JP6344190B2 - Optical semiconductor light emitting device, lighting fixture, display device, and manufacturing method of optical semiconductor light emitting device - Google Patents

Optical semiconductor light emitting device, lighting fixture, display device, and manufacturing method of optical semiconductor light emitting device Download PDF

Info

Publication number
JP6344190B2
JP6344190B2 JP2014209267A JP2014209267A JP6344190B2 JP 6344190 B2 JP6344190 B2 JP 6344190B2 JP 2014209267 A JP2014209267 A JP 2014209267A JP 2014209267 A JP2014209267 A JP 2014209267A JP 6344190 B2 JP6344190 B2 JP 6344190B2
Authority
JP
Japan
Prior art keywords
light
particles
light scattering
scattering
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014209267A
Other languages
Japanese (ja)
Other versions
JP2015097263A (en
Inventor
佐藤 洋一
洋一 佐藤
大塚 剛史
剛史 大塚
健児 山口
健児 山口
原田 健司
健司 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2014209267A priority Critical patent/JP6344190B2/en
Publication of JP2015097263A publication Critical patent/JP2015097263A/en
Application granted granted Critical
Publication of JP6344190B2 publication Critical patent/JP6344190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Led Device Packages (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

本発明は、光半導体発光装置、照明器具、表示装置、及び光半導体発光装置の製造方法に関する。   The present invention relates to an optical semiconductor light emitting device, a lighting fixture, a display device, and a method for manufacturing the optical semiconductor light emitting device.

青色光半導体発光素子と蛍光体とを組み合わせた白色光半導体発光装置は、青色光半導体発光素子から発光された青色光と蛍光体によって波長変換された光とが合成されて白色(疑似白色)になるものである。このタイプの白色光半導体発光装置には、青色光半導体発光素子と黄色蛍光体とを組み合わせたもの;青色光半導体発光素子に緑色蛍光体と赤色蛍光体とを組み合わせたもの;があるが、光源(光半導体発光素子の発光色)が青色光のため青色成分を多く含んだ白色光となる。特に青色光半導体発光素子と黄色蛍光体とを組み合わせた白色光半導体発光装置は青色成分が非常に多く含まれている。   A white light semiconductor light emitting device combining a blue light semiconductor light emitting element and a phosphor is combined with the blue light emitted from the blue light semiconductor light emitting element and the light wavelength-converted by the phosphor to produce white (pseudo white). It will be. This type of white light semiconductor light emitting device includes a combination of a blue light semiconductor light emitting element and a yellow phosphor; a combination of a blue light semiconductor light emitting element and a green phosphor and a red phosphor; Since the light emission color of the optical semiconductor light emitting element is blue light, it becomes white light containing a large amount of blue components. In particular, a white light semiconductor light-emitting device in which a blue light semiconductor light-emitting element and a yellow phosphor are combined contains a very large amount of blue components.

青色光半導体発光素子と蛍光体とを組み合わせた白色光半導体発光装置は、青色成分が多く含まれるため、眼の青色光網膜障害、皮膚への生理的ダメージ、覚醒レベル、自律神経機能、体内時計、メラトニン分泌等への生理的影響が指摘されている。そして、近年、光半導体発光装置の照明用途の市場が拡大し、光半導体発光装置の高輝度化が進んでおり、人体が青色光に曝されることが多くなっている。   A white light semiconductor light emitting device that combines a blue light semiconductor light emitting element and a phosphor contains a large amount of blue components. Therefore, blue light retinopathy of the eye, physiological damage to the skin, arousal level, autonomic nervous function, biological clock In addition, physiological effects on melatonin secretion have been pointed out. In recent years, the market for lighting applications of optical semiconductor light-emitting devices has expanded, and the brightness of optical semiconductor light-emitting devices has been increasing. Human bodies are often exposed to blue light.

光半導体発光装置に散乱部位を備えるものとして、白色粉末が塗布された散乱層によって導光板内に光を散乱させて表面輝度を一定とした面状光源(特許文献1)、光源を通過する光を散乱させることで集束、指向、変換させ室内照明に有用とするため白色光を放射状に分散させる方法(特許文献2)、隣り合うLEDデバイスのダークスポットをなくすために封止材に光を散乱させる拡散粒子を含有させる方法(特許文献3)、粒子径2μmから4.5μmの散乱粒子を封止材中で蛍光体と共存させて照明光の色ムラを軽減する方法(特許文献4)等が提案されている。また、ルミネッセンス変換素子の後方に多数のナノ粒子を有するフィルタ素子を配置し、不所望な放射線の少なくとも1つのスペクトル部分領域の放射線強度を吸収によって選択的に低減させる方法(特許文献5)が提案されている。   As an optical semiconductor light emitting device having a scattering portion, a planar light source (Patent Document 1) in which light is scattered in a light guide plate by a scattering layer coated with white powder and the surface brightness is constant, light passing through the light source Scattering, directing, and converting the light to make it useful for indoor lighting is a method of dispersing white light radially (Patent Document 2), and scattering light to the sealing material to eliminate the dark spots of adjacent LED devices A method of containing diffused particles (Patent Document 3), a method of reducing scattering unevenness of illumination light by allowing scattering particles having a particle diameter of 2 μm to 4.5 μm to coexist with a phosphor in a sealing material (Patent Document 4), etc. Has been proposed. Also proposed is a method (Patent Document 5) in which a filter element having a large number of nanoparticles is arranged behind a luminescence conversion element to selectively reduce the radiation intensity of at least one spectral partial region of unwanted radiation by absorption. Has been.

特許第3116727号公報Japanese Patent No. 3116727 特表2003−515899号公報Special table 2003-515899 gazette 特開2007−317659号公報JP 2007-317659 A 特開2011−150790号公報JP 2011-150790 A 特表2007−507089号公報Special table 2007-507089

しかしながら、いずれも光半導体発光装置から外部に出る光の分布を均一化したり、色ムラを軽減したりすることが目的であり、外部に出る光の青色光成分を低減するものではない。また、特許文献4の粒子径では光半導体発光素子から発光された光の透光性が悪くなり、光半導体発光装置の輝度が低下する問題がある。また、特許文献5のように吸収によって不所望の放射線強度を低減させた場合、光半導体発光装置の輝度が低下することと、放射線が吸収によって熱に変換され周辺材料へのダメージ、光半導体発光素子の熱による発光効率の低下といった問題が生じる。   However, all of them are intended to make the distribution of light emitted from the optical semiconductor light emitting device uniform and to reduce color unevenness, and do not reduce the blue light component of the light emitted to the outside. Further, with the particle size of Patent Document 4, there is a problem that the translucency of light emitted from the optical semiconductor light emitting element is deteriorated and the luminance of the optical semiconductor light emitting device is lowered. In addition, when the undesired radiation intensity is reduced by absorption as in Patent Document 5, the brightness of the optical semiconductor light-emitting device is reduced, and the radiation is converted into heat by absorption to damage peripheral materials, and optical semiconductor light emission. There arises a problem that the luminous efficiency is lowered due to the heat of the element.

以上から、本発明は、白色光とともに発せられる青色光成分を低減させ、輝度を向上させることができる光半導体発光装置及びその製造方法、光半導体発光装置を具備する照明器具並びに表示装置を提供することを目的とする。   As described above, the present invention provides an optical semiconductor light-emitting device that can reduce the blue light component emitted together with white light and improve luminance, a method for manufacturing the same, a lighting fixture including the optical semiconductor light-emitting device, and a display device. For the purpose.

本発明者等は、上記課題を解決するために鋭意研究を行った結果、蛍光体粒子が含有されてなる光変換層に特定の光散乱組成物を含有させるか、又は、光変換層上に特定の光散乱組成物を含有する光散乱層を設けることで、白色光とともに発せられる青色光成分を低減させ、輝度を向上させることができる光半導体発光装置が得られることを見出しており、既に出願を行っている(特願2012−187896)。
ここで、同出願の光散乱組成物が光散乱をおこす原因は、光散乱組成物中に含まれる光散乱粒子により生じるレイリー散乱が主要因であると推測される。このため、光散乱粒子の散乱特性、言い換えれば光散乱粒子の状態が変化しない限り、光散乱組成物における光散乱能は光散乱粒子の含有量増加に比例して増加し、よって光半導体発光装置の輝度も光散乱粒子の含有量に比例して向上すると予想される。しかしながら、本発明者等が更に研究を進めた結果、光散乱粒子の含有量を一定値以下に減らすことにより、光半導体発光装置の輝度が向上することを見出し、本発明に想到した。すなわち、本発明は下記の通りである。
なお、本発明における「積分透過率」とは「積分球で測定した透過率」のことを示し、また「直線透過率」とは「一般的な透過率測定法である直線光で測定した透過率」のことを示す。
As a result of earnest research to solve the above problems, the present inventors have made the light conversion layer containing the phosphor particles contain a specific light scattering composition or on the light conversion layer. We have found that by providing a light-scattering layer containing a specific light-scattering composition, a light-semiconductor light-emitting device capable of reducing the blue light component emitted with white light and improving the luminance can be obtained. An application has been filed (Japanese Patent Application No. 2012-187896).
Here, it is assumed that the cause of the light scattering of the light scattering composition of the same application is Rayleigh scattering caused by the light scattering particles contained in the light scattering composition. For this reason, unless the scattering property of the light scattering particles, in other words, the state of the light scattering particles is changed, the light scattering ability in the light scattering composition increases in proportion to the increase in the content of the light scattering particles. The luminance is expected to improve in proportion to the content of the light scattering particles. However, as a result of further research by the present inventors, it was found that the luminance of the optical semiconductor light emitting device is improved by reducing the content of the light scattering particles to a certain value or less, and the present invention has been conceived. That is, the present invention is as follows.
In the present invention, “integrated transmittance” means “transmittance measured with an integrating sphere”, and “linear transmittance” means “transmittance measured with linear light, which is a general transmittance measuring method”. "Rate".

[1]光半導体発光素子と、蛍光体粒子と、光散乱粒子及びマトリックス樹脂を含有する光散乱複合体と、を有し、白色光を発する光半導体発光装置であって、
前記光散乱複合体が前記蛍光体粒子を含むことで光散乱変換層を形成しており、前記光散乱変換層における前記光散乱粒子の含有量が0.01質量%以上かつ10質量%以下であり、前記光散乱粒子が、アルケニル基、H−Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料によって表面修飾され、前記光半導体発光素子の発光波長領域において光の吸収の無い材質からなり、平均一次粒子径3nm以上かつ50nm以下の粒子である光半導体発光装置。
[2] 光半導体発光素子と、蛍光体粒子と、光散乱粒子及びマトリックス樹脂を含有する光散乱複合体と、を有し、白色光を発する光半導体発光装置であって、
前記蛍光体粒子を含む層により光変換層が形成され、前記光変換層上に、前記光散乱複合体からなる光散乱層が設けられてなり、前記光散乱層における前記光散乱粒子の含有量が0.01質量%以上かつ10質量%以下であり、前記光散乱粒子が、アルケニル基、H−Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料によって表面修飾され、前記光半導体発光素子の発光波長領域において光の吸収の無い材質からなり、平均一次粒子径3nm以上かつ50nm以下の粒子である光半導体発光装置。
[3] 前記光散乱粒子の少なくとも一部が会合粒子を形成しており、前記会合粒子を含む粒子の平均二次粒子径が前記平均一次粒子径より大きくかつ1000nm以下である上記[1]又は[2]に記載の光半導体発光装置。
[4] 前記光散乱複合体は、波長460nmにおける積分透過率が直線透過率よりも高く、かつその差(積分透過率−直線透過率)が25ポイント以上である上記[1]〜[3]のいずれか1つに記載の光半導体発光装置。
[5] 上記[1]〜[4]のいずれか1つに記載の光半導体発光装置を具備してなる照明器具。
[6] 上記[1]〜[4]のいずれか1つに記載の光半導体発光装置を具備してなる表示装置。
[7] 光半導体発光素子と、蛍光体粒子と、光散乱粒子及びマトリックス樹脂を含有する光散乱複合体と、を有し、白色光を発する光半導体発光装置の製造方法であって、前記光散乱複合体は単分散状態の光散乱粒子とマトリックス樹脂組成物とを含有する光散乱組成物を硬化することで形成され、当該光散乱組成物の硬化時において、単分散状態の光散乱粒子の少なくとも一部を会合させて、マトリックス樹脂中で会合粒子を形成する光半導体発光装置の製造方法。
[8] 前記光散乱組成物は、波長460nmにおける積分透過率が40%以上かつ95%以下であり、波長550nmにおける積分透過率が50%以上である上記[7]に記載の光半導体発光装置の製造方法。
[1] An optical semiconductor light emitting device that emits white light, comprising an optical semiconductor light emitting device, a phosphor particle, and a light scattering composite containing light scattering particles and a matrix resin,
The light scattering composite includes the phosphor particles to form a light scattering conversion layer, and the content of the light scattering particles in the light scattering conversion layer is 0.01% by mass or more and 10% by mass or less. The light-scattering particles are surface-modified with a surface-modifying material having one or more functional groups selected from alkenyl groups, H-Si groups, and alkoxy groups, and light is emitted in the emission wavelength region of the optical semiconductor light-emitting element. An optical semiconductor light-emitting device made of a material that does not absorb light and having an average primary particle diameter of 3 nm or more and 50 nm or less.
[2] A photosemiconductor light-emitting device that emits white light, comprising a photosemiconductor light-emitting element, phosphor particles, and a light-scattering complex containing light-scattering particles and a matrix resin,
A light conversion layer is formed by the layer containing the phosphor particles, and a light scattering layer made of the light scattering composite is provided on the light conversion layer, and the content of the light scattering particles in the light scattering layer The surface is modified by a surface modifying material having at least one functional group selected from alkenyl groups, H-Si groups, and alkoxy groups. An optical semiconductor light emitting device comprising particles having an average primary particle diameter of 3 nm or more and 50 nm or less, made of a material that does not absorb light in the emission wavelength region of the optical semiconductor light emitting element.
[3] The above-mentioned [1], wherein at least a part of the light scattering particles form associated particles, and an average secondary particle diameter of the particles including the associated particles is larger than the average primary particle diameter and 1000 nm or less. The optical semiconductor light-emitting device according to [2].
[4] The above-mentioned [1] to [3], wherein the light scattering composite has an integrated transmittance higher than the linear transmittance at a wavelength of 460 nm and a difference (integrated transmittance−linear transmittance) of 25 points or more. An optical semiconductor light-emitting device according to any one of the above.
[5] A lighting fixture comprising the optical semiconductor light-emitting device according to any one of [1] to [4].
[6] A display device comprising the optical semiconductor light-emitting device according to any one of [1] to [4].
[7] A method for manufacturing an optical semiconductor light-emitting device that includes a light-semiconductor light-emitting element, phosphor particles, and a light-scattering complex containing light-scattering particles and a matrix resin, and emits white light. The scattering complex is formed by curing a light scattering composition containing monodispersed light scattering particles and a matrix resin composition, and when the light scattering composition is cured, the monodispersed light scattering particles A method for producing an optical semiconductor light emitting device, wherein at least a part is associated to form associated particles in a matrix resin.
[8] The optical semiconductor light-emitting device according to [7], wherein the light scattering composition has an integrated transmittance of 40% or more and 95% or less at a wavelength of 460 nm and an integrated transmittance of 50% or more at a wavelength of 550 nm. Manufacturing method.

本発明によれば、白色光とともに発せられる青色光成分を低減させ、輝度を向上させることができる光半導体発光装置及びその製造方法、光半導体発光装置を具備する照明器具並びに表示装置を提供することができる。また、青色光成分が低減されることで、演色性をも向上させることができる。   According to the present invention, there are provided an optical semiconductor light emitting device that can reduce a blue light component emitted together with white light and improve luminance, a manufacturing method thereof, a lighting fixture including the optical semiconductor light emitting device, and a display device. Can do. In addition, the color rendering properties can be improved by reducing the blue light component.

本発明の光半導体発光装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the optical semiconductor light-emitting device of this invention. 本発明の光半導体発光装置の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the optical semiconductor light-emitting device of this invention. 本発明の光半導体発光装置の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the optical semiconductor light-emitting device of this invention. 本発明の光半導体発光装置の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the optical semiconductor light-emitting device of this invention.

[光半導体発光装置]
本発明の光半導体発光装置は、光半導体発光素子と、蛍光体粒子(単に、「蛍光体」ともいう)と、光散乱粒子及びマトリックス樹脂を含有する光散乱複合体と、を有し、白色光を発する光半導体発光装置であって、(A)前記光散乱複合体が前記蛍光体粒子を含むことで光散乱変換層を形成しており、前記光散乱変換層における前記光散乱粒子の含有量が10質量%以下であり、その光散乱粒子が、アルケニル基、H−Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料によって表面修飾され、前記光半導体発光素子の発光波長領域において光の吸収の無い材質からなり、平均一次粒子径3nm以上かつ50nm以下の粒子である光半導体発光装置(以下、「光半導体発光装置A」という)、又は、(B)前記蛍光体粒子を含む層により光変換層が形成され、前記光変換層上に、前記光散乱複合体からなる光散乱層が設けられてなり、前記光散乱層における前記光散乱粒子の含有量が10質量%以下であり、その光散乱粒子が、光半導体発光装置Aと同様の粒子である光半導体発光装置(以下、「光半導体発光装置B」という)である。
なお以下に示す本発明の説明において、単に、「光半導体発光装置」という場合は、「光半導体発光装置A」及び「光半導体発光装置B」の両者を指す。
また、本発明においては、「光半導体発光装置A」と「光半導体発光装置B」とを組み合わせた構造であってもよい。すなわち、光散乱複合体が前記蛍光体粒子を含むことで光散乱変換層を形成し、この光散乱変換層上に、光散乱複合体からなる光散乱層が設けられたものでもよい。
[Optical semiconductor light emitting device]
The photosemiconductor light-emitting device of the present invention includes a photosemiconductor light-emitting element, phosphor particles (also simply referred to as “phosphors”), and a light-scattering complex containing light-scattering particles and a matrix resin, and has a white color. An optical semiconductor light emitting device that emits light, wherein (A) the light scattering complex includes the phosphor particles to form a light scattering conversion layer, and the light scattering conversion layer includes the light scattering particles. The amount of the light scattering particles is 10% by mass or less, and the light-scattering particles are surface-modified with a surface-modifying material having one or more functional groups selected from alkenyl groups, H-Si groups, and alkoxy groups. An optical semiconductor light-emitting device (hereinafter referred to as “photo-semiconductor light-emitting device A”), which is made of a material that does not absorb light in the light emission wavelength region of the element and has an average primary particle diameter of 3 nm or more and 50 nm or less, or (B) Above A light conversion layer is formed by a layer containing light particles, and a light scattering layer made of the light scattering composite is provided on the light conversion layer, and the content of the light scattering particles in the light scattering layer is An optical semiconductor light emitting device (hereinafter referred to as “optical semiconductor light emitting device B”) whose light scattering particles are 10% by mass or less and whose light scattering particles are the same particles as the optical semiconductor light emitting device A.
In the following description of the present invention, the term “optical semiconductor light emitting device” simply refers to both “optical semiconductor light emitting device A” and “optical semiconductor light emitting device B”.
In the present invention, a structure in which “optical semiconductor light emitting device A” and “optical semiconductor light emitting device B” are combined may be used. That is, the light scattering complex may include the phosphor particles to form a light scattering conversion layer, and the light scattering layer made of the light scattering complex may be provided on the light scattering conversion layer.

本発明の光半導体発光装置における光半導体発光素子と蛍光体との組み合わせとしては、例えば、発光波長460nm前後の青色光半導体発光素子と黄色蛍光体との組み合わせ;発光波長460nm前後の青色光半導体発光素子と赤色蛍光体及び緑色蛍光体との組み合わせ;発光波長340nm以上かつ410nm以下付近の近紫外光半導体発光素子と赤色蛍光体、緑色蛍光体及び青色蛍光体の三原色蛍光体との組み合わせ;等が挙げられる。この場合の各種光半導体発光素子及び各種蛍光体は公知のものを使用することができる。
また、各種光半導体発光素子、各種蛍光体を封止するための封止樹脂等も公知のものを使用することができる。
なお、以下の説明においては、上記光半導体発光素子と蛍光体との組み合わせにおいて使用される半導体発光素子で発光される各発光波長を有する光のことを、光半導体発光素子の「発光色成分」と称する場合がある。また、当該発光色成分が蛍光体に照射されることにより蛍光体が発する光、すなわち発光色成分が蛍光体により波長変換された光のことを、蛍光体からの「変換光成分」と称する場合がある。
Examples of the combination of the optical semiconductor light emitting element and the phosphor in the optical semiconductor light emitting device of the present invention include, for example, a combination of a blue light semiconductor light emitting element and a yellow phosphor having an emission wavelength of about 460 nm; A combination of an element and a red phosphor and a green phosphor; a combination of a near-ultraviolet semiconductor light emitting device having an emission wavelength of 340 nm to 410 nm and a red phosphor, a green phosphor and a blue phosphor; Can be mentioned. In this case, known optical semiconductor light-emitting elements and various phosphors can be used.
In addition, various types of optical semiconductor light-emitting elements, sealing resins for sealing various phosphors, and the like can be used.
In the following description, the light having each emission wavelength emitted from the semiconductor light emitting element used in the combination of the above optical semiconductor light emitting element and the phosphor is referred to as “light emitting color component” of the optical semiconductor light emitting element. May be called. In addition, light emitted from the phosphor when the phosphor color component is irradiated to the phosphor, that is, light whose wavelength is converted by the phosphor is referred to as “converted light component” from the phosphor. There is.

本発明の光半導体発光装置A及びBについての態様を図1〜図4を用いて説明する。
まず、本発明の光半導体発光装置Aの第1の態様は、図1に示すように基板の凹部に光半導体発光素子10が配置され、これを覆うように、光散乱粒子及びマトリックス樹脂を含有する光散乱複合体12中に蛍光体粒子13を含有させた光散乱変換層14が設けられている。このとき、光散乱粒子はマトリックス樹脂中に均一に存在していてもよいが、外部空気相界面(外部空気層との界面)18側により多く存在することが好ましい。外部空気相界面18の表面形状は、特に制約はなく、平坦状、凸状、及び凹状のいずれでもよい。
Embodiments of the optical semiconductor light emitting devices A and B of the present invention will be described with reference to FIGS.
First, in the first embodiment of the optical semiconductor light emitting device A of the present invention, the optical semiconductor light emitting element 10 is disposed in the concave portion of the substrate as shown in FIG. 1 and contains light scattering particles and a matrix resin so as to cover it. A light scattering conversion layer 14 containing phosphor particles 13 in the light scattering composite 12 is provided. At this time, the light scattering particles may be present uniformly in the matrix resin, but it is preferable that the light scattering particles are present more on the outer air phase interface (interface with the outer air layer) 18 side. The surface shape of the external air phase interface 18 is not particularly limited, and may be any of a flat shape, a convex shape, and a concave shape.

本発明の光半導体発光装置Aの第2の態様は、図2に示すように、光散乱変換層14中の蛍光体粒子13を、図1の場合よりも光半導体発光素子10の近傍に存在させることで、光散乱粒子が蛍光体粒子より外部空気相界面18側により多く存在するようにしたものである。このような態様とすることで、蛍光体粒子13の存在領域を透過した青色光成分の多くを蛍光体粒子13の存在領域へ散乱させて戻すことができるので、白色光とともに発せられる青色光成分を低減させ、輝度をより向上させることができる。   In the second embodiment of the optical semiconductor light emitting device A of the present invention, as shown in FIG. 2, the phosphor particles 13 in the light scattering conversion layer 14 are present closer to the optical semiconductor light emitting element 10 than in the case of FIG. By doing so, more light scattering particles are present on the outer air phase interface 18 side than the phosphor particles. By setting it as such an aspect, since most of the blue light components which permeate | transmitted the existing area | region of the fluorescent substance particle 13 can be scattered and returned to the existing area of the fluorescent substance particle 13, the blue light component emitted with white light And the luminance can be further improved.

本発明の光半導体発光装置Bは、蛍光体粒子を含有する層(光変換層)と光散乱粒子を含有する層(光散乱層)を分けて配置した態様である。光半導体発光装置Bの第1の態様としては、図3に示すように、基板の凹部に光半導体発光素子10が配置され、これを覆うように、蛍光体粒子13をマトリックス材15中に含有する光変換層16が設けられ、この光変換層16上、すなわち光変換層16の外部空気相界面18側に、光散乱粒子とマトリックス樹脂とを含有する光散乱複合体12からなる光散乱層17が設けられている。
このような態様とすることで、光変換層16を透過した青色光成分の多くを、光散乱層17により散乱させて光変換層16へ戻すことができるので、白色光とともに発せられる青色光成分を低減させ、輝度をより向上させることができる。
The optical semiconductor light emitting device B of the present invention is an embodiment in which a layer containing phosphor particles (light conversion layer) and a layer containing light scattering particles (light scattering layer) are arranged separately. As a first aspect of the optical semiconductor light emitting device B, as shown in FIG. 3, the optical semiconductor light emitting element 10 is disposed in the concave portion of the substrate, and the phosphor particles 13 are contained in the matrix material 15 so as to cover the optical semiconductor light emitting element 10. The light-scattering layer 16 is provided, and on the light-conversion layer 16, that is, on the side of the external air phase interface 18 of the light-conversion layer 16, the light-scattering layer comprising the light-scattering composite 12 containing light-scattering particles and a matrix resin 17 is provided.
By setting it as such an aspect, since most of the blue light components which permeate | transmitted the light conversion layer 16 can be scattered by the light-scattering layer 17, and can be returned to the light conversion layer 16, the blue light component emitted with white light And the luminance can be further improved.

本発明の光半導体発光装置Bの第2の態様は、図4に示すように、光半導体発光素子10を覆うように封止樹脂からなる封止樹脂層11が設けられ、封止樹脂層11上に、光変換層16及び光散乱層17が順次積層されている。   As shown in FIG. 4, the second aspect of the optical semiconductor light emitting device B of the present invention is provided with a sealing resin layer 11 made of a sealing resin so as to cover the optical semiconductor light emitting element 10, and the sealing resin layer 11. On top, the light conversion layer 16 and the light scattering layer 17 are sequentially laminated.

光半導体発光装置Bにおいて、光変換層と光散乱層との厚みについては、本発明の効果が得られれば特に制約はないが、青色成分をより低減したい場合は光散乱層の厚みをより厚くすることが好ましく、光半導体発光装置を所望の演色性に調整する場合に用いる蛍光体の波長変換効率、添加量を鑑みて光散乱層の厚さを設計すればよい。   In the optical semiconductor light emitting device B, the thicknesses of the light conversion layer and the light scattering layer are not particularly limited as long as the effects of the present invention can be obtained. However, if the blue component is to be reduced, the thickness of the light scattering layer is increased. It is preferable to design the thickness of the light scattering layer in view of the wavelength conversion efficiency and the addition amount of the phosphor used when the optical semiconductor light emitting device is adjusted to a desired color rendering property.

光散乱粒子を構成する表面修飾前の粒子(以下「非修飾粒子」という)としては、無機粒子、有機樹脂粒子、有機樹脂粒子中に無機粒子を分散複合化した粒子等が挙げられる。ここで、光散乱粒子は、マトリックス樹脂中の分散状態やマトリックス樹脂との界面親和性、さらにはマトリックス樹脂組成物中の分散状態やマトリックス樹脂組成物との界面親和性を制御する必要がある。また、光散乱粒子をマトリックス樹脂中に分散させるためには、光散乱粒子が単分散状態で分散している分散液を用いることが好ましい。このように、非修飾粒子は表面改質が容易であることが好ましいことから、無機粒子が好ましい。さらに、白色光半導体発光装置に用いられる青色光半導体発光素子の発光波長領域(波長400nm以上かつ480nm以下、特に、波長460nm)、または近紫外光半導体発光素子の発光波長領域(波長340nm以上かつ410nm以下)での光の吸収の無い材質であるZrO、TiO、ZnO、Al、SiO、CeO等の金属酸化物粒子が好ましい。特に、光半導体発光素子からの光取出効率を向上できることから、屈折率が高いZrO及びTiOが好ましい。
ここで、「光の吸収が無い」とは、非修飾粒子が有機樹脂粒子である場合には、1mm厚に成形した試料片を分光光度計で測定した際に、前記測定波長における透過率が90%以上であることを意味する。非修飾粒子が無機粒子である場合、例えば、金属酸化物の光学特性は、例えば、化学辞典、化学便覧等により確認することができる。
Examples of the particles before the surface modification constituting the light scattering particles (hereinafter referred to as “unmodified particles”) include inorganic particles, organic resin particles, and particles obtained by dispersing and compounding inorganic particles in organic resin particles. Here, the light scattering particles need to control the dispersion state in the matrix resin and the interface affinity with the matrix resin, and further the dispersion state in the matrix resin composition and the interface affinity with the matrix resin composition. In order to disperse the light scattering particles in the matrix resin, it is preferable to use a dispersion liquid in which the light scattering particles are dispersed in a monodispersed state. Thus, since it is preferable that surface modification is easy for an unmodified particle, an inorganic particle is preferable. Furthermore, the emission wavelength region (wavelength 400 nm to 480 nm, particularly wavelength 460 nm) of the blue light semiconductor light emitting device used in the white light semiconductor light emitting device, or the emission wavelength region (wavelength 340 nm to 410 nm of the near ultraviolet light semiconductor light emitting device). In the following, metal oxide particles such as ZrO 2 , TiO 2 , ZnO, Al 2 O 3 , SiO 2 , and CeO 2 that are materials that do not absorb light are preferable. In particular, ZrO 2 and TiO 2 having a high refractive index are preferable because the light extraction efficiency from the optical semiconductor light emitting device can be improved.
Here, “there is no light absorption” means that when the unmodified particles are organic resin particles, the transmittance at the measurement wavelength is measured when a sample piece molded to a thickness of 1 mm is measured with a spectrophotometer. It means 90% or more. When the unmodified particles are inorganic particles, for example, the optical characteristics of the metal oxide can be confirmed by, for example, a chemical dictionary or a chemical handbook.

光散乱粒子の平均一次粒子径は、3nm以上かつ50nm以下である。当該平均一次粒子径は、4nm以上かつ40nm以下であることが好ましく、5nm以上かつ20nm以下であることがより好ましい。平均一次粒子径が3nm未満では、散乱効果が小さいため、光半導体発光素子からの発光色成分の内、外部空気相とは異なる方向へ散乱される光が少なくなる。このため、発光色成分の多くが外部空気相に出てしまい、その結果蛍光体粒子に照射される発光色成分も増加せず蛍光体によって波長変換された光成分の光量も増加しないため、光散乱粒子を添加する効果が得られない。一方、50nmを超えると、特に後述の会合粒子が形成された場合に散乱が大きくなり過ぎるために、光半導体発光素子からの発光色成分のみならず蛍光体によって波長変換された変換光成分も外部空気相に出ず、光半導体発光装置の輝度が低下してしまう。   The average primary particle diameter of the light scattering particles is 3 nm or more and 50 nm or less. The average primary particle size is preferably 4 nm or more and 40 nm or less, and more preferably 5 nm or more and 20 nm or less. When the average primary particle size is less than 3 nm, the scattering effect is small, and therefore, light emitted from the optical semiconductor light emitting element is scattered in a direction different from the external air phase. For this reason, most of the luminescent color components come out to the external air phase, and as a result, the luminescent color component irradiated to the phosphor particles does not increase, and the light amount of the light component wavelength-converted by the phosphor does not increase. The effect of adding scattering particles cannot be obtained. On the other hand, if it exceeds 50 nm, especially when associated particles described later are formed, the scattering becomes too large, so that not only the emission color component from the optical semiconductor light emitting element but also the converted light component wavelength-converted by the phosphor is external. The brightness of the optical semiconductor light emitting device is lowered without going out to the air phase.

本発明における光散乱粒子は、光散乱複合体が形成された状態、すなわち光散乱変換層中や光散乱層中においては、少なくとも一部が複数個の粒子が会合した会合粒子を形成していることが好ましい。この会合粒子の粒子径は単分散粒子(非会合粒子)の粒子径より大きくなるから、光に対する散乱能も高くなり、よって全粒子が非会合の単分散粒子で形成される場合に比べ、より少量の光散乱粒子で十分な散乱能を有することができるようになる。すなわち、光散乱複合体が含まれる光散乱変換層、又は光散乱複合体により構成される光散乱層中における光散乱粒子の割合を10質量%以下としても、光散乱複合体の波長460nmにおける積分透過率が同波長における直線透過率よりも高く、かつその差(積分透過率−直線透過率)を25ポイント以上とすることができる。その差が40ポイント以上であればより好ましい。
この会合粒子と非会合の単分散粒子を含む全粒子の平均粒子径、すなわち平均二次粒子径は前記平均一次粒子径より大きくかつ1000nm以下であることが好ましく、50nmより大きくかつ1000nm以下であればより好ましく、80nm以上かつ1000nm以下であればさらに好ましく、100nm以上かつ800nm以下であれば最も好ましい。平均二次粒子径が平均一次粒子径と同一では、会合粒子が形成していないことになり、会合粒子を形成させる効果が得られないことがある。また、平均二次粒子径が50nm以下では、全粒子が単分散粒子の場合との差異が少ないために、会合粒子を形成させる効果を得ることができない可能性が高い。一方、1000nmを超えると、粒子としての散乱能が強くなりすぎるために、粒子量自体が下記のように少ない状態であっても、発光色成分のみならず蛍光体によって波長変換された変換光成分も外部空気相に出ず、光半導体発光装置の輝度が低下してしまう虞がある。
The light-scattering particles in the present invention are in the state where a light-scattering complex is formed, that is, in the light-scattering conversion layer or the light-scattering layer, at least a part forms associated particles in which a plurality of particles are associated. It is preferable. Since the particle size of the associated particles is larger than the particle size of the monodisperse particles (non-associate particles), the light scattering ability is also increased. Therefore, compared to the case where all the particles are formed of non-associate monodisperse particles. It becomes possible to have sufficient scattering ability with a small amount of light scattering particles. That is, even if the ratio of the light scattering particles in the light scattering conversion layer including the light scattering complex or the light scattering layer constituted by the light scattering complex is 10% by mass or less, the integration at the wavelength of 460 nm of the light scattering complex. The transmittance is higher than the linear transmittance at the same wavelength, and the difference (integrated transmittance−linear transmittance) can be 25 points or more. More preferably, the difference is 40 points or more.
The average particle size of all the particles including the associated particles and the non-associated monodisperse particles, that is, the average secondary particle size is preferably larger than the average primary particle size and not more than 1000 nm, more preferably not less than 50 nm and not more than 1000 nm. More preferably, it is more preferably 80 nm or more and 1000 nm or less, and most preferably 100 nm or more and 800 nm or less. If the average secondary particle size is the same as the average primary particle size, the associated particles are not formed, and the effect of forming the associated particles may not be obtained. In addition, when the average secondary particle diameter is 50 nm or less, there is a high possibility that the effect of forming associated particles cannot be obtained because there is little difference from the case where all particles are monodisperse particles. On the other hand, if it exceeds 1000 nm, the scattering ability as particles becomes too strong, so even if the particle amount itself is small as described below, not only the luminescent color component but also the converted light component that is wavelength-converted by the phosphor However, there is a possibility that the brightness of the optical semiconductor light-emitting device is lowered without coming out to the external air phase.

光散乱粒子の含有量は、光半導体発光装置Aにおいては、光散乱変換層全量に対して0.01質量%以上かつ10質量%以下であり、光半導体発光装置Bにおいては、光散乱層全量に対して0.01質量%以上かつ10質量%以下である。光変換層又は光散乱層中における光散乱粒子の含有量は、0.01質量%以上かつ5質量%以下であることが好ましく、0.1質量%以上かつ1質量%以下であることがより好ましい。
各層中の光散乱粒子の含有量が10質量%を超えると、特に会合粒子が形成した場合において光散乱粒子の量が多すぎるために散乱が過大になり、光半導体発光素子からの発光色成分のみならず蛍光体からの変換光成分も外部空気相に出にくくなり、光半導体発光装置の輝度が低下してしまう。一方、各層中の光散乱粒子の含有量が0.01質量%未満では、光散乱粒子の量が少なすぎて光散乱効果が得られず、光半導体発光装置の輝度向上が図れない。すなわち、各層中の光散乱粒子の含有量が0.01質量%以上かつ10質量%以下であることで、各層において、光半導体発光素子からの発光色成分の光散乱性と、発光色成分と変換光成分を合わせての光透過性とのバランスが良く、高輝度の光半導体発光装置とすることができる。
更に、各層中の光散乱粒子の含有量が0.01質量%以上かつ10質量%以下であることで青色光の散乱率が特に高くなる。すなわち、波長460nmの光において、積分透過率の値が、直線透過率の値よりも特に大きくなり、その差(積分透過率−直線透過率)が25ポイント以上とすることができる。これにより、光半導体発光装置における青色光の低減と輝度向上を図ることができる。
In the light semiconductor light emitting device A, the content of the light scattering particles is 0.01% by mass or more and 10% by mass or less with respect to the total amount of the light scattering conversion layer. It is 0.01 mass% or more and 10 mass% or less with respect to. The content of the light scattering particles in the light conversion layer or the light scattering layer is preferably 0.01% by mass or more and 5% by mass or less, more preferably 0.1% by mass or more and 1% by mass or less. preferable.
When the content of the light scattering particles in each layer exceeds 10% by mass, the amount of the light scattering particles is excessively large particularly when the associated particles are formed, resulting in excessive scattering, and the emission color component from the optical semiconductor light emitting element. Not only the converted light component from the phosphor but also the external air phase is hardly emitted, and the luminance of the optical semiconductor light emitting device is lowered. On the other hand, when the content of the light scattering particles in each layer is less than 0.01% by mass, the amount of the light scattering particles is too small to obtain the light scattering effect, and the luminance of the optical semiconductor light emitting device cannot be improved. That is, when the light scattering particle content in each layer is 0.01% by mass or more and 10% by mass or less, in each layer, the light scattering property of the emission color component from the optical semiconductor light emitting element, the emission color component, and The optical transparency of the converted light component is well balanced and a high-brightness optical semiconductor light emitting device can be obtained.
Furthermore, when the content of the light scattering particles in each layer is 0.01% by mass or more and 10% by mass or less, the blue light scattering rate is particularly high. That is, in light having a wavelength of 460 nm, the integrated transmittance value is particularly larger than the linear transmittance value, and the difference (integrated transmittance−linear transmittance) can be 25 points or more. As a result, it is possible to reduce blue light and improve luminance in the optical semiconductor light emitting device.

光散乱複合体に適用されるマトリックス樹脂は、可視光域(光半導体発光素子として近紫外光半導体発光素子を用いる場合には近紫外光域〜可視光域)において透明であって、光半導体発光装置の信頼性(要求される各種性能、例えば、耐久性)を損なわないものであればよい。しかしながら、光半導体発光素子の高出力化、照明用途への適用等を想定した場合、従来から光半導体発光素子封止材として用いられている樹脂を用いることが好ましい。特に耐久性の観点から、マトリックス樹脂は、シリコーン系の封止材を用いることが好ましく、例えば、ジメチルシリコーン樹脂、メチルフェニルシリコーン樹脂、フェニルシリコーン樹脂、有機変性シリコーン樹脂等が挙げられる。
これらのシリコーン樹脂は、液状の未硬化体である各シリコーン樹脂組成物を、例えば、付加型反応、縮合型反応、ラジカル重合反応等によって重合硬化させることで得ることができる。さらに、これらのシリコーン樹脂組成物は、重合硬化のための反応基として、H−Si基、アルケニル基、及びアルコキシ基の少なくとも1つを有するシリコーン系の封止材であることが好ましい。
The matrix resin applied to the light scattering composite is transparent in the visible light region (near ultraviolet light region to visible light region when a near ultraviolet light semiconductor light emitting device is used as the light semiconductor light emitting device), and is light emitting semiconductor light. Any device may be used as long as it does not impair the reliability of the apparatus (required performances such as durability). However, it is preferable to use a resin that has been conventionally used as a sealing material for an optical semiconductor light-emitting element, assuming high output of the optical semiconductor light-emitting element, application to lighting applications, and the like. In particular, from the viewpoint of durability, it is preferable to use a silicone-based sealing material as the matrix resin, and examples thereof include dimethyl silicone resin, methyl phenyl silicone resin, phenyl silicone resin, and organically modified silicone resin.
These silicone resins can be obtained by polymerizing and curing each silicone resin composition that is a liquid uncured product by, for example, an addition reaction, a condensation reaction, a radical polymerization reaction, or the like. Furthermore, these silicone resin compositions are preferably silicone-based encapsulants having at least one of an H—Si group, an alkenyl group, and an alkoxy group as a reactive group for polymerization and curing.

光散乱粒子をマトリックス樹脂中に分散させるには、光散乱粒子表面とマトリックス樹脂との界面親和性を確保する必要がある。このため、光散乱粒子を構成する非修飾粒子の表面は、マトリックス樹脂の構造と相性の良い構造の表面修飾材料によって被覆される。
具体的には、マトリックス樹脂を形成するための樹脂モノマーないしはオリゴマーであり、液状の未硬化体であるマトリックス樹脂組成物がマトリックス樹脂を形成する際に、樹脂モノマーないしはオリゴマー同士の重合に用いられる反応基を、表面修飾材料にも有させればよい。ここで、マトリックス樹脂組成物であるシリコーン系の封止材は、反応基としてH−Si基、アルケニル基、及びアルコキシ基の少なくとも1つを有することが好ましい。従って、表面修飾材料には、アルケニル基、H−Si基、及びアルコキシ基から選ばれた一つ以上の官能基を有する表面修飾材料を用いる。
In order to disperse the light scattering particles in the matrix resin, it is necessary to ensure the interface affinity between the surface of the light scattering particles and the matrix resin. For this reason, the surface of the non-modified particle which comprises light-scattering particle | grains is coat | covered with the surface modification material of a structure with good compatibility with the structure of matrix resin.
Specifically, it is a resin monomer or oligomer for forming a matrix resin, and a reaction used for polymerization of resin monomers or oligomers when a matrix resin composition that is a liquid uncured material forms a matrix resin. The group may be included in the surface modifying material. Here, the silicone-based sealing material that is the matrix resin composition preferably has at least one of an H—Si group, an alkenyl group, and an alkoxy group as a reactive group. Therefore, a surface modification material having one or more functional groups selected from alkenyl groups, H—Si groups, and alkoxy groups is used as the surface modification material.

また、光散乱粒子表面とマトリックス樹脂との界面親和性をより高める、非修飾粒子を表面修飾するプロセスにおいて、より効率的に上記官能基を有する表面修飾材料を修飾する、等のために、上記官能基を有する表面修飾材料以外の公知の表面修飾材料を併用することができる。   In addition, in order to further enhance the interface affinity between the surface of the light scattering particle and the matrix resin, to modify the surface modifying material having the functional group more efficiently in the process of modifying the surface of the unmodified particle, etc. A known surface modifying material other than the surface modifying material having a functional group can be used in combination.

マトリックス樹脂組成物として、H−Si基、アルケニル基、及びアルコキシ基の少なくとも1つを有するシリコーン系の封止材を用いる場合、表面修飾材料が有するアルケニル基、H−Si基、及びアルコキシ基は、マトリックス樹脂組成物と次のように結合する。
表面修飾材料のアルケニル基は、マトリックス樹脂組成物中のH−Si基と反応することにより架橋する。表面修飾材料のH−Si基は、マトリックス樹脂組成物中のアルケニル基と反応することにより架橋する。表面修飾材料のアルコキシ基は、マトリックス樹脂組成物中のアルコキシ基と加水分解を経て縮合する。このような結合により、マトリックス樹脂と表面修飾材料とが一体化することから、光散乱変換層や光散乱層が硬化する過程で、光散乱粒子がマトリックス樹脂と相分離することなく、分散状態を維持した状態で光散乱変換層や光散乱層中に固定化でき、また、これらの層の緻密性を向上させることができる。
When a silicone-based sealing material having at least one of an H—Si group, an alkenyl group, and an alkoxy group is used as the matrix resin composition, the alkenyl group, H—Si group, and alkoxy group included in the surface modification material are: The matrix resin composition is bonded as follows.
The alkenyl group of the surface modifying material is crosslinked by reacting with the H—Si group in the matrix resin composition. The H-Si group of the surface modifying material is crosslinked by reacting with the alkenyl group in the matrix resin composition. The alkoxy group of the surface modifying material is condensed with the alkoxy group in the matrix resin composition through hydrolysis. By such bonding, the matrix resin and the surface modifying material are integrated, so that in the process of curing the light scattering conversion layer and the light scattering layer, the light scattering particles do not phase separate from the matrix resin, and the dispersed state is maintained. It can be fixed in the light scattering conversion layer or the light scattering layer in a maintained state, and the denseness of these layers can be improved.

アルケニル基、H−Si基、及びアルコキシ基から選ばれた一つ以上の官能基を有する表面修飾材料としては、ビニルトリメトキシシラン、アルコキシ片末端ビニル片末端ジメチルシリコーン、アルコキシ片末端ビニル片末端メチルフェニルシリコーン、アルコキシ片末端ビニル片末端フェニルシリコーン、メタクリロキシプロピルトリメトキシシラン、アクリロキシプロピルトリメトキシシラン、メタクリル酸等炭素−炭素不飽和結合含有脂肪酸、ジメチルハイドロジェンシリコーン、メチルフェニルハイドロジェンシリコーン、フェニルハイドロジェンシリコーン、ジメチルクロロシラン、メチルジクロロシラン、ジエチル、クロロシラン、エチルジクロロシラン、メチルフェニルクロロシラン、ジフェニルクロロシラン、フェニルジクロロシラン、トリメトキシシラン、ジメトキシシラン、モノメトキシシラン、トリエトキシシラン、ジエトキシモノメチルシラン、モノエトキシジメチルシラン、メチルフェニルジメトキシシラン、ジフェニルモノメトキシシラン、メチルフェニルジエトキシシラン、ジフェニルモノエトキシシラン、アルコキシ両末端フェニルシリコーン、アルコキシ両末端メチルフェニルシリコーン、アルコキシ基含有ジメチルシリコーンレジン、アルコキシ基含有フェニルシリコーンレジン樹脂、アルコキシ基含有メチルフェニルシリコーンレジン等が挙げられる。   Surface modification materials having one or more functional groups selected from alkenyl groups, H-Si groups, and alkoxy groups include vinyltrimethoxysilane, alkoxy one-end vinyl one-end dimethyl silicone, alkoxy one-end vinyl one-end methyl Phenyl silicone, alkoxy one-end vinyl one-end phenyl silicone, methacryloxypropyltrimethoxysilane, acryloxypropyltrimethoxysilane, methacrylic acid and other carbon-carbon unsaturated bond-containing fatty acids, dimethylhydrogensilicone, methylphenylhydrogensilicone, phenyl Hydrogen silicone, dimethylchlorosilane, methyldichlorosilane, diethyl, chlorosilane, ethyldichlorosilane, methylphenylchlorosilane, diphenylchlorosilane, phenyldichloro Losilane, trimethoxysilane, dimethoxysilane, monomethoxysilane, triethoxysilane, diethoxymonomethylsilane, monoethoxydimethylsilane, methylphenyldimethoxysilane, diphenylmonomethoxysilane, methylphenyldiethoxysilane, diphenylmonoethoxysilane, alkoxy both Examples include terminal phenyl silicone, alkoxy both-end methyl phenyl silicone, alkoxy group-containing dimethyl silicone resin, alkoxy group-containing phenyl silicone resin, alkoxy group-containing methyl phenyl silicone resin, and the like.

アルケニル基、H−Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料の、非修飾粒子表面への表面修飾量としては、非修飾粒子として金属酸化物粒子を用いた場合、その質量に対して1質量%以上かつ50質量%以下が好ましい。表面修飾量を1質量%以上かつ50質量%の範囲とすることにより、光散乱粒子はマトリックス樹脂組成物に対しては一次粒子の状態が維持された単分散状態での均一な分散が可能となり、一方硬化後の光散乱変換層や光散乱層においては、マトリックス樹脂に対して、光散乱粒子の少なくとも一部が会合粒子を形成した状態で、かつ全体としては均一に分散することが可能となる。従って、高い散乱特性を有する光散乱変換層や光散乱層を得ることができる。
一方、表面修飾量が1質量%未満では、表面修飾材料とマトリックス樹脂組成物間での官能基の結合点が不足するために、光散乱粒子がマトリックス樹脂組成物に対して良好に分散することが難しく、たとえ分散していたとしても、光散乱変換層や光散乱層が硬化する過程で光散乱粒子がマトリックス樹脂相から分離して凝集するために、硬化体である光散乱複合体の光透過性低下、硬度低下等が発生する虞がある。
また、表面修飾量が50質量%を超えた場合、表面修飾材料とマトリックス樹脂組成物間での官能基との結合点が多いことから、光散乱粒子はマトリックス樹脂組成物に対しては一次粒子の状態が維持された単分散状態での均一な分散が可能となるだけでなく、光散乱変換層や光散乱層が硬化する過程でも光散乱粒子の単分散が維持されて部分的な会合が発生しないことがある。このため、光散乱変換層や光散乱層おける会合粒子の形成による光散乱能の向上(より少量の光散乱粒子で十分な散乱能を有する効果)が期待できなくなる。なお、表面修飾量が50質量%を超えかつ80質量%以下の範囲では、会合粒子形成による効果は期待しにくくなるものの、光散乱粒子とマトリックス樹脂間の結合状態は良好に保たれており、光散乱複合体としての特性は維持される。一方、表面修飾量が80質量%を超えると、表面修飾材料とマトリックス樹脂組成物間での官能基の結合点が多くなり過ぎ、硬化体が脆くなってクラックが発生する虞がある。
表面修飾量は、より好ましくは3質量%以上かつ50質量%以下であり、さらに好ましくは5質量%以上かつ40質量%以下である。
As the amount of surface modification of the surface modification material having one or more functional groups selected from alkenyl groups, H-Si groups, and alkoxy groups on the surface of the unmodified particles, metal oxide particles are used as the unmodified particles. If it is, it is preferably 1% by mass or more and 50% by mass or less based on the mass. By making the amount of surface modification in the range of 1% by mass or more and 50% by mass, the light scattering particles can be uniformly dispersed in a monodispersed state in which the primary particle state is maintained in the matrix resin composition. On the other hand, in the light-scattering conversion layer or the light-scattering layer after curing, it is possible that at least a part of the light-scattering particles are formed in association with the matrix resin and can be uniformly dispersed as a whole. Become. Therefore, a light scattering conversion layer and a light scattering layer having high scattering characteristics can be obtained.
On the other hand, when the surface modification amount is less than 1% by mass, the bonding points of the functional groups between the surface modification material and the matrix resin composition are insufficient, so that the light scattering particles are well dispersed in the matrix resin composition. Even if dispersed, the light scattering particles separate from the matrix resin phase and agglomerate in the process of curing the light scattering conversion layer and the light scattering layer. There is a concern that permeability, hardness, etc. may occur.
Further, when the surface modification amount exceeds 50% by mass, there are many bonding points between the surface modification material and the functional group between the matrix resin composition, so that the light scattering particles are primary particles for the matrix resin composition. In addition to enabling uniform dispersion in a monodispersed state in which the above state is maintained, even in the process of curing the light scattering conversion layer and the light scattering layer, the monodispersion of the light scattering particles is maintained and partial association occurs. It may not occur. For this reason, the improvement of the light scattering ability (the effect of having a sufficient scattering ability with a smaller amount of light scattering particles) due to the formation of associated particles in the light scattering conversion layer or the light scattering layer cannot be expected. In addition, in the range where the surface modification amount exceeds 50% by mass and 80% by mass or less, although the effect due to the formation of associated particles is difficult to expect, the bonding state between the light scattering particles and the matrix resin is kept good, The properties as a light scattering complex are maintained. On the other hand, when the surface modification amount exceeds 80% by mass, the bonding points of the functional groups between the surface modification material and the matrix resin composition are excessive, and the cured body may become brittle and cracks may occur.
The surface modification amount is more preferably 3% by mass or more and 50% by mass or less, and further preferably 5% by mass or more and 40% by mass or less.

[光半導体発光装置の製造方法]
本発明の光半導体発光装置の製造方法は、光半導体発光素子と、蛍光体粒子と、光散乱粒子及びマトリックス樹脂を含有する光散乱複合体と、を有し、白色光を発する光半導体発光装置の製造方法であり、該光散乱複合体は単分散状態の光散乱粒子とマトリックス樹脂組成物とを含有する光散乱組成物を硬化することで形成され、当該光散乱組成物の硬化時において、単分散状態の光散乱粒子の少なくとも一部を会合させて、マトリックス樹脂中で会合粒子を形成することにより行なわれる。
[Method for Manufacturing Optical Semiconductor Light Emitting Device]
The manufacturing method of the optical semiconductor light-emitting device of the present invention includes an optical semiconductor light-emitting device, phosphor particles, and a light-scattering complex containing light-scattering particles and a matrix resin, and emits white light. The light scattering composite is formed by curing a light scattering composition containing monodispersed light scattering particles and a matrix resin composition, and at the time of curing the light scattering composition, This is performed by associating at least a part of the monodispersed light scattering particles to form associated particles in the matrix resin.

始めに、光散乱粒子となる非修飾粒子を用意する。この粒子の製造方法は特に限定されるものではなく、公知の方法を用いて製造すればよい。また粒子特性等の条件が合えば、市販の粒子を使用することもできる。   First, unmodified particles to be light scattering particles are prepared. The manufacturing method of this particle | grain is not specifically limited, What is necessary is just to manufacture using a well-known method. Commercially available particles can also be used if conditions such as particle characteristics are met.

次に、非修飾粒子の表面を表面修飾材料により修飾する。
非修飾粒子表面への表面修飾材料の修飾方法は、非修飾粒子に直接、表面修飾材料を混合、噴霧等する乾式方法、表面修飾材料を溶解させた水及び/又は有機溶剤に非修飾粒子を投入し、溶媒中で表面修飾する湿式方法等が挙げられる。本発明においては、表面修飾量の制御性に優れること、表面修飾の均一性が高い点等から、湿式方式を用いることが好ましい。
Next, the surface of the unmodified particle is modified with a surface modifying material.
The modification method of the surface modification material on the surface of the non-modified particle includes a dry method in which the surface modification material is mixed and sprayed directly on the non-modified particle, or water and / or an organic solvent in which the surface modification material is dissolved. Examples include a wet method in which the surface is modified in a solvent. In the present invention, it is preferable to use a wet method in view of excellent controllability of the surface modification amount and high uniformity of the surface modification.

光散乱複合体は、上記のようにして表面修飾された表面修飾粒子である光散乱粒子とマトリックス樹脂組成物とを混合した後、この混合物を硬化することにより得られる。散乱性の観点から、光散乱粒子は、少なくともその一部が会合粒子を形成した状態で、マトリックス樹脂中に全体としては均一に分散していることが好ましい。   The light scattering composite is obtained by mixing the light scattering particles, which are the surface modified particles surface-modified as described above, and the matrix resin composition, and then curing the mixture. From the viewpoint of scattering properties, it is preferable that the light scattering particles are uniformly dispersed as a whole in the matrix resin in a state in which at least a part thereof forms associated particles.

まず、光散乱粒子をマトリックス樹脂組成物中に均一に混合分散させ、光散乱組成物を得る。混合分散方法としては、光散乱粒子とマトリックス樹脂組成物とを二軸混錬機等の機械的方法によって混合して分散させる方法、光散乱粒子を有機溶媒中に分散させた分散液とマトリックス樹脂組成物を混合した後、有機溶媒を乾燥除去する方法等がある。   First, light scattering particles are uniformly mixed and dispersed in a matrix resin composition to obtain a light scattering composition. As a mixing and dispersing method, a method of mixing and dispersing light scattering particles and a matrix resin composition by a mechanical method such as a biaxial kneader, a dispersion in which light scattering particles are dispersed in an organic solvent, and a matrix resin There is a method of drying and removing the organic solvent after mixing the composition.

このようにして得られた光散乱組成物においては、光散乱粒子は凝集や会合を起こしておらず、一次粒子の状態が維持された単分散状態であることが好ましい。その理由として、光散乱組成物中に凝集粒子や会合粒子が存在すると、光散乱組成物の硬化時に再凝集や再会合を起こしやすく、結果として光散乱粒子が大径化して青色光だけでなく白色光に対する散乱性が高くなったり、極端な場合には光散乱粒子の集合体が樹脂相と相分離をひき起こすために、光半導体発光装置の輝度向上が図れなくなる虞がある。
光散乱粒子が単分散状態を維持した光散乱組成物を得るためには、光散乱粒子を有機溶媒中に単分散させた分散液とマトリックス樹脂組成物を混合した後、有機溶媒を乾燥除去する方法を用いることが好ましい。光散乱粒子分散液とマトリックス樹脂組成物との混合であれば、液状体同士の混合であるために、両者は容易に混合し均一化することができる。
ここで、光散乱組成物及び光散乱粒子の分散液における光散乱粒子の存在状態は、その分散粒子径を測定することにより確認できる。すなわち、光散乱粒子の平均分散粒子径が平均一次粒子径と同等の3nm以上かつ50nm以下であれば、光散乱組成物や光散乱粒子の分散液における光散乱粒子は単分散状態が維持されていると判断できる。このような、液体中の分散粒子の平均分散粒子径は、動的光散乱法を用いて測定すればよい。
In the light-scattering composition thus obtained, the light-scattering particles are preferably in a monodispersed state in which the state of primary particles is maintained without aggregation or association. The reason for this is that if aggregated particles or associated particles are present in the light-scattering composition, reaggregation or reassociation is likely to occur when the light-scattering composition is cured. There is a possibility that the brightness of the optical semiconductor light emitting device cannot be improved because the scattering property with respect to white light becomes high or, in an extreme case, the aggregate of light scattering particles causes phase separation from the resin phase.
In order to obtain a light scattering composition in which the light scattering particles are maintained in a monodispersed state, the dispersion liquid in which the light scattering particles are monodispersed in an organic solvent and the matrix resin composition are mixed, and then the organic solvent is removed by drying. The method is preferably used. If it is a mixture of a light scattering particle dispersion and a matrix resin composition, since it is a mixture of liquids, both can be easily mixed and made uniform.
Here, the existence state of the light scattering particles in the dispersion liquid of the light scattering composition and the light scattering particles can be confirmed by measuring the diameter of the dispersed particles. That is, if the average dispersed particle diameter of the light scattering particles is 3 nm or more and 50 nm or less equivalent to the average primary particle diameter, the light scattering particles in the light scattering composition or the dispersion liquid of the light scattering particles are maintained in a monodispersed state. Can be judged. Such an average dispersed particle diameter of dispersed particles in a liquid may be measured using a dynamic light scattering method.

本発明における光散乱組成物の波長460nmにおける積分透過率は、40%以上かつ95%以下とすることが好ましい。波長460nmにおける積分透過率が40%以上であることで光全体の透光性の低下を防ぎ光半導体発光装置の輝度を向上させることができる。また、積分透過率が95%以下であれば光半導体発光素子の発光色成分の大半が外部空気相とは異なる方向に散乱されて蛍光体に照射されるため、蛍光体によって波長変換されなかった光半導体発光素子の発光色成分が外部空気相に多く出てしまうことを防ぎ、光半導体発光装置の演色性を向上させることができる。波長460nmにおける透過率は、より好ましくは45%以上かつ90%以下であり、さらに好ましくは50%以上かつ85%以下である。   The integrated transmittance at a wavelength of 460 nm of the light scattering composition in the present invention is preferably 40% or more and 95% or less. When the integrated transmittance at a wavelength of 460 nm is 40% or more, the light transmittance of the entire light can be prevented from being lowered and the luminance of the optical semiconductor light emitting device can be improved. In addition, if the integrated transmittance is 95% or less, most of the emission color components of the optical semiconductor light emitting element are scattered in a direction different from the external air phase and irradiated to the phosphor, so that the wavelength was not converted by the phosphor. It is possible to prevent the emission color component of the optical semiconductor light-emitting element from appearing in the external air phase and improve the color rendering of the optical semiconductor light-emitting device. The transmittance at a wavelength of 460 nm is more preferably 45% or more and 90% or less, and further preferably 50% or more and 85% or less.

また、波長550nmにおける積分透過率は50%以上であることが好ましい。透過率が50%以上であることで光半導体発光素子の発光色成分とその発光色成分が蛍光体によって波長変換された変換光成分とが合成された白色光の透光性が低下するのを防ぎ、光半導体発光装置の輝度を向上させることができる。波長550nmにおける透過率は、より好ましくは80%以上であり、さらに好ましくは85%以上であり、最も好ましくは90%以上である。
上記のような透過率を得るには、光散乱粒子の粒子径及び/又は量を調整すればよい。
以上のようにして得られた光散乱組成物を光変換層の上に塗布又は注入し、次いで硬化して、光散乱複合体からなる光散乱層を形成することで、本発明に係る光半導体発光装置Bが作製される。あるいは、本発明の光散乱組成物中に蛍光体粒子を混合し、光半導体発光素子の上に塗布又は注入し、次いで硬化して、蛍光体を含む光散乱複合体からなる光散乱変換層を形成することで、本発明に係る光半導体発光装置Aが作製される。硬化には、例えば前記のように付加型反応、縮合型反応、ラジカル重合反応等による重合硬化反応を挙げることができる。この重合反応は、加熱、光照射等の外部エネルギーの付与、触媒(重合剤)の添加等により行うことができる。
The integrated transmittance at a wavelength of 550 nm is preferably 50% or more. When the transmittance is 50% or more, the translucency of white light in which the light emission color component of the optical semiconductor light emitting element and the converted light component in which the light emission color component is wavelength-converted by the phosphor is synthesized decreases. The brightness of the optical semiconductor light emitting device can be improved. The transmittance at a wavelength of 550 nm is more preferably 80% or more, still more preferably 85% or more, and most preferably 90% or more.
In order to obtain the transmittance as described above, the particle diameter and / or amount of the light scattering particles may be adjusted.
The light semiconductor composition according to the present invention is formed by applying or injecting the light scattering composition obtained as described above onto the light conversion layer and then curing to form a light scattering layer comprising a light scattering composite. The light emitting device B is manufactured. Alternatively, the phosphor particles are mixed in the light scattering composition of the present invention, applied or injected onto the optical semiconductor light emitting device, and then cured to form a light scattering conversion layer composed of a light scattering composite containing the phosphor. By forming, the optical semiconductor light emitting device A according to the present invention is manufactured. Examples of the curing include a polymerization curing reaction by an addition reaction, a condensation reaction, a radical polymerization reaction, etc. as described above. This polymerization reaction can be performed by applying external energy such as heating and light irradiation, adding a catalyst (polymerizing agent), and the like.

この硬化時において、光散乱組成物に単分散している光散乱粒子の少なくとも一部を会合させて、マトリックス樹脂中で会合粒子を形成する。
会合粒子の形成は、前記の通り、光散乱粒子における表面修飾量を50質量%以下と少なめとし、マトリックス樹脂(組成物)と光散乱粒子間の親和性を抑えることで、相対的に光散乱粒子同士の結合力を強めることで達成できる。また、光散乱組成物の硬化速度を遅くし、硬化途中の光散乱組成物中で光散乱粒子が移動できる状態を維持することにより、光散乱粒子同士の凝集力及び/又はマトリックス樹脂における他成分の排斥力を使用して、光散乱粒子の会合度を高めてもよい。
At the time of curing, at least a part of the light scattering particles monodispersed in the light scattering composition is associated to form associated particles in the matrix resin.
As described above, the formation of the associated particles is relatively light scattering by reducing the surface modification amount of the light scattering particles to 50 mass% or less and suppressing the affinity between the matrix resin (composition) and the light scattering particles. This can be achieved by increasing the bonding force between the particles. Also, by slowing the curing rate of the light scattering composition and maintaining the state in which the light scattering particles can move in the light scattering composition during curing, the cohesive force between the light scattering particles and / or other components in the matrix resin The degree of association of the light scattering particles may be increased by using the exclusion force.

このようにして形成された会合粒子と、非会合状態で維持された単分散粒子とを併せた全粒子の平均粒子径、すなわち平均二次粒子径は平均一次粒子径より大きくかつ1000nm以下であることが好ましく、50nmより大きくかつ1000nm以下であればより好ましく、80nm以上かつ1000nm以下であればさらに好ましく、100nm以上かつ800nm以下であれば最も好ましい。
なお、平均二次粒子径の測定方法であるが、光散乱複合体が硬化物であるために、動的光散乱法による測定は困難である。一方、光散乱粒子はマトリックス樹脂中で固定されているから、光散乱複合体を加工しても会合状態は変化しない。そこで、例えば、光散乱複合体の薄片化試料を透過型電子顕微鏡(TEM)で観察し、個別に存在している光散乱粒子についてはその粒子径をそのまま二次粒子径とする。一方、複数個の光散乱粒子が重なって見える部分はその全体をもって会合粒子と判断し、会合粒子全体の粒子径を二次粒子径として、平均二次粒子径を求めることとする。
The average particle diameter of all particles, which are the aggregated particles thus formed and the monodispersed particles maintained in a non-associated state, that is, the average secondary particle diameter is larger than the average primary particle diameter and 1000 nm or less. More preferably, it is larger than 50 nm and 1000 nm or less, more preferably 80 nm or more and 1000 nm or less, and most preferably 100 nm or more and 800 nm or less.
In addition, although it is a measuring method of an average secondary particle diameter, since the light-scattering composite is a hardened | cured material, the measurement by a dynamic light-scattering method is difficult. On the other hand, since the light scattering particles are fixed in the matrix resin, the association state does not change even if the light scattering composite is processed. Therefore, for example, a thinned sample of the light scattering composite is observed with a transmission electron microscope (TEM), and the particle diameter of the light scattering particles present individually is directly used as the secondary particle diameter. On the other hand, a portion where a plurality of light scattering particles appear to be overlapped is determined as an associated particle, and the average secondary particle size is obtained with the particle size of the entire associated particle as the secondary particle size.

[照明器具及び表示装置]
本発明の光半導体発光装置は、その優れた特性を生かして各用途に利用することができる。本発明の効果が特に顕著に認められるものとしては、これを具備する各種の照明器具及び表示装置である。
照明器具としては、室内灯、室外灯等の一般照明装置が挙げられる。その他、携帯電話、OA機器等の電子機器のスイッチ部の照明にも適用できる。
[Lighting fixtures and display devices]
The optical semiconductor light-emitting device of the present invention can be used for various applications by taking advantage of its excellent characteristics. The effects of the present invention are particularly noticeable in various lighting fixtures and display devices having the same.
Examples of the lighting fixture include general lighting devices such as an indoor lamp and an outdoor lamp. In addition, the present invention can also be applied to illumination of a switch unit of an electronic device such as a mobile phone or OA device.

表示装置としては、例えば携帯電話、携帯情報端末、電子辞書、デジタルカメラ、コンピュータ、薄型テレビ、照明機器及びこれらの周辺機器等のように、小型化、軽量化、薄型化、省電力化、及び太陽光の中でも良好な視認性が得られるような高輝度ならびに良好な演色性が特に求められる機器の表示装置、における発光装置等を挙げることができる。特にコンピュータの表示装置(ディスプレイ)、薄型テレビ等のように長時間にわたって視認する表示装置においては、人体、特に眼に対しての影響を抑えることができるので特に好適である。また、第一の発光素子と第二の発光素子の距離を3mm以下、さらには1mm以下と近づけることにより小型化が可能となることから、15インチ以下の小型表示装置においても好適である。   As a display device, for example, a mobile phone, a portable information terminal, an electronic dictionary, a digital camera, a computer, a thin TV, a lighting device, and peripheral devices thereof are reduced in size, reduced in weight, reduced in thickness, reduced in power consumption, and Examples thereof include a light-emitting device in a display device of a device that is particularly required to have high luminance and good color rendering such that good visibility can be obtained even in sunlight. In particular, a display device that is visible for a long time such as a computer display device (display), a flat-screen television, or the like is particularly suitable because the influence on the human body, particularly the eyes, can be suppressed. Further, since the size can be reduced by reducing the distance between the first light emitting element and the second light emitting element to 3 mm or less, and further to 1 mm or less, it is also suitable for a small display device of 15 inches or less.

本実施例に係る各種測定方法及び評価方法は下記の通りである。
(表面修飾粒子分散液中の表面修飾粒子における表面修飾量)
表面修飾粒子の表面修飾量は、熱重量分析による測定を基に算出した。試料粉は、表面修飾粒子分散液を遠心分離して表面修飾粒子を取り出し、エバポレータで分散媒を乾燥除去して作製した。得られた試料を熱重量分析し、115℃から500℃までの重量減少量を測定した。なお,115℃未満の重量減少は残留していた分散媒(トルエン)に起因するものとした。得られた(115℃から500℃までの)重量減少量と、表面修飾材料中の揮発成分(C、H、O、及びN)と不揮発成分(Si)の含有量を基に、表面修飾量を算出した。
Various measurement methods and evaluation methods according to this example are as follows.
(Surface modification amount in the surface modified particles in the surface modified particle dispersion)
The surface modification amount of the surface modified particles was calculated based on the measurement by thermogravimetric analysis. The sample powder was prepared by centrifuging the surface-modified particle dispersion to take out the surface-modified particles, and drying and removing the dispersion medium with an evaporator. The obtained sample was subjected to thermogravimetric analysis, and the weight loss from 115 ° C. to 500 ° C. was measured. The weight loss below 115 ° C. was attributed to the remaining dispersion medium (toluene). Based on the weight loss obtained (from 115 ° C. to 500 ° C.) and the content of volatile components (C, H, O, and N) and nonvolatile components (Si) in the surface modifying material, the amount of surface modification Was calculated.

(光散乱組成物の積分透過率の測定)
光散乱組成物の透過率は、光散乱組成物を0.5mmの薄層石英セルに挟んだものを試料とし、分光光度計(V−570、日本分光社製)にて積分球を用いて測定した。波長(λ)460nmにおける透過率が40%以上かつ95%以下、波長(λ)550nmにおける透過率が80%以上を「○」、波長(λ)460nmにおける透過率が40%以上かつ95%以下、波長(λ)550nmにおける透過率が50%以上かつ80%未満を「△」とし、この範囲から外れるものを「×」とした。
なお、分光光度計の反射板の代わりにこの光散乱組成物を挟んだ薄層石英セルを設置し、積分球に戻った反射スペクトルを測定した結果、短波長側での透過率の低下が反射率の増大に対応していたことから、粒子による光の吸収は起こっておらず、粒子による後方散乱が起こっていることを確認した。
(Measurement of integrated transmittance of light scattering composition)
The transmittance of the light-scattering composition was obtained by using a integrating sphere with a spectrophotometer (V-570, manufactured by JASCO Corporation) using a sample obtained by sandwiching the light-scattering composition in a 0.5 mm thin-layer quartz cell. It was measured. The transmittance at a wavelength (λ) of 460 nm is 40% to 95%, the transmittance at a wavelength (λ) of 550 nm is 80% or more, and the transmittance at a wavelength (λ) of 460 nm is 40% to 95%. The transmittance at a wavelength (λ) of 550 nm was 50% or more and less than 80% was designated as “Δ”, and those outside this range were designated as “x”.
A thin-layer quartz cell with this light scattering composition sandwiched in place of the spectrophotometer reflector and the reflection spectrum returned to the integrating sphere was measured. As a result, a decrease in transmittance on the short wavelength side was reflected. Since it corresponded to the increase in the rate, it was confirmed that the light was not absorbed by the particles and the backscattering by the particles was occurring.

(光散乱複合体の透過率の測定:積分透過率と直線透過率との比較)
光散乱複合体の透過率は、厚さ1mmの基板状に成形した光散乱複合体を試料とし、分光光度計(V−570、日本分光社製)にて積分球測定および直線測定を行い、波長460nmにおける各透過率の差(積分透過率−直線透過率)が40ポイント以上である場合を青色光の散乱性が良好であるとして「○」、25ポイント以上かつ40ポイント未満である場合を「△」とし、この範囲から外れるものを「×」とした。
(Measurement of transmittance of light-scattering complex: Comparison between integral transmittance and linear transmittance)
The transmittance of the light-scattering composite is measured by integrating sphere measurement and linear measurement with a spectrophotometer (V-570, manufactured by JASCO Corp.) using a light-scattering composite molded into a 1 mm thick substrate as a sample. The case where the difference in transmittance at a wavelength of 460 nm (integral transmittance−linear transmittance) is 40 points or more is considered to be good when blue light scattering is good, and the case is 25 points or more and less than 40 points. “△” means that it is out of this range, and “x” means.

(光散乱粒子の平均一次粒子径の測定)
光散乱粒子の平均一次粒子径は、X線回折によって得られるシェラー径とした。
(Measurement of average primary particle size of light scattering particles)
The average primary particle diameter of the light scattering particles was the Scherrer diameter obtained by X-ray diffraction.

(光散乱複合体中の光散乱粒子の平均二次粒子径の測定)
光散乱複合体中の光散乱粒子の平均二次粒子径は、光散乱複合体を薄片化したものを試料とし、電解放出型透過電子顕微鏡(JEM−2100F、日本電子社製)で観察し、粒子径を測定することで行った。
ここで、個別に(会合せずに)存在している光散乱粒子については、その粒子自体をもって二次粒子とし、その粒子径を二次粒子径とした。また、複数個の光散乱粒子が重なって見える部分はその全体をもって二次粒子(会合粒子)とし、二次粒子と判断された部分全体の粒子径を二次粒子径とした。このようにして測定した二次粒子径の内50個の粒子の値を無作為に選び出し、その平均値を光散乱複合体中の光散乱粒子の平均二次粒子径とした。
(Measurement of average secondary particle diameter of light scattering particles in light scattering composite)
The average secondary particle diameter of the light-scattering particles in the light-scattering composite was observed with a field emission transmission electron microscope (JEM-2100F, manufactured by JEOL Ltd.) using a sample obtained by slicing the light-scattering composite. This was done by measuring the particle size.
Here, regarding the light scattering particles present individually (without associating), the particles themselves are used as secondary particles, and the particle size is set as the secondary particle size. In addition, the portion where a plurality of light scattering particles appear to overlap each other is defined as secondary particles (association particles), and the particle size of the entire portion determined as secondary particles is defined as the secondary particle size. The value of 50 particles among the secondary particle diameters thus measured was randomly selected, and the average value was taken as the average secondary particle diameter of the light scattering particles in the light scattering composite.

(光半導体発光装置の発光スペクトル評価)
光半導体発光装置の発光スペクトルを、分光測光装置(PMA−12、浜松ホトニクス社製)を用いて測定した。ここでは、波長400nmから480nmの発光スペクトルピーク面積をaとし、波長480nmから波長800nmの発光スペクトルピーク面積をbとして、a/bの値により評価した。光散乱粒子を含有しない比較例1及び2を基準とし、実施例1〜4、6〜7、9、参考例8、及び比較例3〜4においては、a/bの値が比較例1のa/bの0.9倍以上かつこれ未満のものを「○」、比較例1のa/bの0.6倍以上かつ0.9倍未満のものを「△」とし、比較例1のa/bの0.6倍未満のものを「×」とした。参考例5及び比較例5においては、比較例2のa/b値と比較した。

(Emission spectrum evaluation of optical semiconductor light emitting device)
The emission spectrum of the optical semiconductor light emitting device was measured using a spectrophotometric device (PMA-12, manufactured by Hamamatsu Photonics). Here, the emission spectrum peak area from a wavelength of 400 nm to 480 nm was set as a, and the emission spectrum peak area from a wavelength of 480 nm to 800 nm was set as b, and the evaluation was performed based on a / b. Based on Comparative Examples 1 and 2 that do not contain light scattering particles, in Examples 1-4, 6-7, 9, Reference Example 8, and Comparative Examples 3-4, the value of a / b is that of Comparative Example 1. “A” is 0.9 or more and less than a / b, and “Δ” is 0.6 or more and less than 0.9 times a / b of Comparative Example 1. Those with a value less than 0.6 times a / b were evaluated as “x”. In Reference Example 5 and Comparative Example 5, the a / b value of Comparative Example 2 was compared.

(光半導体発光装置の輝度評価)
光半導体発光装置の輝度を、輝度計(LS−110、コニカミノルタセンシング社製)を用いて測定した。光散乱粒子を含有しない比較例1及び2を基準とし、実施例1〜4、6〜7、9、参考例8、及び比較例3〜4において、輝度が比較例1の輝度より大きいものを「○」、比較例1の輝度の0.8倍以上かつこれと同値のものを「△」、比較例1の輝度の0.8倍未満のものを「×」とした。参考例5及び比較例5においては、比較例2の輝度と比較した。

(Brightness evaluation of optical semiconductor light-emitting devices)
The brightness | luminance of the optical semiconductor light-emitting device was measured using the luminance meter (LS-110, Konica Minolta Sensing company make). Based on Comparative Examples 1 and 2 that do not contain light scattering particles, in Examples 1 to 4, 6 to 7, 9, Reference Example 8, and Comparative Examples 3 to 4, the luminance is higher than that of Comparative Example 1. “◯”, a value that is 0.8 times or more the luminance of Comparative Example 1 and the same value as “Δ”, and a value that is less than 0.8 times the luminance of Comparative Example 1 is “X”. In Reference Example 5 and Comparative Example 5, the brightness of Comparative Example 2 was compared.

<非修飾粒子の作製>
光散乱粒子を構成する非修飾粒子として、次のジルコニア粒子1〜5及びシリカ粒子を作製した。
<Preparation of unmodified particles>
As unmodified particles constituting the light scattering particles, the following zirconia particles 1 to 5 and silica particles were prepared.

(ジルコニア粒子1の作製)
オキシ塩化ジルコニウム8水塩2615gを純水40L(リットル)に溶解させたジルコニウム塩溶液に、28%アンモニア水344gを純水20Lに溶解させた希アンモニア水を攪拌しながら加え、ジルコニア前駆体スラリーを調製した。
このスラリーに、硫酸ナトリウム300gを5Lの純水に溶解させた硫酸ナトリウム水溶液を攪拌しながら加えて混合物を得た。このときの硫酸ナトリウムの添加量は、ジルコニウム塩溶液中のジルコニウムイオンのジルコニア換算値に対して30質量%であった。
この混合物を、乾燥器を用いて、大気中、130℃にて24時間乾燥させ、固形物を得た。この固形物を自動乳鉢で粉砕した後、電気炉を用いて、大気中、520℃にて1時間焼成した。
次いで、この焼成物を純水中に投入し、攪拌してスラリー状とした後、遠心分離器を用いて洗浄を行い、添加した硫酸ナトリウムを十分に除去した後、乾燥器にて乾燥させ、平均一次粒径5.5nmのジルコニア粒子1を得た。
(Preparation of zirconia particles 1)
To a zirconium salt solution in which 2615 g of zirconium oxychloride octahydrate is dissolved in 40 L (liter) of pure water, dilute ammonia water in which 344 g of 28% ammonia water is dissolved in 20 L of pure water is added with stirring, and the zirconia precursor slurry is added. Prepared.
A sodium sulfate aqueous solution in which 300 g of sodium sulfate was dissolved in 5 L of pure water was added to this slurry with stirring to obtain a mixture. The amount of sodium sulfate added at this time was 30% by mass with respect to the zirconia-converted value of zirconium ions in the zirconium salt solution.
This mixture was dried in the air at 130 ° C. for 24 hours using a dryer to obtain a solid. The solid was pulverized in an automatic mortar and then baked in the atmosphere at 520 ° C. for 1 hour using an electric furnace.
Next, the fired product is put into pure water, stirred to form a slurry, washed using a centrifuge, and after sufficiently removing the added sodium sulfate, dried in a dryer, Zirconia particles 1 having an average primary particle size of 5.5 nm were obtained.

(ジルコニア粒子2の作製)
ジルコニア粒子1の作製における電気炉での焼成温度を520℃から550℃にした以外はジルコニア粒子1と同様にして平均一次粒子径が7.8nmのジルコニア粒子2を作製した。
(Preparation of zirconia particles 2)
Zirconia particles 2 having an average primary particle size of 7.8 nm were prepared in the same manner as zirconia particles 1 except that the firing temperature in the electric furnace in the production of zirconia particles 1 was changed from 520 ° C. to 550 ° C.

(ジルコニア粒子3の作製)
ジルコニア粒子1の作製における電気炉での焼成温度を520℃から500℃にした以外はジルコニア粒子1と同様にして平均一次粒子径が2.1nmのジルコニア粒子3を作製した。
(Preparation of zirconia particles 3)
Zirconia particles 3 having an average primary particle diameter of 2.1 nm were prepared in the same manner as zirconia particles 1 except that the calcination temperature in the electric furnace in preparation of zirconia particles 1 was changed from 520 ° C. to 500 ° C.

(ジルコニア粒子4の作製)
ジルコニア粒子1の作製における電気炉での焼成温度を520℃から620℃にした以外はジルコニア粒子1と同様にして平均一次粒径が21.1nmのジルコニア粒子4を作製した。
(Preparation of zirconia particles 4)
Zirconia particles 4 having an average primary particle size of 21.1 nm were produced in the same manner as zirconia particles 1 except that the firing temperature in the electric furnace in producing the zirconia particles 1 was changed from 520 ° C. to 620 ° C.

(ジルコニア粒子5の作製)
ジルコニア粒子1の作製における電気炉での焼成温度を520℃から660℃にした以外はジルコニア粒子1と同様にして平均一次粒径が48nmのジルコニア粒子5を作製した。
(Preparation of zirconia particles 5)
Zirconia particles 5 having an average primary particle size of 48 nm were produced in the same manner as zirconia particles 1 except that the firing temperature in the electric furnace in producing the zirconia particles 1 was changed from 520 ° C. to 660 ° C.

(シリカ粒子の作製)
シリカゾル(日産化学工業製 スノーテックスOS)含有のシリカ粒子をそのまま使用した。なお、X線回折測定はゾル状態ではできないこと、また単にゾルを乾燥固化したものでは測定時の取り扱いが不便なことから、実際の測定は後述のシリカ粒子含有乾燥粉体で行った。平均一次粒子径は9.5nmであった。
(Preparation of silica particles)
Silica particles containing silica sol (Snowtex OS manufactured by Nissan Chemical Industries) were used as they were. Since X-ray diffraction measurement cannot be performed in a sol state, and the sol is simply dried and solidified, handling at the time of measurement is inconvenient. Therefore, actual measurement was performed with a silica particle-containing dry powder described later. The average primary particle size was 9.5 nm.

[実施例1]
(表面修飾ジルコニア分散液1の作製)
10gのジルコニア粒子1に、トルエン86g、及びメトキシ基含有メチルフェニルシリコーンレジン(信越化学工業社製KR9218)2gを加えて、混合し、ビーズミルで5時間撹拌して、表面修飾処理を行った後、ビーズを除去した。次いで、アルケニル基(ビニル基)基含有修飾材料としてビニルトリメトキシシラン(信越化学工業社製KBM1003)を2g添加し、130℃にて6時間還流下で修飾及び分散を行い、表面修飾ジルコニア分散液1を作製した。
表面修飾材料による表面修飾量は、ジルコニア粒子1の質量に対して40質量%であり、メトキシ基含有メチルフェニルシリコーンレジンとビニルトリメトキシシランとの質量比は1対1であった。また、得られた表面修飾ジルコニア分散液1は透明であった。
[Example 1]
(Preparation of surface-modified zirconia dispersion 1)
To 10 g of zirconia particles 1, 86 g of toluene and 2 g of methoxy group-containing methylphenyl silicone resin (KR9218 manufactured by Shin-Etsu Chemical Co., Ltd.) were added, mixed, stirred for 5 hours in a bead mill, and subjected to surface modification treatment. The beads were removed. Next, 2 g of vinyltrimethoxysilane (KBM1003 manufactured by Shin-Etsu Chemical Co., Ltd.) is added as an alkenyl group (vinyl group) group-containing modifying material, and modification and dispersion are carried out under reflux at 130 ° C. for 6 hours to obtain a surface-modified zirconia dispersion. 1 was produced.
The surface modification amount by the surface modifying material was 40% by mass with respect to the mass of the zirconia particles 1, and the mass ratio of the methoxy group-containing methylphenylsilicone resin and vinyltrimethoxysilane was 1: 1. Further, the obtained surface-modified zirconia dispersion 1 was transparent.

(光散乱組成物1の作製)
10gの表面修飾ジルコニア分散液1に対して、フェニルシリコーン樹脂(東レ・ダウコーニング社製 OE−6330、屈折率1.53、A液/B液配合比=1/4)158.6g(A液31.7g、B液126.9g)を加え、撹拌した。その後、混合物から減圧乾燥によりトルエンを除去し、表面修飾ジルコニア粒子とフェニルシリコーン樹脂とを含有した光散乱組成物1を得た。得られた光散乱組成物1はほぼ透明であった。この光散乱組成物1の透過率を前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composition 1)
For 10 g of surface-modified zirconia dispersion 1, 158.6 g of phenyl silicone resin (OE-6330 manufactured by Toray Dow Corning Co., Ltd., refractive index 1.53, A / B mixture ratio = 1/4) (A solution) 31.7 g and B solution 126.9 g) were added and stirred. Thereafter, toluene was removed from the mixture by drying under reduced pressure to obtain a light scattering composition 1 containing surface-modified zirconia particles and a phenyl silicone resin. The obtained light scattering composition 1 was almost transparent. The transmittance of the light scattering composition 1 was measured and evaluated as described above. The results are shown in Table 1 below.

(光散乱複合体1の作製)
光散乱組成物1を深さ1mmの凹状の型に流し込み、150℃で2時間加熱硬化させて、厚さ1mmの光散乱複合体1を作製した。得られた光散乱複合体1の透過率を、前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composite 1)
The light-scattering composition 1 was poured into a concave mold having a depth of 1 mm and heat-cured at 150 ° C. for 2 hours to produce a light-scattering composite 1 having a thickness of 1 mm. The transmittance of the obtained light scattering composite 1 was measured and evaluated as described above. The results are shown in Table 1 below.

(光半導体発光装置1の作製)
15gの光散乱組成物1に、10gの黄色蛍光体(Genelite製 GLD(Y)−550A)を添加し、その後、蛍光体含有光散乱組成物1を自公転式ミキサーで混合・脱泡し、蛍光体含有光散乱組成物1を得た。次いで、未封止の青色光半導体発光素子を備えたパッケージの発光素子上に、蛍光体含有光散乱組成物1を滴下した。さらに蛍光体を含有しない光散乱組成物1を、蛍光体含有光散乱組成物1上に蛍光体含有光散乱組成物1と同量滴下した後、150℃で2時間加熱し、光散乱組成物1を硬化させた。これにより、光半導体発光素子上に、光散乱粒子と蛍光体とを含むと共に、蛍光体粒子を光半導体発光素子の近傍に存在させた光散乱変換層が形成された、実施例1の光半導体発光装置1を作製した。
なお、光散乱変換層における光散乱粒子の含有量は0.5質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置1の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 1)
10 g of yellow phosphor (GLD (Y) -550A manufactured by Genelite) is added to 15 g of the light scattering composition 1, and then the phosphor-containing light scattering composition 1 is mixed and defoamed with a self-revolving mixer, A phosphor-containing light scattering composition 1 was obtained. Next, the phosphor-containing light scattering composition 1 was dropped on the light emitting device of the package including the unsealed blue light semiconductor light emitting device. Further, after dropping the same amount of the light-scattering composition 1 containing no phosphor on the phosphor-containing light scattering composition 1 as the amount of the phosphor-containing light scattering composition 1, the light-scattering composition 1 is heated at 150 ° C. for 2 hours, 1 was cured. Thereby, the optical semiconductor of Example 1 in which the light-scattering conversion layer including the light-scattering particles and the phosphor and having the phosphor particles in the vicinity of the optical semiconductor light-emitting element was formed on the optical semiconductor light-emitting element. The light emitting device 1 was produced.
In addition, the content of the light scattering particles in the light scattering conversion layer was 0.5% by mass, and the content of the yellow phosphor was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 1 were measured and evaluated as described above. The results are shown in Table 1 below.

[実施例2]
(光散乱組成物2の作製)
実施例2の表面修飾ジルコニア分散液としては、実施例1の表面修飾ジルコニア分散液1をそのまま使用した。
光散乱組成物の作製において、表面修飾ジルコニア分散液1の量を100g、フェニルシリコーン樹脂(OE−6330)の量を146g(A液29.2g、B液116.8g)とした他は実施例1と同様にして、光散乱組成物2を作製した。得られた光散乱組成物2はほぼ透明であった。この光散乱組成物2の透過率を前記の通り測定し評価した。結果を下記表1に示す。
[Example 2]
(Preparation of light scattering composition 2)
As the surface-modified zirconia dispersion liquid of Example 2, the surface-modified zirconia dispersion liquid 1 of Example 1 was used as it was.
In the preparation of the light scattering composition, the amount of the surface-modified zirconia dispersion 1 was 100 g, and the amount of the phenyl silicone resin (OE-6330) was 146 g (A liquid 29.2 g, B liquid 116.8 g). In the same manner as in Example 1, a light scattering composition 2 was produced. The obtained light-scattering composition 2 was almost transparent. The transmittance of the light scattering composition 2 was measured and evaluated as described above. The results are shown in Table 1 below.

(光散乱複合体2の作製)
光散乱複合体の作製において、光散乱組成物1に代えて光散乱組成物2を用いた他は実施例1と同様にして、光散乱複合体2を作製した。得られた光散乱複合体2の透過率を、前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composite 2)
A light scattering composite 2 was prepared in the same manner as in Example 1 except that the light scattering composition 2 was used in place of the light scattering composition 1 in the preparation of the light scattering composite. The transmittance of the obtained light scattering composite 2 was measured and evaluated as described above. The results are shown in Table 1 below.

(光半導体発光装置2の作製)
光半導体発光装置の作製において、光散乱組成物1に代えて光散乱組成物2を用いた他は実施例1と同様にして、光半導体発光装置2を作製した。これにより、光半導体発光素子上に、光散乱粒子と蛍光体とを含むと共に、蛍光体粒子を光半導体発光素子の近傍に存在させた光散乱変換層が形成された、実施例2の光半導体発光装置2を得た。
なお、光散乱変換層における光散乱粒子の含有量は5質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置2の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 2)
In the production of the optical semiconductor light emitting device, the optical semiconductor light emitting device 2 was produced in the same manner as in Example 1 except that the light scattering composition 2 was used instead of the light scattering composition 1. Thus, the optical semiconductor of Example 2 in which the light scattering conversion layer including the light scattering particles and the phosphor and having the phosphor particles in the vicinity of the optical semiconductor light emitting device is formed on the optical semiconductor light emitting device. The light emitting device 2 was obtained.
In addition, the content of the light scattering particles in the light scattering conversion layer was 5% by mass, and the content of the yellow phosphor was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 2 were measured and evaluated as described above. The results are shown in Table 1 below.

[実施例3]
(表面修飾ジルコニア分散液3の作製)
表面修飾ジルコニア分散液の作製において、ジルコニア粒子1に代えてジルコニア粒子2を用い、アルケニル基含有修飾材料に代えてH−Si基含有修飾材料であるメチルジクロロシラン(信越化学工業製 LS−50)を用いたこと、またビーズミルの撹拌時間を5時間とし、還流時間を3時間に変更した他は実施例1と同様にして、表面修飾ジルコニア分散液3を作製した。
表面修飾材料による表面修飾量は、ジルコニア粒子2の質量に対して40質量%であり、メトキシ基含有メチルフェニルシリコーンレジンとメチルジクロロシランとの質量比は1対1であった。また、得られた表面修飾ジルコニア分散液3は透明であった。
[Example 3]
(Preparation of surface-modified zirconia dispersion 3)
In the preparation of the surface-modified zirconia dispersion, zirconia particles 2 were used instead of zirconia particles 1, and methyldichlorosilane (LS-50, manufactured by Shin-Etsu Chemical Co., Ltd.), which is an H-Si group-containing modified material instead of an alkenyl group-containing modified material. The surface-modified zirconia dispersion 3 was prepared in the same manner as in Example 1 except that the bead mill was stirred for 5 hours and the reflux time was changed to 3 hours.
The surface modification amount by the surface modifying material was 40% by mass with respect to the mass of the zirconia particles 2, and the mass ratio of the methoxy group-containing methylphenylsilicone resin and methyldichlorosilane was 1: 1. Further, the obtained surface-modified zirconia dispersion 3 was transparent.

(光散乱組成物3の作製)
光散乱組成物1の作製において、表面修飾ジルコニア分散液1に代えて表面修飾ジルコニア分散液3を用いた他は実施例1と同様にして、光散乱組成物3を作製した。得られた光散乱組成物3はほぼ透明であった。この光散乱組成物3の透過率を前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composition 3)
In the production of the light scattering composition 1, a light scattering composition 3 was produced in the same manner as in Example 1 except that the surface modified zirconia dispersion 3 was used instead of the surface modified zirconia dispersion 1. The obtained light scattering composition 3 was almost transparent. The transmittance of the light scattering composition 3 was measured and evaluated as described above. The results are shown in Table 1 below.

(光散乱複合体3の作製)
光散乱複合体の作製において、光散乱組成物1に代えて光散乱組成物3を用いた他は実施例1と同様にして、光散乱複合体3を作製した。得られた光散乱複合体3の透過率を、前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composite 3)
The light scattering composite 3 was prepared in the same manner as in Example 1 except that the light scattering composition 3 was used in place of the light scattering composition 1 in the preparation of the light scattering composite. The transmittance of the obtained light scattering composite 3 was measured and evaluated as described above. The results are shown in Table 1 below.

(光半導体発光装置3の作製)
光半導体発光装置の作製において、光散乱組成物1に代えて光散乱組成物3を用いた他は実施例1と同様にして、光半導体発光装置3を作製した。これにより、光半導体発光素子上に、光散乱粒子と蛍光体とを含むと共に、蛍光体粒子を光半導体発光素子の近傍に存在させた光散乱変換層が形成された、実施例3の光半導体発光装置3を得た。
なお、光散乱変換層における光散乱粒子の含有量は0.5質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置3の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 3)
In the production of the optical semiconductor light emitting device, the optical semiconductor light emitting device 3 was produced in the same manner as in Example 1 except that the light scattering composition 3 was used instead of the light scattering composition 1. Thus, the optical semiconductor of Example 3 in which the light scattering conversion layer including the light scattering particles and the phosphor and having the phosphor particles in the vicinity of the optical semiconductor light emitting device was formed on the optical semiconductor light emitting device. The light emitting device 3 was obtained.
In addition, the content of the light scattering particles in the light scattering conversion layer was 0.5% by mass, and the content of the yellow phosphor was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 3 were measured and evaluated as described above. The results are shown in Table 1 below.

[実施例4]
(表面修飾ジルコニア分散液4の作製)
表面修飾ジルコニア分散液の作製において、アルケニル基含有修飾材料に代えてアルコキシ基含有修飾材料であるテトラエトキシシラン(信越化学工業製 KBE−04)を用い、ビーズミルの撹拌時間を5時間とし、還流時間を3時間に変更した他は実施例1と同様にして、表面修飾ジルコニア分散液4を作製した。
表面修飾材料による表面修飾量は、ジルコニア粒子1の質量に対して40質量%であり、メトキシ基含有メチルフェニルシリコーンレジンとテトラエトキシシランとの質量比は1対1であった。また、得られた表面修飾ジルコニア分散液4は透明であった。
[Example 4]
(Preparation of surface-modified zirconia dispersion 4)
In the preparation of the surface-modified zirconia dispersion, tetraethoxysilane (KBE-04 manufactured by Shin-Etsu Chemical Co., Ltd.), which is an alkoxy group-containing modified material, is used instead of the alkenyl group-containing modified material, the stirring time of the bead mill is 5 hours, and the reflux time The surface-modified zirconia dispersion 4 was produced in the same manner as in Example 1 except that the time was changed to 3 hours.
The amount of surface modification by the surface modifying material was 40% by mass with respect to the mass of the zirconia particles 1, and the mass ratio of the methoxy group-containing methylphenylsilicone resin and tetraethoxysilane was 1: 1. Further, the obtained surface-modified zirconia dispersion 4 was transparent.

(光散乱組成物4の作製)
光散乱組成物の作製において、表面修飾ジルコニア分散液1に代えて表面修飾ジルコニア分散液4を用いた他は実施例1と同様にして、光散乱組成物4を作製した。得られた光散乱組成物4はほぼ透明であった。この光散乱組成物4の透過率を前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composition 4)
In the production of the light scattering composition, a light scattering composition 4 was produced in the same manner as in Example 1 except that the surface modified zirconia dispersion 1 was used instead of the surface modified zirconia dispersion 1. The obtained light scattering composition 4 was almost transparent. The transmittance of the light scattering composition 4 was measured and evaluated as described above. The results are shown in Table 1 below.

(光散乱複合体4の作製)
光散乱複合体の作製において、光散乱組成物1に代えて光散乱組成物4を用いた他は実施例1と同様にして、光散乱複合体4を作製した。得られた光散乱複合体4の透過率を、前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composite 4)
A light scattering composite 4 was prepared in the same manner as in Example 1 except that the light scattering composition 4 was used instead of the light scattering composition 1 in the preparation of the light scattering composite. The transmittance of the obtained light scattering composite 4 was measured and evaluated as described above. The results are shown in Table 1 below.

(光半導体発光装置4の作製)
光半導体発光装置の作製において、光散乱組成物1に代えて光散乱組成物4を用いた他は実施例1と同様にして、光半導体発光装置4を作製した。これにより、光半導体発光素子上に、光散乱粒子と蛍光体とを含むと共に、蛍光体粒子を光半導体発光素子の近傍に存在させた光散乱変換層が形成された、実施例4の光半導体発光装置4を得た。
なお、光散乱変換層における光散乱粒子の含有量は0.5質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置4の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 4)
In the production of the optical semiconductor light emitting device, the optical semiconductor light emitting device 4 was produced in the same manner as in Example 1 except that the light scattering composition 4 was used instead of the light scattering composition 1. Thus, the optical semiconductor of Example 4 in which the light-scattering conversion layer including the light-scattering particles and the phosphor and having the phosphor particles in the vicinity of the optical semiconductor light-emitting element is formed on the optical semiconductor light-emitting element. The light emitting device 4 was obtained.
In addition, the content of the light scattering particles in the light scattering conversion layer was 0.5% by mass, and the content of the yellow phosphor was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 4 were measured and evaluated as described above. The results are shown in Table 1 below.

参考例5]
(表面修飾シリカ分散液の作製)
シリカゾル(日産化学工業製 スノーテックスOS)50gにヘキサン酸5gを溶解させたメタノール溶液50gを混合撹拌し、得られたスラリーをエバポレータで溶媒を乾燥除去してシリカ粒子乾燥粉体を得た。得られたシリカ粒子含有乾燥粉体10gをトルエン80gに混合した。次いで、片末端エポキシ変性シリコーン(信越化学工業製、X−22−173DX)を5gとアルケニル基(ビニル基)含有修飾材料としてビニルトリメトキシシラン(信越化学工業製 KBM1003)を5g加え、130℃にて6時間還流下で表面修飾及び分散を行った。得られたシリカ分散液100gにメタノールを100g投入し、得られた沈降物を回収し、乾燥した。この表面修飾シリカ粒子における表面修飾材料による表面修飾量は、シリカ粒子の質量に対して80質量%であり、片末端エポキシ変性シリコーンとビニルトリメトキシシランとの質量比は1対1であった。次いで、この表面修飾シリカ粒子を、トルエン中に18質量%(シリカ粒子として10質量%)となるよう加えて再分散させ、表面修飾シリカ分散液を作製した。
得られた表面修飾シリカ分散液は透明であった。

[ Reference Example 5]
(Preparation of surface-modified silica dispersion)
50 g of a methanol solution in which 5 g of hexanoic acid was dissolved in 50 g of silica sol (Snowtex OS, manufactured by Nissan Chemical Industries, Ltd.) was mixed and stirred, and the solvent was removed from the resulting slurry by an evaporator to obtain a silica particle dry powder. 10 g of the obtained silica particle-containing dry powder was mixed with 80 g of toluene. Next, 5 g of one-end epoxy-modified silicone (Shin-Etsu Chemical Co., Ltd., X-22-173DX) and 5 g of vinyltrimethoxysilane (KBM1003 manufactured by Shin-Etsu Chemical Co., Ltd.) as an alkenyl group (vinyl group) -containing modifying material are added to 130 ° C. Then, surface modification and dispersion were performed under reflux for 6 hours. 100 g of methanol was added to 100 g of the obtained silica dispersion, and the resulting precipitate was collected and dried. The surface modification amount of the surface-modified silica particles by the surface modification material was 80% by mass with respect to the mass of the silica particles, and the mass ratio of the one-end epoxy-modified silicone and vinyltrimethoxysilane was 1: 1. Subsequently, the surface-modified silica particles were added to toluene in an amount of 18% by mass (10% by mass as silica particles) and redispersed to prepare a surface-modified silica dispersion.
The obtained surface-modified silica dispersion was transparent.

(光散乱組成物5の作製)
作製した表面修飾シリカ分散液10gに対して、ジメチルシリコーン樹脂(東レ・ダウコーニング社製 OE−6336、屈折率1.41、A液/B液配合比=1/1)158.2g(A液79.1g、B液79.1g)を加え、撹拌した。その後、混合物から減圧乾燥によりトルエンを除去し、表面修飾シリカ粒子とジメチルシリコーン樹脂とを含有した光散乱組成物5を得た。得られた光散乱組成物5はほぼ透明であった。この光散乱組成物5の透過率を前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composition 5)
158.2 g of dimethyl silicone resin (OE-6336 manufactured by Toray Dow Corning Co., Ltd., refractive index 1.41, A / B mixture ratio = 1/1) with respect to 10 g of the surface-modified silica dispersion prepared 79.1 g and B liquid 79.1 g) were added and stirred. Thereafter, toluene was removed from the mixture by drying under reduced pressure to obtain a light scattering composition 5 containing surface-modified silica particles and a dimethyl silicone resin. The obtained light scattering composition 5 was almost transparent. The transmittance of the light scattering composition 5 was measured and evaluated as described above. The results are shown in Table 1 below.

(光散乱複合体5の作製)
光散乱複合体の作製において、光散乱組成物1に代えて光散乱組成物5を用いた他は実施例1と同様にして、光散乱複合体5を作製した。得られた光散乱複合体5の透過率を、前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composite 5)
A light scattering composite 5 was prepared in the same manner as in Example 1 except that the light scattering composition 5 was used instead of the light scattering composition 1 in the preparation of the light scattering composite. The transmittance of the obtained light scattering composite 5 was measured and evaluated as described above. The results are shown in Table 1 below.

(光半導体発光装置5の作製)
光半導体発光装置の作製において、光散乱組成物1に代えて光散乱組成物5を用いた他は実施例1と同様にして、光半導体発光装置5を作製した。これにより、光半導体発光素子上に、光散乱粒子と蛍光体とを含むと共に、蛍光体粒子を光半導体発光素子の近傍に存在させた光散乱変換層が形成された、参考例5の光半導体発光装置5を得た。
なお、光散乱変換層における光散乱粒子の含有量は0.5質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置5の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。

(Production of optical semiconductor light emitting device 5)
In the production of the optical semiconductor light emitting device, the optical semiconductor light emitting device 5 was produced in the same manner as in Example 1 except that the light scattering composition 5 was used instead of the light scattering composition 1. Thus, the optical semiconductor of Reference Example 5 in which the light-scattering conversion layer including the light-scattering particles and the phosphor and having the phosphor particles in the vicinity of the optical semiconductor light-emitting element is formed on the optical semiconductor light-emitting element. The light emitting device 5 was obtained.
In addition, the content of the light scattering particles in the light scattering conversion layer was 0.5% by mass, and the content of the yellow phosphor was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 5 were measured and evaluated as described above. The results are shown in Table 1 below.

[実施例6]
(表面修飾ジルコニア分散液6の作製)
表面修飾ジルコニア分散液の作製において、トルエンの使用量を89g、メトキシ基含有メチルフェニルシリコーンレジンの使用量を0.5g、アルケニル基(ビニル基)含有修飾材料としてのビニルトリメトキシシランの使用量を0.5gに変更した他は実施例1と同様にして、表面修飾ジルコニア分散液6を作製した。
表面修飾材料による表面修飾量は、ジルコニア粒子1の質量に対して10質量%であり、メトキシ基含有メチルフェニルシリコーンレジンとビニルトリメトキシシランとの質量比は1対1であった。また、得られた表面修飾ジルコニア分散液6は透明であった。
[Example 6]
(Preparation of surface-modified zirconia dispersion 6)
In the preparation of the surface-modified zirconia dispersion, the amount of toluene used is 89 g, the amount of methoxy group-containing methylphenylsilicone resin is 0.5 g, and the amount of vinyltrimethoxysilane used as an alkenyl group (vinyl group) -containing modifier is A surface-modified zirconia dispersion 6 was prepared in the same manner as in Example 1 except that the amount was changed to 0.5 g.
The surface modification amount by the surface modifying material was 10% by mass with respect to the mass of the zirconia particles 1, and the mass ratio of the methoxy group-containing methylphenyl silicone resin and vinyltrimethoxysilane was 1: 1. Further, the obtained surface-modified zirconia dispersion 6 was transparent.

(光散乱組成物6の作製)
2gの表面修飾ジルコニア分散液6に対して、フェニルシリコーン樹脂(東レ・ダウコーニング社製 OE−6330、屈折率1.53、A液/B液配合比=1/4)159.78g(A液31.96g、B液127.82g)を加え、撹拌した。その後、混合物から減圧乾燥によりトルエンを除去し、表面修飾ジルコニア粒子とフェニルシリコーン樹脂とを含有した光散乱組成物6を作製した。得られた光散乱組成物1はほぼ透明であった。この光散乱組成物6の透過率を前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composition 6)
159.78 g of phenyl silicone resin (OE-6330 manufactured by Toray Dow Corning Co., Ltd., refractive index 1.53, A / B mixture ratio = 1/4) to 2 g of surface-modified zirconia dispersion 6 31.96 g and Liquid B 127.82 g) were added and stirred. Thereafter, toluene was removed from the mixture by drying under reduced pressure to prepare a light scattering composition 6 containing surface-modified zirconia particles and phenyl silicone resin. The obtained light scattering composition 1 was almost transparent. The transmittance of the light scattering composition 6 was measured and evaluated as described above. The results are shown in Table 1 below.

(光散乱複合体6の作製)
光散乱複合体の作製において、光散乱組成物1に代えて光散乱組成物6を用いた他は実施例1と同様にして、光散乱複合体6を作製した。得られた光散乱複合体6の透過率を、前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composite 6)
A light scattering composite 6 was prepared in the same manner as in Example 1 except that the light scattering composition 6 was used in place of the light scattering composition 1 in the preparation of the light scattering composite. The transmittance of the obtained light scattering composite 6 was measured and evaluated as described above. The results are shown in Table 1 below.

(光半導体発光装置6の作製)
光半導体発光装置の作製において、光散乱組成物1に代えて光散乱組成物6を用いた他は実施例1と同様にして、光半導体発光装置6を作製した。これにより、光半導体発光素子上に、光散乱粒子と蛍光体とを含むと共に、蛍光体粒子を光半導体発光素子の近傍に存在させた光散乱変換層が形成された、実施例6の光半導体発光装置3を得た。
なお、光散乱変換層における光散乱粒子の含有量は0.1質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置6の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 6)
In the production of the optical semiconductor light emitting device, the optical semiconductor light emitting device 6 was produced in the same manner as in Example 1 except that the light scattering composition 6 was used instead of the light scattering composition 1. Thus, the optical semiconductor of Example 6 in which the light-scattering conversion layer including the light-scattering particles and the phosphor and having the phosphor particles in the vicinity of the optical semiconductor light-emitting element was formed on the optical semiconductor light-emitting element. The light emitting device 3 was obtained.
The light scattering particle content in the light scattering conversion layer was 0.1% by mass, and the yellow phosphor content was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 6 were measured and evaluated as described above. The results are shown in Table 1 below.

[実施例7]
(光散乱組成物7の作製)
実施例7の表面修飾ジルコニア分散液としては、実施例1の表面修飾ジルコニア分散液1をそのまま使用した。
10gの表面修飾ジルコニア分散液1に対して、フェニルシリコーン樹脂(東レ・ダウコーニング社製 OE−6330、屈折率1.53、A液/B液配合比=1/4)48.6g(A液9.7g、B液38.9g)を加え、撹拌した。その後、混合物から減圧乾燥によりトルエンを除去し、表面修飾ジルコニア粒子とフェニルシリコーン樹脂とを含有した光散乱組成物7を作製した。得られた光散乱組成物7はほぼ透明であった。この光散乱組成物7の透過率を前記の通り測定し評価した。結果を下記表1に示す。
[Example 7]
(Preparation of light scattering composition 7)
As the surface-modified zirconia dispersion of Example 7, the surface-modified zirconia dispersion 1 of Example 1 was used as it was.
For 10 g of surface-modified zirconia dispersion 1, 48.6 g of phenyl silicone resin (OE-6330 manufactured by Toray Dow Corning Co., Ltd., refractive index 1.53, A / B mixture ratio = 1/4) (A solution) 9.7 g and B solution 38.9 g) were added and stirred. Thereafter, toluene was removed from the mixture by drying under reduced pressure to prepare a light scattering composition 7 containing surface-modified zirconia particles and phenyl silicone resin. The obtained light scattering composition 7 was almost transparent. The transmittance of the light scattering composition 7 was measured and evaluated as described above. The results are shown in Table 1 below.

(光散乱複合体7の作製)
光散乱複合体の作製において、光散乱組成物1に代えて光散乱組成物7を用いた他は実施例1と同様にして、光散乱複合体7を作製した。得られた光散乱複合体7の透過率を、前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composite 7)
A light scattering composite 7 was prepared in the same manner as in Example 1 except that the light scattering composition 7 was used in place of the light scattering composition 1 in the preparation of the light scattering composite. The transmittance of the obtained light scattering composite 7 was measured and evaluated as described above. The results are shown in Table 1 below.

(光半導体発光装置7の作製)
フェニルシリコーン樹脂(東レ・ダウコーニング社製 OE−6330、屈折率1.53、A液/B液配合比=1/4)15g(A液3g、B液12g)に、黄色蛍光体(Genelite製 GLD(Y)−550A)を10g加え、その後、自公転式ミキサーで混合・脱泡し、蛍光体含有組成物7を得た。
次いで、未封止の青色光半導体発光素子を備えたパッケージの発光素子上に、蛍光体含有組成物7を滴下した後、150℃で30分間加熱し、蛍光体含有組成物7を硬化した。次いで、光散乱組成物7を、硬化後の蛍光体含有組成物7上に滴下した後、150℃で90分間加熱し、光散乱組成物1を硬化させると共に、蛍光体含有組成物7を完全に硬化させた。これにより、光半導体発光素子上に、蛍光体を含有する光変換層が形成され、その上に光散乱粒子を含有する光散乱層が形成された、実施例7の光半導体発光装置7を作製した。
なお、光変換層における黄色蛍光体の含有量は20質量%であり、光散乱層における光散乱粒子の含有量は2質量%であった。また、得られた光散乱層は外部空気層に対して凸状であった。
得られた光半導体発光装置7の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 7)
Phenyl silicone resin (OE-6330 manufactured by Toray Dow Corning Co., Ltd., refractive index 1.53, A / B mixture ratio = 1/4) 15 g (A 3 g, B 12 g), yellow phosphor (Genelite) 10 g of GLD (Y) -550A) was added, and then mixed and defoamed with a self-revolving mixer to obtain phosphor-containing composition 7.
Next, the phosphor-containing composition 7 was dropped on the light-emitting element of the package including the unsealed blue light semiconductor light-emitting element, and then heated at 150 ° C. for 30 minutes to cure the phosphor-containing composition 7. Subsequently, after dripping the light-scattering composition 7 on the phosphor-containing composition 7 after curing, the light-scattering composition 1 is cured by heating at 150 ° C. for 90 minutes to completely cure the phosphor-containing composition 7. Cured. Thereby, the optical semiconductor light emitting device 7 of Example 7 in which the light conversion layer containing the phosphor was formed on the optical semiconductor light emitting element and the light scattering layer containing the light scattering particles was formed thereon was produced. did.
In addition, content of the yellow fluorescent substance in a light conversion layer was 20 mass%, and content of the light-scattering particle in a light-scattering layer was 2 mass%. The obtained light scattering layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 7 were measured and evaluated as described above. The results are shown in Table 1 below.

参考例8]
(表面修飾ジルコニア分散液8の作製)
表面修飾ジルコニア分散液の作製において、ジルコニア粒子1に代えてジルコニア粒子4を用いた他は実施例1と同様にして、表面修飾ジルコニア分散液8を作製した。
表面修飾材料による表面修飾量は、ジルコニア粒子4の質量に対して40質量%であり、メトキシ基含有メチルフェニルシリコーンレジンとビニルトリメトキシシランとの質量比は1対1であった。また、得られた表面修飾ジルコニア分散液8は、やや白濁した透明であった。
[ Reference Example 8]
(Preparation of surface-modified zirconia dispersion 8)
A surface-modified zirconia dispersion 8 was prepared in the same manner as in Example 1 except that zirconia particles 4 were used instead of zirconia particles 1 in the preparation of the surface-modified zirconia dispersion.
The surface modification amount by the surface modifying material was 40% by mass with respect to the mass of the zirconia particles 4, and the mass ratio of the methoxy group-containing methylphenylsilicone resin and vinyltrimethoxysilane was 1: 1. The obtained surface-modified zirconia dispersion 8 was slightly cloudy and transparent.

(光散乱組成物8の作製)
光散乱組成物の作製において、表面修飾ジルコニア分散液1に代えて表面修飾ジルコニア分散液8を用いた他は実施例1と同様にして、光散乱組成物8を作製した。得られた光散乱組成物8は、やや白濁しており半透明であった。この光散乱組成物8の透過率を前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composition 8)
In the production of the light scattering composition, a light scattering composition 8 was produced in the same manner as in Example 1, except that the surface modified zirconia dispersion 1 was used instead of the surface modified zirconia dispersion 1. The obtained light scattering composition 8 was slightly cloudy and translucent. The transmittance of the light scattering composition 8 was measured and evaluated as described above. The results are shown in Table 1 below.

(光散乱複合体8の作製)
光散乱複合体の作製において、光散乱組成物1に代えて光散乱組成物8を用いた他は実施例1と同様にして、光散乱複合体8を作製した。得られた光散乱複合体8の透過率を、前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composite 8)
In the production of the light scattering composite, a light scattering composite 8 was produced in the same manner as in Example 1 except that the light scattering composition 8 was used instead of the light scattering composition 1. The transmittance of the obtained light scattering composite 8 was measured and evaluated as described above. The results are shown in Table 1 below.

(光半導体発光装置8の作製)
光半導体発光装置の作製において、光散乱組成物1に代えて光散乱組成物8を用いた他は実施例1と同様にして、光半導体発光装置8を作製した。これにより、光半導体発光素子上に、光散乱粒子と蛍光体とを含むと共に、蛍光体粒子を光半導体発光素子の近傍に存在させた光散乱変換層が形成された、参考例8の光半導体発光装置8を得た。
なお、光散乱変換層における光散乱粒子の含有量は0.5質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置8の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 8)
A photo semiconductor light emitting device 8 was produced in the same manner as in Example 1 except that the light scattering composition 8 was used in place of the light scattering composition 1 in the production of the photo semiconductor light emitting device. Thus, the optical semiconductor of Reference Example 8 in which the light-scattering conversion layer including the light-scattering particles and the phosphor and having the phosphor particles in the vicinity of the optical semiconductor light-emitting element is formed on the optical semiconductor light-emitting element. A light emitting device 8 was obtained.
In addition, the content of the light scattering particles in the light scattering conversion layer was 0.5% by mass, and the content of the yellow phosphor was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 8 were measured and evaluated as described above. The results are shown in Table 1 below.

[実施例9]
(表面修飾ジルコニア分散液9の作製)
表面修飾ジルコニア分散液の作製において、ジルコニア粒子1に代えてジルコニア粒子5を用い、トルエンの使用量を87g、メトキシ基含有メチルフェニルシリコーンレジンの使用量を1.5g、アルケニル基(ビニル基)含有修飾材料としてのビニルトリメトキシシランの使用量を1.5gに変更した他は実施例1と同様にして、表面修飾ジルコニア分散液9を作製した。
表面修飾材料による表面修飾量は、ジルコニア粒子1の質量に対して30質量%であり、メトキシ基含有メチルフェニルシリコーンレジンとビニルトリメトキシシランとの質量比は1対1であった。また、得られた表面修飾ジルコニア分散液9はやや白濁した透明であった。
[Example 9]
(Preparation of surface-modified zirconia dispersion 9)
In the preparation of the surface-modified zirconia dispersion, zirconia particles 5 are used instead of zirconia particles 1, the amount of toluene used is 87 g, the amount of methoxy group-containing methylphenylsilicone resin used is 1.5 g, and the alkenyl group (vinyl group) is contained. A surface-modified zirconia dispersion 9 was prepared in the same manner as in Example 1 except that the amount of vinyltrimethoxysilane used as the modifying material was changed to 1.5 g.
The surface modification amount by the surface modifying material was 30% by mass with respect to the mass of the zirconia particles 1, and the mass ratio of the methoxy group-containing methylphenylsilicone resin and vinyltrimethoxysilane was 1: 1. Further, the obtained surface-modified zirconia dispersion 9 was slightly cloudy and transparent.

(光散乱組成物9の作製)
4gの表面修飾ジルコニア分散液9に対して、フェニルシリコーン樹脂(東レ・ダウコーニング社製 OE−6330、屈折率1.53、A液/B液配合比=1/4)159.48g(A液31.90g、B液127.58g)を加え、撹拌した。その後、混合物から減圧乾燥によりトルエンを除去し、表面修飾ジルコニア粒子とフェニルシリコーン樹脂とを含有した光散乱組成物9を作製した。得られた光散乱組成物9はほぼ透明であった。この光散乱組成物9の透過率を前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composition 9)
To 4 g of the surface-modified zirconia dispersion 9, 159.48 g of phenyl silicone resin (OE-6330 manufactured by Toray Dow Corning Co., Ltd., refractive index 1.53, A / B mixture ratio = 1/4) 31.90 g and B liquid 127.58 g) were added and stirred. Thereafter, toluene was removed from the mixture by drying under reduced pressure to prepare a light scattering composition 9 containing surface-modified zirconia particles and phenyl silicone resin. The obtained light scattering composition 9 was almost transparent. The transmittance of the light scattering composition 9 was measured and evaluated as described above. The results are shown in Table 1 below.

(光散乱複合体9の作製)
光散乱複合体の作製において、光散乱組成物1に代えて光散乱組成物9を用いた他は実施例1と同様にして、光散乱複合体9を作製した。得られた光散乱複合体9の透過率を、前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composite 9)
A light scattering composite 9 was prepared in the same manner as in Example 1 except that the light scattering composition 9 was used instead of the light scattering composition 1 in the preparation of the light scattering composite. The transmittance of the obtained light scattering composite 9 was measured and evaluated as described above. The results are shown in Table 1 below.

(光半導体発光装置9の作製)
光半導体発光装置の作製において、光散乱組成物1に代えて光散乱組成物9を用いた他は実施例1と同様にして、光半導体発光装置9を作製した。これにより、光半導体発光素子上に、光散乱粒子と蛍光体とを含むと共に、蛍光体粒子を光半導体発光素子の近傍に存在させた光散乱変換層が形成された、実施例9の光半導体発光装置9を得た。
なお、光散乱変換層における光散乱粒子の含有量は0.2質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置9の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 9)
In the production of the optical semiconductor light emitting device, the optical semiconductor light emitting device 9 was produced in the same manner as in Example 1 except that the light scattering composition 9 was used in place of the light scattering composition 1. Thus, the optical semiconductor of Example 9 in which the light-scattering conversion layer including the light-scattering particles and the phosphor and having the phosphor particles in the vicinity of the optical semiconductor light-emitting element was formed on the optical semiconductor light-emitting element. A light emitting device 9 was obtained.
The light scattering particle content in the light scattering conversion layer was 0.2% by mass, and the yellow phosphor content was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 9 were measured and evaluated as described above. The results are shown in Table 1 below.

[比較例1]
(マトリックス樹脂の評価)
比較例1及び2は、マトリックス樹脂中に光散乱粒子を含有させていない。そこで、光散乱複合体に代えてマトリックス樹脂自体の透過率を、光散乱複合体と同様に測定し評価した。
比較例1では、フェニルシリコーン樹脂(東レ・ダウコーニング社製 OE−6330、屈折率1.53、A液/B液配合比=1/4)7.6g(A液1.5g、B液6.1g)を自公転式ミキサーで混合、脱泡した後、得られた組成物を、各実施例の光散乱組成物と同様に測定し評価した。また、得られた組成物を深さ1mmの凹状の型に流し込み、150℃で2時間加熱硬化させて、厚さ1mmのマトリックス樹脂硬化体を作製し、このマトリックス樹脂硬化体を、実施例の光散乱複合体と同様に測定し評価した。結果を下記表1に示す。
[Comparative Example 1]
(Evaluation of matrix resin)
Comparative Examples 1 and 2 do not contain light scattering particles in the matrix resin. Therefore, instead of the light scattering composite, the transmittance of the matrix resin itself was measured and evaluated in the same manner as the light scattering composite.
In Comparative Example 1, 7.6 g of phenyl silicone resin (OE-6330 manufactured by Toray Dow Corning Co., Ltd., refractive index 1.53, A / B mixture ratio = 1/4) (A solution 1.5 g, B solution 6) 0.1 g) was mixed and defoamed with a self-revolving mixer, and the obtained composition was measured and evaluated in the same manner as the light-scattering composition of each Example. Further, the obtained composition was poured into a concave mold having a depth of 1 mm and cured by heating at 150 ° C. for 2 hours to prepare a cured matrix resin having a thickness of 1 mm. Measurement and evaluation were conducted in the same manner as the light scattering complex. The results are shown in Table 1 below.

(光半導体発光装置101の作製)
フェニルシリコーン樹脂(東レ・ダウコーニング社製 OE−6330、屈折率1.53、A液/B液配合比=1/4)7.6g(A液1.5g、B液6.1g)に、黄色蛍光体(Genelite製 GLD(Y)−550A)を1g加え、その後、自公転式ミキサーで混合、脱泡した。次いで未封止の青色光半導体発光素子を備えたパッケージの発光素子上に蛍光体含有フェニルシリコーン樹脂組成物を滴下し、さらに蛍光体を含有していない当該フェニルシリコーン樹脂組成物を滴下し、150℃で2時間、加熱硬化させた。これにより、光半導体発光素子上に、蛍光体を含有する光変換層が形成された、比較例1の光半導体発光装置101を作製した。
なお、光変換層における黄色蛍光体の含有量は11.3質量%であった。また、得られた光変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置101の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 101)
To 7.6 g (A liquid 1.5 g, B liquid 6.1 g), phenyl silicone resin (OE-6330 manufactured by Toray Dow Corning Co., Ltd., refractive index 1.53, A liquid / B liquid mixture ratio = 1/4) 1 g of yellow phosphor (GLD (Y) -550A manufactured by Genelite) was added, and then mixed and defoamed with a self-revolving mixer. Next, a phosphor-containing phenylsilicone resin composition is dropped on a light-emitting element of a package including an unsealed blue light semiconductor light-emitting element, and the phenylsilicone resin composition not containing a phosphor is further dropped. Heat curing was carried out at 2 ° C. for 2 hours. Thereby, the optical semiconductor light-emitting device 101 of the comparative example 1 by which the light conversion layer containing a fluorescent substance was formed on the optical semiconductor light-emitting element was produced.
In addition, content of the yellow fluorescent substance in a light conversion layer was 11.3 mass%. Moreover, the obtained light conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 101 were measured and evaluated as described above. The results are shown in Table 1 below.

(マトリックス樹脂の評価)
フェニルシリコーン樹脂の代わりにジメチルシリコーン樹脂(東レ・ダウコーニング社製 OE−6336、屈折率1.41 A液/B液配合比=1/1)を用いた他は比較例1と同様にして、マトリックス樹脂硬化体の透過率を測定し評価した。結果を下記表1に示す。
(Evaluation of matrix resin)
In the same manner as in Comparative Example 1, except that dimethyl silicone resin (OE-6336 manufactured by Toray Dow Corning Co., Ltd., refractive index 1.41 A liquid / B liquid blending ratio = 1/1) was used instead of phenyl silicone resin. The transmittance of the cured matrix resin was measured and evaluated. The results are shown in Table 1 below.

(光半導体発光装置102の作製)
[比較例2]
光半導体発光装置の作製において、フェニルシリコーン樹脂に代えてジメチルシリコーン樹脂(東レ・ダウコーニング社製 OE−6336、屈折率1.41 A液/B液配合比=1/1)7.6g(A液3.8g、B液3.8g)を用いた他は比較例1と同様にして、光半導体発光装置102を作製した。
なお、光変換層における黄色蛍光体の含有量は11.3質量%であった。また、得られた光変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置102の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 102)
[Comparative Example 2]
In the production of an optical semiconductor light emitting device, dimethyl silicone resin (OE-6336 manufactured by Toray Dow Corning Co., Ltd., refractive index 1.41 A / B mixture ratio = 1/1) instead of phenyl silicone resin 7.6 g (A The optical semiconductor light emitting device 102 was produced in the same manner as in Comparative Example 1 except that the liquid 3.8 g and the liquid B 3.8 g) were used.
In addition, content of the yellow fluorescent substance in a light conversion layer was 11.3 mass%. Moreover, the obtained light conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 102 were measured and evaluated as described above. The results are shown in Table 1 below.

[比較例3]
(表面修飾ジルコニア分散液103の作製)
表面修飾ジルコニア分散液の作製において、ジルコニア粒子1に代えてジルコニア粒子3を用いた他は実施例1と同様にして、表面修飾ジルコニア分散液103を作製した。
表面修飾材料による表面修飾量は、ジルコニア粒子3の質量に対して40質量%であり、メトキシ基含有メチルフェニルシリコーンレジンとビニルトリメトキシシランとの質量比は1対1であった。また、得られた表面修飾ジルコニア分散液103は透明であった。
[Comparative Example 3]
(Preparation of surface-modified zirconia dispersion 103)
In the preparation of the surface-modified zirconia dispersion, a surface-modified zirconia dispersion 103 was prepared in the same manner as in Example 1 except that the zirconia particles 3 were used instead of the zirconia particles 1.
The surface modification amount by the surface modifying material was 40% by mass with respect to the mass of the zirconia particles 3, and the mass ratio of the methoxy group-containing methylphenylsilicone resin and vinyltrimethoxysilane was 1: 1. Further, the obtained surface-modified zirconia dispersion 103 was transparent.

(光散乱組成物103の作製)
光散乱組成物の作製において、表面修飾ジルコニア分散液1に代えて表面修飾ジルコニア分散液103を用いた他は実施例1と同様にして、光散乱組成物103を作製した。得られた光散乱組成物103は透明であった。この光散乱組成物103の透過率を前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composition 103)
A light scattering composition 103 was prepared in the same manner as in Example 1 except that the surface-modified zirconia dispersion liquid 1 was used instead of the surface-modified zirconia dispersion liquid 1 in the preparation of the light scattering composition. The obtained light scattering composition 103 was transparent. The transmittance of the light scattering composition 103 was measured and evaluated as described above. The results are shown in Table 1 below.

(光散乱複合体103の作製)
光散乱複合体の作製において、光散乱組成物1に代えて光散乱組成物103を用いた他は実施例1と同様にして、光散乱複合体103を作製した。得られた光散乱複合体103の透過率を、前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composite 103)
A light scattering composite 103 was prepared in the same manner as in Example 1 except that the light scattering composition 103 was used instead of the light scattering composition 1 in the preparation of the light scattering composite. The transmittance of the obtained light scattering composite 103 was measured and evaluated as described above. The results are shown in Table 1 below.

(光半導体発光装置103の作製)
光半導体発光装置の作製において、光散乱組成物1に代えて光散乱組成物103を用いた他は実施例1と同様にして、光半導体発光装置103を作製した。これにより、光半導体発光素子上に、光散乱粒子と蛍光体とを含むと共に、蛍光体粒子を光半導体発光素子の近傍に存在させた光散乱変換層が形成された、比較例3の光半導体発光装置103を得た。
なお、光散乱変換層における光散乱粒子の含有量は0.5質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置103の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 103)
A photo semiconductor light emitting device 103 was produced in the same manner as in Example 1 except that the light scattering composition 103 was used instead of the light scattering composition 1 in the production of the photo semiconductor light emitting device. As a result, the optical semiconductor of Comparative Example 3, in which the light scattering conversion layer including the light scattering particles and the phosphor and having the phosphor particles in the vicinity of the optical semiconductor light emitting element is formed on the optical semiconductor light emitting element. A light emitting device 103 was obtained.
In addition, the content of the light scattering particles in the light scattering conversion layer was 0.5% by mass, and the content of the yellow phosphor was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 103 were measured and evaluated as described above. The results are shown in Table 1 below.

[比較例4]
(表面修飾ジルコニア分散液104の作製)
表面修飾ジルコニア分散液の作製において、アルケニル基含有修飾材料に代えて飽和脂肪酸であるステアリン酸を用いたこと、またビーズミルの撹拌時間を5時間に変更した他は実施例1と同様にして、表面修飾ジルコニア分散液104を作製した。なお、ステアリン酸は飽和脂肪酸であり、そのカルボキシル基はジルコニア粒子との結合に使用されてしまうから、ジルコニア粒子結合後のステアリン酸はアルキル基しか有しておらず、アルケニル基、H−Si基、アルコキシ基のいずれも有していない。
表面修飾材料による表面修飾量は、ジルコニア粒子1の質量に対して40質量%であった。また、得られた表面修飾ジルコニア分散液104は透明であった。
[Comparative Example 4]
(Preparation of surface-modified zirconia dispersion 104)
In the preparation of the surface-modified zirconia dispersion, the same procedure as in Example 1 was used except that stearic acid, which is a saturated fatty acid, was used instead of the alkenyl group-containing modifying material, and that the stirring time of the bead mill was changed to 5 hours. A modified zirconia dispersion 104 was prepared. Since stearic acid is a saturated fatty acid and its carboxyl group is used for bonding with zirconia particles, the stearic acid after bonding with zirconia particles has only an alkyl group, an alkenyl group, an H-Si group. And none of the alkoxy groups.
The amount of surface modification by the surface modifying material was 40% by mass with respect to the mass of the zirconia particles 1. Further, the obtained surface-modified zirconia dispersion 104 was transparent.

(光散乱組成物104の作製)
光散乱組成物の作製において、表面修飾ジルコニア分散液1に代えて表面修飾ジルコニア分散液104を用いた他は実施例1と同様にして、光散乱組成物104を作製した。得られた光散乱組成物104は、やや白濁しており半透明であった。この光散乱組成物104の透過率を前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composition 104)
The light scattering composition 104 was prepared in the same manner as in Example 1 except that the surface-modified zirconia dispersion liquid 1 was used instead of the surface-modified zirconia dispersion liquid 1 in the preparation of the light scattering composition. The obtained light-scattering composition 104 was slightly cloudy and translucent. The transmittance of the light scattering composition 104 was measured and evaluated as described above. The results are shown in Table 1 below.

(光散乱複合体104の作製)
光散乱複合体の作製において、光散乱組成物1に代えて光散乱組成物104を用いた他は実施例1と同様にして、光散乱複合体104を作製した。得られた光散乱複合体104の透過率を、前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composite 104)
A light scattering composite 104 was prepared in the same manner as in Example 1 except that the light scattering composition 104 was used instead of the light scattering composition 1 in the preparation of the light scattering composite. The transmittance of the obtained light scattering composite 104 was measured and evaluated as described above. The results are shown in Table 1 below.

(光半導体発光装置104の作製)
光半導体発光装置の作製において、光散乱組成物1に代えて光散乱組成物104を用いた他は実施例1と同様にして、光半導体発光装置104を作製した。これにより、光半導体発光素子上に、光散乱粒子と蛍光体とを含むと共に、蛍光体粒子を光半導体発光素子の近傍に存在させた光散乱変換層が形成された、比較例4の光半導体発光装置104を得た。
なお、光散乱変換層における光散乱粒子の含有量は0.5質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置104の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 104)
A photo semiconductor light emitting device 104 was produced in the same manner as in Example 1 except that the light scattering composition 104 was used in place of the light scattering composition 1 in the production of the photo semiconductor light emitting device. Thus, the optical semiconductor of Comparative Example 4 in which the light scattering conversion layer including the light scattering particles and the phosphor and having the phosphor particles in the vicinity of the optical semiconductor light emitting element is formed on the optical semiconductor light emitting element. The light emitting device 104 was obtained.
In addition, the content of the light scattering particles in the light scattering conversion layer was 0.5% by mass, and the content of the yellow phosphor was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 104 were measured and evaluated as described above. The results are shown in Table 1 below.

[比較例5]
(光散乱組成物105の作製)
比較例105の表面修飾シリカ分散液としては、参考例5の表面修飾シリカ分散液をそのまま使用した。
この表面修飾シリカ分散液200gに対して、ジメチルシリコーン樹脂(東レ・ダウコーニング社製 OE−6336、屈折率1.41、A液/B液配合比=1/1)88g(A液44g、B液44g)を加え、撹拌した。その後、混合物から減圧乾燥によりトルエンを除去し、表面修飾シリカ粒子とジメチルシリコーン樹脂とを含有した光散乱組成物105を得た。得られた光散乱組成物105はほぼ透明であった。この光散乱組成物105の透過率を前記の通り測定し評価した。結果を下記表1に示す。

[Comparative Example 5]
(Preparation of light scattering composition 105)
As the surface-modified silica dispersion of Comparative Example 105, the surface-modified silica dispersion of Reference Example 5 was used as it was.
To 200 g of this surface-modified silica dispersion, 88 g of dimethyl silicone resin (OE-6336 manufactured by Toray Dow Corning Co., Ltd., refractive index 1.41, A / B mixture ratio = 1/1) (A 44 g, B 44 g) of liquid was added and stirred. Thereafter, toluene was removed from the mixture by drying under reduced pressure to obtain a light scattering composition 105 containing surface-modified silica particles and a dimethyl silicone resin. The obtained light scattering composition 105 was almost transparent. The transmittance of the light scattering composition 105 was measured and evaluated as described above. The results are shown in Table 1 below.

(光半導体発光装置105の作製)
光半導体発光装置の作製において、光散乱組成物1に代えて光散乱組成物105を用いた他は実施例1と同様にして、光半導体発光装置105を作製した。これにより、光半導体発光素子上に、光散乱粒子と蛍光体とを含むと共に、蛍光体粒子を光半導体発光素子の近傍に存在させた光散乱変換層が形成された、比較例5の光半導体発光装置105を得た。
なお、光散乱変換層における光散乱粒子の含有量は20質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置105の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 105)
A photo semiconductor light emitting device 105 was produced in the same manner as in Example 1 except that the light scattering composition 105 was used in place of the light scattering composition 1 in the production of the photo semiconductor light emitting device. Thus, the optical semiconductor of Comparative Example 5 in which the light-scattering conversion layer including the light-scattering particles and the phosphor and having the phosphor particles in the vicinity of the optical semiconductor light-emitting element is formed on the optical semiconductor light-emitting element. A light emitting device 105 was obtained.
The light scattering particle content in the light scattering conversion layer was 20% by mass, and the yellow phosphor content was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 105 were measured and evaluated as described above. The results are shown in Table 1 below.

上記表1より、実施例1〜4、6〜7、9、参考例5の光半導体発光装置はすべて、発光スペクトルピーク面積比が比較例1〜4よりも優れていた。つまり、実施例1〜4、6〜、参考例5の光半導体発光装置においては白色光とともに発せられる青色光成分が低減されていた。さらに、実施例1〜4、6〜7、9、参考例5の光半導体発光装置はすべて高輝度であり、特に実施例1〜4の光半導体発光装置は非常に高い輝度を示した。また、参考例8の各値は他の実施例に比べ低下していたが、比較例よりは良かった。これは、他の実施例に比べ平均二次粒子径が大きいためと考えられる。また、比較例5では光学的な特性は悪くなかったが、光散乱粒子の含有量が多いために、特に光散乱組成物の粘度が高くなり、ハンドリングが困難であった。 From the said Table 1, all the optical semiconductor light-emitting devices of Examples 1-4 , 6-7, 9 and Reference Example 5 were excellent in emission spectrum peak area ratio than Comparative Examples 1-4. That is, in the optical semiconductor light emitting devices of Examples 1 to 4 , 6 to 7 and Reference Example 5 , the blue light component emitted together with the white light was reduced. Furthermore, the optical semiconductor light emitting devices of Examples 1 to 4 , 6 to 7 , 9 and Reference Example 5 all had high luminance, and in particular, the optical semiconductor light emitting devices of Examples 1 to 4 exhibited very high luminance. Moreover, although each value of the reference example 8 was falling compared with the other Example, it was better than the comparative example. This is presumably because the average secondary particle size is larger than in other examples. Moreover, although the optical characteristic was not bad in the comparative example 5, since there was much content of light-scattering particle | grains, especially the viscosity of the light-scattering composition became high and handling was difficult.

10 光半導体発光素子
11 封止樹脂層
12 光散乱複合体
13 蛍光体粒子
14 光散乱変換層
15 マトリックス材
16 光変換層
17 光散乱層
18 外部空気相界面
DESCRIPTION OF SYMBOLS 10 Optical semiconductor light-emitting element 11 Sealing resin layer 12 Light scattering composite body 13 Phosphor particle 14 Light scattering conversion layer 15 Matrix material 16 Light conversion layer 17 Light scattering layer 18 External air phase interface

Claims (7)

光半導体発光素子と、蛍光体粒子と、光散乱粒子及びマトリックス樹脂を含有する光散乱複合体と、を有し、白色光を発する光半導体発光装置であって、
前記光散乱複合体が前記蛍光体粒子を含むことで光散乱変換層を形成しており、前記光散乱変換層における前記光散乱粒子の含有量が0.01質量%以上かつ10質量%以下であり、
前記光散乱粒子が、アルケニル基、H−Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料によって表面修飾され、前記光半導体発光素子の発光波長領域において光の吸収の無い材質からなり、平均一次粒子径3nm以上かつ50nm以下のジルコニア粒子であり、
前記光散乱変換層中では、前記光散乱粒子の少なくとも一部が会合粒子を形成しており、前記会合粒子を含む粒子の平均二次粒子径が前記平均一次粒子径より大きくかつ1000nm以下である光半導体発光装置。
A light-semiconductor light-emitting device that emits white light, comprising a light-semiconductor light-emitting element, a phosphor particle, and a light-scattering complex containing light-scattering particles and a matrix resin,
The light scattering composite includes the phosphor particles to form a light scattering conversion layer, and the content of the light scattering particles in the light scattering conversion layer is 0.01% by mass or more and 10% by mass or less. Yes,
The light-scattering particles are surface-modified with a surface-modifying material having one or more functional groups selected from alkenyl groups, H-Si groups, and alkoxy groups, and absorb light in the emission wavelength region of the optical semiconductor light-emitting device. Zirconia particles having an average primary particle diameter of 3 nm or more and 50 nm or less.
In the light scattering conversion layer, at least a part of the light scattering particles form associated particles, and the average secondary particle size of the particles including the associated particles is larger than the average primary particle size and 1000 nm or less. Optical semiconductor light emitting device.
光半導体発光素子と、蛍光体粒子と、光散乱粒子及びマトリックス樹脂を含有する光散乱複合体と、を有し、白色光を発する光半導体発光装置であって、
前記蛍光体粒子を含む層により光変換層が形成され、
前記光変換層上に、前記光散乱複合体からなる光散乱層が設けられてなり、前記光散乱層における前記光散乱粒子の含有量が0.01質量%以上かつ10質量%以下であり、
前記光散乱粒子が、アルケニル基、H−Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料によって表面修飾され、前記光半導体発光素子の発光波長領域において光の吸収の無い材質からなり、平均一次粒子径3nm以上かつ50nm以下のジルコニア粒子であり、
前記光散乱層中では、前記光散乱粒子の少なくとも一部が会合粒子を形成しており、前記会合粒子を含む粒子の平均二次粒子径が前記平均一次粒子径より大きくかつ1000nm以下である光半導体発光装置。
A light-semiconductor light-emitting device that emits white light, comprising a light-semiconductor light-emitting element, a phosphor particle, and a light-scattering complex containing light-scattering particles and a matrix resin,
A light conversion layer is formed by the layer containing the phosphor particles,
A light scattering layer composed of the light scattering composite is provided on the light conversion layer, and the content of the light scattering particles in the light scattering layer is 0.01 mass% or more and 10 mass% or less,
The light-scattering particles are surface-modified with a surface-modifying material having one or more functional groups selected from alkenyl groups, H-Si groups, and alkoxy groups, and absorb light in the emission wavelength region of the optical semiconductor light-emitting device. Zirconia particles having an average primary particle diameter of 3 nm or more and 50 nm or less.
In the light scattering layer, light in which at least a part of the light scattering particles form associated particles, and the average secondary particle size of the particles including the associated particles is larger than the average primary particle size and 1000 nm or less. Semiconductor light emitting device.
前記光散乱複合体は、波長460nmにおける積分透過率が直線透過率よりも高く、かつその差(積分透過率−直線透過率)が25ポイント以上である請求項1又は2に記載の光半導体発光装置。   3. The optical semiconductor light emitting device according to claim 1, wherein the light scattering composite has an integrated transmittance at a wavelength of 460 nm higher than a linear transmittance, and a difference (integrated transmittance−linear transmittance) of 25 points or more. apparatus. 請求項1〜3のいずれか1項に記載の光半導体発光装置を具備してなる照明器具。   The lighting fixture which comprises the optical semiconductor light-emitting device of any one of Claims 1-3. 請求項1〜3のいずれか1項に記載の光半導体発光装置を具備してなる表示装置。   A display device comprising the optical semiconductor light-emitting device according to claim 1. 光半導体発光素子と、蛍光体粒子と、光散乱粒子及びマトリックス樹脂を含有する光散乱複合体と、を有し、白色光を発する光半導体発光装置の製造方法であって、
前記光散乱粒子がジルコニア粒子であり、
前記光散乱複合体は単分散状態の光散乱粒子とマトリックス樹脂とを含有する光散乱組成物を硬化することで形成され、当該光散乱組成物の硬化時において、単分散状態の光散乱粒子の少なくとも一部を会合させて、マトリックス樹脂中で会合粒子を形成し、前記マトリックス樹脂中における前記会合粒子を含む粒子の平均二次粒子径を、前記光散乱粒子の平均一次粒子径の3nm以上かつ50nm以下よりも大きくかつ1000nm以下とする光半導体発光装置の製造方法。
A method for producing a photosemiconductor light-emitting device that emits white light, comprising a light-semiconductor light-emitting element, a phosphor particle, and a light-scattering composite containing light-scattering particles and a matrix resin,
The light scattering particles are zirconia particles;
The light scattering composite is formed by curing a light scattering composition containing monodispersed light scattering particles and a matrix resin, and when the light scattering composition is cured, the monodispersed light scattering particles Associating at least a part to form associated particles in the matrix resin, and the average secondary particle diameter of the particles including the associated particles in the matrix resin is 3 nm or more of the average primary particle diameter of the light scattering particles and A method of manufacturing an optical semiconductor light emitting device that is greater than 50 nm and less than 1000 nm.
前記光散乱組成物は、波長460nmにおける積分透過率が40%以上かつ95%以下であり、波長550nmにおける積分透過率が50%以上である請求項6に記載の光半導体発光装置の製造方法。

The method for producing an optical semiconductor light-emitting device according to claim 6, wherein the light scattering composition has an integrated transmittance of 40% or more and 95% or less at a wavelength of 460 nm and an integrated transmittance of 50% or more at a wavelength of 550 nm.

JP2014209267A 2013-10-11 2014-10-10 Optical semiconductor light emitting device, lighting fixture, display device, and manufacturing method of optical semiconductor light emitting device Active JP6344190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014209267A JP6344190B2 (en) 2013-10-11 2014-10-10 Optical semiconductor light emitting device, lighting fixture, display device, and manufacturing method of optical semiconductor light emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013214246 2013-10-11
JP2013214246 2013-10-11
JP2014209267A JP6344190B2 (en) 2013-10-11 2014-10-10 Optical semiconductor light emitting device, lighting fixture, display device, and manufacturing method of optical semiconductor light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018038768A Division JP2018107472A (en) 2013-10-11 2018-03-05 Optical semiconductor light-emitting device, lighting appliance, display device, and method for manufacturing optical semiconductor light-emitting device

Publications (2)

Publication Number Publication Date
JP2015097263A JP2015097263A (en) 2015-05-21
JP6344190B2 true JP6344190B2 (en) 2018-06-20

Family

ID=53374414

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014209267A Active JP6344190B2 (en) 2013-10-11 2014-10-10 Optical semiconductor light emitting device, lighting fixture, display device, and manufacturing method of optical semiconductor light emitting device
JP2018038768A Pending JP2018107472A (en) 2013-10-11 2018-03-05 Optical semiconductor light-emitting device, lighting appliance, display device, and method for manufacturing optical semiconductor light-emitting device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018038768A Pending JP2018107472A (en) 2013-10-11 2018-03-05 Optical semiconductor light-emitting device, lighting appliance, display device, and method for manufacturing optical semiconductor light-emitting device

Country Status (1)

Country Link
JP (2) JP6344190B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7087796B2 (en) * 2017-08-04 2022-06-21 住友大阪セメント株式会社 Dispersions, compositions, encapsulants, light emitting devices, lighting fixtures and display devices
JP2020002305A (en) * 2018-06-29 2020-01-09 住友大阪セメント株式会社 Composition, sealing member, light-emitting device, lighting apparatus and display device
EP3830216B1 (en) * 2018-07-27 2023-07-05 Materion Corporation Reflective color correction for phosphor illumination systems
JP7215198B2 (en) * 2019-02-06 2023-01-31 住友大阪セメント株式会社 Dispersion liquid, composition, sealing member, light-emitting device, lighting equipment, display device, and method for producing dispersion liquid
JP7413881B2 (en) * 2020-03-26 2024-01-16 住友大阪セメント株式会社 Dispersion liquid, composition, sealing member, light emitting device, lighting equipment, display device, and method for producing dispersion liquid
JP7559478B2 (en) * 2020-09-30 2024-10-02 住友大阪セメント株式会社 Dispersion liquid, composition, sealing member, light-emitting device, lighting fixture, display device
CN114397794A (en) * 2022-02-10 2022-04-26 深圳光峰科技股份有限公司 Optical system and projection apparatus
WO2023190493A1 (en) * 2022-03-31 2023-10-05 住友大阪セメント株式会社 Dispersion liquid, composition, sealing member, light emitting device, lighting equipment, display device, and method for producing dispersion liquid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5248071B2 (en) * 2006-09-26 2013-07-31 株式会社日本触媒 Resin composition for optical semiconductor encapsulation
JP5374857B2 (en) * 2007-10-23 2013-12-25 三菱化学株式会社 Method for producing phosphor-containing composition and method for producing semiconductor light-emitting device
KR20100080423A (en) * 2008-12-30 2010-07-08 삼성엘이디 주식회사 Light emitting device package and method of fabricating thereof
DE102010025608A1 (en) * 2010-06-30 2012-01-05 Osram Opto Semiconductors Gmbh Optoelectronic component

Also Published As

Publication number Publication date
JP2015097263A (en) 2015-05-21
JP2018107472A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP6344190B2 (en) Optical semiconductor light emitting device, lighting fixture, display device, and manufacturing method of optical semiconductor light emitting device
JP6724898B2 (en) Light-scattering complex forming composition, light-scattering complex and method for producing the same
JP6003402B2 (en) Optical semiconductor light emitting device, lighting fixture, and display device
JP6079334B2 (en) Optical semiconductor light emitting device, lighting apparatus, display device, and color rendering control method
US8710741B2 (en) Illuminating device
TWI685132B (en) Light emitting device
TWI746876B (en) Dispersion, composition, sealing member, light-emitting device, lighting fixture, display device, and manufacturing method of light-emitting device
JP6287747B2 (en) Light-scattering composition, light-scattering composite, and method for producing the same
TWI746875B (en) Dispersion, composition, sealing member, light-emitting device, lighting fixture, display device, and manufacturing method of light-emitting device
JP6115611B2 (en) Optical semiconductor light emitting device, lighting fixture, and display device
JP2019040978A (en) Method for deciding physical quantity of metal oxide particles in light-emitting device
JP7087796B2 (en) Dispersions, compositions, encapsulants, light emitting devices, lighting fixtures and display devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170328

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170606

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180305

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180507

R150 Certificate of patent or registration of utility model

Ref document number: 6344190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150