JP6287747B2 - Light-scattering composition, light-scattering composite, and method for producing the same - Google Patents

Light-scattering composition, light-scattering composite, and method for producing the same Download PDF

Info

Publication number
JP6287747B2
JP6287747B2 JP2014209266A JP2014209266A JP6287747B2 JP 6287747 B2 JP6287747 B2 JP 6287747B2 JP 2014209266 A JP2014209266 A JP 2014209266A JP 2014209266 A JP2014209266 A JP 2014209266A JP 6287747 B2 JP6287747 B2 JP 6287747B2
Authority
JP
Japan
Prior art keywords
light
particles
light scattering
scattering
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014209266A
Other languages
Japanese (ja)
Other versions
JP2015096950A (en
Inventor
大塚 剛史
剛史 大塚
原田 健司
健司 原田
佐藤 洋一
洋一 佐藤
健児 山口
健児 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2014209266A priority Critical patent/JP6287747B2/en
Publication of JP2015096950A publication Critical patent/JP2015096950A/en
Application granted granted Critical
Publication of JP6287747B2 publication Critical patent/JP6287747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、光散乱組成物、光散乱複合体及びその製造方法に関する。   The present invention relates to a light scattering composition, a light scattering composite, and a method for producing the same.

樹脂中に無機粒子を分散した樹脂成形体は、光を拡散し易いことから、道路標識、看板、照明器具等の光反射板又は光拡散板としてよく用いられている。例えば、照明器具用途においては、光源から発せられた光線を樹脂成形体で反射させて光を拡散したり、光線を樹脂成形体に透過して、光を拡散することがある。特に、指向性の強い光源を用いる場合は、光線が照射される場所のみが明るくなる傾向にあるため、光の散乱性が特に要求される。
指向性の強い光源としては、例えば、発光ダイオード(LED)等の光半導体発光装置が挙げられ、例えば、光を拡散し得る散乱部位が備えられている。
A resin molded body in which inorganic particles are dispersed in a resin is easy to diffuse light, and is therefore often used as a light reflecting plate or a light diffusing plate for road signs, signboards, lighting fixtures and the like. For example, in lighting equipment applications, light emitted from a light source may be reflected by a resin molded body to diffuse light, or light may be transmitted through the resin molded body to diffuse light. In particular, in the case of using a light source with strong directivity, only the place where the light beam is irradiated tends to be bright, and thus light scattering is particularly required.
As a light source with strong directivity, for example, an optical semiconductor light emitting device such as a light emitting diode (LED) can be cited, and for example, a scattering site capable of diffusing light is provided.

散乱部位を備える光半導体発光装置として、白色粉末が塗布された散乱層によって導光板内に光を散乱させて表面輝度を一定とした面状光源(特許文献1)、光源を通過する光を散乱させることで集束、指向、変換させ室内照明に有用とするため白色光を放射状に分散させる方法(特許文献2)、隣り合うLEDデバイスのダークスポットをなくすために封止材に光を散乱させる拡散粒子を含有させる方法(特許文献3)、粒子径2μmから4.5μmの散乱粒子を封止材中で蛍光体と共存させて照明光の色ムラを軽減する方法(特許文献4)が提案されている。また、ルミネッセンス変換素子の後方に多数のナノ粒子を有するフィルタ素子を配置し、不所望な放射線の少なくとも1つのスペクトル部分領域の放射線強度を吸収によって選択的に低減させる方法(特許文献5)が提案されている。   As an optical semiconductor light-emitting device having a scattering portion, a planar light source (Patent Document 1) in which light is scattered in a light guide plate by a scattering layer coated with white powder and the surface brightness is constant, and light passing through the light source is scattered To diffuse, direct, and convert the white light radially to be useful for indoor lighting (Patent Document 2), and to diffuse the light to the sealing material to eliminate the dark spots of adjacent LED devices A method of incorporating particles (Patent Document 3) and a method of reducing scattering unevenness of illumination light by coexisting scattering particles having a particle diameter of 2 μm to 4.5 μm with a phosphor in a sealing material (Patent Document 4) have been proposed. ing. Also proposed is a method (Patent Document 5) in which a filter element having a large number of nanoparticles is arranged behind a luminescence conversion element to selectively reduce the radiation intensity of at least one spectral partial region of unwanted radiation by absorption. Has been.

特許第3116727号公報Japanese Patent No. 3116727 特表2003−515899号公報Special table 2003-515899 gazette 特開2007−317659号公報JP 2007-317659 A 特開2011−150790号公報JP 2011-150790 A 特表2007−507089号公報Special table 2007-507089

しかしながら、いずれも光半導体発光装置から外部に出る光の分布を均一化したり、色ムラを軽減したりすることが目的である。また、特許文献4の粒子径では光半導体発光素子から発光された光の透光性が悪くなり、光半導体発光装置の輝度が低下する問題がある。また、特許文献5のように吸収によって不所望の放射線強度を低減させた場合、光半導体発光装置の輝度が低下することと、放射線が吸収によって熱に変換され周辺材料へのダメージ、光半導体発光素子の熱による発光効率の低下といった問題が生じる。   However, the purpose of each is to make the distribution of light emitted from the optical semiconductor light emitting device uniform or to reduce color unevenness. Further, with the particle size of Patent Document 4, there is a problem that the translucency of light emitted from the optical semiconductor light emitting element is deteriorated and the luminance of the optical semiconductor light emitting device is lowered. In addition, when the undesired radiation intensity is reduced by absorption as in Patent Document 5, the brightness of the optical semiconductor light-emitting device is reduced, and the radiation is converted into heat by absorption to damage peripheral materials, and optical semiconductor light emission. There arises a problem that the luminous efficiency is lowered due to the heat of the element.

本発明は、光の透過性及び散乱性に優れる光散乱組成物、並びに光散乱複合体及びその製造方法を提供することを目的とする。   An object of this invention is to provide the light-scattering composition excellent in the light transmittance and scattering property, a light-scattering composite_body | complex, and its manufacturing method.

本発明者等は、上記課題を解決するために鋭意研究を行った結果、蛍光体粒子が含有されてなる光変換層に特定の光散乱組成物を含有させるか、又は、光変換層上に特定の光散乱組成物を含有する光散乱層を設けることで、白色光とともに発せられる青色光成分を低減させ、輝度を向上させることができる光半導体発光装置が得られることを見出しており、既に出願を行っている(特願2012−187896)。
ここで、同出願の光散乱組成物が光散乱をおこす原因は、光散乱組成物中に含まれる光散乱粒子により生じるレイリー散乱が主要因であると推測される。このため、光散乱粒子の散乱特性、言い換えれば光散乱粒子の状態が変化しない限り、光散乱組成物における光散乱能は光散乱粒子の含有量増加に比例して増加し、よって光半導体発光装置の輝度も光散乱粒子の含有量に比例して向上すると予想される。しかしながら、本発明者等が更に研究を進めた結果、光散乱粒子の含有量を一定値以下に減らすことにより、光の透過性及び散乱性に優れることを見出し、本発明に想到した。すなわち、本発明は下記の通りである。
As a result of earnest research to solve the above problems, the present inventors have made the light conversion layer containing the phosphor particles contain a specific light scattering composition or on the light conversion layer. We have found that by providing a light-scattering layer containing a specific light-scattering composition, a light-semiconductor light-emitting device capable of reducing the blue light component emitted with white light and improving the luminance can be obtained. An application has been filed (Japanese Patent Application No. 2012-187896).
Here, it is assumed that the cause of the light scattering of the light scattering composition of the same application is Rayleigh scattering caused by the light scattering particles contained in the light scattering composition. For this reason, unless the scattering property of the light scattering particles, in other words, the state of the light scattering particles is changed, the light scattering ability in the light scattering composition increases in proportion to the increase in the content of the light scattering particles. The luminance is expected to improve in proportion to the content of the light scattering particles. However, as a result of further research by the present inventors, the inventors have found that the content of the light scattering particles is reduced to a certain value or less, and that the light transmission and scattering properties are excellent, and the present invention has been conceived. That is, the present invention is as follows.

[1] アルケニル基、H−Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料によって表面修飾された無機酸化物粒子を含む、平均一次粒子径3nm以上かつ50nm以下の光散乱粒子と、マトリックス樹脂組成物と、を含有し、前記光散乱粒子の含有量が0.01質量%以上かつ10質量%以下である光散乱組成物。
[2] 上記[1]に記載の光散乱組成物を硬化してなる光散乱複合体。
[3] 前記光散乱粒子の少なくとも一部が会合粒子を形成しており、前記会合粒子を含む粒子の平均二次粒子径が前記平均一次粒子径より大きくかつ1000nm以下である上記[2]に記載の光散乱複合体。
[4] アルケニル基、H−Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料によって表面修飾された無機酸化物粒子を含む、平均一次粒子径3nm以上かつ50nm以下の光散乱粒子と、マトリックス樹脂組成物と、を含有し、前記光散乱粒子の含有量が0.01質量%以上かつ10質量%以下である光散乱組成物を硬化してなる光散乱複合体の製造方法であって、当該光散乱組成物の硬化時において、単分散状態の光散乱粒子の少なくとも一部を会合させて、マトリックス樹脂中で会合粒子を形成する光散乱複合体の製造方法。
[1] Average primary particle diameter of 3 nm or more and 50 nm or less, including inorganic oxide particles surface-modified with a surface modifying material having one or more functional groups selected from alkenyl groups, H—Si groups, and alkoxy groups Light scattering particles and a matrix resin composition, wherein the content of the light scattering particles is 0.01% by mass or more and 10% by mass or less.
[2] A light scattering composite obtained by curing the light scattering composition according to [1].
[3] In the above [2], at least a part of the light scattering particles form associated particles, and an average secondary particle diameter of the particles including the associated particles is larger than the average primary particle diameter and 1000 nm or less. The light scattering complex as described.
[4] Average primary particle diameter of 3 nm or more and 50 nm or less, including inorganic oxide particles surface-modified with a surface modifying material having one or more functional groups selected from alkenyl groups, H—Si groups, and alkoxy groups A light scattering composite comprising: a light scattering particle comprising: a matrix resin composition; and a light scattering composition obtained by curing a light scattering composition having a content of the light scattering particles of 0.01% by mass to 10% by mass. A method for producing a light-scattering composite, wherein at least a part of monodispersed light-scattering particles are associated to form associated particles in a matrix resin when the light-scattering composition is cured.

本発明によれば、光の透過性及び散乱性に優れる光散乱組成物、並びに光散乱複合体及びその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the light-scattering composition excellent in the light transmittance and scattering property, a light-scattering composite_body | complex, and its manufacturing method can be provided.

本発明の光散乱組成物を用いて作製された光半導体発光装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the optical semiconductor light-emitting device produced using the light-scattering composition of this invention. 本発明の光散乱組成物を用いて作製された光半導体発光装置の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the optical semiconductor light-emitting device produced using the light-scattering composition of this invention. 本発明の光散乱組成物を用いて作製された光半導体発光装置の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the optical semiconductor light-emitting device produced using the light-scattering composition of this invention. 本発明の光散乱組成物を用いて作製された光半導体発光装置の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the optical semiconductor light-emitting device produced using the light-scattering composition of this invention.

[光散乱組成物]
本発明の光散乱組成物は、アルケニル基、H−Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料によって表面修飾された無機酸化物粒子を含む、平均一次粒子径3nm以上かつ50nm以下の光散乱粒子と、未硬化のマトリックス樹脂組成物と、を含有し、光散乱粒子の含有量が、光散乱組成物全量に対して0.01質量%以上かつ10質量%以下である。
本発明の光散乱組成物は、本発明の効果を損なわない限度において、溶剤、界面活性剤、分散剤、安定化剤、酸化防止剤等を更に含有していてもよい。
[Light scattering composition]
The light scattering composition of the present invention comprises an average primary particle comprising inorganic oxide particles surface-modified with a surface modifying material having one or more functional groups selected from alkenyl groups, H-Si groups, and alkoxy groups Light scattering particles having a diameter of 3 nm or more and 50 nm or less and an uncured matrix resin composition, and the content of the light scattering particles is 0.01% by mass or more and 10% by mass with respect to the total amount of the light scattering composition. % Or less.
The light scattering composition of the present invention may further contain a solvent, a surfactant, a dispersant, a stabilizer, an antioxidant and the like as long as the effects of the present invention are not impaired.

〔光散乱粒子〕
本発明における光散乱粒子は、アルケニル基、H−Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料によって表面修飾された無機酸化物粒子を含み、平均一次粒子径が3nm以上かつ50nm以下である。光散乱粒子は、更に、当該表面修飾材料以外の成分、例えば、界面活性剤、有機酸等により表面処理された無機酸化物粒子や、更には有機樹脂からなる粒子等を含むものであってもよいが、当該表面修飾材料で表面修飾された無機酸化物粒子からなることが好ましい。
(Light scattering particles)
The light scattering particles in the present invention include inorganic oxide particles surface-modified with a surface modification material having one or more functional groups selected from alkenyl groups, H-Si groups, and alkoxy groups, and have an average primary particle size Is 3 nm or more and 50 nm or less. The light scattering particles may further include components other than the surface modifying material, for example, inorganic oxide particles surface-treated with a surfactant, an organic acid, or the like, or particles made of an organic resin. Although it is good, it is preferably composed of inorganic oxide particles surface-modified with the surface-modifying material.

光散乱粒子を構成する無機酸化物粒子としては、本発明の光散乱複合体が使用される波長域において光吸収が無い材質からなる粒子を選択することが好ましい。例えば、近紫外光〜可視光域において光吸収が無い材質としては、ZrO、TiO、ZnO、Al、SiO、CeO等の金属酸化物を挙げることができ、これらの粒子を光散乱粒子として含む光散乱複合体は、白色光半導体発光装置(白色発光ダイオード)に好適に使用できる。
一方、特定の波長に吸収を有する材質を用いて光散乱粒子を形成することにより、光散乱複合体に波長特性を付与することもできる。また、無機酸化物粒子の屈折率を選択することで、光散乱性や光透過性等の調節を行うこともできる。
As the inorganic oxide particles constituting the light scattering particles, it is preferable to select particles made of a material that does not absorb light in the wavelength region in which the light scattering composite of the present invention is used. For example, examples of materials that do not absorb light in the near ultraviolet light to visible light region include metal oxides such as ZrO 2 , TiO 2 , ZnO, Al 2 O 3 , SiO 2 , and CeO 2 , and these particles Can be suitably used for white light semiconductor light emitting devices (white light emitting diodes).
On the other hand, wavelength characteristics can also be imparted to the light scattering composite by forming light scattering particles using a material having absorption at a specific wavelength. In addition, by selecting the refractive index of the inorganic oxide particles, it is possible to adjust the light scattering property, the light transmittance, and the like.

光散乱粒子の平均一次粒子径は、3nm以上かつ50nm以下である。当該平均一次粒子径は、4nm以上かつ40nm以下であることが好ましく、5nm以上かつ20nm以下であることがより好ましい。平均一次粒子径が3nm未満では、散乱効果が小さいため、当該光散乱粒子を含有する光散乱複合体において十分な散乱特性を発現し得ないために、光散乱複合体を設ける効果が得られない。一方、平均一次粒子径が50nmを超えると、特に後述の会合粒子が形成された場合に散乱が大きくなり過ぎ、光散乱複合体内において多重散乱が起こりやすくなることから、光散乱複合体に入射した光が光散乱複合体内に閉じ込められてしまい、やはり光散乱複合体を設ける効果が得られない。   The average primary particle diameter of the light scattering particles is 3 nm or more and 50 nm or less. The average primary particle size is preferably 4 nm or more and 40 nm or less, and more preferably 5 nm or more and 20 nm or less. If the average primary particle diameter is less than 3 nm, the scattering effect is small, and the light scattering composite containing the light scattering particles cannot exhibit sufficient scattering characteristics, and thus the effect of providing the light scattering composite cannot be obtained. . On the other hand, when the average primary particle diameter exceeds 50 nm, the scattering becomes too large especially when the later-described associated particles are formed, and multiple scattering is likely to occur in the light scattering complex. Light is confined in the light scattering complex, and the effect of providing the light scattering complex cannot be obtained.

特に本発明の光散乱複合体は、白色光半導体発光装置に好適に用いられる.この場合における光散乱複合体は、光半導体発光素子で発光し、蛍光体層で波長変換されずにそのまま通過してきた青色ないしは近紫外の発光光成分を、散乱により蛍光体層へ戻す作用と、蛍光体層で波長変換された黄色光等の変換光成分を、できるだけ散乱させずにそのまま外部に取り出す作用の、2つの作用が要求される。
ここで、光散乱粒子の平均一次粒子径が3nm未満の場合、青色ないしは近紫外の発光光成分に対する散乱特性が不十分となるために、青色ないしは近紫外の発光色成分がそのまま(散乱せずに)外部に放射される。このため、蛍光体への入射光量が低下して蛍光体により波長変換された光成分の光量も増加しないため、白色光半導体発光装置の輝度向上が図れない。更には、近年問題となっている青色光による生理的影響が発生しやすくなる。一方、平均一次粒子径が50nmを超えると、青色ないしは近紫外の発光光成分は十分に散乱されるが、それだけでなく、蛍光体層で波長変換された変換光成分も散乱されて白色光半導体発光装置から放射されにくくなるため、やはり輝度が低下する。
すなわち、本発明の光散乱複合体を白色光半導体発光装置に適用した場合においても、光散乱粒子の平均一次粒子径が3nm以上かつ50nm以下であれば、白色光半導体発光装置の輝度向上と青色ないしは近紫外の発光色成分の低減を図ることができ、好適に用いることができる。
In particular, the light scattering composite of the present invention is suitably used for a white light semiconductor light emitting device. In this case, the light scattering composite emits light from the optical semiconductor light-emitting element, and returns blue or near-ultraviolet emission light components that have passed through the phosphor layer without being converted in wavelength to the phosphor layer by scattering, Two actions are required, that is, the action of taking out converted light components such as yellow light whose wavelength has been converted by the phosphor layer as it is without being scattered as much as possible.
Here, when the average primary particle diameter of the light-scattering particles is less than 3 nm, the scattering characteristics with respect to the blue or near-ultraviolet light emission component are insufficient, so that the blue or near-ultraviolet emission color component remains as it is (not scattered). To be radiated to the outside. For this reason, since the amount of light incident on the phosphor decreases and the amount of light of the light component wavelength-converted by the phosphor does not increase, the luminance of the white light semiconductor light emitting device cannot be improved. Furthermore, the physiological influence by blue light which has been a problem in recent years is likely to occur. On the other hand, when the average primary particle diameter exceeds 50 nm, the blue or near-ultraviolet light component is sufficiently scattered, but not only that, but also the converted light component wavelength-converted by the phosphor layer is also scattered, resulting in a white light semiconductor. Since it becomes difficult to radiate | emit from a light-emitting device, a brightness | luminance falls too.
That is, even when the light-scattering composite of the present invention is applied to a white light semiconductor light-emitting device, if the average primary particle diameter of the light-scattering particles is 3 nm or more and 50 nm or less, the brightness improvement of the white light semiconductor light-emitting device and the blue color are achieved. Or the near-ultraviolet emission color component can be reduced, and it can be used suitably.

ここで、本発明における光散乱粒子は、光散乱複合体(硬化体)中において、少なくとも一部が複数個の粒子が会合した会合粒子を形成していることが好ましい。この会合粒子の粒子径は単分散粒子(非会合粒子)の粒子径より大きくなるから、光に対する散乱能も高くなり、よって全粒子が非会合の単分散粒子で形成される場合に比べ、より少量の光散乱粒子で十分な散乱能を有することができるようになる。すなわち、本発明の光散乱組成物を成形してなる光散乱複合体中における光散乱粒子の割合を10質量%以下としても、十分な光散乱特性を得ることができる。例えば、白色光半導体発光装置に用いられる青色光半導体発光素子からの光(波長460nm)において、積分透過率が直線透過率よりも高く、かつその差(積分透過率−直線透過率)を25ポイント以上とすることができる。その差が40ポイント以上であればより好ましい。
この会合粒子と非会合の単分散粒子とを含む全粒子の平均粒子径、すなわち平均二次粒子径は前記平均一次粒子径より大きくかつ1000nm以下であることが好ましく、50nmより大きくかつ1000nm以下であればより好ましく、80nm以上かつ1000nm以下であればさらに好ましく、100nm以上かつ800nm以下であれば最も好ましい。平均二次粒子径が平均一次粒子径と同一では、会合粒子が形成していないことになり、会合粒子を形成させる効果が得られないことがある。また、平均二次粒子径が50nm以下では、全粒子が単分散粒子の場合との差異が少ないために、会合粒子を形成させる効果を得ることができない可能性が高い。一方1000nmを超えると、粒子としての散乱能が強くなりすぎるために、光散乱複合体に入射した光が光散乱複合体内に閉じ込められてしまい、光散乱複合体を設ける効果が得られないことがある。
Here, it is preferable that the light-scattering particles in the present invention form associated particles in which at least a part of a plurality of particles are associated in the light-scattering composite (cured body). Since the particle size of the associated particles is larger than the particle size of the monodisperse particles (non-associate particles), the light scattering ability is also increased. Therefore, compared to the case where all the particles are formed of non-associate monodisperse particles. It becomes possible to have sufficient scattering ability with a small amount of light scattering particles. That is, sufficient light scattering characteristics can be obtained even when the ratio of the light scattering particles in the light scattering composite formed by molding the light scattering composition of the present invention is 10% by mass or less. For example, in the light (wavelength 460 nm) from the blue light semiconductor light emitting element used in the white light semiconductor light emitting device, the integrated transmittance is higher than the linear transmittance, and the difference (integrated transmittance−linear transmittance) is 25 points. This can be done. More preferably, the difference is 40 points or more.
The average particle size of all particles including the associated particles and the non-associated monodisperse particles, that is, the average secondary particle size is preferably larger than the average primary particle size and not more than 1000 nm, more than 50 nm and not more than 1000 nm. More preferably, it is more preferably 80 nm or more and 1000 nm or less, and most preferably 100 nm or more and 800 nm or less. If the average secondary particle size is the same as the average primary particle size, the associated particles are not formed, and the effect of forming the associated particles may not be obtained. In addition, when the average secondary particle diameter is 50 nm or less, there is a high possibility that the effect of forming associated particles cannot be obtained because there is little difference from the case where all particles are monodisperse particles. On the other hand, if it exceeds 1000 nm, the scattering ability as particles becomes too strong, so that the light incident on the light scattering complex is trapped in the light scattering complex, and the effect of providing the light scattering complex cannot be obtained. is there.

光散乱粒子は、上記のように、光散乱複合体中において少なくとも一部が複数個の粒子が会合した会合粒子を形成していることが好ましい。一方、光散乱複合体の均一性確保を考慮すると、光散乱粒子は、未硬化の光散乱組成物中においては一次粒子の状態が維持された単分散状態で存在することが好ましい。光散乱粒子がこのような挙動を示すためには、後述するマトリックス樹脂中の分散状態やマトリックス樹脂との界面親和性、さらにはマトリックス樹脂組成物中の分散状態やマトリックス樹脂組成物との界面親和性を制御する必要がある。
ここで、光散乱粒子をマトリックス樹脂中に分散させるには、光散乱粒子表面とマトリックス樹脂との界面親和性を確保する必要がある。このため、光散乱粒子を構成する非修飾粒子の表面は、マトリックス樹脂の構造と相性の良い構造の表面修飾材料によって被覆されることが好ましい。
具体的には、マトリックス樹脂を形成するための樹脂モノマーないしはオリゴマーであり、液状の未硬化体であるマトリックス樹脂組成物がマトリックス樹脂を形成する際に、樹脂モノマーないしはオリゴマー同士の重合に用いられる反応基を、表面修飾材料にも有させればよい。ここで、マトリックス樹脂組成物であるシリコーン系の封止材は、反応基としてH−Si基、アルケニル基、及びアルコキシ基の少なくとも1つを有することが好ましい。従って、表面修飾材料には、アルケニル基、H−Si基、及びアルコキシ基から選ばれた一つ以上の官能基を有する表面修飾材料を用い、この表面修飾材料により光散乱粒子の表面を修飾する。
As described above, it is preferable that at least a part of the light-scattering particles in the light-scattering complex forms associated particles in which a plurality of particles are associated. On the other hand, in consideration of ensuring uniformity of the light scattering composite, the light scattering particles are preferably present in a monodispersed state in which the state of primary particles is maintained in the uncured light scattering composition. In order for the light scattering particles to exhibit such behavior, the dispersion state in the matrix resin and the interface affinity with the matrix resin, which will be described later, and further the dispersion state in the matrix resin composition and the interface affinity with the matrix resin composition It is necessary to control sex.
Here, in order to disperse the light scattering particles in the matrix resin, it is necessary to ensure the interface affinity between the surface of the light scattering particles and the matrix resin. For this reason, it is preferable that the surface of the unmodified particles constituting the light scattering particles is coated with a surface modifying material having a structure that is compatible with the structure of the matrix resin.
Specifically, it is a resin monomer or oligomer for forming a matrix resin, and a reaction used for polymerization of resin monomers or oligomers when a matrix resin composition that is a liquid uncured material forms a matrix resin. The group may be included in the surface modifying material. Here, the silicone-based sealing material that is the matrix resin composition preferably has at least one of an H—Si group, an alkenyl group, and an alkoxy group as a reactive group. Therefore, as the surface modifying material, a surface modifying material having one or more functional groups selected from alkenyl groups, H-Si groups, and alkoxy groups is used, and the surface of the light scattering particles is modified by the surface modifying material. .

すなわち、光散乱粒子を構成する無機酸化物粒子の表面の少なくとも一部は、アルケニル基、H−Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料によって表面修飾されている。すなわち、無機酸化物粒子の表面の少なくとも一部が表面修飾材料によって被覆されている。   That is, at least a part of the surface of the inorganic oxide particles constituting the light scattering particles is surface-modified with a surface modifying material having one or more functional groups selected from alkenyl groups, H-Si groups, and alkoxy groups. ing. That is, at least a part of the surface of the inorganic oxide particles is covered with the surface modifying material.

アルケニル基、H−Si基、及びアルコキシ基から選ばれた一つ以上の官能基を有する表面修飾材料としては、ビニルトリメトキシシラン、アルコキシ片末端ビニル片末端ジメチルシリコーン、アルコキシ片末端ビニル片末端メチルフェニルシリコーン、アルコキシ片末端ビニル片末端フェニルシリコーン、メタクリロキシプロピルトリメトキシシラン、アクリロキシプロピルトリメトキシシラン、メタクリル酸等炭素−炭素不飽和結合含有脂肪酸、ジメチルハイドロジェンシリコーン、メチルフェニルハイドロジェンシリコーン、フェニルハイドロジェンシリコーン、ジメチルクロロシラン、メチルジクロロシラン、ジエチル、クロロシラン、エチルジクロロシラン、メチルフェニルクロロシラン、ジフェニルクロロシラン、フェニルジクロロシラン、トリメトキシシラン、ジメトキシシラン、モノメトキシシラン、トリエトキシシラン、ジエトキシモノメチルシラン、モノエトキシジメチルシラン、メチルフェニルジメトキシシラン、ジフェニルモノメトキシシラン、メチルフェニルジエトキシシラン、ジフェニルモノエトキシシラン、アルコキシ両末端フェニルシリコーン、アルコキシ両末端メチルフェニルシリコーン、アルコキシ基含有ジメチルシリコーンレジン、アルコキシ基含有フェニルシリコーンレジン樹脂、アルコキシ基含有メチルフェニルシリコーンレジン等が挙げられる。   Surface modification materials having one or more functional groups selected from alkenyl groups, H-Si groups, and alkoxy groups include vinyltrimethoxysilane, alkoxy one-end vinyl one-end dimethyl silicone, alkoxy one-end vinyl one-end methyl Phenyl silicone, alkoxy one-end vinyl one-end phenyl silicone, methacryloxypropyltrimethoxysilane, acryloxypropyltrimethoxysilane, methacrylic acid and other carbon-carbon unsaturated bond-containing fatty acids, dimethylhydrogensilicone, methylphenylhydrogensilicone, phenyl Hydrogen silicone, dimethylchlorosilane, methyldichlorosilane, diethyl, chlorosilane, ethyldichlorosilane, methylphenylchlorosilane, diphenylchlorosilane, phenyldichloro Losilane, trimethoxysilane, dimethoxysilane, monomethoxysilane, triethoxysilane, diethoxymonomethylsilane, monoethoxydimethylsilane, methylphenyldimethoxysilane, diphenylmonomethoxysilane, methylphenyldiethoxysilane, diphenylmonoethoxysilane, alkoxy both Examples include terminal phenyl silicone, alkoxy both-end methyl phenyl silicone, alkoxy group-containing dimethyl silicone resin, alkoxy group-containing phenyl silicone resin, alkoxy group-containing methyl phenyl silicone resin, and the like.

アルケニル基、H−Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料の、無機酸化物粒子表面への表面修飾量としては、無機酸化物粒子として金属酸化物粒子を用いた場合、その質量に対して1質量%以上かつ50質量%以下が好ましい。表面修飾量を1質量%以上かつ50質量%の範囲とすることにより、光散乱粒子はマトリックス樹脂組成物に対しては一次粒子の状態が維持された単分散状態での均一な分散が可能となり、一方硬化後の光散乱複合体においては、マトリックス樹脂に対して、光散乱粒子の少なくとも一部が会合粒子を形成した状態で、かつ均一に分散することが可能となる。従って、高い散乱特性を有する光散乱複合体を得ることができる。
一方、表面修飾量が1質量%未満では、表面修飾材料とマトリックス樹脂組成物間での官能基の結合点が不足するために、光散乱粒子がマトリックス樹脂組成物に対して良好に分散することが難しく、たとえ分散していたとしても、光散乱複合体が硬化する過程で光散乱粒子がマトリックス樹脂相から分離して凝集するために、光散乱複合体の光透過性低下や硬度低下が発生する虞がある。
また、表面修飾量が50質量%を超えた場合、表面修飾材料とマトリックス樹脂組成物間での官能基との結合点が多いことから、光散乱粒子はマトリックス樹脂組成物に対しては一次粒子の状態が維持された単分散状態での均一な分散が可能となるだけでなく、光散乱複合体が硬化する過程でも光散乱粒子の単分散が維持されて部分的な会合が発生しないことがある。このため、光散乱変換層や光散乱層おける会合粒子の形成による光散乱能の向上(より少量の光散乱粒子で十分な散乱能を有する効果)が期待できなくなる。なお、表面修飾量が50質量%を超えかつ80質量%以下の範囲では、会合粒子形成による効果は期待しにくくなるものの、光散乱粒子とマトリックス樹脂間の結合状態は良好に保たれており、光散乱複合体としての特性は維持される。一方、表面修飾量が80質量%を超えると、表面修飾材料とマトリックス樹脂組成物間での官能基の結合点が多くなり過ぎ、硬化体が脆くなってクラックが発生する虞がある。
表面修飾量は、より好ましくは3質量%以上かつ50質量%以下であり、さらに好ましくは5質量%以上かつ40質量%以下である。
The surface modification amount of the surface modification material having one or more functional groups selected from alkenyl groups, H-Si groups, and alkoxy groups on the surface of the inorganic oxide particles is the metal oxide particles as the inorganic oxide particles. Is preferably 1% by mass to 50% by mass with respect to the mass. By making the amount of surface modification in the range of 1% by mass or more and 50% by mass, the light scattering particles can be uniformly dispersed in a monodispersed state in which the primary particle state is maintained in the matrix resin composition. On the other hand, in the light-scattering composite after curing, it is possible to uniformly disperse the matrix resin in a state where at least a part of the light-scattering particles form associated particles. Therefore, a light scattering composite having high scattering characteristics can be obtained.
On the other hand, when the surface modification amount is less than 1% by mass, the bonding points of the functional groups between the surface modification material and the matrix resin composition are insufficient, so that the light scattering particles are well dispersed in the matrix resin composition. However, even if dispersed, the light scattering particles separate from the matrix resin phase and agglomerate in the process of curing the light scattering composite, resulting in a decrease in light transmission and hardness of the light scattering composite. There is a risk of doing.
Further, when the surface modification amount exceeds 50% by mass, there are many bonding points between the surface modification material and the functional group between the matrix resin composition, so that the light scattering particles are primary particles for the matrix resin composition. In addition to enabling uniform dispersion in a monodispersed state in which the above state is maintained, the monodispersion of the light scattering particles is maintained even in the process of curing the light scattering composite, and partial association does not occur. is there. For this reason, the improvement of the light scattering ability (the effect of having a sufficient scattering ability with a smaller amount of light scattering particles) due to the formation of associated particles in the light scattering conversion layer or the light scattering layer cannot be expected. In addition, in the range where the surface modification amount exceeds 50% by mass and 80% by mass or less, although the effect due to the formation of associated particles is difficult to expect, the bonding state between the light scattering particles and the matrix resin is kept good, The properties as a light scattering complex are maintained. On the other hand, when the surface modification amount exceeds 80% by mass, the bonding points of the functional groups between the surface modification material and the matrix resin composition are excessive, and the cured body may become brittle and cracks may occur.
The surface modification amount is more preferably 3% by mass or more and 50% by mass or less, and further preferably 5% by mass or more and 40% by mass or less.

無機酸化物粒子表面への表面修飾材料の修飾方法は、無機酸化物粒子に直接、表面修飾材料を混合、噴霧等する乾式方法、表面修飾材料を溶解させた水及び/又は有機溶剤に非修飾粒子を投入し、溶媒中で表面修飾する湿式方法等が挙げられる。本発明においては、表面修飾量の制御性に優れること、表面修飾の均一性が高い点等から、湿式方式を用いることが好ましい。   The modification method of the surface modification material on the surface of the inorganic oxide particles is a dry method in which the surface modification material is mixed and sprayed directly on the inorganic oxide particles, or unmodified with water and / or an organic solvent in which the surface modification material is dissolved. Examples include a wet method in which particles are introduced and the surface is modified in a solvent. In the present invention, it is preferable to use a wet method in view of excellent controllability of the surface modification amount and high uniformity of the surface modification.

光散乱組成物中の光散乱粒子の含有量は、光散乱組成物全量に対して0.01質量%以上かつ10質量%以下である。光散乱粒子の含有量は、光散乱組成物全量に対して0.01質量%以上かつ5質量%以下であることが好ましく、0.1質量%以上かつ1質量%以下であることがより好ましい。
光散乱組成物中の光散乱粒子の含有量が0.01質量%未満では、この光散乱組成物を硬化して得られる光散乱複合体中光散乱粒子の量が少なすぎて、光散乱効果が得られない。一方、光散乱組成物中の光散乱粒子の含有量が10質量%を超えると、特に会合粒子が形成した場合において光散乱粒子の量が多すぎるために散乱が過大になり、光散乱複合体に入射した光が光散乱複合体内に閉じ込められてしまい、光散乱複合体を設ける効果が得られない。すなわち、光散乱組成物中の光散乱粒子の含有量が0.01質量%以上かつ10質量%以下であることで、散乱性と光透過性とのバランスが良い光散乱複合体を得ることができる。
このような光散乱組成物から得られる光散乱複合体を白色光半導体発光装置に適用すれば、白色光半導体発光素子からの光取出効率が向上することでさらに高輝度の光半導体発光装置とすることができる。
Content of the light-scattering particle in a light-scattering composition is 0.01 mass% or more and 10 mass% or less with respect to the light-scattering composition whole quantity. The content of the light scattering particles is preferably 0.01% by mass or more and 5% by mass or less, more preferably 0.1% by mass or more and 1% by mass or less, based on the total amount of the light scattering composition. .
When the content of the light scattering particles in the light scattering composition is less than 0.01% by mass, the amount of the light scattering particles in the light scattering composite obtained by curing the light scattering composition is too small, and the light scattering effect. Cannot be obtained. On the other hand, when the content of the light scattering particles in the light scattering composition exceeds 10% by mass, the amount of the light scattering particles is excessively large particularly when the associated particles are formed, so that the scattering becomes excessive, and the light scattering complex. The light incident on the light is confined in the light scattering complex, and the effect of providing the light scattering complex cannot be obtained. That is, when the content of the light scattering particles in the light scattering composition is 0.01% by mass or more and 10% by mass or less, it is possible to obtain a light scattering composite having a good balance between scattering and light transmittance. it can.
When a light scattering composite obtained from such a light scattering composition is applied to a white light semiconductor light-emitting device, the light extraction efficiency from the white light semiconductor light-emitting element is improved, so that a light-semiconductor light-emitting device with higher luminance is obtained. be able to.

〔マトリックス樹脂組成物〕
マトリックス樹脂組成物は、光散乱組成物が硬化して光散乱複合体となったときに、光散乱粒子を包含するマトリックス樹脂を構成する樹脂モノマーないしはオリゴマー等の液状のマトリックス樹脂未硬化体である。
ここで光散乱複合体に適用されるマトリックス樹脂は、本発明の光散乱複合体が使用される波長域において光吸収が無い材質であれば特に限定はされないが、基本的に光学材料であるので、光に対する耐性(耐光性)を有するものであることが好ましい。また既述のように、本発明の光散乱複合体は白色光半導体発光装置に好適に使用できるが、この場合には可視光域(光半導体発光素子として近紫外光半導体発光素子を用いる場合には近紫外光域〜可視光域)において透明であって、光半導体発光装置の信頼性(要求される各種性能、例えば、耐久性)を損なわないものであることが好ましい。更に、光半導体発光素子の高出力化及び照明用途への適用を考慮した場合には、従来から光半導体発光素子封止材として用いられている樹脂を用いることが好ましい。特に光散乱複合体の耐久性の観点から、マトリックス樹脂は、シリコーン系の封止材を用いることが好ましく、例えば、ジメチルシリコーン樹脂、メチルフェニルシリコーン樹脂、フェニルシリコーン樹脂、有機変性シリコーン樹脂等が挙げられる。
従って、マトリックス樹脂組成物は、ジメチルシリコーン樹脂の樹脂モノマー若しくはオリゴマー、メチルフェニルシリコーン樹脂の樹脂モノマー若しくはオリゴマー、フェニルシリコーン樹脂の樹脂モノマー若しくはオリゴマー、有機変性シリコーン樹脂の樹脂モノマー若しくはオリゴマー等のシリコーン系樹脂の樹脂モノマー若しくはオリゴマーを含有することが好ましい。
光散乱複合体のマトリックス樹脂としてシリコーン樹脂を用いる場合は、液状の未硬化体である各シリコーン樹脂組成物を、例えば、付加型反応、縮合型反応、ラジカル重合反応等によって重合硬化させることで得ることができる。
[Matrix resin composition]
The matrix resin composition is an uncured liquid matrix resin such as a resin monomer or oligomer constituting a matrix resin including light scattering particles when the light scattering composition is cured to form a light scattering composite. .
The matrix resin applied to the light scattering composite is not particularly limited as long as it is a material that does not absorb light in the wavelength region in which the light scattering composite of the present invention is used, but is basically an optical material. It is preferable to have resistance to light (light resistance). As described above, the light scattering composite of the present invention can be suitably used for a white light semiconductor light emitting device. In this case, however, the visible light region (when a near ultraviolet light semiconductor light emitting element is used as the light semiconductor light emitting element) is used. Is transparent in the near ultraviolet light region to the visible light region), and preferably does not impair the reliability (required performances such as durability) of the optical semiconductor light emitting device. Furthermore, in consideration of increasing the output of the optical semiconductor light emitting element and applying it to lighting applications, it is preferable to use a resin that has been conventionally used as an optical semiconductor light emitting element sealing material. In particular, from the viewpoint of durability of the light scattering composite, it is preferable to use a silicone-based sealing material as the matrix resin, and examples thereof include dimethyl silicone resin, methyl phenyl silicone resin, phenyl silicone resin, and organically modified silicone resin. It is done.
Accordingly, the matrix resin composition is a silicone-based resin such as a resin monomer or oligomer of a dimethyl silicone resin, a resin monomer or oligomer of a methyl phenyl silicone resin, a resin monomer or oligomer of a phenyl silicone resin, or a resin monomer or oligomer of an organically modified silicone resin. It is preferable to contain the resin monomer or oligomer of this.
When a silicone resin is used as the matrix resin of the light scattering composite, it is obtained by polymerizing and curing each silicone resin composition that is a liquid uncured material by, for example, an addition reaction, a condensation reaction, a radical polymerization reaction, or the like. be able to.

光散乱組成物を硬化して得られる光散乱複合体は、光散乱粒子の少なくとも一部が会合粒子を形成した状態で、全体としては均一にマトリックス樹脂中に分散していることが好ましい。
光散乱粒子を均一にマトリックス樹脂中に分散させるには、光散乱粒子表面とマトリックス樹脂との界面親和性を確保することが好ましい。本発明においては、前記の通り、表面修飾材料の構造をマトリックス樹脂の構造と相性の良いものとしている。すなわち、マトリックス樹脂組成物として、反応基としてH−Si基、アルケニル基、及びアルコキシ基の少なくとも1つを有するシリコーン系の封止材を選択することが好ましく、従って、表面修飾材料には、アルケニル基、H−Si基、及びアルコキシ基から選ばれた一つ以上の官能基を有する表面修飾材料を用いこととしている。
The light scattering composite obtained by curing the light scattering composition is preferably uniformly dispersed in the matrix resin as a whole in a state where at least a part of the light scattering particles forms associated particles.
In order to uniformly disperse the light scattering particles in the matrix resin, it is preferable to ensure the interface affinity between the surface of the light scattering particles and the matrix resin. In the present invention, as described above, the structure of the surface modifying material is compatible with the structure of the matrix resin. That is, as the matrix resin composition, it is preferable to select a silicone-based sealing material having at least one of an H—Si group, an alkenyl group, and an alkoxy group as a reactive group. A surface modifying material having one or more functional groups selected from a group, an H—Si group, and an alkoxy group is used.

このように、マトリックス樹脂組成物として、H−Si基、アルケニル基、及びアルコキシ基の少なくとも1つを有するシリコーン系の封止材を用いる場合、表面修飾材料が有するアルケニル基、H−Si基、及びアルコキシ基は、マトリックス樹脂組成物と次のように結合する。
表面修飾材料のアルケニル基は、マトリックス樹脂組成物中のH−Si基と反応することにより架橋する。表面修飾材料のH−Si基は、マトリックス樹脂組成物中のアルケニル基と反応することにより架橋する。表面修飾材料のアルコキシ基は、マトリックス樹脂組成物中のアルコキシ基と加水分解を経て縮合する。このような結合により、マトリックス樹脂と表面修飾材料とが一体化することから、マトリックス樹脂組成物が硬化しマトリックス樹脂を形成する過程で光散乱粒子が相分離することなく、全体としての分散状態を維持してマトリックス樹脂中に固定化でき、また、これらの層の緻密性を向上させることができる。
Thus, when a silicone-based sealing material having at least one of an H—Si group, an alkenyl group, and an alkoxy group is used as the matrix resin composition, the alkenyl group, H—Si group, and the surface modification material have, And the alkoxy group is bonded to the matrix resin composition as follows.
The alkenyl group of the surface modifying material is crosslinked by reacting with the H—Si group in the matrix resin composition. The H-Si group of the surface modifying material is crosslinked by reacting with the alkenyl group in the matrix resin composition. The alkoxy group of the surface modifying material is condensed with the alkoxy group in the matrix resin composition through hydrolysis. By such bonding, the matrix resin and the surface modification material are integrated, so that the light scattering particles are not phase-separated in the process of curing the matrix resin composition and forming the matrix resin. It can be maintained and fixed in the matrix resin, and the denseness of these layers can be improved.

また、光散乱粒子表面とマトリックス樹脂との界面親和性をより高めるため、及び/又は、無機酸化物粒子を表面修飾するプロセスにおいて、より効率的に上記官能基を有する表面修飾材料を修飾するために、上記官能基を有する表面修飾材料以外の公知の表面修飾材料を併用することができる。   In addition, in order to further enhance the interface affinity between the surface of the light scattering particle and the matrix resin, and / or to more efficiently modify the surface modifying material having the functional group in the process of modifying the surface of the inorganic oxide particle. In addition, a known surface modifying material other than the surface modifying material having the above functional group can be used in combination.

マトリックス樹脂組成物が含有するマトリックス樹脂未硬化体は、1種を単独で用いてもよいし、2種以上を併用してもよい。
また、光散乱組成物中のマトリックス樹脂組成物の含有量は、光散乱組成物中の光散乱粒子の含有量を除いた残部であることが好ましい。
The matrix resin uncured product contained in the matrix resin composition may be used alone or in combination of two or more.
Moreover, it is preferable that content of the matrix resin composition in a light-scattering composition is a remainder except content of the light-scattering particle in a light-scattering composition.

(光散乱組成物の調製)
光散乱組成物は、上記のようにして表面修飾された無機酸化物粒子を含む光散乱粒子とマトリックス樹脂とを混合することにより得られる。散乱性の観点から、光散乱粒子は、マトリックス樹脂中に均一に分散していることが好ましい。
光散乱粒子をバインダー中に均一に分散させる方法としては、光散乱粒子とバインダーとを二軸混錬機等の機械的方法によって混合して分散させる方法や、光散乱粒子を有機溶媒中に分散させた分散液とバインダーを混合した後、有機溶媒を乾燥除去する方法がある。
(Preparation of light scattering composition)
The light scattering composition can be obtained by mixing light scattering particles containing inorganic oxide particles whose surface has been modified as described above and a matrix resin. From the viewpoint of scattering properties, it is preferable that the light scattering particles are uniformly dispersed in the matrix resin.
The light scattering particles can be uniformly dispersed in the binder by mixing and dispersing the light scattering particles and the binder by a mechanical method such as a biaxial kneader, or by dispersing the light scattering particles in an organic solvent. There is a method in which the organic solvent is dried and removed after mixing the dispersed liquid and the binder.

光散乱組成物の積分球で測定した波長460nmにおける透過率は40%以上かつ95%以下とすることが好ましい。波長460nmにおける透過率が40%以上であることで光全体の透光性の低下を防ぎ光半導体発光装置の輝度を向上させることができる。また、透過率が95%以下であると蛍光体によって波長変換されなかった光半導体発光素子の発光色成分が外部空気相に多く出てしまうことを防ぎ、外部空気相とは異なる方向への散乱を多くして、光半導体発光装置の演色性を向上させることができる。波長460nmにおける透過率は、より好ましくは45%以上かつ90%以下であり、さらに好ましくは50%以上かつ85%以下である。   The transmittance at a wavelength of 460 nm measured with an integrating sphere of the light scattering composition is preferably 40% or more and 95% or less. Since the transmittance at a wavelength of 460 nm is 40% or more, it is possible to prevent a decrease in the translucency of the entire light and improve the luminance of the optical semiconductor light emitting device. Further, when the transmittance is 95% or less, it is possible to prevent the emission color component of the optical semiconductor light emitting element that has not been wavelength-converted by the phosphor from being emitted to the external air phase, and to scatter in a direction different from the external air phase. The color rendering properties of the optical semiconductor light emitting device can be improved. The transmittance at a wavelength of 460 nm is more preferably 45% or more and 90% or less, and further preferably 50% or more and 85% or less.

また、波長550nmにおける透過率は50%以上であることが好ましい。透過率が50%以上であることで光半導体発光素子の発光色とその発光色が蛍光体によって波長変換された光とが合成された白色光の透光性が低下するのを防ぎ、光半導体発光装置の輝度を向上させることができる。波長550nmにおける透過率は、より好ましくは80%以上であり、さらに好ましくは85%以上であり、最も好ましくは90%以上である。
上記のような透過率を得るには、光散乱粒子の粒径面修飾材料以外の公知量を調整すればよい。
The transmittance at a wavelength of 550 nm is preferably 50% or more. The transmissivity is 50% or more to prevent a decrease in translucency of white light in which the light emission color of the optical semiconductor light-emitting element and the light of which the light emission color is wavelength-converted by the phosphor are synthesized, and the optical semiconductor The luminance of the light emitting device can be improved. The transmittance at a wavelength of 550 nm is more preferably 80% or more, still more preferably 85% or more, and most preferably 90% or more.
In order to obtain the transmittance as described above, a known amount other than the particle surface modification material of the light scattering particles may be adjusted.

[光散乱複合体]
本発明の光散乱複合体は、本発明の光散乱組成物を硬化してなる。
従って、本発明の光散乱複合体は、アルケニル基、H−Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料によって表面修飾された無機酸化物粒子を含み、平均一次粒径3nm以上かつ50nm以下の光散乱粒子と、マトリックス樹脂と、を含有し、光散乱粒子の含有量が、光散乱複合体全量に対して0.01質量%以上かつ10質量%以下である。
[Light scattering complex]
The light scattering composite of the present invention is formed by curing the light scattering composition of the present invention.
Therefore, the light scattering composite of the present invention includes inorganic oxide particles that are surface-modified with a surface-modifying material having one or more functional groups selected from alkenyl groups, H-Si groups, and alkoxy groups. It contains light scattering particles having a primary particle size of 3 nm or more and 50 nm or less and a matrix resin, and the content of the light scattering particles is 0.01% by mass or more and 10% by mass or less with respect to the total amount of the light scattering complex. is there.

光散乱粒子の内容及び好ましい態様は、光散乱組成物が含有する光散乱粒子の内容及び好ましい態様と同様である。
マトリックス樹脂は、光散乱組成物が含有するマトリックス樹脂組成物が硬化して得られる樹脂であり、好ましくは透明の樹脂である。マトリックス樹脂組成物の内容及び好ましい態様は、光散乱組成物が含有するマトリックス樹脂組成物の内容及び好ましい態様と同様である。
本発明の光散乱複合体は、散乱性の観点から、光散乱粒子は、少なくともその一部が会合粒子を形成した状態で、マトリックス樹脂中に全体として均一に分散していることが好ましい。この会合粒子と非会合の単分散粒子とを含む全粒子の平均粒子径、すなわち平均二次粒子径は平均一次粒子径より大きくかつ1000nm以下であることが好ましく、50nmより大きくかつ1000nm以下であればより好ましく、80nm以上かつ1000nm以下であればさらに好ましく、100nm以上かつ800nm以下であれば最も好ましい。平均二次粒子径が平均一次粒子径と同一では、会合粒子が形成していないことになり、会合粒子を形成させる効果が得られないことがある。また、平均二次粒子径が50nm以下では、全粒子が単分散粒子の場合との差異が少ないために、会合粒子を形成させる効果を得ることができない可能性が高い。一方1000nmを超えると、粒子としての散乱能が強くなりすぎるために、光散乱複合体に入射した光が光散乱複合体内に閉じ込められてしまい、光散乱複合体を設ける効果が得られないことがある。
またこの会合粒子は、光散乱組成物の状態では形成されておらず、光散乱組成物が硬化して光散乱複合体となる段階において、形成されることが好ましい。
すなわち、マトリックス樹脂組成物中の光散乱粒子は単分散(一次粒子)の状態であり、マトリックス樹脂が硬化するにつれて、光散乱粒子が極微小の領域で局所的な相分離を起こして会合粒子を形成することが好ましい。また、この局所的な相分離はマトリックス樹脂組成物(光散乱組成物)内の全体で発生するとともに、各会合粒子が相互に結合することなく局所的な領域内で保持されることが好ましい。
このような形態で会合粒子が形成されることにより、本発明の光散乱複合体は、含まれる光散乱粒子の量が10質量%以下、好ましくは5質量%以下,より好ましくは1質量%以下といった少量であっても、高い光散乱性を発現することができる。
The contents and preferred embodiments of the light scattering particles are the same as the contents and preferred embodiments of the light scattering particles contained in the light scattering composition.
The matrix resin is a resin obtained by curing the matrix resin composition contained in the light scattering composition, and is preferably a transparent resin. The contents and preferred embodiments of the matrix resin composition are the same as the contents and preferred embodiments of the matrix resin composition contained in the light scattering composition.
In the light-scattering composite of the present invention, from the viewpoint of scattering properties, it is preferable that the light-scattering particles are uniformly dispersed as a whole in the matrix resin in a state in which at least a part thereof forms associated particles. The average particle size of all particles including the associated particles and the non-associated monodisperse particles, that is, the average secondary particle size is preferably larger than the average primary particle size and 1000 nm or less, and more than 50 nm and 1000 nm or less. More preferably, it is more preferably 80 nm or more and 1000 nm or less, and most preferably 100 nm or more and 800 nm or less. If the average secondary particle size is the same as the average primary particle size, the associated particles are not formed, and the effect of forming the associated particles may not be obtained. In addition, when the average secondary particle diameter is 50 nm or less, there is a high possibility that the effect of forming associated particles cannot be obtained because there is little difference from the case where all particles are monodisperse particles. On the other hand, if it exceeds 1000 nm, the scattering ability as particles becomes too strong, so that the light incident on the light scattering complex is trapped in the light scattering complex, and the effect of providing the light scattering complex cannot be obtained. is there.
The associated particles are not formed in the state of the light scattering composition, but are preferably formed at the stage where the light scattering composition is cured to form a light scattering composite.
That is, the light scattering particles in the matrix resin composition are in a monodispersed (primary particle) state, and as the matrix resin hardens, the light scattering particles cause local phase separation in an extremely small region, and the associated particles are separated. It is preferable to form. In addition, this local phase separation preferably occurs in the entire matrix resin composition (light scattering composition), and the associated particles are preferably held in a local region without being bonded to each other.
By forming the associated particles in such a form, the amount of the light scattering particles contained in the light scattering composite of the present invention is 10% by mass or less, preferably 5% by mass or less, more preferably 1% by mass or less. Even in such a small amount, a high light scattering property can be expressed.

光散乱組成物の硬化方法は、特に制限されず、例えば光散乱組成物に光、熱等の外部エネルギーを与えて硬化すればよい。また、重合触媒を添加することで硬化させてもよい。
本発明の光散乱複合体は、溶液状の光散乱組成物を基板上に塗布したり、型に入れた後、硬化して成型された成型体であってもよいし、光散乱組成物を、押出機等を用いて溶融混練した後、金型に注入し、冷却して得られた成型体であってもよい。また、本発明の光散乱複合体は、本発明の光散乱組成物を硬化して得られる板状体を積層した積層体であってもよい。
また、以上の説明においては、マトリックス樹脂組成物を「マトリックス樹脂を形成するための樹脂モノマーないしはオリゴマー」とし、マトリックス樹脂の形成は組成物の重合硬化で行われることを基本としているが、必ずしもこれに限定されるものではない。例えば、マトリックス樹脂組成物が溶媒可溶性樹脂と溶媒により形成され、マトリックス樹脂の形成は溶媒の除去(乾燥)で行われてもよい。この場合、酸化物粒子の表面修飾材料としては、その一部が溶媒可溶性を示す材料を選択することが好ましい。
The curing method of the light scattering composition is not particularly limited, and for example, it may be cured by applying external energy such as light or heat to the light scattering composition. Moreover, you may make it harden | cure by adding a polymerization catalyst.
The light scattering composite of the present invention may be a molded body formed by applying a solution-like light scattering composition on a substrate or putting it in a mold and then curing it. Alternatively, it may be a molded body obtained by melt-kneading using an extruder or the like and then pouring into a mold and cooling. The light scattering composite of the present invention may be a laminate in which plate-like bodies obtained by curing the light scattering composition of the present invention are laminated.
In the above description, the matrix resin composition is assumed to be “resin monomer or oligomer for forming a matrix resin”, and the formation of the matrix resin is basically performed by polymerization and curing of the composition. It is not limited to. For example, the matrix resin composition may be formed of a solvent-soluble resin and a solvent, and the formation of the matrix resin may be performed by removing (drying) the solvent. In this case, as the surface modifying material for the oxide particles, it is preferable to select a material that is partially solvent-soluble.

本発明の光散乱組成物及び光散乱複合体は、光の散乱性及び透過性に優れるため、光を透過しつつ散乱させる必要のある種々の用途に適用することができる。特に、指向性の強い光線を発する光源を備える装置、例えば、光半導体発光装置に好適である。   Since the light-scattering composition and the light-scattering composite of the present invention are excellent in light scattering and transparency, the light-scattering composition and the light-scattering composite can be applied to various applications that require light to be scattered while being transmitted. In particular, it is suitable for a device including a light source that emits a highly directional light beam, for example, an optical semiconductor light emitting device.

[光半導体発光装置]
光半導体発光装置は、光半導体発光素子と、蛍光体粒子と、光散乱粒子及びマトリックス樹脂を含有する光散乱複合体と、を有し、白色光を発する光半導体発光装置であって、(A)前記光散乱複合体が前記蛍光体粒子を含むことで光散乱変換層を形成しており、前記光散乱変換層における前記光散乱粒子の含有量が10質量%以下であり、その光散乱粒子が、アルケニル基、H−Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料によって表面修飾され、前記光半導体発光素子の発光波長領域において光の吸収の無い材質からなり、平均一次粒子径3nm以上かつ50nm以下の粒子である光半導体発光装置(以下、「光半導体発光装置A」という)、又は、(B)前記蛍光体粒子を含む層により光変換層が形成され、前記光変換層上に、前記光散乱複合体からなる光散乱層が設けられてなり、前記光散乱層における前記光散乱粒子の含有量が10質量%以下であり、その光散乱粒子が、光半導体発光装置Aと同様の粒子である光半導体発光装置(以下、「光半導体発光装置B」という)である。
なお以下に示す本発明の説明において、単に、「光半導体発光装置」という場合は、「光半導体発光装置A」及び「光半導体発光装置B」の両者を指す。
また、本発明においては、「光半導体発光装置A」と「光半導体発光装置B」を組み合わせた構造であってもよい。すなわち、光散乱複合体が前記蛍光体粒子を含むことで光散乱変換層を形成し、この光散乱変換層上に、光散乱複合体からなる光散乱層が設けられたものでもよい。
[Optical semiconductor light emitting device]
An optical semiconductor light emitting device includes an optical semiconductor light emitting element, phosphor particles, and a light scattering complex containing light scattering particles and a matrix resin, and emits white light. ) The light scattering composite includes the phosphor particles to form a light scattering conversion layer, and the light scattering particles in the light scattering conversion layer have a content of 10% by mass or less, and the light scattering particles Is surface-modified by a surface modification material having one or more functional groups selected from alkenyl groups, H-Si groups, and alkoxy groups, and is made of a material that does not absorb light in the emission wavelength region of the optical semiconductor light emitting device. A photo-semiconductor light-emitting device (hereinafter referred to as “photo-semiconductor light-emitting device A”) that is particles having an average primary particle diameter of 3 nm or more and 50 nm or less, or (B) a light conversion layer is formed by a layer containing the phosphor particles A light scattering layer comprising the light scattering composite is provided on the light conversion layer, and the light scattering particle content in the light scattering layer is 10% by mass or less; , An optical semiconductor light emitting device (hereinafter referred to as “optical semiconductor light emitting device B”) that is the same particle as the optical semiconductor light emitting device A.
In the following description of the present invention, the term “optical semiconductor light emitting device” simply refers to both “optical semiconductor light emitting device A” and “optical semiconductor light emitting device B”.
In the present invention, a structure in which “optical semiconductor light emitting device A” and “optical semiconductor light emitting device B” are combined may be used. That is, the light scattering complex may include the phosphor particles to form a light scattering conversion layer, and the light scattering layer made of the light scattering complex may be provided on the light scattering conversion layer.

青色光半導体発光素子と蛍光体とを組み合わせた白色光半導体発光装置は、青色光半導体発光素子から発光された青色光と蛍光体によって波長変換された光とが合成されて白色(疑似白色)になるものである。このタイプの白色光半導体発光装置には、青色光半導体発光素子と黄色蛍光体とを組み合わせたもの;青色光半導体発光素子に緑色蛍光体と赤色蛍光体とを組み合わせたもの;があるが、光源(光半導体発光素子の発光色)が青色光のため青色成分を多く含んだ白色光となる。特に青色光半導体発光素子と黄色蛍光体とを組み合わせた白色光半導体発光装置は青色成分が非常に多く含まれている。   A white light semiconductor light emitting device combining a blue light semiconductor light emitting element and a phosphor is combined with the blue light emitted from the blue light semiconductor light emitting element and the light wavelength-converted by the phosphor to produce white (pseudo white). It will be. This type of white light semiconductor light emitting device includes a combination of a blue light semiconductor light emitting element and a yellow phosphor; a combination of a blue light semiconductor light emitting element and a green phosphor and a red phosphor; Since the light emission color of the optical semiconductor light emitting element is blue light, it becomes white light containing a large amount of blue components. In particular, a white light semiconductor light-emitting device in which a blue light semiconductor light-emitting element and a yellow phosphor are combined contains a very large amount of blue components.

青色光半導体発光素子と蛍光体とを組み合わせた白色光半導体発光装置は、青色成分が多く含まれるため、眼の青色光網膜障害、皮膚への生理的ダメージ、覚醒レベル、自律神経機能、体内時計、メラトニン分泌等への生理的影響が指摘されている。そして、近年、光半導体発光装置の照明用途の市場が拡大し、光半導体発光装置の高輝度化が進んでおり、人体が青色光に曝されることが多くなっている。
しかし、光半導体発光装置は、本発明の光散乱組成物を用いて作製されることで、白色光とともに発せられる青色光成分を低減させ、輝度を向上させることができる。また、青色光成分が低減されることで、演色性をも向上させることができる。
A white light semiconductor light emitting device that combines a blue light semiconductor light emitting element and a phosphor contains a large amount of blue components. Therefore, blue light retinopathy of the eye, physiological damage to the skin, arousal level, autonomic nervous function, biological clock In addition, physiological effects on melatonin secretion have been pointed out. In recent years, the market for lighting applications of optical semiconductor light-emitting devices has expanded, and the brightness of optical semiconductor light-emitting devices has been increasing. Human bodies are often exposed to blue light.
However, the optical semiconductor light-emitting device can be manufactured by using the light scattering composition of the present invention, thereby reducing the blue light component emitted together with the white light and improving the luminance. In addition, the color rendering properties can be improved by reducing the blue light component.

光半導体発光装置における光半導体発光素子と蛍光体との組み合わせとしては、例えば、発光波長460nm前後の青色光半導体発光素子と黄色蛍光体との組み合わせ;発光波長460nm前後の青色光半導体発光素子と赤色蛍光体及び緑色蛍光体との組み合わせ;発光波長340nm以上かつ410nm以下付近の近紫外光半導体発光素子と赤色蛍光体、緑色蛍光体及び青色蛍光体の三原色蛍光体との組み合わせ;等が挙げられる。この場合の各種光半導体発光素子及び各種蛍光体は公知のものを使用することができる。
また、各種光半導体発光素子、各種蛍光体を封止するための封止樹脂等も公知のものを使用することができる。
なお、以下の説明においては、上記光半導体発光素子と蛍光体との組み合わせにおいて使用される半導体発光素子で発光される各発光波長を有する光のことを、光半導体発光素子の「発光色成分」と称する場合がある。また、当該発光色成分が蛍光体に照射されることにより蛍光体が発する光、すなわち発光色成分が蛍光体により波長変換された光のことを、蛍光体からの「変換光成分」と称する場合がある。
As a combination of the optical semiconductor light emitting element and the phosphor in the optical semiconductor light emitting device, for example, a combination of a blue light semiconductor light emitting element and a yellow phosphor having an emission wavelength of about 460 nm; a blue light semiconductor light emitting element and a red light having an emission wavelength of about 460 nm A combination of a phosphor and a green phosphor; a combination of a near-ultraviolet semiconductor light emitting element having a light emission wavelength of 340 nm to 410 nm and a red phosphor, a green phosphor, and a blue primary phosphor. In this case, known optical semiconductor light-emitting elements and various phosphors can be used.
In addition, various types of optical semiconductor light-emitting elements, sealing resins for sealing various phosphors, and the like can be used.
In the following description, the light having each emission wavelength emitted from the semiconductor light emitting element used in the combination of the above optical semiconductor light emitting element and the phosphor is referred to as “light emitting color component” of the optical semiconductor light emitting element. May be called. In addition, light emitted from the phosphor when the phosphor color component is irradiated to the phosphor, that is, light whose wavelength is converted by the phosphor is referred to as “converted light component” from the phosphor. There is.

光半導体発光装置A及びBについての態様を図1〜図4を用いて説明する。
まず、光半導体発光装置Aの第1の態様は、図1に示すように基板の凹部に光半導体発光素子10が配置され、これを覆うように、光散乱粒子及びマトリックス樹脂を含有する光散乱複合体12中に蛍光体粒子13を含有させた光散乱変換層14が設けられている。このとき、光散乱粒子はマトリックス樹脂中に均一に存在していてもよいが、外部空気相界面(外部空気層との界面)18側により多く存在することが好ましい。外部空気相界面18の表面形状は、特に制約はなく、平坦状、凸状、及び凹状のいずれでもよい。
The aspect about optical semiconductor light-emitting device A and B is demonstrated using FIGS. 1-4.
First, in the first mode of the optical semiconductor light emitting device A, as shown in FIG. 1, the optical semiconductor light emitting element 10 is disposed in the concave portion of the substrate, and the light scattering containing the light scattering particles and the matrix resin is covered so as to cover the optical semiconductor light emitting element 10. A light scattering conversion layer 14 containing phosphor particles 13 in the composite 12 is provided. At this time, the light scattering particles may be present uniformly in the matrix resin, but it is preferable that the light scattering particles are present more on the outer air phase interface (interface with the outer air layer) 18 side. The surface shape of the external air phase interface 18 is not particularly limited, and may be any of a flat shape, a convex shape, and a concave shape.

光半導体発光装置Aの第2の態様は、図2に示すように、光散乱変換層14中の蛍光体粒子13を、図1の場合よりも光半導体発光素子10の近傍に存在させることで、光散乱粒子が蛍光体粒子より外部空気相界面18側により多く存在するようにしたものである。このような態様とすることで、蛍光体粒子13の存在領域を透過した青色光成分の多くを蛍光体粒子13の存在領域へ散乱させて戻すことができるので、白色光とともに発せられる青色光成分を低減させ、輝度をより向上させることができる。   As shown in FIG. 2, the second mode of the optical semiconductor light emitting device A is that phosphor particles 13 in the light scattering conversion layer 14 are present closer to the optical semiconductor light emitting element 10 than in the case of FIG. The light scattering particles are present more on the outer air phase interface 18 side than the phosphor particles. By setting it as such an aspect, since most of the blue light components which permeate | transmitted the existing area | region of the fluorescent substance particle 13 can be scattered and returned to the existing area of the fluorescent substance particle 13, the blue light component emitted with white light And the luminance can be further improved.

光半導体発光装置Bは、蛍光体粒子を含有する層(光変換層)と光散乱粒子を含有する層(光散乱層)を分けて配置した態様である。光半導体発光装置Bの第1の態様としては、図3に示すように、基板の凹部に光半導体発光素子10が配置され、これを覆うように、蛍光体粒子13をマトリックス材15中に含有する光変換層16が設けられ、この光変換層16上、すなわち光変換層16の外部空気相界面18側に、光散乱粒子とマトリックス樹脂組成物とを含有する光散乱複合体12からなる光散乱層17が設けられている。
このような態様とすることで、光変換層16を透過した青色光成分の多くを、光散乱層17により散乱させて光変換層16へ戻すことができるので、白色光とともに発せられる青色光成分を低減させ、輝度をより向上させることができる。
The optical semiconductor light emitting device B is an embodiment in which a layer containing phosphor particles (light conversion layer) and a layer containing light scattering particles (light scattering layer) are arranged separately. As a first aspect of the optical semiconductor light emitting device B, as shown in FIG. 3, the optical semiconductor light emitting element 10 is disposed in the concave portion of the substrate, and the phosphor particles 13 are contained in the matrix material 15 so as to cover the optical semiconductor light emitting element 10. The light conversion layer 16 is provided, and on the light conversion layer 16, that is, on the side of the external air phase interface 18 of the light conversion layer 16, the light composed of the light scattering composite 12 containing the light scattering particles and the matrix resin composition. A scattering layer 17 is provided.
By setting it as such an aspect, since most of the blue light components which permeate | transmitted the light conversion layer 16 can be scattered by the light-scattering layer 17, and can be returned to the light conversion layer 16, the blue light component emitted with white light And the luminance can be further improved.

光半導体発光装置Bの第2の態様は、図4に示すように、光半導体発光素子10を覆うように封止樹脂からなる封止樹脂層11が設けられ、封止樹脂層11上に、光変換層16及び光散乱層17が順次積層されている。   As shown in FIG. 4, the second mode of the optical semiconductor light emitting device B is provided with a sealing resin layer 11 made of a sealing resin so as to cover the optical semiconductor light emitting element 10, and on the sealing resin layer 11, A light conversion layer 16 and a light scattering layer 17 are sequentially stacked.

光半導体発光装置Bにおいて、光変換層と光散乱層との厚みについては、本発明の効果が得られれば特に制約はないが、青色成分をより低減したい場合は光散乱層の厚みをより厚くすることが好ましく、光半導体発光装置を所望の演色性に調整する場合に用いる蛍光体の波長変換効率、添加量を鑑みて光散乱層の厚さを設計すればよい。   In the optical semiconductor light emitting device B, the thicknesses of the light conversion layer and the light scattering layer are not particularly limited as long as the effects of the present invention can be obtained. However, if the blue component is to be reduced, the thickness of the light scattering layer is increased. It is preferable to design the thickness of the light scattering layer in view of the wavelength conversion efficiency and the addition amount of the phosphor used when the optical semiconductor light emitting device is adjusted to a desired color rendering property.

光散乱粒子の含有量は、光半導体発光装置Aにおいては、光散乱変換層全量に対して0.01質量%以上かつ10質量%以下であり、光半導体発光装置Bにおいては、光散乱層全量に対して0.01質量%以上かつ10質量%以下である。光変換層又は光散乱層中における光散乱粒子の含有量は、0.01質量%以上かつ5質量%以下であることが好ましく、0.1質量%以上かつ1質量%以下であることがより好ましい。
各層中の光散乱粒子の含有量が10質量%を超えると、特に会合粒子が形成した場合において光散乱粒子の量が多すぎるために散乱が過大になり、光半導体発光素子からの発光色成分のみならず蛍光体からの変換光成分も外部空気相に出にくくなり、光半導体発光装置の輝度が低下してしまう。一方、各層中の光散乱粒子の含有量が0.01質量%未満では、光散乱粒子の量が少なすぎて光散乱効果が得られず、光半導体発光装置の輝度向上が図れない。すなわち、各層中の光散乱粒子の含有量が0.01質量%以上かつ10質量%以下であることで、各層において、光半導体発光素子からの発光色成分の光散乱性と、発光色成分と変換光成分を合わせての光透過性とのバランスが良く、高輝度の光半導体発光装置とすることができる。
更に、各層中の光散乱粒子の含有量が0.01質量%以上かつ10質量%以下であることで青色光の散乱率が特に高くなる。すなわち、波長460nmの光において、積分透過率の値が、直線透過率の値よりも特に大きくなる。これにより、光半導体発光装置における青色光の低減と輝度向上を図ることができる。
In the light semiconductor light emitting device A, the content of the light scattering particles is 0.01% by mass or more and 10% by mass or less with respect to the total amount of the light scattering conversion layer. It is 0.01 mass% or more and 10 mass% or less with respect to. The content of the light scattering particles in the light conversion layer or the light scattering layer is preferably 0.01% by mass or more and 5% by mass or less, more preferably 0.1% by mass or more and 1% by mass or less. preferable.
When the content of the light scattering particles in each layer exceeds 10% by mass, the amount of the light scattering particles is excessively large particularly when the associated particles are formed, resulting in excessive scattering, and the emission color component from the optical semiconductor light emitting element. Not only the converted light component from the phosphor but also the external air phase is hardly emitted, and the luminance of the optical semiconductor light emitting device is lowered. On the other hand, when the content of the light scattering particles in each layer is less than 0.01% by mass, the amount of the light scattering particles is too small to obtain the light scattering effect, and the luminance of the optical semiconductor light emitting device cannot be improved. That is, when the light scattering particle content in each layer is 0.01% by mass or more and 10% by mass or less, in each layer, the light scattering property of the emission color component from the optical semiconductor light emitting element, the emission color component, and The optical transparency of the converted light component is well balanced and a high-brightness optical semiconductor light emitting device can be obtained.
Furthermore, when the content of the light scattering particles in each layer is 0.01% by mass or more and 10% by mass or less, the blue light scattering rate is particularly high. That is, in the light having a wavelength of 460 nm, the integrated transmittance value is particularly larger than the linear transmittance value. As a result, it is possible to reduce blue light and improve luminance in the optical semiconductor light emitting device.

光半導体発光装置は、本発明の光散乱組成物を光変換層の上に塗布又は注入、あるいは光散乱組成物中に蛍光体粒子を混合し、光半導体発光素子の上に塗布し、次いで硬化することで本発明に係る光半導体発光装置が作製される。
例えば、本発明の光散乱組成物を光変換層の上に塗布又は注入し、次いで硬化して、光散乱複合体からなる光散乱層を形成することで、光半導体発光装置Bが作製される。あるいは光散乱組成物中に蛍光体粒子を混合し、光半導体発光素子の上に塗布又は注入し、次いで硬化して、蛍光体を含む光散乱複合体からなる光散乱変換層を形成することで、光半導体発光装置Aが作製される。本発明の光散乱組成物の硬化には、例えば、付加型反応、縮合型反応、ラジカル重合反応等による重合硬化反応を挙げることができる。この重合反応は、加熱、光照射等の外部エネルギーの付与、触媒(重合剤)の添加等により行うことができる。
In the optical semiconductor light emitting device, the light scattering composition of the present invention is applied or injected onto the light conversion layer, or phosphor particles are mixed in the light scattering composition, applied onto the optical semiconductor light emitting element, and then cured. Thus, the optical semiconductor light emitting device according to the present invention is manufactured.
For example, the light-semiconductor light-emitting device B is produced by applying or injecting the light-scattering composition of the present invention onto the light conversion layer and then curing to form a light-scattering layer made of a light-scattering composite. . Alternatively, the phosphor particles are mixed in the light scattering composition, applied or injected onto the optical semiconductor light emitting device, and then cured to form a light scattering conversion layer composed of a light scattering composite containing the phosphor. Then, the optical semiconductor light emitting device A is manufactured. Examples of the curing of the light scattering composition of the present invention include a polymerization curing reaction such as an addition reaction, a condensation reaction, and a radical polymerization reaction. This polymerization reaction can be performed by applying external energy such as heating and light irradiation, adding a catalyst (polymerizing agent), and the like.

この硬化時において、光散乱組成物に単分散している光散乱粒子の少なくとも一部を会合させて、マトリックス樹脂中で会合粒子を形成する。
会合粒子の形成は、前記の通り、光散乱粒子における表面修飾量を50質量%以下と少なめとし、マトリックス樹脂(組成物)と光散乱粒子間の親和性を抑えることで、相対的に光散乱粒子同士の結合力を強めることで達成できる。また、光散乱組成物の硬化速度を遅くし、硬化途中の光散乱組成物中で光散乱粒子が移動できる状態を維持することにより、光散乱粒子同士の凝集力及び/又はマトリックス樹脂における他成分の排斥力を使用して、光散乱粒子の会合度を高めてもよい。
At the time of curing, at least a part of the light scattering particles monodispersed in the light scattering composition is associated to form associated particles in the matrix resin.
As described above, the formation of the associated particles is relatively light scattering by reducing the surface modification amount of the light scattering particles to 50 mass% or less and suppressing the affinity between the matrix resin (composition) and the light scattering particles. This can be achieved by increasing the bonding force between the particles. Also, by slowing the curing rate of the light scattering composition and maintaining the state in which the light scattering particles can move in the light scattering composition during curing, the cohesive force between the light scattering particles and / or other components in the matrix resin The degree of association of the light scattering particles may be increased by using the exclusion force.

このようにして形成された会合粒子と、非会合状態で維持された単分散粒子とを併せた全粒子の平均粒子径、すなわち平均二次粒子径は平均一次粒子径より大きくかつ1000nm以下であることが好ましく、50nmより大きくかつ1000nm以下であればより好ましく、80nm以上かつ1000nm以下であればさらに好ましく、100nm以上かつ800nm以下であれば最も好ましい。
なお、平均二次粒子径の測定方法であるが、光散乱複合体が硬化物であるために、動的光散乱法による測定は困難である。このため、例えば、光散乱複合体の薄片化試料を透過型電子顕微鏡(TEM)で観察し、個別に存在している光散乱粒子についてはその粒子径をそのまま二次粒子径とし、一方、複数個の光散乱粒子が重なって見える部分はその全体をもって会合粒子と判断し、会合粒子全体の粒子径を二次粒子径として、平均二次粒子径を求めることとする。
The average particle diameter of all particles, which are the aggregated particles thus formed and the monodispersed particles maintained in a non-associated state, that is, the average secondary particle diameter is larger than the average primary particle diameter and 1000 nm or less. More preferably, it is larger than 50 nm and 1000 nm or less, more preferably 80 nm or more and 1000 nm or less, and most preferably 100 nm or more and 800 nm or less.
In addition, although it is a measuring method of an average secondary particle diameter, since the light-scattering composite is a hardened | cured material, the measurement by a dynamic light-scattering method is difficult. For this reason, for example, a thinned sample of the light scattering complex is observed with a transmission electron microscope (TEM), and the light scattering particles that are present individually have the secondary particle size as it is, The portion where the light scattering particles appear to overlap each other is determined as the associated particles, and the average secondary particle size is determined by setting the particle size of the entire associated particles as the secondary particle size.

[照明器具及び表示装置]
本発明の光半導体発光装置は、その優れた特性を生かして各用途に利用することができる。本発明の効果が特に顕著に認められるものとしては、これを具備する各種の照明器具及び表示装置である。
照明器具としては、室内灯、室外灯等の一般照明装置が挙げられる。その他、携帯電話、OA機器等の電子機器のスイッチ部の照明にも適用できる。
[Lighting fixtures and display devices]
The optical semiconductor light-emitting device of the present invention can be used for various applications by taking advantage of its excellent characteristics. The effects of the present invention are particularly noticeable in various lighting fixtures and display devices having the same.
Examples of the lighting fixture include general lighting devices such as an indoor lamp and an outdoor lamp. In addition, the present invention can also be applied to illumination of a switch unit of an electronic device such as a mobile phone or OA device.

表示装置としては、例えば携帯電話、携帯情報端末、電子辞書、デジタルカメラ、コンピュータ、薄型テレビ、照明機器及びこれらの周辺機器等のように、小型化、軽量化、薄型化、省電力化、及び太陽光の中でも良好な視認性が得られるような高輝度ならびに良好な演色性が特に求められる機器の表示装置、における発光装置等を挙げることができる。特にコンピュータの表示装置(ディスプレイ)、薄型テレビ等のように長時間にわたって視認する表示装置においては、人体、特に眼に対しての影響を抑えることができるので特に好適である。また、第一の発光素子と第二の発光素子の距離を3mm以下、さらには1mm以下と近づけることにより小型化が可能となることから、15インチ以下の小型表示装置においても好適である。   As a display device, for example, a mobile phone, a portable information terminal, an electronic dictionary, a digital camera, a computer, a thin TV, a lighting device, and peripheral devices thereof are reduced in size, reduced in weight, reduced in thickness, reduced in power consumption, and Examples thereof include a light-emitting device in a display device of a device that is particularly required to have high luminance and good color rendering such that good visibility can be obtained even in sunlight. In particular, a display device that is visible for a long time such as a computer display device (display), a flat-screen television, or the like is particularly suitable because the influence on the human body, particularly the eyes, can be suppressed. Further, since the size can be reduced by reducing the distance between the first light emitting element and the second light emitting element to 3 mm or less, and further to 1 mm or less, it is also suitable for a small display device of 15 inches or less.

本実施例に係る各種測定方法及び評価方法は下記の通りである。
(表面修飾粒子分散液中の表面修飾粒子における表面修飾量)
表面修飾粒子の表面修飾量は、熱重量分析による測定を基に算出した。試料粉は、表面修飾粒子分散液を遠心分離して表面修飾粒子を取り出し、エバポレータで分散媒を乾燥除去して作製した。得られた試料を熱重量分析し、115℃から500℃までの重量減少量を測定した。なお,115℃未満の重量減少は残留していた分散媒(トルエン)に起因するものとした。得られた(115℃から500℃までの)重量減少量と、表面修飾材料中の揮発成分(C、H、O、及びN)と不揮発成分(Si)の含有量を基に、表面修飾量を算出した。
Various measurement methods and evaluation methods according to this example are as follows.
(Surface modification amount in the surface modified particles in the surface modified particle dispersion)
The surface modification amount of the surface modified particles was calculated based on the measurement by thermogravimetric analysis. The sample powder was prepared by centrifuging the surface-modified particle dispersion to take out the surface-modified particles, and drying and removing the dispersion medium with an evaporator. The obtained sample was subjected to thermogravimetric analysis, and the weight loss from 115 ° C. to 500 ° C. was measured. The weight loss below 115 ° C. was attributed to the remaining dispersion medium (toluene). Based on the weight loss obtained (from 115 ° C. to 500 ° C.) and the content of volatile components (C, H, O, and N) and nonvolatile components (Si) in the surface modifying material, the amount of surface modification Was calculated.

(光散乱組成物の積分透過率の測定)
光散乱組成物の透過率は、光散乱組成物を0.5mmの薄層石英セルに挟んだものを試料とし、分光光度計(V−570、日本分光社製)にて積分球を用いて測定した。波長(λ)460nmにおける透過率が40%以上かつ95%以下、波長(λ)550nmにおける透過率が80%以上を「○」、波長(λ)460nmにおける透過率が40%以上かつ95%以下、波長(λ)550nmにおける透過率が50%以上かつ80%未満を「△」とし、この範囲から外れるものを「×」とした。
なお、分光光度計の反射板の代わりにこの光散乱組成物を挟んだ薄層石英セルを設置し、積分球に戻った反射スペクトルを測定した結果、短波長側での透過率の低下が反射率の増大に対応していたことから、粒子による光の吸収は起こっておらず、粒子による後方散乱が起こっていることを確認した。
(Measurement of integrated transmittance of light scattering composition)
The transmittance of the light-scattering composition was obtained by using a integrating sphere with a spectrophotometer (V-570, manufactured by JASCO Corporation) using a sample obtained by sandwiching the light-scattering composition in a 0.5 mm thin-layer quartz cell. It was measured. The transmittance at a wavelength (λ) of 460 nm is 40% to 95%, the transmittance at a wavelength (λ) of 550 nm is 80% or more, and the transmittance at a wavelength (λ) of 460 nm is 40% to 95%. The transmittance at a wavelength (λ) of 550 nm was 50% or more and less than 80% was designated as “Δ”, and those outside this range were designated as “x”.
A thin-layer quartz cell with this light scattering composition sandwiched in place of the spectrophotometer reflector and the reflection spectrum returned to the integrating sphere was measured. As a result, a decrease in transmittance on the short wavelength side was reflected. Since it corresponded to the increase in the rate, it was confirmed that the light was not absorbed by the particles and the backscattering by the particles was occurring.

(光散乱複合体の透過率の測定:積分透過率と直線透過率との比較)
光散乱複合体の透過率は、厚さ1mmの基板状に成形した光散乱複合体を試料とし、分光光度計(V−570、日本分光社製)にて積分球測定および直線測定を行い、波長460nmにおける各透過率の差(積分透過率−直線透過率)が40ポイント以上である場合を青色光の散乱性が良好であるとして「○」、25ポイント以上かつ40ポイント未満である場合を「△」とし、この範囲から外れるものを「×」とした。
(Measurement of transmittance of light-scattering complex: Comparison between integral transmittance and linear transmittance)
The transmittance of the light-scattering composite is measured by integrating sphere measurement and linear measurement with a spectrophotometer (V-570, manufactured by JASCO Corp.) using a light-scattering composite molded into a 1 mm thick substrate as a sample. The case where the difference in transmittance at a wavelength of 460 nm (integral transmittance−linear transmittance) is 40 points or more is considered to be good when blue light scattering is good, and the case is 25 points or more and less than 40 points. “△” means that it is out of this range, and “x” means.

(光散乱粒子の平均一次粒子径の測定)
光散乱粒子の平均一次粒子径は、X線回折によって得られるシェラー径とした。
(Measurement of average primary particle size of light scattering particles)
The average primary particle diameter of the light scattering particles was the Scherrer diameter obtained by X-ray diffraction.

(光散乱複合体中の光散乱粒子の平均二次粒子径の測定)
光散乱複合体中の光散乱粒子の平均二次粒子径は、光散乱複合体を薄片化したものを試料とし、電解放出型透過電子顕微鏡(JEM−2100F、日本電子社製)で観察し、粒子径を測定することで行った。
ここで、個別に(会合せずに)存在している光散乱粒子については、その粒子自体をもって二次粒子とし、その粒子径を二次粒子径とした。また、複数個の光散乱粒子が重なって見える部分はその全体をもって二次粒子(会合粒子)とし、二次粒子と判断された部分全体の粒子径を二次粒子径とした。このようにして測定した二次粒子径の内50個の粒子の値を無作為に選び出し、その平均値を光散乱複合体中の光散乱粒子の平均二次粒子径とした。
(Measurement of average secondary particle diameter of light scattering particles in light scattering composite)
The average secondary particle diameter of the light-scattering particles in the light-scattering composite was observed with a field emission transmission electron microscope (JEM-2100F, manufactured by JEOL Ltd.) using a sample obtained by slicing the light-scattering composite. This was done by measuring the particle size.
Here, regarding the light scattering particles present individually (without associating), the particles themselves are used as secondary particles, and the particle size is set as the secondary particle size. In addition, the portion where a plurality of light scattering particles appear to overlap each other is defined as secondary particles (association particles), and the particle size of the entire portion determined as secondary particles is defined as the secondary particle size. The value of 50 particles among the secondary particle diameters thus measured was randomly selected, and the average value was taken as the average secondary particle diameter of the light scattering particles in the light scattering composite.

(光半導体発光装置の発光スペクトル評価)
光半導体発光装置の発光スペクトルを、分光測光装置(PMA−12、浜松ホトニクス社製)を用いて測定した。ここでは、波長400nmから480nmの発光スペクトルピーク面積をaとし、波長480nmから波長800nmの発光スペクトルピーク面積をbとして、a/bの値により評価した。光散乱粒子を含有しない比較例1及び2を基準とし、実施例1〜4、6〜9、及び比較例3〜4においては、a/bの値が比較例1のa/bの0.9倍以上かつこれ未満のものを「○」、比較例1のa/bの0.6倍以上かつ0.9倍未満のものを「△」とし、比較例1のa/bの0.6倍未満のものを「×」とした。実施例5及び比較例5においては、比較例2のa/b値と比較した。
(Emission spectrum evaluation of optical semiconductor light emitting device)
The emission spectrum of the optical semiconductor light emitting device was measured using a spectrophotometric device (PMA-12, manufactured by Hamamatsu Photonics). Here, the emission spectrum peak area from a wavelength of 400 nm to 480 nm was set as a, and the emission spectrum peak area from a wavelength of 480 nm to 800 nm was set as b, and the evaluation was performed based on a / b. Based on Comparative Examples 1 and 2 containing no light scattering particles, in Examples 1 to 4, 6 to 9, and Comparative Examples 3 to 4, the value of a / b is 0. A value of 9 times or more and less than that is “◯”, and a value of 0.6 or more and less than 0.9 times of a / b of Comparative Example 1 is “Δ”. The thing of less than 6 times was made into "x". In Example 5 and Comparative Example 5, the a / b value of Comparative Example 2 was compared.

(光半導体発光装置の輝度評価)
光半導体発光装置の輝度を、輝度計(LS−110、コニカミノルタセンシング社製)を用いて測定した。光散乱粒子を含有しない比較例1及び2を基準とし、実施例1〜4、6〜9、及び比較例3〜4において、輝度が比較例1の輝度より大きいものを「○」、比較例1の輝度の0.8倍以上かつこれと同値のものを「△」、比較例1の輝度の0.8倍未満のものを「×」とした。実施例5及び比較例5においては、比較例2の輝度と比較した。
(Brightness evaluation of optical semiconductor light-emitting devices)
The brightness | luminance of the optical semiconductor light-emitting device was measured using the luminance meter (LS-110, Konica Minolta Sensing company make). Based on Comparative Examples 1 and 2 that do not contain light scattering particles, in Examples 1-4, 6-9, and Comparative Examples 3-4, “◯” indicates that the luminance is higher than that of Comparative Example 1, Comparative Example A value of 0.8 or more times the luminance of 1 and the same value as that of “Δ”, and a value of less than 0.8 times the luminance of Comparative Example 1 was designated as “x”. In Example 5 and Comparative Example 5, the brightness of Comparative Example 2 was compared.

<非修飾粒子の作製>
光散乱粒子を構成する非修飾粒子として、次のジルコニア粒子1〜5及びシリカ粒子を作製した。
<Preparation of unmodified particles>
As unmodified particles constituting the light scattering particles, the following zirconia particles 1 to 5 and silica particles were prepared.

(ジルコニア粒子1の作製)
オキシ塩化ジルコニウム8水塩2615gを純水40L(リットル)に溶解させたジルコニウム塩溶液に、28%アンモニア水344gを純水20Lに溶解させた希アンモニア水を攪拌しながら加え、ジルコニア前駆体スラリーを調製した。
このスラリーに、硫酸ナトリウム300gを5Lの純水に溶解させた硫酸ナトリウム水溶液を攪拌しながら加えて混合物を得た。このときの硫酸ナトリウムの添加量は、ジルコニウム塩溶液中のジルコニウムイオンのジルコニア換算値に対して30質量%であった。
この混合物を、乾燥器を用いて、大気中、130℃にて24時間乾燥させ、固形物を得た。この固形物を自動乳鉢で粉砕した後、電気炉を用いて、大気中、520℃にて1時間焼成した。
次いで、この焼成物を純水中に投入し、攪拌してスラリー状とした後、遠心分離器を用いて洗浄を行い、添加した硫酸ナトリウムを十分に除去した後、乾燥器にて乾燥させ、平均一次粒径5.5nmのジルコニア粒子1を得た。
(Preparation of zirconia particles 1)
To a zirconium salt solution in which 2615 g of zirconium oxychloride octahydrate is dissolved in 40 L (liter) of pure water, dilute ammonia water in which 344 g of 28% ammonia water is dissolved in 20 L of pure water is added with stirring, and the zirconia precursor slurry is added. Prepared.
A sodium sulfate aqueous solution in which 300 g of sodium sulfate was dissolved in 5 L of pure water was added to this slurry with stirring to obtain a mixture. The amount of sodium sulfate added at this time was 30% by mass with respect to the zirconia-converted value of zirconium ions in the zirconium salt solution.
This mixture was dried in the air at 130 ° C. for 24 hours using a dryer to obtain a solid. The solid was pulverized in an automatic mortar and then baked in the atmosphere at 520 ° C. for 1 hour using an electric furnace.
Next, the fired product is put into pure water, stirred to form a slurry, washed using a centrifuge, and after sufficiently removing the added sodium sulfate, dried in a dryer, Zirconia particles 1 having an average primary particle size of 5.5 nm were obtained.

(ジルコニア粒子2の作製)
ジルコニア粒子1の作製における電気炉での焼成温度を520℃から550℃にした以外はジルコニア粒子1と同様にして平均一次粒子径が7.8nmのジルコニア粒子2を作製した。
(Preparation of zirconia particles 2)
Zirconia particles 2 having an average primary particle size of 7.8 nm were prepared in the same manner as zirconia particles 1 except that the firing temperature in the electric furnace in the production of zirconia particles 1 was changed from 520 ° C. to 550 ° C.

(ジルコニア粒子3の作製)
ジルコニア粒子1の作製における電気炉での焼成温度を520℃から500℃にした以外はジルコニア粒子1と同様にして平均一次粒子径が2.1nmのジルコニア粒子3を作製した。
(Preparation of zirconia particles 3)
Zirconia particles 3 having an average primary particle diameter of 2.1 nm were prepared in the same manner as zirconia particles 1 except that the calcination temperature in the electric furnace in preparation of zirconia particles 1 was changed from 520 ° C. to 500 ° C.

(ジルコニア粒子4の作製)
ジルコニア粒子1の作製における電気炉での焼成温度を520℃から620℃にした以外はジルコニア粒子1と同様にして平均一次粒径が21.1nmのジルコニア粒子4を作製した。
(Preparation of zirconia particles 4)
Zirconia particles 4 having an average primary particle size of 21.1 nm were produced in the same manner as zirconia particles 1 except that the firing temperature in the electric furnace in producing the zirconia particles 1 was changed from 520 ° C. to 620 ° C.

(ジルコニア粒子5の作製)
ジルコニア粒子1の作製における電気炉での焼成温度を520℃から660℃にした以外はジルコニア粒子1と同様にして平均一次粒径が48nmのジルコニア粒子5を作製した。
(Preparation of zirconia particles 5)
Zirconia particles 5 having an average primary particle size of 48 nm were produced in the same manner as zirconia particles 1 except that the firing temperature in the electric furnace in producing the zirconia particles 1 was changed from 520 ° C. to 660 ° C.

(シリカ粒子の作製)
シリカゾル(日産化学工業製 スノーテックスOS)含有のシリカ粒子をそのまま使用した。なお、X線回折測定はゾル状態ではできないこと、また単にゾルを乾燥固化したものでは測定時の取り扱いが不便なことから、実際の測定は後述のシリカ粒子含有乾燥粉体で行った。平均一次粒子径は9.5nmであった。
(Preparation of silica particles)
Silica particles containing silica sol (Snowtex OS manufactured by Nissan Chemical Industries) were used as they were. Since X-ray diffraction measurement cannot be performed in a sol state, and the sol is simply dried and solidified, handling at the time of measurement is inconvenient. Therefore, actual measurement was performed with a silica particle-containing dry powder described later. The average primary particle size was 9.5 nm.

[実施例1]
(表面修飾ジルコニア分散液1の作製)
10gのジルコニア粒子1に、トルエン86g、及びメトキシ基含有メチルフェニルシリコーンレジン(信越化学工業社製KR9218)2gを加えて、混合し、ビーズミルで5時間撹拌して、表面修飾処理を行った後、ビーズを除去した。次いで、アルケニル基(ビニル基)基含有修飾材料としてビニルトリメトキシシラン(信越化学工業社製KBM1003)を2g添加し、130℃にて6時間還流下で修飾及び分散を行い、表面修飾ジルコニア分散液1を作製した。
表面修飾材料による表面修飾量は、ジルコニア粒子1の質量に対して40質量%であり、メトキシ基含有メチルフェニルシリコーンレジンとビニルトリメトキシシランとの質量比は1対1であった。また、得られた表面修飾ジルコニア分散液1は透明であった。
[Example 1]
(Preparation of surface-modified zirconia dispersion 1)
To 10 g of zirconia particles 1, 86 g of toluene and 2 g of methoxy group-containing methylphenyl silicone resin (KR9218 manufactured by Shin-Etsu Chemical Co., Ltd.) were added, mixed, stirred for 5 hours in a bead mill, and subjected to surface modification treatment. The beads were removed. Next, 2 g of vinyltrimethoxysilane (KBM1003 manufactured by Shin-Etsu Chemical Co., Ltd.) is added as an alkenyl group (vinyl group) group-containing modifying material, and modification and dispersion are carried out under reflux at 130 ° C. for 6 hours to obtain a surface-modified zirconia dispersion. 1 was produced.
The surface modification amount by the surface modifying material was 40% by mass with respect to the mass of the zirconia particles 1, and the mass ratio of the methoxy group-containing methylphenylsilicone resin and vinyltrimethoxysilane was 1: 1. Further, the obtained surface-modified zirconia dispersion 1 was transparent.

(光散乱組成物1の作製)
10gの表面修飾ジルコニア分散液1に対して、フェニルシリコーン樹脂(東レ・ダウコーニング社製 OE−6330、屈折率1.53、A液/B液配合比=1/4)158.6g(A液31.7g、B液126.9g)を加え、撹拌した。その後、混合物から減圧乾燥によりトルエンを除去し、表面修飾ジルコニア粒子とフェニルシリコーン樹脂とを含有した光散乱組成物1を得た。得られた光散乱組成物1はほぼ透明であった。この光散乱組成物1の透過率を前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composition 1)
For 10 g of surface-modified zirconia dispersion 1, 158.6 g of phenyl silicone resin (OE-6330 manufactured by Toray Dow Corning Co., Ltd., refractive index 1.53, A / B mixture ratio = 1/4) (A solution) 31.7 g and B solution 126.9 g) were added and stirred. Thereafter, toluene was removed from the mixture by drying under reduced pressure to obtain a light scattering composition 1 containing surface-modified zirconia particles and a phenyl silicone resin. The obtained light scattering composition 1 was almost transparent. The transmittance of the light scattering composition 1 was measured and evaluated as described above. The results are shown in Table 1 below.

(光散乱複合体1の作製)
光散乱組成物1を深さ1mmの凹状の型に流し込み、150℃で2時間加熱硬化させて、厚さ1mmの光散乱複合体1を作製した。得られた光散乱複合体1の透過率を、前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composite 1)
The light-scattering composition 1 was poured into a concave mold having a depth of 1 mm and heat-cured at 150 ° C. for 2 hours to produce a light-scattering composite 1 having a thickness of 1 mm. The transmittance of the obtained light scattering composite 1 was measured and evaluated as described above. The results are shown in Table 1 below.

(光半導体発光装置1の作製)
15gの光散乱組成物1に、10gの黄色蛍光体(Genelite製 GLD(Y)−550A)を添加し、その後、蛍光体含有光散乱組成物1を自公転式ミキサーで混合・脱泡し、蛍光体含有光散乱組成物1を得た。次いで、未封止の青色光半導体発光素子を備えたパッケージの発光素子上に、蛍光体含有光散乱組成物1を滴下した。さらに蛍光体を含有しない光散乱組成物1を、蛍光体含有光散乱組成物1上に蛍光体含有光散乱組成物1と同量滴下した後、150℃で2時間加熱し、光散乱組成物1を硬化させた。これにより、光半導体発光素子上に、光散乱粒子と蛍光体とを含むと共に、蛍光体粒子を光半導体発光素子の近傍に存在させた光散乱変換層が形成された、実施例1の光半導体発光装置1を作製した。
なお、光散乱変換層における光散乱粒子の含有量は0.5質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置1の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 1)
10 g of yellow phosphor (GLD (Y) -550A manufactured by Genelite) is added to 15 g of the light scattering composition 1, and then the phosphor-containing light scattering composition 1 is mixed and defoamed with a self-revolving mixer, A phosphor-containing light scattering composition 1 was obtained. Next, the phosphor-containing light scattering composition 1 was dropped on the light emitting device of the package including the unsealed blue light semiconductor light emitting device. Further, after dropping the same amount of the light-scattering composition 1 containing no phosphor on the phosphor-containing light scattering composition 1 as the amount of the phosphor-containing light scattering composition 1, the light-scattering composition 1 is heated at 150 ° C. for 2 hours, 1 was cured. Thereby, the optical semiconductor of Example 1 in which the light-scattering conversion layer including the light-scattering particles and the phosphor and having the phosphor particles in the vicinity of the optical semiconductor light-emitting element was formed on the optical semiconductor light-emitting element. The light emitting device 1 was produced.
In addition, the content of the light scattering particles in the light scattering conversion layer was 0.5% by mass, and the content of the yellow phosphor was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 1 were measured and evaluated as described above. The results are shown in Table 1 below.

[実施例2]
(光散乱組成物2の作製)
実施例2の表面修飾ジルコニア分散液としては、実施例1の表面修飾ジルコニア分散液1をそのまま使用した。
光散乱組成物の作製において、表面修飾ジルコニア分散液1の量を100g、フェニルシリコーン樹脂(OE−6330)の量を146g(A液29.2g、B液116.8g)とした他は実施例1と同様にして、光散乱組成物2を作製した。得られた光散乱組成物2はほぼ透明であった。この光散乱組成物2の透過率を前記の通り測定し評価した。結果を下記表1に示す。
[Example 2]
(Preparation of light scattering composition 2)
As the surface-modified zirconia dispersion liquid of Example 2, the surface-modified zirconia dispersion liquid 1 of Example 1 was used as it was.
In the preparation of the light scattering composition, the amount of the surface-modified zirconia dispersion 1 was 100 g, and the amount of the phenyl silicone resin (OE-6330) was 146 g (A liquid 29.2 g, B liquid 116.8 g). In the same manner as in Example 1, a light scattering composition 2 was produced. The obtained light-scattering composition 2 was almost transparent. The transmittance of the light scattering composition 2 was measured and evaluated as described above. The results are shown in Table 1 below.

(光散乱複合体2の作製)
光散乱複合体の作製において、光散乱組成物1に代えて光散乱組成物2を用いた他は実施例1と同様にして、光散乱複合体2を作製した。得られた光散乱複合体2の透過率を、前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composite 2)
A light scattering composite 2 was prepared in the same manner as in Example 1 except that the light scattering composition 2 was used in place of the light scattering composition 1 in the preparation of the light scattering composite. The transmittance of the obtained light scattering composite 2 was measured and evaluated as described above. The results are shown in Table 1 below.

(光半導体発光装置2の作製)
光半導体発光装置の作製において、光散乱組成物1に代えて光散乱組成物2を用いた他は実施例1と同様にして、光半導体発光装置2を作製した。これにより、光半導体発光素子上に、光散乱粒子と蛍光体とを含むと共に、蛍光体粒子を光半導体発光素子の近傍に存在させた光散乱変換層が形成された、実施例2の光半導体発光装置2を得た。
なお、光散乱変換層における光散乱粒子の含有量は5質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置2の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 2)
In the production of the optical semiconductor light emitting device, the optical semiconductor light emitting device 2 was produced in the same manner as in Example 1 except that the light scattering composition 2 was used instead of the light scattering composition 1. Thus, the optical semiconductor of Example 2 in which the light scattering conversion layer including the light scattering particles and the phosphor and having the phosphor particles in the vicinity of the optical semiconductor light emitting device is formed on the optical semiconductor light emitting device. The light emitting device 2 was obtained.
In addition, the content of the light scattering particles in the light scattering conversion layer was 5% by mass, and the content of the yellow phosphor was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 2 were measured and evaluated as described above. The results are shown in Table 1 below.

[実施例3]
(表面修飾ジルコニア分散液3の作製)
表面修飾ジルコニア分散液の作製において、ジルコニア粒子1に代えてジルコニア粒子2を用い、アルケニル基含有修飾材料に代えてH−Si基含有修飾材料であるメチルジクロロシラン(信越化学工業社製 LS−50)を用いたこと、またビーズミルの撹拌時間を5時間とし、還流時間を3時間に変更した他は実施例1と同様にして、表面修飾ジルコニア分散液3を作製した。
表面修飾材料による表面修飾量は、ジルコニア粒子2の質量に対して40質量%であり、メトキシ基含有メチルフェニルシリコーンレジンとメチルジクロロシランとの質量比は1対1であった。また、得られた表面修飾ジルコニア分散液3は透明であった。
[Example 3]
(Preparation of surface-modified zirconia dispersion 3)
In the preparation of the surface-modified zirconia dispersion, zirconia particles 2 were used instead of zirconia particles 1, and methyldichlorosilane (LS-50 manufactured by Shin-Etsu Chemical Co., Ltd.), which is an H-Si group-containing modified material instead of an alkenyl group-containing modified material. The surface-modified zirconia dispersion 3 was prepared in the same manner as in Example 1 except that the bead mill was stirred for 5 hours and the reflux time was changed to 3 hours.
The surface modification amount by the surface modifying material was 40% by mass with respect to the mass of the zirconia particles 2, and the mass ratio of the methoxy group-containing methylphenylsilicone resin and methyldichlorosilane was 1: 1. Further, the obtained surface-modified zirconia dispersion 3 was transparent.

(光散乱組成物3の作製)
光散乱組成物1の作製において、表面修飾ジルコニア分散液1に代えて表面修飾ジルコニア分散液3を用いた他は実施例1と同様にして、光散乱組成物3を作製した。得られた光散乱組成物3はほぼ透明であった。この光散乱組成物3の透過率を前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composition 3)
In the production of the light scattering composition 1, a light scattering composition 3 was produced in the same manner as in Example 1 except that the surface modified zirconia dispersion 3 was used instead of the surface modified zirconia dispersion 1. The obtained light scattering composition 3 was almost transparent. The transmittance of the light scattering composition 3 was measured and evaluated as described above. The results are shown in Table 1 below.

(光散乱複合体3の作製)
光散乱複合体の作製において、光散乱組成物1に代えて光散乱組成物3を用いた他は実施例1と同様にして、光散乱複合体3を作製した。得られた光散乱複合体3の透過率を、前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composite 3)
The light scattering composite 3 was prepared in the same manner as in Example 1 except that the light scattering composition 3 was used in place of the light scattering composition 1 in the preparation of the light scattering composite. The transmittance of the obtained light scattering composite 3 was measured and evaluated as described above. The results are shown in Table 1 below.

(光半導体発光装置3の作製)
光半導体発光装置の作製において、光散乱組成物1に代えて光散乱組成物3を用いた他は実施例1と同様にして、光半導体発光装置3を作製した。これにより、光半導体発光素子上に、光散乱粒子と蛍光体とを含むと共に、蛍光体粒子を光半導体発光素子の近傍に存在させた光散乱変換層が形成された、実施例3の光半導体発光装置3を得た。
なお、光散乱変換層における光散乱粒子の含有量は0.5質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置3の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 3)
In the production of the optical semiconductor light emitting device, the optical semiconductor light emitting device 3 was produced in the same manner as in Example 1 except that the light scattering composition 3 was used instead of the light scattering composition 1. Thus, the optical semiconductor of Example 3 in which the light scattering conversion layer including the light scattering particles and the phosphor and having the phosphor particles in the vicinity of the optical semiconductor light emitting device was formed on the optical semiconductor light emitting device. The light emitting device 3 was obtained.
In addition, the content of the light scattering particles in the light scattering conversion layer was 0.5% by mass, and the content of the yellow phosphor was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 3 were measured and evaluated as described above. The results are shown in Table 1 below.

[実施例4]
(表面修飾ジルコニア分散液4の作製)
表面修飾ジルコニア分散液の作製において、アルケニル基含有修飾材料に代えてアルコキシ基含有修飾材料であるテトラエトキシシラン(信越化学工業社製 KBE−04)を用い、ビーズミルの撹拌時間を5時間とし、還流時間を3時間に変更した他は実施例1と同様にして、表面修飾ジルコニア分散液4を作製した。
表面修飾材料による表面修飾量は、ジルコニア粒子1の質量に対して40質量%であり、メトキシ基含有メチルフェニルシリコーンレジンとテトラエトキシシランとの質量比は1対1であった。また、得られた表面修飾ジルコニア分散液4は透明であった。
[Example 4]
(Preparation of surface-modified zirconia dispersion 4)
In preparation of the surface-modified zirconia dispersion, tetraethoxysilane (KBE-04, manufactured by Shin-Etsu Chemical Co., Ltd.), which is an alkoxy group-containing modified material, is used instead of the alkenyl group-containing modified material, and the stirring time of the bead mill is 5 hours. A surface-modified zirconia dispersion 4 was produced in the same manner as in Example 1 except that the time was changed to 3 hours.
The amount of surface modification by the surface modifying material was 40% by mass with respect to the mass of the zirconia particles 1, and the mass ratio of the methoxy group-containing methylphenylsilicone resin and tetraethoxysilane was 1: 1. Further, the obtained surface-modified zirconia dispersion 4 was transparent.

(光散乱組成物4の作製)
光散乱組成物の作製において、表面修飾ジルコニア分散液1に代えて表面修飾ジルコニア分散液4を用いた他は実施例1と同様にして、光散乱組成物4を作製した。得られた光散乱組成物4はほぼ透明であった。この光散乱組成物4の透過率を前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composition 4)
In the production of the light scattering composition, a light scattering composition 4 was produced in the same manner as in Example 1 except that the surface modified zirconia dispersion 1 was used instead of the surface modified zirconia dispersion 1. The obtained light scattering composition 4 was almost transparent. The transmittance of the light scattering composition 4 was measured and evaluated as described above. The results are shown in Table 1 below.

(光散乱複合体4の作製)
光散乱複合体の作製において、光散乱組成物1に代えて光散乱組成物4を用いた他は実施例1と同様にして、光散乱複合体4を作製した。得られた光散乱複合体4の透過率を、前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composite 4)
A light scattering composite 4 was prepared in the same manner as in Example 1 except that the light scattering composition 4 was used instead of the light scattering composition 1 in the preparation of the light scattering composite. The transmittance of the obtained light scattering composite 4 was measured and evaluated as described above. The results are shown in Table 1 below.

(光半導体発光装置4の作製)
光半導体発光装置の作製において、光散乱組成物1に代えて光散乱組成物4を用いた他は実施例1と同様にして、光半導体発光装置4を作製した。これにより、光半導体発光素子上に、光散乱粒子と蛍光体とを含むと共に、蛍光体粒子を光半導体発光素子の近傍に存在させた光散乱変換層が形成された、実施例4の光半導体発光装置4を得た。
なお、光散乱変換層における光散乱粒子の含有量は0.5質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置4の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 4)
In the production of the optical semiconductor light emitting device, the optical semiconductor light emitting device 4 was produced in the same manner as in Example 1 except that the light scattering composition 4 was used instead of the light scattering composition 1. Thus, the optical semiconductor of Example 4 in which the light-scattering conversion layer including the light-scattering particles and the phosphor and having the phosphor particles in the vicinity of the optical semiconductor light-emitting element is formed on the optical semiconductor light-emitting element. The light emitting device 4 was obtained.
In addition, the content of the light scattering particles in the light scattering conversion layer was 0.5% by mass, and the content of the yellow phosphor was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 4 were measured and evaluated as described above. The results are shown in Table 1 below.

[実施例5]
(表面修飾シリカ分散液の作製)
シリカゾル(日産化学工業製 スノーテックスOS)50gにヘキサン酸5gを溶解させたメタノール溶液50gを混合撹拌し、得られたスラリーをエバポレータで溶媒を乾燥除去してシリカ粒子乾燥粉体を得た。得られたシリカ粒子含有乾燥粉体10gをトルエン80gに混合した。次いで、片末端エポキシ変性シリコーン(信越化学工業社製、X−22−173DX)を5gとアルケニル基(ビニル基)含有修飾材料としてビニルトリメトキシシラン(信越化学工業社製 KBM1003)を5g加え、130℃にて6時間還流下で表面修飾及び分散を行った。得られたシリカ分散液100gにメタノールを100g投入し、得られた沈降物を回収し、乾燥した。この表面修飾シリカ粒子における表面修飾材料による表面修飾量は、シリカ粒子の質量に対して80質量%であり、片末端エポキシ変性シリコーンとビニルトリメトキシシランとの質量比は1対1であった。次いで、この表面修飾シリカ粒子を、トルエン中に18質量%(シリカ粒子として10質量%)となるよう加えて再分散させ、表面修飾シリカ分散液を作製した。
得られた表面修飾シリカ分散液は透明であった。
[Example 5]
(Preparation of surface-modified silica dispersion)
50 g of a methanol solution in which 5 g of hexanoic acid was dissolved in 50 g of silica sol (Snowtex OS, manufactured by Nissan Chemical Industries, Ltd.) was mixed and stirred, and the solvent was removed from the resulting slurry by an evaporator to obtain a silica particle dry powder. 10 g of the obtained silica particle-containing dry powder was mixed with 80 g of toluene. Next, 5 g of one-end epoxy-modified silicone (X-22-173DX, manufactured by Shin-Etsu Chemical Co., Ltd.) and 5 g of vinyltrimethoxysilane (KBM1003, Shin-Etsu Chemical Co., Ltd.) as an alkenyl group (vinyl group) -containing modifying material are added, and 130 Surface modification and dispersion were performed under reflux at 6 ° C. for 6 hours. 100 g of methanol was added to 100 g of the obtained silica dispersion, and the resulting precipitate was collected and dried. The surface modification amount of the surface-modified silica particles by the surface modification material was 80% by mass with respect to the mass of the silica particles, and the mass ratio of the one-end epoxy-modified silicone and vinyltrimethoxysilane was 1: 1. Subsequently, the surface-modified silica particles were added to toluene in an amount of 18% by mass (10% by mass as silica particles) and redispersed to prepare a surface-modified silica dispersion.
The obtained surface-modified silica dispersion was transparent.

(光散乱組成物5の作製)
作製した表面修飾シリカ分散液10gに対して、ジメチルシリコーン樹脂(東レ・ダウコーニング社製 OE−6336、屈折率1.41、A液/B液配合比=1/1)158.2g(A液79.1g、B液79.1g)を加え、撹拌した。その後、混合物から減圧乾燥によりトルエンを除去し、表面修飾シリカ粒子とジメチルシリコーン樹脂とを含有した光散乱組成物5を得た。得られた光散乱組成物5はほぼ透明であった。この光散乱組成物5の透過率を前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composition 5)
158.2 g of dimethyl silicone resin (OE-6336 manufactured by Toray Dow Corning Co., Ltd., refractive index 1.41, A / B mixture ratio = 1/1) with respect to 10 g of the surface-modified silica dispersion prepared 79.1 g and B liquid 79.1 g) were added and stirred. Thereafter, toluene was removed from the mixture by drying under reduced pressure to obtain a light scattering composition 5 containing surface-modified silica particles and a dimethyl silicone resin. The obtained light scattering composition 5 was almost transparent. The transmittance of the light scattering composition 5 was measured and evaluated as described above. The results are shown in Table 1 below.

(光散乱複合体5の作製)
光散乱複合体の作製において、光散乱組成物1に代えて光散乱組成物5を用いた他は実施例1と同様にして、光散乱複合体5を作製した。得られた光散乱複合体5の透過率を、前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composite 5)
A light scattering composite 5 was prepared in the same manner as in Example 1 except that the light scattering composition 5 was used instead of the light scattering composition 1 in the preparation of the light scattering composite. The transmittance of the obtained light scattering composite 5 was measured and evaluated as described above. The results are shown in Table 1 below.

(光半導体発光装置5の作製)
光半導体発光装置の作製において、光散乱組成物1に代えて光散乱組成物5を用いた他は実施例1と同様にして、光半導体発光装置5を作製した。これにより、光半導体発光素子上に、光散乱粒子と蛍光体とを含むと共に、蛍光体粒子を光半導体発光素子の近傍に存在させた光散乱変換層が形成された、実施例5の光半導体発光装置5を得た。
なお、光散乱変換層における光散乱粒子の含有量は0.5質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置5の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 5)
In the production of the optical semiconductor light emitting device, the optical semiconductor light emitting device 5 was produced in the same manner as in Example 1 except that the light scattering composition 5 was used instead of the light scattering composition 1. Thus, the optical semiconductor of Example 5 in which the light-scattering conversion layer including the light-scattering particles and the phosphor and having the phosphor particles in the vicinity of the optical semiconductor light-emitting element was formed on the optical semiconductor light-emitting element. The light emitting device 5 was obtained.
In addition, the content of the light scattering particles in the light scattering conversion layer was 0.5% by mass, and the content of the yellow phosphor was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 5 were measured and evaluated as described above. The results are shown in Table 1 below.

[実施例6]
(表面修飾ジルコニア分散液6の作製)
表面修飾ジルコニア分散液の作製において、トルエンの使用量を89g、メトキシ基含有メチルフェニルシリコーンレジンの使用量を0.5g、アルケニル基(ビニル基)含有修飾材料としてのビニルトリメトキシシランの使用量を0.5gに変更した他は実施例1と同様にして、表面修飾ジルコニア分散液6を作製した。
表面修飾材料による表面修飾量は、ジルコニア粒子1の質量に対して10質量%であり、メトキシ基含有メチルフェニルシリコーンレジンとビニルトリメトキシシランとの質量比は1対1であった。また、得られた表面修飾ジルコニア分散液6は透明であった。
[Example 6]
(Preparation of surface-modified zirconia dispersion 6)
In the preparation of the surface-modified zirconia dispersion, the amount of toluene used is 89 g, the amount of methoxy group-containing methylphenylsilicone resin is 0.5 g, and the amount of vinyltrimethoxysilane used as an alkenyl group (vinyl group) -containing modifier is A surface-modified zirconia dispersion 6 was prepared in the same manner as in Example 1 except that the amount was changed to 0.5 g.
The surface modification amount by the surface modifying material was 10% by mass with respect to the mass of the zirconia particles 1, and the mass ratio of the methoxy group-containing methylphenyl silicone resin and vinyltrimethoxysilane was 1: 1. Further, the obtained surface-modified zirconia dispersion 6 was transparent.

(光散乱組成物6の作製)
2gの表面修飾ジルコニア分散液6に対して、フェニルシリコーン樹脂(東レ・ダウコーニング社製 OE−6330、屈折率1.53、A液/B液配合比=1/4)159.78g(A液31.96g、B液127.82g)を加え、撹拌した。その後、混合物から減圧乾燥によりトルエンを除去し、表面修飾ジルコニア粒子とフェニルシリコーン樹脂とを含有した光散乱組成物6を作製した。得られた光散乱組成物1はほぼ透明であった。この光散乱組成物6の透過率を前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composition 6)
159.78 g of phenyl silicone resin (OE-6330 manufactured by Toray Dow Corning Co., Ltd., refractive index 1.53, A / B mixture ratio = 1/4) to 2 g of surface-modified zirconia dispersion 6 31.96 g and Liquid B 127.82 g) were added and stirred. Thereafter, toluene was removed from the mixture by drying under reduced pressure to prepare a light scattering composition 6 containing surface-modified zirconia particles and phenyl silicone resin. The obtained light scattering composition 1 was almost transparent. The transmittance of the light scattering composition 6 was measured and evaluated as described above. The results are shown in Table 1 below.

(光散乱複合体6の作製)
光散乱複合体の作製において、光散乱組成物1に代えて光散乱組成物6を用いた他は実施例1と同様にして、光散乱複合体6を作製した。得られた光散乱複合体6の透過率を、前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composite 6)
A light scattering composite 6 was prepared in the same manner as in Example 1 except that the light scattering composition 6 was used in place of the light scattering composition 1 in the preparation of the light scattering composite. The transmittance of the obtained light scattering composite 6 was measured and evaluated as described above. The results are shown in Table 1 below.

(光半導体発光装置6の作製)
光半導体発光装置の作製において、光散乱組成物1に代えて光散乱組成物6を用いた他は実施例1と同様にして、光半導体発光装置6を作製した。これにより、光半導体発光素子上に、光散乱粒子と蛍光体とを含むと共に、蛍光体粒子を光半導体発光素子の近傍に存在させた光散乱変換層が形成された、実施例6の光半導体発光装置3を得た。
なお、光散乱変換層における光散乱粒子の含有量は0.1質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置6の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 6)
In the production of the optical semiconductor light emitting device, the optical semiconductor light emitting device 6 was produced in the same manner as in Example 1 except that the light scattering composition 6 was used instead of the light scattering composition 1. Thus, the optical semiconductor of Example 6 in which the light-scattering conversion layer including the light-scattering particles and the phosphor and having the phosphor particles in the vicinity of the optical semiconductor light-emitting element was formed on the optical semiconductor light-emitting element. The light emitting device 3 was obtained.
The light scattering particle content in the light scattering conversion layer was 0.1% by mass, and the yellow phosphor content was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 6 were measured and evaluated as described above. The results are shown in Table 1 below.

[実施例7]
(光散乱組成物7の作製)
実施例7の表面修飾ジルコニア分散液としては、実施例1の表面修飾ジルコニア分散液1をそのまま使用した。
10gの表面修飾ジルコニア分散液1に対して、フェニルシリコーン樹脂(東レ・ダウコーニング社製 OE−6330、屈折率1.53、A液/B液配合比=1/4)48.6g(A液9.7g、B液38.9g)を加え、撹拌した。その後、混合物から減圧乾燥によりトルエンを除去し、表面修飾ジルコニア粒子とフェニルシリコーン樹脂とを含有した光散乱組成物7を作製した。得られた光散乱組成物7はほぼ透明であった。この光散乱組成物7の透過率を前記の通り測定し評価した。結果を下記表1に示す。
[Example 7]
(Preparation of light scattering composition 7)
As the surface-modified zirconia dispersion of Example 7, the surface-modified zirconia dispersion 1 of Example 1 was used as it was.
For 10 g of surface-modified zirconia dispersion 1, 48.6 g of phenyl silicone resin (OE-6330 manufactured by Toray Dow Corning Co., Ltd., refractive index 1.53, A / B mixture ratio = 1/4) (A solution) 9.7 g and B solution 38.9 g) were added and stirred. Thereafter, toluene was removed from the mixture by drying under reduced pressure to prepare a light scattering composition 7 containing surface-modified zirconia particles and phenyl silicone resin. The obtained light scattering composition 7 was almost transparent. The transmittance of the light scattering composition 7 was measured and evaluated as described above. The results are shown in Table 1 below.

(光散乱複合体7の作製)
光散乱複合体の作製において、光散乱組成物1に代えて光散乱組成物7を用いた他は実施例1と同様にして、光散乱複合体7を作製した。得られた光散乱複合体7の透過率を、前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composite 7)
A light scattering composite 7 was prepared in the same manner as in Example 1 except that the light scattering composition 7 was used in place of the light scattering composition 1 in the preparation of the light scattering composite. The transmittance of the obtained light scattering composite 7 was measured and evaluated as described above. The results are shown in Table 1 below.

(光半導体発光装置7の作製)
フェニルシリコーン樹脂(東レ・ダウコーニング社製 OE−6330、屈折率1.53、A液/B液配合比=1/4)15g(A液3g、B液12g)に、黄色蛍光体(Genelite製 GLD(Y)−550A)を10g加え、その後、自公転式ミキサーで混合・脱泡し、蛍光体含有組成物7を得た。
次いで、未封止の青色光半導体発光素子を備えたパッケージの発光素子上に、蛍光体含有組成物7を滴下した後、150℃で30分間加熱し、蛍光体含有組成物7を硬化した。次いで、光散乱組成物7を、硬化後の蛍光体含有組成物7上に滴下した後、150℃で90分間加熱し、光散乱組成物1を硬化させると共に、蛍光体含有組成物7を完全に硬化させた。これにより、光半導体発光素子上に、蛍光体を含有する光変換層が形成され、その上に光散乱粒子を含有する光散乱層が形成された、実施例7の光半導体発光装置7を作製した。
なお、光変換層における黄色蛍光体の含有量は20質量%であり、光散乱層における光散乱粒子の含有量は2質量%であった。また、得られた光散乱層は外部空気層に対して凸状であった。
得られた光半導体発光装置7の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 7)
Phenyl silicone resin (OE-6330 manufactured by Toray Dow Corning Co., Ltd., refractive index 1.53, A / B mixture ratio = 1/4) 15 g (A 3 g, B 12 g), yellow phosphor (Genelite) 10 g of GLD (Y) -550A) was added, and then mixed and defoamed with a self-revolving mixer to obtain phosphor-containing composition 7.
Next, the phosphor-containing composition 7 was dropped on the light-emitting element of the package including the unsealed blue light semiconductor light-emitting element, and then heated at 150 ° C. for 30 minutes to cure the phosphor-containing composition 7. Subsequently, after dripping the light-scattering composition 7 on the phosphor-containing composition 7 after curing, the light-scattering composition 1 is cured by heating at 150 ° C. for 90 minutes to completely cure the phosphor-containing composition 7. Cured. Thereby, the optical semiconductor light emitting device 7 of Example 7 in which the light conversion layer containing the phosphor was formed on the optical semiconductor light emitting element and the light scattering layer containing the light scattering particles was formed thereon was produced. did.
In addition, content of the yellow fluorescent substance in a light conversion layer was 20 mass%, and content of the light-scattering particle in a light-scattering layer was 2 mass%. The obtained light scattering layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 7 were measured and evaluated as described above. The results are shown in Table 1 below.

[実施例8]
(表面修飾ジルコニア分散液8の作製)
表面修飾ジルコニア分散液の作製において、ジルコニア粒子1に代えてジルコニア粒子4を用いた他は実施例1と同様にして、表面修飾ジルコニア分散液8を作製した。
表面修飾材料による表面修飾量は、ジルコニア粒子4の質量に対して40質量%であり、メトキシ基含有メチルフェニルシリコーンレジンとビニルトリメトキシシランとの質量比は1対1であった。また、得られた表面修飾ジルコニア分散液8は、やや白濁した透明であった。
[Example 8]
(Preparation of surface-modified zirconia dispersion 8)
A surface-modified zirconia dispersion 8 was prepared in the same manner as in Example 1 except that zirconia particles 4 were used instead of zirconia particles 1 in the preparation of the surface-modified zirconia dispersion.
The surface modification amount by the surface modifying material was 40% by mass with respect to the mass of the zirconia particles 4, and the mass ratio of the methoxy group-containing methylphenylsilicone resin and vinyltrimethoxysilane was 1: 1. The obtained surface-modified zirconia dispersion 8 was slightly cloudy and transparent.

(光散乱組成物8の作製)
光散乱組成物の作製において、表面修飾ジルコニア分散液1に代えて表面修飾ジルコニア分散液8を用いた他は実施例1と同様にして、光散乱組成物8を作製した。得られた光散乱組成物8は、やや白濁しており半透明であった。この光散乱組成物8の透過率を前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composition 8)
In the production of the light scattering composition, a light scattering composition 8 was produced in the same manner as in Example 1, except that the surface modified zirconia dispersion 1 was used instead of the surface modified zirconia dispersion 1. The obtained light scattering composition 8 was slightly cloudy and translucent. The transmittance of the light scattering composition 8 was measured and evaluated as described above. The results are shown in Table 1 below.

(光散乱複合体8の作製)
光散乱複合体の作製において、光散乱組成物1に代えて光散乱組成物8を用いた他は実施例1と同様にして、光散乱複合体8を作製した。得られた光散乱複合体8の透過率を、前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composite 8)
In the production of the light scattering composite, a light scattering composite 8 was produced in the same manner as in Example 1 except that the light scattering composition 8 was used instead of the light scattering composition 1. The transmittance of the obtained light scattering composite 8 was measured and evaluated as described above. The results are shown in Table 1 below.

(光半導体発光装置8の作製)
光半導体発光装置の作製において、光散乱組成物1に代えて光散乱組成物8を用いた他は実施例1と同様にして、光半導体発光装置8を作製した。これにより、光半導体発光素子上に、光散乱粒子と蛍光体とを含むと共に、蛍光体粒子を光半導体発光素子の近傍に存在させた光散乱変換層が形成された、実施例8の光半導体発光装置8を得た。
なお、光散乱変換層における光散乱粒子の含有量は0.5質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置8の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 8)
A photo semiconductor light emitting device 8 was produced in the same manner as in Example 1 except that the light scattering composition 8 was used in place of the light scattering composition 1 in the production of the photo semiconductor light emitting device. Thus, the optical semiconductor of Example 8 in which the light scattering conversion layer including the light scattering particles and the phosphor and having the phosphor particles in the vicinity of the optical semiconductor light emitting device was formed on the optical semiconductor light emitting device. A light emitting device 8 was obtained.
In addition, the content of the light scattering particles in the light scattering conversion layer was 0.5% by mass, and the content of the yellow phosphor was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 8 were measured and evaluated as described above. The results are shown in Table 1 below.

[実施例9]
(表面修飾ジルコニア分散液9の作製)
表面修飾ジルコニア分散液の作製において、ジルコニア粒子1に代えてジルコニア粒子5を用い、トルエンの使用量を87g、メトキシ基含有メチルフェニルシリコーンレジンの使用量を1.5g、アルケニル基(ビニル基)含有修飾材料としてのビニルトリメトキシシランの使用量を1.5gに変更した他は実施例1と同様にして、表面修飾ジルコニア分散液9を作製した。
表面修飾材料による表面修飾量は、ジルコニア粒子1の質量に対して30質量%であり、メトキシ基含有メチルフェニルシリコーンレジンとビニルトリメトキシシランとの質量比は1対1であった。また、得られた表面修飾ジルコニア分散液9はやや白濁した透明であった。
[Example 9]
(Preparation of surface-modified zirconia dispersion 9)
In the preparation of the surface-modified zirconia dispersion, zirconia particles 5 are used instead of zirconia particles 1, the amount of toluene used is 87 g, the amount of methoxy group-containing methylphenylsilicone resin used is 1.5 g, and the alkenyl group (vinyl group) is contained. A surface-modified zirconia dispersion 9 was prepared in the same manner as in Example 1 except that the amount of vinyltrimethoxysilane used as the modifying material was changed to 1.5 g.
The surface modification amount by the surface modifying material was 30% by mass with respect to the mass of the zirconia particles 1, and the mass ratio of the methoxy group-containing methylphenylsilicone resin and vinyltrimethoxysilane was 1: 1. Further, the obtained surface-modified zirconia dispersion 9 was slightly cloudy and transparent.

(光散乱組成物9の作製)
4gの表面修飾ジルコニア分散液9に対して、フェニルシリコーン樹脂(東レ・ダウコーニング社製 OE−6330、屈折率1.53、A液/B液配合比=1/4)159.48g(A液31.90g、B液127.58g)を加え、撹拌した。その後、混合物から減圧乾燥によりトルエンを除去し、表面修飾ジルコニア粒子とフェニルシリコーン樹脂とを含有した光散乱組成物9を作製した。得られた光散乱組成物9はほぼ透明であった。この光散乱組成物9の透過率を前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composition 9)
To 4 g of the surface-modified zirconia dispersion 9, 159.48 g of phenyl silicone resin (OE-6330 manufactured by Toray Dow Corning Co., Ltd., refractive index 1.53, A / B mixture ratio = 1/4) 31.90 g and B liquid 127.58 g) were added and stirred. Thereafter, toluene was removed from the mixture by drying under reduced pressure to prepare a light scattering composition 9 containing surface-modified zirconia particles and phenyl silicone resin. The obtained light scattering composition 9 was almost transparent. The transmittance of the light scattering composition 9 was measured and evaluated as described above. The results are shown in Table 1 below.

(光散乱複合体9の作製)
光散乱複合体の作製において、光散乱組成物1に代えて光散乱組成物9を用いた他は実施例1と同様にして、光散乱複合体9を作製した。得られた光散乱複合体9の透過率を、前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composite 9)
A light scattering composite 9 was prepared in the same manner as in Example 1 except that the light scattering composition 9 was used instead of the light scattering composition 1 in the preparation of the light scattering composite. The transmittance of the obtained light scattering composite 9 was measured and evaluated as described above. The results are shown in Table 1 below.

(光半導体発光装置9の作製)
光半導体発光装置の作製において、光散乱組成物1に代えて光散乱組成物9を用いた他は実施例1と同様にして、光半導体発光装置9を作製した。これにより、光半導体発光素子上に、光散乱粒子と蛍光体とを含むと共に、蛍光体粒子を光半導体発光素子の近傍に存在させた光散乱変換層が形成された、実施例9の光半導体発光装置9を得た。
なお、光散乱変換層における光散乱粒子の含有量は0.2質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置9の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 9)
In the production of the optical semiconductor light emitting device, the optical semiconductor light emitting device 9 was produced in the same manner as in Example 1 except that the light scattering composition 9 was used in place of the light scattering composition 1. Thus, the optical semiconductor of Example 9 in which the light-scattering conversion layer including the light-scattering particles and the phosphor and having the phosphor particles in the vicinity of the optical semiconductor light-emitting element was formed on the optical semiconductor light-emitting element. A light emitting device 9 was obtained.
The light scattering particle content in the light scattering conversion layer was 0.2% by mass, and the yellow phosphor content was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 9 were measured and evaluated as described above. The results are shown in Table 1 below.

[比較例1]
(マトリックス樹脂の評価)
比較例1及び2は、マトリックス樹脂中に光散乱粒子を含有させていない。そこで、光散乱複合体に代えてマトリックス樹脂自体の透過率を、光散乱複合体と同様に測定し評価した。
比較例1では、フェニルシリコーン樹脂(東レ・ダウコーニング社製 OE−6330、屈折率1.53、A液/B液配合比=1/4)7.6g(A液1.5g、B液6.1g)を自公転式ミキサーで混合、脱泡した後、得られた組成物を、各実施例の光散乱組成物と同様に測定し評価した。また、得られた組成物を深さ1mmの凹状の型に流し込み、150℃で2時間加熱硬化させて、厚さ1mmのマトリックス樹脂硬化体を作製し、このマトリックス樹脂硬化体を、実施例の光散乱複合体と同様に測定し評価した。結果を下記表1に示す。
[Comparative Example 1]
(Evaluation of matrix resin)
Comparative Examples 1 and 2 do not contain light scattering particles in the matrix resin. Therefore, instead of the light scattering composite, the transmittance of the matrix resin itself was measured and evaluated in the same manner as the light scattering composite.
In Comparative Example 1, 7.6 g of phenyl silicone resin (OE-6330 manufactured by Toray Dow Corning Co., Ltd., refractive index 1.53, A / B mixture ratio = 1/4) (A solution 1.5 g, B solution 6) 0.1 g) was mixed and defoamed with a self-revolving mixer, and the obtained composition was measured and evaluated in the same manner as the light-scattering composition of each Example. Further, the obtained composition was poured into a concave mold having a depth of 1 mm and cured by heating at 150 ° C. for 2 hours to prepare a cured matrix resin having a thickness of 1 mm. Measurement and evaluation were conducted in the same manner as the light scattering complex. The results are shown in Table 1 below.

(光半導体発光装置101の作製)
フェニルシリコーン樹脂(東レ・ダウコーニング社製 OE−6330、屈折率1.53、A液/B液配合比=1/4)7.6g(A液1.5g、B液6.1g)に、黄色蛍光体(Genelite製 GLD(Y)−550A)を1g加え、その後、自公転式ミキサーで混合、脱泡した。次いで未封止の青色光半導体発光素子を備えたパッケージの発光素子上に蛍光体含有フェニルシリコーン樹脂組成物を滴下し、さらに蛍光体を含有していない当該フェニルシリコーン樹脂組成物を滴下し、150℃で2時間、加熱硬化させた。これにより、光半導体発光素子上に、蛍光体を含有する光変換層が形成された、比較例1の光半導体発光装置101を作製した。
なお、光変換層における黄色蛍光体の含有量は11.3質量%であった。また、得られた光変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置101の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 101)
To 7.6 g (A liquid 1.5 g, B liquid 6.1 g), phenyl silicone resin (OE-6330 manufactured by Toray Dow Corning Co., Ltd., refractive index 1.53, A liquid / B liquid mixture ratio = 1/4) 1 g of yellow phosphor (GLD (Y) -550A manufactured by Genelite) was added, and then mixed and defoamed with a self-revolving mixer. Next, a phosphor-containing phenylsilicone resin composition is dropped on a light-emitting element of a package including an unsealed blue light semiconductor light-emitting element, and the phenylsilicone resin composition not containing a phosphor is further dropped. Heat curing was carried out at 2 ° C. for 2 hours. Thereby, the optical semiconductor light-emitting device 101 of the comparative example 1 by which the light conversion layer containing a fluorescent substance was formed on the optical semiconductor light-emitting element was produced.
In addition, content of the yellow fluorescent substance in a light conversion layer was 11.3 mass%. Moreover, the obtained light conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 101 were measured and evaluated as described above. The results are shown in Table 1 below.

(マトリックス樹脂の評価)
フェニルシリコーン樹脂の代わりにジメチルシリコーン樹脂(東レ・ダウコーニング社製 OE−6336、屈折率1.41 A液/B液配合比=1/1)を用いた他は比較例1と同様にして、マトリックス樹脂硬化体の透過率を測定し評価した。結果を下記表1に示す。
(Evaluation of matrix resin)
In the same manner as in Comparative Example 1, except that dimethyl silicone resin (OE-6336 manufactured by Toray Dow Corning Co., Ltd., refractive index 1.41 A liquid / B liquid blending ratio = 1/1) was used instead of phenyl silicone resin. The transmittance of the cured matrix resin was measured and evaluated. The results are shown in Table 1 below.

(光半導体発光装置102の作製)
[比較例2]
光半導体発光装置の作製において、フェニルシリコーン樹脂に代えてジメチルシリコーン樹脂(東レ・ダウコーニング社製 OE−6336、屈折率1.41 A液/B液配合比=1/1)7.6g(A液3.8g、B液3.8g)を用いた他は比較例1と同様にして、光半導体発光装置102を作製した。
なお、光変換層における黄色蛍光体の含有量は11.3質量%であった。また、得られた光変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置102の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 102)
[Comparative Example 2]
In the production of an optical semiconductor light emitting device, dimethyl silicone resin (OE-6336 manufactured by Toray Dow Corning Co., Ltd., refractive index 1.41 A / B mixture ratio = 1/1) instead of phenyl silicone resin 7.6 g (A The optical semiconductor light emitting device 102 was produced in the same manner as in Comparative Example 1 except that the liquid 3.8 g and the liquid B 3.8 g) were used.
In addition, content of the yellow fluorescent substance in a light conversion layer was 11.3 mass%. Moreover, the obtained light conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 102 were measured and evaluated as described above. The results are shown in Table 1 below.

[比較例3]
(表面修飾ジルコニア分散液103の作製)
表面修飾ジルコニア分散液の作製において、ジルコニア粒子1に代えてジルコニア粒子3を用いた他は実施例1と同様にして、表面修飾ジルコニア分散液103を作製した。
表面修飾材料による表面修飾量は、ジルコニア粒子3の質量に対して40質量%であり、メトキシ基含有メチルフェニルシリコーンレジンとビニルトリメトキシシランとの質量比は1対1であった。また、得られた表面修飾ジルコニア分散液103は透明であった。
[Comparative Example 3]
(Preparation of surface-modified zirconia dispersion 103)
In the preparation of the surface-modified zirconia dispersion, a surface-modified zirconia dispersion 103 was prepared in the same manner as in Example 1 except that the zirconia particles 3 were used instead of the zirconia particles 1.
The surface modification amount by the surface modifying material was 40% by mass with respect to the mass of the zirconia particles 3, and the mass ratio of the methoxy group-containing methylphenylsilicone resin and vinyltrimethoxysilane was 1: 1. Further, the obtained surface-modified zirconia dispersion 103 was transparent.

(光散乱組成物103の作製)
光散乱組成物の作製において、表面修飾ジルコニア分散液1に代えて表面修飾ジルコニア分散液103を用いた他は実施例1と同様にして、光散乱組成物103を作製した。得られた光散乱組成物103は透明であった。この光散乱組成物103の透過率を前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composition 103)
A light scattering composition 103 was prepared in the same manner as in Example 1 except that the surface-modified zirconia dispersion liquid 1 was used instead of the surface-modified zirconia dispersion liquid 1 in the preparation of the light scattering composition. The obtained light scattering composition 103 was transparent. The transmittance of the light scattering composition 103 was measured and evaluated as described above. The results are shown in Table 1 below.

(光散乱複合体103の作製)
光散乱複合体の作製において、光散乱組成物1に代えて光散乱組成物103を用いた他は実施例1と同様にして、光散乱複合体103を作製した。得られた光散乱複合体103の透過率を、前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composite 103)
A light scattering composite 103 was prepared in the same manner as in Example 1 except that the light scattering composition 103 was used instead of the light scattering composition 1 in the preparation of the light scattering composite. The transmittance of the obtained light scattering composite 103 was measured and evaluated as described above. The results are shown in Table 1 below.

(光半導体発光装置103の作製)
光半導体発光装置の作製において、光散乱組成物1に代えて光散乱組成物103を用いた他は実施例1と同様にして、光半導体発光装置103を作製した。これにより、光半導体発光素子上に、光散乱粒子と蛍光体とを含むと共に、蛍光体粒子を光半導体発光素子の近傍に存在させた光散乱変換層が形成された、比較例3の光半導体発光装置103を得た。
なお、光散乱変換層における光散乱粒子の含有量は0.5質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置103の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 103)
A photo semiconductor light emitting device 103 was produced in the same manner as in Example 1 except that the light scattering composition 103 was used instead of the light scattering composition 1 in the production of the photo semiconductor light emitting device. As a result, the optical semiconductor of Comparative Example 3, in which the light scattering conversion layer including the light scattering particles and the phosphor and having the phosphor particles in the vicinity of the optical semiconductor light emitting element is formed on the optical semiconductor light emitting element. A light emitting device 103 was obtained.
In addition, the content of the light scattering particles in the light scattering conversion layer was 0.5% by mass, and the content of the yellow phosphor was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 103 were measured and evaluated as described above. The results are shown in Table 1 below.

[比較例4]
(表面修飾ジルコニア分散液104の作製)
表面修飾ジルコニア分散液の作製において、アルケニル基含有修飾材料に代えて飽和脂肪酸であるステアリン酸を用いたこと、またビーズミルの撹拌時間を5時間に変更した他は実施例1と同様にして、表面修飾ジルコニア分散液104を作製した。なお、ステアリン酸は飽和脂肪酸であり、そのカルボキシル基はジルコニア粒子との結合に使用されてしまうから、ジルコニア粒子結合後のステアリン酸はアルキル基しか有しておらず、アルケニル基、H−Si基、アルコキシ基のいずれも有していない。
表面修飾材料による表面修飾量は、ジルコニア粒子1の質量に対して40質量%であった。また、得られた表面修飾ジルコニア分散液104は透明であった。
[Comparative Example 4]
(Preparation of surface-modified zirconia dispersion 104)
In the preparation of the surface-modified zirconia dispersion, the same procedure as in Example 1 was used except that stearic acid, which is a saturated fatty acid, was used instead of the alkenyl group-containing modifying material, and that the stirring time of the bead mill was changed to 5 hours. A modified zirconia dispersion 104 was prepared. Since stearic acid is a saturated fatty acid and its carboxyl group is used for bonding with zirconia particles, the stearic acid after bonding with zirconia particles has only an alkyl group, an alkenyl group, an H-Si group. And none of the alkoxy groups.
The amount of surface modification by the surface modifying material was 40% by mass with respect to the mass of the zirconia particles 1. Further, the obtained surface-modified zirconia dispersion 104 was transparent.

(光散乱組成物104の作製)
光散乱組成物の作製において、表面修飾ジルコニア分散液1に代えて表面修飾ジルコニア分散液104を用いた他は実施例1と同様にして、光散乱組成物104を作製した。得られた光散乱組成物104は、やや白濁しており半透明であった。この光散乱組成物104の透過率を前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composition 104)
The light scattering composition 104 was prepared in the same manner as in Example 1 except that the surface-modified zirconia dispersion liquid 1 was used instead of the surface-modified zirconia dispersion liquid 1 in the preparation of the light scattering composition. The obtained light-scattering composition 104 was slightly cloudy and translucent. The transmittance of the light scattering composition 104 was measured and evaluated as described above. The results are shown in Table 1 below.

(光散乱複合体104の作製)
光散乱複合体の作製において、光散乱組成物1に代えて光散乱組成物104を用いた他は実施例1と同様にして、光散乱複合体104を作製した。得られた光散乱複合体104の透過率を、前記の通り測定し評価した。結果を下記表1に示す。
(Preparation of light scattering composite 104)
A light scattering composite 104 was prepared in the same manner as in Example 1 except that the light scattering composition 104 was used instead of the light scattering composition 1 in the preparation of the light scattering composite. The transmittance of the obtained light scattering composite 104 was measured and evaluated as described above. The results are shown in Table 1 below.

(光半導体発光装置104の作製)
光半導体発光装置の作製において、光散乱組成物1に代えて光散乱組成物104を用いた他は実施例1と同様にして、光半導体発光装置104を作製した。これにより、光半導体発光素子上に、光散乱粒子と蛍光体とを含むと共に、蛍光体粒子を光半導体発光素子の近傍に存在させた光散乱変換層が形成された、比較例4の光半導体発光装置104を得た。
なお、光散乱変換層における光散乱粒子の含有量は0.5質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置104の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 104)
A photo semiconductor light emitting device 104 was produced in the same manner as in Example 1 except that the light scattering composition 104 was used in place of the light scattering composition 1 in the production of the photo semiconductor light emitting device. Thus, the optical semiconductor of Comparative Example 4 in which the light scattering conversion layer including the light scattering particles and the phosphor and having the phosphor particles in the vicinity of the optical semiconductor light emitting element is formed on the optical semiconductor light emitting element. The light emitting device 104 was obtained.
In addition, the content of the light scattering particles in the light scattering conversion layer was 0.5% by mass, and the content of the yellow phosphor was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 104 were measured and evaluated as described above. The results are shown in Table 1 below.

[比較例5]
(光散乱組成物105の作製)
比較例105の表面修飾シリカ分散液としては、実施例5の表面修飾シリカ分散液をそのまま使用した。
この表面修飾シリカ分散液200gに対して、ジメチルシリコーン樹脂(東レ・ダウコーニング社製 OE−6336、屈折率1.41、A液/B液配合比=1/1)88g(A液44g、B液44g)を加え、撹拌した。その後、混合物から減圧乾燥によりトルエンを除去し、表面修飾シリカ粒子とジメチルシリコーン樹脂とを含有した光散乱組成物105を得た。得られた光散乱組成物105はほぼ透明であった。この光散乱組成物105の透過率を前記の通り測定し評価した。結果を下記表1に示す。
[Comparative Example 5]
(Preparation of light scattering composition 105)
As the surface-modified silica dispersion of Comparative Example 105, the surface-modified silica dispersion of Example 5 was used as it was.
To 200 g of this surface-modified silica dispersion, 88 g of dimethyl silicone resin (OE-6336 manufactured by Toray Dow Corning Co., Ltd., refractive index 1.41, A / B mixture ratio = 1/1) (A 44 g, B 44 g) of liquid was added and stirred. Thereafter, toluene was removed from the mixture by drying under reduced pressure to obtain a light scattering composition 105 containing surface-modified silica particles and a dimethyl silicone resin. The obtained light scattering composition 105 was almost transparent. The transmittance of the light scattering composition 105 was measured and evaluated as described above. The results are shown in Table 1 below.

(光半導体発光装置105の作製)
光半導体発光装置の作製において、光散乱組成物1に代えて光散乱組成物105を用いた他は実施例1と同様にして、光半導体発光装置105を作製した。これにより、光半導体発光素子上に、光散乱粒子と蛍光体とを含むと共に、蛍光体粒子を光半導体発光素子の近傍に存在させた光散乱変換層が形成された、比較例5の光半導体発光装置105を得た。
なお、光散乱変換層における光散乱粒子の含有量は20質量%、黄色蛍光体の含有量は20質量%であった。また、得られた光散乱変換層は外部空気層に対して凸状であった。
得られた光半導体発光装置105の発光スペクトル及び輝度を、前記の通り測定し評価した。結果を下記表1に示す。
(Production of optical semiconductor light emitting device 105)
A photo semiconductor light emitting device 105 was produced in the same manner as in Example 1 except that the light scattering composition 105 was used in place of the light scattering composition 1 in the production of the photo semiconductor light emitting device. Thus, the optical semiconductor of Comparative Example 5 in which the light-scattering conversion layer including the light-scattering particles and the phosphor and having the phosphor particles in the vicinity of the optical semiconductor light-emitting element is formed on the optical semiconductor light-emitting element. A light emitting device 105 was obtained.
The light scattering particle content in the light scattering conversion layer was 20% by mass, and the yellow phosphor content was 20% by mass. Moreover, the obtained light-scattering conversion layer was convex with respect to the external air layer.
The emission spectrum and luminance of the obtained optical semiconductor light emitting device 105 were measured and evaluated as described above. The results are shown in Table 1 below.

上記表1より、実施例1〜7、9の光半導体発光装置はすべて、発光スペクトルピーク面積比が比較例1〜4よりも優れていた。つまり、実施例1〜7の光半導体発光装置においては白色光とともに発せられる青色光成分が低減されていた。さらに、実施例1〜7、9の光半導体発光装置はすべて高輝度であり、特に実施例1〜4の光半導体発光装置は非常に高い輝度を示した。また、実施例8の各値は他の実施例に比べ低下していたが、比較例よりは良かった。これは、他の実施例に比べ平均二次粒子径が大きいためと考えられる。また、比較例5では光学的な特性は悪くなかったが、光散乱粒子の含有量が多いために、特に光散乱組成物の粘度が高くなり、ハンドリングが困難であった。   From the said Table 1, all the optical semiconductor light-emitting devices of Examples 1-7 and 9 were superior to Comparative Examples 1-4 in the emission spectrum peak area ratio. That is, in the optical semiconductor light emitting devices of Examples 1 to 7, the blue light component emitted together with the white light was reduced. Furthermore, the optical semiconductor light-emitting devices of Examples 1 to 7 and 9 all have high luminance, and in particular, the optical semiconductor light-emitting devices of Examples 1 to 4 showed very high luminance. Moreover, although each value of Example 8 was falling compared with the other Examples, it was better than the comparative example. This is presumably because the average secondary particle size is larger than in other examples. Moreover, although the optical characteristic was not bad in the comparative example 5, since there was much content of light-scattering particle | grains, especially the viscosity of the light-scattering composition became high and handling was difficult.

10 光半導体発光素子
11 封止樹脂層
12 光散乱複合体
13 蛍光体粒子
14 光散乱変換層
15 マトリックス材
16 光変換層
17 光散乱層
18 外部空気相界面
DESCRIPTION OF SYMBOLS 10 Optical semiconductor light-emitting element 11 Sealing resin layer 12 Light scattering composite body 13 Phosphor particle 14 Light scattering conversion layer 15 Matrix material 16 Light conversion layer 17 Light scattering layer 18 External air phase interface

Claims (3)

アルケニル基、H−Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料によって表面修飾された無機酸化物粒子を含む、平均一次粒子径3nm以上かつ50nm以下の光散乱粒子と、マトリックス樹脂組成物と、を含有する光散乱組成物であって、
前記マトリックス樹脂組成物が、ジメチルシリコーン樹脂の樹脂モノマー若しくはオリゴマー、メチルフェニルシリコーン樹脂の樹脂モノマー若しくはオリゴマー、フェニルシリコーン樹脂の樹脂モノマー若しくはオリゴマー、有機変性シリコーン樹脂の樹脂モノマー若しくはオリゴマー、から選択される少なくとも1種であり、
前記光散乱組成物の全固形分における前記光散乱粒子の含有量が0.01質量%以上かつ10質量%以下であり、
前記光散乱粒子は、前記光散乱組成物を硬化した際には、前記光散乱粒子の少なくとも一部が会合粒子を形成し、前記会合粒子を含む粒子の平均二次粒子径が前記平均一次粒子径より大きくかつ1000nm以下となる、光散乱組成物。
Light scattering having an average primary particle diameter of 3 nm or more and 50 nm or less, including inorganic oxide particles surface-modified with a surface modifying material having one or more functional groups selected from alkenyl groups, H-Si groups, and alkoxy groups A light scattering composition comprising particles and a matrix resin composition ,
The matrix resin composition is at least selected from a resin monomer or oligomer of a dimethyl silicone resin, a resin monomer or oligomer of a methyl phenyl silicone resin, a resin monomer or oligomer of a phenyl silicone resin, or a resin monomer or oligomer of an organically modified silicone resin One kind,
Der content 0.01 wt% or more and 10 wt% of the light scattering particles in the total solid content of the light-scattering composition is,
In the light scattering particles, when the light scattering composition is cured, at least a part of the light scattering particles forms associated particles, and the average secondary particle diameter of the particles including the associated particles is the average primary particles. A light scattering composition having a diameter larger than 1000 nm .
請求項1に記載の光散乱組成物を硬化してなる光散乱複合体であって、
前記光散乱粒子の少なくとも一部が会合粒子を形成しており、前記会合粒子を含む粒子の平均二次粒子径が前記平均一次粒子径より大きくかつ1000nm以下である光散乱複合体。
A light scattering composite obtained by curing the light scattering composition according to claim 1 ,
A light-scattering complex , wherein at least a part of the light-scattering particles form associated particles, and an average secondary particle diameter of particles including the associated particles is larger than the average primary particle diameter and 1000 nm or less .
アルケニル基、H−Si基、及びアルコキシ基から選ばれた1つ以上の官能基を有する表面修飾材料によって表面修飾された無機酸化物粒子を含む、平均一次粒子径3nm以上かつ50nm以下の光散乱粒子と、マトリックス樹脂組成物と、を含有し、
前記マトリックス樹脂組成物が、ジメチルシリコーン樹脂の樹脂モノマー若しくはオリゴマー、メチルフェニルシリコーン樹脂の樹脂モノマー若しくはオリゴマー、フェニルシリコーン樹脂の樹脂モノマー若しくはオリゴマー、有機変性シリコーン樹脂の樹脂モノマー若しくはオリゴマー、から選択される少なくとも1種であり、
全固形分における前記光散乱粒子の含有量が0.01質量%以上かつ10質量%以下である光散乱組成物を硬化してなる光散乱複合体の製造方法であって、
当該光散乱組成物の硬化時において、単分散状態の光散乱粒子の少なくとも一部を会合させて、マトリックス樹脂中で会合粒子を形成し、前記会合粒子を含む粒子の平均二次粒子径が前記平均一次粒子径より大きくかつ1000nm以下である光散乱複合体の製造方法。
Light scattering having an average primary particle diameter of 3 nm or more and 50 nm or less, including inorganic oxide particles surface-modified with a surface modifying material having one or more functional groups selected from alkenyl groups, H-Si groups, and alkoxy groups Particles and a matrix resin composition,
The matrix resin composition is at least selected from a resin monomer or oligomer of a dimethyl silicone resin, a resin monomer or oligomer of a methyl phenyl silicone resin, a resin monomer or oligomer of a phenyl silicone resin, or a resin monomer or oligomer of an organically modified silicone resin One kind,
A method for producing a light-scattering composite obtained by curing a light-scattering composition having a content of the light-scattering particles in a total solid content of 0.01% by mass or more and 10% by mass or less,
At the time of curing the light scattering composition, at least a part of the monodispersed light scattering particles are associated to form associated particles in the matrix resin, and the average secondary particle diameter of the particles including the associated particles is A method for producing a light-scattering composite that is larger than the average primary particle size and 1000 nm or less .
JP2014209266A 2013-10-11 2014-10-10 Light-scattering composition, light-scattering composite, and method for producing the same Active JP6287747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014209266A JP6287747B2 (en) 2013-10-11 2014-10-10 Light-scattering composition, light-scattering composite, and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013214245 2013-10-11
JP2013214245 2013-10-11
JP2014209266A JP6287747B2 (en) 2013-10-11 2014-10-10 Light-scattering composition, light-scattering composite, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015096950A JP2015096950A (en) 2015-05-21
JP6287747B2 true JP6287747B2 (en) 2018-03-07

Family

ID=53374248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014209266A Active JP6287747B2 (en) 2013-10-11 2014-10-10 Light-scattering composition, light-scattering composite, and method for producing the same

Country Status (1)

Country Link
JP (1) JP6287747B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6020684B1 (en) * 2015-08-20 2016-11-02 大日本印刷株式会社 Optical wavelength conversion sheet, backlight device including the same, and image display device
JP6972656B2 (en) * 2017-05-22 2021-11-24 Dic株式会社 Ink composition and its manufacturing method, light conversion layer and color filter
JP2020002305A (en) * 2018-06-29 2020-01-09 住友大阪セメント株式会社 Composition, sealing member, light-emitting device, lighting apparatus and display device
JP7439824B2 (en) 2019-03-29 2024-02-28 住友大阪セメント株式会社 Dispersion liquid, composition, sealing member, light emitting device, lighting equipment, display device, and method for producing dispersion liquid

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299981A (en) * 2006-05-01 2007-11-15 Sumitomo Osaka Cement Co Ltd Light emitting element, sealing composition thereof, and optical semiconductor device
JP2008216429A (en) * 2007-03-01 2008-09-18 Toppan Printing Co Ltd Antiglare film
JP5228464B2 (en) * 2007-12-11 2013-07-03 住友大阪セメント株式会社 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
JP5188251B2 (en) * 2008-04-22 2013-04-24 旭化成株式会社 Anti-glare film
US9507057B2 (en) * 2011-10-12 2016-11-29 Dai Nippon Printing Co., Ltd. Anti-glare sheet for image display device
WO2013172476A1 (en) * 2012-05-18 2013-11-21 住友大阪セメント株式会社 Surface-modified metal oxide particle material, dispersion liquid, silicone resin composition, silicone resin composite body, optical semiconductor light emitting device, lighting device, and liquid crystal imaging device
JP6003402B2 (en) * 2012-08-28 2016-10-05 住友大阪セメント株式会社 Optical semiconductor light emitting device, lighting fixture, and display device
JP2014086526A (en) * 2012-10-23 2014-05-12 Jgc Catalysts & Chemicals Ltd Light-emitting diode
JP6198106B2 (en) * 2013-04-05 2017-09-20 大日本印刷株式会社 Anti-glare film, polarizing plate, liquid crystal panel and image display device

Also Published As

Publication number Publication date
JP2015096950A (en) 2015-05-21

Similar Documents

Publication Publication Date Title
JP6724898B2 (en) Light-scattering complex forming composition, light-scattering complex and method for producing the same
JP6344190B2 (en) Optical semiconductor light emitting device, lighting fixture, display device, and manufacturing method of optical semiconductor light emitting device
JP6003402B2 (en) Optical semiconductor light emitting device, lighting fixture, and display device
JP6079334B2 (en) Optical semiconductor light emitting device, lighting apparatus, display device, and color rendering control method
TWI417487B (en) Color-stable phosphor converted led
JP6656607B2 (en) Dispersion, composition, sealing member, light emitting device, lighting fixture, display device, and method for manufacturing light emitting device
JP6287747B2 (en) Light-scattering composition, light-scattering composite, and method for producing the same
JP5738541B2 (en) Optical semiconductor device
JP6656606B2 (en) Dispersion, composition, sealing member, light emitting device, lighting fixture, display device, and method for manufacturing light emitting device
JP6115611B2 (en) Optical semiconductor light emitting device, lighting fixture, and display device
JP2019040978A (en) Method for deciding physical quantity of metal oxide particles in light-emitting device
JP7087796B2 (en) Dispersions, compositions, encapsulants, light emitting devices, lighting fixtures and display devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170328

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171005

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R150 Certificate of patent or registration of utility model

Ref document number: 6287747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150