emitting body are hard to fully increase. Moreover, in the said light-emitting body (lamination | stacking body of a graphene sheet), it is difficult to equalize the size of the graphene sheet which each light-emitting body contains, and variation is easy to produce in the fluorescence intensity which each light-emitting body emits. In addition, since the size of the graphene sheet included in each light emitter varies, the chromaticity of the fluorescence emitted from each light emitter varies, and the peak of the obtained fluorescence spectrum tends to be broad. When such a light emitter is applied to, for example, a fluorescent probe, it is difficult to grasp the amount of the target substance based on the fluorescence intensity. In addition, the signal / noise ratio tends to be low, and high-precision measurement is difficult. On the other hand, when such a light emitter is used for a wavelength conversion layer or the like of a lighting device, chromaticity variation and luminance variation are likely to occur in the light emitting surface of the lighting device.
 また、上記非特許文献に記載される多孔質シリカの細孔内に炭素ドットを収容した発光体においては、振動を付与されると細孔から離脱するような状態で炭素ドットが保持されており、炭素ドット表面が多孔質シリカから露出しかつ多くの領域で多孔質シリカと密着していないものと推定される。このため、炭素ドット表面から励起電子が流出しやすく、発光体の量子収率や発光寿命が十分に高まり難い。 In addition, in the phosphor that contains carbon dots in the pores of the porous silica described in the above-mentioned non-patent document, the carbon dots are held in such a state that they are detached from the pores when vibration is applied. It is presumed that the carbon dot surface is exposed from the porous silica and is not in close contact with the porous silica in many regions. For this reason, excited electrons easily flow out from the carbon dot surface, and it is difficult to sufficiently increase the quantum yield and light emission lifetime of the light emitter.
 これに対して、本実施形態の発光体が含む炭素ドット内包体では、炭素ドットが絶縁体によって被覆されており、炭素ドットの励起電子の流出が十分に抑制される。したがって、当該炭素ドット内包体によれば、高い量子収率と、長い発光寿命が得られる。また、各炭素ドット内包体が内包する炭素ドットは、粒度ばらつきが小さく、各炭素ドットが発する蛍光の強度や色度にばらつきが少ない。 On the other hand, in the carbon dot inclusion body included in the light emitter of the present embodiment, the carbon dots are covered with an insulator, and the outflow of excited electrons of the carbon dots is sufficiently suppressed. Therefore, according to the carbon dot inclusion body, a high quantum yield and a long emission lifetime can be obtained. Further, the carbon dots included in each carbon dot inclusion body have a small particle size variation, and there is little variation in the intensity and chromaticity of the fluorescence emitted by each carbon dot.
 また本実施形態の発光体が含む炭素ドット内包体では、各炭素ドット内包体が含む炭素ドットの個数を制御することで、各炭素ドット内包体が発する蛍光強度を意図する強度に調整することができる。したがって、各炭素ドット内包体の蛍光強度を均一にしやすくなる。このため、本実施形態の発光体は、幅広い用途で使用でき、特に、蛍光プローブや、各種照明装置の波長変換層用の材料等として非常に有用である。 In addition, in the carbon dot inclusions included in the light emitter of the present embodiment, by controlling the number of carbon dots included in each carbon dot inclusion, the fluorescence intensity emitted by each carbon dot inclusion can be adjusted to the intended intensity. it can. Therefore, it becomes easy to make the fluorescence intensity of each carbon dot inclusion body uniform. For this reason, the light emitter of this embodiment can be used in a wide range of applications, and is particularly useful as a material for a fluorescent probe, a wavelength conversion layer of various lighting devices, and the like.
 なお、炭素ドット内包体は、後述するように、粒子状であってもよく、シート状等のバルク状であってもよい。また、発光体は、上述した炭素ドット内包体のみからなるものであってもよいし、炭素ドット内包体以外に、分散媒等、他の成分を含むものであってもよい。つまり、本実施形態の発光体は、粉体状、バルク状、あるいは、スラリー状等の種々の実施形態をとり得る。以下、炭素ドット内包体について説明し、その後、発光体が含み得る他の成分について説明する。 The carbon dot inclusion body may be in the form of particles or a bulk such as a sheet as described later. Further, the light emitter may be composed only of the carbon dot inclusions described above, or may contain other components such as a dispersion medium in addition to the carbon dot inclusions. That is, the light emitter of the present embodiment can take various embodiments such as powder, bulk, or slurry. Hereinafter, the carbon dot inclusion body will be described, and then other components that the light emitter may contain will be described.
 (1)炭素ドット内包体
 上述したように、本実施形態の発光体が含む炭素ドット内包体は、炭素ドットと、前記炭素ドットを被覆する絶縁体と、を有する。当該炭素ドット内包体の模式図を図1に示す。炭素ドット内包体3は、図1(a)に示されるように、炭素ドット1が1個のみ絶縁体2に内包された炭素ドット単独内包粒子3aであってもよい。炭素ドット内包体が、炭素ドット単独内包粒子3aである場合には、炭素ドット内包体3は、炭素ドットがコア、絶縁体がシェルであるコア-シェル構造を有する。一方、炭素ドット内包体は、図1(b)に示されるように、複数個(図1(b)では3個)の炭素ドット1が絶縁体2に内包された炭素ドット複数内包体3bであってもよい。この場合、炭素ドット複数内包体の形状は粒子状に限定されず、例えば、図1(c)に示されるようなシート状等、バルク状であってもよい。
(1) Carbon Dot Inclusion Body As described above, the carbon dot inclusion body included in the light emitter of the present embodiment includes carbon dots and an insulator that covers the carbon dots. A schematic diagram of the carbon dot inclusion is shown in FIG. The carbon dot inclusion body 3 may be a carbon dot single inclusion particle 3a in which only one carbon dot 1 is included in an insulator 2 as shown in FIG. When the carbon dot inclusion is the carbon dot single inclusion particle 3a, the carbon dot inclusion 3 has a core-shell structure in which the carbon dot is a core and the insulator is a shell. On the other hand, as shown in FIG. 1B, the carbon dot inclusion body is a carbon dot multiple inclusion body 3b in which a plurality (three in FIG. 1B) of carbon dots 1 are included in an insulator 2. There may be. In this case, the shape of the carbon dot inclusion body is not limited to a particle shape, and may be a bulk shape such as a sheet shape as shown in FIG.
 ・炭素ドット
 炭素ドットは、主に炭素から構成される粒子であればよく、特に制限されない。炭素ドットは、例えば、炭素原子がsp結合で結合して同一平面内に並んだグラフェンの酸化物(酸化グラフェン)からなる微粒子等でありうる。なお、厳密には単層構造の黒鉛をグラフェンと定義すべきであるが、本明細書では、多層構造の黒鉛もグラフェンの概念に含むものとする。
-Carbon dot Carbon dot should just be the particle | grains mainly comprised from carbon, and is not restrict | limited in particular. The carbon dots may be, for example, fine particles made of graphene oxide (graphene oxide) in which carbon atoms are bonded by sp 2 bonds and arranged in the same plane. Strictly speaking, graphite with a single layer structure should be defined as graphene, but in this specification, graphite with a multilayer structure is also included in the concept of graphene.
 また、炭素ドットは、酸化グラフェン微粒子を還元処理したものであってもよい。酸化グラフェン微粒子の還元処理の例には、加熱処理、光照射、還元剤による処理、還元雰囲気への曝露、等が含まれる。さらに、炭素ドットは、酸化グラフェン微粒子の表面に、水酸基やカルボキシ基やエポキシ基を導入したもの、また隣接する2つのカルボキシ基の脱水体である酸無水物を導入したものであってもよい。特に炭素ドットがその表面にカルボキシ基を有すると、後述の絶縁体と化学結合しやすくなり、量子収率が高まりやすくなる。水酸基や、カルボキシ基の導入方法は特に制限されず、例えば、炭素ドットを調製するための炭素化合物を適宜選択することでも、所望の官能基を導入することが可能となる。また、水酸基やカルボキシ基、エポキシ基、酸無水物基等は、炭素ドットに含まれる酸素の量が、炭素ドットの質量に対して2~50質量%となる範囲で導入されていることが好ましい。炭素ドットの質量に対する酸素の量は、2~47質量%、さらに5~47質量%であることがより好ましい。炭素ドットに上記範囲、水酸基やカルボキシ基が含まれていると、後述する絶縁体と酸化グラフェン微粒子(炭素ドット)との界面において、これらが化学結合しやすくなり、量子収率が高まりやすくなる。 The carbon dots may be obtained by reducing graphene oxide fine particles. Examples of the reduction treatment of graphene oxide fine particles include heat treatment, light irradiation, treatment with a reducing agent, exposure to a reducing atmosphere, and the like. Further, the carbon dots may be those obtained by introducing a hydroxyl group, a carboxy group, or an epoxy group on the surface of the graphene oxide fine particles, or an acid anhydride that is a dehydrated body of two adjacent carboxy groups. In particular, when the carbon dot has a carboxy group on its surface, it becomes easy to chemically bond with an insulator described later, and the quantum yield is likely to increase. The method for introducing a hydroxyl group or a carboxy group is not particularly limited. For example, a desired functional group can be introduced by appropriately selecting a carbon compound for preparing a carbon dot. Further, the hydroxyl group, the carboxy group, the epoxy group, the acid anhydride group, and the like are preferably introduced in a range where the amount of oxygen contained in the carbon dot is 2 to 50% by mass with respect to the mass of the carbon dot. . The amount of oxygen with respect to the mass of the carbon dots is more preferably 2 to 47% by mass, and further preferably 5 to 47% by mass. If the carbon dot contains the above-mentioned range, hydroxyl group or carboxy group, these are likely to chemically bond at the interface between the insulator and graphene oxide fine particles (carbon dots) described later, and the quantum yield is likely to increase.
 なお、上記酸素含有量は、XPS(X線光電子分光法)や、SEM(走査電子顕微鏡)とTEM(透過型電子顕微鏡)とを組み合わせたエネルギー分散型X線分析により特定することが可能である。 The oxygen content can be specified by XPS (X-ray photoelectron spectroscopy) or energy dispersive X-ray analysis combining SEM (scanning electron microscope) and TEM (transmission electron microscope). .
 また、炭素ドットは、黒鉛由来で結晶性の高いグラフェン構造部分と、アモルファス構造部分と、を併せ持つものであってもよい。炭素ドットが、アモルファス構造部分を含むと、発光体が、結晶性の高いグラフェン構造部のみで形成される場合より量子収率が高くなりやすくなる。結晶性の高い炭素ドットはグラフェン層とグラフェン層が緻密に積層されており、層間での電子移動のパスが新たにできたことに由来するロスで量子収率が低下するものと考えられる。アモルファス構造部分の有無は、透過型顕微鏡(以下、「TEM」とも称する)で観察される画像における格子縞の有無やラマンスペクトルのピーク高さ等から判断することができる。 Further, the carbon dots may have both a graphene structure part having high crystallinity derived from graphite and an amorphous structure part. When the carbon dot includes an amorphous structure portion, the quantum yield is likely to be higher than that in the case where the light emitter is formed only of the graphene structure portion having high crystallinity. Carbon dots with high crystallinity have a graphene layer and a graphene layer laminated densely, and it is considered that the quantum yield is reduced due to a loss resulting from a new path of electron transfer between layers. The presence or absence of the amorphous structure portion can be determined from the presence or absence of lattice fringes in the image observed with a transmission microscope (hereinafter also referred to as “TEM”), the peak height of the Raman spectrum, and the like.
 ここで、本実施形態の炭素ドットは、粒径の変動係数(以下、「CV値」とも称する)が20%以下であり、好ましくは15%以下であり、さらに好ましくは10%以下である。CV値とは、統計学におけるばらつきを表す数値であり、下記式で表される。
 CV値[%]=(σ/D)×100
 上記式中、σは標準偏差を表し、Dは炭素ドットの平均粒径を表す。本明細書において、炭素ドットの粒径は、TEMによる画像観察で求められる値であり、標準偏差や平均粒径は、TEMによる画像観察にてランダムに選択した100個の粒子を観察したときの値とする。また、炭素ドットが球形ではない場合には、粒径の変動係数における「粒径」とは、粒子の長径をいうこととする。粒子の長径は、後述の方法で求めることができる。ここで、上記CV値が小さい程、粒径の均一性が高いことを示し、炭素ドットのCV値が20%以下であると、各炭素ドットが発する蛍光の強度にばらつきが少なくなり、その色純度も高まりやすい。
Here, the carbon dot of the present embodiment has a variation coefficient of particle size (hereinafter also referred to as “CV value”) of 20% or less, preferably 15% or less, and more preferably 10% or less. The CV value is a numerical value representing variation in statistics, and is represented by the following formula.
CV value [%] = (σ / D) × 100
In the above formula, σ represents a standard deviation, and D represents an average particle diameter of carbon dots. In this specification, the particle size of the carbon dots is a value obtained by image observation by TEM, and the standard deviation and average particle size are obtained when 100 particles randomly selected by image observation by TEM are observed. Value. In addition, when the carbon dots are not spherical, the “particle diameter” in the coefficient of variation of the particle diameter refers to the long diameter of the particles. The major axis of the particles can be determined by the method described later. Here, the smaller the CV value, the higher the uniformity of the particle size. When the CV value of the carbon dots is 20% or less, the intensity of the fluorescence emitted by each carbon dot is less varied, and its color Purity is also likely to increase.
 また、炭素ドットの形状は特に制限されないが、粒子の短径(a)に対する長径(b)の比(b/a)(以下、「アスペクト比」とも称する)が、1.0~1.5の範囲にあることが好ましく、1.0~1.4の範囲にあることがより好ましく、1.0~1.3の範囲にあることがさらに好ましい。アスペクト比が上記範囲にあると、炭素ドットの周囲に絶縁体を形成する際に、絶縁体に歪みが生じ難くなり、絶縁体が炭素ドット表面から剥離し難くなる。 The shape of the carbon dots is not particularly limited, but the ratio (b / a) of the major axis (b) to the minor axis (a) of the particles (hereinafter also referred to as “aspect ratio”) is 1.0 to 1.5. Preferably, it is in the range of 1.0 to 1.4, more preferably in the range of 1.0 to 1.3. When the aspect ratio is in the above range, when the insulator is formed around the carbon dots, the insulator is hardly distorted, and the insulator is difficult to peel off from the carbon dot surface.
 上記アスペクト比は、以下のように測定することが可能であるが、当該方法に限定されない。まず、炭素ドットを分散媒に分散させた分散液を準備し、当該分散液をスライドガラス上に滴下して乾燥させる。これにより、Z軸方向が短径となるように炭素ドットを固定化することができる。続いて、TEMにより炭素ドット粒子のX軸・Y軸面から画像観察を行い、炭素ドットの長径(b)を求める。そして、同サンプルについて、AFM(原子間力顕微鏡)を用いて観察することで、短径(a)を求める。そして、これらの値から、短径(a)/長径(b)を算出し、これをアスペクト比とする。 The above aspect ratio can be measured as follows, but is not limited to this method. First, a dispersion liquid in which carbon dots are dispersed in a dispersion medium is prepared, and the dispersion liquid is dropped on a slide glass and dried. Thereby, a carbon dot can be fixed so that a Z-axis direction may become a short axis. Subsequently, an image is observed from the X-axis / Y-axis surfaces of the carbon dot particles by TEM to obtain the major diameter (b) of the carbon dots. And about this sample, a short axis (a) is calculated | required by observing using AFM (atomic force microscope). Then, from these values, the minor axis (a) / major axis (b) is calculated and used as the aspect ratio.
 ここで、炭素ドットの短径(a)及び長径(b)は、炭素ドットが特定波長の光により励起されて、蛍光を発する範囲であれば特に制限されないが、蛍光強度の観点から、長径(b)は0.5~30.0nmであることが好ましく、2.0~10.0nmであることがより好ましい。一方、短径(a)は0.4~25.0nmであることが好ましく、1.0~10.0nmであることがより好ましい。 Here, the short diameter (a) and the long diameter (b) of the carbon dot are not particularly limited as long as the carbon dot is excited by light of a specific wavelength and emits fluorescence, but the long diameter ( b) is preferably from 0.5 to 30.0 nm, more preferably from 2.0 to 10.0 nm. On the other hand, the minor axis (a) is preferably 0.4 to 25.0 nm, and more preferably 1.0 to 10.0 nm.
 ・絶縁体
 炭素ドットを被覆する絶縁体の種類は炭素ドットが発する蛍光を透過可能であり、かつ炭素ドットよりバンドギャップの高い材料からなるものであれば特に制限されない。絶縁体の材料は、例えば、有機樹脂や無機化合物、もしくはこれらの複合材料のいずれであってもよい。炭素ドットが、炭素ドットよりバンドギャップの高い絶縁体で被覆されていると、炭素ドットの励起電子が外部に流出し難くなり、その量子収率を高めることができる。また一般的に、蛍光物質は高濃度になると、分子間で相互作用し、濃度消光が生じやすくなるが、本実施形態の発光体が含む炭素ドット内包体では、炭素ドット同士が絶縁体によって隔離されているため、炭素ドット同士が相互作用せず、濃度消光が生じ難い。またさらに、炭素ドットが絶縁体で被覆されることで、粒子どうしが凝集し難くなる、との効果も得られる。
-Insulator The type of insulator covering the carbon dots is not particularly limited as long as it can transmit the fluorescence emitted by the carbon dots and is made of a material having a higher band gap than the carbon dots. The insulator material may be, for example, an organic resin, an inorganic compound, or a composite material thereof. If the carbon dots are covered with an insulator having a band gap higher than that of the carbon dots, the excited electrons of the carbon dots hardly flow out to the outside, and the quantum yield can be increased. In general, when the fluorescent substance is at a high concentration, the molecules interact with each other and concentration quenching is likely to occur. However, in the carbon dot inclusion body included in the phosphor of this embodiment, the carbon dots are isolated from each other by an insulator. Therefore, the carbon dots do not interact with each other, and concentration quenching hardly occurs. Furthermore, it is possible to obtain an effect that particles are hardly aggregated by covering the carbon dots with an insulator.
 絶縁体の材料の例には、イプシロンカプロラクタム、アクリル酸系ポリマー、セルロース系樹脂、ポリビニル系樹脂、ポリウレタン系樹脂、アクリル樹脂、ポリエステル樹脂、シリコーン樹脂、ポリエチレングリコールもしくはポリエチレンオキサイド、ポリイミド樹脂、ポリカーボネート樹脂、ポリアミド樹脂、メラミン樹脂、メタロキサン骨格を有するメタロキサン系化合物等が含まれる。絶縁体には、これらのうちの1種のみが含まれてもよく、2種以上が含まれてもよい。また、これらが複合化されていてもよい。 Examples of insulator materials include epsilon caprolactam, acrylic acid polymer, cellulose resin, polyvinyl resin, polyurethane resin, acrylic resin, polyester resin, silicone resin, polyethylene glycol or polyethylene oxide, polyimide resin, polycarbonate resin, Polyamide resins, melamine resins, metalloxane compounds having a metalloxane skeleton, and the like are included. Only one of these may be included in the insulator, or two or more thereof may be included. These may be combined.
 ここで、絶縁体の材料は、炭素ドット表面の官能基と結合可能な基を有することが好ましい。炭素ドット表面に存在する官能基が、自由に運動可能であると、炭素ドットを励起した際、励起エネルギーが回転エネルギーや振動エネルギーに変換されやすく、エネルギーロスが生じやすくなる。つまり、量子収率が低下しやすくなる。これに対し、絶縁体と炭素ドットとの界面で、これらが化学的に結合していると、エネルギーロスが生じ難くなり、高い量子収率が得られやすくなる。 Here, the insulator material preferably has a group capable of bonding with a functional group on the surface of the carbon dot. If the functional group present on the surface of the carbon dot is freely movable, when the carbon dot is excited, the excitation energy is easily converted into rotational energy or vibration energy, and energy loss is likely to occur. That is, the quantum yield tends to decrease. On the other hand, if they are chemically bonded at the interface between the insulator and the carbon dots, energy loss is unlikely to occur, and a high quantum yield is easily obtained.
 炭素ドット表面の官能基と化学結合可能な材料としては、水酸基やメルカプト基、アミノ基を有する材料が挙げられる。水酸基やメルカプト基は、炭素ドット表面に存在するカルボキシ基と反応してエステル結合を形成する。また、アミノ基は、炭素ドット表面に存在するカルボキシ基と反応して、アミド結合を形成する。またアミノ基は、炭素ドット表面に存在する、隣接したカルボキシ基の脱水体である酸無水物基と反応してイミド結合を形成する。絶縁体と炭素ドットとの界面にアミド結合またはイミド結合が含まれる場合に、特に量子収率が高まりやすい。したがって、絶縁体には、メラミン樹脂や、アミノ基を有するシランカップリング剤の硬化物等、構造中にアミノ基を有する化合物が含まれることが好ましい。 Examples of materials that can be chemically bonded to the functional group on the carbon dot surface include materials having a hydroxyl group, a mercapto group, or an amino group. Hydroxyl groups and mercapto groups react with carboxy groups present on the surface of carbon dots to form ester bonds. The amino group reacts with a carboxy group present on the carbon dot surface to form an amide bond. The amino group reacts with an acid anhydride group which is a dehydrated carboxy group present on the surface of the carbon dot to form an imide bond. The quantum yield is particularly likely to increase when an amide bond or an imide bond is included at the interface between the insulator and the carbon dots. Therefore, it is preferable that the insulator contains a compound having an amino group in its structure, such as a melamine resin or a cured product of an amino group-containing silane coupling agent.
 また、絶縁体には、メタロキサン系化合物が含まれることも好ましい。絶縁体を構成する成分にメタロキサン結合が含まれると、絶縁体の強度が高まりやすく、炭素ドット内包体の湿熱耐性が高まりやすくなる。また、メタロキサン結合はリジットなため炭素ドットの発光中心となる官能基を固定化することもできる。その結果、発光中心となる官能基の回転や振動に由来するエネルギーロスが抑制され、量子収率が向上する。なお、メタロキサン系化合物は、メタロキサン結合を有するものであれば特に制限されず、例えば各種金属アルコキシドの硬化物とすることができる。また、メタロキサン結合に含まれる金属の種類は特に制限されないが、絶縁体の光透過性や強度、湿熱耐性等の観点から、Si、Al、Zn、Ti、及びZrであることが好ましい。 It is also preferable that the insulator contains a metalloxane compound. When a metalloxane bond is included in the component constituting the insulator, the strength of the insulator is easily increased, and the wet heat resistance of the carbon dot inclusion body is easily increased. In addition, since the metalloxane bond is rigid, a functional group that becomes the emission center of the carbon dot can be immobilized. As a result, energy loss due to rotation and vibration of the functional group serving as the emission center is suppressed, and the quantum yield is improved. In addition, a metalloxane type compound will not be restrict | limited especially if it has a metalloxane bond, For example, it can be set as the hardened | cured material of various metal alkoxides. Further, the type of metal contained in the metalloxane bond is not particularly limited, but Si, Al, Zn, Ti, and Zr are preferable from the viewpoints of light transmittance, strength, wet heat resistance, and the like of the insulator.
 炭素ドット内包体が含む絶縁体の量は、炭素ドットを実質的に露出しないように内包することが可能な量であれば特に制限されない。例えば、絶縁体が炭素ドットを1個のみ含有する炭素ドット単独内包粒子では、炭素ドットの質量(100質量部)に対して、絶縁体の質量が10~100000質量部であることが好ましく、100~10000質量部であることがより好ましい。一方、炭素ドットを複数個内包する炭素ドット複数内包体では、各炭素ドット複数内包体に含まれる炭素ドットの総量(100質量部)に対して、絶縁体の質量が20~200000質量部であることが好ましく、100~20000質量部であることがより好ましい。炭素ドット内包体中の絶縁体の量が下限値以上であると、炭素ドットが炭素ドット内包体の表面に露出し難くなる。一方、絶縁体の量が上限値以下であると、絶縁体の光透過性等が良好になり、炭素ドットが発する蛍光を炭素ドット内包体の外部に取り出しやすくなる。 The amount of the insulator included in the carbon dot inclusion body is not particularly limited as long as it can be included so that the carbon dots are not substantially exposed. For example, in the carbon dot single inclusion particle in which the insulator contains only one carbon dot, the mass of the insulator is preferably 10 to 100,000 parts by mass with respect to the mass of the carbon dots (100 parts by mass). More preferably, it is ˜10,000 parts by mass. On the other hand, in the case of a plurality of carbon dot inclusions including a plurality of carbon dots, the mass of the insulator is 20 to 200,000 parts by mass with respect to the total amount (100 parts by mass) of carbon dots contained in each of the carbon dot inclusions. It is preferably 100 to 20000 parts by mass. When the amount of the insulator in the carbon dot inclusion is equal to or more than the lower limit value, the carbon dots are difficult to be exposed on the surface of the carbon dot inclusion. On the other hand, when the amount of the insulator is less than or equal to the upper limit value, the light transmittance and the like of the insulator are improved, and the fluorescence emitted by the carbon dots is easily taken out of the carbon dot inclusion body.
 ・炭素ドット内包体の形状
 炭素ドット内包体の形状は、その用途や、炭素ドット内包体が含む炭素ドットの個数に応じて適宜選択される。
-Shape of carbon dot inclusion body The shape of the carbon dot inclusion body is appropriately selected according to its use and the number of carbon dots included in the carbon dot inclusion body.
 炭素ドット1個のみが絶縁体で被覆されている炭素ドット単独内包粒子では、その形状は特に制限されないが、略球状であることが好ましい。また炭素ドット単独内包粒子の平均粒径は1~100nmであることが好ましく、2~50nmであることがより好ましい。炭素ドット単独内包粒子の平均粒径が上記範囲であると、炭素ドット単独内包粒子を蛍光プローブ等、各種用途に適用しやすくなる。炭素ドット単独内包粒子の平均粒径の測定方法は、前述の炭素ドットの平均粒径の測定方法と同様でありうる。 The shape of the carbon dot-inclusive particles in which only one carbon dot is covered with an insulator is not particularly limited, but is preferably substantially spherical. The average particle size of the carbon dot-containing particles is preferably 1 to 100 nm, and more preferably 2 to 50 nm. When the average particle diameter of the carbon dot single inclusion particles is within the above range, the carbon dot single inclusion particles can be easily applied to various uses such as a fluorescent probe. The method for measuring the average particle size of the carbon dot-inclusive particles can be the same as the method for measuring the average particle size of the carbon dots described above.
 また、炭素ドット単独内包粒子においても、粒径のばらつきは少ないことが好ましく、CV値が30%以下であることが好ましく、20%以下であることがより好ましい。炭素ドット単独内包粒子のCV値の算出方法は、前述の炭素ドットのCV値の算出方法と同様でありうる。 Also, in the carbon dot single inclusion particles, it is preferable that there is little variation in the particle size, and the CV value is preferably 30% or less, and more preferably 20% or less. The calculation method of the CV value of the carbon dot single inclusion particle may be the same as the calculation method of the CV value of the carbon dot described above.
 一方、炭素ドット複数個が絶縁体で被覆されている炭素ドット複数内包体でもその形状は特に制限されない。炭素ドット複数内包体は、例えば粒子状であってもよいが、例えばシート状等のバルク状であってもよい。炭素ドット複数内包体が粒子状である場合、各炭素ドット複数内包体には、炭素ドットが2~100個含まれることが好ましく、5~80個がより好ましく、10~50個であることがさらに好ましい。炭素ドット複数内包体に含まれる炭素ドットの個数が上記範囲であると、その粒径を十分に小さくすることができ、炭素ドット複数内包体を各種用途に適用しやすくなる。なお、各炭素ドット複数内包体が含む炭素ドットの個数には、ばらつきがあってもよいが、ほぼ均一であることが好ましい。これにより、各炭素ドット複数内包体が発する蛍光強度を揃えることができ、発光体(炭素ドット内包体)を各種用途に適用することが可能となる。 On the other hand, the shape of the carbon dot inclusion body in which a plurality of carbon dots are covered with an insulator is not particularly limited. The carbon dot multiple inclusion body may be in the form of particles, for example, but may be in the form of a bulk such as a sheet. When the carbon dot multiple inclusions are in the form of particles, each carbon dot multiple inclusion preferably includes 2 to 100 carbon dots, more preferably 5 to 80 carbon dots, and preferably 10 to 50 carbon dots. Further preferred. When the number of carbon dots contained in a plurality of carbon dot inclusions is within the above range, the particle size can be sufficiently reduced, and the carbon dot inclusions can be easily applied to various applications. The number of carbon dots included in each carbon dot multiple inclusion body may vary, but is preferably substantially uniform. Thereby, the fluorescence intensity which each carbon dot multiple inclusion body emits can be arrange | equalized, and it becomes possible to apply a light-emitting body (carbon dot inclusion body) to various uses.
 また、炭素ドット複数内包体が粒子状である場合、その形状は特に制限されないが、略球状であることが好ましい。またこのとき、炭素ドット複数内包体の平均粒径は2~500nmであることが好ましく、10~100nmであることが好ましい。炭素ドット複数内包体の平均粒径が上記範囲であると、これらを蛍光プローブ等、各種用途に適用しやすくなる。炭素ドット複数内包体の平均粒径の測定方法は、前述の炭素ドットの平均粒径の測定方法と同様でありうる。 In addition, when the carbon dot multiple inclusion body is in the form of particles, the shape is not particularly limited, but is preferably substantially spherical. At this time, the average particle diameter of the carbon dot multiple inclusions is preferably 2 to 500 nm, and more preferably 10 to 100 nm. When the average particle diameter of the carbon dot multiple inclusions is within the above range, these can be easily applied to various uses such as a fluorescent probe. The measuring method of the average particle diameter of the carbon dot multiple inclusion body can be the same as the measuring method of the average particle diameter of the carbon dots described above.
 また、炭素ドット複数内包体が粒子状である場合、その粒径のばらつきは少ないことが好ましく、CV値が40%以下であることが好ましく、30%以下であることが好ましい。炭素ドット複数内包体のCV値の算出方法は、前述の炭素ドットのCV値の算出方法と同様でありうる。 Further, when the carbon dot multiple inclusion body is in the form of particles, it is preferable that the variation in the particle diameter is small, and the CV value is preferably 40% or less, and preferably 30% or less. The calculation method of the CV value of the carbon dot multiple inclusion body may be the same as the calculation method of the CV value of the carbon dots described above.
 一方、炭素ドット複数内包体がシート状等のバルク状である場合、炭素ドット複数内包体が含む炭素ドットの数は、炭素ドット複数内包体の大きさや厚み、形状に応じて適宜選択される。また、炭素ドット複数内包体の形状も、その用途に応じて適宜選択される。 On the other hand, when the carbon dot plural inclusions are in a bulk shape such as a sheet shape, the number of carbon dots included in the carbon dot plural inclusions is appropriately selected according to the size, thickness, and shape of the carbon dot plural inclusions. Moreover, the shape of the carbon dot multiple inclusion body is also appropriately selected according to the application.
 (2)その他
 発光体には、必要に応じて、炭素ドット内包体以外の成分が含まれてもよい。他の成分としては、例えば分散媒が挙げられる。発光体を、炭素ドット内包体が分散媒に分散されたスラリーとすると、炭素ドット内包体を各種基材等に塗布しやすくなる。
(2) Others The light emitter may contain components other than carbon dot inclusions as necessary. Examples of other components include a dispersion medium. When the luminous body is a slurry in which carbon dot inclusions are dispersed in a dispersion medium, the carbon dot inclusions can be easily applied to various substrates.
 炭素ドット内包体を分散させるための分散媒は、前述の炭素ドット内包体を十分に分散させることが可能な溶媒であれば特に制限されない。分散媒としては、炭素ドット内包体の表面の絶縁体と相性が良く、均一に分散させることが可能な溶媒であれば特に制限されず、例えば水、高極性溶媒、両親媒性溶媒、低極性溶媒とすることができる。またその量は、発光体の用途に応じて適宜選択される。 The dispersion medium for dispersing the carbon dot inclusion body is not particularly limited as long as it is a solvent capable of sufficiently dispersing the carbon dot inclusion body. The dispersion medium is not particularly limited as long as it is compatible with the insulator on the surface of the carbon dot inclusion body and can be uniformly dispersed. For example, water, high polarity solvent, amphiphilic solvent, low polarity It can be a solvent. The amount is appropriately selected according to the use of the light emitter.
 2.発光体の製造方法
 上述の発光体は、炭素ドットを調製する工程と、当該炭素ドットを絶縁体で被覆する工程と、を行うことで製造することができる。発光体の製造方法には、必要に応じて、他の工程を含んでいてもよい。
2. Manufacturing method of luminous body The above-described luminous body can be manufactured by performing a process of preparing carbon dots and a process of covering the carbon dots with an insulator. The manufacturing method of a light-emitting body may include other steps as necessary.
 (1)炭素ドットの調製工程
 発光体の製造方法では、まず、CV値が20%以下である炭素ドットを調製する。CV値が20%以下の炭素ドットの調製方法は特に制限されず、例えば、公知の方法により炭素ドットを調製し、これを分級してCV値を20%以下に揃えてもよい。また、ホットインジェクション法や、鋳型を用いた炭素ドット合成法で、粒径がある程度揃った炭素ドットを調製してもよい。これらの中でも、粒径が均一な炭素ドットが得られやすく、さらに生産効率が高いとの観点から、鋳型を用いた炭素ドット合成法が特に好ましい。以下、鋳型を用いた炭素ドット合成法の一例を示すが、炭素ドットの調製方法は、当該方法に制限されない。
(1) Carbon dot preparation process In the manufacturing method of a light-emitting body, first, carbon dots having a CV value of 20% or less are prepared. The method for preparing carbon dots having a CV value of 20% or less is not particularly limited. For example, carbon dots may be prepared by a known method and classified to make the CV value 20% or less. Alternatively, carbon dots having a uniform particle size may be prepared by a hot injection method or a carbon dot synthesis method using a template. Among these, a carbon dot synthesis method using a template is particularly preferable from the viewpoint that carbon dots having a uniform particle size are easily obtained and that production efficiency is high. Hereinafter, although an example of the carbon dot synthesis method using a template is shown, the preparation method of a carbon dot is not restricted to the method concerned.
 鋳型を用いた炭素ドット合成法では、まず、均一な細孔系を有する鋳型を準備する。鋳型の材質は特に制限されないが、耐熱性等の観点からメソポーラスシリカやゼオライトからなる鋳型であることが好ましい。また特に、細孔径のサイズの制御が可能であるとの観点から、ナノサイズの細孔を有する多孔質シリカであるメソポーラスシリカからなる鋳型が好ましい。上記非特許文献1に示されたサブナノサイズの多孔質シリカからなる鋳型を用いてもよい。 In the carbon dot synthesis method using a template, first, a template having a uniform pore system is prepared. The material of the mold is not particularly limited, but is preferably a mold made of mesoporous silica or zeolite from the viewpoint of heat resistance and the like. In particular, a mold made of mesoporous silica, which is porous silica having nano-sized pores, is preferable from the viewpoint that the pore size can be controlled. A template made of sub-nano-sized porous silica shown in Non-Patent Document 1 may be used.
 メソポーラスシリカからなる鋳型は、以下のように作製することができる。まず、界面活性剤と、テトラエトキシシラン(以下、「TEOS」とも称する)等のシリカ源と、酸または塩基触媒を混合する。そして、界面活性剤がミセルを形成した状態、つまり界面活性剤の周囲にシリカ源が吸着された状態で、シリカ源をゾルゲル反応させる。次いで、これを焼成することにより、界面活性剤が熱分解されて、均一な細孔を有するメソポーラスシリカが得られる。なお、メソポーラスシリカの細孔径は界面活性剤のアルキル鎖長を変えることで容易に制御することができる。 A mold made of mesoporous silica can be produced as follows. First, a surfactant, a silica source such as tetraethoxysilane (hereinafter also referred to as “TEOS”), and an acid or base catalyst are mixed. Then, the silica source is subjected to a sol-gel reaction in a state where the surfactant forms micelles, that is, in a state where the silica source is adsorbed around the surfactant. Next, by firing this, the surfactant is thermally decomposed to obtain mesoporous silica having uniform pores. The pore diameter of mesoporous silica can be easily controlled by changing the alkyl chain length of the surfactant.
 また、メソポーラスシリカは、例えば国際公開第2011/108649号等に記載されている方法でも調製することができる。さらに、メソポーラスシリカは、市販のものを適用してもよい。市販のメソポーラスシリカとしては三菱化学製のメソピュアシリーズや、シグマアルドリッチ社製の試薬グレードのメソポーラスシリカ等が挙げられる。 Further, mesoporous silica can also be prepared by a method described in, for example, International Publication No. 2011/108649. Further, commercially available mesoporous silica may be applied. Examples of commercially available mesoporous silica include meso pure series manufactured by Mitsubishi Chemical and reagent grade mesoporous silica manufactured by Sigma-Aldrich.
 炭素ドットは、上記鋳型に炭素化合物を充填し、この状態で炭素化合物を焼結することで得られる。炭素化合物は、上記メソポーラスシリカの細孔の内部に導入可能であり、かつ焼結により炭化し、炭素ドットとなる化合物であれば特に限定されない。このような炭素化合物の例には、クエン酸、酒石酸、シュウ酸、メリト酸等のカルボン酸;グルコース、フルクトース、マンノース等の単糖類;グリコーゲン、デキストリン、セルロース等の多糖類;リジン、ロイシン、メチオニン等のアミノ酸;アクリル樹脂、エポキシ樹脂、ポリカーボネート樹脂等の樹脂;等が含まれる。これらの中でも、分子中に酸素を適度に含み、カルボキシ基を有する、との観点から、炭素化合物はカルボン酸であることが好ましく、クエン酸であることが特に好ましい。 Carbon dots are obtained by filling the mold with a carbon compound and sintering the carbon compound in this state. The carbon compound is not particularly limited as long as it can be introduced into the pores of the mesoporous silica and is carbonized by sintering to become carbon dots. Examples of such carbon compounds include carboxylic acids such as citric acid, tartaric acid, oxalic acid and melitonic acid; monosaccharides such as glucose, fructose and mannose; polysaccharides such as glycogen, dextrin and cellulose; lysine, leucine and methionine. Amino acids; resins such as acrylic resins, epoxy resins, polycarbonate resins; and the like. Among these, the carbon compound is preferably a carboxylic acid, and particularly preferably citric acid, from the viewpoint of appropriately containing oxygen in the molecule and having a carboxy group.
 また、炭素化合物を上述の鋳型(メソポーラスシリカの細孔)内に導入する手法は特に制限されない。炭素化合物が固体状である場合には、炭素化合物を水に分散させた水溶液に鋳型を浸漬させる方法とすることができる。また、炭素化合物が液体状である場合には、当該炭素化合物中、もしくは当該炭素水素化合物の水溶液中に鋳型を浸漬させる方法とすることができる。さらに、炭素化合物が気体状である場合には、当該原料炭素化合物を含む雰囲気内に鋳型を静置し、鋳型内に炭素化合物を侵入させる方法とすることができる。これらの方法の中でも、固体状または液体状の炭素化合物の水溶液に鋳型を浸漬させる方法が特に好ましい。当該方法によれば、水溶液中の炭素化合物の濃度によって、得られる炭素ドットの粒度分布を調整することができる。例えば、炭素化合物の濃度を小さくすると、CV値の小さい炭素ドットが得られやすくなる。 Further, the method for introducing the carbon compound into the above-described template (mesoporous silica pores) is not particularly limited. When the carbon compound is in a solid state, a method can be used in which the template is immersed in an aqueous solution in which the carbon compound is dispersed in water. Further, when the carbon compound is in a liquid state, a method can be used in which the template is immersed in the carbon compound or an aqueous solution of the carbon hydrogen compound. Furthermore, when the carbon compound is in a gaseous state, a method can be used in which the template is allowed to stand in an atmosphere containing the raw material carbon compound and the carbon compound is allowed to enter the template. Among these methods, a method of immersing the template in an aqueous solution of a solid or liquid carbon compound is particularly preferable. According to the said method, the particle size distribution of the carbon dot obtained can be adjusted with the density | concentration of the carbon compound in aqueous solution. For example, when the concentration of the carbon compound is reduced, carbon dots having a small CV value are easily obtained.
 なお、鋳型内に炭素化合物を導入した後、炭素化合物の焼結前に、鋳型表面に付着した過剰な炭素化合物を除去してもよい。過剰な炭素化合物の除去方法としては、エタノール、メタノール等の低級脂肪族アルコールにより、鋳型を洗浄する方法が挙げられる。 In addition, after introducing the carbon compound into the mold, before the carbon compound is sintered, excess carbon compound attached to the mold surface may be removed. Examples of the method for removing excess carbon compounds include a method of washing the template with a lower aliphatic alcohol such as ethanol or methanol.
 その後、鋳型内部の炭素化合物を焼結することで、炭素化合物が炭化されて炭素ドットとなる。焼結時の温度や時間は、炭素化合物の種類や量等に応じて適宜選択される。焼結温度は通常200℃以上であることが好ましく、200~500℃であることがより好ましく、250~400℃であることがさらに好ましい。また、焼結(炭化)の際には、室温から所定の焼結温度まで昇温させ、当該温度で一定時間保持するが、昇温時の昇温速度の調整により、得られる炭素ドットのアスペクト比を調整することが可能である。具体的には、昇温時の昇温速度を小さく(遅く)することで、アスペクト比を小さくすることできる。 After that, by sintering the carbon compound inside the mold, the carbon compound is carbonized to form carbon dots. The temperature and time during sintering are appropriately selected according to the type and amount of the carbon compound. The sintering temperature is usually preferably 200 ° C. or higher, more preferably 200 to 500 ° C., and further preferably 250 to 400 ° C. Further, during sintering (carbonization), the temperature is raised from room temperature to a predetermined sintering temperature, and the temperature is maintained for a certain period of time. It is possible to adjust the ratio. Specifically, the aspect ratio can be reduced by decreasing (slowing) the rate of temperature increase during temperature increase.
 また、焼結(炭化)時間は、通常0.5~20時間程度であることが好ましく、2~5時間であることがより好ましい。なお、焼結時の雰囲気は酸素原子が含まれる大気雰囲気が特に好ましいが、酸素が一部含まれている雰囲気であれば特に制限されず、窒素ガスや希ガスからなる雰囲気に、酸素ガスを導入した雰囲気であってもよい。 In addition, the sintering (carbonization) time is usually preferably about 0.5 to 20 hours, more preferably 2 to 5 hours. The atmosphere at the time of sintering is particularly preferably an air atmosphere containing oxygen atoms. However, the atmosphere is not particularly limited as long as it is an atmosphere partially containing oxygen, and oxygen gas is added to an atmosphere of nitrogen gas or rare gas. The introduced atmosphere may be used.
 その後、鋳型内で焼結された炭素ドットを、超音波処理等によって振動を付与することにより鋳型から取り出す。その後、必要に応じて、鋳型から取り出した炭素ドットの分級処理を行ってもよい。 Then, the carbon dots sintered in the mold are taken out from the mold by applying vibration by ultrasonic treatment or the like. Then, you may classify the carbon dot taken out from the casting_mold | template as needed.
 (2)絶縁体による炭素ドットの被覆工程
 上記工程で得られた炭素ドットを、絶縁体で被覆する。炭素ドットを、絶縁体で被覆する方法は特に制限されず、絶縁体の種類や、所望の炭素ドット内包体の形状に応じて適宜選択される。
(2) Carbon dot coating step with an insulator The carbon dot obtained in the above step is coated with an insulator. The method for coating the carbon dots with the insulator is not particularly limited, and is appropriately selected according to the type of the insulator and the shape of the desired carbon dot inclusion body.
 粒状の炭素ドット内包体とする場合、炭素ドットの周囲を絶縁体で被覆する方法としては、(i)絶縁体(無機材料または有機樹脂)からなる多孔質ビーズの細孔内に炭素ドットを配置し、その後、多孔質ビーズの細孔を、多孔質ビーズと同一の材料で封止する方法、(ii)絶縁体の前駆体中に炭素ドットを添加して、絶縁体の前駆体で炭素ドットを被覆した後、絶縁体の前駆体を硬化させる方法、(iii)絶縁体からなる鋳型を用いて炭素ドットを調製し、鋳型と同一の材料で、鋳型の細孔を埋める方法等が挙げられる。また、(iv)内部に空孔を有する樹脂ビーズを膨潤させて、炭素ドットを取り込ませる方法や、(v)ポリイオンの交互吸着を利用し、炭素ドットを吸着させる方法等も適用することができる。 In the case of granular carbon dot inclusions, (i) carbon dots are placed in the pores of a porous bead made of an insulator (inorganic material or organic resin). And then sealing the pores of the porous bead with the same material as the porous bead, (ii) adding carbon dots to the precursor of the insulator, and then adding the carbon dots to the precursor of the insulator And (iii) a method of preparing carbon dots using a mold made of an insulator and filling the pores of the mold with the same material as the mold. . In addition, (iv) a method in which resin beads having pores in the interior are swollen and carbon dots are taken in, or (v) a method in which alternate adsorption of polyions is used to adsorb carbon dots can be applied. .
 上記の中でも、絶縁体内の炭素ドットの数を制御しやすく、さらに容易に炭素ドットを完全に被覆しやすいとの観点から、(ii)または(iii)の方法であることが好ましい。また特に、(ii)の方法によれば、炭素ドット内包体の粒径を容易に調整することができる。 Among these, the method (ii) or (iii) is preferable from the viewpoint that the number of carbon dots in the insulator can be easily controlled, and that the carbon dots can be easily covered completely. In particular, according to the method (ii), the particle size of the carbon dot inclusion body can be easily adjusted.
 (i)の方法で炭素ドット内包体を得る場合、絶縁体(無機材料または有機樹脂)からなる多孔質ビーズ及び炭素ドットを、溶媒中で撹拌すること等により、多孔質ビーズの細孔内に炭素ドットを配置することができる。また、各多孔質ビーズに配置する炭素ドットの数は、多孔質ビーズの細孔の数によって調整する。そして、多孔質のビーズの細孔に、多孔質ビーズを構成する無機材料または有機樹脂、もしくはこれらの前駆体を充填し、これを硬化させることで、炭素ドットが絶縁体で被覆された炭素ドット内包体が得られる。 When the carbon dot inclusion body is obtained by the method (i), the porous beads and the carbon dots made of an insulator (inorganic material or organic resin) are stirred in a solvent, etc., in the pores of the porous beads. Carbon dots can be placed. Further, the number of carbon dots arranged in each porous bead is adjusted by the number of pores of the porous bead. Then, by filling the pores of the porous beads with an inorganic material or organic resin that constitutes the porous beads, or a precursor thereof, the carbon dots are coated with an insulator by curing the filler. An inclusion body is obtained.
 多孔質ビーズに、無機材料または有機樹脂、もしくはこれらの前駆体を充填する方法は特に制限されず、シリンジ等で注入してもよい。また、無機材料または有機樹脂、もしくはこれらの前駆体を含む溶液に多孔質ビーズを分散させて、多孔質ビーズの細孔内にこれらを充填してもよい。多孔質ビーズの細孔に無機材料または有機樹脂、もしくはこれらの前駆体を充填した後、これらを硬化させる方法は、無機材料または有機樹脂、もしくはこれらの前駆体の種類に応じて適宜選択され、その一例として加熱が挙げられる。 The method of filling the porous beads with an inorganic material, an organic resin, or a precursor thereof is not particularly limited, and may be injected with a syringe or the like. Alternatively, the porous beads may be dispersed in a solution containing an inorganic material, an organic resin, or a precursor thereof, and filled in the pores of the porous beads. The method for curing the porous material after filling the pores of the porous beads with an inorganic material or an organic resin, or a precursor thereof is appropriately selected according to the type of the inorganic material, the organic resin, or the precursor, One example is heating.
 (ii)の方法で、炭素ドット内包体を得る場合、絶縁体の前駆体(無機材料または有機樹脂の前駆体)及び炭素ドットを混合し、せん断力をかける。これにより、炭素ドットを絶縁体の前駆体で被覆することができる。なお、必要に応じて溶媒を添加してもよい。また、せん断力をかける方法は特に制限されず、例えば、撹拌処理、超音波処理、ビーズミルによる処理、繰り返し狭い流路を通過させる処理、回転ディスクによる処理等でありうる。そして、絶縁体の前駆体を硬化させることで、炭素ドットが絶縁体で被覆された炭素ドット内包体が得られる。絶縁体の前駆体の硬化方法は、絶縁体の前駆体の種類に応じて適宜選択され、一例として加熱が挙げられる。 When obtaining carbon dot inclusions by the method (ii), an insulator precursor (inorganic material or organic resin precursor) and carbon dots are mixed and a shearing force is applied. Thereby, a carbon dot can be coat | covered with the precursor of an insulator. In addition, you may add a solvent as needed. The method for applying the shearing force is not particularly limited, and may be, for example, a stirring process, an ultrasonic process, a process using a bead mill, a process repeatedly passing through a narrow channel, a process using a rotating disk, or the like. And the carbon dot inclusion body by which the carbon dot was coat | covered with the insulator is obtained by hardening the precursor of an insulator. The method for curing the insulator precursor is appropriately selected according to the type of the insulator precursor, and heating is an example.
 なお、絶縁体の前駆体による炭素ドットの被覆と同時に、絶縁体の前駆体が有する官能基と炭素ドット表面の官能基とを化学反応させてもよい。これにより、炭素ドット及び絶縁体の界面で、これらが化学結合した炭素ドット内包体が得られる。このような化学反応は、特開2015-108572号公報に記載の方法で行うことができる。 The functional group of the insulator precursor and the functional group on the surface of the carbon dot may be chemically reacted simultaneously with the coating of the carbon dots with the insulator precursor. Thereby, the carbon dot inclusion body in which these are chemically bonded at the interface between the carbon dots and the insulator is obtained. Such a chemical reaction can be performed by the method described in JP-A-2015-108572.
 (iii)の方法で、炭素ドット内包体を得る場合、炭素ドットの調製方法で説明したように、メソポーラスシリカ等の鋳型内で炭素ドットを作製する。そして、当該鋳型の細孔に、鋳型を構成する無機材料もしくはその前駆体を充填し、これを硬化させる。これにより、炭素ドットが絶縁体で被覆された炭素ドット内包体が得られる。鋳型を構成する無機材料もしくはその前駆体を鋳型の細孔に充填する方法は特に制限されず、前述の(i)と同様の方法とすることができる。また、鋳型の細孔を塞ぐ方法は、炭素ドットの蛍光特性が低下しなければ鋳型自体を加熱溶融させてもよい。 When carbon dot inclusions are obtained by the method (iii), carbon dots are produced in a mold such as mesoporous silica as described in the carbon dot preparation method. And the inorganic material which comprises a casting_mold | template, or its precursor is filled into the pore of the said casting_mold | template, and this is hardened. Thereby, the carbon dot inclusion body by which the carbon dot was coat | covered with the insulator is obtained. The method for filling the inorganic material constituting the template or its precursor into the pores of the template is not particularly limited, and can be the same method as in the above (i). Further, in the method of closing the pores of the template, the template itself may be heated and melted if the fluorescence characteristics of the carbon dots do not deteriorate.
 (iv)の方法で、炭素ドット内包体を得る場合、内部に空孔を有する樹脂ビーズを準備する。当該樹脂ビーズの調製方法は特に制限されず、公知の方法とすることができる。そして、当該樹脂ビーズを加熱や湿潤等により膨潤させて、炭素ドットを取り込ませる方法とすることができる。 When obtaining carbon dot inclusions by the method (iv), prepare resin beads having pores inside. The method for preparing the resin beads is not particularly limited and may be a known method. And it can be set as the method of making the said resin bead swell by heating, moistening, etc., and taking in a carbon dot.
 (v)の方法で炭素ドット内包体を得る場合、例えば表面にカルボキシ基等の極性基を有する炭素ドットを水に分散させると、マイナス帯電する。一方、プラス帯電可能な極性基を有する絶縁体を溶媒に分散させて、プラス帯電させる。そして、これらを混合すると、炭素ドットの周囲に絶縁体が吸着するため、炭素ドットが絶縁体に内包された炭素ドット内包体が得られる。なお、炭素ドット及び絶縁体の組み合わせは、帯電時に正負逆となる組み合わせであれば特に制限されず、炭素ドットしてプラス帯電をするものを用い、絶縁体としてマイナス帯電するものを用いてもよい。 When carbon dot inclusions are obtained by the method (v), for example, when carbon dots having a polar group such as a carboxy group on the surface are dispersed in water, they are negatively charged. On the other hand, an insulator having a positively chargeable polar group is dispersed in a solvent and positively charged. When these are mixed, the insulator is adsorbed around the carbon dots, so that a carbon dot inclusion body in which the carbon dots are included in the insulator is obtained. The combination of the carbon dots and the insulator is not particularly limited as long as it is a combination of positive and negative at the time of charging. A carbon dot that is positively charged and a negatively charged insulator may be used. .
 一方、炭素ドット内包体をバルク状とする場合には、上述の(ii)と同様の方法で、炭素ドット内包体を作製することができる。 On the other hand, when the carbon dot inclusion body is made into a bulk shape, the carbon dot inclusion body can be produced by the same method as in the above (ii).
 (3)その他
 なお、上述した発光体の製造方法は、上記工程により得られた炭素ドット内包体を、必要に応じて乾燥させる工程、炭素ドット内包体と溶媒とを混合して、スラリー状とする工程等をさらに含んでいてもよい。
(3) Other In addition, the manufacturing method of the light-emitting body mentioned above is a process which dries the carbon dot inclusion body obtained by the said process as needed, a carbon dot inclusion body, and a solvent, And the like.
 3.発光体の用途
 本実施形態の発光体が含む炭素ドット内包体では、炭素ドットの量子収率が非常に高い。また各炭素ドットが発する蛍光の強度が均一である。さらに各炭素ドットが発する蛍光の色度にばらつきが少なく、発光寿命も長い。したがって、本実施形態の発光体は、種々の用途に適用可能である。
3. Use of luminous body In the carbon dot inclusion body included in the luminous body of the present embodiment, the quantum yield of carbon dots is very high. Further, the intensity of the fluorescence emitted by each carbon dot is uniform. Furthermore, the chromaticity of the fluorescence emitted by each carbon dot has little variation and the light emission life is long. Therefore, the light emitter of the present embodiment can be applied to various uses.
 以下、発光体が含む炭素ドット内包体を、蛍光プローブ、LED装置、投射型表示装置のホイール、バックライト装置、及び光電変換装置の材料に用いる場合を説明するが、本発明の発光体の用途は、これらに限定されない。 Hereinafter, the case where the carbon dot inclusions contained in the luminescent material are used as materials for fluorescent probes, LED devices, projection display wheels, backlight devices, and photoelectric conversion devices will be described. Applications of the luminescent material of the present invention Is not limited to these.
 (1)蛍光プローブ
 本実施形態は、上述した発光体が含む炭素ドット内包体を、標的(ターゲット)生体分子を蛍光標識するための蛍光プローブに適用したものである。蛍光プローブ4は、図2のイメージ図に示されるように、標的生体分子(抗原)5に特異的に結合するための抗体と、当該抗体に結合した炭素ドット内包体3とを有するものとすることができる。
(1) Fluorescent Probe In the present embodiment, the carbon dot inclusion body included in the above-described luminescent material is applied to a fluorescent probe for fluorescently labeling a target biomolecule. As shown in the image diagram of FIG. 2, the fluorescent probe 4 has an antibody for specifically binding to a target biomolecule (antigen) 5 and a carbon dot inclusion body 3 bound to the antibody. Can do.
 標的生体分子を有する生細胞もしくは生体組織に蛍光プローブを投与すると、蛍光プローブが、標的生体分子に特異的に結合あるいは特異的に吸着する。そして、蛍光プローブを投与した位置に、所定の波長の励起光(放射線)を照射すると、蛍光プローブが含む炭素ドットが励起されて、所定の波長の蛍光を発する。したがって、当該蛍光を検出することにより、標的生体分子の位置検出や検出量の把握が可能となる。特に、各炭素ドット内包体が含む炭素ドットの個数を制御して、各炭素ドット内包体が発する蛍光強度を意図する強度に調整することにより、各炭素ドット内包体の蛍光強度を均一化させれば、定量的な測定の精度を向上することができる。 When a fluorescent probe is administered to a living cell or biological tissue having a target biomolecule, the fluorescent probe specifically binds to or specifically adsorbs to the target biomolecule. Then, when excitation light (radiation) having a predetermined wavelength is irradiated to the position where the fluorescent probe is administered, the carbon dots included in the fluorescent probe are excited to emit fluorescence having a predetermined wavelength. Therefore, by detecting the fluorescence, it is possible to detect the position of the target biomolecule and grasp the detection amount. In particular, by controlling the number of carbon dots contained in each carbon dot inclusion and adjusting the fluorescence intensity emitted by each carbon dot inclusion to the intended intensity, the fluorescence intensity of each carbon dot inclusion can be made uniform. Thus, the accuracy of quantitative measurement can be improved.
 このような蛍光プローブは、炭素ドット内包体の表面の官能基と、標的指向性分子(抗体)が有する官能基とを共有結合(例えばアミド結合等)させることで得られる。標的指向性分子とは、特定の組織または細胞に対して、特異的に結合する機能を有する分子である。標的指向性分子の種類は特に限定されず、標的物質に合わせて適宜選択される。標的指向性分子の例には、以下のものが含まれる。 Such a fluorescent probe can be obtained by covalently bonding (for example, an amide bond) a functional group on the surface of the carbon dot inclusion body and a functional group of the target-directing molecule (antibody). A targeting molecule is a molecule having a function of specifically binding to a specific tissue or cell. The kind of target-directed molecule is not particularly limited, and is appropriately selected according to the target substance. Examples of targeting molecules include the following:
 (i)標的が癌等の疾患組織あるいは細胞において特異的に発現する種々のマーカータンパク質またはペプチドである場合、標的指向性分子は、これらに対する抗体(例えば、HER2抗体、がん特異的抗体、血管内皮細胞特異的抗体、組織特異的抗体、リン酸化タンパク抗体など)またはその親和性物質、葉酸、トランスフェリン、トランスフェリン結合型ペプチド等とすることができる。
 (ii)標的が糖鎖の場合、標的指向性分子は、糖鎖と結合性を有するタンパク質(例えば、レクチン)等とすることができる。
 (iii)その他の標的指向性分子としては、例えば、細胞膜親和性物質、ウイルス細胞認識部位、親油性トレーサー、複製機能のないウイルス粒子、細胞小器官親和性物質(例えば、DNA、ミトコンドリア、細胞骨格分子、ゴルジ体、リソソーム、エンドソーム、オートファゴソームなど)等が挙げられる。
(I) When the target is various marker proteins or peptides that are specifically expressed in diseased tissues or cells such as cancer, the target-directed molecule is an antibody against them (for example, HER2 antibody, cancer-specific antibody, blood vessel Endothelial cell-specific antibody, tissue-specific antibody, phosphorylated protein antibody, etc.) or an affinity substance thereof, folic acid, transferrin, transferrin-binding peptide and the like.
(Ii) When the target is a sugar chain, the target-directing molecule can be a protein (for example, lectin) having binding properties with the sugar chain.
(Iii) Other target-directing molecules include, for example, cell membrane affinity substances, viral cell recognition sites, lipophilic tracers, virus particles having no replication function, and organelle affinity substances (eg, DNA, mitochondria, cytoskeleton) Molecule, Golgi apparatus, lysosome, endosome, autophagosome, etc.).
 前述のように、本実施形態で用いる発光体では、各炭素ドット内包体が含む炭素ドットの蛍光強度が均一であり、かつその色純度が高い。したがって、例えば炭素ドットを一つのみ含む炭素ドット単独内包粒子や、炭素ドットの含有個数が均一に揃えられた炭素ドット複数内包体を、蛍光プローブに用いることで、標的生体分子の量を正確に測定することが可能となる。また、炭素ドットが発する蛍光の色純度が高いことから、蛍光スペクトル測定を行った際のシグナル/ノイズ比を十分に高めることができる。したがって、精度よく標的生体分子の位置や量を特定することが可能となる。 As described above, in the illuminant used in this embodiment, the fluorescence intensity of the carbon dots included in each carbon dot inclusion body is uniform, and the color purity thereof is high. Therefore, the amount of target biomolecules can be accurately determined by using, for example, carbon dot single inclusion particles containing only one carbon dot, or multiple inclusions of carbon dots in which the number of carbon dots contained is evenly arranged in a fluorescent probe. It becomes possible to measure. Moreover, since the color purity of the fluorescence emitted from the carbon dots is high, the signal / noise ratio when the fluorescence spectrum is measured can be sufficiently increased. Therefore, it is possible to specify the position and amount of the target biomolecule with high accuracy.
(2)LED装置
 本実施形態は、上述した発光体が含む炭素ドット内包体をLED装置の波長変換層を形成するための材料として用いたLED装置である。本実施形態のLED装置の模式的な断面図を図3に示す。LED装置50には、基板10と、当該基板10上に配置されたLED素子20と、当該LED素子20を覆う波長変換層30とが含まれる。LED装置50では、LED素子20が発する光の一部を、波長変換層30が、特定の波長の光に変換することで、LED装置50が発する光の色を所望の色とする。例えばLED素子20が青色光(420nm~485nm程度の光)を発する場合、波長変換層30に青色光により励起されて黄色の蛍光を発する炭素ドット内包体を含めることで、波長変換層30を透過した後の光を白色とする。
(2) LED device This embodiment is an LED device using the carbon dot inclusions included in the above-described light emitter as a material for forming the wavelength conversion layer of the LED device. A schematic cross-sectional view of the LED device of the present embodiment is shown in FIG. The LED device 50 includes a substrate 10, an LED element 20 disposed on the substrate 10, and a wavelength conversion layer 30 that covers the LED element 20. In the LED device 50, a part of light emitted from the LED element 20 is converted into light having a specific wavelength by the wavelength conversion layer 30, so that the color of light emitted from the LED device 50 is set to a desired color. For example, when the LED element 20 emits blue light (light of about 420 nm to 485 nm), the wavelength conversion layer 30 includes a carbon dot inclusion body that emits yellow fluorescence when excited by the blue light, thereby transmitting the wavelength conversion layer 30. The resulting light is white.
 なお、LED素子20が出射する光の波長は、炭素ドットを励起可能な波長であれば特に制限されず、青色光や、近紫外光等とすることができる。また、炭素ドットが発する蛍光の色も特に制限されず、赤色や緑色、青色、黄色等、いずれの色であってもよい。LED素子20が出射する光の色と、炭素ドットが発する蛍光の色の組み合わせは、LED装置50の用途等に応じて適宜選択される。また、波長変換層30には、炭素ドット内包体が1種のみ含まれていてもよく、2種以上含まれていてもよい。 The wavelength of the light emitted from the LED element 20 is not particularly limited as long as it is a wavelength that can excite the carbon dots, and can be blue light, near ultraviolet light, or the like. Further, the color of the fluorescence emitted by the carbon dots is not particularly limited, and may be any color such as red, green, blue, and yellow. The combination of the color of light emitted from the LED element 20 and the color of fluorescence emitted from the carbon dots is appropriately selected according to the use of the LED device 50 and the like. Further, the wavelength conversion layer 30 may include only one type of carbon dot inclusion body, or may include two or more types.
 ここで、上記波長変換層30は、炭素ドット内包体が、バインダによって結着された層とすることができる。バインダは、光透過性を有し、かつ十分に炭素ドット内包体を結着可能なものであれば特に制限されず、無機材料からなるものであってもよく、樹脂からなるものであってもよい。バインダは、エポキシ樹脂やシリコーン樹脂等の透明樹脂や、ポリシロキサン等の透光性セラミックとすることができる。 Here, the wavelength conversion layer 30 can be a layer in which carbon dot inclusions are bound by a binder. The binder is not particularly limited as long as it has light transmittance and can sufficiently bind the carbon dot inclusion body, and may be made of an inorganic material or a resin. Good. The binder can be a transparent resin such as an epoxy resin or a silicone resin, or a translucent ceramic such as polysiloxane.
 このような波長変換層30は、上述した発光体と、上記バインダもしくはその前駆体を含む組成物を公知の方法で塗布し、当該組成物を硬化させること等で得られる。波長変換層30を形成するための組成物には、必要に応じて溶媒が含まれてもよい。なお、波長変換層30の形成には、粉体状もしくはスラリー状の発光体を適用することが好ましい。粉体状もしくはスラリー状の発光体を用いることで、波長変換層30内に均一に炭素ドット内包体を分散させることが可能となる。 Such a wavelength conversion layer 30 can be obtained by applying the above-described phosphor and a composition containing the binder or its precursor by a known method and curing the composition. The composition for forming the wavelength conversion layer 30 may contain a solvent as necessary. In addition, for the formation of the wavelength conversion layer 30, it is preferable to apply a light emitting body in the form of powder or slurry. By using a powder-like or slurry-like illuminant, the carbon dot inclusions can be uniformly dispersed in the wavelength conversion layer 30.
 前述のように、本実施形態で用いる発光体では、各炭素ドットが発する蛍光の強度や色度を均一にすることができる。したがって、このような炭素ドットを一つのみ含む炭素ドット単独内包粒子や、炭素ドットの含有個数を均一に揃えた炭素ドット複数内包体を、上記波長変換層に含めることで、LED装置から出射する光の色や輝度が均一になりやすい。また、各炭素ドットが発する蛍光の色純度が高いため、LED装置から出射する光の色度が所望の範囲に収まりやすい、との効果も得られる。 As described above, in the illuminant used in this embodiment, the intensity and chromaticity of the fluorescence emitted by each carbon dot can be made uniform. Accordingly, by including such carbon dot single inclusion particles containing only one carbon dot or a plurality of carbon dot inclusion bodies in which the number of carbon dots contained is evenly arranged in the wavelength conversion layer, the light is emitted from the LED device. Light color and brightness are likely to be uniform. In addition, since the color purity of the fluorescence emitted by each carbon dot is high, the effect that the chromaticity of the light emitted from the LED device easily falls within a desired range is also obtained.
 (3)投射型表示装置用カラーホイール
 本実施形態は、上述した発光体が含む炭素ドット内包体を、投射型表示装置用カラーホイール(以下、「カラーホイール」とも称する)の光調整層用の材料として用いたものである。カラーホイールを内蔵した投射型表示装置の模式図を図4(a)に示す。投射型表示装置120は、光源110と、カラーホイール100と、投射光学系114とを少なくとも含む。光源110から出射された光がレンズ111等により集光されて、前述のカラーホイール100に照射される。このとき、カラーホイール100の光調整層(図示せず)により、光源からの光が拡散や波長変換される。そして、当該カラーホイール100を透過した光が、レンズ112やミラー113等を介して投射光学系114に導かれ、投射光学系114によって投射されてスクリーンに画像が表示される。上述した発光体が含む炭素ドット内包体は、このような投射型表示装置のカラーホイール用の材料、より具体的には、光源110からの光を他の波長の光に変換するための材料として、カラーホイールに含めることができる。
(3) Color wheel for projection display device In this embodiment, the carbon dot inclusions included in the above-described light emitter are used for the light adjustment layer of a color wheel for projection display device (hereinafter also referred to as “color wheel”). Used as a material. A schematic diagram of a projection display device incorporating a color wheel is shown in FIG. The projection display device 120 includes at least a light source 110, a color wheel 100, and a projection optical system 114. The light emitted from the light source 110 is collected by the lens 111 and the like, and is applied to the color wheel 100 described above. At this time, light from the light source is diffused or wavelength-converted by a light adjustment layer (not shown) of the color wheel 100. The light transmitted through the color wheel 100 is guided to the projection optical system 114 via the lens 112, the mirror 113, and the like, and is projected by the projection optical system 114 to display an image on the screen. The carbon dot inclusions included in the above-described light emitter are materials for color wheels of such a projection display device, more specifically, as materials for converting light from the light source 110 into light of other wavelengths. Can be included in the color wheel.
 投射型表示装置のカラーホイール100は、図4(b)に示されるように、基板101と、炭素ドット内包体を含む光調整層102とが積層された構造を有する。当該カラーホイール100は、投射型表示装置において光源110と投射光学系114との間に設置され、光源110からの光を拡散したり、光源110からの光を別の特定の波長の光に変換したりする機能を果たす。 As shown in FIG. 4B, the color wheel 100 of the projection display device has a structure in which a substrate 101 and a light adjustment layer 102 including a carbon dot inclusion body are laminated. The color wheel 100 is installed between the light source 110 and the projection optical system 114 in the projection display device, and diffuses the light from the light source 110 or converts the light from the light source 110 into light of another specific wavelength. It performs the function to do.
 カラーホイール100には、一種類の光調整層のみ形成されていてもよいが、図4(b)に示されるように、一つのカラーホイール100に、複数種類の光調整層102a~102cが形成されていてもよい。例えば、投射型表示装置の光源からの光が紫外光である場合等には、紫外光を受けて青色を出射する炭素ドット内包体を含む光調整層102aと、紫外光を受けて緑色を出射する炭素ドット内包体を含む光調整層102bと、紫外光を受けて赤色を出射する炭素ドット内包体を含む光調整層102cと、を含むカラーホイール100等とすることで、光源が一種のみであっても、光の三原色を再現することができる。なお、カラーホイール100に含まれる光調整層102の種類や光調整層102が形成される領域等については、投射型表示装置120の種類や、光源110が発する光の波長、投射型表示装置の構造等に合わせて適宜選択される。 Although only one type of light adjustment layer may be formed on the color wheel 100, a plurality of types of light adjustment layers 102a to 102c are formed on one color wheel 100 as shown in FIG. 4B. May be. For example, when the light from the light source of the projection display device is ultraviolet light, the light adjustment layer 102a including the carbon dot inclusion that emits blue light by receiving the ultraviolet light, and emits green light by receiving the ultraviolet light. By using a color wheel 100 or the like that includes a light adjustment layer 102b that includes carbon dot inclusions and a light adjustment layer 102c that includes carbon dot inclusions that receive ultraviolet light and emit red light, the light source is only one type. Even so, the three primary colors of light can be reproduced. Note that the type of the light adjustment layer 102 included in the color wheel 100, the region where the light adjustment layer 102 is formed, and the like, the type of the projection display device 120, the wavelength of light emitted from the light source 110, and the projection display device. It is appropriately selected according to the structure and the like.
 ここで、上記光調整層102は、炭素ドット内包体がバインダによって結着された層とすることができる。光調整層102に含まれるバインダは、前述のLED装置の波長変換層に含まれるバインダと同様とすることができる。また、光調整層102の形成方法も、LED装置の波長変換層の形成方法と同様とすることができる。なお、光調整層102の形成には、粉体状もしくはスラリー状の発光体を適用することが好ましい。粉体状もしくはスラリー状の発光体を用いることで、光調整層102内に均一に炭素ドット内包体を分散することができる。 Here, the light adjustment layer 102 may be a layer in which carbon dot inclusions are bound by a binder. The binder included in the light adjustment layer 102 can be the same as the binder included in the wavelength conversion layer of the LED device described above. Moreover, the formation method of the light adjustment layer 102 can also be made to be the same as the formation method of the wavelength conversion layer of the LED device. Note that it is preferable to apply a light-emitting body in the form of powder or slurry to the formation of the light adjustment layer 102. By using a light emitting body in the form of powder or slurry, the carbon dot inclusions can be uniformly dispersed in the light adjustment layer 102.
 前述のように、本実施形態で用いる発光体では、各炭素ドットが発する蛍光の強度や色度を均一にすることができる。したがって、このような炭素ドットを一つのみ含む炭素ドット単独内包粒子や、炭素ドットの含有個数を均一に揃えた炭素ドット複数内包体を、上記光調整層に含めることで、投射型表示装置から出射する光の輝度が均一になりやすく、色ムラ等も生じ難い。また、各炭素ドットが発する蛍光の色純度が高いため、投射型表示装置から投射される画像の色再現性が良好となる。 As described above, in the illuminant used in this embodiment, the intensity and chromaticity of the fluorescence emitted by each carbon dot can be made uniform. Therefore, by including such a carbon dot single inclusion particle containing only one carbon dot or a plurality of carbon dot inclusion bodies in which the number of carbon dots contained is evenly arranged in the light adjustment layer, the projection display device can The brightness of the emitted light is likely to be uniform, and color unevenness is less likely to occur. Moreover, since the color purity of the fluorescence emitted from each carbon dot is high, the color reproducibility of the image projected from the projection display device is good.
 なお、上記では、カラーホイールが透過型カラーホイールである場合を例に説明したが、上述した発光体が含む炭素ドット内包体を、反射型カラーホイールに適用することも可能である。 In the above description, the case where the color wheel is a transmissive color wheel has been described as an example. However, the carbon dot inclusion body included in the light emitter described above can also be applied to the reflective color wheel.
 (4)バックライト装置
 本実施形態は、上述した発光体が含む炭素ドット内包体を、各種ディスプレー等に搭載されるバックライト装置に用いたものであり、具体的には、バックライト装置の波長変換層用の材料としても用いたものである。本実施形態のバックライト装置の例を図5(a)~(d)に示す。バックライト装置200は、例えば液晶パネル(図示せず)の背面に設けられる面状の発光装置であり、液晶パネルに光を照射するものである。上述した発光体が含む炭素ドット内包体は、このようなバックライト装置の波長変換層用の材料、より具体的には、光源202からの光の一部を他の波長の光に変換するための材料に適用することができる。バックライト装置200では、光源202から出射される光を、波長変換層201で変換することで、所望の色の光を液晶パネルに照射することが可能となる。
(4) Backlight Device In this embodiment, the carbon dot inclusions included in the above-described light emitter are used in a backlight device mounted on various displays and the like, specifically, the wavelength of the backlight device. It is also used as a material for the conversion layer. Examples of the backlight device of this embodiment are shown in FIGS. The backlight device 200 is a planar light emitting device provided on the back surface of a liquid crystal panel (not shown), for example, and irradiates the liquid crystal panel with light. The carbon dot inclusions included in the above-described light emitter are for converting a part of light from the light source 202 into light of other wavelengths, more specifically, a material for the wavelength conversion layer of such a backlight device. It can be applied to any material. In the backlight device 200, the light emitted from the light source 202 is converted by the wavelength conversion layer 201, so that light of a desired color can be irradiated onto the liquid crystal panel.
 バックライト装置200の構成は、その用途に応じて適宜選択される。例えば図5(a)に示されるように、光源202と、当該光源202の側方に配置された波長変換層201と、を有する構成とすることができる。また、例えば図5(b)や図5(c)に示されるように、光源202から出射する光、もしくは波長変換層201によって波長変換された光を、拡散させるための導光体203を有する構成とすることもできる。この場合、光源202や波長変換層201から出射した光が、導光体203によって拡散される。また、図5(d)に示されるように、光源202(202a、202b、202c)と波長変換層201とが間隙をおいて配置される構成としてもよい。 The configuration of the backlight device 200 is appropriately selected according to its use. For example, as illustrated in FIG. 5A, a configuration including a light source 202 and a wavelength conversion layer 201 disposed on the side of the light source 202 can be employed. Further, for example, as shown in FIG. 5B and FIG. 5C, a light guide 203 for diffusing light emitted from the light source 202 or light converted in wavelength by the wavelength conversion layer 201 is provided. It can also be configured. In this case, light emitted from the light source 202 or the wavelength conversion layer 201 is diffused by the light guide 203. Further, as shown in FIG. 5D, the light source 202 (202a, 202b, 202c) and the wavelength conversion layer 201 may be arranged with a gap therebetween.
 ここで、波長変換層201は、炭素ドット内包体がバインダによって結着された層とすることができる。バインダは、光透過性を有し、かつ十分に炭素ドット内包体を結着可能なものであれば特に制限されない。このようなバインダは、前述のLED装置の波長変換層が含むバインダと同様とすることができる。また、バックライト装置200の波長変換層201の形成方法も、LED装置の波長変換層の形成方法と同様とすることができる。なお、バックライト装置200の波長変換層201の形成においても、粉体状もしくはスラリー状の発光体を適用することが好ましい。粉体状もしくはスラリー状の発光体を用いることで、波長変換層201内に均一に炭素ドット内包体を分散させることができる。 Here, the wavelength conversion layer 201 can be a layer in which carbon dot inclusions are bound by a binder. The binder is not particularly limited as long as it has optical transparency and can sufficiently bind the carbon dot inclusion body. Such a binder can be the same as the binder included in the wavelength conversion layer of the LED device described above. Further, the method for forming the wavelength conversion layer 201 of the backlight device 200 can be the same as the method for forming the wavelength conversion layer of the LED device. In forming the wavelength conversion layer 201 of the backlight device 200, it is preferable to apply a powder or slurry-like light emitter. By using a powder-like or slurry-like illuminant, carbon dot inclusions can be uniformly dispersed in the wavelength conversion layer 201.
 また、本実施形態の発光体では、各炭素ドットが発する蛍光の強度や色度を均一にすることができる。したがって、このような炭素ドットを一つのみ含む炭素ドット単独内包粒子や、炭素ドットの含有個数を均一に揃えた炭素ドット複数内包体を、上記波長変換層に含めることで、バックライト装置から出射する光の色や輝度が均一になりやすい。また、各炭素ドットが発する蛍光の色純度が高いため、バックライト装置から出射する光の色度が所望の範囲に収まりやすい、との効果も得られる。 Moreover, in the light emitter of the present embodiment, the intensity and chromaticity of the fluorescence emitted by each carbon dot can be made uniform. Therefore, by including such carbon dot single inclusion particles containing only one carbon dot or a plurality of carbon dot inclusions with a uniform number of carbon dots contained in the wavelength conversion layer, the light is emitted from the backlight device. The color and brightness of the light is likely to be uniform. Moreover, since the color purity of the fluorescence emitted from each carbon dot is high, the effect that the chromaticity of the light emitted from the backlight device easily falls within a desired range is also obtained.
 (5)光電変換装置
 本実施形態は、上述した発光体が含む炭素ドット内包体を光電変換層の波長変換層に用いた光電変換装置である。図6に光電変換装置の一例を示す。当該光電変換装置300は、基板301上に、電極層302、P型半導体層303、N型半導体層304、透明電極層305、及び波長変換層310が積層された構造を有する。発光体(炭素ドット内包体)は、波長変換層310を形成するための材料として用いることができる。より具体的には、光電変換層内部に入射する光を、所望の波長の光に変換するための材料とすることができる。
(5) Photoelectric Conversion Device This embodiment is a photoelectric conversion device using the carbon dot inclusion body included in the above-described light emitter in the wavelength conversion layer of the photoelectric conversion layer. FIG. 6 illustrates an example of a photoelectric conversion device. The photoelectric conversion device 300 has a structure in which an electrode layer 302, a P-type semiconductor layer 303, an N-type semiconductor layer 304, a transparent electrode layer 305, and a wavelength conversion layer 310 are stacked on a substrate 301. The light emitter (carbon dot inclusion body) can be used as a material for forming the wavelength conversion layer 310. More specifically, a material for converting light entering the photoelectric conversion layer into light having a desired wavelength can be used.
 一般的な光電変換装置では、太陽光に含まれる特定の波長の光のみ、光電変換に利用が可能である。そこで、光電変換装置300の波長変換層310に炭素ドット内包体を含めることで、光電変換装置300の発電効率を改善することができる。例えば、光電変換に利用されていない波長の光によって炭素ドット内包体中の炭素ドットを励起させて、蛍光を得る。これにより、光電変換に利用可能な波長の光の量が多くなり、光電変換装置300の発電効率が高まりやすくなる。 In a general photoelectric conversion device, only light of a specific wavelength contained in sunlight can be used for photoelectric conversion. Therefore, by including a carbon dot inclusion body in the wavelength conversion layer 310 of the photoelectric conversion device 300, the power generation efficiency of the photoelectric conversion device 300 can be improved. For example, fluorescence is obtained by exciting carbon dots in the carbon dot inclusion body with light having a wavelength not used for photoelectric conversion. As a result, the amount of light having a wavelength that can be used for photoelectric conversion increases, and the power generation efficiency of the photoelectric conversion device 300 is likely to increase.
 ここで、光電変換装置300が含む波長変換層310は、炭素ドット内包体が、バインダによって結着された層とすることができる。バインダは、光透過性を有し、かつ十分に炭素ドット内包体を結着可能なものであれば特に制限されない。このようなバインダは、前述のLED装置の波長変換層が含むバインダと同様とすることができる。また、光電変換装置300の波長変換層310の形成方法も、LED装置の波長変換層の形成方法と同様とすることができる。なお、光電変換装置300の波長変換層310の形成においても、粉体状もしくはスラリー状の発光体を適用することが好ましい。粉体状もしくはスラリー状の発光体を用いることで、波長変換層310内に均一に炭素ドット内包体を分散させることができる。 Here, the wavelength conversion layer 310 included in the photoelectric conversion device 300 can be a layer in which carbon dot inclusions are bound by a binder. The binder is not particularly limited as long as it has optical transparency and can sufficiently bind the carbon dot inclusion body. Such a binder can be the same as the binder included in the wavelength conversion layer of the LED device described above. Moreover, the formation method of the wavelength conversion layer 310 of the photoelectric conversion apparatus 300 can also be made to be the same as the formation method of the wavelength conversion layer of the LED device. Note that it is preferable to apply a light emitting body in the form of powder or slurry in the formation of the wavelength conversion layer 310 of the photoelectric conversion device 300. By using a powder-form or slurry-form illuminant, the carbon dot inclusions can be uniformly dispersed in the wavelength conversion layer 310.
 以下、本発明の具体的な実施例を説明する。しかしながら、本発明の範囲はこれによって何ら制限されない。なお、実施例において「部」の表示が用いられるが、特に断りが無い限り「質量部」を表す。 Hereinafter, specific examples of the present invention will be described. However, the scope of the present invention is not limited by this. In addition, although the display of "part" is used in an Example, unless otherwise indicated, "part by mass" is represented.
 1.メソポーラスシリカの作製
 以下の方法で、鋳型となるメソポーラスシリカを作製した。また、メソポーラスシリカの細孔径は、以下のように測定した。
1. Production of mesoporous silica Mesoporous silica as a template was produced by the following method. Further, the pore diameter of mesoporous silica was measured as follows.
 (メソポーラスシリカの細孔径評価法)
 まず、メソポーラスシリカの細孔径分布を、細孔に吸着した窒素ガスが凝縮する際に細孔径に応じて圧力が変化する現象を利用して、BET吸着法によって導出した。この時の細孔径分布のピーク値を細孔径とした。なお、BET吸着測定にはBELSORP-MR6(マイクロトラック・ベル社製)を用いた。
(Method for evaluating the pore size of mesoporous silica)
First, the pore size distribution of mesoporous silica was derived by the BET adsorption method using the phenomenon that the pressure changes according to the pore size when the nitrogen gas adsorbed in the pores is condensed. The peak value of the pore size distribution at this time was defined as the pore size. BELSORP-MR6 (manufactured by Microtrack Bell) was used for BET adsorption measurement.
 (1)C8メソポーラスシリカの作製
 テトラエトキシシラン(TEOS)と、塩酸水溶液(pH1.0)と、n-オクチルトリメチルアンモニウムブロミドと、をモル比1:5:1で混合し、60℃で24時間静置して、ゲルを得た。得られたゲルを単離し、60℃で24時間乾燥させた後、600℃で3時間焼結して、約1.2nmの細孔径を有するメソポーラスシリカを得た。なお、本明細書において、「Cnメソポーラスシリカ」の「n」に相当する数値は、鋳型シリカを作製する際に用いる界面活性剤の炭化水素基の鎖長を表しており、鋳型の細孔のサイズの指標となる。
(1) Production of C8 mesoporous silica Tetraethoxysilane (TEOS), hydrochloric acid aqueous solution (pH 1.0), and n-octyltrimethylammonium bromide were mixed at a molar ratio of 1: 5: 1, and the mixture was stirred at 60 ° C. for 24 hours. The gel was obtained by standing. The obtained gel was isolated, dried at 60 ° C. for 24 hours, and then sintered at 600 ° C. for 3 hours to obtain mesoporous silica having a pore diameter of about 1.2 nm. In the present specification, the numerical value corresponding to “n” of “Cn mesoporous silica” represents the chain length of the hydrocarbon group of the surfactant used in producing the template silica, and the pore size of the template It becomes an index of size.
 (2)C12メソポーラスシリカの作製
 n-オクチルトリメチルアンモニウムブロミドの代わりに、ドデシルトリメチルアンモニウムブロミドを用いた以外は、上記(1)C8メソポーラスシリカと同様にメソポーラスシリカを作製した。得られたメソポーラスシリカの細孔径は、約2.0nmであった。
(2) Production of C12 mesoporous silica Mesoporous silica was produced in the same manner as (1) C8 mesoporous silica except that dodecyltrimethylammonium bromide was used instead of n-octyltrimethylammonium bromide. The pore diameter of the obtained mesoporous silica was about 2.0 nm.
 (3)C16メソポーラスシリカの作製
 n-オクチルトリメチルアンモニウムブロミドの代わりにヘキサデシルトリメチルアンモニウムブロミドを用いた以外は、上記(1)C8メソポーラスシリカと同様にメソポーラスシリカを作製した。得られたメソポーラスシリカの細孔径は、約2.8nmであった。
(3) Production of C16 mesoporous silica Mesoporous silica was produced in the same manner as (1) C8 mesoporous silica except that hexadecyltrimethylammonium bromide was used instead of n-octyltrimethylammonium bromide. The pore diameter of the obtained mesoporous silica was about 2.8 nm.
 (4)C18メソポーラスシリカの作製
 オクチルトリメチルアンモニウムクロライドの代わりにオクタデシルトリメチルアンモニウムクロライドを用いた以外は、上記(1)C8メソポーラスシリカと同様にメソポーラスシリカを作製した。得られたメソポーラスシリカの細孔径は、約3.2nmであった。
(4) Production of C18 mesoporous silica Mesoporous silica was produced in the same manner as (1) C8 mesoporous silica except that octadecyltrimethylammonium chloride was used instead of octyltrimethylammonium chloride. The pore diameter of the obtained mesoporous silica was about 3.2 nm.
 2.炭素ドット分散液の調製
 以下の方法で、炭素ドット分散液を調製した。なお、得られた炭素ドットのCV値、平均粒径、及びアスペクト比(短径/長径比)は、以下の方法で確認した。
2. Preparation of carbon dot dispersion A carbon dot dispersion was prepared by the following method. In addition, the CV value, average particle diameter, and aspect ratio (minor axis / major axis ratio) of the obtained carbon dots were confirmed by the following method.
(粒径及びCV値)
 炭素ドットの平均粒径は、TEM画像(JEOL社製JEM-2100Plus)により確認し、ランダムに選択した100個の炭素ドットの粒径(長径)に基づいて算出した。また、これらの粒径データから標準偏差を求め、以下の式からCV値を算出した。
 CV値[%]=(σ/D)×100
 上記式中、σは標準偏差を表し、Dは平均粒径を表す。
(Particle size and CV value)
The average particle size of the carbon dots was confirmed by a TEM image (JEM-2100 Plus manufactured by JEOL) and calculated based on the particle size (major axis) of 100 randomly selected carbon dots. Moreover, the standard deviation was calculated | required from these particle size data, and CV value was computed from the following formula | equation.
CV value [%] = (σ / D) × 100
In the above formula, σ represents a standard deviation, and D represents an average particle diameter.
 (炭素ドットのアスペクト比の確認方法)
 炭素ドット分散液をスライドガラス上に滴下し、乾燥させることで、Z軸方向が短径となるように炭素ドットを固定した。続いて、TEM(JEM-2500SE,JEOL製)を用いて炭素ドット粒子のX軸・Y軸面から画像観察を行い、長径を求めた。つづいて、同サンプルのAFM(Dimension Icon,BRUKER社製)を用いて炭素ドットの短径を求めた。前記長径および短径の比から炭素ドットのアスペクト比を求めた。ここでは、各実施例及び比較例のサンプルについて同様の測定を10回行い、アスペクト比の最大値と最小値を確認した。
(How to check the aspect ratio of carbon dots)
The carbon dot dispersion liquid was dropped on a slide glass and dried to fix the carbon dots so that the Z-axis direction had a short diameter. Subsequently, an image was observed from the X-axis / Y-axis surfaces of the carbon dot particles using TEM (JEM-2500SE, manufactured by JEOL), and the major axis was obtained. Subsequently, the short diameter of the carbon dots was determined using AFM (Dimension Icon, manufactured by BRUKER) of the same sample. The aspect ratio of the carbon dots was determined from the ratio of the major axis and the minor axis. Here, the same measurement was performed 10 times for the samples of each example and comparative example, and the maximum value and the minimum value of the aspect ratio were confirmed.
 (1)鋳型法による炭素ドット分散液1(粒径1.8nmの炭素ドット分散液)の調製
 1Mのクエン酸水溶液中に、前述のC12メソポーラスシリカを10g浸漬させて、24時間放置した。続いて、桐山ガラスろ過器を用いて、余分なクエン酸水溶液を除去し、細孔内にクエン酸水溶液が染み込んだC12メソポーラスシリカを得た。そして、クエン酸水溶液が染み込んだC12メソポーラスシリカを400℃で3時間焼結し、メソポーラスシリカの細孔内に炭素ドットを作製した。続いて、炭素ドットを内包したメソポーラスシリカに10mLのエタノール(EtOH)を加え、1時間超音波処理することで、CV値15%、粒径1.8nm、アスペクト比1.0~1.4である炭素ドットがEtOHに分散された炭素ドット分散液1を得た。
(1) Preparation of carbon dot dispersion liquid 1 (carbon dot dispersion liquid having a particle diameter of 1.8 nm) by a template method 10 g of the above-mentioned C12 mesoporous silica was immersed in 1M citric acid aqueous solution and left for 24 hours. Subsequently, using a Kiriyama glass filter, excess citric acid aqueous solution was removed to obtain C12 mesoporous silica in which the citric acid aqueous solution was soaked in the pores. Then, C12 mesoporous silica impregnated with an aqueous citric acid solution was sintered at 400 ° C. for 3 hours to produce carbon dots in the pores of mesoporous silica. Subsequently, 10 mL of ethanol (EtOH) was added to mesoporous silica encapsulating carbon dots and subjected to ultrasonic treatment for 1 hour, so that the CV value was 15%, the particle size was 1.8 nm, and the aspect ratio was 1.0 to 1.4. A carbon dot dispersion liquid 1 in which a certain carbon dot was dispersed in EtOH was obtained.
 (2)鋳型法による炭素ドット分散液2(粒径1.0nmの炭素ドット分散液)の調製
 C12メソポーラスシリカの代わりにC8メソポーラスシリカを用いた以外は、炭素ドット分散液1の作製と同様に炭素ドット分散液を作製し、CV値10%、粒径1.0nm、アスペクト比1.0~1.3の炭素ドットがEtOHに分散された炭素ドット分散液2を得た。
(2) Preparation of carbon dot dispersion 2 (carbon dot dispersion having a particle size of 1.0 nm) by a template method Except that C8 mesoporous silica was used instead of C12 mesoporous silica, the same as the preparation of carbon dot dispersion 1 A carbon dot dispersion was prepared to obtain a carbon dot dispersion 2 in which carbon dots having a CV value of 10%, a particle size of 1.0 nm, and an aspect ratio of 1.0 to 1.3 were dispersed in EtOH.
 (3)鋳型法による炭素ドット分散液3(粒径2.6nmの炭素ドット分散液)の調製
 C12メソポーラスシリカの代わりにC16メソポーラスシリカを用いた以外は、炭素ドット分散液1の作製と同様に炭素ドット分散液を作製し、CV値20%、粒径2.6nm、アスペクト比1.0~1.5の炭素ドットがEtOHに分散された炭素ドット分散液3を得た。
(3) Preparation of carbon dot dispersion liquid 3 (carbon dot dispersion liquid having a particle size of 2.6 nm) by a template method Except for using C16 mesoporous silica instead of C12 mesoporous silica, the same as the preparation of carbon dot dispersion liquid 1 A carbon dot dispersion was prepared to obtain a carbon dot dispersion 3 in which carbon dots having a CV value of 20%, a particle size of 2.6 nm, and an aspect ratio of 1.0 to 1.5 were dispersed in EtOH.
 (4)鋳型法による炭素ドット分散液4(粒径3.0nmの炭素ドット分散液)の調製
 C12メソポーラスシリカの代わりにC18メソポーラスシリカを用いた以外は、炭素ドット分散液1の作製と同様に炭素ドット分散液を作製し、CV値25%、粒径3.0nm、アスペクト比1.0~1.6の炭素ドットがEtOHに分散された炭素ドット分散液4を得た。
(4) Preparation of carbon dot dispersion liquid 4 (carbon dot dispersion liquid having a particle size of 3.0 nm) by a template method Except that C18 mesoporous silica was used instead of C12 mesoporous silica, the same as the preparation of carbon dot dispersion liquid 1 A carbon dot dispersion was prepared to obtain a carbon dot dispersion 4 in which carbon dots having a CV value of 25%, a particle size of 3.0 nm, and an aspect ratio of 1.0 to 1.6 were dispersed in EtOH.
 3.CV値を調整した炭素ドット分散液の調製
 (1)CV値10%(アスペクト比1.0~1.3)の炭素ドット分散液Aの調製
 上記炭素ドット分散液2(粒径1.0nmの炭素ドット分散液)中の炭素ドットのCV値が10%であることから、当該炭素ドット分散液2をそのまま、炭素ドット分散液A(CV値10%)とした。
3. Preparation of Carbon Dot Dispersion with Adjusted CV Value (1) Preparation of Carbon Dot Dispersion A with CV Value of 10% (Aspect Ratio 1.0 to 1.3) Carbon Dot Dispersion 2 (with a particle size of 1.0 nm) Since the CV value of the carbon dots in the carbon dot dispersion liquid is 10%, the carbon dot dispersion liquid 2 was used as it was as the carbon dot dispersion liquid A (CV value 10%).
 (2)CV値15%(アスペクト比1.0~1.4)の炭素ドット分散液Bの調製
 上記炭素ドット分散液1(粒径1.8nmの炭素ドット分散液)中の炭素ドットのCV値が15%であることから、当該炭素ドット分散液1をそのまま、炭素ドット分散液B(CV値15%)とした。
(2) Preparation of carbon dot dispersion B having a CV value of 15% (aspect ratio: 1.0 to 1.4) CV of carbon dots in carbon dot dispersion 1 (carbon dot dispersion having a particle size of 1.8 nm) Since the value was 15%, the carbon dot dispersion liquid 1 was used as it was as the carbon dot dispersion liquid B (CV value 15%).
 (3)CV値20%(アスペクト比1.0~1.5)の炭素ドット分散液Cの調製
 上記炭素ドット分散液3(粒径2.6nmの炭素ドット分散液)中の炭素ドットのCV値が20%であることから、当該炭素ドット分散液3をそのまま、炭素ドット分散液C(CV値20%)とした。
(3) Preparation of carbon dot dispersion C having a CV value of 20% (aspect ratio 1.0 to 1.5) CV of carbon dots in carbon dot dispersion 3 (carbon dot dispersion having a particle size of 2.6 nm) Since the value was 20%, the carbon dot dispersion liquid 3 was used as it was as the carbon dot dispersion liquid C (CV value 20%).
 (4)CV値25%(アスペクト比1.0~1.6)の炭素ドット分散液Dの調製
 上記炭素ドット分散液4(粒径3.0nmの炭素ドット分散液)中の炭素ドットのCV値が25%であることから、当該炭素ドット分散液4をそのまま、炭素ドット分散液D(CV値25%)とした。
(4) Preparation of carbon dot dispersion D having a CV value of 25% (aspect ratio: 1.0 to 1.6) CV of carbon dots in carbon dot dispersion 4 (carbon dot dispersion having a particle size of 3.0 nm) Since the value was 25%, the carbon dot dispersion liquid 4 was used as it was as a carbon dot dispersion liquid D (CV value 25%).
 (5)CV値30%(アスペクト比1.0~1.6)の炭素ドット分散液Eの調製
 上記炭素ドット分散液2(粒径1.0nmの炭素ドット分散液)/炭素ドット分散液1(粒径1.8nmの炭素ドット分散液)/炭素ドット分散液4(粒径3.0nmの炭素ドット分散液)を0.5:9.0:0.5の体積比で混合することで炭素ドット分散液E(CV値30%、アスペクト比1.0~1.6)を得た。
(5) Preparation of carbon dot dispersion E having a CV value of 30% (aspect ratio 1.0 to 1.6) Carbon dot dispersion 2 (carbon dot dispersion with a particle size of 1.0 nm) / carbon dot dispersion 1 (Carbon dot dispersion liquid with a particle diameter of 1.8 nm) / carbon dot dispersion liquid 4 (carbon dot dispersion liquid with a particle diameter of 3.0 nm) are mixed at a volume ratio of 0.5: 9.0: 0.5. Carbon dot dispersion E (CV value 30%, aspect ratio 1.0 to 1.6) was obtained.
 (6)CV値40%(アスペクト比1.0~1.6)の炭素ドット分散液Fの調製
 上記炭素ドット分散液2(粒径1.0nmの炭素ドット分散液)/炭素ドット分散液1(粒径1.8nmの炭素ドット分散液)/炭素ドット分散液4(粒径3.0nmの炭素ドット分散液)を1.0:8.0:1.0の体積比で混合することで炭素ドット分散液F(CV値40%、アスペクト比1.0~1.6)を得た。
(6) Preparation of carbon dot dispersion F having a CV value of 40% (aspect ratio 1.0 to 1.6) Carbon dot dispersion 2 (carbon dot dispersion with a particle size of 1.0 nm) / carbon dot dispersion 1 (Carbon dot dispersion liquid with a particle diameter of 1.8 nm) / carbon dot dispersion liquid 4 (carbon dot dispersion liquid with a particle diameter of 3.0 nm) are mixed at a volume ratio of 1.0: 8.0: 1.0. Carbon dot dispersion F (CV value 40%, aspect ratio 1.0 to 1.6) was obtained.
 (7)水熱法によるCV値30%(アスペクト比1.3~2.0)の炭素ドット分散液Gの調製
 クエン酸1gと水10mLとを混合し、テフロン(登録商標)製のオートクレーブ用容器に移した。続いて、テフロン(登録商標)製オートクレーブ用容器を金属製オートクレーブに密閉し200℃5時間処理することで炭素ドット分散液G(CV値30%、アスペクト比1.3~2.0)を作製した。
(7) Preparation of carbon dot dispersion G having a CV value of 30% (aspect ratio 1.3 to 2.0) by hydrothermal method 1 g of citric acid and 10 mL of water are mixed and used for an autoclave made of Teflon (registered trademark) Transferred to a container. Subsequently, a Teflon (registered trademark) autoclave container was sealed in a metal autoclave and treated at 200 ° C. for 5 hours to produce a carbon dot dispersion G (CV value 30%, aspect ratio 1.3 to 2.0). did.
 4.炭素ドット内包体の作製
 (1)発光体1の作製(実施例1)
 上記炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)5部、メタクリル酸メチル10部、アニオン系乳化剤のエレミノールMON‐7(三洋化成製)5部、重合開始剤である過酸化水素水0.1部、水500部、及びトルエン500部を混合し、40℃で10分間撹拌して、メタクリル酸メチルを乳化重合させた。続いて、生成物をろ過し、表面をEtOHで洗浄した。続いて、10時間真空乾燥させることで、CV値10%、アスペクト比1.0~1.3の炭素ドットが、それぞれ絶縁体で内包された炭素ドット単独内包粒子を含む、粉体状の発光体1を得た。
4). Production of carbon dot inclusion body (1) Production of luminous body 1 (Example 1)
5 parts of the above carbon dot dispersion A (carbon dot dispersion having a CV value of 10% according to the template method), 10 parts of methyl methacrylate, 5 parts of anionic emulsifier Eleminol MON-7 (manufactured by Sanyo Chemical), and polymerization initiator Hydrogen peroxide water (0.1 part), water (500 parts), and toluene (500 parts) were mixed and stirred at 40 ° C. for 10 minutes to effect emulsion polymerization of methyl methacrylate. Subsequently, the product was filtered and the surface was washed with EtOH. Subsequently, by drying in vacuum for 10 hours, carbon dots having a CV value of 10% and an aspect ratio of 1.0 to 1.3 each containing carbon dot single inclusion particles encapsulated with an insulator are used for powdery light emission Body 1 was obtained.
 (2)発光体2の作製(実施例2)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)の代わりに、炭素ドット分散液B(鋳型法によるCV値15%の炭素ドット分散液)を用いた以外は、発光体1の作製と同様の工程を行い、CV値15%、アスペクト比1.0~1.4の炭素ドットが、それぞれ絶縁体で内包された炭素ドット単独内包粒子を含む、粉体状の発光体2を得た。
(2) Production of luminous body 2 (Example 2)
Except for using carbon dot dispersion B (carbon dot dispersion having a CV value of 15% according to the template method) instead of carbon dot dispersion A (carbon dot dispersion having a CV value of 10% according to the template method), the light emitter 1. A powder-form light-emitting body including the carbon dot single inclusion particles in which carbon dots having a CV value of 15% and an aspect ratio of 1.0 to 1.4 are encapsulated with an insulator, respectively, by performing the same process as in the production of No. 1 2 was obtained.
 (3)発光体3の作製(実施例3)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)の代わりに、炭素ドット分散液C(鋳型法によるCV値20%の炭素ドット分散液)を用いた以外は、発光体1の作製と同様の工程を行い、CV値20%、アスペクト比1.0~1.5の炭素ドットが、それぞれ絶縁体で内包された炭素ドット単独内包粒子を含む、粉体状の発光体3を得た。
(3) Production of luminous body 3 (Example 3)
Except for using carbon dot dispersion C (carbon dot dispersion having a CV value of 20% by the template method) instead of carbon dot dispersion A (carbon dot dispersion having a CV value of 10% by the template method), the light emitter 1. A powder-form light-emitting body comprising the same carbon dot-encapsulated particles in which carbon dots having a CV value of 20% and an aspect ratio of 1.0 to 1.5 are encapsulated with an insulator, respectively, by performing the same process as in the production of 1. 3 was obtained.
 (4)発光体4の作製(実施例4)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)5部、及び3-(2-アミノエチルアミノ)プロピルジメトキシメチルシラン0.5部を混合し、220℃で10分間反応させた。続いて、10時間真空乾燥させることでCV値10%、アスペクト比1.0~1.3の炭素ドットが、それぞれ絶縁体で内包された炭素ドット単独内包粒子を含む、粉体状の発光体4を得た。
(4) Production of luminous body 4 (Example 4)
Mix 5 parts of carbon dot dispersion A (carbon dot dispersion with 10% CV value by template method) and 0.5 part of 3- (2-aminoethylamino) propyldimethoxymethylsilane, and react at 220 ° C. for 10 minutes. I let you. Subsequently, a powder-form light-emitting body including carbon dot single inclusion particles in which carbon dots having a CV value of 10% and an aspect ratio of 1.0 to 1.3 are included in an insulator by vacuum drying for 10 hours. 4 was obtained.
 (5)発光体5の作製(実施例5)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)の代わりに、炭素ドット分散液B(鋳型法によるCV値15%の炭素ドット分散液)を用いた以外は、発光体4の作製と同様の工程を行い、CV値15%、アスペクト比1.0~1.4の炭素ドットが、それぞれ絶縁体で内包された炭素ドット単独内包粒子を含む、粉体状の発光体5を得た。
(5) Production of luminous body 5 (Example 5)
Except for using carbon dot dispersion B (carbon dot dispersion having a CV value of 15% according to the template method) instead of carbon dot dispersion A (carbon dot dispersion having a CV value of 10% according to the template method), the light emitter 4 is a powder-like light-emitting body that includes the same carbon dot-encapsulated particles in which carbon dots having a CV value of 15% and an aspect ratio of 1.0 to 1.4 are each encapsulated with an insulator. 5 was obtained.
 (6)発光体6の作製(実施例6)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)の代わりに、炭素ドット分散液C(鋳型法によるCV値20%の炭素ドット分散液)を用いた以外は、発光体4の作製と同様の工程を行い、CV値20%、アスペクト比1.0~1.5の炭素ドットが、それぞれ絶縁体で内包された炭素ドット単独内包粒子を含む、粉体状の発光体6を得た。
(6) Production of luminous body 6 (Example 6)
Except for using carbon dot dispersion C (carbon dot dispersion having a CV value of 20% by the template method) instead of carbon dot dispersion A (carbon dot dispersion having a CV value of 10% by the template method), the light emitter 4 is a powder-like light-emitting body that includes the same carbon dot-encapsulated particles in which carbon dots having a CV value of 20% and an aspect ratio of 1.0 to 1.5 are each encapsulated with an insulator. 6 was obtained.
 (7)発光体7の作製(実施例7)
 粉体状の発光体4 0.1部に、EtOHを50部加え、分散機(スターバーストミニ、スギノマシン社製)で分散処理することで、スラリー状の発光体7を得た。
(7) Production of luminous body 7 (Example 7)
50 parts of EtOH was added to 0.1 part of the powdery illuminant 4 and dispersed with a disperser (Starburst Mini, manufactured by Sugino Machine Co.) to obtain a slurry-like illuminant 7.
 (8)発光体8の作製(実施例8)
 粉体状の発光体5 0.1部に、EtOHを50部加え、分散機(スターバーストミニ、スギノマシン社製)で分散処理することで、スラリー状の発光体8を得た。
(8) Production of luminous body 8 (Example 8)
50 parts of EtOH was added to 0.1 part of the powdery illuminant 5 and dispersed with a disperser (Starburst Mini, manufactured by Sugino Machine Co., Ltd.) to obtain a slurry illuminant 8.
 (9)発光体9の作製(実施例9)
 粉体状の発光体6 0.1部に、EtOHを50部加え、分散機(スターバーストミニ、スギノマシン社製)で分散処理することで、スラリー状の発光体9を得た。
(9) Production of luminous body 9 (Example 9)
50 parts of EtOH was added to 0.1 part of the powdery light emitter 6 and dispersed with a disperser (Starburst Mini, manufactured by Sugino Machine Co., Ltd.) to obtain a slurry light emitter 9.
 (10)発光体10の作製(実施例10)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)1g、及び水22.5mLを混合し、ホットスターラーを使って70℃で20分間加熱した。当該分散液に、ニカラックMX-035(日本カーバイド工業社製、メラミン樹脂)0.5gを加え、さらに5分間加熱攪拌した。さらにギ酸100μLを加え、60℃で20分間加熱攪拌した後、室温下に放冷した。放冷後、反応混合物を遠心用チューブに入れて遠心分離機にて、12000rpmで20分間、遠心分離し、上澄みを除去した。そして、沈殿物を1mLの純水中に再分散させて、樹脂粒子の分散液を得た。得られた分散液を、オートクレーブに入れて、10℃/分の昇温速度で昇温させ、100℃で10分間保持した後、10℃/分の降温速度で降温させた。そして、10時間真空乾燥させることで、CV値10%、アスペクト比1.0~1.3の炭素ドットが、それぞれ絶縁体で内包された炭素ドット単独内包粒子を含む、粉体状の発光体10を得た。
(10) Production of luminous body 10 (Example 10)
1 g of carbon dot dispersion A (carbon dot dispersion having a CV value of 10% according to the mold method) and 22.5 mL of water were mixed and heated at 70 ° C. for 20 minutes using a hot stirrer. To this dispersion, 0.5 g of Nicalac MX-035 (manufactured by Nippon Carbide Industries, Ltd., melamine resin) was added, and the mixture was further heated and stirred for 5 minutes. Further, 100 μL of formic acid was added, and the mixture was stirred with heating at 60 ° C. for 20 minutes, and then allowed to cool to room temperature. After allowing to cool, the reaction mixture was placed in a centrifuge tube and centrifuged at 12000 rpm for 20 minutes in a centrifuge to remove the supernatant. Then, the precipitate was redispersed in 1 mL of pure water to obtain a dispersion of resin particles. The obtained dispersion was put in an autoclave, heated at a rate of temperature increase of 10 ° C./min, held at 100 ° C. for 10 minutes, and then cooled at a rate of temperature decrease of 10 ° C./min. Then, by drying in vacuum for 10 hours, a powder-form light-emitting body containing carbon dot single inclusion particles in which carbon dots having a CV value of 10% and an aspect ratio of 1.0 to 1.3 are each included in an insulator 10 was obtained.
 (11)発光体11の作製(実施例11)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)の代わりに、炭素ドット分散液B(鋳型法によるCV値15%の炭素ドット分散液)を用いた以外は、発光体10の作製と同様の工程を行い、CV値15%、アスペクト比1.0~1.4の炭素ドットが、それぞれ絶縁体で内包された炭素ドット単独内包粒子を含む、粉体状の発光体11を得た。
(11) Production of luminous body 11 (Example 11)
Except for using carbon dot dispersion B (carbon dot dispersion having a CV value of 15% according to the template method) instead of carbon dot dispersion A (carbon dot dispersion having a CV value of 10% according to the template method), the light emitter 10 is a powdery luminescent material that includes the same carbon dot-encapsulated particles in which carbon dots having a CV value of 15% and an aspect ratio of 1.0 to 1.4 are each encapsulated with an insulator. 11 was obtained.
 (12)発光体12の作製(実施例12)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)の代わりに、炭素ドット分散液C(鋳型法によるCV値20%の炭素ドット分散液)を用いた以外は、発光体10の作製と同様の工程を行い、CV値20%、アスペクト比1.0~1.5の炭素ドットが、それぞれ絶縁体で内包された炭素ドット単独内包粒子を含む、粉体状の発光体12を得た。
(12) Production of luminous body 12 (Example 12)
Except for using carbon dot dispersion C (carbon dot dispersion having a CV value of 20% by the template method) instead of carbon dot dispersion A (carbon dot dispersion having a CV value of 10% by the template method), the light emitter 10 is a powdery luminescent material that includes the same carbon dot-encapsulated particles in which carbon dots having a CV value of 20% and an aspect ratio of 1.0 to 1.5 are each encapsulated with an insulator. 12 was obtained.
 (13)発光体13の作製(比較例1)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)の代わりに、炭素ドット分散液G(水熱法によるCV値30%の炭素ドット分散液)を用いた以外は、発光体1の作製と同様の工程を行い、CV値30%、アスペクト比1.3~2.0の炭素ドットが、それぞれ絶縁体で内包された炭素ドット単独内包粒子を含む、粉体状の発光体13を得た。
(13) Production of luminous body 13 (Comparative Example 1)
Except for using carbon dot dispersion G (carbon dot dispersion with 30% CV value by hydrothermal method) instead of carbon dot dispersion A (carbon dot dispersion with 10% CV value by template method), light emission The same process as the production of the body 1 is carried out, and the light emission in the form of a powder including carbon dots each having a CV value of 30% and an aspect ratio of 1.3 to 2.0 including carbon dot single inclusion particles encapsulated by an insulator. Body 13 was obtained.
 (14)発光体14の作製(比較例2)
 酸化グラファイト0.1gを0.2mol/Lの尿素水溶液5mLに分散させた。得られた水溶液を密閉容器中、150℃×10時間で加熱した。加熱後、充分に洗浄を行い、窒素含有グラフェンナノシートを分離した。次に、0.1mgの窒素含有グラフェンナノシートが分散されている水分散液5mLに、10mgのポリアクリル酸(被覆材)を溶解させた。得られた溶液を乾燥させ、CV値40 アスペクト比4.0~50.0の窒素含有グラフェンナノシート/ポリアクリル酸複合体(発光体14)を得た。
(14) Production of luminous body 14 (Comparative Example 2)
Graphite oxide (0.1 g) was dispersed in 5 mL of a 0.2 mol / L urea aqueous solution. The obtained aqueous solution was heated in a sealed container at 150 ° C. for 10 hours. After heating, it was thoroughly washed to separate the nitrogen-containing graphene nanosheet. Next, 10 mg of polyacrylic acid (coating material) was dissolved in 5 mL of an aqueous dispersion in which 0.1 mg of nitrogen-containing graphene nanosheets were dispersed. The obtained solution was dried to obtain a nitrogen-containing graphene nanosheet / polyacrylic acid composite (light emitter 14) having a CV value of 40 and an aspect ratio of 4.0 to 50.0.
 (15)発光体15の作製(比較例3)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)を真空乾燥させることでCV値10%、粒径2nm、アスペクト比1.0~1.3の炭素ドット粉末(発光体15)を得た。
(15) Production of luminous body 15 (Comparative Example 3)
Carbon dot dispersion liquid A (carbon dot dispersion liquid with a CV value of 10% according to the mold method) is vacuum-dried to obtain a carbon dot powder having a CV value of 10%, a particle size of 2 nm, and an aspect ratio of 1.0 to 1.3 (light emitting body). 15) was obtained.
 (16)発光体16の作製(実施例13)
 発光体1の作製において炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)の量を50部とした以外は、発光体1と同様の工程を行い、CV値10%、アスペクト比1.0~1.3の炭素ドットが平均10個ずつ、絶縁体で内包された炭素ドット複数内包体を含む、粉体状の発光体16を得た。
(16) Production of luminous body 16 (Example 13)
Except that the amount of the carbon dot dispersion A (carbon dot dispersion having a CV value of 10% according to the template method) was 50 parts in the production of the light emitter 1, the same process as that of the light emitter 1 was performed, and the CV value was 10%. A powdery light-emitting body 16 including a plurality of carbon dot inclusions in which an average of 10 carbon dots having an aspect ratio of 1.0 to 1.3 was included with an insulator was obtained.
 (17)発光体17の作製(実施例14)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)の代わりに、炭素ドット分散液B(鋳型法によるCV値15%の炭素ドット分散液)を用いた以外は、発光体16の作製と同様の工程を行い、CV値15%、アスペクト比1.0~1.4の炭素ドットが平均10個ずつ、絶縁体で内包された炭素ドット複数内包体を含む、粉体状の発光体17を得た。
(17) Production of luminous body 17 (Example 14)
Except for using carbon dot dispersion B (carbon dot dispersion having a CV value of 15% according to the template method) instead of carbon dot dispersion A (carbon dot dispersion having a CV value of 10% according to the template method), the light emitter A process similar to that of No. 16 is performed, and includes a plurality of carbon dot inclusions in which an average of 10 carbon dots each having a CV value of 15% and an aspect ratio of 1.0 to 1.4 are included in an insulator. The light-emitting body 17 was obtained.
 (18)発光体18の作製(実施例15)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)の代わりに、炭素ドット分散液C(鋳型法によるCV値20%の炭素ドット分散液)を用いた以外は、発光体16の作製と同様の工程を行い、CV値20%、アスペクト比1.0~1.5の炭素ドットが平均10個ずつ、絶縁体で内包された炭素ドット複数内包体を含む、粉体状の発光体18を得た。
(18) Production of luminous body 18 (Example 15)
Except for using carbon dot dispersion C (carbon dot dispersion having a CV value of 20% by the template method) instead of carbon dot dispersion A (carbon dot dispersion having a CV value of 10% by the template method), the light emitter A process similar to that of No. 16 is performed, and includes a plurality of carbon dot inclusions in which an average of 10 carbon dots having a CV value of 20% and an aspect ratio of 1.0 to 1.5 are included with an insulator. The light emitter 18 was obtained.
 (19)発光体19の作製(実施例16)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)50部、及び3-(2-アミノエチルアミノ)プロピルジメトキシメチルシラン5部、及びテトラエチルオルソシリケート1部を混合し、220℃で30分間反応させた。続いて、10時間真空乾燥させることでCV値10%、アスペクト比1.0~1.3の炭素ドットが平均10個ずつ、絶縁体で内包された炭素ドット複数内包体を含む、粉体状の発光体19を得た。
(19) Production of luminous body 19 (Example 16)
50 parts of carbon dot dispersion A (carbon dot dispersion with a CV value of 10% according to the template method), 5 parts of 3- (2-aminoethylamino) propyldimethoxymethylsilane, and 1 part of tetraethylorthosilicate were mixed. The reaction was carried out at 30 ° C. for 30 minutes. Subsequently, it is vacuum-dried for 10 hours, and contains a plurality of carbon dot inclusions each containing an average of 10 carbon dots having a CV value of 10% and an aspect ratio of 1.0 to 1.3. The light emitter 19 was obtained.
 (20)発光体20の作製(実施例17)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)の代わりに、炭素ドット分散液B(鋳型法によるCV値15%の炭素ドット分散液)を用いた以外は、発光体19の作製と同様の工程を行い、CV値15%、アスペクト比1.0~1.4の炭素ドットが平均10個ずつ、絶縁体で内包された炭素ドット複数内包体を含む、粉体状の発光体20を得た。
(20) Production of luminous body 20 (Example 17)
Except for using carbon dot dispersion B (carbon dot dispersion having a CV value of 15% according to the template method) instead of carbon dot dispersion A (carbon dot dispersion having a CV value of 10% according to the template method), the light emitter A process similar to that of No. 19 is performed, and includes a plurality of carbon dot inclusions in which an average of 10 carbon dots having a CV value of 15% and an aspect ratio of 1.0 to 1.4 are included with an insulator. The luminous body 20 was obtained.
 (21)発光体21の作製(実施例18)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)の代わりに、炭素ドット分散液C(鋳型法によるCV値20%の炭素ドット分散液)を用いた以外は、発光体19の作製と同様の工程を行い、CV値20%、アスペクト比1.0~1.5の炭素ドットが平均10個ずつ、絶縁体で内包された炭素ドット複数内包体を含む、粉体状の発光体21を得た。
(21) Production of luminous body 21 (Example 18)
Except for using carbon dot dispersion C (carbon dot dispersion having a CV value of 20% by the template method) instead of carbon dot dispersion A (carbon dot dispersion having a CV value of 10% by the template method), the light emitter 19 in the same manner as the production of No. 19, including a plurality of carbon dot inclusions in which an average of 10 carbon dots having a CV value of 20% and an aspect ratio of 1.0 to 1.5 are included with an insulator. The light emitter 21 was obtained.
 (22)発光体22の作製(実施例19)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)50部、及び3-(2-アミノエチルアミノ)プロピルジメトキシメチルシラン5部、及びテトラエチルオルソシリケート1部を混合し、220℃で30分間反応させた。続いて、EtOHを10部添加して撹拌させることで、CV値10%、アスペクト比1.0~1.3の炭素ドットが平均10個ずつ、絶縁体で内包された炭素ドット複数内包体を含む、粉体状の発光体22を得た。
(22) Production of luminous body 22 (Example 19)
50 parts of carbon dot dispersion A (carbon dot dispersion with a CV value of 10% according to the template method), 5 parts of 3- (2-aminoethylamino) propyldimethoxymethylsilane, and 1 part of tetraethylorthosilicate were mixed. The reaction was carried out at 30 ° C. for 30 minutes. Subsequently, by adding 10 parts of EtOH and stirring, a plurality of carbon dot inclusion bodies in which an average of 10 carbon dots having a CV value of 10% and an aspect ratio of 1.0 to 1.3 are included in an insulator are obtained. A powdery light emitter 22 was obtained.
 (23)発光体23の作製(実施例20)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)の代わりに、炭素ドット分散液B(鋳型法によるCV値15%の炭素ドット分散液)を用いた以外は、発光体22の作製と同様の工程を行い、CV値15%、アスペクト比1.0~1.4の炭素ドットが平均10個ずつ、絶縁体で内包された炭素ドット複数内包体を含む、粉体状の発光体23を得た。
(23) Production of luminous body 23 (Example 20)
Except for using carbon dot dispersion B (carbon dot dispersion having a CV value of 15% according to the template method) instead of carbon dot dispersion A (carbon dot dispersion having a CV value of 10% according to the template method), the light emitter 22 including a plurality of carbon dot inclusion bodies in which an average of 10 carbon dots having a CV value of 15% and an aspect ratio of 1.0 to 1.4 are included in an insulator. The luminous body 23 was obtained.
 (24)発光体24の作製(実施例21)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)の代わりに、炭素ドット分散液C(鋳型法によるCV値20%の炭素ドット分散液)を用いた以外は、発光体22の作製と同様の工程を行い、CV値20%、アスペクト比1.0~1.5の炭素ドットが平均10個ずつ、絶縁体で内包された炭素ドット複数内包体を含む、粉体状の発光体24を得た。
(24) Production of luminous body 24 (Example 21)
Except for using carbon dot dispersion C (carbon dot dispersion having a CV value of 20% by the template method) instead of carbon dot dispersion A (carbon dot dispersion having a CV value of 10% by the template method), the light emitter 22 in the form of a powder containing a plurality of carbon dot inclusions in which an average of 10 carbon dots each having a CV value of 20% and an aspect ratio of 1.0 to 1.5 are included in an insulator. The luminous body 24 was obtained.
 (25)発光体25の作製(実施例22)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)50部、及び3-(2-アミノエチルアミノ)プロピルジメトキシメチルシラン5部、及びテトラエチルオルソシリケート1部を混合し、テフロン(登録商標)容器に流し込んだ。続いて、100℃10分間、150℃10分間、220℃で30分間反応させ、テフロン(登録商標)容器から取り出すことで、CV値10%、アスペクト比1.0~1.3の炭素ドットが複数個、絶縁体で内包された発光体25(炭素ドット内包体を含むシート状の発光体(0.5μm厚))を得た。
(25) Production of luminous body 25 (Example 22)
Mix 50 parts of carbon dot dispersion A (carbon dot dispersion with a CV value of 10% according to the template method), 5 parts of 3- (2-aminoethylamino) propyldimethoxymethylsilane, and 1 part of tetraethylorthosilicate, and add Teflon. Poured into a (registered trademark) container. Subsequently, by reacting at 100 ° C. for 10 minutes, 150 ° C. for 10 minutes, and 220 ° C. for 30 minutes and taking out from the Teflon (registered trademark) container, carbon dots having a CV value of 10% and an aspect ratio of 1.0 to 1.3 are obtained. A plurality of light emitters 25 encapsulated with an insulator (sheet-like light emitters including carbon dot inclusions (0.5 μm thick)) were obtained.
 (26)発光体26の作製(実施例23)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)の代わりに、炭素ドット分散液B(鋳型法によるCV値15%の炭素ドット分散液)を用いた以外は、発光体25の作製と同様の工程を行い、CV値15%、アスペクト比1.0~1.4の炭素ドットが複数個、絶縁体で内包された発光体26(炭素ドット内包体を含むシート状の発光体(0.5μm厚))を得た。
(26) Production of luminous body 26 (Example 23)
Except for using carbon dot dispersion B (carbon dot dispersion having a CV value of 15% according to the template method) instead of carbon dot dispersion A (carbon dot dispersion having a CV value of 10% according to the template method), the light emitter 25, a luminous body 26 (sheet-like shape including carbon dot inclusions) in which a plurality of carbon dots having a CV value of 15% and an aspect ratio of 1.0 to 1.4 are encapsulated with an insulator. A light emitter (0.5 μm thick) was obtained.
 (27)発光体27の作製(実施例24)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)の代わりに、炭素ドット分散液C(鋳型法によるCV値20%の炭素ドット分散液)を用いた以外は、発光体25の作製と同様の工程を行い、CV値20%、アスペクト比1.0~1.5の炭素ドットが複数個、絶縁体で内包された発光体27(炭素ドット内包体を含むシート状の発光体(0.5μm厚))を得た。
(27) Production of luminous body 27 (Example 24)
Except for using carbon dot dispersion C (carbon dot dispersion having a CV value of 20% by the template method) instead of carbon dot dispersion A (carbon dot dispersion having a CV value of 10% by the template method), the light emitter The light emitting body 27 (sheet-like shape including the carbon dot inclusion body) in which a plurality of carbon dots having a CV value of 20% and an aspect ratio of 1.0 to 1.5 and including an insulator are included is performed in the same manner as the manufacture of No. 25. A light emitter (0.5 μm thick) was obtained.
 (28)発光体28の作製(実施例25)
 発光体10の作製において炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)の量を50gとした以外は、発光体10と同様に炭素ドット内包体を作製し、CV値10%、アスペクト比1.0~1.3の炭素ドットが平均10個ずつ、絶縁体で内包された炭素ドット複数内包体を含む、粉体状の発光体28を得た。
(28) Production of luminous body 28 (Example 25)
A carbon dot inclusion was prepared in the same manner as the light emitter 10, except that the amount of the carbon dot dispersion liquid A (carbon dot dispersion liquid having a CV value of 10% according to the template method) was 50 g in the production of the light emitter 10, and the CV value was obtained. A powdery light-emitting body 28 including a plurality of carbon dots containing 10% of carbon dots having an average of 10% and an aspect ratio of 1.0 to 1.3 in an insulator was obtained.
 (29)発光体29の作製(実施例26)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)の代わりに、炭素ドット分散液B(鋳型法によるCV値15%の炭素ドット分散液)を用いた以外は、発光体28の作製と同様の工程を行い、CV値15%、アスペクト比1.0~1.4の炭素ドットが平均10個ずつ、絶縁体で内包された炭素ドット複数内包体を含む、粉体状の発光体29を得た。
(29) Production of luminous body 29 (Example 26)
Except for using carbon dot dispersion B (carbon dot dispersion having a CV value of 15% according to the template method) instead of carbon dot dispersion A (carbon dot dispersion having a CV value of 10% according to the template method), the light emitter The same process as the production of No. 28 is performed, and a powder form including a plurality of carbon dot inclusion bodies in which an average of 10 carbon dots having a CV value of 15% and an aspect ratio of 1.0 to 1.4 is included with an insulator. The light emitting body 29 was obtained.
 (30)発光体30の作製(実施例27)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)の代わりに、炭素ドット分散液C(鋳型法によるCV値20%の炭素ドット分散液)を用いた以外は、発光体28の作製と同様の工程を行い、CV値20%、アスペクト比1.0~1.5の炭素ドットが平均10個ずつ、絶縁体で内包された炭素ドット複数内包体を含む、粉体状の発光体30を得た。
(30) Production of luminous body 30 (Example 27)
Except for using carbon dot dispersion C (carbon dot dispersion having a CV value of 20% by the template method) instead of carbon dot dispersion A (carbon dot dispersion having a CV value of 10% by the template method), the light emitter The same process as the production of No. 28 is performed, and a powder form including a plurality of carbon dot inclusions each including an average of 10 carbon dots having a CV value of 20% and an aspect ratio of 1.0 to 1.5 and including an insulator. The light emitting body 30 was obtained.
 (31)発光体31の作製(比較例4)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)の代わりに炭素ドット分散液G(水熱法によるCV値30%の炭素ドット分散液)を用いた以外は、発光体16の作製と同様の工程を行い、CV値30%、アスペクト比1.3~2.0の炭素ドットが平均10個ずつ、絶縁体で内包された炭素ドット複数内包体を含む、粉体状の発光体31を得た。
(31) Production of luminous body 31 (Comparative Example 4)
Except for using carbon dot dispersion liquid G (carbon dot dispersion liquid with a CV value of 30% by hydrothermal method) instead of carbon dot dispersion liquid A (carbon dot dispersion liquid with a CV value of 10% according to the template method). The same process as that of No. 16 is performed, and a powder form including a plurality of carbon dot inclusion bodies in which an average of 10 carbon dots each having a CV value of 30% and an aspect ratio of 1.3 to 2.0 are included with an insulator. The phosphor 31 was obtained.
 (32)発光体32の作製(比較例5)
 酸化グラファイト1gを0.2mol/Lの尿素水溶液50mLに分散させた。得られた水溶液を密閉容器中、150℃×10時間で加熱した。加熱後、充分に洗浄を行い、窒素含有グラフェンナノシートを分離した。次に、0.1mgの窒素含有グラフェンナノシートが分散されている水分散液5mLに、10mgのポリアクリル酸(被覆材)を溶解させた。得られた溶液を乾燥させ、CV値40%、アスペクト比4.0~50.0の窒素含有グラフェンナノシート/ポリアクリル酸複合体(発光体32)を得た。
(32) Production of luminous body 32 (Comparative Example 5)
1 g of graphite oxide was dispersed in 50 mL of 0.2 mol / L urea aqueous solution. The obtained aqueous solution was heated in a sealed container at 150 ° C. for 10 hours. After heating, it was thoroughly washed to separate the nitrogen-containing graphene nanosheet. Next, 10 mg of polyacrylic acid (coating material) was dissolved in 5 mL of an aqueous dispersion in which 0.1 mg of nitrogen-containing graphene nanosheets were dispersed. The obtained solution was dried to obtain a nitrogen-containing graphene nanosheet / polyacrylic acid composite (light emitter 32) having a CV value of 40% and an aspect ratio of 4.0 to 50.0.
 (33)発光体33の作製(比較例6)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)の代わりに炭素ドット分散液E(鋳型法によるCV値30%の炭素ドット分散液)を用いた以外は、発光体22の作製と同様の工程を行い、CV値30%、アスペクト比1.0~1.6の炭素ドットが平均10個ずつ、絶縁体で内包された炭素ドット複数内包体を含む、粉体状の発光体33を得た。
(33) Production of luminous body 33 (Comparative Example 6)
Except for using carbon dot dispersion E (carbon dot dispersion having a CV value of 30% according to the template method) instead of carbon dot dispersion A (carbon dot dispersion having a CV value of 10% according to the template method), the light emitter 22 In the same manner as in the above, a powder-form containing a plurality of carbon dot inclusions in which an average of 10 carbon dots having a CV value of 30% and an aspect ratio of 1.0 to 1.6 are included with an insulator. The luminous body 33 was obtained.
 (34)発光体34の作製(比較例7)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)の代わりに炭素ドット分散液F(鋳型法によるCV値40%の炭素ドット分散液)を用いた以外は、発光体22の作製と同様の工程を行い、CV値40%、アスペクト比1.0~1.6の炭素ドットが平均10個ずつ、絶縁体で内包された炭素ドット複数内包体を含む、粉体状の発光体34を得た。
(34) Production of luminous body 34 (Comparative Example 7)
Except for using carbon dot dispersion F (carbon dot dispersion having a CV value of 40% according to the template method) instead of carbon dot dispersion A (carbon dot dispersion having a CV value of 10% according to the template method), the light emitter 22 In the same manner as the above, a powder-form containing a plurality of carbon dot inclusions each including an average of 10 carbon dots having a CV value of 40% and an aspect ratio of 1.0 to 1.6. The luminous body 34 was obtained.
 (35)発光体35の作製(比較例8)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)の代わりに炭素ドット分散液E(鋳型法によるCV値30%の炭素ドット分散液)を用いた以外は、発光体25の作製と同様の工程を行い、CV値30%、アスペクト比1.0~1.6の炭素ドットが複数個、絶縁体で内包された発光体35(炭素ドット内包体からなるシート(0.5μm厚))を得た。
(35) Production of luminous body 35 (Comparative Example 8)
Except for using carbon dot dispersion E (carbon dot dispersion having a CV value of 30% according to the template method) instead of carbon dot dispersion A (carbon dot dispersion having a CV value of 10% according to the template method), the light emitter 25 The light emitting body 35 (sheet (0. 0) comprising carbon dot inclusions) in which a plurality of carbon dots having a CV value of 30% and an aspect ratio of 1.0 to 1.6 are encapsulated with an insulator is performed. 5 μm thickness)).
 (36)発光体36の作製(比較例9)
 炭素ドット分散液A(鋳型法によるCV値10%の炭素ドット分散液)の代わりに炭素ドット分散液F(鋳型法によるCV値40%の炭素ドット分散液)を用いた以外は、発光体25の作製と同様の工程を行い、CV値40%、アスペクト比1.0~1.6の炭素ドットが複数個、絶縁体で内包された発光体36(炭素ドット内包体を含むシート状の発光体(0.5μm厚))を得た。
(36) Production of luminous body 36 (Comparative Example 9)
Except for using carbon dot dispersion liquid F (carbon dot dispersion liquid with a CV value of 40% according to the template method) instead of the carbon dot dispersion liquid A (carbon dot dispersion liquid with a CV value of 10% according to the mold method), the luminous body 25 The light emitting body 36 (sheet-like light emission including the carbon dot inclusion body) in which a plurality of carbon dots having a CV value of 40% and an aspect ratio of 1.0 to 1.6 are encapsulated with an insulator is performed by performing the same process as in the above. Body (0.5 μm thick) was obtained.
 (37)発光体37の作製(比較例10)
 1Mのクエン酸水溶液中にC8メソポーラスシリカ10gを浸漬させ、24時間放置した。続いて、桐山ガラスろ過器を用いて、余分なクエン酸水溶液を除去し、細孔径にクエン酸水溶液が染み込んだC8メソポーラスシリカを得た。続いて、クエン酸水溶液が染み込んだC8メソポーラスシリカを400℃で3時間焼結し、メソポーラスシリカの細孔内に炭素ドットが配置された炭素ドット複数内包体を含む、粉体状の発光体37を得た。なお、発光体37の炭素ドットのCV値とアスペクト比は、本実験例と同様にC8メソポーラスシリカを用いて調製された炭素ドット分散液2における炭素ドットの値と同じであると見做した。
(37) Production of luminous body 37 (Comparative Example 10)
10 g of C8 mesoporous silica was immersed in a 1M aqueous citric acid solution and left for 24 hours. Subsequently, using a Kiriyama glass filter, excess citric acid aqueous solution was removed, and C8 mesoporous silica in which the citric acid aqueous solution was soaked in the pore diameter was obtained. Subsequently, the C8 mesoporous silica impregnated with the citric acid aqueous solution is sintered at 400 ° C. for 3 hours, and includes a plurality of carbon dot inclusions in which carbon dots are arranged in the pores of the mesoporous silica, and the powdery light emitting body 37. Got. Note that the CV value and aspect ratio of the carbon dots of the illuminant 37 were considered to be the same as the carbon dot values in the carbon dot dispersion 2 prepared using C8 mesoporous silica, as in this experimental example.
 5.評価
 上記実施例及び比較例で作製した発光体について、それぞれ炭素ドット内包体間の蛍光強度ばらつき、量子収率、湿熱耐性を以下の方法で評価した。また、炭素ドット複数内包体を含むシート状の発光体については、面内色度ばらつきも評価した。結果を表1及び表2に示す。
5). Evaluation About the light-emitting body produced by the said Example and comparative example, the fluorescence intensity dispersion | variation between carbon dot inclusion bodies, a quantum yield, and wet heat tolerance were evaluated with the following method, respectively. In addition, the in-plane chromaticity variation was also evaluated for the sheet-like illuminant including a plurality of carbon dot inclusions. The results are shown in Tables 1 and 2.
 (炭素ドット内包体間の蛍光強度ばらつき)
 蛍光顕微鏡で炭素ドット内包体20個を撮影した際の平均輝度を基準とし、基準の輝度からのずれを下記の基準で評価した。
 全ての炭素ドット内包体の輝度ばらつきが平均値±2%未満に収まる・・・◎
 全ての炭素ドット内包体の輝度ばらつきが平均値±4%未満に収まる・・・○
 全ての炭素ドット内包体の輝度ばらつきが平均値±6%未満に収まる・・・△
 全ての炭素ドット内包体の輝度ばらつきが平均値±6%未満に収まらない・・・×
(Fluorescence intensity variation between carbon dot inclusions)
Based on the average brightness when 20 carbon dot inclusions were photographed with a fluorescence microscope, the deviation from the reference brightness was evaluated according to the following criteria.
The brightness variation of all carbon dot inclusions falls within the average value of ± 2% ... ◎
The brightness variation of all carbon dot inclusions falls within the average value of ± 4%.
The brightness variation of all carbon dot inclusions falls within the average value of ± 6%.
The brightness variation of all carbon dot inclusions does not fall below the average value ± 6%.
 (面内色度ばらつき)
 シート(バルク体)サンプルの面内色度ばらつきは、青色LEDをバックライトとしてシート(バルク体)背面から照射させた際の発光を測定することで求めた。測定装置は、分光放射輝度計(CS-1000A、コニカミノルタセンシング社製)とした。色度は、色空間をXYZ座標系で表したCIE-XYZ表色系において、ある点と原点を結ぶ直線が平面x+y+z=1と交わる点で定義される。そこで、上記バルク体からの発光について、10箇所の色度(x値及びy値)を測定(zは省略)し、x値及びy値の標準偏差をそれぞれ求めた。そして、x値の標準偏差とy値の標準偏差の平均値を算出し、当該平均値について、以下の基準で評価した。なお、標準偏差が小さければ、色度のばらつきが小さいといえ、標準偏差が0.03未満であれば、色度のばらつきがなく、実用上問題がないとした。基準を下記に示す。
 標準偏差が0.02未満である・・・◎
 標準偏差が0.02以上0.03未満である・・・○
 標準偏差が0.03以上0.04未満である・・・△
 標準偏差が0.04以上である・・・×
(In-plane chromaticity variation)
The in-plane chromaticity variation of the sheet (bulk body) sample was determined by measuring light emission when the blue LED was used as a backlight from the back surface of the sheet (bulk body). The measuring device was a spectral radiance meter (CS-1000A, manufactured by Konica Minolta Sensing). The chromaticity is defined by a point where a straight line connecting a certain point and the origin intersects the plane x + y + z = 1 in the CIE-XYZ color system in which the color space is expressed in the XYZ coordinate system. Therefore, the chromaticity (x value and y value) at 10 locations was measured (z was omitted) for the light emission from the bulk body, and the standard deviations of the x value and the y value were obtained. And the average value of the standard deviation of x value and the standard deviation of y value was calculated, and the average value was evaluated according to the following criteria. If the standard deviation is small, it can be said that the chromaticity variation is small. If the standard deviation is less than 0.03, there is no chromaticity variation and there is no practical problem. The criteria are shown below.
Standard deviation is less than 0.02 ...
The standard deviation is 0.02 or more and less than 0.03 ...
The standard deviation is 0.03 or more and less than 0.04 ... △
Standard deviation is 0.04 or more.
 (蛍光量子収率評価)
 各発光体について、絶対PL量子収率測定装置(Quantaurus-QY C11347-01;浜松ホトニクス社製)にて、蛍光量子収率測定を行った。そして、測定された値を、下記の基準で評価した。
 量子収率60%以上・・・◎
 量子収率40%以上60%未満・・・○
 量子収率20%以上40%未満・・・△
 量子収率20%未満・・・×
(Fluorescence quantum yield evaluation)
For each phosphor, fluorescence quantum yield measurement was performed with an absolute PL quantum yield measuring apparatus (Quantaurus-QY C11347-01; manufactured by Hamamatsu Photonics). And the measured value was evaluated on the following reference | standard.
Quantum yield 60% or more ... ◎
Quantum yield 40% or more and less than 60%
Quantum yield 20% or more and less than 40% ・ ・ ・ △
Quantum yield less than 20%
 (湿熱耐性評価)
 各発光体を85℃、85%Rhの恒温恒湿槽で168時間保管した。このとき、保管前の蛍光強度(初期値)に対する、保管後の蛍光強度の低下幅を算出し、以下の基準で評価した。なお、発光体の蛍光強度は、蛍光光度計で計測した。
 初期からの低下が10%未満・・・◎
 初期からの低下が10%以上、15%未満・・・○
 初期からの低下が15%以上、20%未満・・・△
 初期からの低下が20%以上・・・×
(Wet heat resistance evaluation)
Each luminous body was stored in a constant temperature and humidity chamber at 85 ° C. and 85% Rh for 168 hours. At this time, the decrease width of the fluorescence intensity after storage relative to the fluorescence intensity (initial value) before storage was calculated and evaluated according to the following criteria. The fluorescence intensity of the illuminant was measured with a fluorometer.
Less than 10% decrease from the beginning ... ◎
Decrease from the beginning is 10% or more and less than 15%.
Decrease from initial is 15% or more and less than 20% ・ ・ ・ △
More than 20% decrease from the beginning ... ×
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示されるように、CV値(変動係数)が20%以下である炭素ドット1個を絶縁体で被覆した炭素ドット単独内包粒子を含む発光体1~12では、いずれも炭素ドット単独内包粒子間の蛍光強度ばらつきが少なかった。また、これらの炭素ドット単独内包粒子では、炭素ドットが絶縁体によって被覆されているため、量子収率が高く、さらに湿熱耐性も優れていた。これに対し、CV値が大きくなると、炭素ドット単独内包粒子間の蛍光強度ばらつきが大きくなりやすかった(発光体13及び14)。また、炭素ドットを絶縁体で被覆しない場合には、量子収率が低く、湿熱耐性も低かった(発光体15)。 As shown in Table 1, each of the light emitters 1 to 12 including carbon dot single inclusion particles in which one carbon dot having a CV value (coefficient of variation) of 20% or less is coated with an insulator is included. There was little variation in fluorescence intensity between particles. Moreover, in these carbon dot single inclusion particle | grains, since the carbon dot was coat | covered with the insulator, the quantum yield was high and also the heat-and-moisture tolerance was excellent. On the other hand, when the CV value was increased, the variation in fluorescence intensity between the carbon dot single inclusion particles was likely to be increased (light emitters 13 and 14). Further, when the carbon dots were not covered with an insulator, the quantum yield was low and the wet heat resistance was low (light emitter 15).
 また、絶縁体がアミノシランカップリング剤またはメラミン樹脂であると、量子収率が高まりやすかった(発光体4~12)。当該発光体では、炭素ドット単独内包粒子の炭素ドットと絶縁体との界面でアミド結合が形成されている。そのため、炭素ドット表面の官能基が固定され、エネルギーロスが生じ難かったと推察される。また、絶縁体を構成する成分にシロキサン結合が含まれると、絶縁体による湿熱耐性が高まった(例えば、発光体4~6)。 Also, when the insulator was an aminosilane coupling agent or melamine resin, the quantum yield was likely to increase (light emitters 4 to 12). In the luminous body, an amide bond is formed at the interface between the carbon dots of the carbon dot-only inclusion particles and the insulator. Therefore, it is presumed that the functional group on the carbon dot surface was fixed and it was difficult for energy loss to occur. Further, when the component constituting the insulator contains a siloxane bond, the resistance to wet heat by the insulator is increased (for example, the light emitters 4 to 6).
 また、表2に示されるように、CV値(変動係数)が20%以下である炭素ドット複数個を絶縁体で被覆した炭素ドット複数内包体を含む発光体13~30でも、炭素ドット単独内包体間の蛍光強度ばらつきが少なかった。また、これらの炭素ドット複数内包体では、炭素ドットが絶縁体によって被覆されているため、量子収率が高く、さらに湿熱耐性も優れていた。これに対し、CV値が大きくなると、炭素ドット複数内包体間の蛍光強度ばらつきが大きくなりやすかった(発光体31~36)。また、炭素ドットを絶縁体で被覆しない場合には、量子収率が低く、湿熱耐性も低かった(発光体37)。 Further, as shown in Table 2, even in the light emitters 13 to 30 including a plurality of carbon dot inclusion bodies in which a plurality of carbon dots having a CV value (coefficient of variation) of 20% or less are coated with an insulator, carbon dot single inclusions are included. There was little variation in fluorescence intensity between bodies. Moreover, in these carbon dot multiple inclusion bodies, since the carbon dot was coat | covered with the insulator, the quantum yield was high and also wet heat tolerance was excellent. On the other hand, when the CV value increases, the variation in fluorescence intensity among the carbon dot inclusion bodies tends to increase (light emitters 31 to 36). Further, when the carbon dots were not covered with an insulator, the quantum yield was low and the wet heat resistance was low (light emitting body 37).
 本発明の発光体が含む炭素ドット内包体は、量子収率が高く、蛍光強度が均一である。また各炭素ドット内包体が含む炭素ドットが発する蛍光の色度にばらつきが少なく、発光寿命も長い。したがって、本発明の発光体は、蛍光プローブや照明装置等、種々の用途に適用可能である。 The carbon dot inclusion body included in the light emitter of the present invention has a high quantum yield and a uniform fluorescence intensity. In addition, the chromaticity of the fluorescence emitted by the carbon dots included in each carbon dot inclusion is small, and the light emission life is long. Therefore, the light emitter of the present invention can be applied to various uses such as a fluorescent probe and an illumination device.
 1 炭素ドット
 2 絶縁体
 3 炭素ドット内包体
 3a 炭素ドット単独内包粒子
 3b 炭素ドット複数内包体
 10 基板
 20 LED素子
 30 波長変換層
 50 LED装置
 100 カラーホイール
 101 基板
 102 光調整層
 110 光源
 111、112 レンズ
 113 ミラー
 114 投射光学系
 120 投射型表示装置
 200 バックライト装置
 201 波長変換層
 202 光源
 203 導光体
 300 光電変換装置
 301 基板
 302 電極層
 303 P型半導体層
 304 N型半導体層
 305 透明電極層
 310 波長変換層
DESCRIPTION OF SYMBOLS 1 Carbon dot 2 Insulator 3 Carbon dot inclusion 3a Carbon dot single inclusion particle 3b Carbon dot multiple inclusion 10 Substrate 20 LED element 30 Wavelength conversion layer 50 LED device 100 Color wheel 101 Substrate 102 Light adjustment layer 110 Light source 111, 112 Lens DESCRIPTION OF SYMBOLS 113 Mirror 114 Projection optical system 120 Projection type display apparatus 200 Backlight apparatus 201 Wavelength conversion layer 202 Light source 203 Light guide body 300 Photoelectric conversion apparatus 301 Substrate 302 Electrode layer 303 P type semiconductor layer 304 N type semiconductor layer 305 Transparent electrode layer 310 Wavelength Conversion layer

Claims (8)

  1.  炭素ドットと、前記炭素ドットを被覆する絶縁体と、を有する炭素ドット内包体を含み、
     前記炭素ドットの粒径の変動係数が20%以下である、発光体。
    A carbon dot inclusion body having carbon dots and an insulator covering the carbon dots,
    The luminous body whose coefficient of variation of the particle size of the carbon dot is 20% or less.
  2.  前記炭素ドット内包体が、前記絶縁体で前記炭素ドット1個を被覆した炭素ドット単独内包粒子であり、
     前記発光体が、粉体状またはスラリー状である、
     請求項1に記載の発光体。
    The carbon dot inclusion body is a carbon dot single inclusion particle in which the one carbon dot is covered with the insulator,
    The luminous body is in the form of powder or slurry,
    The light emitter according to claim 1.
  3.  前記炭素ドット内包体が、前記絶縁体で前記炭素ドット2個以上を被覆した炭素ドット複数内包体であり、
     前記発光体が、粉体状、スラリー状、またはバルク状である、
     請求項1に記載の発光体。
    The carbon dot inclusion body is a carbon dot multiple inclusion body in which two or more carbon dots are coated with the insulator,
    The luminous body is powdery, slurryy, or bulky,
    The light emitter according to claim 1.
  4.  前記炭素ドットの短径aと長径bとの比(b/a)が、1.0~1.5の範囲にある、
     請求項1~3のいずれか一項に記載の発光体。
    The ratio (b / a) between the short diameter a and the long diameter b of the carbon dots is in the range of 1.0 to 1.5.
    The light emitter according to any one of claims 1 to 3.
  5.  前記炭素ドット及び前記絶縁体の界面で、前記炭素ドット及び前記絶縁体が化学結合している、
     請求項1~4のいずれか一項に記載の発光体。
    The carbon dots and the insulator are chemically bonded at the interface between the carbon dots and the insulator.
    The light emitter according to any one of claims 1 to 4.
  6.  前記化学結合が、アミド結合である、
     請求項5に記載の発光体。
    The chemical bond is an amide bond;
    The light emitter according to claim 5.
  7.  前記絶縁体が、メタロキサン結合を含む、
     請求項1~6のいずれか一項に記載の発光体。
    The insulator includes a metalloxane bond;
    The light emitter according to any one of claims 1 to 6.
  8.  請求項1~7のいずれか一項に記載の発光体の製造方法であって、
     メソポーラスシリカの細孔内で、炭素化合物を焼結させて、前記炭素ドットを得る工程と、
     前記炭素ドットを前記絶縁体で被覆する工程と、
     を含む、
     発光体の製造方法。
    A method for producing a light emitter according to any one of claims 1 to 7,
    A step of sintering a carbon compound in the pores of mesoporous silica to obtain the carbon dots;
    Coating the carbon dots with the insulator;
    including,
    A method for manufacturing a luminous body.
PCT/JP2015/082541 2015-11-19 2015-11-19 Luminescent object and production process therefor WO2017085831A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/082541 WO2017085831A1 (en) 2015-11-19 2015-11-19 Luminescent object and production process therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/082541 WO2017085831A1 (en) 2015-11-19 2015-11-19 Luminescent object and production process therefor

Publications (1)

Publication Number Publication Date
WO2017085831A1 true WO2017085831A1 (en) 2017-05-26

Family

ID=58719181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082541 WO2017085831A1 (en) 2015-11-19 2015-11-19 Luminescent object and production process therefor

Country Status (1)

Country Link
WO (1) WO2017085831A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117130A1 (en) * 2016-12-22 2018-06-28 住友化学株式会社 Composition, film, laminated structure, light-emitting device, display, and method for producing composition
CN109705627A (en) * 2019-01-30 2019-05-03 东华大学 A method of mesoporous silicon dioxide modified carbon dots are prepared to be calcined method
JP2021080346A (en) * 2019-11-18 2021-05-27 冨士色素株式会社 Phosphor composition and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137875A (en) * 2004-11-12 2006-06-01 Hitachi Software Eng Co Ltd Semiconductor nanoparticle having high luminescence property
JP2006306707A (en) * 2005-03-30 2006-11-09 Toyota Central Res & Dev Lab Inc Oxide composite material and its production method
JP2007284284A (en) * 2006-04-14 2007-11-01 National Institute Of Advanced Industrial & Technology Core/shell type particle and its manufacturing method
JP2010087489A (en) * 2008-09-04 2010-04-15 Toyota Central R&D Labs Inc Colloidal crystal, and light-emitting amplifier using the same
WO2012026150A1 (en) * 2010-08-27 2012-03-01 コニカミノルタエムジー株式会社 Semiconductor nanoparticle aggregate and production method for semiconductor nanoparticle aggregate
WO2012161065A1 (en) * 2011-05-23 2012-11-29 独立行政法人産業技術総合研究所 Fine fluorescent particles comprising quantum dots coated with thin silica glass film, and process for producing same
WO2013031767A1 (en) * 2011-08-29 2013-03-07 地方独立行政法人東京都立産業技術研究センター Process for producing particles held in porous silica, porous silica, and particles held in porous silica
JP2013161862A (en) * 2012-02-02 2013-08-19 Konica Minolta Inc Led device and manufacturing method of the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137875A (en) * 2004-11-12 2006-06-01 Hitachi Software Eng Co Ltd Semiconductor nanoparticle having high luminescence property
JP2006306707A (en) * 2005-03-30 2006-11-09 Toyota Central Res & Dev Lab Inc Oxide composite material and its production method
JP2007284284A (en) * 2006-04-14 2007-11-01 National Institute Of Advanced Industrial & Technology Core/shell type particle and its manufacturing method
JP2010087489A (en) * 2008-09-04 2010-04-15 Toyota Central R&D Labs Inc Colloidal crystal, and light-emitting amplifier using the same
WO2012026150A1 (en) * 2010-08-27 2012-03-01 コニカミノルタエムジー株式会社 Semiconductor nanoparticle aggregate and production method for semiconductor nanoparticle aggregate
WO2012161065A1 (en) * 2011-05-23 2012-11-29 独立行政法人産業技術総合研究所 Fine fluorescent particles comprising quantum dots coated with thin silica glass film, and process for producing same
WO2013031767A1 (en) * 2011-08-29 2013-03-07 地方独立行政法人東京都立産業技術研究センター Process for producing particles held in porous silica, porous silica, and particles held in porous silica
JP2013161862A (en) * 2012-02-02 2013-08-19 Konica Minolta Inc Led device and manufacturing method of the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIE ZONG ET AL.: "Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors", CHEM.COMMUN., vol. 47, no. 2, 2011, pages 764 - 766, XP055383243 *
KOSEI HAYASHI ET AL.: "Development of high efficiency fluorescent carbogenic dots", BULLETIN OF TOKYO METROPOLITAN INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, 2014, pages 86 - 87 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117130A1 (en) * 2016-12-22 2018-06-28 住友化学株式会社 Composition, film, laminated structure, light-emitting device, display, and method for producing composition
CN109705627A (en) * 2019-01-30 2019-05-03 东华大学 A method of mesoporous silicon dioxide modified carbon dots are prepared to be calcined method
JP2021080346A (en) * 2019-11-18 2021-05-27 冨士色素株式会社 Phosphor composition and manufacturing method thereof
JP7269570B2 (en) 2019-11-18 2023-05-09 冨士色素株式会社 Phosphor composition and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5614675B2 (en) Method for manufacturing wavelength conversion member
CN108624317B (en) Core-shell quantum dot and preparation method and application thereof
Kim et al. Quantum dot/siloxane composite film exceptionally stable against oxidation under heat and moisture
KR101915366B1 (en) Phosphor Containing Particle, and Light Emitting Device and Phosphor Containing Sheet Using the Same
Li et al. Largely enhancing luminous efficacy, color-conversion efficiency, and stability for quantum-dot white LEDs using the two-dimensional hexagonal pore structure of SBA-15 mesoporous particles
JP6724898B2 (en) Light-scattering complex forming composition, light-scattering complex and method for producing the same
JP5988335B1 (en) Wavelength conversion member and light emitting device
WO2007034877A1 (en) Semiconductor nanoparticles dispersed glass fine particles and process for preparing the same
CN109837084B (en) Perovskite composite material and preparation method thereof
JP6344190B2 (en) Optical semiconductor light emitting device, lighting fixture, display device, and manufacturing method of optical semiconductor light emitting device
TW201234646A (en) Quantum dot films, lighting devices, and lighting methods
KR101567327B1 (en) Quantum dot containing composite particle and method for fabricating the same
CN106414661A (en) Particles with quantum dots and method of making the same
CN106098905B (en) The method of the emission spectrum of the continuous flow synthetic method and correction light emitting device of the quantum dot-doped polymer pad of core-shell structure copolymer
WO2017085831A1 (en) Luminescent object and production process therefor
Yin et al. Yellow fluorescent graphene quantum dots as a phosphor for white tunable light-emitting diodes
Güner et al. Optical enhancement of phosphor-converted wLEDs using glass beads
JP2017110039A (en) Illuminant and production method of the same, fluorescent probe using illuminant, fluorescent probe dispersion liquid, led device, color wheel for projection display device, wavelength conversion film, display device and photo-electric conversion device
Yan et al. High stability carbon dots phosphor and ultra-high color rendering index white light-emitting diodes
JP6287747B2 (en) Light-scattering composition, light-scattering composite, and method for producing the same
KR101423589B1 (en) Non-toxic Fluorescent particle including lanthanide complexes
JP2017110040A (en) Method for producing core/shell type nanoparticles, and light emitter
TWI532820B (en) Hybrid nanoparticles and illumination devices using the hybrid nanoparticles
JP2017122175A (en) Semiconductor nanoparticle and production method of the same, fluorescent probe using semiconductor nanoparticle, led device, wavelength conversion film and photo-electric conversion device
Hossan Facile preparation of smart nanocomposite adhesive with superhydrophobicity and photoluminescence

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP