WO2018117130A1 - Composition, film, laminated structure, light-emitting device, display, and method for producing composition - Google Patents

Composition, film, laminated structure, light-emitting device, display, and method for producing composition Download PDF

Info

Publication number
WO2018117130A1
WO2018117130A1 PCT/JP2017/045618 JP2017045618W WO2018117130A1 WO 2018117130 A1 WO2018117130 A1 WO 2018117130A1 JP 2017045618 W JP2017045618 W JP 2017045618W WO 2018117130 A1 WO2018117130 A1 WO 2018117130A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
composition
fine particles
compound
semiconductor fine
Prior art date
Application number
PCT/JP2017/045618
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 内藤
酒谷 能彰
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202211290469.4A priority Critical patent/CN115521774A/en
Priority to CN201780078423.7A priority patent/CN110088230A/en
Priority to JP2018558017A priority patent/JP6830964B2/en
Publication of WO2018117130A1 publication Critical patent/WO2018117130A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric

Definitions

  • the present invention relates to a composition, a film, a laminated structure, a light emitting device, a display, and a method for producing the composition.
  • This application claims priority based on Japanese Patent Application No. 2016-250174 for which it applied to Japan on December 22, 2016, and uses the content here.
  • Non-Patent Document 1 a composition having strong emission intensity in the range of the ultraviolet to red spectral region under room temperature conditions has been reported.
  • Non-Patent Document 1 when used as a light emitting material, further improvement in thermal durability is required.
  • This invention is made
  • the present invention includes the following [1] to [11].
  • a composition having luminescent properties comprising (1), (2), and (3).
  • (1) Semiconductor fine particles (2) Organic compound having an amino group, an alkoxy group, and a silicon atom (3) At least one selected from the group consisting of a polymerizable compound and a polymer [2]
  • the above (1) is A The composition according to [1], wherein the composition is a fine particle of a perovskite compound having, B, and X as constituent components.
  • A is a component located at each vertex of a hexahedron centered on B in the perovskite crystal structure, and is a monovalent cation.
  • X represents a component located at each vertex of an octahedron centered on B in the perovskite crystal structure, and is one or more anions selected from the group consisting of halide ions and thiocyanate ions.
  • B is a component located at the center of a hexahedron that arranges A at the apex and an octahedron that arranges X at the apex in the perovskite crystal structure, and is a metal ion.
  • composition according to any one of [1] to [3], further comprising (4) at least one selected from the group consisting of (4) ammonia, amine, carboxylic acid, and salts or ions thereof.
  • object [5] A composition comprising (1), (2) and (3 ′), wherein the total content of (1), (2) and (3 ′) is relative to the total mass of the composition The composition which is 90 mass% or more.
  • composition according to the above [5] comprising at least one selected from the group consisting of: [7] A film comprising the composition according to [5] or [6]. [8] A laminated structure having a plurality of layers, at least one of which is a layer made of the composition according to [5] or [6]. [9] A light emitting device including the laminated structure according to [8]. [10] A display comprising the laminated structure according to [8].
  • the manufacturing method of the composition which has luminescent property including the process of mixing the obtained dispersion and (2).
  • (1) Semiconductor fine particles (2) Organic compounds having amino groups, alkoxy groups, and silicon atoms (3) At least one selected from the group consisting of polymerizable compounds and polymers
  • compositions it is possible to provide a composition, a film, a laminated structure, a light-emitting device, a display, and a method for producing the composition having high thermal durability including semiconductor fine particles.
  • the composition of the present invention has luminescent properties.
  • Luminescent refers to the property of emitting light.
  • the light emitting property is preferably a property of emitting light by excitation of electrons, and more preferably a property of emitting light by excitation of electrons by excitation light.
  • the wavelength of the excitation light may be, for example, 200 nm to 800 nm, 250 nm to 700 nm, or 300 nm to 600 nm.
  • composition of the present invention comprises (1), (2), and (3).
  • Semiconductor fine particles (2) Organic compounds having amino groups, alkoxy groups, and silicon atoms (3) At least one selected from the group consisting of polymerizable compounds and polymers
  • the composition may further include (4) at least one selected from the group consisting of (4) ammonia, amines, and carboxylic acids, and salts or ions thereof. Further, it may have other components other than (1) to (4). Examples of other components include a compound having an amorphous structure composed of some impurities and elemental components constituting semiconductor fine particles, a polymerization initiator, and a solvent. The content of other components is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 1% by mass or less with respect to the total mass of the composition.
  • a composition comprising (1) semiconductor fine particles, (2) an organic compound having an amino group, an alkoxy group, and a silicon atom, and (3) a polymerizable compound and at least one selected from the group consisting of polymers. It was found that the property can be improved. This is because the organic compound (2) prevents the electrons trapped in the defects on the surface of the semiconductor fine particles (1) from being deactivated, and the organic compound (2) is strongly adsorbed. Therefore, it is considered that the heat durability is improved by being difficult to come off due to the influence of heat.
  • the total content of (1), (2), and (3) including (1), (2), and (3) is 90 mass with respect to the total mass of the composition. % Or more, 95 mass% or more, 99 mass% or more, or 100 mass%.
  • the composition of the present invention includes (1), (2), and (3 ′), and the total content of (1), (2), and (3 ′) is 90 with respect to the total mass of the composition.
  • the composition which is the mass% or more may be sufficient.
  • (1) Semiconductor fine particles (2) Organic compound having amino group, alkoxy group, and silicon atom (3 ′) polymer
  • the total content of (1), (2) and (3 ′) may be 95% by mass or more with respect to the total mass of the composition, and is 99% by mass or more. It may be 100 mass%.
  • the composition may further contain (4) at least one selected from the group consisting of (4) ammonia, amines, and carboxylic acids, and salts or ions thereof.
  • Components other than (1), (2), (3 ′), and (4) include the same components as the other components described above.
  • the content of (1) with respect to the total mass of the composition is not particularly limited, but the semiconductor fine particles are condensed. From the viewpoint of making it difficult and preventing concentration quenching, it is preferably 50% by mass or less, more preferably 1% by mass or less, further preferably 0.5% by mass or less, and good. From the viewpoint of obtaining the quantum yield, it is preferably 0.0001% by mass or more, more preferably 0.0005% by mass or more, and further preferably 0.001% by mass or more. The above upper limit value and lower limit value can be arbitrarily combined.
  • the content of (1) with respect to the total mass of the composition is usually 0.0001 to 50% by mass.
  • the content of (1) with respect to the total mass of the composition is preferably 0.0001 to 1% by mass, more preferably 0.0005 to 1% by mass, and 0.001 to 0.5% by mass. More preferably.
  • the composition in which the range related to the blending of (1) is within the above range is preferable in that the aggregation of the semiconductor fine particles of (1) hardly occurs and the light emitting property is also satisfactorily exhibited.
  • the content of the semiconductor fine particles of (1) with respect to the total mass of the composition can be measured by, for example, an inductively coupled plasma mass spectrometer (hereinafter also referred to as ICP-MS) and an ion chromatograph. it can.
  • ICP-MS inductively coupled plasma mass spectrometer
  • the total content of (1) and (2) with respect to the total mass of the composition is not particularly limited, From the viewpoint of making the semiconductor fine particles difficult to condense and preventing concentration quenching, it is preferably 60% by mass or less, more preferably 10% by mass or less, and further preferably 2% by mass or less. It is particularly preferred that the amount be 0.5 mass% or less, and from the viewpoint of obtaining a good quantum yield, it is preferably 0.0002 mass% or more, more preferably 0.002 mass% or more, More preferably, it is 0.005 mass% or more.
  • the above upper limit value and lower limit value can be arbitrarily combined.
  • the total content of (1) and (2) with respect to the total mass of the composition is usually 0.0002 to 60% by mass.
  • the total content of (1) and (2) with respect to the total mass of the composition is preferably 0.001 to 10% by mass, more preferably 0.002 to 2% by mass, and 0.005 to More preferably, it is 0.6 mass%.
  • the composition in which the range related to the blending ratio of (1) and (2) is within the above range is preferable in that the aggregation of the semiconductor fine particles of (1) hardly occurs and the light emission property is also exhibited well.
  • the content of (1) with respect to the total volume of the composition is not particularly limited, but the semiconductor fine particles are condensed.
  • it is preferably 100 g / L or less, more preferably 10 g / L or less, further preferably 5 g / L or less, and good quantum
  • it is preferably 0.01 g / L or more, more preferably 0.1 g / L or more, and further preferably 0.5 g / L or more.
  • the above upper limit value and lower limit value can be arbitrarily combined.
  • the content of (1) with respect to the total volume of the composition is preferably 0.01 to 100 g / L, more preferably 0.1 to 10 g / L, and 0.5 to 5 g / L. More preferably.
  • the composition in which the range related to the blending of (1) is within the above range is preferable in that the light emitting property is satisfactorily exhibited.
  • the content of (1) relative to the total volume of the composition can be measured by, for example, ICP-MS and ion chromatograph.
  • the total volume of the composition can be calculated by cutting the film into 1 cm in length and 1 cm in width and measuring the thickness with a micrometer or the like.
  • the total volume of the composition can be measured using a graduated cylinder.
  • the total volume of the composition is based on JIS R 93-1-2-3: 1999, the heavy bulk specific gravity is measured, and the weight of the composition used for the measurement is the weight of the heavy bulk It can be calculated by dividing by specific gravity.
  • the total content of (1) and (2) with respect to the total volume of the composition is not particularly limited.
  • it is preferably 1000 g / L or less, more preferably 500 g / L or less, and even more preferably 300 g / L or less, Moreover, from a viewpoint of obtaining a favorable quantum yield, it is preferably 0.02 g / L or more, more preferably 0.2 g / L or more, and further preferably 0.6 g / L or more.
  • the above upper limit value and lower limit value can be arbitrarily combined.
  • the total content of (1) and (2) with respect to the total volume of the composition is preferably 0.02 to 1000 g / L, more preferably 0.2 to 500 g / L, and more preferably 0.6 to More preferably, it is 300 g / L.
  • a composition in which the range relating to the blending ratio of (1) and (2) is within the above range is preferable in that the light emitting property is exhibited well.
  • the composition according to the present invention preferably includes (1) semiconductor fine particles, and (1) the semiconductor fine particles are dispersed.
  • the dispersion medium include (3) at least one selected from the group consisting of a polymerizable compound and a polymer, and (3 ′) a polymer.
  • “dispersed” refers to a state in which semiconductor fine particles are suspended or suspended in a dispersion medium.
  • the semiconductor fine particles of the present invention include Group II-VI compound semiconductor crystal fine particles, Group II-V compound semiconductor crystal fine particles, Group III-V compound semiconductor crystal fine particles, and Group III-IV.
  • the semiconductor fine particles are preferably semiconductor crystal fine particles containing cadmium, semiconductor crystal fine particles containing indium, and perovskite compound fine particles, and particle size control is not required so strictly. From the viewpoint of easily obtaining a light emission peak with a narrow half-value width, fine particles of a perovskite compound are more preferable. At least a part of these semiconductor fine particles may be coated with (2) an organic compound having an amino group, an alkoxy group, and a silicon atom.
  • the average particle size of the semiconductor fine particles contained in the composition is not particularly limited, but from the viewpoint of maintaining a good crystal structure, the average particle size is preferably 1 nm or more, and 2 nm or more. Is more preferably 3 nm or more, and from the viewpoint of making it difficult for the semiconductor fine particles according to the present invention to settle, the average particle diameter is preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, More preferably, it is 500 nm or less.
  • the above upper limit value and lower limit value can be arbitrarily combined.
  • the average particle diameter of the semiconductor fine particles contained in the composition is not particularly limited, but the average particle diameter is 1 nm or more and 10 ⁇ m from the viewpoint of making the semiconductor fine particles difficult to settle and maintaining a good crystal structure. Is preferably 2 nm or more and 1 ⁇ m or less, and more preferably 3 nm or more and 500 nm or less.
  • the average particle diameter of the semiconductor fine particles contained in the composition can be measured by, for example, a transmission electron microscope (hereinafter also referred to as TEM) or a scanning electron microscope (hereinafter also referred to as SEM). .
  • the “maximum ferret diameter” means the maximum distance between two parallel straight lines sandwiching semiconductor fine particles on a TEM or SEM image.
  • the particle size distribution of the semiconductor fine particles contained in the composition is not particularly limited, but the median diameter (D50) is preferably 3 nm or more, preferably 4 nm or more, from the viewpoint of maintaining a good crystal structure. More preferably, it is more preferably 5 nm or more, and from the viewpoint of making it difficult for the semiconductor fine particles according to the present invention to settle, the median diameter (D50) is preferably 5 ⁇ m or less, and preferably 500 nm or less. More preferably, it is 100 nm or less.
  • the median diameter (D50) in the particle size distribution of the semiconductor fine particles contained in the composition is preferably 3 nm to 5 ⁇ m, more preferably 4 nm to 500 nm, and more preferably 5 nm to 100 nm. More preferably.
  • the particle size distribution of the semiconductor fine particles contained in the composition can be measured by, for example, TEM or SEM. Specifically, the maximum ferret diameter of 20 semiconductor fine particles contained in the composition is observed by TEM or SEM, and the median diameter (D50) can be obtained from their distribution.
  • the group II-VI compound semiconductor includes a group 2 or group 12 element and a group 16 element of the periodic table.
  • periodic table means a long-period type periodic table.
  • binary Group II-VI compound semiconductors include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, and HgTe.
  • binary group II-VI group compound semiconductors containing an element selected from group 2 of the periodic table (first element) and an element selected from group 16 of the periodic table (second element) include: MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, or BaTe can be mentioned.
  • a Group II-VI compound semiconductor containing an element selected from Group 2 of the periodic table (first element) and an element selected from Group 16 of the periodic table (second element) is selected from Group 2 of the periodic table It may be a ternary group II-VI compound semiconductor containing one kind of element (first element) and two kinds of elements (second elements) selected from group 16 of the periodic table, or a periodic table A ternary Group II-VI compound semiconductor comprising two types of elements selected from Group 2 (first element) and one type of element selected from Group 16 of the periodic table (second element). Alternatively, a quaternary group II-VI containing two types of elements (first element) selected from group 2 of the periodic table and two types of elements (second element) selected from group 16 of the periodic table It may be a group compound semiconductor.
  • binary group II-VI compound semiconductors that include an element selected from group 12 of the periodic table (first element) and an element selected from group 16 of the periodic table (second element) include: ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, or HgTe can be mentioned.
  • a Group II-VI compound semiconductor containing an element selected from Group 12 of the periodic table (first element) and an element selected from Group 16 of the periodic table (second element) is selected from Group 12 of the periodic table It may be a ternary group II-VI compound semiconductor containing one kind of element (first element) and two kinds of elements (second elements) selected from group 16 of the periodic table, or a periodic table A ternary Group II-VI compound semiconductor comprising two types of elements selected from Group 12 (first element) and one type of element selected from Group 16 of the periodic table (second element). Alternatively, a quaternary group II-VI containing two types of elements selected from group 12 of the periodic table (first element) and two types of elements selected from group 16 of the periodic table (second element) It may be a group compound semiconductor.
  • the Group II-VI compound semiconductor may contain an element other than Groups 2, 12, and 16 of the periodic table as a doping element.
  • the group II-group V compound semiconductor includes a group 12 element and a group 15 element of the periodic table.
  • Examples of binary group II-V compound semiconductors containing an element selected from group 12 of the periodic table (first element) and an element selected from group 15 of the periodic table (second element) include: Zn 3 P 2 , Zn 3 As 2 , Cd 3 P 2 , Cd 3 As 2 , Cd 3 N 2 , or Zn 3 N 2 may be mentioned.
  • a Group II-V compound semiconductor including an element selected from Group 12 of the periodic table (first element) and an element selected from Group 15 of the periodic table (second element) is selected from Group 12 of the periodic table.
  • It may be a ternary group II-V compound semiconductor containing one type of element (first element) and two types of elements (second element) selected from group 15 of the periodic table, or a periodic table
  • a ternary Group II-V compound semiconductor comprising two elements selected from Group 12 (first element) and one element selected from Group 15 of the periodic table (second element).
  • a quaternary group II-V containing two types of elements (first elements) selected from group 12 of the periodic table and two types of elements (second elements) selected from group 15 of the periodic table It may be a group compound semiconductor.
  • the Group II-V compound semiconductor may contain an element other than Groups 12 and 15 of the periodic table as a doping element.
  • the Group III-V compound semiconductor includes an element selected from Group 13 of the periodic table and an element selected from Group 15.
  • a binary group III-V compound semiconductor containing an element selected from group 13 of the periodic table (first element) and an element selected from group 15 of the periodic table (second element) for example, BP AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, AlN, or BN.
  • a Group III-V compound semiconductor containing an element selected from Group 13 of the periodic table (first element) and an element selected from Group 15 of the periodic table (second element) is selected from Group 13 of the periodic table.
  • It may be a ternary Group III-V compound semiconductor containing one type of element (first element) and two types of elements (second element) selected from Group 15 of the periodic table, or a periodic table
  • a ternary Group III-V compound semiconductor comprising two types of elements selected from Group 13 (first element) and one type of element selected from Group 15 of the periodic table (second element).
  • a quaternary group III-V containing two types of elements (first elements) selected from group 13 of the periodic table and two types of elements (second elements) selected from group 15 of the periodic table It may be a group compound semiconductor.
  • the Group III-V compound semiconductor may contain an element other than Groups 13 and 15 of the periodic table as a doping element.
  • the group III-IV compound semiconductor includes an element selected from group 13 of the periodic table and an element selected from group 14.
  • Examples of binary group III-IV compound semiconductors containing an element selected from group 13 of the periodic table (first element) and an element selected from group 14 of the periodic table (second element) include B 4 C 3, Al 4 C 3 , Ga 4 C 3 and the like.
  • a group III-IV compound semiconductor including an element selected from group 13 of the periodic table (first element) and an element selected from group 14 of the periodic table (second element) is selected from group 13 of the periodic table.
  • ternary group III-IV compound semiconductor containing one type of element (first element) and two types of elements (second element) selected from group 14 of the periodic table, or a periodic table
  • a ternary group III-IV compound semiconductor comprising two elements selected from group 13 (first element) and one element (second element) selected from group 14 of the periodic table.
  • a quaternary group III-IV containing two types of elements (first element) selected from group 13 of the periodic table and two types of elements (second element) selected from group 14 of the periodic table It may be a group compound semiconductor.
  • the group III-IV compound semiconductor may contain an element other than group 13 and group 14 of the periodic table as a doping element.
  • the Group III-VI compound semiconductor includes an element selected from Group 13 of the periodic table and an element selected from Group 16.
  • a binary group III-VI compound semiconductor containing an element selected from group 13 of the periodic table (first element) and an element selected from group 16 of the periodic table (second element) is, for example, Al 2 S 3, Al 2 Se 3 , Al 2 Te 3, Ga 2 S 3, Ga 2 Se 3, Ga 2 Te 3, GaTe, In 2 S 3, In 2 Se 3, In 2 Te 3, or InTe include It is done.
  • a group III-VI compound semiconductor containing an element selected from group 13 of the periodic table (first element) and an element selected from group 16 of the periodic table (second element) is selected from group 13 of the periodic table.
  • It may be a ternary group III-VI compound semiconductor containing one kind of element (first element) and two kinds of elements (second element) selected from group 16 of the periodic table, or a periodic table
  • a ternary Group III-VI compound semiconductor comprising two types of elements selected from Group 13 (first element) and one type of element selected from Group 16 of the periodic table (second element).
  • a quaternary group III-VI containing two types of elements (first element) selected from group 13 of the periodic table and two types of elements (second element) selected from group 16 of the periodic table It may be a group compound semiconductor.
  • the Group III-VI compound semiconductor may contain an element other than Groups 13 and 16 of the periodic table as a doping element.
  • the group IV-VI compound semiconductor includes an element selected from group 14 of the periodic table and an element selected from group 16.
  • Examples of binary group IV-VI group compound semiconductors containing an element selected from group 14 of the periodic table (first element) and an element selected from group 16 of the periodic table (second element) include PbS , PbSe, PbTe, SnS, SnSe, or SnTe.
  • a Group IV-VI compound semiconductor including an element selected from Group 14 of the periodic table (first element) and an element selected from Group 16 of the periodic table (second element) is selected from Group 14 of the periodic table.
  • It may be a ternary group IV-VI compound semiconductor containing one type of element (first element) and two types of elements (second element) selected from group 16 of the periodic table, or a periodic table
  • a ternary group IV-VI compound semiconductor comprising two types of elements (first element) selected from group 14 and one type of element (second element) selected from group 16 of the periodic table.
  • a quaternary group IV-VI containing two types of elements (first elements) selected from group 14 of the periodic table and two types of elements (second elements) selected from group 16 of the periodic table It may be a group compound semiconductor.
  • the group IV-VI compound semiconductor may contain an element other than group 14 and group 16 of the periodic table as a doping element.
  • the transition metal-p-block compound semiconductor includes an element selected from transition metal elements and an element selected from p-block elements.
  • a binary transition metal-p-block compound semiconductor including an element selected from the transition metal element of the periodic table (first element) and an element selected from the p-block element of the periodic table (second element) For example, NiS and CrS are mentioned.
  • a transition metal-p-block compound semiconductor including an element selected from a transition metal element of the periodic table (first element) and an element selected from the p-block element of the periodic table (second element) is a transition of the periodic table.
  • a ternary transition metal-p-block compound semiconductor including one kind of element (first element) selected from metal elements and two kinds of elements (second elements) selected from p-block elements
  • a ternary transition metal comprising two types of elements (first elements) selected from transition metal elements of the periodic table and one type of element (second elements) selected from p-block elements of the periodic table It may be a p-block compound semiconductor, or two elements (first element) selected from transition metal elements in the periodic table and two elements (second elements) selected from p-block elements in the periodic table
  • a quaternary transition metal-p-bro It may be a click compound semiconductor.
  • the transition metal-p-block compound semiconductor may contain a transition metal element in the periodic table and an element other than the p-block element as a doping element.
  • the ternary (ternary phase) semiconductor fine particles are a composition containing three elements selected from the group as described above, and can be represented by, for example, ZnCdS.
  • the quaternary (quaternary phase) semiconductor fine particles are a composition containing four elements selected from the group as described above, and can be represented by, for example, ZnCdSSe.
  • ternary and quaternary systems include CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe CdHgSe CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTTe, HgZnSeS, HgZnSeTe, HgZnSTe, GaNP, GaNAs, GaPAs, AlNP, AlNAs, AlPAs, InNP, InNAs, InPAs, InPAs CuInS 2, or InA PAs, and the like.
  • the semiconductor fine particles of the present invention is fine particles of a perovskite compound.
  • the perovskite compound is a compound having a perovskite type crystal structure having A, B, and X as constituent components.
  • A is a component located at each vertex of a hexahedron centering on B in the perovskite crystal structure, and is a monovalent cation.
  • X represents a component located at each vertex of an octahedron centered on B in the perovskite crystal structure, and is one or more anions selected from the group consisting of halide ions and thiocyanate ions.
  • B is a component located at the center of the hexahedron that arranges A at the apex and the octahedron that arranges X at the apex in the perovskite crystal structure, and is a metal ion.
  • the perovskite compound having A, B, and X as constituent components is not particularly limited, and may be a compound having any of a three-dimensional structure, a two-dimensional structure, and a pseudo two-dimensional structure.
  • the composition formula of the perovskite compound is represented by ABX (3 + ⁇ ) .
  • the composition formula of the perovskite compound is represented by A 2 BX (4 + ⁇ ) .
  • is a number that can be appropriately changed according to the charge balance of B, and is from ⁇ 0.7 to 0.7.
  • the three-dimensional structure has a three-dimensional network of vertex-sharing octahedrons represented by BX 6 with B as the center and vertex as X.
  • BX 6 the octahedral pair represented by BX 6 having B as the center and the vertex as X shares the four vertices X on the same plane, thereby BX 6 connected two-dimensionally.
  • the structure which the layer which consists of, and the layer which consists of A were laminated
  • B is a metal cation capable of taking X octahedral coordination.
  • A is located at each vertex of a hexahedron centered on B.
  • the perovskite crystal structure can be confirmed by an X-ray diffraction pattern.
  • the perovskite compound is preferably a perovskite compound represented by the following general formula (1).
  • ABX (3 + ⁇ ) ( ⁇ 0.7 ⁇ ⁇ ⁇ 0.7) (1)
  • A is a monovalent cation
  • B is a metal ion
  • X is one or more anions selected from the group consisting of halide ions and thiocyanate ions.
  • A is a component located at each vertex of a hexahedron centered on B in the perovskite crystal structure, and is a monovalent cation.
  • the monovalent cation include cesium ion, organic ammonium ion, or amidinium ion.
  • the perovskite compound when A is a cesium ion, an organic ammonium ion having 3 or less carbon atoms, or an amidinium ion having 3 or less carbon atoms, the perovskite compound is generally represented by ABX (3 + ⁇ ). It has a three-dimensional structure.
  • A is preferably a cesium ion or an organic ammonium ion.
  • organic ammonium ion of A examples include a cation represented by the following general formula (A3).
  • R 6 to R 9 are each independently a hydrogen atom, an alkyl group which may have an amino group as a substituent, or a cyclo which may have an amino group as a substituent. Represents an alkyl group. However, not all of R 6 to R 9 are hydrogen atoms.
  • the alkyl group represented by R 6 to R 9 may be linear or branched, and may have an amino group as a substituent.
  • the number of carbon atoms of the alkyl group represented by R 6 to R 9 is usually 1 to 20, preferably 1 to 4, and more preferably 1 to 3.
  • the cycloalkyl group represented by R 6 to R 9 may have an alkyl group or an amino group as a substituent.
  • the number of carbon atoms of the cycloalkyl group represented by R 6 to R 9 is usually 3 to 30, preferably 3 to 11, and more preferably 3 to 8.
  • the number of carbon atoms includes the number of carbon atoms of the substituent.
  • the groups represented by R 6 to R 9 are each independently preferably a hydrogen atom or an alkyl group.
  • a compound having a structure can be obtained.
  • the alkyl group or cycloalkyl group has 4 or more carbon atoms, a compound having a two-dimensional and / or pseudo two-dimensional (quasi-2D) perovskite crystal structure in part or in whole can be obtained.
  • the total number of carbon atoms contained in the alkyl group and cycloalkyl group represented by R 6 to R 9 is preferably 1 to 4, and one of R 6 to R 9 is 1 to 3 carbon atoms. More preferably, three of R 6 to R 9 are hydrogen atoms.
  • Examples of the alkyl group of R 6 to R 9 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, and an isopentyl group.
  • the cycloalkyl group of R 6 ⁇ R 9, include those R 6 ⁇ exemplified alkyl group having 3 or more carbon atoms in the alkyl group R 9 is to form a ring, as an example, a cyclopropyl group, a cyclobutyl group And cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, norbornyl group, isobornyl group, 1-adamantyl group, 2-adamantyl group, tricyclodecyl group and the like.
  • CH 3 NH 3 + (also referred to as methylammonium ion), C 2 H 5 NH 3 + (also referred to as ethylammonium ion), or C 3 H 7 NH 3 + (propyl) It is also preferably an ammonium ion.), More preferably CH 3 NH 3 + or C 2 H 5 NH 3 + , and still more preferably CH 3 NH 3 + .
  • R 10 to R 13 each independently represent a hydrogen atom, an alkyl group which may have an amino group as a substituent, or a cyclo which may have an amino group as a substituent. Represents an alkyl group.
  • the alkyl group represented by R 10 to R 13 may be linear or branched, and may have an amino group as a substituent.
  • the number of carbon atoms in the alkyl group represented by R 10 ⁇ R 13 is generally 1 to 20, preferably 1 to 4, and more preferably 1-3.
  • the cycloalkyl group represented by R 10 to R 13 may have an alkyl group or an amino group as a substituent.
  • the number of carbon atoms of the cycloalkyl group represented by R 10 to R 13 is usually 3 to 30, preferably 3 to 11, and more preferably 3 to 8.
  • the number of carbon atoms includes the number of carbon atoms of the substituent.
  • alkyl group for R 10 to R 13 include the alkyl groups exemplified for R 6 to R 9 .
  • Specific examples of the cycloalkyl group represented by R 10 to R 13 include the cycloalkyl groups exemplified for R 6 to R 9 .
  • the group represented by R 10 to R 13 is preferably a hydrogen atom or an alkyl group.
  • a perovskite compound having a three-dimensional structure with high emission intensity is obtained.
  • the number of carbon atoms in the alkyl group or cycloalkyl group is 4 or more, a compound having a two-dimensional and / or pseudo two-dimensional (quasi-2D) perovskite crystal structure in part or in whole can be obtained.
  • the total number of carbon atoms contained in the alkyl group and cycloalkyl group represented by R 10 to R 13 is preferably 1 to 4, and R 10 is an alkyl group having 1 to 3 carbon atoms. R 11 to R 13 are more preferably hydrogen atoms.
  • B is a component located in the center of a hexahedron in which A is arranged at the apex and an octahedron in which X is arranged at the apex in the perovskite crystal structure, and represents a metal ion.
  • the B component metal ion may be an ion composed of one or more selected from the group consisting of a monovalent metal ion, a divalent metal ion, and a trivalent metal ion.
  • B preferably contains a divalent metal ion, and more preferably contains one or more metal ions selected from the group consisting of lead and tin.
  • X represents one or more anions selected from the group consisting of halide ions and thiocyanate ions.
  • X may be one or more anions selected from the group consisting of chloride ions, bromide ions, fluoride ions, iodide ions, and thiocyanate ions.
  • X can be appropriately selected according to the desired emission wavelength.
  • X can contain bromide ions.
  • the content ratio of the halide ions can be appropriately selected according to the emission wavelength, for example, a combination of bromide ions and chloride ions, or bromide ions and iodides. It can be a combination with ions.
  • perovskite compound having a three-dimensional perovskite crystal structure represented by ABX (3 + ⁇ ) include CH 3 NH 3 PbBr 3 , CH 3 NH 3 PbCl 3 , and CH 3 NH.
  • perovskite compound having a two-dimensional perovskite crystal structure represented by A 2 BX (4 + ⁇ ) include (C 4 H 9 NH 3 ) 2 PbBr 4 , (C 4 H 9 NH 3 ) 2 PbCl 4 , (C 4 H 9 NH 3 ) 2 PbI 4 , (C 7 H 15 NH 3 ) 2 PbBr 4 , (C 7 H 15 NH 3 ) 2 PbCl 4 , (C 7 H 15 NH 3 ) 2 PbI 4 , (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br 4 (0 ⁇ a ⁇ 0.7), (C 4 H 9 NH 3 ) 2 Pb (1-a ) Na a Br 4 (0 ⁇ a ⁇ 0.7), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rb a Br 4 (0 ⁇ a ⁇ 0.7), (C 7 H 15 NH 3 ) 2 Pb (1-a) Na
  • the perovskite compound is an illuminant capable of emitting fluorescence in the visible light wavelength region.
  • X is a bromide ion
  • it is usually 480 nm or more, preferably 500 nm or more, more preferably 520 nm or more, and usually 700 nm or less, preferably Can emit fluorescence having a maximum intensity peak in a wavelength range of 600 nm or less, more preferably 580 nm or less.
  • the above upper limit value and lower limit value can be arbitrarily combined.
  • the fluorescence peak emitted is usually 480 to 700 nm, preferably 500 to 600 nm, more preferably 520 to 580 nm. preferable.
  • X is an iodide ion, it is usually a peak of intensity in a wavelength range of 520 nm or more, preferably 530 nm or more, more preferably 540 nm or more, and usually 800 nm or less, preferably 750 nm or less, more preferably 730 nm or less.
  • the above upper limit value and lower limit value can be arbitrarily combined.
  • the fluorescence peak emitted is usually 520 to 800 nm, preferably 530 to 750 nm, and preferably 540 to 730 nm. More preferred.
  • X is a chloride ion, it is usually at least 300 nm, preferably 310 nm or more, more preferably 330 nm or more, and usually 600 nm or less, preferably 580 nm or less, more preferably 550 nm or less in the range of the maximum intensity peak. There can be some fluorescence.
  • the above upper limit value and lower limit value can be arbitrarily combined.
  • the fluorescence peak emitted is usually 300 to 600 nm, preferably 310 to 580 nm, and preferably 330 to 550 nm. More preferred.
  • Organic compound having amino group, alkoxy group and silicon atom may be an organic compound having amino group and alkoxysilyl group.
  • the organic compound having an amino group, an alkoxy group, and a silicon atom may be an organic compound having an amino group, an alkoxy group, and a silicon atom represented by the following general formula (A5).
  • the organic compound represented by the following general formula (A5) has an amino group and an alkoxysilyl group.
  • A is a divalent hydrocarbon group
  • O is an oxygen atom
  • N is a nitrogen atom
  • Si is a silicon atom
  • R 14 to R 15 are each independently a hydrogen atom, an alkyl group, Or a cycloalkyl group
  • R 16 represents an alkyl group or a cycloalkyl group
  • R 17 to R 18 represent a hydrogen atom, an alkyl group, an alkoxy group, or a cycloalkyl group.
  • R 14 to R 18 are alkyl groups, they may be linear or branched.
  • the alkyl group usually has 1 to 20 carbon atoms, preferably 5 to 20, and more preferably 8 to 20.
  • the cycloalkyl group may have an alkyl group as a substituent.
  • the number of carbon atoms in the cycloalkyl group is usually 3 to 30, preferably 3 to 20, and more preferably 3 to 11.
  • the number of carbon atoms includes the number of carbon atoms of the substituent.
  • alkyl group for R 14 to R 18 include the alkyl groups exemplified for R 6 to R 9 .
  • Specific examples of the cycloalkyl group represented by R 14 to R 18 include the cycloalkyl groups exemplified for R 6 to R 9 .
  • Examples of the alkoxy group of R 17 to R 18 include monovalent groups in which the linear or branched alkyl group exemplified for R 6 to R 9 is bonded to an oxygen atom.
  • R 17 to R 18 are alkoxy groups, examples thereof include a methoxy group, an ethoxy group, and a butoxy group, and a methoxy group is preferable.
  • the divalent hydrocarbon group represented by A may be a group obtained by removing two hydrogen atoms from a hydrocarbon compound, and the hydrocarbon compound may be an aliphatic hydrocarbon or an aromatic hydrocarbon. It may be hydrogen or a saturated aliphatic hydrocarbon.
  • A is an alkylene group, it may be linear or branched. The number of carbon atoms of the alkylene group is usually 1 to 100, preferably 1 to 20, and more preferably 1 to 5.
  • a part or all of the organic compound having an amino group, an alkoxy group, and an organic compound having a silicon atom represented by the general formula (A5) may be adsorbed on the surface of the semiconductor fine particles according to the present invention. It may be dispersed in the object.
  • Examples of the organic compound having an amino group, an alkoxy group, and a silicon atom represented by the general formula (A5) include trimethoxy [3- (methylamino) propyl] silane, 3-aminopropyltriethoxysilane, and 3-aminopropyldimethoxy. Methylsilane, 3-aminopropyldiethoxymethylsilane, and 3-aminopropyltrimethoxysilane are preferable, and 3-aminopropyltrimethoxysilane is more preferable.
  • R 14 and R 15 are hydrogen atoms
  • R 16 is the alkyl group
  • R 17 and R 18 are alkoxy.
  • Compounds that are groups are preferred.
  • Another aspect of the present invention is (2) an organic compound having an amino group, an alkoxy group, and a silicon atom, and an ionicity other than a group represented by —NH 3 + and a group represented by —COO 2 — .
  • Organic compounds having a group and compounds having a mercapto group can be excluded.
  • the polymerizable compound contained in the composition according to the present invention is not particularly limited, but at the temperature at which the composition is produced. Those having low solubility in the polymerizable compound of the semiconductor fine particles are preferable.
  • the “polymerizable compound” means a monomer compound having a polymerizable group.
  • the polymerizable compound when producing at room temperature and normal pressure, is not particularly limited, and examples thereof include known polymerizable compounds such as styrene and methyl methacrylate.
  • any one or both of acrylic acid ester and methacrylic acid ester which are the monomer components of acrylic resin are preferable.
  • the polymer contained in the composition according to the present invention is not particularly limited, but a polymer having low solubility of the semiconductor fine particles in the polymer at the temperature for producing the composition is preferable.
  • the polymer in the case of producing at room temperature and normal pressure, is not particularly limited, and examples thereof include known polymers such as polystyrene and methacrylic resin.
  • acrylic resin is preferable.
  • the acrylic resin includes a structural unit derived from an acrylate ester and / or a methacrylate ester.
  • acrylic acid ester and / or methacrylic acid ester and structural units derived therefrom are 10% with respect to all structural units when expressed in mol%. It may be above, 30% or more, 50% or more, 80% or more, or 100%.
  • composition according to the present invention is in a form that ammonia, amine, carboxylic acid, and the compound can take.
  • at least one selected from the group consisting of these salts or ions may be included. That is, the composition according to the present invention is (2) a compound other than an organic compound having an amino group, an alkoxy group, and a silicon atom, and is ammonia, amine, carboxylic acid, ammonia salt, amine salt, carboxylic acid And at least one selected from the group consisting of salts of ammonia, ammonia ions, amine ions, and carboxylic acid ions.
  • Ammonia, amines and carboxylic acids and their salts or ions usually act as capping ligands.
  • the capping ligand is a compound having an action of adsorbing on the surface of the semiconductor compound and stably dispersing the semiconductor compound in the composition.
  • Examples of the ion or salt (ammonium salt or the like) of ammonia or amine include an ammonium cation represented by the general formula (A1) described later and an ammonium salt containing the ammonium cation.
  • Examples of the carboxylic acid ion or salt (carboxylate and the like) include a carboxylate anion represented by the general formula (A2) described later and a carboxylate containing the carboxylate anion.
  • the composition according to the present invention may contain any one of an ammonium salt and the like, a carboxylate and the like, or may contain both.
  • ammonium salts examples include ammonium salts containing an ammonium cation represented by the general formula (A1).
  • R 1 to R 4 each independently represents a hydrogen atom or an organic group.
  • R 1 to R 4 are preferably each independently a hydrocarbon group such as an alkyl group, a cycloalkyl group, or an unsaturated hydrocarbon group.
  • the alkyl group represented by R 1 to R 4 may be linear or branched.
  • the number of carbon atoms of the alkyl group represented by R 1 to R 4 is usually 1 to 20, preferably 5 to 20, and more preferably 8 to 20.
  • the cycloalkyl group represented by R 1 ⁇ R 4 may have an alkyl group as a substituent.
  • the number of carbon atoms in the cycloalkyl group is usually 3 to 30, preferably 3 to 20, and more preferably 3 to 11.
  • the number of carbon atoms includes the number of carbon atoms of the substituent.
  • the unsaturated hydrocarbon group for R 1 to R 4 may be linear or branched.
  • the number of carbon atoms of the unsaturated hydrocarbon group of R 1 to R 4 is usually 2 to 20, preferably 5 to 20, and more preferably 8 to 20.
  • R 1 to R 4 are preferably a hydrogen atom, an alkyl group, or an unsaturated hydrocarbon group.
  • an alkenyl group is preferable. More preferably, one of R 1 to R 4 is an alkenyl group having 8 to 20 carbon atoms, and three of R 1 to R 4 are hydrogen atoms.
  • alkyl group for R 1 to R 4 include the alkyl groups exemplified for R 6 to R 9 .
  • the cycloalkyl group of R 1 ⁇ R 4 include cycloalkyl groups exemplified in R 6 ⁇ R 9.
  • alkenyl group for R 1 to R 4 a single bond (C—C) between any one carbon atom in the linear or branched alkyl group exemplified for R 6 to R 9 is 2
  • Preferred examples of such an alkenyl group include ethenyl group, propenyl group, 3-butenyl group, 2-butenyl group, 2-pentenyl group, 2-hexenyl group, 2-nonenyl group, 2-dodecenyl group, 9 -Octadecenyl group.
  • the counter anion is not particularly limited, but preferable examples include Br ⁇ , Cl ⁇ , I ⁇ and F ⁇ halide ions, and carboxylate ions.
  • Preferred examples of the ammonium salt having an ammonium cation represented by the general formula (A1) and a counter anion include n-octyl ammonium salt and oleyl ammonium salt.
  • R 5 represents a monovalent organic group.
  • a hydrocarbon group is preferable, and among them, an alkyl group, a cycloalkyl group, and an unsaturated hydrocarbon group are preferable.
  • the alkyl group represented by R 5 may be linear or branched.
  • the number of carbon atoms of the alkyl group represented by R 5 is usually 1 to 20, preferably 5 to 20, and more preferably 8 to 20.
  • the cycloalkyl group represented by R 5 may have an alkyl group as a substituent.
  • the number of carbon atoms in the cycloalkyl group is usually 3 to 30, preferably 3 to 20, and more preferably 3 to 11.
  • the number of carbon atoms includes the number of carbon atoms of the substituent.
  • the unsaturated hydrocarbon group for R 5 may be linear or branched.
  • the number of carbon atoms of the unsaturated hydrocarbon group for R 5 is usually 2 to 20, preferably 5 to 20, and more preferably 8 to 20.
  • R 5 is preferably an alkyl group or an unsaturated hydrocarbon group.
  • unsaturated hydrocarbon group an alkenyl group is preferable.
  • alkyl group R 5 examples include alkyl groups exemplified in R 6 ⁇ R 9.
  • Specific examples of the cycloalkyl group represented by R 5 include the cycloalkyl groups exemplified for R 6 to R 9 .
  • Specific examples of the alkenyl group for R 5 include the alkenyl groups exemplified for R 1 to R 4 .
  • the carboxylate anion represented by the general formula (A2) is preferably an oleate anion.
  • the counter cation of the carboxylate anion represented by the general formula (A2) is not particularly limited, but preferred examples include proton, alkali metal cation, alkaline earth metal cation, ammonium cation and the like.
  • solvent that may be contained in the composition according to the present invention includes a medium in which the semiconductor fine particles can be dispersed and the semiconductor fine particles are difficult to dissolve.
  • solvent refers to a substance that takes a liquid state at 1 atm and 25 ° C. (except for a polymerizable compound and a polymer).
  • the solvent examples include esters such as methyl formate, ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate, and pentyl acetate; ⁇ -butyrolactone, acetone, dimethyl ketone, diisobutyl ketone, cyclopentanone, Ketones such as cyclohexanone and methylcyclohexanone; diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, 4-methyldioxolane, tetrahydrofuran, methyltetrahydrofuran, anisole, Ethers such as phenetole; methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-
  • esters such as methyl formate, ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate, pentyl acetate; ⁇ -butyrolactone, acetone, dimethyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methyl Ketones such as cyclohexanone; diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, 4-methyldioxolane, tetrahydrofuran, methyltetrahydrofuran, anisole, phenetole, etc.
  • Organic solvents having a nitrile group such as ether, acetonitrile, isobutyronitrile, propionitrile, methoxyacetonitrile;
  • Organic solvents having carbonate groups such as tylene carbonate and propylene carbonate;
  • organic solvents having halogenated hydrocarbon groups such as methylene chloride and chloroform;
  • hydrocarbons such as n-pentane, cyclohexane, n-hexane, benzene, toluene and xylene
  • An organic solvent having a group is preferable because it has low polarity and hardly dissolves semiconductor fine particles, and is preferably an organic solvent having a halogenated hydrocarbon group such as methylene chloride or chloroform; n-pentane, cyclohexane, n-hexane, More preferred are hydrocarbon-based organic solvents such as benzene, toluene and xylene.
  • the composition of this embodiment contains (1), (2), and (3).
  • (1) Semiconductor fine particles (2) Organic compounds having amino groups, alkoxy groups, and silicon atoms (3) At least one selected from the group consisting of polymerizable compounds and polymers
  • the composition of the present embodiment is a composition that includes (1), (2), and (3 ′), and the total of (1), (2), and (3 ′) is 90% by mass or more. May be.
  • (1) Semiconductor fine particles (2) Organic compound having amino group, alkoxy group, and silicon atom (3 ′) polymer
  • the blending ratio of (1) and (2) may be such that the effect of improving the thermal durability by the organic compound of (2) is exhibited. It can be appropriately determined according to the type of 2).
  • (1) when the semiconductor fine particles are fine particles of a perovskite compound the molar ratio [(2) / B] of the B metal ion of the perovskite compound and the organic compound of (2) is: It may be 0.001 to 1000, 0.01 to 700, or 0.1 to 500.
  • the semiconductor fine particles are fine particles of a perovskite compound
  • the organic compound (2) has an amino group, an alkoxy group, and a silicon atom represented by the general formula (A5)
  • the molar ratio [(A5) / B] between the metal ion of B of the perovskite compound and the organic compound of (A5) may be 1 to 500, or 2 to 300 It may be 5 to 200 or 10 to 100.
  • a composition in which the range of the blending ratio of (1) and (2) is within the above range is preferable in that the effect of improving the heat durability by the organic compound of (2) is exhibited particularly well.
  • the semiconductor fine particles are fine particles of a perovskite compound
  • the organic compound (2) contains an amino group, an alkoxy group, and a silicon atom represented by the general formula (A5).
  • the molar ratio [(A5) / B] of the B metal ion of the perovskite compound to the organic compound (A5) is preferably 1 to 200, and more preferably 5 to 100. More preferably, it is more preferably 20 to 80, and particularly preferably 30 to 60.
  • the compounding ratio between (1) and (3) is such that the light emitting action by the semiconductor fine particles of (1) is satisfactorily exhibited. It can be determined as appropriate according to the types (1) to (3).
  • the mass ratio [(1) / (3)] between (1) and (3) may be 0.00001 to 10, or 0.0001 to 1. Or 0.0005 to 0.1.
  • the composition in which the range related to the blending ratio of (1) and (3) is within the above range is preferable in that the aggregation of the semiconductor fine particles of (1) hardly occurs and the light emitting property is also exhibited well.
  • the compounding ratio of (1) and (3 ′) is such that the light emitting action by the semiconductor fine particles of (1) is good. It is sufficient if it is an extent to be exhibited, and can be appropriately determined according to the types (1) and (3 ′).
  • the mass ratio [(1) / (3 ′)] between (1) and (3 ′) may be 0.00001 to 10, or 0.0001 to 1. It may be 0.0005 to 0.1.
  • a composition in which the range related to the blending ratio of (1) and (3 ′) is within the above range is preferable in that the light emitting property is satisfactorily exhibited.
  • composition of the embodiment according to the present invention can be produced.
  • composition of this invention is not limited to what is manufactured by the manufacturing method of the composition of the following embodiment.
  • Examples of the method for producing semiconductor fine particles include a method of heating a mixed liquid obtained by mixing a simple substance of the elements constituting the semiconductor fine particles or a compound thereof and a lipophilic solvent.
  • Examples of the elemental element constituting the semiconductor fine particles or the compound thereof are not particularly limited, and examples thereof include metals, oxides, acetates, organometallic compounds, halides, and nitrates.
  • the fat-soluble solvent examples include nitrogen-containing compounds having a hydrocarbon group having 4 to 20 carbon atoms, oxygen-containing compounds having a hydrocarbon group having 4 to 20 carbon atoms, and the like.
  • the hydrocarbon group having 4 to 20 carbon atoms include saturated aliphatic hydrocarbon groups such as n-butyl group, isobutyl group, n-pentyl group, octyl group, decyl group, dodecyl group, hexadecyl group and octadecyl group; An unsaturated aliphatic hydrocarbon group such as a group; an alicyclic hydrocarbon group such as a cyclopentyl group and a cyclohexyl group; an aromatic hydrocarbon group such as a phenyl group, a benzyl group, a naphthyl group, and a naphthylmethyl group.
  • a saturated aliphatic hydrocarbon group and an unsaturated aliphatic hydrocarbon group are preferred.
  • the nitrogen-containing compound include amines and amides
  • examples of the oxygen-containing compound include fatty acids.
  • nitrogen-containing compounds having a hydrocarbon group having 4 to 20 carbon atoms are preferred.
  • n-butylamine, isobutylamine, n-pentylamine, n-hexylamine, octylamine, decylamine, Alkylamines such as dodecylamine, hexadecylamine and octadecylamine, and alkenylamines such as oleylamine are preferred.
  • Such a fat-soluble solvent can be bonded to the particle surface, and examples of the bonding mode include chemical bonds such as a covalent bond, an ionic bond, a coordinate bond, a hydrogen bond, and a van der Waals bond.
  • the heating temperature of the mixed solution may be appropriately set depending on the simple substance or the compound to be used, but is preferably set in the range of 130 to 300 ° C, more preferably in the range of 240 to 300 ° C. . It is preferable that the heating temperature is equal to or higher than the lower limit because the crystal structure is easily unified. Further, the heating time may be appropriately set according to the simple substance to be used, the kind of the compound, and the heating temperature, but it is usually preferably set within the range of several seconds to several hours, and is set within the range of 1 to 60 minutes. Is more preferable.
  • the heated mixed solution is cooled and then separated into a supernatant and a precipitate, and the separated semiconductor fine particles (precipitate) are separated from an organic solvent (for example, chloroform, toluene, hexane, n-butanol, etc.) Or a solution containing semiconductor fine particles.
  • an organic solvent for example, chloroform, toluene, hexane, n-butanol, etc.
  • a solution containing semiconductor fine particles for example, chloroform, toluene, hexane, n-butanol, etc.
  • a solvent for example, methanol, ethanol, acetone, acetonitrile, etc.
  • the precipitate may be collected and placed in the above-mentioned organic solvent to form a solution containing semiconductor fine particles.
  • the semiconductor fine particles of the perovskite compound according to the present invention can be produced by the method described below with reference to known documents (Nano Lett. 2015, 15, 3692-3696, ACSNano, 2015, 9, 4533-4542).
  • the method for producing semiconductor fine particles of the perovskite compound according to the present invention includes a step of dissolving a B component, an X component, and an A component in a solvent to obtain a solution, and the resulting solution and the solubility of the semiconductor fine particles in the solvent. And a step of mixing a solvent lower than the solvent used in the step of obtaining the solution.
  • the manufacturing method containing is mentioned.
  • the step of dissolving the compound containing the B component and the X component and the component A or the compound containing the A component and the X component in a solvent to obtain a solution, the obtained solution, and the solubility of the semiconductor fine particles in the solvent are:
  • a production method including a step of mixing a solvent lower than the solvent used in the step of obtaining a solution will be described.
  • solubility means the solubility in the temperature which performs the process to mix.
  • the manufacturing method preferably includes a step of adding a capping ligand from the viewpoint of stably dispersing the semiconductor fine particles.
  • the capping ligand is preferably added before the mixing step, and the capping ligand may be added to a solution in which the A component, the B component, and the X component are dissolved.
  • the solvent may be added to a solvent having a lower solubility than the solvent used in the step of obtaining the solution.
  • the solution in which the A component, the B component, and the X component are dissolved, and the solubility of the semiconductor fine particles in the solvent You may add to both the solvent lower than the solvent used at the process to obtain.
  • the manufacturing method preferably includes a step of removing coarse particles by a method such as centrifugation or filtration after the mixing step.
  • the size of the coarse particles removed by the removing step is preferably 10 ⁇ m or more, more preferably 1 ⁇ m or more, and further preferably 500 nm or more.
  • the step of mixing the solution and the solvent having a solubility of the semiconductor fine particles in the solvent lower than that of the solvent used in the step of obtaining the solution includes the step (I) of obtaining the solution by dissolving the solution of the semiconductor fine particles in the solvent. It may be a step of dripping in a solvent lower than the solvent used in step (II), and is a step of dripping, into the solution, a solvent whose solubility in the solvent of the semiconductor fine particles is lower than the solvent used in the step of obtaining the solution.
  • (I) is preferable. When dropping, it is preferable to stir from the viewpoint of improving dispersibility.
  • the temperature is not particularly limited, but the compound having a perovskite crystal structure is likely to precipitate. From the viewpoint of ensuring the thickness, it is preferably in the range of ⁇ 20 to 40 ° C., more preferably in the range of ⁇ 5 to 30 ° C.
  • the two types of solvents having different solubility in the solvent of the semiconductor fine particles used in the production method are not particularly limited.
  • the solvent used in the step of obtaining the solution included in the production method is preferably a solvent having a high solubility in the solvent of the semiconductor fine particles.
  • the solvent used in the mixing step included in the production method is preferably a solvent having low solubility of the semiconductor fine particles in the solvent.
  • the difference in solubility is preferably 100 ⁇ g / solvent 100 g to 90 g / solvent 100 g, more preferably 1 mg / solvent 100 g to 90 g / solvent 100 g.
  • the solvent used in the step of obtaining the solution is N, N-dimethyl.
  • An organic solvent having an amide group such as acetamide or dimethyl sulfoxide, and the solvent used in the mixing step is an organic solvent having a halogenated hydrocarbon group such as methylene chloride or chloroform; n-pentane, cyclohexane, n-hexane, benzene
  • An organic solvent having a hydrocarbon group such as toluene and xylene is preferable.
  • the solid-liquid separation method include a method such as filtration and a method utilizing evaporation of a solvent.
  • a manufacturing method including a step of adding a B component, an X component and an A component to a high-temperature solvent and dissolving them to obtain a solution and a step of cooling the obtained solution will be described. More specifically, a step of adding a compound containing the B component and the X component and a component A or a compound containing the A component and the X component to a high temperature solvent to obtain a solution, and cooling the obtained solution.
  • the semiconductor fine particles according to the present invention can be produced by precipitating the semiconductor fine particles according to the present invention by the difference in solubility due to the temperature difference.
  • the manufacturing method preferably includes a step of adding a capping ligand from the viewpoint of stably dispersing the semiconductor fine particles.
  • the manufacturing method preferably includes a step of removing coarse particles by a technique such as centrifugation or filtration after the cooling step.
  • the size of the coarse particles removed by the removal step is preferably 10 ⁇ m or more, more preferably 1 ⁇ m or more, and further preferably 500 nm or more.
  • the high-temperature solvent may be a solvent having a temperature at which the compound containing the B component and the X component and the A component or the compound containing the A component and the X component are dissolved.
  • a solvent is preferable, and a solvent at 80 to 400 ° C. is more preferable.
  • the cooling temperature is preferably ⁇ 20 to 50 ° C., more preferably ⁇ 10 to 30 ° C.
  • the cooling rate is preferably from 0.1 to 1500 ° C./min, more preferably from 10 ° C. to 150 ° C./min.
  • the solvent used in the production method is not particularly limited as long as it is a solvent that can dissolve the compound containing the B component and the X component and the component A or the compound containing the A component and the X component.
  • a method for taking out the semiconductor fine particles from the dispersion liquid containing the semiconductor fine particles a method of collecting only the semiconductor fine particles by performing solid-liquid separation can be mentioned.
  • the solid-liquid separation method include a method such as filtration and a method utilizing evaporation of a solvent.
  • the manufacturing method of the composition containing (1), (2), and (3)> (1) Semiconductor fine particles, (2) an organic compound having an amino group, an alkoxy group, and a silicon atom, and (3) a composition comprising at least one selected from the group consisting of a polymerizable compound and a polymer as, (1) A method of mixing at least one selected from the group consisting of semiconductor fine particles, (2) an organic compound having an amino group, an alkoxy group, and a silicon atom, and (3) a polymerizable compound and a polymer. .
  • the mixing temperature is not particularly limited, but is preferably in the range of 0 to 100 ° C., more preferably in the range of 10 to 80 ° C., from the viewpoint of uniform mixing.
  • the method for producing the composition according to the present invention includes, for example, (A) (3) A step of obtaining a dispersion by dispersing semiconductor fine particles in at least one selected from the group consisting of a polymerizable compound and a polymer, and (2) an amino group.
  • An alkoxy group, and a step of mixing an organic compound having a silicon atom (B) (3) a step of obtaining a dispersion by dispersing (2) an organic compound having an amino group, an alkoxy group, and a silicon atom in at least one selected from the group consisting of a polymerizable compound and a polymer;
  • the manufacturing method may include a step of mixing the obtained dispersion and (1) semiconductor fine particles, (C) A mixture of (1) a semiconductor fine particle and (2) an amino group, an alkoxy group, and an organic compound having a silicon atom is dispersed in at least one selected from the group consisting of (3) a polymerizable compound and a polymer.
  • the manufacturing method including a process may be sufficient.
  • the production method (a) is preferable from the viewpoint of improving the dispersibility of the semiconductor fine particles.
  • the composition according to the present invention is used as a mixture of (1) a dispersion in which semiconductor fine particles are dispersed in (3) and (2) an organic compound having an amino group, an alkoxy group, and a silicon atom. Obtainable.
  • (3) may be added dropwise to (1) and / or (2), and (1) and / or (2) may be added dropwise to (3). From the viewpoint of enhancing dispersibility, it is preferable to add (1) and / or (2) dropwise to (3).
  • (1) or (2) may be added dropwise to the dispersion, or the dispersion is added dropwise to (1) or (2). May be. From the viewpoint of improving dispersibility, it is preferable to add (1) or (2) dropwise to the dispersion.
  • the polymer When a polymer is employed as the organic compound (3), the polymer may be a polymer dissolved in a solvent.
  • the solvent in which the polymer is dissolved is not particularly limited as long as it is a solvent that can dissolve the resin (polymer), but is preferably a solvent in which the semiconductor fine particles according to the present invention are difficult to dissolve.
  • the solvent in which the above resin is dissolved include, for example, esters such as methyl formate, ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate, pentyl acetate; ⁇ -butyrolactone, N-methyl- Ketones such as 2-pyrrolidone, acetone, dimethyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methylcyclohexanone; diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1, Ethers such as
  • esters such as methyl formate, ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate, pentyl acetate; ⁇ -butyrolactone, acetone, dimethyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methylcyclohexanone Ketones such as diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, 4-methyldioxolane, tetrahydrofuran, methyltetrahydrofuran, anisole, phenetol , An organic solvent having a nitrile group such as acetonitrile, isobutyronitrile, propionitrile, methoxyaceton
  • At least one selected from the group consisting of ammonia, amine, and carboxylic acid, and salts or ions thereof Any of the steps included in the above-described method (1) included in the method for manufacturing semiconductor fine particles and included in the method for manufacturing a composition including the above-described (1), (2), and (3). It may be added in the step.
  • At least one selected from the group consisting of ammonia, amine, carboxylic acid, and salts or ions thereof is included in (1) the method for producing semiconductor fine particles from the viewpoint of enhancing the dispersibility of the semiconductor fine particles. It is preferable to add at any step.
  • composition according to the present invention can be obtained as a mixture of a dispersion dispersed in at least one selected from the group consisting of: (2) an organic compound having an amino group, an alkoxy group, and a silicon atom. .
  • a method for producing a composition that includes (1), (2), and (3 ′), and the total of (1), (2), and (3 ′) is 90% by mass or more for example, (1) mixing a semiconductor fine particle, (2) an organic compound having an amino group, an alkoxy group, and a silicon atom, and a polymerizable compound; A step of polymerizing a polymerizable compound, and a production method comprising: (1) A process comprising a step of mixing semiconductor fine particles, (2) an organic compound having an amino group, an alkoxy group and a silicon atom, and a polymer dissolved in the solvent, and a step of removing the solvent. A method is mentioned.
  • the mixing step included in the production method (1) semiconductor fine particles, (2) an organic compound having an amino group, an alkoxy group, and a silicon atom, and (3) a polymerizable compound and a polymer, which have already been described.
  • the mixing method similar to the manufacturing method of the composition containing at least 1 sort (s) chosen from the group which consists of can be used.
  • the manufacturing method is, for example, (A1)
  • a step of dispersing semiconductor fine particles to obtain a dispersion (1) a step of dispersing semiconductor fine particles to obtain a dispersion, and the obtained dispersion and (2) an organic compound having an amino group, an alkoxy group, and a silicon atom are mixed.
  • a production method comprising a step and a step of polymerizing a polymerizable compound, (A2) (1) Step of dispersing semiconductor fine particles in a polymer dissolved in a solvent to obtain a dispersion, and (2) Organic having an amino group, an alkoxy group, and a silicon atom. It may be a production method comprising a step of mixing a compound and a step of removing the solvent, (B1) In the polymerizable compound, (2) an organic compound having an amino group, an alkoxy group, and a silicon atom is dispersed to obtain a dispersion, and the obtained dispersion is mixed with (1) semiconductor fine particles.
  • a process comprising polymerizing a polymerizable compound
  • B2 A step of obtaining a dispersion by dispersing (2) an organic compound having an amino group, an alkoxy group, and a silicon atom in a polymer dissolved in a solvent, and the obtained dispersion,
  • the method may include a step of mixing the semiconductor fine particles and a step of removing the solvent,
  • C1 Production comprising (1) semiconductor fine particles and (2) a step of dispersing a mixture of an organic compound having an amino group, an alkoxy group, and a silicon atom, and a step of polymerizing the polymerizable compound in the polymerizable compound. It may be a method.
  • the step of removing the solvent included in the production method may be a step of standing at room temperature and natural drying, or a step of evaporating the solvent by vacuum drying or heating using a vacuum dryer. Also good.
  • the solvent can be removed by drying at 0 to 300 ° C. for 1 minute to 7 days.
  • the step of polymerizing the polymerizable compound included in the production method can be performed by appropriately using a known polymerization reaction such as radical polymerization.
  • a radical polymerization initiator is added to a mixture of (1) semiconductor fine particles, (2) an organic compound having an amino group, an alkoxy group, and a silicon atom, and a polymerizable compound, By making it generate
  • the radical polymerization initiator is not particularly limited, and examples thereof include a photo radical polymerization initiator. Examples of the photo radical polymerization initiator include bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide.
  • a method for producing a composition comprising at least one selected from the group consisting of (1), (2), (3 ′) and (4) is 90% by mass or more, (4) Except for adding at least one selected from the group consisting of ammonia, amine, carboxylic acid, and salts or ions thereof, (1), (2), and (3 ′) already described It is the composition containing, Comprising: It can be set as the method similar to the manufacturing method of the composition whose sum total of (1), (2) and (3 ') is 90 mass% or more.
  • the above (1) semiconductor fine particles may be added in any step included in the method for producing semiconductor fine particles, and (1) the semiconductor fine particles described above and (2) an organic compound having an amino group, an alkoxy group, and a silicon atom, In the step of mixing the polymerizable compound, the above-mentioned (1) semiconductor fine particles, (2) the organic compound having an amino group, an alkoxy group, and a silicon atom, and the weight dissolved in the solvent. It may be added in the step of mixing the coalescence.
  • At least one selected from the group consisting of ammonia, amine, carboxylic acid, and salts or ions thereof is from the viewpoint of enhancing the dispersibility of the semiconductor fine particles (1) Any of the methods included in the method for producing semiconductor fine particles It is preferable to add in the step.
  • the amount of semiconductor fine particles contained in the composition according to the present invention is measured using ICP-MS (for example, ELAN DRCII, manufactured by PerkinElmer) and an ion chromatograph. Measurement is performed after the semiconductor fine particles are dissolved using a good solvent such as N, N-dimethylformamide.
  • the quantum yield of the composition containing the semiconductor fine particles according to the present invention is measured using an absolute PL quantum yield measuring apparatus (for example, product name C9920-02, manufactured by Hamamatsu Photonics) at an excitation light of 450 nm, room temperature, and in the atmosphere. To do.
  • an absolute PL quantum yield measuring apparatus for example, product name C9920-02, manufactured by Hamamatsu Photonics
  • composition comprising semiconductor fine particles and (2) an organic compound having an amino group, an alkoxy group and a silicon atom, and further comprising (3) a polymerizable compound and at least one selected from the group consisting of polymers. Is measured by adjusting the mixing ratio so that the concentration of the semiconductor fine particles contained in the composition is 1000 ⁇ g / mL.
  • the quantum yield measured by the above measuring method may be 32% or more, 40% or more, 50% or more, 60% It may be more than 70% or more.
  • the quantum yield measured by the above measurement method may be 100% or less, may be 95% or less, may be 90% or less, and may be 80%. It may be the following.
  • the above upper limit value and lower limit value can be arbitrarily combined.
  • the composition of the present embodiment preferably has a quantum yield measured by the measurement method of 32% or more and 100% or less, and 40% or more and 100% or less. Is more preferably 50% or more and 100% or less, and particularly preferably 70% or more and 100 or less.
  • the quantum yield measured by the measurement method is preferably 32% or more and 95% or less, and 40% or more and 90% or less. Is more preferable, and 50% or more and 80% or less is still more preferable.
  • the quantum yield may be 60% or more and 80% or less, or 70% or more and 80% or less.
  • thermo durability test is performed in which the composition according to the present invention is stored in an oven made constant at a temperature of 60 ° C., and the quantum yield is measured before and after the test.
  • the test piece has a thickness of 100 ⁇ m and 1 cm ⁇ 1 cm.
  • the thermal durability can be measured as a value of (quantum yield after thermal durability test for n days) / (quantum yield before thermal durability test).
  • the composition of this embodiment may have a thermal durability after a 5-day thermal durability test measured by the measurement method described above of 0.4 or more, or 0.6 or more, It may be 0.8 or more.
  • the composition of the present embodiment may have a heat durability after a 5-day heat durability test measured by the above measurement method of 1.0 or less, or 0.95 or less, It may be 0.9 or less.
  • the composition of the present embodiment has a thermal durability of 0.4 or more and 1.0 or less after a 5-day thermal durability test measured by the measurement method. Preferably, it is 0.6 or more and 1.0 or less, and more preferably 0.8 or more and 1.0 or less.
  • the composition of the present embodiment has a thermal durability of 0.4 or more and 0.95 or less after a 5-day thermal durability test measured by the measurement method. Preferably, it is 0.6 or more and 0.95 or less, more preferably 0.8 or more and 0.9 or less.
  • the composition of the present embodiment may have a thermal durability after a 7-day thermal durability test measured by the measurement method described above of 0.4 or more, or 0.6 or more, It may be 0.8 or more, or 0.9 or more.
  • the heat durability after a 7-day heat durability test measured by the above measurement method may be 1.0 or less, or 0.95 or less, It may be 0.9 or less.
  • the composition of the present embodiment has a thermal durability after a 7-day thermal durability test measured by the above measurement method of 0.4 or more and 1.0 or less. Is preferably 0.6 or more and 1.0 or less, more preferably 0.8 or more and 1.0, and particularly preferably 0.9 or more and 1.0 or less. As another aspect of the present invention, the composition of the present embodiment has a thermal durability after a 7-day thermal durability test measured by the measurement method of 0.4 or more and 0.95 or less. Preferably, it is 0.6 or more and 0.95 or less, more preferably 0.8 or more and 0.9 or less. The thermal durability may be 0.9 or more and 0.95 or less.
  • the film according to the present invention includes (1), (2), and (3 ′), and the total content of (1), (2), and (3 ′) is 90 with respect to the total mass of the composition. It is a film made of a composition having a mass% or more.
  • (1) Semiconductor fine particles (2) Organic compound having amino group, alkoxy group, and silicon atom (3 ′) polymer
  • the film shape is not particularly limited, and may be a sheet shape, a bar shape or the like.
  • the “bar-shaped shape” means, for example, a shape having anisotropy. Examples of the shape having anisotropy include plate-like shapes having different lengths on each side.
  • the thickness of the film may be 0.01 ⁇ m to 1000 mm, 0.1 ⁇ m to 10 mm, or 1 ⁇ m to 1 mm. In this specification, the thickness of the film can be obtained by measuring at any three points with a micrometer and calculating the average value.
  • the film may be a single layer or a multilayer. In the case of multiple layers, the same type of embodiment composition may be used for each layer, or different types of embodiment compositions may be used.
  • a film formed on a substrate can be obtained by the production methods (i) to (iii) of the production method for a laminated structure described later.
  • the laminated structure according to the present invention is Having a plurality of layers, at least one layer being (1), (2) and (3 ′), wherein the total content of (1), (2) and (3 ′) is 90% by mass or more based on the total mass of the composition It is a laminated structure which is a layer.
  • (1) Semiconductor fine particles (2) Organic compound having amino group, alkoxy group, and silicon atom (3 ′) polymer
  • composition containing (1), (2), and (3 ′) further contains (4) at least one selected from the group consisting of ammonia, amine, and carboxylic acid, and salts or ions thereof. May be.
  • the laminated structure includes (1), (2), and (3 ′), and the total content of (1), (2), and (3 ′) is the total mass of the composition
  • the layer other than the layer composed of 90% by mass or more include arbitrary layers such as a substrate, a barrier layer, and a light scattering layer.
  • the shape of the laminated composition is not particularly limited, and may be any shape such as a sheet shape or a bar shape.
  • the laminated composition may be the film of this embodiment.
  • the layer that the laminated structure according to the present invention may have is not particularly limited, but includes a substrate.
  • substrate is not specifically limited, A film may be sufficient and a transparent thing is preferable from a viewpoint of taking out light at the time of light emission.
  • a plastic such as polyethylene terephthalate or a known material such as glass can be used.
  • the composition includes (1), (2), and (3 ′), and the total content of (1), (2), and (3 ′) is the total mass of the composition
  • the layer made of the composition of 90% by mass or more with respect to the substrate may be provided on the substrate.
  • the layer may be the film of this embodiment.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of the laminated structure of the present embodiment.
  • the film 10 of the present embodiment is provided between the first substrate 20 and the second substrate 21.
  • the film 10 is sealed with a sealing layer 22.
  • One aspect of the present invention includes a first substrate 20, a second substrate 21, a film 10 according to the present embodiment located between the first substrate 20 and the second substrate 21, and sealing.
  • barrier layer Although there is no restriction
  • a barrier layer may be included.
  • the barrier layer is not particularly limited, but is preferably a transparent barrier layer from the viewpoint of extracting emitted light.
  • a known barrier layer such as a polymer such as polyethylene terephthalate or a glass film can be applied.
  • Light scattering layer Although there is no restriction
  • the light scattering layer is not particularly limited, but a transparent light scattering layer is preferable from the viewpoint of extracting emitted light.
  • a light scattering layer such as silica particles or a known light scattering layer such as an amplification diffusion film is applied. I can do it.
  • a manufacturing method of the laminated structure for example, (I) (1) a step of mixing semiconductor fine particles, (2) an organic compound having an amino group, an alkoxy group, and a silicon atom, and a polymer dissolved in a solvent; Coating the obtained composition on a substrate; A method for producing a laminated structure including a step of removing the solvent, (Ii) A composition comprising (1), (2) and (3 ′), wherein the total content of (1), (2) and (3 ′) is relative to the total mass of the composition A method for producing a laminated structure including a step of bonding a composition of 90% by mass or more to a substrate; (1) Semiconductor fine particles (2) Organic compounds having amino groups, alkoxy groups, and silicon atoms (3 ′) Polymers (iii) (1) Semiconductor fine particles, (2) having amino groups, alkoxy groups, and silicon atoms Mixing an organic compound and a polymerizable compound; Coating the obtained composition on a substrate; And
  • the step of coating on the substrate included in the manufacturing methods of (i) and (iii) is not particularly limited, but gravure coating method, bar coating method, printing method, spray method, spin coating method, dip method A known coating method such as a die coating method can be used.
  • An arbitrary adhesive can be used in the step of bonding to the substrate, which is included in the manufacturing method (ii).
  • the adhesive is not particularly limited as long as it does not dissolve (1) semiconductor fine particles, and a known adhesive can be used.
  • the manufacturing method of the laminated structure may be a manufacturing method including a step of further bonding an arbitrary film to the laminated structure obtained in (i) to (iii).
  • the film to be bonded include a reflection film and a diffusion film.
  • Any adhesive can be used in the step of laminating the films.
  • the above-mentioned adhesive is not particularly limited as long as (1) it does not dissolve the semiconductor fine particles, and a known adhesive can be used.
  • the light emitting device according to the present invention can be obtained by combining the above composition or the above laminated structure with a light source.
  • the light-emitting device according to the present invention is a device that emits light from the above-mentioned composition by irradiating light emitted from a light source onto the above-described composition installed in the subsequent stage, and extracts the light.
  • the laminated structure in the light emitting device may include layers such as a reflection film, a diffusion film, a brightness enhancement portion, a prism sheet, a light guide plate, and a medium material layer between elements.
  • One aspect of the present invention is the light emitting device 2 in which the prism sheet 50, the light guide plate 60, the first laminated structure 1a, and the light source 30 are laminated in this order.
  • the light source constituting the light emitting device according to the present invention is not particularly limited, but a light source having an emission wavelength of 600 nm or less is preferable from the viewpoint of emitting the semiconductor fine particles in the composition or the laminated structure, for example,
  • a known light source such as a light emitting diode (LED) such as a blue light emitting diode, a laser, or an EL can be used.
  • the light-emitting device concerning this invention can contain the light reflection member for irradiating the light of a light source toward the said composition or the said laminated structure.
  • the reflective film is not particularly limited, but may include any suitable known material such as a reflector, a film of reflective particles, a reflective metal film, or a reflector.
  • the light-emitting device concerning this invention can contain the light-scattering member for diffusing the light of a light source, or the light emitted from the said composition.
  • the diffusion film may include any diffusion film known in the art, such as an amplification diffusion film.
  • the light-emitting device concerning this invention can contain the brightness
  • the prism sheet typically has a base material portion and a prism portion. In addition, you may abbreviate
  • the prism sheet can be bonded to an adjacent member via any appropriate adhesive layer (for example, an adhesive layer, an adhesive layer :).
  • the prism sheet includes a plurality of unit prisms that are convex on the opposite side (rear side) to the viewing side. By disposing the convex portion of the prism sheet toward the back side, the light transmitted through the prism sheet is easily collected.
  • the convex part of the prism sheet is arranged toward the back side, the light that is reflected without entering the prism sheet is reduced and the brightness is high compared to the case where the convex part is arranged toward the viewing side. Can be obtained.
  • Light guide plate Any appropriate light guide plate may be used as the light guide plate.
  • a light guide plate in which a lens pattern is formed on the back side and a light guide plate in which a prism shape or the like is formed on the back side and / or the viewing side are used so that light from the lateral direction can be deflected in the thickness direction. .
  • the light emitting device is not particularly limited, but may include a layer made of one or more medium materials on an optical path between adjacent elements (layers).
  • One or more media may include vacuum, air, gas, optical material, adhesive, optical adhesive, glass, polymer, solid, liquid, gel, curable material, optical coupling material, index matching or index mismatch material , Refractive index gradient material, cladding or anti-cladding material, spacer, silica gel, brightness enhancing material, scattering or diffusing material, reflective or anti-reflective material, wavelength selective material, wavelength selective anti-reflective material, color filter, or said Any suitable material known in the art may be included, including but not limited to any suitable material.
  • the light-emitting device include, for example, those provided with wavelength conversion materials for EL displays and liquid crystal displays.
  • the composition of the present invention in a glass tube or the like and seal it, and arrange it between the blue light-emitting diode that is the light source and the light guide plate along the end face (side surface) of the light guide plate, Backlight that converts blue light into green or red light (on-edge type backlight), (2) A blue film placed on the end face (side face) of the light guide plate by placing the film of the composition according to the present invention into a sheet and sealing it with two barrier films sandwiched between them.
  • a backlight surface mount type backlight that converts blue light emitted from the light emitting diodes through the light guide plate to the sheet into green light or red light
  • a backlight on-chip type backlight that disperses semiconductor fine particles in a resin or the like and is installed in the vicinity of the light emitting portion of the blue light emitting diode, and converts the emitted blue light into green light or red light
  • the composition of the present invention is molded and disposed at the subsequent stage of the blue light emitting diode as the light source, and the blue light is converted into green light or red light to generate white light Illumination that emits.
  • ⁇ Method for manufacturing light emitting device> the manufacturing method including the above-mentioned light source and the process of installing the above-mentioned composition or laminated structure on the optical path of a back
  • the display 3 of this embodiment includes a liquid crystal panel 40 and the light-emitting device 2 described above in this order from the viewing side.
  • the light emitting device 2 includes a second laminated structure 1b and a light source 30.
  • the first laminated structure 1a described above further includes a prism sheet 50 and a light guide plate 60.
  • the liquid crystal panel typically includes a liquid crystal cell, a viewing side polarizing plate disposed on the viewing side of the liquid crystal cell, and a back side polarizing plate disposed on the back side of the liquid crystal cell.
  • the display may further include any appropriate other member.
  • One aspect of the present invention is the liquid crystal display 3 in which the liquid crystal panel 40, the prism sheet 50, the light guide plate 60, the first laminated structure 1a, and the light source 30 are laminated in this order.
  • the liquid crystal panel typically includes a liquid crystal cell, a viewing side polarizing plate disposed on the viewing side of the liquid crystal cell, and a back side polarizing plate disposed on the back side of the liquid crystal cell.
  • the viewing-side polarizing plate and the back-side polarizing plate can be arranged so that their absorption axes are substantially orthogonal or parallel.
  • the liquid crystal cell includes a pair of substrates and a liquid crystal layer as a display medium sandwiched between the substrates.
  • a color filter and a black matrix are provided on one substrate, a switching element that controls the electro-optical characteristics of the liquid crystal on the other substrate, and a scanning line that supplies a gate signal to the switching element.
  • a signal line for supplying a source signal, a pixel electrode, and a counter electrode are provided.
  • the distance between the substrates (cell gap) can be controlled by a spacer or the like.
  • an alignment film made of polyimide can be provided on the side of the substrate in contact with the liquid crystal layer.
  • the polarizing plate typically includes a polarizer and protective layers disposed on both sides of the polarizer.
  • the polarizer is typically an absorptive polarizer. Any appropriate polarizer is used as the polarizer.
  • dichroic substances such as iodine and dichroic dyes are adsorbed on hydrophilic polymer films such as polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and ethylene / vinyl acetate copolymer partially saponified films.
  • polyene-based oriented films such as a uniaxially stretched product, a polyvinyl alcohol dehydrated product and a polyvinyl chloride dehydrochlorinated product.
  • a polarizer obtained by adsorbing a dichroic substance such as iodine on a polyvinyl alcohol film and uniaxially stretching is particularly preferable because of its high polarization dichroic ratio.
  • composition according to the present invention examples include a wavelength conversion material for a laser diode.
  • the composition according to the present invention can be used, for example, as a material for a light emitting layer of an LED.
  • an LED including the composition according to the present invention for example, the composition according to the present invention and conductive particles such as ZnS are mixed and laminated in a film shape, an n-type transport layer is laminated on one side, and the other side is laminated. It has a structure laminated with a p-type transport layer, and by passing an electric current, the holes of the p-type semiconductor and the electrons of the n-type semiconductor cancel the charge in the semiconductor fine particles contained in the composition of the bonding surface. There is a method of emitting light.
  • the composition according to the present invention can be used as an electron transporting material contained in the active layer of a solar cell.
  • the configuration of the solar cell is not particularly limited.
  • a hole transport layer such as 2 ′, 7,7′-tetrakis- (N, N′-di-p-methoxyphenylamine) -9,9′-spirobifluorene (Spiro-OMeTAD) and a silver (Ag) electrode are arranged in this order.
  • the solar cell which has in. Is mentioned.
  • the titanium oxide dense layer has an electron transport function, an effect of suppressing FTO roughness, and a function of suppressing reverse electron transfer.
  • the porous aluminum oxide layer has a function of improving light absorption efficiency.
  • the composition according to the present invention contained in the active layer plays a role of charge separation and electron transport.
  • the average ferret diameter of the perovskite compound observed by TEM was 11 nm.
  • 500 ⁇ L of the dispersion was taken and redispersed in 4.5 mL of toluene to obtain a dispersion containing the semiconductor fine particles and the solvent.
  • concentration of the perovskite compound measured by ICP-MS and ion chromatography was 1500 ppm ( ⁇ g / g).
  • the concentration of the semiconductor fine particles in the compositions obtained in the examples and comparative examples was determined by adding N, N-dimethylformamide to the dispersion containing the semiconductor fine particles and the solvent obtained by redispersion, respectively. After the fine particles were dissolved, measurement was performed using ICP-MS (ELAN DRCII, manufactured by Perkin Elmer) and an ion chromatograph.
  • Quantum yield measurement The quantum yield of the compositions obtained in Examples 1 to 6 and Comparative Example 1 was measured using an absolute PL quantum yield measuring apparatus (manufactured by Hamamatsu Photonics, trade name C9920-02, excitation light 450 nm, room temperature, in the atmosphere). And measured.
  • the quantum yield before the heat durability test of the composition obtained in Example 1 was 62%, and the quantum yield after 5 days of the heat durability test was 28%.
  • the value of (quantum yield after 5 days of thermal durability test) / (quantum yield before thermal durability test) was 0.45.
  • the quantum yield before the heat endurance test was 66%, and the quantum yield after 5 days of the heat endurance test was 28%.
  • the value of (quantum yield after 5 days of thermal durability test) / (quantum yield before thermal durability test) was 0.42.
  • the quantum yield before the heat durability test was 72%, and the quantum yield after 5 days of the heat durability test was 61%.
  • the value of (quantum yield after 5 days of thermal durability test) / (quantum yield before thermal durability test) was 0.85.
  • the quantum yield before the heat endurance test was 72%, and the quantum yield after 7 days of the heat endurance test was 65%.
  • the average ferret diameter of the perovskite compound observed by TEM was 11 nm.
  • 500 ⁇ L of the dispersion was taken and redispersed in 4.5 mL of toluene to obtain a dispersion containing the semiconductor fine particles and the solvent.
  • concentration of the perovskite compound measured by ICP-MS and ion chromatography was 1000 ⁇ g / mL.
  • the composition was cut to a size of 1 cm ⁇ 1 cm.
  • the quantum yield before the heat endurance test was 27%, the quantum yield after 5 days of the heat endurance test was 8%, and the quantum yield after 7 days of the heat endurance test was 0%.
  • the value of (quantum yield after 5 days of thermal durability test) / (quantum yield before thermal durability test) was 0.30.
  • the average ferret diameter of the perovskite compound observed by TEM was 11 nm.
  • 500 ⁇ L of the dispersion was taken and redispersed in 4.5 mL of toluene to obtain a dispersion containing the semiconductor fine particles and the solvent.
  • concentration of the perovskite compound measured by ICP-MS and ion chromatography was 1000 ⁇ g / mL.
  • Toluene was evaporated by natural drying to obtain a composition having a perovskite compound concentration of 1000 ⁇ g / mL.
  • the composition was cut to a size of 1 cm ⁇ 1 cm.
  • the quantum yield before the heat endurance test was 29%, the quantum yield after 5 days of the heat endurance test was 7%, and the quantum yield after 7 days of the heat endurance test was 0%.
  • the value of (quantum yield after 5 days of thermal durability test) / (quantum yield before thermal durability test) was 0.24.
  • Table 1 below describes the composition, quantum yield (%), and thermal durability of the compositions of Examples 1 to 6 and Comparative Examples 1 and 2.
  • the organic compound / Pb having an amino group, an alkoxy group, and a silicon atom represents a molar ratio obtained by dividing the amount of the organic compound having an amino group, an alkoxy group, and a silicon atom by the amount of Pb.
  • the thermal durability was evaluated by the value of (quantum yield after n-day thermal durability test) / (quantum yield before thermal durability test).
  • FIG. 3 shows the results of Examples 1 to 3.
  • compositions of Examples 1 to 6 to which the present invention is applied have superior thermal durability compared to the compositions of Comparative Examples 1 to 2 to which the present invention is not applied. It could be confirmed.
  • a resin composition can be obtained by forming the composition described in Examples 1 to 6 into a sheet, and by placing a sealed film sandwiched between two barrier films on a light guide plate, A backlight capable of converting blue light emitted from the blue light emitting diode placed on the end surface (side surface) of the light guide plate through the light guide plate to the sheet into green light or red light is manufactured.
  • the wavelength conversion material can be obtained by mixing the composition described in Examples 1 to 6 and the resist and then removing the solvent.
  • a backlight capable of converting the blue light of the light source into green light or red light by placing the obtained wavelength conversion material between the blue light emitting diode as the light source and the light guide plate or after the OLED as the light source. To manufacture.
  • a titanium oxide dense layer is laminated on the surface of a fluorine-doped tin oxide (FTO) substrate, a porous aluminum oxide layer is laminated thereon, and the compositions described in Examples 1 to 6 are laminated thereon. Then, after removing the solvent, a hole transport layer such as 2,2-, 7,7-tetrakis- (N, N-di-p-methoxyphenylamine) 9,9-spirobifluorene (Spiro-OMeTAD) is laminated thereon. Then, a silver (Ag) layer is laminated thereon to produce a solar cell.
  • FTO fluorine-doped tin oxide
  • a porous aluminum oxide layer is laminated thereon, and the compositions described in Examples 1 to 6 are laminated thereon.
  • a hole transport layer such as 2,2-, 7,7-tetrakis- (N, N-di-p-methoxyphenylamine) 9,9-spirobifluorene (Spiro
  • the resin composition containing the composition according to the present invention can be obtained by mixing the composition described in Examples 1 to 6 and the resin, and then removing the solvent and molding, and this can be obtained after the blue light-emitting diode.
  • the laser diode illumination that emits white light by converting blue light emitted from the blue light emitting diode to the resin molded body into green light or red light is manufactured.
  • compositions using a highly heat-resistant composition the film which consists of the said composition, the laminated structure containing the said composition, and the display using the said composition. Therefore, the composition of the present invention, the film comprising the composition, the laminated structure containing the composition, and the display using the composition can be suitably used in light emitting applications.

Abstract

The present invention relates to a light-emitting composition comprising (1), (2), and (3). Said (1) consists of semiconductor particles, (2) is an organic compound including an amino group, an alkoxy group, and a silicon atom, and (3) is at least one type selected from the group consisting of polymerizable compounds and polymers. Said (1) preferably consists of particles of a perovskite compound comprising A, B, and X as constituent components. Said A is a component located at each apex of a hexahedron centered about B in the perovskite-type crystal structure, and is a monovalent positive ion. X represents a component located at each apex of an octahedron centered about B in the perovskite-type crystal structure, and is at least one type of negative ion selected from the group consisting of halide ions and a thiocyanate ion. B is a metallic ion.

Description

組成物、フィルム、積層構造体、発光装置、ディスプレイ、及び組成物の製造方法COMPOSITION, FILM, LAMINATED STRUCTURE, LIGHT EMITTING DEVICE, DISPLAY, AND METHOD FOR PRODUCING COMPOSITION
 本発明は、組成物、フィルム、積層構造体、発光装置、ディスプレイ、及び組成物の製造方法に関する。
 本願は、2016年12月22日に、日本に出願された特願2016-250174号に基づき、優先権を主張し、その内容をここに援用する。
The present invention relates to a composition, a film, a laminated structure, a light emitting device, a display, and a method for producing the composition.
This application claims priority based on Japanese Patent Application No. 2016-250174 for which it applied to Japan on December 22, 2016, and uses the content here.
 近年、半導体材料の発光特性に対する関心が高まっている。
 例えば、室温条件下で、紫外から赤色のスペクトル領域の範囲で、強い発光強度を有する組成物が報告されている(非特許文献1)。
In recent years, interest in the luminescent properties of semiconductor materials has increased.
For example, a composition having strong emission intensity in the range of the ultraviolet to red spectral region under room temperature conditions has been reported (Non-Patent Document 1).
 しかしながら、上記非特許文献1に記載された組成物を発光材料として用いる場合さらなる熱耐久性の向上が求められる。
 本発明は、上記課題に鑑みてなされたものであって、半導体微粒子を含む熱耐久性が高い組成物、フィルム、積層構造体、発光装置、ディスプレイ、及び組成物の製造方法を提供することを目的とする。
However, when the composition described in Non-Patent Document 1 is used as a light emitting material, further improvement in thermal durability is required.
This invention is made | formed in view of the said subject, Comprising: It is providing the manufacturing method of a composition, a film, a laminated structure, a light-emitting device, a display, and a composition with high heat durability containing a semiconductor fine particle. Objective.
 上記課題を解決するために、本発明者らは鋭意検討した結果、以下の本発明に至った。 In order to solve the above-mentioned problems, the present inventors have intensively studied, and as a result, have reached the following present invention.
 すなわち、本発明は、下記[1]~[11]の発明を包含する。
[1](1)、(2)、及び(3)を含み、発光性を有する組成物。
 (1)半導体微粒子
 (2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物
 (3)重合性化合物、及び重合体からなる群から選ばれる少なくとも1種
[2]前記(1)が、A、B、及びXを構成成分とするペロブスカイト化合物の微粒子である前記[1]に記載の組成物。
 Aは、ペロブスカイト型結晶構造において、Bを中心とする6面体の各頂点に位置する成分であって、1価の陽イオンである。
 Xは、ペロブスカイト型結晶構造において、Bを中心とする8面体の各頂点に位置する成分を表し、ハロゲン化物イオン及びチオシアン酸イオンからなる群より選ばれる1種以上の陰イオンである。
 Bは、ペロブスカイト型結晶構造においてAを頂点に配置する6面体及びXを頂点に配置する8面体の中心に位置する成分であって、金属イオンである。
[3]前記(1)が前記(3)に分散している分散体と、前記(2)との混合物である、前記[1]又は[2]に記載の組成物。
[4]さらに、(4)アンモニア、アミン、及びカルボン酸、並びにこれらの塩又はイオンからなる群から選ばれる少なくとも1種を含む前記[1]~[3]のいずれか一項に記載の組成物。
[5](1)、(2)、及び(3’)を含む組成物であって、(1)、(2)及び(3’)の合計含有量が前記組成物の総質量に対して90質量%以上である組成物。
 (1)半導体微粒子
 (2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物
 (3’)重合体
[6]さらに、(4)アンモニア、アミン、及びカルボン酸、並びにこれらの塩又はイオンからなる群から選ばれる少なくとも1種を含む前記[5]に記載の組成物。
[7]前記[5]又は[6]に記載の組成物からなるフィルム。
[8]複数の層を有し、少なくとも一層が、前記[5]又は[6]に記載の組成物からなる層である、積層構造体。
[9]前記[8]に記載の積層構造体を備える発光装置。
[10]前記[8]に記載の積層構造体を備えるディスプレイ。
[11](3)に(1)を分散させ、分散体を得る工程と、
 得られた分散体と(2)とを混合する工程とを含む、発光性を有する組成物の製造方法。
 (1)半導体微粒子
 (2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物
 (3)重合性化合物、及び重合体からなる群から選ばれる少なくとも1種
That is, the present invention includes the following [1] to [11].
[1] A composition having luminescent properties, comprising (1), (2), and (3).
(1) Semiconductor fine particles (2) Organic compound having an amino group, an alkoxy group, and a silicon atom (3) At least one selected from the group consisting of a polymerizable compound and a polymer [2] The above (1) is A The composition according to [1], wherein the composition is a fine particle of a perovskite compound having, B, and X as constituent components.
A is a component located at each vertex of a hexahedron centered on B in the perovskite crystal structure, and is a monovalent cation.
X represents a component located at each vertex of an octahedron centered on B in the perovskite crystal structure, and is one or more anions selected from the group consisting of halide ions and thiocyanate ions.
B is a component located at the center of a hexahedron that arranges A at the apex and an octahedron that arranges X at the apex in the perovskite crystal structure, and is a metal ion.
[3] The composition according to [1] or [2], wherein (1) is a mixture of the dispersion dispersed in (3) and (2).
[4] The composition according to any one of [1] to [3], further comprising (4) at least one selected from the group consisting of (4) ammonia, amine, carboxylic acid, and salts or ions thereof. object.
[5] A composition comprising (1), (2) and (3 ′), wherein the total content of (1), (2) and (3 ′) is relative to the total mass of the composition The composition which is 90 mass% or more.
(1) Semiconductor fine particles (2) Organic compound having amino group, alkoxy group, and silicon atom (3 ′) Polymer [6] Further, (4) From ammonia, amine, carboxylic acid, and salts or ions thereof The composition according to the above [5], comprising at least one selected from the group consisting of:
[7] A film comprising the composition according to [5] or [6].
[8] A laminated structure having a plurality of layers, at least one of which is a layer made of the composition according to [5] or [6].
[9] A light emitting device including the laminated structure according to [8].
[10] A display comprising the laminated structure according to [8].
[11] A step of dispersing (1) in (3) to obtain a dispersion;
The manufacturing method of the composition which has luminescent property including the process of mixing the obtained dispersion and (2).
(1) Semiconductor fine particles (2) Organic compounds having amino groups, alkoxy groups, and silicon atoms (3) At least one selected from the group consisting of polymerizable compounds and polymers
 本発明によれば、半導体微粒子を含む熱耐久性が高い組成物、フィルム、積層構造体、発光装置、ディスプレイ、及び組成物の製造方法を提供することができる。 According to the present invention, it is possible to provide a composition, a film, a laminated structure, a light-emitting device, a display, and a method for producing the composition having high thermal durability including semiconductor fine particles.
本発明に係る積層構造体の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the laminated structure which concerns on this invention. 本発明に係るディスプレイの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the display which concerns on this invention. 実施例において取得された、本発明に係る組成物の60℃条件での熱耐久性の結果を示すグラフである。It is a graph which shows the result of the thermal durability on 60 degreeC conditions of the composition based on this invention acquired in the Example.
 以下、実施形態を示して本発明を詳細に説明する。
<組成物>
 本発明の組成物は、発光性を有する。「発光性」とは、光を発する性質を指す。発光性は、電子の励起により発光する性質であることが好ましく、励起光による電子の励起により発光する性質であることがより好ましい。励起光の波長は、例えば、200nm~800nmであってもよく、250nm~700nmであってもよく、300nm~600nmであってもよい。
Hereinafter, embodiments of the present invention will be described in detail.
<Composition>
The composition of the present invention has luminescent properties. “Luminescent” refers to the property of emitting light. The light emitting property is preferably a property of emitting light by excitation of electrons, and more preferably a property of emitting light by excitation of electrons by excitation light. The wavelength of the excitation light may be, for example, 200 nm to 800 nm, 250 nm to 700 nm, or 300 nm to 600 nm.
 本発明の組成物は、(1)、(2)、及び(3)を含む。
 (1)半導体微粒子
 (2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物
 (3)重合性化合物、及び重合体からなる群から選ばれる少なくとも1種
The composition of the present invention comprises (1), (2), and (3).
(1) Semiconductor fine particles (2) Organic compounds having amino groups, alkoxy groups, and silicon atoms (3) At least one selected from the group consisting of polymerizable compounds and polymers
 前記組成物は、さらに、(4)アンモニア、アミン、及びカルボン酸、並びにこれらの塩又はイオンからなる群から選ばれる少なくとも1種を含んでいてもよい。
 また、(1)~(4)以外のその他の成分を有していてもよい。
 その他の成分としては、例えば、若干の不純物、並びに半導体微粒子を構成する元素成分からなるアモルファス構造を有する化合物、重合開始剤、溶媒が挙げられる。
 その他の成分の含有量は、組成物の総質量に対して10質量%以下であることが好ましく、5質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。
The composition may further include (4) at least one selected from the group consisting of (4) ammonia, amines, and carboxylic acids, and salts or ions thereof.
Further, it may have other components other than (1) to (4).
Examples of other components include a compound having an amorphous structure composed of some impurities and elemental components constituting semiconductor fine particles, a polymerization initiator, and a solvent.
The content of other components is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 1% by mass or less with respect to the total mass of the composition.
 本発明者らが鋭意検討した結果、
 (1)半導体微粒子、(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物、及び(3)重合性化合物、重合体からなる群から選ばれる少なくとも1種を含む組成物において、熱耐久性を向上させることができることを見出した。
 このことは、(2)の有機化合物により、(1)の半導体微粒子の表面の欠陥にトラップされた電子が失活してしまうことが防止され、かつ、(2)の有機化合物が強固に吸着するため、熱の影響で外れ難くなる事で、熱耐久性が向上するものと考えられる。
 本実施形態の組成物において、(1)、(2)、及び(3)を含み(1)、(2)、及び(3)の合計含有量が前記組成物の総質量に対して90質量%以上であってもよく、95質量%以上であってもよく、99質量%以上であってもよく、100質量%であってもよい。
As a result of intensive studies by the inventors,
In a composition comprising (1) semiconductor fine particles, (2) an organic compound having an amino group, an alkoxy group, and a silicon atom, and (3) a polymerizable compound and at least one selected from the group consisting of polymers. It was found that the property can be improved.
This is because the organic compound (2) prevents the electrons trapped in the defects on the surface of the semiconductor fine particles (1) from being deactivated, and the organic compound (2) is strongly adsorbed. Therefore, it is considered that the heat durability is improved by being difficult to come off due to the influence of heat.
In the composition of this embodiment, the total content of (1), (2), and (3) including (1), (2), and (3) is 90 mass with respect to the total mass of the composition. % Or more, 95 mass% or more, 99 mass% or more, or 100 mass%.
 本発明の組成物は、(1)、(2)、及び(3’)を含み、(1)、(2)及び(3’)の合計含有量が前記組成物の総質量に対して90質量%以上である組成物であってもよい。
 (1)半導体微粒子
 (2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物
 (3’)重合体
The composition of the present invention includes (1), (2), and (3 ′), and the total content of (1), (2), and (3 ′) is 90 with respect to the total mass of the composition. The composition which is the mass% or more may be sufficient.
(1) Semiconductor fine particles (2) Organic compound having amino group, alkoxy group, and silicon atom (3 ′) polymer
 本実施形態の組成物において、(1)、(2)及び(3’)の合計含有量は、前記組成物の総質量に対して95質量%以上であってもよく、99質量%以上であってもよく、100質量%であってもよい。
 本組成物は、さらに、(4)アンモニア、アミン、及びカルボン酸、並びにこれらの塩又はイオンからなる群から選ばれる少なくとも1種を含んでいてもよい。(1)、(2)、(3’)、及び(4)以外の成分としては、上述のその他の成分と同様の成分が挙げられる。
In the composition of the present embodiment, the total content of (1), (2) and (3 ′) may be 95% by mass or more with respect to the total mass of the composition, and is 99% by mass or more. It may be 100 mass%.
The composition may further contain (4) at least one selected from the group consisting of (4) ammonia, amines, and carboxylic acids, and salts or ions thereof. Components other than (1), (2), (3 ′), and (4) include the same components as the other components described above.
 (1)、(2)、及び(3)を含む本実施形態の組成物において、組成物の総質量に対する(1)の含有量は、特に限定されるものではないが、半導体微粒子を凝縮させにくくする観点、及び濃度消光を防ぐ観点から、50質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.5質量%以下であることがさらに好ましく、また、良好な量子収率を得る観点から、0.0001質量%以上であることが好ましく、0.0005質量%以上であることがより好ましく、0.001質量%以上であることがさらに好ましい。
 上記の上限値及び下限値は任意に組み合わせることができる。
 組成物の総質量に対する(1)の含有量は、通常、0.0001~50質量%である。
 組成物の総質量に対する(1)の含有量は、0.0001~1質量%であることが好ましく、0.0005~1質量%であることがより好ましく、0.001~0.5質量%であることがさらに好ましい。
 (1)の配合に係る範囲が上記範囲内である組成物は、(1)の半導体微粒子の凝集が生じ難く、発光性も良好に発揮される点で好ましい。
 本明細書において、組成物の総質量に対する、(1)の半導体微粒子の含有量は、例えば、誘導結合プラズマ質量分析計(以下、ICP-MSともいう)、及びイオンクロマトグラフによって測定することができる。
In the composition of this embodiment including (1), (2), and (3), the content of (1) with respect to the total mass of the composition is not particularly limited, but the semiconductor fine particles are condensed. From the viewpoint of making it difficult and preventing concentration quenching, it is preferably 50% by mass or less, more preferably 1% by mass or less, further preferably 0.5% by mass or less, and good. From the viewpoint of obtaining the quantum yield, it is preferably 0.0001% by mass or more, more preferably 0.0005% by mass or more, and further preferably 0.001% by mass or more.
The above upper limit value and lower limit value can be arbitrarily combined.
The content of (1) with respect to the total mass of the composition is usually 0.0001 to 50% by mass.
The content of (1) with respect to the total mass of the composition is preferably 0.0001 to 1% by mass, more preferably 0.0005 to 1% by mass, and 0.001 to 0.5% by mass. More preferably.
The composition in which the range related to the blending of (1) is within the above range is preferable in that the aggregation of the semiconductor fine particles of (1) hardly occurs and the light emitting property is also satisfactorily exhibited.
In the present specification, the content of the semiconductor fine particles of (1) with respect to the total mass of the composition can be measured by, for example, an inductively coupled plasma mass spectrometer (hereinafter also referred to as ICP-MS) and an ion chromatograph. it can.
 (1)、(2)、及び(3)を含む本実施形態の組成物において、組成物の総質量に対する(1)及び(2)の合計含有量は、特に限定されるものではないが、半導体微粒子を凝縮させにくくする観点、及び濃度消光を防ぐ観点から、60質量%以下であることが好ましく、10質量%以下であることがより好ましく、2質量%以下であることがさらに好ましく、0.5質量%以下であることが特に好まく、また、良好な量子収率を得る観点から、0.0002質量%以上であることが好ましく、0.002質量%以上であることがより好ましく、0.005質量%以上であることがさらに好ましい。
 上記の上限値及び下限値は任意に組み合わせることができる。
 組成物の総質量に対する(1)及び(2)の合計含有量は、通常0.0002~60質量%である。
 組成物の総質量に対する(1)及び(2)の合計含有量は、0.001~10質量%であることが好ましく、0.002~2質量%であることがより好ましく、0.005~0.6質量%であることがさらに好ましい。
 (1)及び(2)の配合比に係る範囲が上記範囲内である組成物は、(1)の半導体微粒子の凝集が生じ難く、発光性も良好に発揮される点で好ましい。
In the composition of this embodiment including (1), (2), and (3), the total content of (1) and (2) with respect to the total mass of the composition is not particularly limited, From the viewpoint of making the semiconductor fine particles difficult to condense and preventing concentration quenching, it is preferably 60% by mass or less, more preferably 10% by mass or less, and further preferably 2% by mass or less. It is particularly preferred that the amount be 0.5 mass% or less, and from the viewpoint of obtaining a good quantum yield, it is preferably 0.0002 mass% or more, more preferably 0.002 mass% or more, More preferably, it is 0.005 mass% or more.
The above upper limit value and lower limit value can be arbitrarily combined.
The total content of (1) and (2) with respect to the total mass of the composition is usually 0.0002 to 60% by mass.
The total content of (1) and (2) with respect to the total mass of the composition is preferably 0.001 to 10% by mass, more preferably 0.002 to 2% by mass, and 0.005 to More preferably, it is 0.6 mass%.
The composition in which the range related to the blending ratio of (1) and (2) is within the above range is preferable in that the aggregation of the semiconductor fine particles of (1) hardly occurs and the light emission property is also exhibited well.
 (1)、(2)、及び(3’)を含む本実施形態の組成物において、組成物の総容積に対する(1)の含有量は、特に限定されるものではないが、半導体微粒子を凝縮させにくくする観点、及び濃度消光を防ぐ観点から、100g/L以下であることが好ましく、10g/L以下であることがより好ましく、5g/L以下であることがさらに好ましく、また、良好な量子収率を得る観点から、0.01g/L以上であることが好ましく、0.1g/L以上であることがより好ましく、0.5g/L以上であることがさらに好ましい。
 上記の上限値及び下限値は任意に組み合わせることができる。
 組成物の総容積に対する(1)の含有量は、0.01~100g/Lであることが好ましく、0.1~10g/Lであることがより好ましく、0.5~5g/Lであることがさらに好ましい。
 (1)の配合に係る範囲が上記範囲内である組成物は、発光性が良好に発揮される点で好ましい。
 本明細書において、組成物の総容積に対する、(1)の含有量は、例えば、ICP-MS、及びイオンクロマトグラフによって測定することができる。
 組成物がフィルム形状の場合、組成物の総容積は、前記フィルムを縦1cm×横1cmに切断し、マイクロメータ等で厚さを測定し、算出することができる。
 組成物が液体の場合、組成物の総容積は、メスシリンダーを用いて測定することができる。
 組成物が粉末の場合、組成物の総容積は、JIS R 93-1-2-3:1999に準拠し、重装かさ比重を測定し、測定に用いた組成物の重量を前記重装かさ比重で除すことにより算出することができる。
In the composition of this embodiment including (1), (2), and (3 ′), the content of (1) with respect to the total volume of the composition is not particularly limited, but the semiconductor fine particles are condensed. From the viewpoint of making it difficult to prevent the concentration quenching, it is preferably 100 g / L or less, more preferably 10 g / L or less, further preferably 5 g / L or less, and good quantum From the viewpoint of obtaining a yield, it is preferably 0.01 g / L or more, more preferably 0.1 g / L or more, and further preferably 0.5 g / L or more.
The above upper limit value and lower limit value can be arbitrarily combined.
The content of (1) with respect to the total volume of the composition is preferably 0.01 to 100 g / L, more preferably 0.1 to 10 g / L, and 0.5 to 5 g / L. More preferably.
The composition in which the range related to the blending of (1) is within the above range is preferable in that the light emitting property is satisfactorily exhibited.
In the present specification, the content of (1) relative to the total volume of the composition can be measured by, for example, ICP-MS and ion chromatograph.
When the composition is in the form of a film, the total volume of the composition can be calculated by cutting the film into 1 cm in length and 1 cm in width and measuring the thickness with a micrometer or the like.
When the composition is a liquid, the total volume of the composition can be measured using a graduated cylinder.
When the composition is a powder, the total volume of the composition is based on JIS R 93-1-2-3: 1999, the heavy bulk specific gravity is measured, and the weight of the composition used for the measurement is the weight of the heavy bulk It can be calculated by dividing by specific gravity.
 (1)、(2)、及び(3’)を含む本実施形態の組成物において、組成物の総容積に対する(1)及び(2)の合計含有量は、特に限定されるものではないが、半導体微粒子を凝縮させにくくする観点、及び濃度消光を防ぐ観点から、1000g/L以下であることが好ましく、500g/L以下であることがより好ましく、300g/L以下であることがさらに好ましく、また、良好な量子収率を得る観点から、0.02g/L以上であることが好ましく、0.2g/L以上であることがより好ましく、0.6g/L以上であることがさらに好ましい。
 上記の上限値及び下限値は任意に組み合わせることができる。
 組成物の総容積に対する(1)及び(2)の合計含有率は、0.02~1000g/Lであることが好ましく、0.2~500g/Lであることがより好ましく、0.6~300g/Lであることがさらに好ましい。
 (1)及び(2)の配合比に係る範囲が上記範囲内である組成物は、発光性が良好に発揮される点で好ましい。
In the composition of this embodiment including (1), (2), and (3 ′), the total content of (1) and (2) with respect to the total volume of the composition is not particularly limited. From the viewpoint of making the semiconductor fine particles difficult to condense and from the viewpoint of preventing concentration quenching, it is preferably 1000 g / L or less, more preferably 500 g / L or less, and even more preferably 300 g / L or less, Moreover, from a viewpoint of obtaining a favorable quantum yield, it is preferably 0.02 g / L or more, more preferably 0.2 g / L or more, and further preferably 0.6 g / L or more.
The above upper limit value and lower limit value can be arbitrarily combined.
The total content of (1) and (2) with respect to the total volume of the composition is preferably 0.02 to 1000 g / L, more preferably 0.2 to 500 g / L, and more preferably 0.6 to More preferably, it is 300 g / L.
A composition in which the range relating to the blending ratio of (1) and (2) is within the above range is preferable in that the light emitting property is exhibited well.
 以下、本発明における組成物について実施形態を示して説明する。 Hereinafter, embodiments of the composition of the present invention will be described.
(1)半導体微粒子
 本発明に係る組成物は(1)半導体微粒子を含み、(1)半導体微粒子は分散していることが好ましい。分散媒としては、(3)重合性化合物、及び重合体からなる群から選ばれる少なくとも1種、及び(3’)重合体が挙げられる。
 本明細書において「分散している」とは、半導体微粒子が分散媒中に浮遊あるいは懸濁している状態のことをいう。
 本発明の半導体微粒子としては、例えば、II族-VI族化合物半導体の結晶の微粒子、II族-V族化合物半導体の結晶の微粒子、III族-V族化合物半導体の結晶の微粒子、III族-IV族化合物半導体の結晶の微粒子、III族-VI族化合物半導体の結晶の微粒子、IV族-VI族化合物半導体の結晶の微粒子、遷移金属-p-ブロック化合物半導体の結晶の微粒子、及びペロブスカイト化合物の微粒子等が挙げられる。
 半導体微粒子は、良好な量子収率を得る観点から、カドミウムを含む半導体の結晶の微粒子、インジウムを含む半導体の結晶の微粒子、及びペロブスカイト化合物の微粒子が好ましく、粒径制御がそれほど厳しく求められずに半値幅の狭い発光ピークが得られ易い点から、ペロブスカイト化合物の微粒子がより好ましい。
 これらの半導体微粒子の少なくとも一部は、(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物で被覆されていてもよい。
(1) Semiconductor fine particles The composition according to the present invention preferably includes (1) semiconductor fine particles, and (1) the semiconductor fine particles are dispersed. Examples of the dispersion medium include (3) at least one selected from the group consisting of a polymerizable compound and a polymer, and (3 ′) a polymer.
As used herein, “dispersed” refers to a state in which semiconductor fine particles are suspended or suspended in a dispersion medium.
Examples of the semiconductor fine particles of the present invention include Group II-VI compound semiconductor crystal fine particles, Group II-V compound semiconductor crystal fine particles, Group III-V compound semiconductor crystal fine particles, and Group III-IV. Group compound semiconductor crystal particles, Group III-VI compound semiconductor crystal particles, Group IV-VI compound semiconductor crystal particles, Transition metal-p-block compound semiconductor crystal particles, and Perovskite compound particles Etc.
From the viewpoint of obtaining a good quantum yield, the semiconductor fine particles are preferably semiconductor crystal fine particles containing cadmium, semiconductor crystal fine particles containing indium, and perovskite compound fine particles, and particle size control is not required so strictly. From the viewpoint of easily obtaining a light emission peak with a narrow half-value width, fine particles of a perovskite compound are more preferable.
At least a part of these semiconductor fine particles may be coated with (2) an organic compound having an amino group, an alkoxy group, and a silicon atom.
 組成物に含まれる、半導体微粒子の平均粒径は、特に限定されるものではないが、良好に結晶構造を維持させる観点から、平均粒径が1nm以上であることが好ましく、2nm以上であることがより好ましく、3nm以上であることがさらに好ましく、また、本発明に係る半導体微粒子を沈降させにくくする観点から、平均粒径が10μm以下であることが好ましく、1μm以下であることがより好ましく、500nm以下であることがさらに好ましい。
 上記の上限値及び下限値は任意に組み合わせることができる。
 組成物に含まれる、半導体微粒子の平均粒径は、特に限定されるものではないが、半導体微粒子を沈降させにくくする観点、及び良好に結晶構造を維持させる観点から、平均粒径が1nm以上10μm以下であることが好ましく、2nm以上1μm以下であることがより好ましく、3nm以上500nm以下であることがさらに好ましい。
 本明細書において、組成物に含まれる半導体微粒子の平均粒径は、例えば透過型電子顕微鏡(以下、TEMともいう。)、走査型電子顕微鏡(以下、SEMともいう。)により測定することができる。具体的には、TEM、又はSEMにより、前記組成物中に含まれる20個の半導体微粒子の最大フェレー径を観察し、それらの平均値である平均最大フェレー径を計算することにより、前記平均粒径を求めることができる。本明細書において「最大フェレー径」とは、TEM又はSEM画像上において、半導体微粒子を挟む2本の平行な直線の最大距離を意味する。
The average particle size of the semiconductor fine particles contained in the composition is not particularly limited, but from the viewpoint of maintaining a good crystal structure, the average particle size is preferably 1 nm or more, and 2 nm or more. Is more preferably 3 nm or more, and from the viewpoint of making it difficult for the semiconductor fine particles according to the present invention to settle, the average particle diameter is preferably 10 μm or less, more preferably 1 μm or less, More preferably, it is 500 nm or less.
The above upper limit value and lower limit value can be arbitrarily combined.
The average particle diameter of the semiconductor fine particles contained in the composition is not particularly limited, but the average particle diameter is 1 nm or more and 10 μm from the viewpoint of making the semiconductor fine particles difficult to settle and maintaining a good crystal structure. Is preferably 2 nm or more and 1 μm or less, and more preferably 3 nm or more and 500 nm or less.
In this specification, the average particle diameter of the semiconductor fine particles contained in the composition can be measured by, for example, a transmission electron microscope (hereinafter also referred to as TEM) or a scanning electron microscope (hereinafter also referred to as SEM). . Specifically, by observing the maximum ferret diameter of 20 semiconductor fine particles contained in the composition by TEM or SEM, and calculating the average maximum ferret diameter which is an average value thereof, The diameter can be determined. In this specification, the “maximum ferret diameter” means the maximum distance between two parallel straight lines sandwiching semiconductor fine particles on a TEM or SEM image.
 組成物に含まれる、半導体微粒子の粒度分布は、特に限定されるものではないが、良好に結晶構造を維持させる観点から、メディアン径(D50)が3nm以上であることが好ましく、4nm以上であることがより好ましく、5nm以上であることがさらに好ましく、また、本発明に係る半導体微粒子を沈降させにくくする観点から、メディアン径(D50)が5μm以下であることが好ましく、500nm以下であることがより好ましく、100nm以下であることがさらに好ましい。
 本実施形態の別の側面としては、組成物に含まれる、半導体微粒子の粒度分布においてメディアン径(D50)が3nm~5μmであることが好ましく、4nm~500nmであることがより好ましく、5nm~100nmであることがさらに好ましい。
 本明細書において、組成物に含まれる、半導体微粒子の粒度分布は、例えばTEM、SEMにより測定することができる。具体的には、TEM、又はSEMにより、前記組成物中に含まれる、20個の半導体微粒子の最大フェレー径を観察し、それらの分布から、前記メディアン径(D50)を求めることができる。
The particle size distribution of the semiconductor fine particles contained in the composition is not particularly limited, but the median diameter (D50) is preferably 3 nm or more, preferably 4 nm or more, from the viewpoint of maintaining a good crystal structure. More preferably, it is more preferably 5 nm or more, and from the viewpoint of making it difficult for the semiconductor fine particles according to the present invention to settle, the median diameter (D50) is preferably 5 μm or less, and preferably 500 nm or less. More preferably, it is 100 nm or less.
As another aspect of this embodiment, the median diameter (D50) in the particle size distribution of the semiconductor fine particles contained in the composition is preferably 3 nm to 5 μm, more preferably 4 nm to 500 nm, and more preferably 5 nm to 100 nm. More preferably.
In this specification, the particle size distribution of the semiconductor fine particles contained in the composition can be measured by, for example, TEM or SEM. Specifically, the maximum ferret diameter of 20 semiconductor fine particles contained in the composition is observed by TEM or SEM, and the median diameter (D50) can be obtained from their distribution.
(II族-VI族化合物半導体の結晶の微粒子)
 II族-VI族化合物半導体は、周期表の2族又は12族の元素と、16族の元素とを含む。
 なお、本明細書において、「周期表」とは、長周期型周期表を意味する。
 二元系のII族-VI族化合物半導体では、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、又はHgTe等が挙げられる。
 周期表の2族から選ばれる元素(第1元素)と、周期表の16族から選ばれる元素(第2元素)とを含む、二元系のII族-VI族化合物半導体としては、例えば、MgS、MgSe、MgTe、CaS、CaSe、CaTe、SrS、SrSe、SrTe、BaS、BaSe、又はBaTeが挙げられる。
 周期表の2族から選ばれる元素(第1元素)と、周期表の16族から選ばれる元素(第2元素)とを含むII族-VI族化合物半導体は、周期表の2族から選ばれる元素(第1元素)1種類と、周期表の16族から選ばれる元素(第2元素)2種類とを含む、三元系のII族-VI族化合物半導体であってもよいし、周期表の2族から選ばれる元素(第1元素)2種類と、周期表の16族から選ばれる元素(第2元素)1種類とを含む、三元系のII族-VI族化合物半導体であってもよいし、周期表の2族から選ばれる元素(第1元素)2種類と、周期表の16族から選ばれる元素(第2元素)2種類とを含む、四元系のII族-VI族化合物半導体であってもよい。
(Group II-VI compound semiconductor crystal fine particles)
The group II-VI compound semiconductor includes a group 2 or group 12 element and a group 16 element of the periodic table.
In the present specification, “periodic table” means a long-period type periodic table.
Examples of binary Group II-VI compound semiconductors include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, and HgTe.
Examples of binary group II-VI group compound semiconductors containing an element selected from group 2 of the periodic table (first element) and an element selected from group 16 of the periodic table (second element) include: MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, or BaTe can be mentioned.
A Group II-VI compound semiconductor containing an element selected from Group 2 of the periodic table (first element) and an element selected from Group 16 of the periodic table (second element) is selected from Group 2 of the periodic table It may be a ternary group II-VI compound semiconductor containing one kind of element (first element) and two kinds of elements (second elements) selected from group 16 of the periodic table, or a periodic table A ternary Group II-VI compound semiconductor comprising two types of elements selected from Group 2 (first element) and one type of element selected from Group 16 of the periodic table (second element). Alternatively, a quaternary group II-VI containing two types of elements (first element) selected from group 2 of the periodic table and two types of elements (second element) selected from group 16 of the periodic table It may be a group compound semiconductor.
 周期表の12族から選ばれる元素(第1元素)と、周期表の16族から選ばれる元素(第2元素)とを含む、二元系のII族-VI族化合物半導体としては、例えば、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、HgSe、又はHgTeが挙げられる。
 周期表の12族から選ばれる元素(第1元素)と、周期表の16族から選ばれる元素(第2元素)とを含むII族-VI族化合物半導体は、周期表の12族から選ばれる元素(第1元素)1種類と、周期表の16族から選ばれる元素(第2元素)2種類とを含む、三元系のII族-VI族化合物半導体であってもよいし、周期表の12族から選ばれる元素(第1元素)2種類と、周期表の16族から選ばれる元素(第2元素)1種類とを含む、三元系のII族-VI族化合物半導体であってもよいし、周期表の12族から選ばれる元素(第1元素)2種類と、周期表の16族から選ばれる元素(第2元素)2種類とを含む、四元系のII族-VI族化合物半導体であってもよい。
 II族-VI族化合物半導体は、周期表の2族、12族、及び16族の以外の元素をドープ元素として含んでいてもよい。
Examples of binary group II-VI compound semiconductors that include an element selected from group 12 of the periodic table (first element) and an element selected from group 16 of the periodic table (second element) include: ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, or HgTe can be mentioned.
A Group II-VI compound semiconductor containing an element selected from Group 12 of the periodic table (first element) and an element selected from Group 16 of the periodic table (second element) is selected from Group 12 of the periodic table It may be a ternary group II-VI compound semiconductor containing one kind of element (first element) and two kinds of elements (second elements) selected from group 16 of the periodic table, or a periodic table A ternary Group II-VI compound semiconductor comprising two types of elements selected from Group 12 (first element) and one type of element selected from Group 16 of the periodic table (second element). Alternatively, a quaternary group II-VI containing two types of elements selected from group 12 of the periodic table (first element) and two types of elements selected from group 16 of the periodic table (second element) It may be a group compound semiconductor.
The Group II-VI compound semiconductor may contain an element other than Groups 2, 12, and 16 of the periodic table as a doping element.
 (II族-V族化合物半導体の結晶の微粒子)
 II族-V族化合物半導体は、周期表の12族の元素と、15族の元素とを含む。
 周期表の12族から選ばれる元素(第1元素)と、周期表の15族から選ばれる元素(第2元素)とを含む、二元系のII族-V族化合物半導体としては、例えば、Zn、ZnAs、Cd、CdAs、Cd、又はZnが挙げられる。
 周期表の12族から選ばれる元素(第1元素)と、周期表の15族から選ばれる元素(第2元素)とを含むII族-V族化合物半導体は、周期表の12族から選ばれる元素(第1元素)1種類と、周期表の15族から選ばれる元素(第2元素)2種類とを含む、三元系のII族-V族化合物半導体であってもよいし、周期表の12族から選ばれる元素(第1元素)2種類と、周期表の15族から選ばれる元素(第2元素)1種類とを含む、三元系のII族-V族化合物半導体であってもよいし、周期表の12族から選ばれる元素(第1元素)2種類と、周期表の15族から選ばれる元素(第2元素)2種類とを含む、四元系のII族-V族化合物半導体であってもよい。 II族-V族化合物半導体は、周期表の12族、及び15族の以外の元素をドープ元素として含んでいてもよい。
(Group II-V compound semiconductor crystal fine particles)
The group II-group V compound semiconductor includes a group 12 element and a group 15 element of the periodic table.
Examples of binary group II-V compound semiconductors containing an element selected from group 12 of the periodic table (first element) and an element selected from group 15 of the periodic table (second element) include: Zn 3 P 2 , Zn 3 As 2 , Cd 3 P 2 , Cd 3 As 2 , Cd 3 N 2 , or Zn 3 N 2 may be mentioned.
A Group II-V compound semiconductor including an element selected from Group 12 of the periodic table (first element) and an element selected from Group 15 of the periodic table (second element) is selected from Group 12 of the periodic table. It may be a ternary group II-V compound semiconductor containing one type of element (first element) and two types of elements (second element) selected from group 15 of the periodic table, or a periodic table A ternary Group II-V compound semiconductor comprising two elements selected from Group 12 (first element) and one element selected from Group 15 of the periodic table (second element). Alternatively, a quaternary group II-V containing two types of elements (first elements) selected from group 12 of the periodic table and two types of elements (second elements) selected from group 15 of the periodic table It may be a group compound semiconductor. The Group II-V compound semiconductor may contain an element other than Groups 12 and 15 of the periodic table as a doping element.
 (III族-V族化合物半導体の結晶の微粒子)
III族-V族化合物半導体は、周期表の13族から選ばれる元素と、15族から選ばれる元素とを含む。周期表の13族から選ばれる元素(第1元素)と、周期表の15族から選ばれる元素(第2元素)とを含む二元系のIII族-V族化合物半導体としては、例えば、BP、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、AlN、又はBNが挙げられる。
 周期表の13族から選ばれる元素(第1元素)と、周期表の15族から選ばれる元素(第2元素)とを含むIII族-V族化合物半導体は、周期表の13族から選ばれる元素(第1元素)1種類と、周期表の15族から選ばれる元素(第2元素)2種類とを含む、三元系のIII族-V族化合物半導体であってもよいし、周期表の13族から選ばれる元素(第1元素)2種類と、周期表の15族から選ばれる元素(第2元素)1種類とを含む、三元系のIII族-V族化合物半導体であってもよいし、周期表の13族から選ばれる元素(第1元素)2種類と、周期表の15族から選ばれる元素(第2元素)2種類とを含む、四元系のIII族-V族化合物半導体であってもよい。
 III族-V族化合物半導体は、周期表の13族、及び15族の以外の元素をドープ元素として含んでいてもよい。
(Group III-V compound semiconductor crystal fine particles)
The Group III-V compound semiconductor includes an element selected from Group 13 of the periodic table and an element selected from Group 15. As a binary group III-V compound semiconductor containing an element selected from group 13 of the periodic table (first element) and an element selected from group 15 of the periodic table (second element), for example, BP AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, AlN, or BN.
A Group III-V compound semiconductor containing an element selected from Group 13 of the periodic table (first element) and an element selected from Group 15 of the periodic table (second element) is selected from Group 13 of the periodic table. It may be a ternary Group III-V compound semiconductor containing one type of element (first element) and two types of elements (second element) selected from Group 15 of the periodic table, or a periodic table A ternary Group III-V compound semiconductor comprising two types of elements selected from Group 13 (first element) and one type of element selected from Group 15 of the periodic table (second element). Alternatively, a quaternary group III-V containing two types of elements (first elements) selected from group 13 of the periodic table and two types of elements (second elements) selected from group 15 of the periodic table It may be a group compound semiconductor.
The Group III-V compound semiconductor may contain an element other than Groups 13 and 15 of the periodic table as a doping element.
 (III族-IV族化合物半導体の結晶の微粒子)
 III族-IV族化合物半導体は、周期表の13族から選ばれる元素と、14族から選ばれる元素とを含む。周期表の13族から選ばれる元素(第1元素)と、周期表の14族から選ばれる元素(第2元素)とを含む2元系のIII族-IV族化合物半導体としては、例えば、B、Al、Gaが挙げられる。
 周期表の13族から選ばれる元素(第1元素)と、周期表の14族から選ばれる元素(第2元素)とを含むIII族-IV族化合物半導体は、周期表の13族から選ばれる元素(第1元素)1種類と、周期表の14族から選ばれる元素(第2元素)2種類とを含む、三元系のIII族-IV族化合物半導体であってもよいし、周期表の13族から選ばれる元素(第1元素)2種類と、周期表の14族から選ばれる元素(第2元素)1種類とを含む、三元系のIII族-IV族化合物半導体であってもよいし、周期表の13族から選ばれる元素(第1元素)2種類と、周期表の14族から選ばれる元素(第2元素)2種類とを含む、四元系のIII族-IV族化合物半導体であってもよい。
 III族-IV族化合物半導体は、周期表の13族、及び14族の以外の元素をドープ元素として含んでいてもよい。
(Group III-IV compound semiconductor crystal fine particles)
The group III-IV compound semiconductor includes an element selected from group 13 of the periodic table and an element selected from group 14. Examples of binary group III-IV compound semiconductors containing an element selected from group 13 of the periodic table (first element) and an element selected from group 14 of the periodic table (second element) include B 4 C 3, Al 4 C 3 , Ga 4 C 3 and the like.
A group III-IV compound semiconductor including an element selected from group 13 of the periodic table (first element) and an element selected from group 14 of the periodic table (second element) is selected from group 13 of the periodic table. It may be a ternary group III-IV compound semiconductor containing one type of element (first element) and two types of elements (second element) selected from group 14 of the periodic table, or a periodic table A ternary group III-IV compound semiconductor comprising two elements selected from group 13 (first element) and one element (second element) selected from group 14 of the periodic table. Alternatively, a quaternary group III-IV containing two types of elements (first element) selected from group 13 of the periodic table and two types of elements (second element) selected from group 14 of the periodic table It may be a group compound semiconductor.
The group III-IV compound semiconductor may contain an element other than group 13 and group 14 of the periodic table as a doping element.
 (III族-VI族化合物半導体の結晶の微粒子)
 III族-VI族化合物半導体は、周期表の13族から選ばれる元素と、16族から選ばれる元素とを含む。
 周期表の13族から選ばれる元素(第1元素)と、周期表の16族から選ばれる元素(第2元素)とを含む2元系のIII族-VI族化合物半導体としては、例えば、Al、AlSe、AlTe、Ga、GaSe、GaTe、GaTe、In、InSe、InTe、又はInTeが挙げられる。
 周期表の13族から選ばれる元素(第1元素)と、周期表の16族から選ばれる元素(第2元素)とを含むIII族-VI族化合物半導体は、周期表の13族から選ばれる元素(第1元素)1種類と、周期表の16族から選ばれる元素(第2元素)2種類とを含む、三元系のIII族-VI族化合物半導体であってもよいし、周期表の13族から選ばれる元素(第1元素)2種類と、周期表の16族から選ばれる元素(第2元素)1種類とを含む、三元系のIII族-VI族化合物半導体であってもよいし、周期表の13族から選ばれる元素(第1元素)2種類と、周期表の16族から選ばれる元素(第2元素)2種類とを含む、四元系のIII族-VI族化合物半導体であってもよい。
 III族-VI族化合物半導体は、周期表の13族、及び16族の以外の元素をドープ元素として含んでいてもよい。
(Group III-VI compound semiconductor crystal fine particles)
The Group III-VI compound semiconductor includes an element selected from Group 13 of the periodic table and an element selected from Group 16.
A binary group III-VI compound semiconductor containing an element selected from group 13 of the periodic table (first element) and an element selected from group 16 of the periodic table (second element) is, for example, Al 2 S 3, Al 2 Se 3 , Al 2 Te 3, Ga 2 S 3, Ga 2 Se 3, Ga 2 Te 3, GaTe, In 2 S 3, In 2 Se 3, In 2 Te 3, or InTe include It is done.
A group III-VI compound semiconductor containing an element selected from group 13 of the periodic table (first element) and an element selected from group 16 of the periodic table (second element) is selected from group 13 of the periodic table. It may be a ternary group III-VI compound semiconductor containing one kind of element (first element) and two kinds of elements (second element) selected from group 16 of the periodic table, or a periodic table A ternary Group III-VI compound semiconductor comprising two types of elements selected from Group 13 (first element) and one type of element selected from Group 16 of the periodic table (second element). Alternatively, a quaternary group III-VI containing two types of elements (first element) selected from group 13 of the periodic table and two types of elements (second element) selected from group 16 of the periodic table It may be a group compound semiconductor.
The Group III-VI compound semiconductor may contain an element other than Groups 13 and 16 of the periodic table as a doping element.
 (IV族-VI族化合物半導体の結晶の微粒子)
 IV族-VI族化合物半導体は、周期表の14族から選ばれる元素と、16族から選ばれる元素とを含む。周期表の14族から選ばれる元素(第1元素)と、周期表の16族から選ばれる元素(第2元素)とを含む2元系のIV族-VI族化合物半導体としては、例えば、PbS、PbSe、PbTe、SnS、SnSe、又はSnTeが挙げられる。
 周期表の14族から選ばれる元素(第1元素)と、周期表の16族から選ばれる元素(第2元素)とを含むIV族-VI族化合物半導体は、周期表の14族から選ばれる元素(第1元素)1種類と、周期表の16族から選ばれる元素(第2元素)2種類とを含む、三元系のIV族-VI族化合物半導体であってもよいし、周期表の14族から選ばれる元素(第1元素)2種類と、周期表の16族から選ばれる元素(第2元素)1種類とを含む、三元系のIV族-VI族化合物半導体であってもよいし、周期表の14族から選ばれる元素(第1元素)2種類と、周期表の16族から選ばれる元素(第2元素)2種類とを含む、四元系のIV族-VI族化合物半導体であってもよい。
 IV族-VI族化合物半導体は、周期表の14族、及び16族の以外の元素をドープ元素として含んでいてもよい。
(Group IV-VI compound semiconductor crystal fine particles)
The group IV-VI compound semiconductor includes an element selected from group 14 of the periodic table and an element selected from group 16. Examples of binary group IV-VI group compound semiconductors containing an element selected from group 14 of the periodic table (first element) and an element selected from group 16 of the periodic table (second element) include PbS , PbSe, PbTe, SnS, SnSe, or SnTe.
A Group IV-VI compound semiconductor including an element selected from Group 14 of the periodic table (first element) and an element selected from Group 16 of the periodic table (second element) is selected from Group 14 of the periodic table. It may be a ternary group IV-VI compound semiconductor containing one type of element (first element) and two types of elements (second element) selected from group 16 of the periodic table, or a periodic table A ternary group IV-VI compound semiconductor comprising two types of elements (first element) selected from group 14 and one type of element (second element) selected from group 16 of the periodic table. Alternatively, a quaternary group IV-VI containing two types of elements (first elements) selected from group 14 of the periodic table and two types of elements (second elements) selected from group 16 of the periodic table It may be a group compound semiconductor.
The group IV-VI compound semiconductor may contain an element other than group 14 and group 16 of the periodic table as a doping element.
 (遷移金属-p-ブロック化合物半導体の結晶の微粒子)
 遷移金属-p-ブロック化合物半導体は、遷移金属元素から選ばれる元素と、p-ブロック元素から選ばれる元素とを含む。
 周期表の遷移金属元素から選ばれる元素(第1元素)と、周期表のp-ブロック元素から選ばれる元素(第2元素)と含む2元系の遷移金属-p-ブロック化合物半導体としては、例えば、NiS、CrSが挙げられる。
 周期表の遷移金属元素から選ばれる元素(第1元素)と、周期表のp-ブロック元素から選ばれる元素(第2元素)とを含む遷移金属-p-ブロック化合物半導体は、周期表の遷移金属元素から選ばれる元素(第1元素)1種類と、p-ブロック元素から選ばれる元素(第2元素)2種類とを含む、三元系の遷移金属-p-ブロック化合物半導体であってもよいし、周期表の遷移金属元素から選ばれる元素(第1元素)2種類と、周期表のp-ブロック元素から選ばれる元素(第2元素)1種類とを含む、三元系の遷移金属-p-ブロック化合物半導体であってもよいし、周期表の遷移金属元素から選ばれる元素(第1元素)2種類と、周期表のp-ブロック元素から選ばれる元素(第2元素)2種類とを含む、四元系の遷移金属-p-ブロック化合物半導体であってもよい。
 遷移金属-p-ブロック化合物半導体は、周期表の遷移金属元素、及びp-ブロック元素以外の元素をドープ元素として含んでいてもよい。
(Transition metal-p-block compound semiconductor crystal fine particles)
The transition metal-p-block compound semiconductor includes an element selected from transition metal elements and an element selected from p-block elements.
As a binary transition metal-p-block compound semiconductor including an element selected from the transition metal element of the periodic table (first element) and an element selected from the p-block element of the periodic table (second element), For example, NiS and CrS are mentioned.
A transition metal-p-block compound semiconductor including an element selected from a transition metal element of the periodic table (first element) and an element selected from the p-block element of the periodic table (second element) is a transition of the periodic table. Even a ternary transition metal-p-block compound semiconductor including one kind of element (first element) selected from metal elements and two kinds of elements (second elements) selected from p-block elements Or a ternary transition metal comprising two types of elements (first elements) selected from transition metal elements of the periodic table and one type of element (second elements) selected from p-block elements of the periodic table It may be a p-block compound semiconductor, or two elements (first element) selected from transition metal elements in the periodic table and two elements (second elements) selected from p-block elements in the periodic table A quaternary transition metal-p-bro It may be a click compound semiconductor.
The transition metal-p-block compound semiconductor may contain a transition metal element in the periodic table and an element other than the p-block element as a doping element.
 また、三元系(三元相)の半導体微粒子は、前述したような族から選ばれた3つ元素を含む組成物であり、例えば、ZnCdSで表すことができる。また、四元系(四元相)の半導体微粒子は、前述したような族から選ばれた4つ元素を含む組成物であり、例えば、ZnCdSSeで表すことができる。
 これらの三元系や四元系としては、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe、GaNP、GaNAs、GaPAs、AlNP、AlNAs、AlPAs、InNP、InNAs、InPAs、GaAlNP、GaAlNAs、GaAlPAs、GaInNP、GaInNAs、GaInPAs、InAlNP、InAlNAs、CuInS、又はInAlPAs等が挙げられる。
Further, the ternary (ternary phase) semiconductor fine particles are a composition containing three elements selected from the group as described above, and can be represented by, for example, ZnCdS. The quaternary (quaternary phase) semiconductor fine particles are a composition containing four elements selected from the group as described above, and can be represented by, for example, ZnCdSSe.
These ternary and quaternary systems include CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTTe, HgZnSeS, HgZnSeTe, HgZnSTe, GaNP, GaNAs, GaPAs, AlNP, AlNAs, AlPAs, InNP, InNAs, InPAs, InPAs CuInS 2, or InA PAs, and the like.
(ペロブスカイト化合物)
 本発明の半導体微粒子の一例としてペロブスカイト化合物の微粒子が挙げられる。
 ペロブスカイト化合物は、A、B、及びXを構成成分とする、ペロブスカイト型結晶構造を有する化合物である。
 本発明において、Aは、前記ぺロブスカイト型結晶構造においてBを中心とする6面体の各頂点に位置する成分であって、1価の陽イオンである。
 Xは、前記ぺロブスカイト型結晶構造においてBを中心とする8面体の各頂点に位置する成分を表し、ハロゲン化物イオン及びチオシアン酸イオンからなる群より選ばれる1種以上の陰イオンである。
 Bは、前記ペロブスカイト型結晶構造においてAを頂点に配置する6面体及びXを頂点に配置する8面体の中心に位置する成分であって、金属イオンである。
(Perovskite compound)
One example of the semiconductor fine particles of the present invention is fine particles of a perovskite compound.
The perovskite compound is a compound having a perovskite type crystal structure having A, B, and X as constituent components.
In the present invention, A is a component located at each vertex of a hexahedron centering on B in the perovskite crystal structure, and is a monovalent cation.
X represents a component located at each vertex of an octahedron centered on B in the perovskite crystal structure, and is one or more anions selected from the group consisting of halide ions and thiocyanate ions.
B is a component located at the center of the hexahedron that arranges A at the apex and the octahedron that arranges X at the apex in the perovskite crystal structure, and is a metal ion.
 A、B、及びXを構成成分とするペロブスカイト化合物としては、特に限定されず、3次元構造、2次元構造、疑似2次元構造のいずれの構造を有する化合物であってもよい。
 3次元構造の場合、ペロブスカイト化合物の組成式は、ABX(3+δ)で表される。
 2次元構造の場合、ペロブスカイト化合物の組成式は、ABX(4+δ)で表される。
 ここで、前記δは、Bの電荷バランスに応じて適宜変更が可能な数であり、-0.7以上0.7以下である。
 例えば、Aが1価の陽イオン、Bが2価の陽イオン、Xが1価の陰イオンである場合、前記化合物が中性(電荷が0)となるようにδを選択することができる。
 上記3次元構造の場合、Bを中心とし、頂点をXとする、BXで表される頂点共有八面体の三次元ネットワークを有する。
 上記2次元構造の場合、Bを中心とし、頂点をXとする、BXで表される八面対が同一平面の4つの頂点のXを共有することにより、2次元的に連なったBXからなる層とAからなる層が交互に積層された構造を形成する。
 BはXの八面体配位をとることができる金属カチオンである。
 Aは、Bを中心とする六面体の各頂点に位置する。
 本明細書において、ペロブスカイト型結晶構造は、X線回折パターンにより確認することができる。
 前記3次元構造のペロブスカイト型結晶構造を有する化合物の場合、X線回折パターンにおいて、通常、2θ=12~18°の位置に(hkl)=(001)に由来するピーク、又は2θ=18~25°の位置に(hkl)=(100)に由来するピークが確認される。2θ=13~16°の位置に、(hkl)=(001)に由来するピークが、又は2θ=20~23°の位置に、(hkl)=(100)に由来するピークが確認されることがより好ましい。
 前記2次元構造のペロブスカイト型結晶構造を有する化合物の場合、X線回折パターンにおいて、通常、2θ=1~10°の位置に、(hkl)=(002)由来のピークが確認され、2θ=2~8°の位置に、(hkl)=(002)由来のピークが確認されることがより好ましい。
The perovskite compound having A, B, and X as constituent components is not particularly limited, and may be a compound having any of a three-dimensional structure, a two-dimensional structure, and a pseudo two-dimensional structure.
In the case of a three-dimensional structure, the composition formula of the perovskite compound is represented by ABX (3 + δ) .
In the case of a two-dimensional structure, the composition formula of the perovskite compound is represented by A 2 BX (4 + δ) .
Here, δ is a number that can be appropriately changed according to the charge balance of B, and is from −0.7 to 0.7.
For example, when A is a monovalent cation, B is a divalent cation, and X is a monovalent anion, δ can be selected so that the compound is neutral (charge is 0). .
The three-dimensional structure has a three-dimensional network of vertex-sharing octahedrons represented by BX 6 with B as the center and vertex as X.
In the case of the above two-dimensional structure, the octahedral pair represented by BX 6 having B as the center and the vertex as X shares the four vertices X on the same plane, thereby BX 6 connected two-dimensionally. The structure which the layer which consists of, and the layer which consists of A were laminated | stacked alternately is formed.
B is a metal cation capable of taking X octahedral coordination.
A is located at each vertex of a hexahedron centered on B.
In the present specification, the perovskite crystal structure can be confirmed by an X-ray diffraction pattern.
In the case of a compound having a three-dimensional perovskite crystal structure, the peak derived from (hkl) = (001) or 2θ = 18 to 25 at the position of 2θ = 12 to 18 °, usually in the X-ray diffraction pattern. A peak derived from (hkl) = (100) is confirmed at the position of °. A peak derived from (hkl) = (001) is observed at the position of 2θ = 13 to 16 °, or a peak derived from (hkl) = (100) is confirmed at the position of 2θ = 20 to 23 °. Is more preferable.
In the case of the compound having the two-dimensional perovskite crystal structure, a peak derived from (hkl) = (002) is usually observed at a position of 2θ = 1 to 10 ° in the X-ray diffraction pattern. 2θ = 2 More preferably, a peak derived from (hkl) = (002) is confirmed at a position of ˜8 °.
ペロブスカイト化合物は、下記一般式(1)で表されるペロブスカイト化合物であることが好ましい。
ABX(3+δ) (-0.7≦δ≦0.7) …(1)
[一般式(1)中、Aは1価の陽イオン、Bは金属イオン、Xはハロゲン化物イオン及びチオシアン酸イオンからなる群より選ばれる1種以上の陰イオンである。]
The perovskite compound is preferably a perovskite compound represented by the following general formula (1).
ABX (3 + δ) (−0.7 ≦ δ ≦ 0.7) (1)
[In General Formula (1), A is a monovalent cation, B is a metal ion, X is one or more anions selected from the group consisting of halide ions and thiocyanate ions. ]
〔A〕
 本発明に係わるペロブスカイト化合物中、Aは前記ぺロブスカイト型結晶構造においてBを中心とする6面体の各頂点に位置する成分であって、1価の陽イオンである。1価の陽イオンとしては、セシウムイオン、有機アンモニウムイオン、又はアミジニウムイオンが挙げられる。ペロブスカイト化合物において、Aがセシウムイオン、炭素原子数が3以下の有機アンモニウムイオン、又は炭素原子数が3以下のアミジニウムイオンである場合、一般的にペロブスカイト化合物は、ABX(3+δ)で表される、3次元構造を有する。
化合物中、Aはセシウムイオン、又は有機アンモニウムイオンが好ましい。
[A]
In the perovskite compound according to the present invention, A is a component located at each vertex of a hexahedron centered on B in the perovskite crystal structure, and is a monovalent cation. Examples of the monovalent cation include cesium ion, organic ammonium ion, or amidinium ion. In the perovskite compound, when A is a cesium ion, an organic ammonium ion having 3 or less carbon atoms, or an amidinium ion having 3 or less carbon atoms, the perovskite compound is generally represented by ABX (3 + δ). It has a three-dimensional structure.
In the compound, A is preferably a cesium ion or an organic ammonium ion.
 Aの有機アンモニウムイオンとして具体的には、下記一般式(A3)で表される陽イオンが挙げられる。 Specific examples of the organic ammonium ion of A include a cation represented by the following general formula (A3).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(A3)中、R~Rは、それぞれ独立に、水素原子、置換基としてアミノ基を有していてもよいアルキル基、又は置換基としてアミノ基を有していてもよいシクロアルキル基を表す。但し、R~Rの全てが水素原子となることはない。 In general formula (A3), R 6 to R 9 are each independently a hydrogen atom, an alkyl group which may have an amino group as a substituent, or a cyclo which may have an amino group as a substituent. Represents an alkyl group. However, not all of R 6 to R 9 are hydrogen atoms.
 R~Rで表されるアルキル基は、直鎖状であっても、分岐鎖状であってもよく、置換基としてアミノ基を有していてもよい。
 R~Rで表されるアルキル基の炭素原子数は、通常1~20であり、1~4であることが好ましく、1~3であることがより好ましい。
The alkyl group represented by R 6 to R 9 may be linear or branched, and may have an amino group as a substituent.
The number of carbon atoms of the alkyl group represented by R 6 to R 9 is usually 1 to 20, preferably 1 to 4, and more preferably 1 to 3.
 R~Rで表されるシクロアルキル基は、置換基として、アルキル基を有していてもよく、アミノ基を有していてもよい。
 R~Rで表されるシクロアルキル基の炭素原子数は、通常3~30であり、3~11であることが好ましく、3~8であることがより好ましい。炭素原子数は、置換基の炭素原子数を含む。
The cycloalkyl group represented by R 6 to R 9 may have an alkyl group or an amino group as a substituent.
The number of carbon atoms of the cycloalkyl group represented by R 6 to R 9 is usually 3 to 30, preferably 3 to 11, and more preferably 3 to 8. The number of carbon atoms includes the number of carbon atoms of the substituent.
 R~Rで表される基としては、それぞれ独立に、水素原子又はアルキル基であることが好ましい。
 一般式(A3)に含まれ得るアルキル基及びシクロアルキル基の数を少なくすること、並びにアルキル基及びシクロアルキル基の炭素原子数を小さくすることにより、発光強度が高い3次元構造のペロブスカイト型結晶構造を有する化合物を得ることができる。
アルキル基又はシクロアルキル基の炭素原子数が4以上の場合、2次元、及び/又は擬似二次元(quasi―2D)のペロブスカイト型の結晶構造を一部あるいは全体に有する化合物を得ることができる。2次元のペロブスカイト型結晶構造が無限大に積層すると3次元のペロブスカイト型結晶構造と同等になる(参考文献:P.P.Boixら、J.Phys.Chem.Lett.2015,6,898-907など)。
 R~Rで表されるアルキル基及びシクロアルキル基に含まれる炭素原子数の合計数は1~4であることが好ましく、R~Rのうちの1つが炭素原子数1~3のアルキル基であり、R~Rのうちの3つが水素原子であることがより好ましい。
The groups represented by R 6 to R 9 are each independently preferably a hydrogen atom or an alkyl group.
A perovskite crystal having a three-dimensional structure with high emission intensity by reducing the number of alkyl groups and cycloalkyl groups that can be included in the general formula (A3), and by reducing the number of carbon atoms of the alkyl group and cycloalkyl group. A compound having a structure can be obtained.
When the alkyl group or cycloalkyl group has 4 or more carbon atoms, a compound having a two-dimensional and / or pseudo two-dimensional (quasi-2D) perovskite crystal structure in part or in whole can be obtained. When the two-dimensional perovskite crystal structure is stacked infinitely, it becomes equivalent to the three-dimensional perovskite crystal structure (reference: PP Boix et al., J. Phys. Chem. Lett. 2015, 6, 898-907. Such).
The total number of carbon atoms contained in the alkyl group and cycloalkyl group represented by R 6 to R 9 is preferably 1 to 4, and one of R 6 to R 9 is 1 to 3 carbon atoms. More preferably, three of R 6 to R 9 are hydrogen atoms.
 R~Rのアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、n-オクチル基、イソオクチル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基が例示できる。 Examples of the alkyl group of R 6 to R 9 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, and an isopentyl group. , Neopentyl, tert-pentyl, 1-methylbutyl, n-hexyl, 2-methylpentyl, 3-methylpentyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, n-heptyl Group, 2-methylhexyl group, 3-methylhexyl group, 2,2-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3,3-dimethylpentyl group, 3-ethylpentyl group Group, 2,2,3-trimethylbutyl group, n-octyl group, isooctyl group, 2-ethylhexyl group, nonyl group, decyl group, undecyl group Dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group can be exemplified.
 R~Rのシクロアルキル基としては、R~Rのアルキル基で例示した炭素原子数3以上のアルキル基が環を形成したものが挙げられ、一例として、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ノルボルニル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロデシル基等を例示できる。 The cycloalkyl group of R 6 ~ R 9, include those R 6 ~ exemplified alkyl group having 3 or more carbon atoms in the alkyl group R 9 is to form a ring, as an example, a cyclopropyl group, a cyclobutyl group And cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, norbornyl group, isobornyl group, 1-adamantyl group, 2-adamantyl group, tricyclodecyl group and the like.
 Aで表される有機アンモニウムイオンとしては、CHNH (メチルアンモニウムイオンともいう。)、CNH (エチルアンモニウムイオンともいう。) 又はCNH (プロピルアンモニウムイオンともいう。)であることが好ましく、CHNH 又はCNH であることより好ましく、CHNH であることがさらに好ましい。 As the organic ammonium ion represented by A, CH 3 NH 3 + (also referred to as methylammonium ion), C 2 H 5 NH 3 + (also referred to as ethylammonium ion), or C 3 H 7 NH 3 + (propyl) It is also preferably an ammonium ion.), More preferably CH 3 NH 3 + or C 2 H 5 NH 3 + , and still more preferably CH 3 NH 3 + .
 Aで表されるアミジニウムイオンとしては、例えば、下記一般式(A4)で表されるアミジニウムイオンが挙げられる。
(R1011N=CH-NR1213・・・(A4)
Examples of the amidinium ion represented by A include an amidinium ion represented by the following general formula (A4).
(R 10 R 11 N = CH—NR 12 R 13 ) + (A4)
 一般式(A4)中、R10~R13は、それぞれ独立に、水素原子、置換基としてアミノ基を有していてもよいアルキル基、又は置換基としてアミノ基を有していてもよいシクロアルキル基を表す。 In general formula (A4), R 10 to R 13 each independently represent a hydrogen atom, an alkyl group which may have an amino group as a substituent, or a cyclo which may have an amino group as a substituent. Represents an alkyl group.
 R10~R13で表されるアルキル基は、直鎖状であっても、分岐鎖状であってもよく、置換基としてアミノ基を有していてもよい。
 R10~R13で表されるアルキル基の炭素原子数は、通常1~20であり、1~4であることが好ましく、1~3であることがより好ましい。
The alkyl group represented by R 10 to R 13 may be linear or branched, and may have an amino group as a substituent.
The number of carbon atoms in the alkyl group represented by R 10 ~ R 13 is generally 1 to 20, preferably 1 to 4, and more preferably 1-3.
 R10~R13で表されるシクロアルキル基は、置換基として、アルキル基を有していてもよく、アミノ基を有していてもよい。
 R10~R13で表されるシクロアルキル基の炭素原子数は、通常3~30であり、3~11であることが好ましく、3~8であることがより好ましい。炭素原子数は、置換基の炭素原子数を含む。
The cycloalkyl group represented by R 10 to R 13 may have an alkyl group or an amino group as a substituent.
The number of carbon atoms of the cycloalkyl group represented by R 10 to R 13 is usually 3 to 30, preferably 3 to 11, and more preferably 3 to 8. The number of carbon atoms includes the number of carbon atoms of the substituent.
 R10~R13のアルキル基の具体例としては、R~Rにおいて例示したアルキル基が挙げられる。
 R10~R13のシクロアルキル基の具体例としては、R~Rにおいて例示したシクロアルキル基が挙げられる。
Specific examples of the alkyl group for R 10 to R 13 include the alkyl groups exemplified for R 6 to R 9 .
Specific examples of the cycloalkyl group represented by R 10 to R 13 include the cycloalkyl groups exemplified for R 6 to R 9 .
 R10~R13で表される基としては、水素原子又はアルキル基が好ましい。
 一般式(A4)に含まれる、アルキル基及びシクロアルキル基の数を少なくすること、並びにアルキル基及びシクロアルキル基の炭素原子数を小さくすることにより、発光強度が高い3次元構造のペロブスカイト化合物を得ることができる。
 アルキル基又はシクロアルキル基の炭素原子数が4以上の場合、2次元、及び/又は擬似二次元(quasi―2D)のペロブスカイト型結晶構造を一部あるいは全体に有する化合物を得ることができる。また、R10~R13で表されるアルキル基及びシクロアルキル基に含まれる炭素原子数の合計数は1~4であることが好ましく、R10が炭素原子数1~3のアルキル基であり、R11~R13が水素原子であることがより好ましい。
The group represented by R 10 to R 13 is preferably a hydrogen atom or an alkyl group.
By reducing the number of alkyl groups and cycloalkyl groups included in the general formula (A4), and by reducing the number of carbon atoms in the alkyl groups and cycloalkyl groups, a perovskite compound having a three-dimensional structure with high emission intensity is obtained. Obtainable.
When the number of carbon atoms in the alkyl group or cycloalkyl group is 4 or more, a compound having a two-dimensional and / or pseudo two-dimensional (quasi-2D) perovskite crystal structure in part or in whole can be obtained. The total number of carbon atoms contained in the alkyl group and cycloalkyl group represented by R 10 to R 13 is preferably 1 to 4, and R 10 is an alkyl group having 1 to 3 carbon atoms. R 11 to R 13 are more preferably hydrogen atoms.
〔B〕
 ペロブスカイト化合物において、Bは、ペロブスカイト型結晶構造においてAを頂点に配置する6面体及びXを頂点に配置する8面体の中心に位置する成分であって、金属イオンを表す。B成分の金属イオンは1価の金属イオン、2価の金属イオン、及び3価の金属イオンからなる群より選ばれる1種類以上からなるイオンであってよい。Bは2価の金属イオンを含むことが好ましく、鉛、又はスズからなる群より選ばれる1種類以上の金属イオンを含むことがより好ましい。
[B]
In the perovskite compound, B is a component located in the center of a hexahedron in which A is arranged at the apex and an octahedron in which X is arranged at the apex in the perovskite crystal structure, and represents a metal ion. The B component metal ion may be an ion composed of one or more selected from the group consisting of a monovalent metal ion, a divalent metal ion, and a trivalent metal ion. B preferably contains a divalent metal ion, and more preferably contains one or more metal ions selected from the group consisting of lead and tin.
〔X〕
 Xは、ハロゲン化物イオン及びチオシアン酸イオンからなる群より選ばれる1種以上の陰イオンを表す。Xは、塩化物イオン、臭化物イオン、フッ化物イオン、ヨウ化物イオン及びチオシアン酸イオンからなる群より選ばれる1種以上の陰イオンであってよい。
 Xは、所望の発光波長に応じて適宜選択することができるが、例えばXは臭化物イオンを含むことができる。
 Xが2種以上のハロゲン化物イオンである場合、前記ハロゲン化物イオンの含有比率は、発光波長により適宜選ぶことができ、例えば、臭化物イオンと塩化物イオンとの組み合わせ、又は、臭化物イオンとヨウ化物イオンとの組み合わせとすることができる。
[X]
X represents one or more anions selected from the group consisting of halide ions and thiocyanate ions. X may be one or more anions selected from the group consisting of chloride ions, bromide ions, fluoride ions, iodide ions, and thiocyanate ions.
X can be appropriately selected according to the desired emission wavelength. For example, X can contain bromide ions.
When X is two or more types of halide ions, the content ratio of the halide ions can be appropriately selected according to the emission wavelength, for example, a combination of bromide ions and chloride ions, or bromide ions and iodides. It can be a combination with ions.
 ペロブスカイト化合物であって、ABX(3+δ)で表される、3次元構造のペロブスカイト型の結晶構造を有する化合物の具体例としては、CHNHPbBr、CHNHPbCl、CHNHPbI、CHNHPbBr(3-y)(0<y<3)、CHNHPbBr(3-y)Cl(0<y<3)、(HN=CH-NH) PbBr、(HN=CH-NH) PbCl、(HN=CH-NH) PbI、CHNHPb(1-a)CaBr(3+δ)(0<a≦0.7,0≦δ≦0.7)、CHNHPb(1-a)SrBr(3+δ)(0<a≦0.7,0≦δ≦0.7)、CHNHPb(1-a)LaBr(3+δ)(0<a≦0.7,0≦δ≦0.7)、CHNHPb(1-a)BaBr(3+δ)(0<a≦0.7,0≦δ≦0.7)、CHNHPb(1-a)DyBr(3+δ)(0<a≦0.7,0≦δ≦0.7)、CHNHPb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ≦0)、CHNHPb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ≦0)、CsPb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ≦0)、CsPb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ≦0)、CHNHPb(1-a)NaBr(3+δ-y)(0<a≦0.7,-0.7≦δ≦0, 0<y<3)、CHNHPb(1-a)LiBr(3+δ-y)(0<a≦0.7,-0.7≦δ≦0, 0<y<3)、CHNHPb(1-a)NaBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ≦0, 0<y<3)、CHNHPb(1-a)LiBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ≦0, 0<y<3)、(HN=CH-NH) Pb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ≦0)、(HN=CH-NH) Pb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ≦0)、(HN=CH-NH)Pb(1-a)NaBr(3+δ-y)(0<a≦0.7,-0.7≦δ≦0, 0<y<3)、(HN=CH-NH)Pb(1-a)NaBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ≦0, 0<y<3)、CsPbBr、CsPbCl、CsPbI、CsPbBr(3-y)(0<y<3)、CsPbBr(3-y)Cl(0<y<3)、CHNHPbBr(3-y)Cl(0<y<3)、CHNHPb(1-a)ZnBr(3+δ)(0<a≦0.7,0≦δ≦0.7)、CHNHPb(1-a)AlBr(3+δ)(0<a≦0.7、0≦δ≦0.7)、CHNHPb(1-a)CoBr(3+δ)(0<a≦0.7、0≦δ≦0.7)、CHNHPb(1-a)MnBr(3+δ)(0<a≦0.7、0≦δ≦0.7)、CHNHPb(1-a)MgBr(3+δ)(0<a≦0.7、0≦δ≦0.7)、CsPb(1-a)ZnBr(3+δ)(0<a≦0.7,0≦δ≦0.7)、CsPb(1-a)AlBr(3+δ)(0<a≦0.7、0≦δ≦0.7)、CsPb(1-a)CoBr(3+δ)(0<a≦0.7,0≦δ≦0.7)、CsPb(1-a)MnBr(3+δ)(0<a≦0.7、0≦δ≦0.7)、CsPb(1-a)MgBr(3+δ)(0<a≦0.7、0≦δ≦0.7)、CHNHPb(1-a)ZnBr(3+δ-y)(0<a≦0.7、0≦δ≦0.7、0<y<3)、CHNHPb(1-a)AlBr(3+δ-y)(0<a≦0.7,0≦δ≦0.7,0<y<3)、CHNHPb(1-a)CoBr(3+δ-y)(0<a≦0.7、0≦δ≦0.7、0<y<3)、CHNHPb(1-a)MnBr(3+δ-y)(0<a≦0.7,0≦δ≦0.7,0<y<3)、CHNHPb(1-a)MgBr(3+δ-y)(0<a≦0.7、0≦δ≦0.7、0<y<3)、CHNHPb(1-a)ZnBr(3+δ-y)Cl(0<a≦0.7、0≦δ≦0.7、0<y<3)、CHNHPb(1-a)AlBr(3+δ-y)Cl(0<a≦0.7、0≦δ≦0.7、0<y<3)、CHNHPb(1-a)CoBr(3+δ-y)Cl(0<a≦0.7、0≦δ≦0.7、0<y<3)、CHNHPb(1-a)MnBr(3+δ-y)Cl(0<a≦0.7、0≦δ≦0.7、0<y<3)、CHNHPb(1-a)MgBr(3+δ-y)Cl(0<a≦0.7、0≦δ≦0.7、0<y<3)、(HN=CH-NH)ZnBr(3+δ)(0<a≦0.7、0≦δ≦0.7)、(HN=CH-NH)MgBr(3+δ)(0<a≦0.7、0≦δ≦0.7)、(HN=CH-NH)Pb(1-a)ZnBr(3+δ-y)(0<a≦0.7、0≦δ≦0.7、0<y<3)、(HN=CH-NH)Pb(1-a)ZnBr(3+δ-y)Cl(0<a≦0.7、0≦δ≦0.7、0<y<3)等が好ましいものとして挙げられる。 Specific examples of the perovskite compound having a three-dimensional perovskite crystal structure represented by ABX (3 + δ) include CH 3 NH 3 PbBr 3 , CH 3 NH 3 PbCl 3 , and CH 3 NH. 3 PbI 3 , CH 3 NH 3 PbBr (3-y) I y (0 <y <3), CH 3 NH 3 PbBr (3-y) Cl y (0 <y <3), (H 2 N═CH —NH 2 ) PbBr 3 , (H 2 N═CH—NH 2 ) PbCl 3 , (H 2 N═CH—NH 2 ) PbI 3 , CH 3 NH 3 Pb (1-a) Ca a Br (3 + δ) ( 0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7), CH 3 NH 3 Pb (1-a) Sr a Br (3 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7) , CH 3 NH 3 Pb (1 -a) La a Br (3 + δ) 0 <a ≦ 0.7,0 ≦ δ ≦ 0.7), CH 3 NH 3 Pb (1-a) Ba a Br (3 + δ) (0 <a ≦ 0.7,0 ≦ δ ≦ 0.7) CH 3 NH 3 Pb (1-a) Dy a Br (3 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7), CH 3 NH 3 Pb (1-a) Na a Br (3 + δ ) (0 <a ≦ 0.7, -0.7 ≦ δ ≦ 0), CH 3 NH 3 Pb (1-a) Li a Br (3 + δ) (0 <a ≦ 0.7, -0.7 ≦ δ ≦ 0), CsPb (1-a) Na a Br (3 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ ≦ 0), CsPb (1-a) Li a Br (3 + δ) (0 <A ≦ 0.7, −0.7 ≦ δ ≦ 0), CH 3 NH 3 Pb (1-a) Na a Br (3 + δ−y) I y (0 <a ≦ 0.7, −0.7 ≦ δ ≦ 0, 0 <y <3), CH 3 NH 3 Pb (1-a) Li a Br (3 + δ−y) I y (0 <a ≦ 0.7, −0.7 ≦ δ ≦ 0, 0 <y <3), CH 3 NH 3 Pb (1- a) Na a Br (3 + δ−y) Cl y (0 <a ≦ 0.7, −0.7 ≦ δ ≦ 0, 0 <y <3), CH 3 NH 3 Pb (1-a) Li a Br (3 + δ−y) Cl y (0 <a ≦ 0.7, −0.7 ≦ δ ≦ 0, 0 <y <3), (H 2 N═CH—NH 2 ) Pb (1-a) Na a Br (3 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ ≦ 0), (H 2 N═CH—NH 2 ) Pb (1-a) Li a Br (3 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ ≦ 0), (H 2 N═CH—NH 2 ) Pb (1-a) Na a Br (3 + δ−y) I y (0 <a ≦ 0.7, − 0.7 ≦ δ ≦ 0, 0 < y <3), (H 2 N = CH-NH ) Pb (1-a) Na a Br (3 + δ-y) Cl y (0 <a ≦ 0.7, -0.7 ≦ δ ≦ 0, 0 <y <3), CsPbBr 3, CsPbCl 3, CsPbI 3 , CsPbBr (3-y) I y (0 <y <3), CsPbBr (3-y) Cl y (0 <y <3), CH 3 NH 3 PbBr (3-y) Cl y (0 <y < 3), CH 3 NH 3 Pb (1-a) Zn a Br (3 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7), CH 3 NH 3 Pb (1-a) Al a Br (3 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7), CH 3 NH 3 Pb (1-a) Co a Br (3 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7), CH 3 NH 3 Pb (1-a) Mn a Br (3 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7), CH 3 NH 3 Pb (1-a) Mg a Br (3 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7), CsPb (1-a) Zn a Br (3 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7), CsPb (1-a) Al a Br (3 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7), CsPb (1-a) Co a Br (3 + δ) ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7), CsPb (1-a) Mn a Br (3 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7), CsPb (1-a) Mg a Br (3 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7), CH 3 NH 3 Pb (1-a) Zn a Br (3 + δ-y) I y ( 0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7, 0 <y <3), CH 3 NH 3 Pb (1-a) Al a Br (3 + δ−y) I y (0 <a ≦ 0. 7, 0 ≦ δ ≦ 0.7, 0 <y <3 , CH 3 NH 3 Pb (1 -a) Co a Br (3 + δ-y) I y (0 <a ≦ 0.7,0 ≦ δ ≦ 0.7,0 <y <3), CH 3 NH 3 Pb (1-a) Mn a Br (3 + δ−y) I y (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7, 0 <y <3), CH 3 NH 3 Pb (1-a) Mg a Br (3 + δ−y) I y (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7, 0 <y <3), CH 3 NH 3 Pb (1-a) Zn a Br (3 + δ−y) ) Cl y (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7, 0 <y <3), CH 3 NH 3 Pb (1-a) Al a Br (3 + δ−y) Cl y (0 < a ≦ 0.7, 0 ≦ δ ≦ 0.7, 0 <y <3), CH 3 NH 3 Pb (1-a) Co a Br (3 + δ−y) Cl y (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7,0 <y < 3), CH NH 3 Pb (1-a) Mn a Br (3 + δ-y) Cl y (0 <a ≦ 0.7,0 ≦ δ ≦ 0.7,0 <y <3), CH 3 NH 3 Pb (1- a) Mg a Br (3 + δ−y) Cl y (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7, 0 <y <3), (H 2 N═CH—NH 2 ) Zn a Br ( 3 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7), (H 2 N═CH—NH 2 ) Mg a Br (3 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0) .7), (H 2 N═CH—NH 2 ) Pb (1-a) Zn a Br (3 + δ−y) I y (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7, 0 <y <3), (H 2 N═CH—NH 2 ) Pb (1-a) Zn a Br (3 + δ−y) Cl y (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7, 0 <y <3) etc. are mentioned as a preferable thing.
 ペロブスカイト化合物であって、ABX(4+δ)で表される、2次元構造のペロブスカイト型の結晶構造を有する化合物の具体例としては、(CNH)PbBr、(CNH)PbCl、 (CNH)PbI、(C15NH)PbBr、(C15NH)PbCl、(C15NH)PbI、(CNH)Pb(1-a)LiBr(0<a≦0.7)、(CNH)Pb(1-a)NaBr(0<a≦0.7)、(CNH)Pb(1-a)RbBr(0<a≦0.7)、(C15NH)Pb(1-a)NaBr(0<a≦0.7)、(C15NH)Pb(1-a)LiBr(0<a≦0.7)、(C15NH)Pb(1-a)RbBr(0<a≦0.7)、(CNH)Pb(1-a)NaBr(4-y)(0<a≦0.7、0<y<4)、(CNH)Pb(1-a)LiBr(4-y)(0<a≦0.7、0<y<4)、(CNH)Pb(1-a)RbBr(4-y)(0<a≦0.7、0<y<4)、(CNH)Pb(1-a)NaBr(4-y)Cl(0<a≦0.7、0<y<4)、(CNH)Pb(1-a)LiBr(4-y)Cl(0<a≦0.7、0<y<4)、(CNH)Pb(1-a)RbBr(4-y)Cl(0<a≦0.7、0<y<4)、(CNH)PbBr、(C15NH)PbBr、(CNH)PbBr(4-y)Cl(0<y<4)、(CNH)PbBr(4-y)(0<y<4)、(CNH)Pb(1-a)ZnBr(4+δ)(0<a≦0.7)、(CNH)Pb(1-a)MgBr(4+δ)(0<a≦0.7、0≦δ≦0.7)(CNH)Pb(1-a)CoBr(4+δ)(0<a≦0.7、0≦δ≦0.7)、(CNH)Pb(1-a)MnBr(4+δ)(0<a≦0.7、0≦δ≦0.7)、(C15NH)Pb(1-a)ZnBr(4+δ)(0<a≦0.7、0≦δ≦0.7)、(C15NH)Pb(1-a)MgBr(4+δ)(0<a≦0.7、0≦δ≦0.7)、(C15NH)Pb(1-a)CoBr(4+δ)(0<a≦0.7、0≦δ≦0.7)、(C15NH)Pb(1-a)MnBr(4+δ)(0<a≦0.7、0≦δ≦0.7)、(CNH)Pb(1-a)ZnBr(4+δ-y)(0<a≦0.7、0≦δ≦0.7、0<y<4)、(CNH)Pb(1-a)MgBr(4+δ-y)(0<a≦0.7、0≦δ≦0.7、0<y<4)、(CNH)Pb(1-a)CoBr(4+δ-y)(0<a≦0.7、0≦δ≦0.7、0<y<4)、(CNH)Pb(1-a)MnBr(4+δ-y)(0<a≦0.7、0≦δ≦0.7、0<y<4)、(CNH)Pb(1-a)ZnBr(4+δ-y)Cl(0<a≦0.7、0≦δ≦0.7、0<y<4)、(CNH)Pb(1-a)MgBr(4+δ-y)Cl(0<a≦0.7、0≦δ≦0.7、0≦δ≦0.7、0<y<4)、(CNH)Pb(1-a)CoBr(4+δ-y)Cl(0<a≦0.7、0≦δ≦0.7、0<y<4)、(CNH)Pb(1-a)MnBr(4+δ-y)Cl(0<a≦0.7、0≦δ≦0.7、0<y<4)等が好ましいものとして挙げられる。 Specific examples of the perovskite compound having a two-dimensional perovskite crystal structure represented by A 2 BX (4 + δ) include (C 4 H 9 NH 3 ) 2 PbBr 4 , (C 4 H 9 NH 3 ) 2 PbCl 4 , (C 4 H 9 NH 3 ) 2 PbI 4 , (C 7 H 15 NH 3 ) 2 PbBr 4 , (C 7 H 15 NH 3 ) 2 PbCl 4 , (C 7 H 15 NH 3 ) 2 PbI 4 , (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br 4 (0 <a ≦ 0.7), (C 4 H 9 NH 3 ) 2 Pb (1-a ) Na a Br 4 (0 <a ≦ 0.7), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rb a Br 4 (0 <a ≦ 0.7), (C 7 H 15 NH 3 ) 2 Pb (1-a) Na a Br 4 (0 <a ≦ 0.7), (C 7 H 15 NH 3 ) 2 Pb (1-a) Li a Br 4 (0 <a ≦ 0.7), (C 7 H 15 NH 3 ) 2 Pb (1-a) Rb a Br 4 (0 <a ≦ 0.7), ( C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4-y) I y (0 <a ≦ 0.7, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4-y) I y (0 <a ≦ 0.7, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rb a Br ( 4-y) I y (0 <a ≦ 0.7, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4-y) Cl y (0 < a ≦ 0.7, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4-y) Cl y (0 <a ≦ 0.7, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rb a B r (4-y) Cl y (0 <a ≦ 0.7, 0 <y <4), (C 4 H 9 NH 3 ) 2 PbBr 4 , (C 7 H 15 NH 3 ) 2 PbBr 4 , (C 4 H 9 NH 3) 2 PbBr (4-y) Cl y (0 <y <4), (C 4 H 9 NH 3) 2 PbBr (4-y) I y (0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Zn a Br (4 + δ) (0 <a ≦ 0.7), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mg a Br (4 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7) (C 4 H 9 NH 3 ) 2 Pb (1-a) Co a Br (4 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7), (C 4 H 9 NH 3) 2 Pb (1-a) Mn a Br (4 + δ) (0 <a ≦ 0.7,0 ≦ δ ≦ 0.7), (C 7 H 15 NH 3) 2 Pb (1- a) Zn a B (4 + δ) (0 < a ≦ 0.7,0 ≦ δ ≦ 0.7), (C 7 H 15 NH 3) 2 Pb (1-a) Mg a Br (4 + δ) (0 <a ≦ 0.7 , 0 ≦ δ ≦ 0.7), (C 7 H 15 NH 3 ) 2 Pb (1-a) Co a Br (4 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7), ( C 7 H 15 NH 3 ) 2 Pb (1-a) Mn a Br (4 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7), (C 4 H 9 NH 3 ) 2 Pb (1 -A) Zn a Br (4 + δ-y) I y (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1- a) Mg a Br (4 + δ−y) I y (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a ) Co a Br (4 + δ−y) I y (0 <a ≦ 0.7, 0 ≦ δ ≦ 0) .7, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mn a Br (4 + δ-y) I y (0 <a ≦ 0.7, 0 ≦ δ ≦ 0. 7, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Zn a Br (4 + δ−y) Cl y (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7 , 0 <y <4), (C 4 H 9 NH 3) 2 Pb (1-a) Mg a Br (4 + δ-y) Cl y (0 <a ≦ 0.7,0 ≦ δ ≦ 0.7, 0 ≦ δ ≦ 0.7, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Co a Br (4 + δ−y) Cl y (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mn a Br (4 + δ-y) Cl y (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7, 0 <y <4) and the like are preferable.
≪発光スペクトル≫
 ペロブスカイト化合物は、可視光波長領域に蛍光を発することができる発光体であり、Xが臭化物イオンの場合は、通常480nm以上、好ましくは500nm以上、より好ましくは520nm以上、また、通常700nm以下、好ましくは600nm以下、より好ましくは580nm以下の波長範囲の範囲に強度の極大ピークがある蛍光を発することができる。
 上記の上限値及び下限値は任意に組み合わせることができる。
 本発明の別の側面としては、ペロブスカイト化合物中のXが臭化物イオンの場合、発する蛍光のピークは、通常480~700nmであり、500~600nmであることが好ましく、520~580nmであることがより好ましい。
 Xがヨウ化物イオンの場合は、通常520nm以上、好ましくは530nm以上、より好ましくは540nm以上、また、通常800nm以下、好ましくは750nm以下、より好ましくは730nm以下の波長範囲の範囲に強度の極大ピークがある蛍光を発することができる。
 上記の上限値及び下限値は任意に組み合わせることができる。
 本発明の別の側面としては、ペロブスカイト化合物中のXがヨウ化物イオンの場合、発する蛍光のピークは、通常520~800nmであり、530~750nmであることが好ましく、540~730nmであることがより好ましい。
 Xが塩化物イオンの場合は、通常300nm以上、好ましくは310nm以上、より好ましくは330nm以上、また、通常600nm以下、好ましくは580nm以下、より好ましくは550nm以下の波長範囲の範囲に強度の極大ピークがある蛍光を発することができる。
 上記の上限値及び下限値は任意に組み合わせることができる。
 本発明の別の側面としては、ペロブスカイト化合物中のXが塩化物イオンの場合、発する蛍光のピークは、通常300~600nmであり、310~580nmであることが好ましく、330~550nmであることがより好ましい。
≪Emission spectrum≫
The perovskite compound is an illuminant capable of emitting fluorescence in the visible light wavelength region. When X is a bromide ion, it is usually 480 nm or more, preferably 500 nm or more, more preferably 520 nm or more, and usually 700 nm or less, preferably Can emit fluorescence having a maximum intensity peak in a wavelength range of 600 nm or less, more preferably 580 nm or less.
The above upper limit value and lower limit value can be arbitrarily combined.
As another aspect of the present invention, when X in the perovskite compound is a bromide ion, the fluorescence peak emitted is usually 480 to 700 nm, preferably 500 to 600 nm, more preferably 520 to 580 nm. preferable.
When X is an iodide ion, it is usually a peak of intensity in a wavelength range of 520 nm or more, preferably 530 nm or more, more preferably 540 nm or more, and usually 800 nm or less, preferably 750 nm or less, more preferably 730 nm or less. There can be some fluorescence.
The above upper limit value and lower limit value can be arbitrarily combined.
As another aspect of the present invention, when X in the perovskite compound is an iodide ion, the fluorescence peak emitted is usually 520 to 800 nm, preferably 530 to 750 nm, and preferably 540 to 730 nm. More preferred.
When X is a chloride ion, it is usually at least 300 nm, preferably 310 nm or more, more preferably 330 nm or more, and usually 600 nm or less, preferably 580 nm or less, more preferably 550 nm or less in the range of the maximum intensity peak. There can be some fluorescence.
The above upper limit value and lower limit value can be arbitrarily combined.
As another aspect of the present invention, when X in the perovskite compound is a chloride ion, the fluorescence peak emitted is usually 300 to 600 nm, preferably 310 to 580 nm, and preferably 330 to 550 nm. More preferred.
(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物
 アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物は、アミノ基、及びアルコキシシリル基を有する有機化合物であってもよい。
 アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物は、下記一般式(A5)で表されるアミノ基、アルコキシ基、及びケイ素原子を有する有機化合物であってもよい。
 下記一般式(A5)で表される有機化合物は、アミノ基、及びアルコキシシリル基を有する。
(2) Organic compound having amino group, alkoxy group and silicon atom The organic compound having amino group, alkoxy group and silicon atom may be an organic compound having amino group and alkoxysilyl group.
The organic compound having an amino group, an alkoxy group, and a silicon atom may be an organic compound having an amino group, an alkoxy group, and a silicon atom represented by the following general formula (A5).
The organic compound represented by the following general formula (A5) has an amino group and an alkoxysilyl group.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(A5)中、Aは2価の炭化水素基、Oは酸素原子、Nは窒素原子、Siはケイ素原子であり、R14~R15は、それぞれ独立に、水素原子、アルキル基、又はシクロアルキル基を表し、R16は、アルキル基、又はシクロアルキル基を表し、R17~18は水素原子、アルキル基、アルコキシ基、又はシクロアルキル基を表す。 In general formula (A5), A is a divalent hydrocarbon group, O is an oxygen atom, N is a nitrogen atom, Si is a silicon atom, and R 14 to R 15 are each independently a hydrogen atom, an alkyl group, Or a cycloalkyl group, R 16 represents an alkyl group or a cycloalkyl group, and R 17 to R 18 represent a hydrogen atom, an alkyl group, an alkoxy group, or a cycloalkyl group.
 R14~R18がアルキル基である場合、直鎖状であっても分岐鎖状であってもよい。
アルキル基の炭素原子数は、通常1~20であり、5~20であることが好ましく、8~20であることがより好ましい。
When R 14 to R 18 are alkyl groups, they may be linear or branched.
The alkyl group usually has 1 to 20 carbon atoms, preferably 5 to 20, and more preferably 8 to 20.
 R14~R18がシクロアルキル基である場合、シクロアルキル基は、置換基としてアルキル基を有していてもよい。シクロアルキル基の炭素原子数は、通常3~30であり、3~20であることが好ましく、3~11であることがより好ましい。炭素原子数は、置換基の炭素原子数を含む。 When R 14 to R 18 are cycloalkyl groups, the cycloalkyl group may have an alkyl group as a substituent. The number of carbon atoms in the cycloalkyl group is usually 3 to 30, preferably 3 to 20, and more preferably 3 to 11. The number of carbon atoms includes the number of carbon atoms of the substituent.
 R14~R18のアルキル基の具体例としては、R~Rにおいて例示したアルキル基が挙げられる。
 R14~R18のシクロアルキル基の具体例としては、R~Rにおいて例示したシクロアルキル基が挙げられる。
 R17~R18のアルコキシ基としては、R~Rに例示した前記直鎖状又は分岐鎖状のアルキル基が酸素原子に結合した1価の基が例示できる。
Specific examples of the alkyl group for R 14 to R 18 include the alkyl groups exemplified for R 6 to R 9 .
Specific examples of the cycloalkyl group represented by R 14 to R 18 include the cycloalkyl groups exemplified for R 6 to R 9 .
Examples of the alkoxy group of R 17 to R 18 include monovalent groups in which the linear or branched alkyl group exemplified for R 6 to R 9 is bonded to an oxygen atom.
 R17~R18がアルコキシ基である場合、メトキシ基、エトキシ基、ブトキシ基などが挙げられ、好ましくはメトキシ基である。 When R 17 to R 18 are alkoxy groups, examples thereof include a methoxy group, an ethoxy group, and a butoxy group, and a methoxy group is preferable.
 Aで表される2価の炭化水素基は、炭化水素化合物から2個の水素原子を除去した基であればよく、前記炭化水素化合物は、脂肪族炭化水素であってもよく、芳香族炭化水素であってもよく、飽和脂肪族炭化水素であってもよい。Aがアルキレン基である場合、直鎖状であっても分岐鎖状であってもよい。アルキレン基の炭素原子数は、通常1~100であり、1~20であることが好ましく、1~5であることがより好ましい。 The divalent hydrocarbon group represented by A may be a group obtained by removing two hydrogen atoms from a hydrocarbon compound, and the hydrocarbon compound may be an aliphatic hydrocarbon or an aromatic hydrocarbon. It may be hydrogen or a saturated aliphatic hydrocarbon. When A is an alkylene group, it may be linear or branched. The number of carbon atoms of the alkylene group is usually 1 to 100, preferably 1 to 20, and more preferably 1 to 5.
 一般式(A5)で表されるアミノ基、アルコキシ基、及びケイ素原子を有する有機化合物を有する有機化合物の一部又は全部は、本発明に係る半導体微粒子の表面に吸着していてもよく、組成物中で分散していてもよい。
 一般式(A5)で表されるアミノ基、アルコキシ基、及びケイ素原子を有する有機化合物としては、トリメトキシ[3-(メチルアミノ)プロピル]シラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジメトキシメチルシラン、3-アミノプロピルジエトキシメチルシラン、3-アミノプロピルトリメトキシシラン、が好ましく、3-アミノプロピルトリメトキシシランがより好ましい。
A part or all of the organic compound having an amino group, an alkoxy group, and an organic compound having a silicon atom represented by the general formula (A5) may be adsorbed on the surface of the semiconductor fine particles according to the present invention. It may be dispersed in the object.
Examples of the organic compound having an amino group, an alkoxy group, and a silicon atom represented by the general formula (A5) include trimethoxy [3- (methylamino) propyl] silane, 3-aminopropyltriethoxysilane, and 3-aminopropyldimethoxy. Methylsilane, 3-aminopropyldiethoxymethylsilane, and 3-aminopropyltrimethoxysilane are preferable, and 3-aminopropyltrimethoxysilane is more preferable.
 (2)の有機化合物としては、前記一般式(A5)で表される有機化合物において、R14及びR15が水素原子であり、R16が前記アルキル基であり、R17及びR18がアルコキシ基である化合物が好ましい。
 本発明の別の側面は、(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物であり、かつ―NH で表される基及び―COOで表される基以外のイオン性基を有する有機化合物、メルカプト基を有する化合物は除外することができる。
As the organic compound of (2), in the organic compound represented by the general formula (A5), R 14 and R 15 are hydrogen atoms, R 16 is the alkyl group, and R 17 and R 18 are alkoxy. Compounds that are groups are preferred.
Another aspect of the present invention is (2) an organic compound having an amino group, an alkoxy group, and a silicon atom, and an ionicity other than a group represented by —NH 3 + and a group represented by —COO 2 . Organic compounds having a group and compounds having a mercapto group can be excluded.
(3)重合性化合物、及び重合体からなる群から選ばれる少なくとも1種
 本発明に係る組成物に含まれる重合性化合物は、特に限定されるものではないが、前記組成物を製造する温度において、半導体微粒子の重合性化合物に対する溶解度が低いものが好ましい。
 本明細書において「重合性化合物」とは、重合性基を有する単量体の化合物を意味する。
 例えば、室温、常圧下において製造する場合、前記重合性化合物としては、特に制限は無いが、例えば、スチレン、メタクリル酸メチル、等の公知の重合性化合物が挙げられる。なかでも、重合性化合物としては、アクリル系樹脂の単量体成分である、アクリル酸エステル及びメタクリル酸エステルのいずれか一方又は両方が好ましい。
(3) At least one selected from the group consisting of a polymerizable compound and a polymer The polymerizable compound contained in the composition according to the present invention is not particularly limited, but at the temperature at which the composition is produced. Those having low solubility in the polymerizable compound of the semiconductor fine particles are preferable.
In the present specification, the “polymerizable compound” means a monomer compound having a polymerizable group.
For example, when producing at room temperature and normal pressure, the polymerizable compound is not particularly limited, and examples thereof include known polymerizable compounds such as styrene and methyl methacrylate. Especially, as a polymeric compound, any one or both of acrylic acid ester and methacrylic acid ester which are the monomer components of acrylic resin are preferable.
 本発明に係る組成物に含まれる重合体は、特に限定されるものではないが、前記組成物を製造する温度において、前記半導体微粒子の重合体に対する溶解度が低いものが好ましい。
 例えば、室温、常圧下において製造する場合、前記重合体としては、特に制限は無いが、例えば、ポリスチレン、メタクリル樹脂、等の公知の重合体が挙げられる。なかでも、重合体としては、アクリル系樹脂が好ましい。アクリル系樹脂は、アクリル酸エステル及び/又はメタクリル酸エステルに由来する構成単位を含む。
 (3)の重合性化合物、及び重合体の構成単位のうち、アクリル酸エステル及び/又はメタクリル酸エステル及びそれらに由来する構成単位は、モル%で表した場合、全構成単位に対して10%以上であってもよく、30%以上であってもよく、50%以上であってもよく、80%以上であってもよく100%であってもよい。
The polymer contained in the composition according to the present invention is not particularly limited, but a polymer having low solubility of the semiconductor fine particles in the polymer at the temperature for producing the composition is preferable.
For example, in the case of producing at room temperature and normal pressure, the polymer is not particularly limited, and examples thereof include known polymers such as polystyrene and methacrylic resin. Especially, as a polymer, acrylic resin is preferable. The acrylic resin includes a structural unit derived from an acrylate ester and / or a methacrylate ester.
Among the structural units of the polymerizable compound (3) and the polymer, acrylic acid ester and / or methacrylic acid ester and structural units derived therefrom are 10% with respect to all structural units when expressed in mol%. It may be above, 30% or more, 50% or more, 80% or more, or 100%.
(4)アンモニア、アミン、及びカルボン酸、並びにこれらの塩又はイオンからなる群から選ばれる少なくとも1種
 本発明に係る組成物は、アンモニア、アミン、及びカルボン酸並びに、前記化合物がとり得る形態として、これらの塩又はイオンからなる群から選ばれる少なくとも1種を含んでいてもよい。
 すなわち、本発明に係る組成物は、(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物以外の化合物であって、アンモニア、アミン、カルボン酸、アンモニアの塩、アミンの塩、カルボン酸の塩、アンモニアのイオン、アミンのイオン、及びカルボン酸のイオンからなる群から選ばれる少なくとも1種を含んでいてもよい。
 アンモニア、アミン、及びカルボン酸、並びにこれらの塩又はイオンは、通常、キャッピング配位子として作用する。キャッピング配位子とは、半導体化合物の表面に吸着して、半導体化合物を組成物中に安定して分散させる作用を有する化合物である。アンモニア又はアミンの、イオン若しくは塩(アンモニウム塩等)としては、後述する一般式(A1)で表されるアンモニウムカチオンと、それを含むアンモニウム塩が挙げられる。カルボン酸のイオン又は塩(カルボン酸塩等)としては、後述する一般式(A2)で表されるカルボキシレートアニオンと、それを含むカルボン酸塩が挙げられる。本発明に係る組成物は、アンモニウム塩等、及びカルボン酸塩等のいずれか一方を含んでいてもよく、両方を含んでいてもよい。
(4) At least one selected from the group consisting of ammonia, amine, and carboxylic acid, and salts or ions thereof. The composition according to the present invention is in a form that ammonia, amine, carboxylic acid, and the compound can take. In addition, at least one selected from the group consisting of these salts or ions may be included.
That is, the composition according to the present invention is (2) a compound other than an organic compound having an amino group, an alkoxy group, and a silicon atom, and is ammonia, amine, carboxylic acid, ammonia salt, amine salt, carboxylic acid And at least one selected from the group consisting of salts of ammonia, ammonia ions, amine ions, and carboxylic acid ions.
Ammonia, amines and carboxylic acids and their salts or ions usually act as capping ligands. The capping ligand is a compound having an action of adsorbing on the surface of the semiconductor compound and stably dispersing the semiconductor compound in the composition. Examples of the ion or salt (ammonium salt or the like) of ammonia or amine include an ammonium cation represented by the general formula (A1) described later and an ammonium salt containing the ammonium cation. Examples of the carboxylic acid ion or salt (carboxylate and the like) include a carboxylate anion represented by the general formula (A2) described later and a carboxylate containing the carboxylate anion. The composition according to the present invention may contain any one of an ammonium salt and the like, a carboxylate and the like, or may contain both.
 アンモニウム塩としては、一般式(A1)で表されるアンモニウムカチオンを含むアンモニウム塩が挙げられる。 Examples of ammonium salts include ammonium salts containing an ammonium cation represented by the general formula (A1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(A1)中、R~Rは、それぞれ独立に、水素原子、有機基を表す。有機基である場合、R~Rは、それぞれ独立に、アルキル基、シクロアルキル基、不飽和炭化水素基などの炭化水素基が好ましい。 In general formula (A1), R 1 to R 4 each independently represents a hydrogen atom or an organic group. When it is an organic group, R 1 to R 4 are preferably each independently a hydrocarbon group such as an alkyl group, a cycloalkyl group, or an unsaturated hydrocarbon group.
 R~Rで表されるアルキル基は、直鎖状であっても、分岐鎖状であってもよい。
 R~Rで表されるアルキル基の炭素原子数は、通常1~20であり、5~20であることが好ましく、8~20であることがより好ましい。
The alkyl group represented by R 1 to R 4 may be linear or branched.
The number of carbon atoms of the alkyl group represented by R 1 to R 4 is usually 1 to 20, preferably 5 to 20, and more preferably 8 to 20.
 R~Rで表されるシクロアルキル基は、置換基としてアルキル基を有していてもよい。シクロアルキル基の炭素原子数は、通常3~30であり、3~20であることが好ましく、3~11であることがより好ましい。炭素原子数は、置換基の炭素原子数を含む。 The cycloalkyl group represented by R 1 ~ R 4 may have an alkyl group as a substituent. The number of carbon atoms in the cycloalkyl group is usually 3 to 30, preferably 3 to 20, and more preferably 3 to 11. The number of carbon atoms includes the number of carbon atoms of the substituent.
 R~Rの不飽和炭化水素基は、直鎖状であっても、分岐鎖状であってもよい。
 R~Rの不飽和炭化水素基の炭素原子数は、通常2~20であり、5~20であることが好ましく、8~20であることがより好ましい。
The unsaturated hydrocarbon group for R 1 to R 4 may be linear or branched.
The number of carbon atoms of the unsaturated hydrocarbon group of R 1 to R 4 is usually 2 to 20, preferably 5 to 20, and more preferably 8 to 20.
 R~Rは、水素原子、アルキル基、又は不飽和炭化水素基であることが好ましい。不飽和炭化水素基としては、アルケニル基が好ましい。R~Rのうちの1つが炭素原子数8~20のアルケニル基であり、R~Rのうちの3つが水素原子であることがより好ましい。 R 1 to R 4 are preferably a hydrogen atom, an alkyl group, or an unsaturated hydrocarbon group. As the unsaturated hydrocarbon group, an alkenyl group is preferable. More preferably, one of R 1 to R 4 is an alkenyl group having 8 to 20 carbon atoms, and three of R 1 to R 4 are hydrogen atoms.
 R~Rのアルキル基の具体例としては、R~Rにおいて例示したアルキル基が挙げられる。
 R~Rのシクロアルキル基の具体例としては、R~Rにおいて例示したシクロアルキル基が挙げられる。
Specific examples of the alkyl group for R 1 to R 4 include the alkyl groups exemplified for R 6 to R 9 .
As specific examples of the cycloalkyl group of R 1 ~ R 4 include cycloalkyl groups exemplified in R 6 ~ R 9.
 R~Rのアルケニル基としては、R~Rにおいて例示した前記直鎖状又は分岐鎖状のアルキル基において、いずれか一つの炭素原子間の単結合(C-C)が、二重結合(C=C)に置換されたものが例示でき、二重結合の位置は限定されない。
 このようなアルケニル基の好ましいものとしては、例えば、エテニル基、プロペニル基、3-ブテニル基、2-ブテニル基、2-ペンテニル基、2-ヘキセニル基、2-ノネニル基、2-ドデセニル基、9-オクタデセニル基が挙げられる。
As the alkenyl group for R 1 to R 4 , a single bond (C—C) between any one carbon atom in the linear or branched alkyl group exemplified for R 6 to R 9 is 2 The thing substituted by the heavy bond (C = C) can be illustrated, and the position of a double bond is not limited.
Preferred examples of such an alkenyl group include ethenyl group, propenyl group, 3-butenyl group, 2-butenyl group, 2-pentenyl group, 2-hexenyl group, 2-nonenyl group, 2-dodecenyl group, 9 -Octadecenyl group.
 カウンターアニオンとしては、特に制限は無いがBr、Cl、I、Fのハロゲン化物イオンや、カルボキシレートイオンなどが好ましい例として挙げられる。
 一般式(A1)で表されるアンモニウムカチオンと、カウンターアニオンとを有するアンモニウム塩としては、n-オクチルアンモニウム塩、オレイルアンモニウム塩が好ましい例として挙げられる。
The counter anion is not particularly limited, but preferable examples include Br , Cl , I and F halide ions, and carboxylate ions.
Preferred examples of the ammonium salt having an ammonium cation represented by the general formula (A1) and a counter anion include n-octyl ammonium salt and oleyl ammonium salt.
 カルボン酸塩としては、下記一般式(A2)で表されるカルボキシレートアニオンを含むカルボン酸塩が挙げられる。
―CO -・・・(A2)
As carboxylate, the carboxylate containing the carboxylate anion represented with the following general formula (A2) is mentioned.
R 5 —CO 2 (A2)
 一般式(A2)中、Rは、一価の有機基を表す。有機基としては炭化水素基が好ましく、中でもアルキル基、シクロアルキル基、不飽和炭化水素基が好ましいものとして挙げられる。 In general formula (A2), R 5 represents a monovalent organic group. As the organic group, a hydrocarbon group is preferable, and among them, an alkyl group, a cycloalkyl group, and an unsaturated hydrocarbon group are preferable.
 Rで表されるアルキル基は、直鎖状であっても分岐鎖状であってもよい。Rで表されるアルキル基の炭素原子数は、通常1~20であり、5~20であることが好ましく、8~20であることがより好ましい。 The alkyl group represented by R 5 may be linear or branched. The number of carbon atoms of the alkyl group represented by R 5 is usually 1 to 20, preferably 5 to 20, and more preferably 8 to 20.
 Rで表されるシクロアルキル基は、置換基としてアルキル基を有していてもよい。シクロアルキル基の炭素原子数は、通常3~30であり、3~20であることが好ましく、3~11であることがより好ましい。炭素原子数は、置換基の炭素原子数を含む。 The cycloalkyl group represented by R 5 may have an alkyl group as a substituent. The number of carbon atoms in the cycloalkyl group is usually 3 to 30, preferably 3 to 20, and more preferably 3 to 11. The number of carbon atoms includes the number of carbon atoms of the substituent.
 Rの不飽和炭化水素基は、直鎖状であっても、分岐鎖状であってもよい。
 Rの不飽和炭化水素基の炭素原子数は、通常2~20であり、5~20であることが好ましく、8~20であることがより好ましい。
The unsaturated hydrocarbon group for R 5 may be linear or branched.
The number of carbon atoms of the unsaturated hydrocarbon group for R 5 is usually 2 to 20, preferably 5 to 20, and more preferably 8 to 20.
 Rはアルキル基又は不飽和炭化水素基であることが好ましい。不飽和炭化水素基としては、アルケニル基が好ましい。 R 5 is preferably an alkyl group or an unsaturated hydrocarbon group. As the unsaturated hydrocarbon group, an alkenyl group is preferable.
 Rのアルキル基の具体例としては、R~Rにおいて例示したアルキル基が挙げられる。
 Rのシクロアルキル基の具体例としては、R~Rにおいて例示したシクロアルキル基が挙げられる。
 Rのアルケニル基の具体例としては、R~Rにおいて例示したアルケニル基が挙げられる。
Specific examples of the alkyl group R 5 include alkyl groups exemplified in R 6 ~ R 9.
Specific examples of the cycloalkyl group represented by R 5 include the cycloalkyl groups exemplified for R 6 to R 9 .
Specific examples of the alkenyl group for R 5 include the alkenyl groups exemplified for R 1 to R 4 .
 一般式(A2)で表されるカルボキシレートアニオンは、オレイン酸アニオンが好ましい。一般式(A2)で表されるカルボキシレートアニオンのカウンターカチオンとしては、特に制限は無いが、プロトン、アルカリ金属カチオン、アルカリ土類金属カチオン、アンモニウムカチオンなどが好ましい例として挙げられる。 The carboxylate anion represented by the general formula (A2) is preferably an oleate anion. The counter cation of the carboxylate anion represented by the general formula (A2) is not particularly limited, but preferred examples include proton, alkali metal cation, alkaline earth metal cation, ammonium cation and the like.
(その他)溶媒
 本発明に係る組成物が含んでいてもよい溶媒としては、半導体微粒子を分散させることができる媒体であって、半導体微粒子を溶解し難いものが挙げられる。
 本明細書において「溶媒」とは、1気圧、25℃において液体状態をとる物質のことをいう(但し、重合性化合物、及び重合体を除く)。
(Others) Solvent The solvent that may be contained in the composition according to the present invention includes a medium in which the semiconductor fine particles can be dispersed and the semiconductor fine particles are difficult to dissolve.
In this specification, the “solvent” refers to a substance that takes a liquid state at 1 atm and 25 ° C. (except for a polymerizable compound and a polymer).
 溶媒としては、例えば、メチルホルメート、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート、ペンチルアセテート等のエステル;γ-ブチロラクトン、アセトン、ジメチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等のケトン;ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4-ジオキサン、1,3-ジオキソラン、4-メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、アニソール、フェネトール等のエーテル;メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、tert-ブタノール、1-ペンタノール、2-メチル-2-ブタノール、メトキシプロパノール、ジアセトンアルコール、シクロヘキサノール、2-フルオロエタノール、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロ-1-プロパノール等のアルコール;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、トリエチレングリコールジメチルエーテル等のグリコールエーテル;N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、アセトアミド、N,N-ジメチルアセトアミド等のアミド基を有する有機溶媒;アセトニトリル、イソブチロニトリル、プロピオニトリル、メトキシアセトニトリル等のニトリル基を有する有機溶媒;エチレンカーボネート、プロピレンカーボネート等の炭化水素基を有する有機溶媒;塩化メチレン、クロロホルム等のハロゲン化した炭化水素基を有する有機溶媒;n-ペンタン、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、キシレン等の炭化水素基を有する有機溶媒;ジメチルスルホキシド等が挙げられる。 Examples of the solvent include esters such as methyl formate, ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate, and pentyl acetate; γ-butyrolactone, acetone, dimethyl ketone, diisobutyl ketone, cyclopentanone, Ketones such as cyclohexanone and methylcyclohexanone; diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, 4-methyldioxolane, tetrahydrofuran, methyltetrahydrofuran, anisole, Ethers such as phenetole; methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert Butanol, 1-pentanol, 2-methyl-2-butanol, methoxypropanol, diacetone alcohol, cyclohexanol, 2-fluoroethanol, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoro Alcohols such as -1-propanol; glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, triethylene glycol dimethyl ether; N-methyl-2-pyrrolidone, N, Organic solvents having an amide group such as N-dimethylformamide, acetamide, N, N-dimethylacetamide; acetonitrile, isobutyronitrile, propionitrile, methoxyacetate Organic solvents having a nitrile group such as tonitrile; organic solvents having a hydrocarbon group such as ethylene carbonate and propylene carbonate; organic solvents having a halogenated hydrocarbon group such as methylene chloride and chloroform; n-pentane, cyclohexane, n- Organic solvents having a hydrocarbon group such as hexane, benzene, toluene, xylene; dimethyl sulfoxide and the like.
 これらの中でもメチルホルメート、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート、ペンチルアセテート等のエステル;γ-ブチロラクトン、アセトン、ジメチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等のケトン;ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4-ジオキサン、1,3-ジオキソラン、4-メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、アニソール、フェネトール等のエーテル、アセトニトリル、イソブチロニトリル、プロピオニトリル、メトキシアセトニトリル等のニトリル基を有する有機溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート基を有する有機溶媒;塩化メチレン、クロロホルム等のハロゲン化した炭化水素基を有する有機溶媒;n-ペンタン、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、キシレン等の炭化水素基を有する有機溶媒は、極性が低く、半導体微粒子を溶解し難いと考えられるため好ましく、塩化メチレン、クロロホルム等のハロゲン化した炭化水素基を有する有機溶媒;n-ペンタン、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、キシレン等の炭化水素系有機溶媒がより好ましい。 Among these, esters such as methyl formate, ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate, pentyl acetate; γ-butyrolactone, acetone, dimethyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methyl Ketones such as cyclohexanone; diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, 4-methyldioxolane, tetrahydrofuran, methyltetrahydrofuran, anisole, phenetole, etc. Organic solvents having a nitrile group such as ether, acetonitrile, isobutyronitrile, propionitrile, methoxyacetonitrile; Organic solvents having carbonate groups such as tylene carbonate and propylene carbonate; organic solvents having halogenated hydrocarbon groups such as methylene chloride and chloroform; hydrocarbons such as n-pentane, cyclohexane, n-hexane, benzene, toluene and xylene An organic solvent having a group is preferable because it has low polarity and hardly dissolves semiconductor fine particles, and is preferably an organic solvent having a halogenated hydrocarbon group such as methylene chloride or chloroform; n-pentane, cyclohexane, n-hexane, More preferred are hydrocarbon-based organic solvents such as benzene, toluene and xylene.
<各成分の配合比について>
 本実施形態の組成物は、(1)、(2)、及び(3)を含む。
 (1)半導体微粒子
 (2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物
 (3)重合性化合物、及び重合体からなる群から選ばれる少なくとも1種
<About the mixing ratio of each component>
The composition of this embodiment contains (1), (2), and (3).
(1) Semiconductor fine particles (2) Organic compounds having amino groups, alkoxy groups, and silicon atoms (3) At least one selected from the group consisting of polymerizable compounds and polymers
 本実施形態の組成物は、(1)、(2)、及び(3’)を含み、(1)、(2)、及び(3’)の合計が90質量%以上である組成物であってもよい。
 (1)半導体微粒子
 (2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物
 (3’)重合体
The composition of the present embodiment is a composition that includes (1), (2), and (3 ′), and the total of (1), (2), and (3 ′) is 90% by mass or more. May be.
(1) Semiconductor fine particles (2) Organic compound having amino group, alkoxy group, and silicon atom (3 ′) polymer
 本実施形態の組成物において、(1)と(2)との配合比は、(2)の有機化合物による熱耐久性の向上の作用が発揮される程度であればよく、(1)及び(2)の種類等に応じて、適宜定めることができる。
 本実施形態の組成物において、(1)半導体微粒子がペロブスカイト化合物の微粒子である場合、ペロブスカイト化合物のBの金属イオンと、(2)の有機化合物とのモル比[(2)/B]は、0.001~1000であってもよく、0.01~700であってもよく、0.1~500であってもよい。
 本実施形態の組成物において、(1)半導体微粒子がペロブスカイト化合物の微粒子であって、(2)の有機化合物が、一般式(A5)で表されるアミノ基、アルコキシ基、及びケイ素原子を有する化合物である場合、ペロブスカイト化合物のBの金属イオンと、(A5)の有機化合物とのモル比[(A5)/B]は、1~500であってもよく、2~300であってもよく、5~200であってもよく、10~100であってもよい。
 (1)と(2)との配合比に係る範囲が上記範囲内である組成物は、(2)の有機化合物による熱耐久性の向上の作用が、特に良好に発揮される点で好まし
い。
 本発明の別の側面としては、(1)半導体微粒子がペロブスカイト化合物の微粒子であって、(2)の有機化合物が、一般式(A5)で表されるアミノ基、アルコキシ基、及びケイ素原子を有する化合物である場合、ペロブスカイト化合物のBの金属イオンと、(A5)の有機化合物とのモル比[(A5)/B]は、1~200であることが好ましく、5~100であることがより好ましく、20~80であることがさらに好ましく、30~60であることが特に好ましい。
In the composition of this embodiment, the blending ratio of (1) and (2) may be such that the effect of improving the thermal durability by the organic compound of (2) is exhibited. It can be appropriately determined according to the type of 2).
In the composition of the present embodiment, (1) when the semiconductor fine particles are fine particles of a perovskite compound, the molar ratio [(2) / B] of the B metal ion of the perovskite compound and the organic compound of (2) is: It may be 0.001 to 1000, 0.01 to 700, or 0.1 to 500.
In the composition of this embodiment, (1) the semiconductor fine particles are fine particles of a perovskite compound, and the organic compound (2) has an amino group, an alkoxy group, and a silicon atom represented by the general formula (A5) In the case of a compound, the molar ratio [(A5) / B] between the metal ion of B of the perovskite compound and the organic compound of (A5) may be 1 to 500, or 2 to 300 It may be 5 to 200 or 10 to 100.
A composition in which the range of the blending ratio of (1) and (2) is within the above range is preferable in that the effect of improving the heat durability by the organic compound of (2) is exhibited particularly well.
As another aspect of the present invention, (1) the semiconductor fine particles are fine particles of a perovskite compound, and the organic compound (2) contains an amino group, an alkoxy group, and a silicon atom represented by the general formula (A5). The molar ratio [(A5) / B] of the B metal ion of the perovskite compound to the organic compound (A5) is preferably 1 to 200, and more preferably 5 to 100. More preferably, it is more preferably 20 to 80, and particularly preferably 30 to 60.
 (1)、(2)、及び(3)を含む本実施形態の組成物において、(1)と、(3)との配合比は、(1)の半導体微粒子による発光作用が良好に発揮される程度であればよく、(1)~(3)の種類等に応じて、適宜定めることができる。
 本実施形態の組成物において、(1)と、(3)との質量比[(1)/(3)]は、0.00001~10であってもよく、0.0001~1であってもよく、0.0005~0.1であってもよい。
 (1)と(3)との配合比に係る範囲が上記範囲内である組成物は、(1)の半導体微粒子の凝集が生じ難く、発光性も良好に発揮される点で好ましい。
In the composition of the present embodiment including (1), (2), and (3), the compounding ratio between (1) and (3) is such that the light emitting action by the semiconductor fine particles of (1) is satisfactorily exhibited. It can be determined as appropriate according to the types (1) to (3).
In the composition of the present embodiment, the mass ratio [(1) / (3)] between (1) and (3) may be 0.00001 to 10, or 0.0001 to 1. Or 0.0005 to 0.1.
The composition in which the range related to the blending ratio of (1) and (3) is within the above range is preferable in that the aggregation of the semiconductor fine particles of (1) hardly occurs and the light emitting property is also exhibited well.
 (1)、(2)、及び(3’)を含む本実施形態の組成物において、(1)と、(3’)との配合比は、(1)の半導体微粒子による発光作用が良好に発揮される程度であればよく、(1)及び(3’)の種類等に応じて、適宜定めることができる。
 本実施形態の組成物において、(1)と、(3’)との質量比[(1)/(3’)]は、0.00001~10であってもよく、0.0001~1であってもよく、0.0005~0.1であってもよい。
 (1)と(3’)との配合比に係る範囲が上記範囲内である組成物は、発光性が良好に発揮される点で好ましい。
In the composition of this embodiment containing (1), (2), and (3 ′), the compounding ratio of (1) and (3 ′) is such that the light emitting action by the semiconductor fine particles of (1) is good. It is sufficient if it is an extent to be exhibited, and can be appropriately determined according to the types (1) and (3 ′).
In the composition of the present embodiment, the mass ratio [(1) / (3 ′)] between (1) and (3 ′) may be 0.00001 to 10, or 0.0001 to 1. It may be 0.0005 to 0.1.
A composition in which the range related to the blending ratio of (1) and (3 ′) is within the above range is preferable in that the light emitting property is satisfactorily exhibited.
<組成物の製造方法>
 以下、本発明における組成物の製造方法に関し、実施形態を示して説明する。本実施形態の組成物の製造方法によれば、本発明に係る実施形態の組成物を製造可能である。なお、本発明の組成物は、以下の実施形態の組成物の製造方法によって製造されるものに限定されるものではない。
<Method for producing composition>
Embodiments of the method for producing a composition according to the present invention will be described below. According to the method for producing the composition of the present embodiment, the composition of the embodiment according to the present invention can be produced. In addition, the composition of this invention is not limited to what is manufactured by the manufacturing method of the composition of the following embodiment.
<(1)半導体微粒子の製造方法>
(II族-VI族化合物半導体の結晶の微粒子、II族-V族化合物半導体の結晶の微粒子、III族-V族化合物半導体の結晶の微粒子、III族-IV族化合物半導体の結晶の微粒子、III族-VI族化合物半導体の結晶の微粒子、IV族-VI族化合物半導体の結晶の微粒子及び遷移金属-p-ブロック化合物半導体の結晶の微粒子の製造方法)
 半導体微粒子の製造方法としては、半導体微粒子を構成する元素の単体又はその化合物と脂溶性溶媒とを混合した混合液を加熱する方法が挙げられる。
<(1) Manufacturing method of semiconductor fine particles>
(Group II-VI compound semiconductor crystal particles, Group II-V compound semiconductor crystal particles, Group III-V compound semiconductor crystal particles, Group III-IV compound semiconductor crystal particles, III Group-VI compound semiconductor crystal microparticles, Group IV-VI compound semiconductor crystal microparticles, and transition metal-p-block compound semiconductor crystal microparticle manufacturing method)
Examples of the method for producing semiconductor fine particles include a method of heating a mixed liquid obtained by mixing a simple substance of the elements constituting the semiconductor fine particles or a compound thereof and a lipophilic solvent.
 半導体微粒子を構成する元素の単体又はその化合物の例としては、特に制限は無いが、金属、酸化物、酢酸塩、有機金属化合物、ハロゲン化物、硝酸塩等が挙げられる。 Examples of the elemental element constituting the semiconductor fine particles or the compound thereof are not particularly limited, and examples thereof include metals, oxides, acetates, organometallic compounds, halides, and nitrates.
 脂溶性溶媒としては、例えば炭素原子数4~20の炭化水素基を有する含窒素化合物、炭素原子数4~20の炭化水素基を有する含酸素化合物などが挙げられる。炭素原子数4~20の炭化水素基としては、n-ブチル基、イソブチル基、n-ペンチル基、オクチル基、デシル基、ドデシル基、ヘキサデシル基、オクタデシル基などの飽和脂肪族炭化水素基;オレイル基などの不飽和脂肪族炭化水素基;シクロペンチル基、シクロヘキシル基などの脂環式炭化水素基;フェニル基、ベンジル基、ナフチル基、ナフチルメチル基などの芳香族炭化水素基などが挙げられ、このうち飽和脂肪族炭化水素基や不飽和脂肪族炭化水素基が好ましい。含窒素化合物としてはアミン類やアミド類が挙げられ、含酸素化合物としては脂肪酸類などが挙げられる。このような脂溶性溶媒のうち、炭素原子数4~20の炭化水素基を有する含窒素化合物が好ましく、例えばn-ブチルアミン、イソブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミン、ヘキサデシルアミン、オクタデシルアミンなどのアルキルアミンや、オレイルアミンなどのアルケニルアミンが好ましい。こうした脂溶性溶媒は、粒子表面に結合可能であり、その結合の様式は、例えば共有結合、イオン結合、配位結合、水素結合、ファンデルワールス結合等の化学結合が挙げられる。 Examples of the fat-soluble solvent include nitrogen-containing compounds having a hydrocarbon group having 4 to 20 carbon atoms, oxygen-containing compounds having a hydrocarbon group having 4 to 20 carbon atoms, and the like. Examples of the hydrocarbon group having 4 to 20 carbon atoms include saturated aliphatic hydrocarbon groups such as n-butyl group, isobutyl group, n-pentyl group, octyl group, decyl group, dodecyl group, hexadecyl group and octadecyl group; An unsaturated aliphatic hydrocarbon group such as a group; an alicyclic hydrocarbon group such as a cyclopentyl group and a cyclohexyl group; an aromatic hydrocarbon group such as a phenyl group, a benzyl group, a naphthyl group, and a naphthylmethyl group. Of these, a saturated aliphatic hydrocarbon group and an unsaturated aliphatic hydrocarbon group are preferred. Examples of the nitrogen-containing compound include amines and amides, and examples of the oxygen-containing compound include fatty acids. Of these fat-soluble solvents, nitrogen-containing compounds having a hydrocarbon group having 4 to 20 carbon atoms are preferred. For example, n-butylamine, isobutylamine, n-pentylamine, n-hexylamine, octylamine, decylamine, Alkylamines such as dodecylamine, hexadecylamine and octadecylamine, and alkenylamines such as oleylamine are preferred. Such a fat-soluble solvent can be bonded to the particle surface, and examples of the bonding mode include chemical bonds such as a covalent bond, an ionic bond, a coordinate bond, a hydrogen bond, and a van der Waals bond.
 混合液の加熱温度は、使用する単体や化合物の種類によって適宜設定すればよいが、例えば、130~300℃の範囲で設定することが好ましく、240~300℃の範囲で設定することがより好ましい。加熱温度が上記下限値以上であると結晶構造が単一化しやすいため好ましい。また、加熱時間も、使用する単体や化合物の種類、加熱温度によって適宜設定すればよいが、通常は数秒間~数時間の範囲で設定するのが好ましく、1~60分間の範囲で設定するのがより好ましい。 The heating temperature of the mixed solution may be appropriately set depending on the simple substance or the compound to be used, but is preferably set in the range of 130 to 300 ° C, more preferably in the range of 240 to 300 ° C. . It is preferable that the heating temperature is equal to or higher than the lower limit because the crystal structure is easily unified. Further, the heating time may be appropriately set according to the simple substance to be used, the kind of the compound, and the heating temperature, but it is usually preferably set within the range of several seconds to several hours, and is set within the range of 1 to 60 minutes. Is more preferable.
 本発明の半導体微粒子の製法において、加熱後の混合液を冷却したあと上澄み液と沈殿に分離し、前記分離した半導体微粒子(沈殿物)を有機溶媒(例えばクロロホルム、トルエン、ヘキサン、n-ブタノールなど)に入れて半導体微粒子を含む溶液としてもよい。あるいは、加熱後の混合液を冷却したあと上澄み液と沈殿に分離し、前記分離した上澄み液にナノ粒子が不溶又は難溶な溶媒(例えばメタノール、エタノール、アセトン、アセトニトリルなど)を添加して沈殿物を発生させ、前記沈殿物を集めて前述の有機溶媒に入れて半導体微粒子を含む溶液としてもよい。 In the method for producing semiconductor fine particles of the present invention, the heated mixed solution is cooled and then separated into a supernatant and a precipitate, and the separated semiconductor fine particles (precipitate) are separated from an organic solvent (for example, chloroform, toluene, hexane, n-butanol, etc.) Or a solution containing semiconductor fine particles. Alternatively, after cooling the mixed liquid after heating, it is separated into a supernatant and a precipitate, and a solvent (for example, methanol, ethanol, acetone, acetonitrile, etc.) in which nanoparticles are insoluble or hardly soluble is added to the separated supernatant and precipitated. The precipitate may be collected and placed in the above-mentioned organic solvent to form a solution containing semiconductor fine particles.
(ペロブスカイト化合物の結晶の微粒子の製造方法)
 本発明に係るペロブスカイト化合物の半導体微粒子は、既知文献(Nano Lett. 2015, 15, 3692-3696、ACSNano,2015,9,4533-4542)を参考に、以下に述べる方法によって製造することができる。
(Method for producing fine particles of perovskite compound crystals)
The semiconductor fine particles of the perovskite compound according to the present invention can be produced by the method described below with reference to known documents (Nano Lett. 2015, 15, 3692-3696, ACSNano, 2015, 9, 4533-4542).
<ペロブスカイト化合物の結晶の微粒子の製造方法の第1実施形態>
 例えば、本発明に係るペロブスカイト化合物の半導体微粒子の製造方法としては、B成分、X成分、及びA成分を溶媒に溶解させ溶液を得る工程と、得られた溶液と、半導体微粒子の溶媒に対する溶解度が溶液を得る工程で用いた溶媒よりも低い溶媒とを混合する工程とを含む製造方法が挙げられる。
 より具体的には、B成分及びX成分を含む化合物と、A成分又はA成分及びX成分を含む化合物とを溶媒に溶解させ、溶液を得る工程と、得られた溶液と、半導体微粒子の溶媒に対する溶解度が、溶液を得る工程で用いた溶媒よりも低い溶媒とを混合する工程とを含む製造方法が挙げられる。
 また、B成分及びX成分を含む化合物と、A成分又はA成分及びX成分を含む化合物とを高温の溶媒に添加して溶解させ、溶液を得る工程と、得られた溶液を冷却する工程とを含む製造方法が挙げられる。
<First Embodiment of Method for Producing Fine Crystalline Perovskite Compound>
For example, the method for producing semiconductor fine particles of the perovskite compound according to the present invention includes a step of dissolving a B component, an X component, and an A component in a solvent to obtain a solution, and the resulting solution and the solubility of the semiconductor fine particles in the solvent. And a step of mixing a solvent lower than the solvent used in the step of obtaining the solution.
More specifically, a step of dissolving a compound containing a B component and an X component and a component A or a compound containing an A component and an X component in a solvent to obtain a solution, the obtained solution, and a solvent for semiconductor fine particles And a step of mixing a solvent having a lower solubility than the solvent used in the step of obtaining the solution.
A step of adding a compound containing B component and X component and a component containing A component or A component and X component to a high temperature solvent to obtain a solution; and a step of cooling the obtained solution; The manufacturing method containing is mentioned.
 以下、B成分及びX成分を含む化合物と、A成分又はA成分及びX成分を含む化合物とを溶媒に溶解させ、溶液を得る工程と、得られた溶液と、半導体微粒子の溶媒に対する溶解度が、溶液を得る工程で用いた溶媒よりも低い溶媒とを混合する工程とを含む製造方法について説明する。
 なお、溶解度とは、混合する工程を行う温度における溶解度を意味する。
 前記製造方法は、半導体微粒子を安定して分散できる観点から、キャッピング配位子を加える工程を含んでいることが好ましい。キャッピング配位子は、前述の混合する工程の前に添加する事が好ましく、A成分、B成分、及びX成分を溶解させた溶液にキャッピング配位子を添加してもよいし、半導体微粒子の溶媒に対する溶解度が、溶液を得る工程で用いた溶媒よりも低い溶媒に添加してもよく、A成分、B成分、及びX成分を溶解させた溶液、及び半導体微粒子の溶媒に対する溶解度が、溶液を得る工程で用いた溶媒よりも低い溶媒の両方に添加してもよい。
 前記製造方法は、前述の混合する工程のあと、遠心分離、ろ過などの手法により粗大粒子を除去する工程を含んでいていることが好ましい。前記除去する工程によって除去する粗大粒子のサイズは、好ましくは10μm以上、より好ましくは1μm以上、さらに好ましくは500nm以上である。
Hereinafter, the step of dissolving the compound containing the B component and the X component and the component A or the compound containing the A component and the X component in a solvent to obtain a solution, the obtained solution, and the solubility of the semiconductor fine particles in the solvent are: A production method including a step of mixing a solvent lower than the solvent used in the step of obtaining a solution will be described.
In addition, solubility means the solubility in the temperature which performs the process to mix.
The manufacturing method preferably includes a step of adding a capping ligand from the viewpoint of stably dispersing the semiconductor fine particles. The capping ligand is preferably added before the mixing step, and the capping ligand may be added to a solution in which the A component, the B component, and the X component are dissolved. The solvent may be added to a solvent having a lower solubility than the solvent used in the step of obtaining the solution. The solution in which the A component, the B component, and the X component are dissolved, and the solubility of the semiconductor fine particles in the solvent You may add to both the solvent lower than the solvent used at the process to obtain.
The manufacturing method preferably includes a step of removing coarse particles by a method such as centrifugation or filtration after the mixing step. The size of the coarse particles removed by the removing step is preferably 10 μm or more, more preferably 1 μm or more, and further preferably 500 nm or more.
 前述の、溶液と、半導体微粒子の溶媒に対する溶解度が、溶液を得る工程で用いた溶媒よりも低い溶媒とを混合する工程は、(I)溶液を、半導体微粒子の溶媒に対する溶解度が溶液を得る工程で用いた溶媒よりも低い溶媒に滴下する工程であってもよく、(II)溶液に、半導体微粒子の溶媒に対する溶解度が溶液を得る工程で用いた溶媒よりも低い溶媒を滴下する工程であってもよいが、分散性を高める観点から(I)であることが好ましい。
 滴下する際には攪拌を行う事が分散性を高める観点から好ましい。
 溶液と、半導体微粒子の溶媒に対する溶解度が、溶液を得る工程で用いた溶媒よりも低い溶媒とを混合する工程において、温度には特に制限は無いが、ペロブスカイト型結晶構造を有する化合物の析出し易さを確保する観点から、-20~40℃の範囲であることが好ましく、-5~30℃の範囲であることがより好ましい。
The step of mixing the solution and the solvent having a solubility of the semiconductor fine particles in the solvent lower than that of the solvent used in the step of obtaining the solution includes the step (I) of obtaining the solution by dissolving the solution of the semiconductor fine particles in the solvent. It may be a step of dripping in a solvent lower than the solvent used in step (II), and is a step of dripping, into the solution, a solvent whose solubility in the solvent of the semiconductor fine particles is lower than the solvent used in the step of obtaining the solution. However, from the viewpoint of improving dispersibility, (I) is preferable.
When dropping, it is preferable to stir from the viewpoint of improving dispersibility.
In the step of mixing the solution with a solvent in which the solubility of the semiconductor fine particles in the solvent is lower than the solvent used in the step of obtaining the solution, the temperature is not particularly limited, but the compound having a perovskite crystal structure is likely to precipitate. From the viewpoint of ensuring the thickness, it is preferably in the range of −20 to 40 ° C., more preferably in the range of −5 to 30 ° C.
 前記製造方法で用いる半導体微粒子の溶媒に対する溶解度の異なる2種類の溶媒としては、特に限定されるものではないが、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、tert-ブタノール、1-ペンタノール、2-メチル-2-ブタノール、メトキシプロパノール、ジアセトンアルコール、シクロヘキサノール、2-フルオロエタノール、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロ-1-プロパノール等のアルコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、トリエチレングリコールジメチルエーテル等のグリコールエーテル;N,N-ジメチルホルムアミド、アセトアミド、N,N-ジメチルアセトアミド等のアミド基を有する有機溶媒;ジメチルスルホキシド、メチルホルメート、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート、ペンチルアセテート等のエステル;γ-ブチロラクトン、N-メチル-2-ピロリドン、アセトン、ジメチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等のケトン;ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4-ジオキサン、1,3-ジオキソラン、4-メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、アニソール、フェネトール等のエーテル;アセトニトリル、イソブチロニトリル、プロピオニトリル、メトキシアセトニトリル等のニトリル基を有する有機溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート基を有する有機溶媒;塩化メチレン、クロロホルム等のハロゲン化した炭化水素基を有する有機溶媒;n-ペンタン、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、キシレン等の炭化水素基を有する有機溶媒からなる群より選ばれる2種の溶媒が挙げられる。 The two types of solvents having different solubility in the solvent of the semiconductor fine particles used in the production method are not particularly limited. For example, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol Tert-butanol, 1-pentanol, 2-methyl-2-butanol, methoxypropanol, diacetone alcohol, cyclohexanol, 2-fluoroethanol, 2,2,2-trifluoroethanol, 2,2,3,3 Alcohols such as tetrafluoro-1-propanol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, triethylene glycol dimethyl ether Glycol ethers such as ter; organic solvents having amide groups such as N, N-dimethylformamide, acetamide, N, N-dimethylacetamide; dimethyl sulfoxide, methyl formate, ethyl formate, propyl formate, pentyl formate, methyl Esters such as acetate, ethyl acetate, pentyl acetate; ketones such as γ-butyrolactone, N-methyl-2-pyrrolidone, acetone, dimethyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methylcyclohexanone; diethyl ether, methyl-tert- Butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, 4-methyldioxolane, tetrahydrofuran, methyl ether Ethers such as trahydrofuran, anisole, phenetole; organic solvents having a nitrile group such as acetonitrile, isobutyronitrile, propionitrile, methoxyacetonitrile; organic solvents having a carbonate group such as ethylene carbonate, propylene carbonate; methylene chloride, An organic solvent having a halogenated hydrocarbon group such as chloroform; and two solvents selected from the group consisting of organic solvents having a hydrocarbon group such as n-pentane, cyclohexane, n-hexane, benzene, toluene, and xylene. It is done.
 前記製造方法に含まれる、溶液を得る工程で用いる溶媒としては、半導体微粒子の溶媒に対する溶解度が高い溶媒が好ましく、例えば、室温(10℃~30℃)で前記工程をおこなう場合、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、tert-ブタノール、1-ペンタノール、2-メチル-2-ブタノール、メトキシプロパノール、ジアセトンアルコール、シクロヘキサノール、2-フルオロエタノール、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロ-1-プロパノール等のアルコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、トリエチレングリコールジメチルエーテル等のグリコールエーテル;N,N-ジメチルホルムアミド、アセトアミド、N,N-ジメチルアセトアミド等のアミド基を有する有機溶媒;ジメチルスルホキシドが挙げられる。 The solvent used in the step of obtaining the solution included in the production method is preferably a solvent having a high solubility in the solvent of the semiconductor fine particles. For example, when performing the step at room temperature (10 ° C. to 30 ° C.), methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butanol, 1-pentanol, 2-methyl-2-butanol, methoxypropanol, diacetone alcohol, cyclohexanol, 2-fluoroethanol, 2, Alcohols such as 2,2-trifluoroethanol and 2,2,3,3-tetrafluoro-1-propanol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether Ether acetate, glycol ethers such as triethylene glycol dimethyl ether; and dimethyl sulfoxide; N, N- dimethylformamide, acetamide, N, organic solvents having an amide group such as N- dimethylacetamide.
 前記製造方法に含まれる、混合する工程で用いる溶媒としては、半導体微粒子の溶媒に対する溶解度が低い溶媒が好ましく、例えば、室温(10℃~30℃)で前記工程をおこなう場合、メチルホルメート、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート、ペンチルアセテート等のエステル;γ-ブチロラクトン、N-メチル-2-ピロリドン、アセトン、ジメチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等のケトン;ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4-ジオキサン、1,3-ジオキソラン、4-メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、アニソール、フェネトール等のエーテル;アセトニトリル、イソブチロニトリル、プロピオニトリル、メトキシアセトニトリル等のニトリル基を有する有機溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート基を有する有機溶媒;塩化メチレン、クロロホルム等のハロゲン化した炭化水素基を有する有機溶媒;n-ペンタン、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、キシレン等の炭化水素基を有する有機溶媒が挙げられる。 The solvent used in the mixing step included in the production method is preferably a solvent having low solubility of the semiconductor fine particles in the solvent. For example, when performing the step at room temperature (10 ° C. to 30 ° C.), methyl formate, ethyl Formate, propyl formate, pentyl formate, esters such as methyl acetate, ethyl acetate, pentyl acetate; γ-butyrolactone, N-methyl-2-pyrrolidone, acetone, dimethyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methyl Ketones such as cyclohexanone; diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, 4-methyldioxolane, tetrahydride Ethers such as furan, methyltetrahydrofuran, anisole, phenetol; organic solvents having a nitrile group such as acetonitrile, isobutyronitrile, propionitrile, methoxyacetonitrile; organic solvents having a carbonate group such as ethylene carbonate, propylene carbonate; methylene chloride And organic solvents having a halogenated hydrocarbon group such as chloroform; organic solvents having a hydrocarbon group such as n-pentane, cyclohexane, n-hexane, benzene, toluene and xylene.
 溶解度の異なる2種類の溶媒において、溶解度の差は100μg/溶媒100g~90g/溶媒100gであることが好ましく、1mg/溶媒100g~90g/溶媒100gであることがより好ましい。溶解度の差を100μg/溶媒100g~90g/溶媒100gにする観点から、例えば、室温(10℃~30℃)で混合する工程をおこなう場合、溶液を得る工程で用いる溶媒が、N,N-ジメチルアセトアミド等のアミド基を有する有機溶媒やジメチルスルホキシドであり、混合する工程で用いる溶媒が塩化メチレン、クロロホルム等のハロゲン化した炭化水素基を有する有機溶媒;n-ペンタン、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、キシレン等の炭化水素基を有する有機溶媒であることが好ましい。 In two types of solvents having different solubilities, the difference in solubility is preferably 100 μg / solvent 100 g to 90 g / solvent 100 g, more preferably 1 mg / solvent 100 g to 90 g / solvent 100 g. From the viewpoint of setting the difference in solubility to 100 μg / solvent 100 g to 90 g / solvent 100 g, for example, when performing the mixing step at room temperature (10 ° C. to 30 ° C.), the solvent used in the step of obtaining the solution is N, N-dimethyl. An organic solvent having an amide group such as acetamide or dimethyl sulfoxide, and the solvent used in the mixing step is an organic solvent having a halogenated hydrocarbon group such as methylene chloride or chloroform; n-pentane, cyclohexane, n-hexane, benzene An organic solvent having a hydrocarbon group such as toluene and xylene is preferable.
 半導体微粒子を含む分散液から、半導体微粒子を取り出す場合は、固液分離を行うことで半導体微粒子のみを回収する事ができる。
前述の固液分離方法は、ろ過などの方法や、溶媒の蒸発を利用した方法などが挙げられる。
When semiconductor fine particles are taken out from a dispersion liquid containing semiconductor fine particles, only the semiconductor fine particles can be recovered by performing solid-liquid separation.
Examples of the solid-liquid separation method include a method such as filtration and a method utilizing evaporation of a solvent.
<ペロブスカイト化合物の結晶の微粒子の製造方法の第2実施形態>
 以下、B成分、X成分及びA成分を高温の溶媒に添加して溶解させ溶液を得る工程と、得られた溶液を冷却する工程とを含む製造方法について説明する。
 より具体的には、B成分及びX成分を含む化合物と、A成分又はA成分及びX成分を含む化合物とを高温の溶媒に添加して溶解させ溶液を得る工程と、得られた溶液を冷却する工程とを含む製造方法が挙げられる。
 前記製造方法では、温度の差による溶解度の差によって本発明に係る半導体微粒子を析出させ、本発明に係る半導体微粒子を製造することができる。
<Second Embodiment of Manufacturing Method of Crystalline Fine Particles of Perovskite Compound>
Hereinafter, a manufacturing method including a step of adding a B component, an X component and an A component to a high-temperature solvent and dissolving them to obtain a solution and a step of cooling the obtained solution will be described.
More specifically, a step of adding a compound containing the B component and the X component and a component A or a compound containing the A component and the X component to a high temperature solvent to obtain a solution, and cooling the obtained solution The manufacturing method including the process to do is mentioned.
In the production method, the semiconductor fine particles according to the present invention can be produced by precipitating the semiconductor fine particles according to the present invention by the difference in solubility due to the temperature difference.
 前記製造方法は、半導体微粒子を安定して分散できる観点から、キャッピング配位子を加える工程を含んでいることが好ましい。
 前記製造方法は、冷却する工程のあと、遠心分離、ろ過などの手法により粗大粒子を除去する工程を含んでいていることが好ましい。上記除去工程によって除去する粗大粒子のサイズは、好ましくは10μm以上、より好ましくは1μm以上、さらに好ましくは500nm以上である。
The manufacturing method preferably includes a step of adding a capping ligand from the viewpoint of stably dispersing the semiconductor fine particles.
The manufacturing method preferably includes a step of removing coarse particles by a technique such as centrifugation or filtration after the cooling step. The size of the coarse particles removed by the removal step is preferably 10 μm or more, more preferably 1 μm or more, and further preferably 500 nm or more.
 ここで、高温の溶媒とは、B成分及びX成分を含む化合物と、A成分又はA成分及びX成分を含む化合物とが、溶解する温度の溶媒であればよく、例えば、60~600℃の溶媒であることが好ましく、80~400℃の溶媒であることがより好ましい。
 冷却する温度としては、-20~50℃であることが好ましく、-10~30℃であることがより好ましい。
 冷却速度としては、0.1~1500℃/分であることが好ましく、10℃~150℃/分であることがより好ましい。
Here, the high-temperature solvent may be a solvent having a temperature at which the compound containing the B component and the X component and the A component or the compound containing the A component and the X component are dissolved. A solvent is preferable, and a solvent at 80 to 400 ° C. is more preferable.
The cooling temperature is preferably −20 to 50 ° C., more preferably −10 to 30 ° C.
The cooling rate is preferably from 0.1 to 1500 ° C./min, more preferably from 10 ° C. to 150 ° C./min.
 前記製造方法に用いる溶媒としては、B成分及びX成分を含む化合物と、A成分又はA成分及びX成分を含む化合物とを溶解しうる溶媒であれば、特に限定されるものではないが、例えば、メチルホルメート、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート、ペンチルアセテート等のエステル;γ-ブチロラクトン、N-メチル-2-ピロリドン、アセトン、ジメチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等のケトン;ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4-ジオキサン、1,3-ジオキソラン、4-メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、アニソール、フェネトール等のエーテル;メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、tert-ブタノール、1-ペンタノール、2-メチル-2-ブタノール、メトキシプロパノール、ジアセトンアルコール、シクロヘキサノール、2-フルオロエタノール、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロ-1-プロパノール等のアルコール;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、トリエチレングリコールジメチルエーテル等のグリコールエーテル;N,N-ジメチルホルムアミド、アセトアミド、N,N-ジメチルアセトアミド等のアミド基を有する有機溶媒;アセトニトリル、イソブチロニトリル、プロピオニトリル、メトキシアセトニトリル等のニトリル基を有する有機溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート基を有する有機溶媒;塩化メチレン、クロロホルム等のハロゲン化した炭化水素基を有する有機溶媒;n-ペンタン、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、キシレン等の炭化水素基を有する有機溶媒;ジメチルスルホキシド、1-オクタデセンが挙げられる。 The solvent used in the production method is not particularly limited as long as it is a solvent that can dissolve the compound containing the B component and the X component and the component A or the compound containing the A component and the X component. , Esters of methyl formate, ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate, pentyl acetate, etc .; γ-butyrolactone, N-methyl-2-pyrrolidone, acetone, dimethyl ketone, diisobutyl ketone, cyclo Ketones such as pentanone, cyclohexanone, methylcyclohexanone; diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, 4-methyldioxolane, tetrahy Ethers such as lofuran, methyltetrahydrofuran, anisole, phenetole; methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butanol, 1-pentanol, 2-methyl-2-butanol, methoxy Alcohols such as propanol, diacetone alcohol, cyclohexanol, 2-fluoroethanol, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol; ethylene glycol monomethyl ether, ethylene glycol mono Glycol ethers such as ethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, triethylene glycol dimethyl ether; N, N-dimethylform Organic solvents having an amide group such as muamide, acetamide, N, N-dimethylacetamide; organic solvents having a nitrile group such as acetonitrile, isobutyronitrile, propionitrile, methoxyacetonitrile; carbonate groups such as ethylene carbonate and propylene carbonate An organic solvent having a halogenated hydrocarbon group such as methylene chloride and chloroform; an organic solvent having a hydrocarbon group such as n-pentane, cyclohexane, n-hexane, benzene, toluene, xylene; dimethyl sulfoxide, 1-octadecene is mentioned.
 半導体微粒子を含む分散液から、半導体微粒子を取り出す方法としては、固液分離を行うことで半導体微粒子のみを回収する方法が挙げられる。
 前述の固液分離方法は、ろ過などの方法や、溶媒の蒸発を利用した方法などが挙げられる。
As a method for taking out the semiconductor fine particles from the dispersion liquid containing the semiconductor fine particles, a method of collecting only the semiconductor fine particles by performing solid-liquid separation can be mentioned.
Examples of the solid-liquid separation method include a method such as filtration and a method utilizing evaporation of a solvent.
<(1)、(2)、及び(3)を含む組成物の製造方法>
 (1)半導体微粒子、(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物、及び(3)重合性化合物、及び重合体からなる群から選ばれる少なくとも1種を含む組成物の製造方法としては、
 (1)半導体微粒子、(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物、及び(3)重合性化合物、及び重合体からなる群より選ばれる少なくとも1種を混合する方法が挙げられる。
 混合する際、分散性を高める観点から、攪拌しながら混合することが好ましい。
 混合する温度には特に制限は無いが、均一に混合する観点から、0~100℃の範囲であることが好ましく、10~80℃の範囲であることがより好ましい。
<The manufacturing method of the composition containing (1), (2), and (3)>
(1) Semiconductor fine particles, (2) an organic compound having an amino group, an alkoxy group, and a silicon atom, and (3) a composition comprising at least one selected from the group consisting of a polymerizable compound and a polymer as,
(1) A method of mixing at least one selected from the group consisting of semiconductor fine particles, (2) an organic compound having an amino group, an alkoxy group, and a silicon atom, and (3) a polymerizable compound and a polymer. .
When mixing, it is preferable to mix while stirring from the viewpoint of improving dispersibility.
The mixing temperature is not particularly limited, but is preferably in the range of 0 to 100 ° C., more preferably in the range of 10 to 80 ° C., from the viewpoint of uniform mixing.
 本発明係る組成物の製造方法は、例えば、
 (a) (3)重合性化合物、及び重合体からなる群より選ばれる少なくとも1種に(1)半導体微粒子を分散させ、分散体を得る工程と、得られた分散体と(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物とを混合する工程とを含む製造方法であってもよく、
 (b) (3)重合性化合物、及び重合体からなる群より選ばれる少なくとも1種に(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物を分散させ、分散体を得る工程と、得られた分散体と、(1)半導体微粒子とを混合する工程とを含む製造方法であってもよく、
 (c) (3)重合性化合物、及び重合体からなる群より選ばれる少なくとも1種に(1)半導体微粒子及び(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物の混合物を分散させる工程を含む製造方法であってもよい。
The method for producing the composition according to the present invention includes, for example,
(A) (3) A step of obtaining a dispersion by dispersing semiconductor fine particles in at least one selected from the group consisting of a polymerizable compound and a polymer, and (2) an amino group. , An alkoxy group, and a step of mixing an organic compound having a silicon atom,
(B) (3) a step of obtaining a dispersion by dispersing (2) an organic compound having an amino group, an alkoxy group, and a silicon atom in at least one selected from the group consisting of a polymerizable compound and a polymer; The manufacturing method may include a step of mixing the obtained dispersion and (1) semiconductor fine particles,
(C) A mixture of (1) a semiconductor fine particle and (2) an amino group, an alkoxy group, and an organic compound having a silicon atom is dispersed in at least one selected from the group consisting of (3) a polymerizable compound and a polymer. The manufacturing method including a process may be sufficient.
 (a)~(c)の製造方法の中では、半導体微粒子の分散性を高める観点から(a)の製造方法であることが好ましい。前記方法により、本発明に係る組成物を、(1)半導体微粒子が(3)に分散している分散体と、(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物との混合物として得ることができる。 Among the production methods (a) to (c), the production method (a) is preferable from the viewpoint of improving the dispersibility of the semiconductor fine particles. By the above method, the composition according to the present invention is used as a mixture of (1) a dispersion in which semiconductor fine particles are dispersed in (3) and (2) an organic compound having an amino group, an alkoxy group, and a silicon atom. Obtainable.
 (a)~(c)の製造方法に含まれる各分散体を得る工程においては、(3)を、(1)及び/又は(2)に滴下してもよいし、(1)及び/又は(2)を(3)に滴下してよい。
 分散性を高める観点からは、(1)及び/又は(2)を(3)に滴下することが好ましい。
 (a)~(b)の製造方法に含まれる各混合する工程においては、(1)又は(2)を分散体に滴下してもよいし、分散体を(1)又は(2)に滴下してもよい。
 分散性を高める観点からは、(1)又は(2)を分散体に滴下することが好ましい。
In the step of obtaining each dispersion included in the production methods (a) to (c), (3) may be added dropwise to (1) and / or (2), and (1) and / or (2) may be added dropwise to (3).
From the viewpoint of enhancing dispersibility, it is preferable to add (1) and / or (2) dropwise to (3).
In each mixing step included in the production methods (a) to (b), (1) or (2) may be added dropwise to the dispersion, or the dispersion is added dropwise to (1) or (2). May be.
From the viewpoint of improving dispersibility, it is preferable to add (1) or (2) dropwise to the dispersion.
 (3)の有機化合物として、重合体を採用する場合、重合体は、溶媒に溶解している重合体であってもよい。 When a polymer is employed as the organic compound (3), the polymer may be a polymer dissolved in a solvent.
 重合体が溶解している溶媒は、樹脂(重合体)を溶解しうる溶媒であれば特に限定されないが、上述の本発明に係る半導体微粒子を溶解し難いものが好ましい。
 上述の樹脂が溶解している溶媒としては、例えば、メチルホルメート、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート、ペンチルアセテート等のエステル;γ-ブチロラクトン、N-メチル-2-ピロリドン、アセトン、ジメチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等のケトン;ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4-ジオキサン、1,3-ジオキソラン、4-メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、アニソール、フェネトール等のエーテル;メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、tert-ブタノール、1-ペンタノール、2-メチル-2-ブタノール、メトキシプロパノール、ジアセトンアルコール、シクロヘキサノール、2-フルオロエタノール、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロ-1-プロパノール等のアルコール;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、トリエチレングリコールジメチルエーテル等のグリコールエーテル;N,N-ジメチルホルムアミド、アセトアミド、N,N-ジメチルアセトアミド等のアミド基を有する有機溶媒;アセトニトリル、イソブチロニトリル、プロピオニトリル、メトキシアセトニトリル等のニトリル基を有する有機溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート基を有する有機溶媒;塩化メチレン、クロロホルム等のハロゲン化した炭化水素基を有する有機溶媒;n-ペンタン、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、キシレン等の炭化水素基を有する有機溶媒;ジメチルスルホキシドが挙げられる。
The solvent in which the polymer is dissolved is not particularly limited as long as it is a solvent that can dissolve the resin (polymer), but is preferably a solvent in which the semiconductor fine particles according to the present invention are difficult to dissolve.
Examples of the solvent in which the above resin is dissolved include, for example, esters such as methyl formate, ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate, pentyl acetate; γ-butyrolactone, N-methyl- Ketones such as 2-pyrrolidone, acetone, dimethyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methylcyclohexanone; diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1, Ethers such as 3-dioxolane, 4-methyldioxolane, tetrahydrofuran, methyltetrahydrofuran, anisole, phenetole; methanol, ethanol, 1-propanol, 2-pro 1-butanol, 2-butanol, tert-butanol, 1-pentanol, 2-methyl-2-butanol, methoxypropanol, diacetone alcohol, cyclohexanol, 2-fluoroethanol, 2,2,2-trifluoro Alcohols such as ethanol and 2,2,3,3-tetrafluoro-1-propanol; glycols such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, and triethylene glycol dimethyl ether Ether; organic solvent having an amide group such as N, N-dimethylformamide, acetamide, N, N-dimethylacetamide; acetonitrile, isobutyronitrile, propio Organic solvents having a nitrile group such as nitrile and methoxyacetonitrile; organic solvents having a carbonate group such as ethylene carbonate and propylene carbonate; organic solvents having a halogenated hydrocarbon group such as methylene chloride and chloroform; n-pentane, cyclohexane, Organic solvents having hydrocarbon groups such as n-hexane, benzene, toluene, xylene; dimethyl sulfoxide.
 中でもメチルホルメート、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート、ペンチルアセテート等のエステル類;γ-ブチロラクトン、アセトン、ジメチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等のケトン;ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4-ジオキサン、1,3-ジオキソラン、4-メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、アニソール、フェネトール等のエーテル、アセトニトリル、イソブチロニトリル、プロピオニトリル、メトキシアセトニトリル等のニトリル基を有する有機溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート系有機溶媒;塩化メチレン、クロロホルム等のハロゲン化した炭化水素基を有する有機溶媒;n-ペンタン、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、キシレン等の炭化水素基を有する有機溶媒は極性が低く、本発明に係るペロブスカイト化合物を溶解し難いと考えられるため好ましく、塩化メチレン、クロロホルム等のハロゲン化した炭化水素基を有する有機溶媒;n-ペンタン、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、キシレン等の炭化水素基を有する有機溶媒がより好ましい。 Among them, esters such as methyl formate, ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate, pentyl acetate; γ-butyrolactone, acetone, dimethyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methylcyclohexanone Ketones such as diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, 4-methyldioxolane, tetrahydrofuran, methyltetrahydrofuran, anisole, phenetol , An organic solvent having a nitrile group such as acetonitrile, isobutyronitrile, propionitrile, methoxyacetonitrile; Carbonate organic solvents such as carbonate and propylene carbonate; organic solvents having halogenated hydrocarbon groups such as methylene chloride and chloroform; hydrocarbon groups such as n-pentane, cyclohexane, n-hexane, benzene, toluene and xylene An organic solvent is preferable because it has low polarity and is unlikely to dissolve the perovskite compound according to the present invention, and is preferably an organic solvent having a halogenated hydrocarbon group such as methylene chloride or chloroform; n-pentane, cyclohexane, n-hexane, An organic solvent having a hydrocarbon group such as benzene, toluene or xylene is more preferable.
<(1)、(2)、(3)、及び(4)を含む組成物の製造方法>
 (1)半導体微粒子、(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物、(3)重合性化合物、及び重合体からなる群から選ばれる少なくとも1種、及び(4)アンモニア、アミン、及びカルボン酸、並びにこれらの塩又はイオンからなる群から選ばれる少なくとも1種を含む組成物の製造方法は、
 (4)アンモニア、アミン、及びカルボン酸、並びにこれらの塩又はイオンからなる群から選ばれる少なくとも1種を添加する以外は、上述の、(1)、(2)、及び(3)を含む組成物の製造方法と同様の方法とすることができる。
 (4)アンモニア、アミン、及びカルボン酸、並びにこれらの塩又はイオンからなる群から選ばれる少なくとも1種は、
上述の(1)半導体微粒子の製造方法に含まれるいずれかの工程で添加してもよく、上述の(1)、(2)、及び(3)を含む組成物の製造方法に含まれるいずれかの工程で添加してもよい。
 (4)アンモニア、アミン、及びカルボン酸、並びにこれらの塩又はイオンからなる群から選ばれる少なくとも1種は、半導体微粒子の分散性を高める観点からは、(1)半導体微粒子の製造方法に含まれるいずれかの工程で添加することが好ましい。これにより、例えば、(4)アンモニア、アミン、及びカルボン酸、並びにこれらの塩又はイオンからなる群から選ばれる少なくとも1種を含む(1)半導体微粒子が、(3)重合性化合物、及び重合体からなる群から選ばれる少なくとも1種に分散している分散体と、(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物との混合物として、本発明に係る組成物を得ることができる。
<The manufacturing method of the composition containing (1), (2), (3), and (4)>
(1) semiconductor fine particles, (2) an organic compound having an amino group, an alkoxy group, and a silicon atom, (3) at least one selected from the group consisting of a polymerizable compound and a polymer, and (4) ammonia, an amine And a method for producing a composition comprising at least one selected from the group consisting of carboxylic acids, and salts or ions thereof,
(4) The composition comprising (1), (2), and (3) described above, except that at least one selected from the group consisting of ammonia, amine, carboxylic acid, and salts or ions thereof is added. It can be set as the method similar to the manufacturing method of a thing.
(4) At least one selected from the group consisting of ammonia, amine, and carboxylic acid, and salts or ions thereof,
Any of the steps included in the above-described method (1) included in the method for manufacturing semiconductor fine particles and included in the method for manufacturing a composition including the above-described (1), (2), and (3). It may be added in the step.
(4) At least one selected from the group consisting of ammonia, amine, carboxylic acid, and salts or ions thereof is included in (1) the method for producing semiconductor fine particles from the viewpoint of enhancing the dispersibility of the semiconductor fine particles. It is preferable to add at any step. Thereby, for example, (4) at least one selected from the group consisting of (4) ammonia, amines, carboxylic acids, and salts or ions thereof, (1) semiconductor fine particles, (3) polymerizable compounds, and polymers The composition according to the present invention can be obtained as a mixture of a dispersion dispersed in at least one selected from the group consisting of: (2) an organic compound having an amino group, an alkoxy group, and a silicon atom. .
<(1)、(2)、及び(3’)を含み、(1)、(2)及び(3’)の合計が90質量%以上である組成物の製造方法>
 (1)、(2)、及び(3’)を含み、(1)、(2)及び(3’)の合計が90質量%以上である組成物の製造方法としては、例えば、
 (1)半導体微粒子と、(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物と、重合性化合物とを混合する工程と、
重合性化合物を重合させる工程と、を含む製造方法、並びに、
 (1)半導体微粒子と、(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物と、溶媒に溶解している重合体とを混合する工程と、溶媒を除去する工程と、を含む製造方法
が挙げられる。
<The manufacturing method of the composition which (1), (2) and (3 ') are included, and the sum total of (1), (2) and (3') is 90 mass% or more>
As a method for producing a composition that includes (1), (2), and (3 ′), and the total of (1), (2), and (3 ′) is 90% by mass or more, for example,
(1) mixing a semiconductor fine particle, (2) an organic compound having an amino group, an alkoxy group, and a silicon atom, and a polymerizable compound;
A step of polymerizing a polymerizable compound, and a production method comprising:
(1) A process comprising a step of mixing semiconductor fine particles, (2) an organic compound having an amino group, an alkoxy group and a silicon atom, and a polymer dissolved in the solvent, and a step of removing the solvent. A method is mentioned.
 前記製造方法に含まれる、混合する工程では、既に説明した、(1)半導体微粒子、(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物、及び(3)重合性化合物、及び重合体からなる群より選ばれる少なくとも1種を含む組成物の製造方法と同様の混合方法を用いることができる。
 前記製造方法は、例えば、
 (a1) 重合性化合物に、(1)半導体微粒子を分散させ、分散体を得る工程と、得られた分散体と(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物とを混合する工程と、重合性化合物を重合させる工程と、を含む製造方法であってもよく、
 (a2) 溶媒に溶解している重合体に、(1)半導体微粒子を分散させ、分散体を得る工程と、得られた分散体と(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物とを混合する工程と、溶媒を除去する工程と、を含む製造方法であってもよく、
 (b1) 重合性化合物に、(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物を分散させ、分散体を得る工程と、得られた分散体と、(1)半導体微粒子とを混合する工程と、重合性化合物を重合させる工程と、を含む製造方法であってもよく、
 (b2) 溶媒に溶解している重合体に、(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物を分散させ、分散体を得る工程と、得られた分散体と、(1)半導体微粒子とを混合する工程と、溶媒を除去する工程と、を含む製造方法であってもよく、
 (c1) 重合性化合物に、(1)半導体微粒子及び(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物の混合物を分散させる工程と、重合性化合物を重合させる工程と、を含む製造方法であってもよい。
 (c2) 溶媒に溶解している重合体に、(1)半導体微粒子及び(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物の混合物を分散させる工程と、溶媒を除去する工程と、を含む製造方法であってもよい。
In the mixing step included in the production method, (1) semiconductor fine particles, (2) an organic compound having an amino group, an alkoxy group, and a silicon atom, and (3) a polymerizable compound and a polymer, which have already been described. The mixing method similar to the manufacturing method of the composition containing at least 1 sort (s) chosen from the group which consists of can be used.
The manufacturing method is, for example,
(A1) In the polymerizable compound, (1) a step of dispersing semiconductor fine particles to obtain a dispersion, and the obtained dispersion and (2) an organic compound having an amino group, an alkoxy group, and a silicon atom are mixed. A production method comprising a step and a step of polymerizing a polymerizable compound,
(A2) (1) Step of dispersing semiconductor fine particles in a polymer dissolved in a solvent to obtain a dispersion, and (2) Organic having an amino group, an alkoxy group, and a silicon atom. It may be a production method comprising a step of mixing a compound and a step of removing the solvent,
(B1) In the polymerizable compound, (2) an organic compound having an amino group, an alkoxy group, and a silicon atom is dispersed to obtain a dispersion, and the obtained dispersion is mixed with (1) semiconductor fine particles. And a process comprising polymerizing a polymerizable compound,
(B2) A step of obtaining a dispersion by dispersing (2) an organic compound having an amino group, an alkoxy group, and a silicon atom in a polymer dissolved in a solvent, and the obtained dispersion, (1) The method may include a step of mixing the semiconductor fine particles and a step of removing the solvent,
(C1) Production comprising (1) semiconductor fine particles and (2) a step of dispersing a mixture of an organic compound having an amino group, an alkoxy group, and a silicon atom, and a step of polymerizing the polymerizable compound in the polymerizable compound. It may be a method.
(C2) in the polymer dissolved in the solvent, (1) a step of dispersing the semiconductor fine particles and (2) a mixture of an organic compound having an amino group, an alkoxy group, and a silicon atom, a step of removing the solvent, The manufacturing method containing this may be sufficient.
 前記製造方法に含まれる、溶媒を除去する工程は、室温で静置し、自然乾燥させる工程であってもよいし、真空乾燥機を用いた減圧乾燥や加熱によって溶媒を蒸発させる工程であってもよい。
 例えば、0~300℃で、1分間~7日間乾燥させることで、溶媒を除去することができる。
The step of removing the solvent included in the production method may be a step of standing at room temperature and natural drying, or a step of evaporating the solvent by vacuum drying or heating using a vacuum dryer. Also good.
For example, the solvent can be removed by drying at 0 to 300 ° C. for 1 minute to 7 days.
 前記製造方法に含まれる、重合性化合物を重合させる工程は、ラジカル重合などの公知の重合反応を適宜用いることでおこなうことができる。
 例えばラジカル重合の場合は、(1)半導体微粒子と、(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物と、重合性化合物との混合物に、ラジカル重合開始剤を添加し、ラジカルを発生させることで重合反応が進行させることができる。
 ラジカル重合開始剤は特に限定されるものではないが、光ラジカル重合開始剤が挙げられる。
 上記光ラジカル重合開始剤としては、例えば、bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide等が挙げられる。
The step of polymerizing the polymerizable compound included in the production method can be performed by appropriately using a known polymerization reaction such as radical polymerization.
For example, in the case of radical polymerization, a radical polymerization initiator is added to a mixture of (1) semiconductor fine particles, (2) an organic compound having an amino group, an alkoxy group, and a silicon atom, and a polymerizable compound, By making it generate | occur | produce, a polymerization reaction can be advanced.
The radical polymerization initiator is not particularly limited, and examples thereof include a photo radical polymerization initiator.
Examples of the photo radical polymerization initiator include bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide.
<(1)、(2)、(3’)、及び(4)を含み、(1)、(2)、(3’)及び(4)の合計が90質量%以上である組成物の製造方法>
 (1)半導体微粒子、(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物、(3’)重合体、(4)アンモニア、アミン、及びカルボン酸、並びにこれらの塩又はイオンからなる群から選ばれる少なくとも1種を含む組成物であって、(1)、(2)、(3’)及び(4)の合計が90質量%以上である組成物の製造方法は、
 (4)アンモニア、アミン、及びカルボン酸、並びにこれらの塩又はイオンからなる群から選ばれる少なくとも1種を添加する以外は、既に説明した、(1)、(2)、及び(3’)を含む組成物であって、(1)、(2)及び(3’)の合計が90質量%以上である組成物の製造方法と同様の方法とすることができる。
 (4)アンモニア、アミン、及びカルボン酸、並びにこれらの塩又はイオンからなる群から選ばれる少なくとも1種は、
上述の(1)半導体微粒子の製造方法に含まれるいずれかの工程で添加してもよく、上述の(1)半導体微粒子と、(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物と、重合性化合物とを混合する工程で添加してもよく、上述の(1)半導体微粒子と、(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物と、溶媒に溶解している重合体とを混合する工程で添加してもよい。
 (5)アンモニア、アミン、及びカルボン酸、並びにこれらの塩又はイオンからなる群から選ばれる少なくとも1種は、半導体微粒子の分散性を高める観点から(1)半導体微粒子の製造方法に含まれるいずれかの工程で添加することが好ましい。
<Production of a composition comprising (1), (2), (3 ′) and (4), wherein the total of (1), (2), (3 ′) and (4) is 90% by mass or more Method>
(1) Semiconductor fine particles, (2) an organic compound having an amino group, an alkoxy group, and a silicon atom, (3 ′) a polymer, (4) ammonia, an amine, a carboxylic acid, and a salt or ion thereof. A method for producing a composition comprising at least one selected from the group consisting of (1), (2), (3 ′) and (4) is 90% by mass or more,
(4) Except for adding at least one selected from the group consisting of ammonia, amine, carboxylic acid, and salts or ions thereof, (1), (2), and (3 ′) already described It is the composition containing, Comprising: It can be set as the method similar to the manufacturing method of the composition whose sum total of (1), (2) and (3 ') is 90 mass% or more.
(4) At least one selected from the group consisting of ammonia, amine, and carboxylic acid, and salts or ions thereof,
The above (1) semiconductor fine particles may be added in any step included in the method for producing semiconductor fine particles, and (1) the semiconductor fine particles described above and (2) an organic compound having an amino group, an alkoxy group, and a silicon atom, In the step of mixing the polymerizable compound, the above-mentioned (1) semiconductor fine particles, (2) the organic compound having an amino group, an alkoxy group, and a silicon atom, and the weight dissolved in the solvent. It may be added in the step of mixing the coalescence.
(5) At least one selected from the group consisting of ammonia, amine, carboxylic acid, and salts or ions thereof is from the viewpoint of enhancing the dispersibility of the semiconductor fine particles (1) Any of the methods included in the method for producing semiconductor fine particles It is preferable to add in the step.
≪半導体微粒子の測定≫
 本発明に係る組成物に含まれる半導体微粒子の量は、ICP-MS(例えば、ELAN DRCII、パーキンエルマー製)、及びイオンクロマトグラフを用いて測定する。
 半導体微粒子をN,N-ジメチルホルムアミド等の良溶媒を用いて溶解した後に測定を行う。
≪Measurement of semiconductor fine particles≫
The amount of semiconductor fine particles contained in the composition according to the present invention is measured using ICP-MS (for example, ELAN DRCII, manufactured by PerkinElmer) and an ion chromatograph.
Measurement is performed after the semiconductor fine particles are dissolved using a good solvent such as N, N-dimethylformamide.
≪量子収率の測定≫
 本発明に係る半導体微粒子を含む組成物の量子収率は、絶対PL量子収率測定装置(例えば、浜松ホトニクス製、商品名C9920-02)を用いて、励起光450nm、室温、大気下で測定する。
≪Measurement of quantum yield≫
The quantum yield of the composition containing the semiconductor fine particles according to the present invention is measured using an absolute PL quantum yield measuring apparatus (for example, product name C9920-02, manufactured by Hamamatsu Photonics) at an excitation light of 450 nm, room temperature, and in the atmosphere. To do.
 (1)半導体微粒子及び(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物を含み、さらに(3)重合性化合物、及び重合体からなる群から選ばれる少なくとも1種を含む組成物においては、組成物に含まれる半導体微粒子の濃度が1000μg/mLとなるように混合比を調整し、測定する。 (1) In a composition comprising semiconductor fine particles and (2) an organic compound having an amino group, an alkoxy group and a silicon atom, and further comprising (3) a polymerizable compound and at least one selected from the group consisting of polymers. Is measured by adjusting the mixing ratio so that the concentration of the semiconductor fine particles contained in the composition is 1000 μg / mL.
 本実施形態の組成物は、上記の測定方法により測定された量子収率が、32%以上であってもよく、40%以上であってもよく、50%以上であってもよく、60%以上であってもよく、70%以上であってもよい。
 本実施形態の組成物は、上記の測定方法により測定された量子収率が、100%以下であってもよく、95%以下であってもよく、90%以下であってもよく、80%以下であってもよい。
 上記の上限値及び下限値は任意に組み合わせることができる。
 本発明の一つの側面としては、本実施形態の組成物は、上記測定方法により測定された量子収率が、32%以上100%以下であることが好ましく、40%以上100%以下であることがより好ましく、50%以上100%以下であることがさらに好ましく70%以上100以下であることが特に好ましい。
 本発明の別の側面としては、本実施形態の組成物は、上記測定方法により測定された量子収率が、32%以上95%以下であることが好ましく、40%以上90%以下であることがより好ましく、50%以上80%以下であることがさらに好ましい。また、前記量子収率は、60%以上80%以下であってもよく、70%以上80%以下であってもよい。
In the composition of the present embodiment, the quantum yield measured by the above measuring method may be 32% or more, 40% or more, 50% or more, 60% It may be more than 70% or more.
In the composition of the present embodiment, the quantum yield measured by the above measurement method may be 100% or less, may be 95% or less, may be 90% or less, and may be 80%. It may be the following.
The above upper limit value and lower limit value can be arbitrarily combined.
As one aspect of the present invention, the composition of the present embodiment preferably has a quantum yield measured by the measurement method of 32% or more and 100% or less, and 40% or more and 100% or less. Is more preferably 50% or more and 100% or less, and particularly preferably 70% or more and 100 or less.
As another aspect of the present invention, in the composition of the present embodiment, the quantum yield measured by the measurement method is preferably 32% or more and 95% or less, and 40% or more and 90% or less. Is more preferable, and 50% or more and 80% or less is still more preferable. The quantum yield may be 60% or more and 80% or less, or 70% or more and 80% or less.
≪熱耐久性の評価≫
 本発明に係る組成物を、60℃の温度で一定にしたオーブン中に保存する熱耐久性試験を行い、試験前後に量子収率を測定する。試験片は、厚み100μm、1cm×1cmとする。
 熱耐久性は、(n日間の熱耐久性試験後の量子収率)/(熱耐久性試験前の量子収率)の値として測定できる。
≪Evaluation of thermal durability≫
A thermal durability test is performed in which the composition according to the present invention is stored in an oven made constant at a temperature of 60 ° C., and the quantum yield is measured before and after the test. The test piece has a thickness of 100 μm and 1 cm × 1 cm.
The thermal durability can be measured as a value of (quantum yield after thermal durability test for n days) / (quantum yield before thermal durability test).
 本実施形態の組成物は、上記の測定方法により測定された5日間の熱耐久性試験後の熱耐久性が、0.4以上であってもよく、0.6以上であってもよく、0.8以上であってもよい。
 本実施形態の組成物は、上記の測定方法により測定された5日間の熱耐久性試験後の熱耐久性が、1.0以下であってもよく、0.95以下であってもよく、0.9以下であってもよい。
 本発明の一つの側面としては、本実施形態の組成物は、上記測定方法により測定された5日間の熱耐久性試験後の熱耐久性が、0.4以上1.0以下であることが好ましく、0.6以上1.0以下であることがより好ましく、0.8以上1.0以下であることがさらに好ましい。
 本発明の別の側面としては、本実施形態の組成物は、上記測定方法により測定された5日間の熱耐久性試験後の熱耐久性が、0.4以上0.95以下であることが好ましく、0.6以上0.95以下であることがより好ましく、0.8以上0.9以下であることがさらに好ましい。
 本実施形態の組成物は、上記の測定方法により測定された7日間の熱耐久性試験後の熱耐久性が、0.4以上であってもよく、0.6以上であってもよく、0.8以上であってもよく、0.9以上であってもよい。
 本実施形態の組成物は、上記の測定方法により測定された7日間の熱耐久性試験後の熱耐久性が、1.0以下であってもよく、0.95以下であってもよく、0.9以下であってもよい。
 本発明のさらに別の側面としては、本実施形態の組成物は、上記測定方法により測定された7日間の熱耐久性試験後の熱耐久性が、0.4以上1.0以下であることが好ましく、0.6以上1.0以下であることがより好ましく、0.8以上1.0であることがさらに好ましく、0.9以上1.0以下であることが特に好ましい。
 本発明の別の側面としては、本実施形態の組成物は、上記測定方法により測定された7日間の熱耐久性試験後の熱耐久性が、0.4以上0.95以下であることが好ましく、0.6以上0.95以下であることがより好ましく、0.8以上0.9以下であることがさらに好ましい。また、前記熱耐久性は、0.9以上0.95以下であってもよい。
The composition of this embodiment may have a thermal durability after a 5-day thermal durability test measured by the measurement method described above of 0.4 or more, or 0.6 or more, It may be 0.8 or more.
The composition of the present embodiment may have a heat durability after a 5-day heat durability test measured by the above measurement method of 1.0 or less, or 0.95 or less, It may be 0.9 or less.
As one aspect of the present invention, the composition of the present embodiment has a thermal durability of 0.4 or more and 1.0 or less after a 5-day thermal durability test measured by the measurement method. Preferably, it is 0.6 or more and 1.0 or less, and more preferably 0.8 or more and 1.0 or less.
As another aspect of the present invention, the composition of the present embodiment has a thermal durability of 0.4 or more and 0.95 or less after a 5-day thermal durability test measured by the measurement method. Preferably, it is 0.6 or more and 0.95 or less, more preferably 0.8 or more and 0.9 or less.
The composition of the present embodiment may have a thermal durability after a 7-day thermal durability test measured by the measurement method described above of 0.4 or more, or 0.6 or more, It may be 0.8 or more, or 0.9 or more.
In the composition of the present embodiment, the heat durability after a 7-day heat durability test measured by the above measurement method may be 1.0 or less, or 0.95 or less, It may be 0.9 or less.
As yet another aspect of the present invention, the composition of the present embodiment has a thermal durability after a 7-day thermal durability test measured by the above measurement method of 0.4 or more and 1.0 or less. Is preferably 0.6 or more and 1.0 or less, more preferably 0.8 or more and 1.0, and particularly preferably 0.9 or more and 1.0 or less.
As another aspect of the present invention, the composition of the present embodiment has a thermal durability after a 7-day thermal durability test measured by the measurement method of 0.4 or more and 0.95 or less. Preferably, it is 0.6 or more and 0.95 or less, more preferably 0.8 or more and 0.9 or less. The thermal durability may be 0.9 or more and 0.95 or less.
 <フィルム>
 本発明に係るフィルムは、(1)、(2)、及び(3’)を含み、(1)、(2)、及び(3’)の合計含有量が組成物の総質量に対して90質量%以上である組成物からなるフィルムである。
 (1)半導体微粒子
 (2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物
 (3’)重合体
<Film>
The film according to the present invention includes (1), (2), and (3 ′), and the total content of (1), (2), and (3 ′) is 90 with respect to the total mass of the composition. It is a film made of a composition having a mass% or more.
(1) Semiconductor fine particles (2) Organic compound having amino group, alkoxy group, and silicon atom (3 ′) polymer
 フィルム形状は特に限定されるものではなく、シート状、バー状等の形状であることができる。本明細書において「バー状の形状」とは、例えば、異方性を有する形状を意味する。異方性を有する形状としては、各辺の長さが異なる板状の形状が例示される。
 フィルムの厚みは、0.01μm~1000mmであってもよく、0.1μm~10mmであってもよく、1μm~1mmであってもよい。
 本明細書において前記フィルムの厚みは、マイクロメータにより任意の3点において測定し、その平均値を算出することにより得ることができる。
The film shape is not particularly limited, and may be a sheet shape, a bar shape or the like. In this specification, the “bar-shaped shape” means, for example, a shape having anisotropy. Examples of the shape having anisotropy include plate-like shapes having different lengths on each side.
The thickness of the film may be 0.01 μm to 1000 mm, 0.1 μm to 10 mm, or 1 μm to 1 mm.
In this specification, the thickness of the film can be obtained by measuring at any three points with a micrometer and calculating the average value.
 フィルムは、単層であってもよく、複層であってもよい。複層の場合、各層は同一の種類の実施形態の組成物が用いられていてもよく、互いに異なる種類の実施形態の組成物が用いられていてもよい。 The film may be a single layer or a multilayer. In the case of multiple layers, the same type of embodiment composition may be used for each layer, or different types of embodiment compositions may be used.
 フィルムの製造方法としては、例えば、後述の積層構造体の製造方法の(i)~(iii)の製造方法により、基板上に形成されたフィルムを得ることができる。 As a method for producing a film, for example, a film formed on a substrate can be obtained by the production methods (i) to (iii) of the production method for a laminated structure described later.
<積層構造体>
 本発明に係る積層構造体は、
 複数の層を有し、少なくとも一層が、
 (1)、(2)、及び(3’)を含み、(1)、(2)及び(3’)の合計含有量が組成物の総質量に対して90質量%以上である組成物からなる層である積層構造体である。
 (1)半導体微粒子
 (2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物
 (3’)重合体
<Laminated structure>
The laminated structure according to the present invention is
Having a plurality of layers, at least one layer being
(1), (2) and (3 ′), wherein the total content of (1), (2) and (3 ′) is 90% by mass or more based on the total mass of the composition It is a laminated structure which is a layer.
(1) Semiconductor fine particles (2) Organic compound having amino group, alkoxy group, and silicon atom (3 ′) polymer
 (1)、(2)、及び(3’)を含む組成物は、さらに、(4)アンモニア、アミン、及びカルボン酸、並びにこれらの塩又はイオンからなる群から選ばれる少なくとも1種を含んでいてもよい。 The composition containing (1), (2), and (3 ′) further contains (4) at least one selected from the group consisting of ammonia, amine, and carboxylic acid, and salts or ions thereof. May be.
 積層構造体が有する複数の層のうち、(1)、(2)、及び(3’)を含み、(1)、(2)及び(3’)の合計含有量が組成物の全質量に対して90質量%以上である組成物からなる層以外の層としては、基板、バリア層、光散乱層等の任意の層が挙げられる。
 積層される組成物の形状は特に限定されるものではなく、シート状、バー状等の任意の形状であることができる。積層される組成物は、本実施形態のフィルムであってもよい。
Among the plurality of layers of the laminated structure, it includes (1), (2), and (3 ′), and the total content of (1), (2), and (3 ′) is the total mass of the composition On the other hand, examples of the layer other than the layer composed of 90% by mass or more include arbitrary layers such as a substrate, a barrier layer, and a light scattering layer.
The shape of the laminated composition is not particularly limited, and may be any shape such as a sheet shape or a bar shape. The laminated composition may be the film of this embodiment.
(基板)
 本発明に係る積層構造体が有していてもよい層としては、特に制限は無いが、基板が挙げられる。
 基板は特に限定されず、フィルムであってもよく、発光時に光を取り出す観点から、透明なものが好ましい。基板としては、例えばポリエチレンテレフタレートなどのプラスチックや、ガラスなどの公知の材料を用いることができる。
 例えば、積層構造体において、(1)、(2)、及び(3’)を含む組成物であって、(1)、(2)及び(3’)の合計含有量が組成物の総質量に対して90質量%以上である組成物からなる層は、基板上に設けていてもよい。前記層は、本実施形態のフィルムであってもよい。
(substrate)
The layer that the laminated structure according to the present invention may have is not particularly limited, but includes a substrate.
A board | substrate is not specifically limited, A film may be sufficient and a transparent thing is preferable from a viewpoint of taking out light at the time of light emission. As the substrate, for example, a plastic such as polyethylene terephthalate or a known material such as glass can be used.
For example, in the laminated structure, the composition includes (1), (2), and (3 ′), and the total content of (1), (2), and (3 ′) is the total mass of the composition The layer made of the composition of 90% by mass or more with respect to the substrate may be provided on the substrate. The layer may be the film of this embodiment.
 図1は、本実施形態の積層構造体の構成を模式的に示す断面図である。第1の積層構造体1aは、第1の基板20及び第2の基板21の間に、本実施形態のフィルム10が設けられている。フィルム10は、封止層22によって封止されている。
 本発明の一つの側面は、第1の基板20と、第2の基板21と、第1の基板20と第2の基板21との間に位置する本実施形態に係るフィルム10と、封止層22と、を有する積層構造体であって、前記封止層が、前記フィルム10の前記第1の基板20、及び第2の基板21と接していない面上に配置されることを特徴とする積層構造体1aである。
FIG. 1 is a cross-sectional view schematically showing the configuration of the laminated structure of the present embodiment. In the first laminated structure 1 a, the film 10 of the present embodiment is provided between the first substrate 20 and the second substrate 21. The film 10 is sealed with a sealing layer 22.
One aspect of the present invention includes a first substrate 20, a second substrate 21, a film 10 according to the present embodiment located between the first substrate 20 and the second substrate 21, and sealing. A layered structure having a layer 22, wherein the sealing layer is disposed on a surface of the film 10 that is not in contact with the first substrate 20 and the second substrate 21. This is a laminated structure 1a.
(バリア層)
 本発明に係る積層構造体が有していてもよい層としては、特に制限は無いが、バリア層が挙げられる。外気の水蒸気、及び大気中の空気から前述の組成物を保護するため、バリア層を含んでいても良い。
 バリア層は、特に制限は無いが、発光した光を取り出すと言う観点から透明なバリア層が好ましく、例えば、ポリエチレンテレフタレートなどのポリマー、ガラス膜などの公知のバリア層を適用する事ができる。
(Barrier layer)
Although there is no restriction | limiting in particular as a layer which the laminated structure which concerns on this invention may have, A barrier layer is mentioned. In order to protect the above-mentioned composition from water vapor in the outside air and air in the atmosphere, a barrier layer may be included.
The barrier layer is not particularly limited, but is preferably a transparent barrier layer from the viewpoint of extracting emitted light. For example, a known barrier layer such as a polymer such as polyethylene terephthalate or a glass film can be applied.
(光散乱層)
 本発明に係る積層構造体が有していてもよい層としては、特に制限は無いが、光散乱層が挙げられる。入射した光を効率的に吸収される観点から、光散乱層を含んでいてもよい。
 光散乱層は、特に制限は無いが、発光した光を取り出すという観点から透明な光散乱層が好ましく、例えば、シリカ粒子などの光散乱粒子や、増幅拡散フィルムなどの公知の光散乱層を適用する事ができる。
(Light scattering layer)
Although there is no restriction | limiting in particular as a layer which the laminated structure which concerns on this invention may have, A light-scattering layer is mentioned. From the viewpoint of efficiently absorbing the incident light, a light scattering layer may be included.
The light scattering layer is not particularly limited, but a transparent light scattering layer is preferable from the viewpoint of extracting emitted light. For example, a light scattering layer such as silica particles or a known light scattering layer such as an amplification diffusion film is applied. I can do it.
<積層構造体の製造方法>
 積層構造体の製造方法としては、例えば、
 (i) (1)半導体微粒子と、(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物と、溶媒に溶解している重合体とを混合する工程と、
 得られた組成物を基板上に塗工する工程と、
 溶媒を除去する工程とを含む積層構造体の製造方法、
 (ii) (1)、(2)、及び(3’)を含む組成物であって、(1)、(2)及び(3’)の合計含有量が前記組成物の総質量に対して90質量%以上である組成物を、基板に張り合わせる工程を含む積層構造体の製造方法、
 (1)半導体微粒子
 (2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物
 (3’)重合体
 (iii) (1)半導体微粒子、(2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物、並びに、重合性化合物を混合する工程と、
 得られた組成物を基板上に塗工する工程と、
 重合性化合物を重合させる工程とを含む製造方法が挙げられる。
<Method for producing laminated structure>
As a manufacturing method of the laminated structure, for example,
(I) (1) a step of mixing semiconductor fine particles, (2) an organic compound having an amino group, an alkoxy group, and a silicon atom, and a polymer dissolved in a solvent;
Coating the obtained composition on a substrate;
A method for producing a laminated structure including a step of removing the solvent,
(Ii) A composition comprising (1), (2) and (3 ′), wherein the total content of (1), (2) and (3 ′) is relative to the total mass of the composition A method for producing a laminated structure including a step of bonding a composition of 90% by mass or more to a substrate;
(1) Semiconductor fine particles (2) Organic compounds having amino groups, alkoxy groups, and silicon atoms (3 ′) Polymers (iii) (1) Semiconductor fine particles, (2) having amino groups, alkoxy groups, and silicon atoms Mixing an organic compound and a polymerizable compound;
Coating the obtained composition on a substrate;
And a step of polymerizing a polymerizable compound.
 (i)の製造方法に含まれる、混合する工程、及び、溶媒を除去する工程、
 (iii)の製造方法に含まれる、混合する工程、及び、重合性化合物を重合させる工程は、
それぞれ、既に説明した、(1)、(2)、及び(3’)を含む組成物であって、(1)、(2)及び(3’)の合計含有量が前記組成物の総質量に対して90質量%以上である組成物の製造方法に含まれる工程と同様の工程とすることができる。
The step of mixing and the step of removing the solvent, which are included in the production method of (i),
The step of mixing and the step of polymerizing the polymerizable compound included in the production method of (iii)
Each of the compositions containing (1), (2), and (3 ′), which has already been described, wherein the total content of (1), (2), and (3 ′) is the total mass of the composition It can be set as the process similar to the process included in the manufacturing method of the composition which is 90 mass% or more with respect to this.
 (i)、及び(iii)の製造方法に含まれる、基板上に塗工する工程は、特に制限はないが、グラビア塗布法、バー塗布法、印刷法、スプレー法、スピンコーティング法、ディップ法、ダイコート法等の、公知の塗布方法を用いることができる。 The step of coating on the substrate included in the manufacturing methods of (i) and (iii) is not particularly limited, but gravure coating method, bar coating method, printing method, spray method, spin coating method, dip method A known coating method such as a die coating method can be used.
 (ii)の製造方法に含まれる、基板に張り合わせる工程では、任意の接着剤を用いる事ができる。
 接着剤は、(1)半導体微粒子を溶解しない物であれば特に制限は無く、公知の接着剤を用いることができる。
An arbitrary adhesive can be used in the step of bonding to the substrate, which is included in the manufacturing method (ii).
The adhesive is not particularly limited as long as it does not dissolve (1) semiconductor fine particles, and a known adhesive can be used.
 積層構造体の製造方法は、(i)~(iii)で得られた積層構造体に、さらに、任意のフィルムを張り合わせる工程を含む製造方法であってもよい。
 張り合わせるフィルムとしては、例えば、反射フィルム、拡散フィルムが挙げられる。
 フィルムを張り合わせる工程では任意の接着剤を用いる事ができる。
 上述の接着剤は、(1)半導体微粒子を溶解しない物であれば特に制限は無く、公知の接着剤を用いることができる。
The manufacturing method of the laminated structure may be a manufacturing method including a step of further bonding an arbitrary film to the laminated structure obtained in (i) to (iii).
Examples of the film to be bonded include a reflection film and a diffusion film.
Any adhesive can be used in the step of laminating the films.
The above-mentioned adhesive is not particularly limited as long as (1) it does not dissolve the semiconductor fine particles, and a known adhesive can be used.
<発光装置>
 本発明に係わる発光装置は、前述の組成物、又は前述の積層構造体と、光源とを合せることで得る事ができる。本発明に係わる発光装置は、光源から発光した光を、後段に設置した前述の組成物に照射する事で、前述の組成物を発光させ、光を取り出す装置である。前記発光装置における積層構造体は、反射フィルム、拡散フィルム、輝度強化部、プリズムシート、導光板、要素間の媒体材料層などの層を含んでいてもよい。
 本発明の一つの側面は、プリズムシート50と、導光板60と、前記第一の積層構造体1aと、光源30と、がこの順に積層された発光装置2である。
<Light emitting device>
The light emitting device according to the present invention can be obtained by combining the above composition or the above laminated structure with a light source. The light-emitting device according to the present invention is a device that emits light from the above-mentioned composition by irradiating light emitted from a light source onto the above-described composition installed in the subsequent stage, and extracts the light. The laminated structure in the light emitting device may include layers such as a reflection film, a diffusion film, a brightness enhancement portion, a prism sheet, a light guide plate, and a medium material layer between elements.
One aspect of the present invention is the light emitting device 2 in which the prism sheet 50, the light guide plate 60, the first laminated structure 1a, and the light source 30 are laminated in this order.
(光源)
 本発明に係わる発光装置を構成する光源は、特に制限は無いが、前述の組成物、又は積層構造体中の半導体微粒子を発光させるという観点から、600nm以下の発光波長を有する光源が好ましく、例えば、青色発光ダイオードなどの発光ダイオード(LED)、レーザー、ELなどの公知の光源を使用する事ができる。
(light source)
The light source constituting the light emitting device according to the present invention is not particularly limited, but a light source having an emission wavelength of 600 nm or less is preferable from the viewpoint of emitting the semiconductor fine particles in the composition or the laminated structure, for example, A known light source such as a light emitting diode (LED) such as a blue light emitting diode, a laser, or an EL can be used.
(反射フィルム)
 本発明に係わる発光装置は、特に制限は無いが、光源の光を前記組成物、又は前記積層構造体に向かって照射するための光反射部材を含むことができる。
 反射フィルムは、特に制限は無いが、反射鏡、反射粒子のフィルム、反射金属フィルム、又は反射体等、任意の好適な公知材料を含み得る。
(Reflective film)
Although there is no restriction | limiting in particular, the light-emitting device concerning this invention can contain the light reflection member for irradiating the light of a light source toward the said composition or the said laminated structure.
The reflective film is not particularly limited, but may include any suitable known material such as a reflector, a film of reflective particles, a reflective metal film, or a reflector.
(拡散フィルム)
 本発明に係わる発光装置は、特に制限は無いが、光源の光、又は前記組成物から発した光を拡散させるための、光散乱部材を含むことができる。拡散フィルムは、増幅拡散フィルム等の、前記技術分野で既知の任意の拡散フィルムを含んでもよい。
(Diffusion film)
Although there is no restriction | limiting in particular, the light-emitting device concerning this invention can contain the light-scattering member for diffusing the light of a light source, or the light emitted from the said composition. The diffusion film may include any diffusion film known in the art, such as an amplification diffusion film.
(輝度強化部)
 本発明に係わる発光装置は、特に制限は無いが、光の一部分を、光が伝送された方向に向かって反射して戻す、輝度強化部を含むことができる。
(Brightness enhancement part)
Although there is no restriction | limiting in particular, the light-emitting device concerning this invention can contain the brightness | luminance enhancement part which reflects and returns a part of light toward the direction where the light was transmitted.
(プリズムシート)
 プリズムシートは、代表的には、基材部とプリズム部とを有する。なお、基材部は、隣接する部材に応じて省略してもよい。 プリズムシートは、任意の適切な接着層(例えば、接着剤層、粘着剤層:)を介して隣接する部材に貼り合わせられ得る。プリズムシートは、視認側とは反対側(背面側)に凸となる複数の単位プリズムが並列されて構成されている。プリズムシートの凸部を背面側に向けて配置することにより、プリズムシートを透過する光が集光されやすくなる。また、プリズムシートの凸部を背面側に向けて配置すれば、凸部を視認側に向けて配置する場合と比較して、プリズムシートに入射せずに反射する光が少なく、輝度の高いディスプレイを得ることができる。
(Prism sheet)
The prism sheet typically has a base material portion and a prism portion. In addition, you may abbreviate | omit a base material part according to an adjacent member. The prism sheet can be bonded to an adjacent member via any appropriate adhesive layer (for example, an adhesive layer, an adhesive layer :). The prism sheet includes a plurality of unit prisms that are convex on the opposite side (rear side) to the viewing side. By disposing the convex portion of the prism sheet toward the back side, the light transmitted through the prism sheet is easily collected. In addition, if the convex part of the prism sheet is arranged toward the back side, the light that is reflected without entering the prism sheet is reduced and the brightness is high compared to the case where the convex part is arranged toward the viewing side. Can be obtained.
(導光板)
 導光板としては、任意の適切な導光板が用いられ得る。例えば、横方向からの光を厚さ方向に偏向可能となるよう、背面側にレンズパターンが形成された導光板、背面側及び/又は視認側にプリズム形状等が形成された導光板が用いられる。
(Light guide plate)
Any appropriate light guide plate may be used as the light guide plate. For example, a light guide plate in which a lens pattern is formed on the back side and a light guide plate in which a prism shape or the like is formed on the back side and / or the viewing side are used so that light from the lateral direction can be deflected in the thickness direction. .
(要素間の媒体材料層)
 本発明に係わる発光装置は、特に制限は無いが、隣接する要素(層)間の光路上に1つ以上の媒体材料からなる層を含んでいてもよい。1つ以上の媒体には、真空、空気、ガス、光学材料、接着剤、光学接着剤、ガラス、ポリマー、固体、液体、ゲル、硬化材料、光学結合材料、屈折率整合又は屈折率不整合材料、屈折率勾配材料、クラッディング又は抗クラッディング材料、スペーサー、シリカゲル、輝度強化材料、散乱又は拡散材料、反射又は抗反射材料、波長選択性材料、波長選択性抗反射材料、色フィルター、又は前記技術分野で既知の他の好適な媒体、が含まれるが、これらに限定されない、任意の好適な材料が含まれてもよい。
(Media material layer between elements)
The light emitting device according to the present invention is not particularly limited, but may include a layer made of one or more medium materials on an optical path between adjacent elements (layers). One or more media may include vacuum, air, gas, optical material, adhesive, optical adhesive, glass, polymer, solid, liquid, gel, curable material, optical coupling material, index matching or index mismatch material , Refractive index gradient material, cladding or anti-cladding material, spacer, silica gel, brightness enhancing material, scattering or diffusing material, reflective or anti-reflective material, wavelength selective material, wavelength selective anti-reflective material, color filter, or said Any suitable material known in the art may be included, including but not limited to any suitable material.
 本発明に係る発光装置の具体例としては、例えば、ELディスプレイや液晶ディスプレイ用の波長変換材料を備えたものが挙げられる。
 具体的には、
 (1)本発明の組成物をガラスチューブ等の中に入れて封止し、これを導光板の端面(側面)に沿うように、光源である青色発光ダイオードと導光板の間に配置して、青色光を緑色光や赤色光に変換するバックライト(オンエッジ方式のバックライト)、
 (2)本発明に係る組成物をシート化し、これを2枚のバリアーフィルムで挟んで封止したフィルムを、導光板の上に設置して、導光板の端面(側面)に置かれた青色発光ダイオードから導光板を通して前記シートに照射される青色の光を緑色光や赤色光に変換するバックライト(表面実装方式のバックライト)、
 (3)半導体微粒子を、樹脂等に分散させて青色発光ダイオードの発光部近傍に設置し、照射される青色の光を緑色光や赤色光に変換するバックライト(オンチップ方式のバックライト)、及び
 (4)半導体微粒子を、レジスト中に分散させて、カラーフィルター上に設置し、光源から照射される青色の光を緑色光や赤色光に変換するバックライトが挙げられる。
Specific examples of the light-emitting device according to the present invention include, for example, those provided with wavelength conversion materials for EL displays and liquid crystal displays.
In particular,
(1) Put the composition of the present invention in a glass tube or the like and seal it, and arrange it between the blue light-emitting diode that is the light source and the light guide plate along the end face (side surface) of the light guide plate, Backlight that converts blue light into green or red light (on-edge type backlight),
(2) A blue film placed on the end face (side face) of the light guide plate by placing the film of the composition according to the present invention into a sheet and sealing it with two barrier films sandwiched between them. A backlight (surface mount type backlight) that converts blue light emitted from the light emitting diodes through the light guide plate to the sheet into green light or red light,
(3) A backlight (on-chip type backlight) that disperses semiconductor fine particles in a resin or the like and is installed in the vicinity of the light emitting portion of the blue light emitting diode, and converts the emitted blue light into green light or red light; And (4) A backlight in which semiconductor fine particles are dispersed in a resist and placed on a color filter to convert blue light emitted from a light source into green light or red light.
 また、本発明に係る発光装置の具体例としては、本発明の組成物を成形し、光源である青色発光ダイオードの後段に配置して、青色光を緑色光や赤色光に変換して白色光を発する照明が挙げられる。 Further, as a specific example of the light emitting device according to the present invention, the composition of the present invention is molded and disposed at the subsequent stage of the blue light emitting diode as the light source, and the blue light is converted into green light or red light to generate white light Illumination that emits.
<発光装置の製造方法>
 例えば、前述の光源と、光源から後段の光路上に前述の組成物、又は積層構造体を設置する工程とを含む製造方法が挙げられる。
<Method for manufacturing light emitting device>
For example, the manufacturing method including the above-mentioned light source and the process of installing the above-mentioned composition or laminated structure on the optical path of a back | latter stage from a light source is mentioned.
<ディスプレイ>
 図2に示すように、本実施形態のディスプレイ3は、液晶パネル40と、前述の発光装置2とを視認側からこの順に備える。発光装置2は、第2の積層構造体1bと光源30とを備える。第2の積層構造体1bは、前述の第1の積層構造体1aが、プリズムシート50と、導光板60と、をさらに備えたものである。液晶パネルは、代表的には、液晶セルと、前記液晶セルの視認側に配置された視認側偏光板と、前記液晶セルの背面側に配置された背面側偏光板とを備える。ディスプレイは、任意の適切なその他の部材をさらに備えていてもよい。
 本発明の一つの側面は、液晶パネル40と、プリズムシート50と、導光板60と、前記第一の積層構造体1aと、光源30と、がこの順に積層された液晶ディスプレイ3である。
<Display>
As shown in FIG. 2, the display 3 of this embodiment includes a liquid crystal panel 40 and the light-emitting device 2 described above in this order from the viewing side. The light emitting device 2 includes a second laminated structure 1b and a light source 30. In the second laminated structure 1b, the first laminated structure 1a described above further includes a prism sheet 50 and a light guide plate 60. The liquid crystal panel typically includes a liquid crystal cell, a viewing side polarizing plate disposed on the viewing side of the liquid crystal cell, and a back side polarizing plate disposed on the back side of the liquid crystal cell. The display may further include any appropriate other member.
One aspect of the present invention is the liquid crystal display 3 in which the liquid crystal panel 40, the prism sheet 50, the light guide plate 60, the first laminated structure 1a, and the light source 30 are laminated in this order.
<液晶パネル>
 上記液晶パネルは、代表的には、液晶セルと、前記液晶セルの視認側に配置された視認側偏光板と、前記液晶セルの背面側に配置された背面側偏光板とを備える。視認側偏光板及び背面側偏光板は、それぞれの吸収軸が実質的に直交又は平行となるようにして配置され得る。
<LCD panel>
The liquid crystal panel typically includes a liquid crystal cell, a viewing side polarizing plate disposed on the viewing side of the liquid crystal cell, and a back side polarizing plate disposed on the back side of the liquid crystal cell. The viewing-side polarizing plate and the back-side polarizing plate can be arranged so that their absorption axes are substantially orthogonal or parallel.
(液晶セル)
 液晶セルは、一対の基板と、前記基板間に挟持された表示媒体としての液晶層とを有する。一般的な構成においては、一方の基板に、カラーフィルター及びブラックマトリクスが設けられており、他方の基板に、液晶の電気光学特性を制御するスイッチング素子と、このスイッチング素子にゲート信号を与える走査線及びソース信号を与える信号線と、画素電極及び対向電極とが設けられている。上記基板の間隔(セルギャップ)は、スペーサー等によって制御できる。上記基板の液晶層と接する側には、例えば、ポリイミドからなる配向膜等を設けることができる。
(Liquid crystal cell)
The liquid crystal cell includes a pair of substrates and a liquid crystal layer as a display medium sandwiched between the substrates. In a general configuration, a color filter and a black matrix are provided on one substrate, a switching element that controls the electro-optical characteristics of the liquid crystal on the other substrate, and a scanning line that supplies a gate signal to the switching element. In addition, a signal line for supplying a source signal, a pixel electrode, and a counter electrode are provided. The distance between the substrates (cell gap) can be controlled by a spacer or the like. For example, an alignment film made of polyimide can be provided on the side of the substrate in contact with the liquid crystal layer.
(偏光板)
 偏光板は、代表的には、偏光子と、偏光子の両側に配置された保護層とを有する。偏光子は、代表的には吸収型偏光子である。 
 上記偏光子としては、任意の適切な偏光子が用いられる。例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。これらの中でも、ポリビニルアルコール系フィルムにヨウ素などの二色性物質を吸着させて一軸延伸した偏光子が、偏光二色比が高く、特に好ましい。
(Polarizer)
The polarizing plate typically includes a polarizer and protective layers disposed on both sides of the polarizer. The polarizer is typically an absorptive polarizer.
Any appropriate polarizer is used as the polarizer. For example, dichroic substances such as iodine and dichroic dyes are adsorbed on hydrophilic polymer films such as polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and ethylene / vinyl acetate copolymer partially saponified films. And polyene-based oriented films such as a uniaxially stretched product, a polyvinyl alcohol dehydrated product and a polyvinyl chloride dehydrochlorinated product. Among these, a polarizer obtained by adsorbing a dichroic substance such as iodine on a polyvinyl alcohol film and uniaxially stretching is particularly preferable because of its high polarization dichroic ratio.
 本発明に係る組成物組成物の用途としては、例えば、レーザーダイオード用の波長変換材料が挙げられる。
<LED>
 本発明に係る組成物は、例えば、LEDの発光層の材料として用いることができる。
 本発明に係る組成物を含むLEDとしては、例えば、本発明に係る組成物とZnSなどの導電性粒子を混合して膜状に積層し、片面にn型輸送層を積層し、もう片面をp型輸送層で積層した構造をしており、電流を流すことで、p型半導体の正孔と、n型半導体の電子が接合面の組成物に含まれる半導体微粒子中で電荷を打ち消すことで発光する方式が挙げられる。
Examples of the use of the composition according to the present invention include a wavelength conversion material for a laser diode.
<LED>
The composition according to the present invention can be used, for example, as a material for a light emitting layer of an LED.
As an LED including the composition according to the present invention, for example, the composition according to the present invention and conductive particles such as ZnS are mixed and laminated in a film shape, an n-type transport layer is laminated on one side, and the other side is laminated. It has a structure laminated with a p-type transport layer, and by passing an electric current, the holes of the p-type semiconductor and the electrons of the n-type semiconductor cancel the charge in the semiconductor fine particles contained in the composition of the bonding surface. There is a method of emitting light.
<太陽電池>
 本発明に係る組成物は、太陽電池の活性層に含まれる電子輸送性材料として利用することができる。
 前記太陽電池としては、構成は特に限定されないが、例えば、フッ素ドープされた酸化スズ(FTO)基板、酸化チタン緻密層、多孔質酸化アルミニウム層、本発明に係る組成物を含む活性層、2,2’,7,7’-tetrakis-(N,N’-di-p-methoxyphenylamine)-9,9’-spirobifluorene(Spiro-OMeTAD)などのホール輸送層、及び、銀(Ag)電極をこの順で有する太陽電池が挙げられる。
 酸化チタン緻密層は、電子輸送の機能、FTOのラフネスを抑える効果、及び、逆電子移動を抑制する機能を有する。
 多孔質酸化アルミニウム層は、光吸収効率を向上させる機能を有する。
 活性層に含まれる、本発明に係る組成物は、電荷分離及び電子輸送の役割を果たす。
<Solar cell>
The composition according to the present invention can be used as an electron transporting material contained in the active layer of a solar cell.
The configuration of the solar cell is not particularly limited. For example, a fluorine-doped tin oxide (FTO) substrate, a titanium oxide dense layer, a porous aluminum oxide layer, an active layer containing the composition according to the present invention, A hole transport layer such as 2 ′, 7,7′-tetrakis- (N, N′-di-p-methoxyphenylamine) -9,9′-spirobifluorene (Spiro-OMeTAD) and a silver (Ag) electrode are arranged in this order. The solar cell which has in. Is mentioned.
The titanium oxide dense layer has an electron transport function, an effect of suppressing FTO roughness, and a function of suppressing reverse electron transfer.
The porous aluminum oxide layer has a function of improving light absorption efficiency.
The composition according to the present invention contained in the active layer plays a role of charge separation and electron transport.
 なお、本発明の技術範囲は上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 The technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
(組成物の合成)
[実施例1]
 炭酸セシウム0.814gと1-オクタデセンの溶媒40mLと、オレイン酸2.5mLを混合した。マグネチックスターラーで攪拌して、窒素を流しながら150℃で1時間加熱して炭酸セシウム溶液を調製した。
 臭化鉛(PbBr)0.276gを1-オクタデセンの溶媒20mLと混合した。マグネチックスターラーで攪拌して窒素を流しながら120℃の温度で1時間加熱した後、オレイン酸2mL、オレイルアミン2mLを添加した。160℃の温度に昇温した後、上述の炭酸セシウム溶液を1.6mL添加した。添加後、反応容器を氷水に漬けることで、室温まで降温した。
 次いで、分散液を10000rpm、5分間の遠心分離で沈殿を分離する事で、沈殿の半導体微粒子を得た。
 前記半導体微粒子のX線回折パターンをX線回折測定装置(XRD、Cu Kα線、X’pert PRO MPD、スペクトリス社製)で測定した所、2θ=14°の位置に(hkl)=(001)由来のピークを有しており、3次元のペロブスカイト型結晶構造を有していることを確認した。
 TEM(日本電子株式会社製、JEM-2200FS)で観察したペロブスカイト化合物の平均のフェレー径は11nmであった。
 半導体微粒子をトルエン5mLに分散させた後、分散液500μLを分取して、トルエン4.5mLに再分散させることで、半導体微粒子及び溶媒を含む分散液を得た。ICP-MS、及びイオンクロマトグラフによって測定したペロブスカイト化合物の濃度は、1500ppm(μg/g)であった。
 次いで、メタクリル樹脂(PMMA、住友化学社製、スミペックス・メタクリル樹脂、MH、分子量約12万、比重1.2g/ml)が16.5質量%となるようにトルエンと混合した後、60℃、3時間加熱して、重合体が溶解した溶液を得た。上記の半導体微粒子及び溶媒を含む分散液0.15g、及び重合体が溶解した溶液0.913gを混合した後、モル比が3-Aminopropyltrimethoxysilane/Pb=2.55となるようにアルミ製のカップ(4.5φcm)中で混合した。
 トルエンを自然乾燥で蒸発させることで、ペロブスカイト化合物の濃度が1000μg/mLの組成物を得た。組成物は1cm×1cmのサイズに切断した。
(Synthesis of composition)
[Example 1]
Cesium carbonate 0.814g, 1-octadecene solvent 40mL and oleic acid 2.5mL were mixed. The mixture was stirred with a magnetic stirrer and heated at 150 ° C. for 1 hour while flowing nitrogen to prepare a cesium carbonate solution.
0.276 g of lead bromide (PbBr 2 ) was mixed with 20 mL of 1-octadecene solvent. The mixture was stirred with a magnetic stirrer and heated at 120 ° C. for 1 hour while flowing nitrogen, and then 2 mL of oleic acid and 2 mL of oleylamine were added. After raising the temperature to 160 ° C., 1.6 mL of the above cesium carbonate solution was added. After the addition, the reaction vessel was immersed in ice water to lower the temperature to room temperature.
Next, the precipitate was separated by centrifuging the dispersion at 10,000 rpm for 5 minutes to obtain precipitated semiconductor fine particles.
When the X-ray diffraction pattern of the semiconductor fine particles was measured with an X-ray diffraction measurement device (XRD, Cu Kα ray, X′pert PRO MPD, manufactured by Spectris Co., Ltd.), (hkl) = (001) at a position of 2θ = 14 °. It has a peak derived from it and was confirmed to have a three-dimensional perovskite crystal structure.
The average ferret diameter of the perovskite compound observed by TEM (manufactured by JEOL Ltd., JEM-2200FS) was 11 nm.
After dispersing the semiconductor fine particles in 5 mL of toluene, 500 μL of the dispersion was taken and redispersed in 4.5 mL of toluene to obtain a dispersion containing the semiconductor fine particles and the solvent. The concentration of the perovskite compound measured by ICP-MS and ion chromatography was 1500 ppm (μg / g).
Next, after being mixed with toluene so that the methacrylic resin (PMMA, manufactured by Sumitomo Chemical Co., Ltd., Sumipex methacrylic resin, MH, molecular weight of about 120,000, specific gravity 1.2 g / ml) becomes 16.5% by mass, By heating for 3 hours, a solution in which the polymer was dissolved was obtained. After mixing 0.15 g of the above dispersion containing the semiconductor fine particles and the solvent and 0.913 g of the polymer-dissolved solution, an aluminum cup (with a molar ratio of 3-Aminopropyltrimethoxysilane / Pb = 2.55) ( (4.5φcm).
Toluene was evaporated by natural drying to obtain a composition having a perovskite compound concentration of 1000 μg / mL. The composition was cut to a size of 1 cm × 1 cm.
(半導体微粒子の測定)
 実施例及び比較例で得られた組成物における半導体微粒子の濃度は、それぞれ、再分散させることで得られた半導体微粒子及び溶媒を含む分散液に、N,N-ジメチルホルムアミドを添加することで半導体微粒子を溶解させた後、ICP-MS(ELAN DRCII、パーキンエルマー製)、及びイオンクロマトグラフを用いて測定した。
(Measurement of semiconductor fine particles)
The concentration of the semiconductor fine particles in the compositions obtained in the examples and comparative examples was determined by adding N, N-dimethylformamide to the dispersion containing the semiconductor fine particles and the solvent obtained by redispersion, respectively. After the fine particles were dissolved, measurement was performed using ICP-MS (ELAN DRCII, manufactured by Perkin Elmer) and an ion chromatograph.
(量子収率測定)
 実施例1~6、及び比較例1で得られた組成物の量子収率を、絶対PL量子収率測定装置(浜松ホトニクス製、商品名C9920-02、励起光450nm、室温、大気下)を用いて測定した。
(Quantum yield measurement)
The quantum yield of the compositions obtained in Examples 1 to 6 and Comparative Example 1 was measured using an absolute PL quantum yield measuring apparatus (manufactured by Hamamatsu Photonics, trade name C9920-02, excitation light 450 nm, room temperature, in the atmosphere). And measured.
(熱耐久性の評価)
 実施例1~6、及び比較例1で得られた組成物を、60℃の温度で一定にしたオーブン中に置き、5日後、又は7日後に量子収率を測定した。
(Evaluation of thermal durability)
The compositions obtained in Examples 1 to 6 and Comparative Example 1 were placed in an oven kept constant at a temperature of 60 ° C., and the quantum yield was measured after 5 days or 7 days.
 実施例1で得られた組成物の熱耐久試験前の量子収率は62%であり、熱耐久試験5日後の量子収率は28%であった。(熱耐久性試験5日後の量子収率)/(熱耐久性試験前の量子収率)の値は、0.45であった。 The quantum yield before the heat durability test of the composition obtained in Example 1 was 62%, and the quantum yield after 5 days of the heat durability test was 28%. The value of (quantum yield after 5 days of thermal durability test) / (quantum yield before thermal durability test) was 0.45.
[実施例2]
 3-Aminopropyltrimethoxysilane/Pb=4.25とする以外は上記実施例1と同様の方法で組成物を得た。
 熱耐久試験前の量子収率は66%であり、熱耐久試験5日後の量子収率は28%であった。(熱耐久性試験5日後の量子収率)/(熱耐久性試験前の量子収率)の値は、0.42であった。
[Example 2]
A composition was obtained in the same manner as in Example 1 except that 3-Aminopropyltrimethoxysilane / Pb = 4.25.
The quantum yield before the heat endurance test was 66%, and the quantum yield after 5 days of the heat endurance test was 28%. The value of (quantum yield after 5 days of thermal durability test) / (quantum yield before thermal durability test) was 0.42.
[実施例3]
 3-Aminopropyltrimethoxysilane/Pb=8.51とする以外は上記実施例1と同様の方法で組成物を得た。
 熱耐久試験前の量子収率は72%であり、熱耐久試験5日後の量子収率は61%であった。(熱耐久性試験5日後の量子収率)/(熱耐久性試験前の量子収率)の値は、0.85であった。
[Example 3]
A composition was obtained in the same manner as in Example 1 except that 3-Aminopropyltrimethoxysilane / Pb = 8.51.
The quantum yield before the heat durability test was 72%, and the quantum yield after 5 days of the heat durability test was 61%. The value of (quantum yield after 5 days of thermal durability test) / (quantum yield before thermal durability test) was 0.85.
[実施例4]
 3-Aminopropyltrimethoxysilane/Pb=17.0とする以外は上記実施例1と同様の方法で組成物を得た。
  熱耐久試験前の量子収率は72%であり、熱耐久試験7日後の量子収率は65%であった。
[Example 4]
A composition was obtained in the same manner as in Example 1 except that 3-Aminopropyltrimethoxysilane / Pb = 17.0.
The quantum yield before the heat endurance test was 72%, and the quantum yield after 7 days of the heat endurance test was 65%.
[実施例5]
 3-Aminopropyltrimethoxysilane/Pb=25.5とする以外は上記実施例1と同様の方法で組成物を得た。
 熱耐久試験前の量子収率は79%であり、熱耐久試験7日後の量子収率は66%であった。
[Example 5]
A composition was obtained in the same manner as in Example 1 except that 3-Aminopropyltrimethoxysilane / Pb = 25.5.
The quantum yield before the heat endurance test was 79%, and the quantum yield after 7 days of the heat endurance test was 66%.
[実施例6]
 3-Aminopropyltrimethoxysilane/Pb=42.5とする以外は上記実施例1と同様の方法で組成物を得た。
 熱耐久試験前の量子収率は79%であり、熱耐久試験7日後の量子収率は67%であった。
[Example 6]
A composition was obtained in the same manner as in Example 1 except that 3-Aminopropyltrimethoxysilane / Pb = 42.5.
The quantum yield before the heat endurance test was 79%, and the quantum yield after 7 days of the heat endurance test was 67%.
[比較例1]
 炭酸セシウム0.814gと1-オクタデセンの溶媒40mLと、オレイン酸2.5mLを混合した。マグネチックスターラーで攪拌して、窒素を流しながら150℃で1時間加熱して炭酸セシウム溶液を調製した。
 臭化鉛(PbBr)0.276gを1-オクタデセンの溶媒20mLと混合した。マグネチックスターラーで攪拌して窒素を流しながら120℃の温度で1時間加熱した後、オレイン酸2mL、オレイルアミン2mLを添加した。160℃の温度に昇温した後、上述の炭酸セシウム溶液を1.6mL添加した。添加後、反応容器を氷水に漬けることで、室温まで降温した。
 次いで、分散液を10000rpm、5分間の遠心分離で沈殿を分離する事で、沈殿の半導体微粒子を得た。
 前記半導体微粒子のX線回折パターンをX線回折測定装置(XRD、Cu Kα線、X’pert PRO MPD、スペクトリス社製)で測定した所、2θ=14°の位置に(hkl)=(001)由来のピークを有しており、3次元のペロブスカイト型結晶構造を有していることを確認した。
 TEM(日本電子株式会社製、JEM-2200FS)で観察したペロブスカイト化合物の平均のフェレー径は11nmであった。
 半導体微粒子をトルエン5mLに分散させた後、分散液500μLを分取して、トルエン4.5mLに再分散させることで、半導体微粒子及び溶媒を含む分散液を得た。ICP-MS、及びイオンクロマトグラフによって測定したペロブスカイト化合物の濃度は、1000μg/mLであった。
 次いで、メタクリル樹脂(PMMA、住友化学社製、スミペックス・メタクリル樹脂、MH、分子量約12万、比重1.2g/ml)が16.5質量%となるようにトルエンと混合した後、60℃、3時間加熱して、重合体が溶解した溶液を得た。上記の半導体微粒子及び溶媒を含む分散液0.15g、及び重合体が溶解した溶液0.913gをアルミ製のカップ(4.5φcm)中で混合した。
 トルエンを自然乾燥で蒸発させ、ペロブスカイト化合物の濃度が1000μg/mLの組成物を得た。組成物は1cm×1cmのサイズに切断した。
 熱耐久試験前の量子収率は27%であり、熱耐久試験5日後の量子収率は8%、熱耐久試験7日後の量子収率は0%であった。(熱耐久性試験5日後の量子収率)/(熱耐久性試験前の量子収率)の値は、0.30であった。
[Comparative Example 1]
Cesium carbonate 0.814g, 1-octadecene solvent 40mL and oleic acid 2.5mL were mixed. The mixture was stirred with a magnetic stirrer and heated at 150 ° C. for 1 hour while flowing nitrogen to prepare a cesium carbonate solution.
0.276 g of lead bromide (PbBr 2 ) was mixed with 20 mL of 1-octadecene solvent. The mixture was stirred with a magnetic stirrer and heated at 120 ° C. for 1 hour while flowing nitrogen, and then 2 mL of oleic acid and 2 mL of oleylamine were added. After raising the temperature to 160 ° C., 1.6 mL of the above cesium carbonate solution was added. After the addition, the reaction vessel was immersed in ice water to lower the temperature to room temperature.
Next, the precipitate was separated by centrifuging the dispersion at 10,000 rpm for 5 minutes to obtain precipitated semiconductor fine particles.
When the X-ray diffraction pattern of the semiconductor fine particles was measured with an X-ray diffraction measurement device (XRD, Cu Kα ray, X′pert PRO MPD, manufactured by Spectris Co., Ltd.), (hkl) = (001) at a position of 2θ = 14 °. It has a peak derived from it and was confirmed to have a three-dimensional perovskite crystal structure.
The average ferret diameter of the perovskite compound observed by TEM (manufactured by JEOL Ltd., JEM-2200FS) was 11 nm.
After dispersing the semiconductor fine particles in 5 mL of toluene, 500 μL of the dispersion was taken and redispersed in 4.5 mL of toluene to obtain a dispersion containing the semiconductor fine particles and the solvent. The concentration of the perovskite compound measured by ICP-MS and ion chromatography was 1000 μg / mL.
Next, after being mixed with toluene so that the methacrylic resin (PMMA, manufactured by Sumitomo Chemical Co., Ltd., Sumipex methacrylic resin, MH, molecular weight of about 120,000, specific gravity 1.2 g / ml) becomes 16.5% by mass, By heating for 3 hours, a solution in which the polymer was dissolved was obtained. A dispersion containing 0.15 g of the above-mentioned semiconductor fine particles and solvent and 0.913 g of a solution in which the polymer was dissolved were mixed in an aluminum cup (4.5 φcm).
Toluene was evaporated by natural drying to obtain a composition having a perovskite compound concentration of 1000 μg / mL. The composition was cut to a size of 1 cm × 1 cm.
The quantum yield before the heat endurance test was 27%, the quantum yield after 5 days of the heat endurance test was 8%, and the quantum yield after 7 days of the heat endurance test was 0%. The value of (quantum yield after 5 days of thermal durability test) / (quantum yield before thermal durability test) was 0.30.
[比較例2]
 炭酸セシウム0.814gと1-オクタデセンの溶媒40mLと、オレイン酸2.5mLを混合した。マグネチックスターラーで攪拌して、窒素を流しながら150℃で1時間加熱して炭酸セシウム溶液を調製した。
 臭化鉛(PbBr)0.276gを1-オクタデセンの溶媒20mLと混合した。マグネチックスターラーで攪拌して窒素を流しながら120℃の温度で1時間加熱した後、オレイン酸2mL、オレイルアミン2mLを添加した。160℃の温度に昇温した後、上述の炭酸セシウム溶液を1.6mL添加した。添加後、反応容器を氷水に漬けることで、室温まで降温した。
 次いで、分散液を10000rpm、5分間の遠心分離で沈殿を分離する事で、沈殿の半導体微粒子を得た。
 前記半導体微粒子のX線回折パターンをX線回折測定装置(XRD、Cu Kα線、X’pert PRO MPD、スペクトリス社製)で測定した所、2θ=14°の位置に(hkl)=(001)由来のピークを有しており、3次元のペロブスカイト型結晶構造を有していることを確認した。
 TEM(日本電子株式会社製、JEM-2200FS)で観察したペロブスカイト化合物の平均のフェレー径は11nmであった。
 半導体微粒子をトルエン5mLに分散させた後、分散液500μLを分取して、トルエン4.5mLに再分散させることで、半導体微粒子及び溶媒を含む分散液を得た。ICP-MS、及びイオンクロマトグラフによって測定したペロブスカイト化合物の濃度は、1000μg/mLであった。
 次いで、メタクリル樹脂(PMMA、住友化学社製、スミペックス・メタクリル樹脂、MH、分子量約12万、比重1.2g/ml)が16.5質量%となるようにトルエンと混合した後、60℃、3時間加熱して、重合体が溶解した溶液を得た。上記の半導体微粒子及び溶媒を含む分散液0.15g、及び重合体が溶解した溶液0.913gを混合した後、モル比がTetramethoxysilane/Pb=10.1となるようにアルミ製のカップ(4.5φcm)中で混合した。
 トルエンを自然乾燥で蒸発させ、ペロブスカイト化合物の濃度が1000μg/mLの組成物を得た。組成物は1cm×1cmのサイズに切断した。
 熱耐久試験前の量子収率は29%であり、熱耐久試験5日後の量子収率は7%、熱耐久試験7日後の量子収率は0%であった。(熱耐久性試験5日後の量子収率)/(熱耐久性試験前の量子収率)の値は、0.24であった。
[Comparative Example 2]
Cesium carbonate 0.814g, 1-octadecene solvent 40mL and oleic acid 2.5mL were mixed. The mixture was stirred with a magnetic stirrer and heated at 150 ° C. for 1 hour while flowing nitrogen to prepare a cesium carbonate solution.
0.276 g of lead bromide (PbBr 2 ) was mixed with 20 mL of 1-octadecene solvent. The mixture was stirred with a magnetic stirrer and heated at 120 ° C. for 1 hour while flowing nitrogen, and then 2 mL of oleic acid and 2 mL of oleylamine were added. After raising the temperature to 160 ° C., 1.6 mL of the above cesium carbonate solution was added. After the addition, the reaction vessel was immersed in ice water to lower the temperature to room temperature.
Next, the precipitate was separated by centrifuging the dispersion at 10,000 rpm for 5 minutes to obtain precipitated semiconductor fine particles.
When the X-ray diffraction pattern of the semiconductor fine particles was measured with an X-ray diffraction measurement device (XRD, Cu Kα ray, X′pert PRO MPD, manufactured by Spectris Co., Ltd.), (hkl) = (001) at a position of 2θ = 14 °. It has a peak derived from it and was confirmed to have a three-dimensional perovskite crystal structure.
The average ferret diameter of the perovskite compound observed by TEM (manufactured by JEOL Ltd., JEM-2200FS) was 11 nm.
After dispersing the semiconductor fine particles in 5 mL of toluene, 500 μL of the dispersion was taken and redispersed in 4.5 mL of toluene to obtain a dispersion containing the semiconductor fine particles and the solvent. The concentration of the perovskite compound measured by ICP-MS and ion chromatography was 1000 μg / mL.
Next, after being mixed with toluene so that the methacrylic resin (PMMA, manufactured by Sumitomo Chemical Co., Ltd., Sumipex methacrylic resin, MH, molecular weight of about 120,000, specific gravity 1.2 g / ml) becomes 16.5% by mass, By heating for 3 hours, a solution in which the polymer was dissolved was obtained. After mixing 0.15 g of the above-mentioned dispersion containing semiconductor fine particles and solvent and 0.913 g of the solution in which the polymer is dissolved, an aluminum cup (4.4) is added so that the molar ratio is Tetramethoxysilane / Pb = 10.1. Mixed in 5 cm).
Toluene was evaporated by natural drying to obtain a composition having a perovskite compound concentration of 1000 μg / mL. The composition was cut to a size of 1 cm × 1 cm.
The quantum yield before the heat endurance test was 29%, the quantum yield after 5 days of the heat endurance test was 7%, and the quantum yield after 7 days of the heat endurance test was 0%. The value of (quantum yield after 5 days of thermal durability test) / (quantum yield before thermal durability test) was 0.24.
 以下の表1に、実施例1~6、比較例1~2の組成物の構成と、量子収率(%)と、熱耐久性を記載する。表1中、アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物/Pbは、アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物の量をPbの量で除したモル比を表す。
 熱耐久性は、(n日間の熱耐久性試験後の量子収率)/(熱耐久性試験前の量子収率)の値で評価した。
 図3に、実施例1~3の結果を示す。
Table 1 below describes the composition, quantum yield (%), and thermal durability of the compositions of Examples 1 to 6 and Comparative Examples 1 and 2. In Table 1, the organic compound / Pb having an amino group, an alkoxy group, and a silicon atom represents a molar ratio obtained by dividing the amount of the organic compound having an amino group, an alkoxy group, and a silicon atom by the amount of Pb.
The thermal durability was evaluated by the value of (quantum yield after n-day thermal durability test) / (quantum yield before thermal durability test).
FIG. 3 shows the results of Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記の結果から、本発明を適用した実施例1~6の組成物は、本発明を適用しない比較例1~2の組成物と比して、優れた熱耐久性を有していることが確認できた。 From the above results, it can be seen that the compositions of Examples 1 to 6 to which the present invention is applied have superior thermal durability compared to the compositions of Comparative Examples 1 to 2 to which the present invention is not applied. It could be confirmed.
[参考例1]
 実施例1~6に記載の組成物を、ガラスチューブ等の中に入れて封止した後に、これを光源である青色発光ダイオードと導光板の間に配置することで、青色発光ダイオードの青色光を緑色光や赤色光に変換することができるバックライトを製造する。
[Reference Example 1]
The composition described in Examples 1 to 6 is put in a glass tube or the like and sealed, and then placed between a blue light emitting diode as a light source and a light guide plate, so that the blue light of the blue light emitting diode is emitted. Manufactures backlights that can be converted to green or red light.
[参考例2]
 実施例1~6に記載の組成物をシート化する事で樹脂組成物を得ることができ、これを2枚のバリアーフィルムで挟んで封止したフィルムを導光板の上に設置することで、導光板の端面(側面)に置かれた青色発光ダイオードから導光板を通して前記シートに照射される青色の光を緑色光や赤色光に変換することができるバックライトを製造する。
[Reference Example 2]
A resin composition can be obtained by forming the composition described in Examples 1 to 6 into a sheet, and by placing a sealed film sandwiched between two barrier films on a light guide plate, A backlight capable of converting blue light emitted from the blue light emitting diode placed on the end surface (side surface) of the light guide plate through the light guide plate to the sheet into green light or red light is manufactured.
[参考例3]
 実施例1~6に記載の組成物を、青色発光ダイオードの発光部近傍に設置することで照射される青色の光を緑色光や赤色光に変換することができるバックライトを製造する。
[Reference Example 3]
By installing the compositions described in Examples 1 to 6 in the vicinity of the light emitting portion of the blue light emitting diode, a backlight capable of converting the blue light irradiated to green light or red light is manufactured.
[参考例4]
 実施例1~6に記載の組成物とレジストを混合した後に、溶媒を除去する事で波長変換材料を得ることができる。得られた波長変換材料を光源である青色発光ダイオードと導光板の間や、光源であるOLEDの後段に配置することで、光源の青色光を緑色光や赤色光に変換することができるバックライトを製造する。
[Reference Example 4]
The wavelength conversion material can be obtained by mixing the composition described in Examples 1 to 6 and the resist and then removing the solvent. A backlight capable of converting the blue light of the light source into green light or red light by placing the obtained wavelength conversion material between the blue light emitting diode as the light source and the light guide plate or after the OLED as the light source. To manufacture.
[参考例5]
 実施例1~6に記載の組成物をZnSなどの導電性粒子を混合して成膜し、片面にn型輸送層を積層し、もう片面をp型輸送層で積層することでLEDを得る。電流を流すことによりp型半導体の正孔と、n型半導体の電子が接合面の半導体微粒子中で電荷を打ち消されることで発光させることができる。
[Reference Example 5]
The composition described in Examples 1 to 6 is mixed with conductive particles such as ZnS to form a film, an n-type transport layer is stacked on one side, and a p-type transport layer is stacked on the other side to obtain an LED. . By passing an electric current, holes in the p-type semiconductor and electrons in the n-type semiconductor can be made to emit light by canceling charges in the semiconductor fine particles on the junction surface.
[参考例6]
 フッ素ドープされた酸化スズ(FTO)基板の表面上に、酸化チタン緻密層を積層させ、その上から多孔質酸化アルミニウム層を積層し、その上に実施例1~6に記載の組成物を積層し、溶媒を除去した後にその上から2,2-,7,7-tetrakis-(N,N-di-p-methoxyphenylamine)9,9-spirobifluorene (Spiro-OMeTAD)などのホール輸送層を積層し、その上に銀(Ag)層を積層し、太陽電池を作製する。
[Reference Example 6]
A titanium oxide dense layer is laminated on the surface of a fluorine-doped tin oxide (FTO) substrate, a porous aluminum oxide layer is laminated thereon, and the compositions described in Examples 1 to 6 are laminated thereon. Then, after removing the solvent, a hole transport layer such as 2,2-, 7,7-tetrakis- (N, N-di-p-methoxyphenylamine) 9,9-spirobifluorene (Spiro-OMeTAD) is laminated thereon. Then, a silver (Ag) layer is laminated thereon to produce a solar cell.
[参考例7]
 実施例1~6に記載の組成物と樹脂を混合した後に、溶媒を除去して成形する事で本発明に係る組成物を含む樹脂組成物を得ることができ、これを青色発光ダイオードの後段に設置することで、青色発光ダイオードから前記樹脂成形体に照射される青色の光を緑色光や赤色光に変換して白色光を発するレーザーダイオード照明を製造する。
[Reference Example 7]
The resin composition containing the composition according to the present invention can be obtained by mixing the composition described in Examples 1 to 6 and the resin, and then removing the solvent and molding, and this can be obtained after the blue light-emitting diode. The laser diode illumination that emits white light by converting blue light emitted from the blue light emitting diode to the resin molded body into green light or red light is manufactured.
 本発明によれば、熱耐久性の高い組成物、前記組成物からなるフィルム、前記組成物を含む積層構造体、及び前記組成物を用いたディスプレイを提供することが可能となる。
 したがって、本発明の組成物、前記組成物からなるフィルム、前記組成物を含む積層構造体、及び前記組成物を用いたディスプレイは、発光用途において好適に使用することができる。
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the composition using a highly heat-resistant composition, the film which consists of the said composition, the laminated structure containing the said composition, and the display using the said composition.
Therefore, the composition of the present invention, the film comprising the composition, the laminated structure containing the composition, and the display using the composition can be suitably used in light emitting applications.
1a…第1の積層構造体、1b…第2の積層構造体、10…フィルム、20…第1の基板、21…第2の基板、22…封止層、2…発光装置、3…ディスプレイ、30…光源、40…液晶パネル、50…プリズムシート、60…導光板 DESCRIPTION OF SYMBOLS 1a ... 1st laminated structure, 1b ... 2nd laminated structure, 10 ... Film, 20 ... 1st board | substrate, 21 ... 2nd board | substrate, 22 ... Sealing layer, 2 ... Light-emitting device, 3 ... Display , 30 ... Light source, 40 ... Liquid crystal panel, 50 ... Prism sheet, 60 ... Light guide plate

Claims (11)

  1.  (1)、(2)、及び(3)を含み、発光性を有する組成物。
     (1)半導体微粒子
     (2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物
     (3)重合性化合物、及び重合体からなる群から選ばれる少なくとも1種
    A composition comprising (1), (2), and (3) and having luminescence.
    (1) Semiconductor fine particles (2) Organic compounds having amino groups, alkoxy groups, and silicon atoms (3) At least one selected from the group consisting of polymerizable compounds and polymers
  2.  前記(1)が、A、B、及びXを構成成分とするペロブスカイト化合物の微粒子である請求項1に記載の組成物。
     Aは、ペロブスカイト型結晶構造において、Bを中心とする6面体の各頂点に位置する成分であって、1価の陽イオンである。
     Xは、ペロブスカイト型結晶構造において、Bを中心とする8面体の各頂点に位置する成分を表し、ハロゲン化物イオン及びチオシアン酸イオンからなる群より選ばれる1種以上の陰イオンである。
     Bは、ペロブスカイト型結晶構造においてAを頂点に配置する6面体及びXを頂点に配置する8面体の中心に位置する成分であって、金属イオンである。
    The composition according to claim 1, wherein (1) is a fine particle of a perovskite compound having A, B, and X as constituent components.
    A is a component located at each vertex of a hexahedron centered on B in the perovskite crystal structure, and is a monovalent cation.
    X represents a component located at each vertex of an octahedron centered on B in the perovskite crystal structure, and is one or more anions selected from the group consisting of halide ions and thiocyanate ions.
    B is a component located at the center of a hexahedron that arranges A at the apex and an octahedron that arranges X at the apex in the perovskite crystal structure, and is a metal ion.
  3.  前記(1)が前記(3)に分散している分散体と、前記(2)との混合物である、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, wherein the (1) is a mixture of the dispersion dispersed in the (3) and the (2).
  4.  さらに、(4)アンモニア、アミン、及びカルボン酸、並びにこれらの塩又はイオンからなる群から選ばれる少なくとも1種を含む請求項1~3のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 3, further comprising (4) at least one selected from the group consisting of ammonia, amine, carboxylic acid, and salts or ions thereof.
  5.  (1)、(2)、及び(3’)を含む組成物であって、(1)、(2)及び(3’)の合計含有量が前記組成物の総質量に対して90質量%以上である組成物。
     (1)半導体微粒子
     (2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物
     (3’)重合体
    A composition comprising (1), (2) and (3 ′), wherein the total content of (1), (2) and (3 ′) is 90% by mass relative to the total mass of the composition A composition that is above.
    (1) Semiconductor fine particles (2) Organic compound having amino group, alkoxy group, and silicon atom (3 ′) polymer
  6.  さらに、(4)アンモニア、アミン、及びカルボン酸、並びにこれらの塩又はイオンからなる群から選ばれる少なくとも1種を含む請求項5に記載の組成物。 The composition according to claim 5, further comprising (4) at least one selected from the group consisting of ammonia, amine, carboxylic acid, and salts or ions thereof.
  7.  請求項5又は6に記載の組成物からなるフィルム。 A film comprising the composition according to claim 5 or 6.
  8.  複数の層を有し、少なくとも一層が、請求項5又は6に記載の組成物からなる層である、積層構造体。 A laminated structure having a plurality of layers, at least one of which is a layer made of the composition according to claim 5 or 6.
  9.  請求項8に記載の積層構造体を備える発光装置。 A light emitting device comprising the laminated structure according to claim 8.
  10.  請求項8に記載の積層構造体を備えるディスプレイ。 A display comprising the laminated structure according to claim 8.
  11.  (3)に(1)を分散させ、分散体を得る工程と、
     得られた分散体と(2)とを混合する工程とを含む、発光性を有する組成物の製造方法。
     (1)半導体微粒子
     (2)アミノ基、アルコキシ基、及びケイ素原子を有する有機化合物
     (3)重合性化合物、及び重合体からなる群から選ばれる少なくとも1種
    (1) is dispersed in (3) to obtain a dispersion;
    The manufacturing method of the composition which has luminescent property including the process of mixing the obtained dispersion and (2).
    (1) Semiconductor fine particles (2) Organic compounds having amino groups, alkoxy groups, and silicon atoms (3) At least one selected from the group consisting of polymerizable compounds and polymers
PCT/JP2017/045618 2016-12-22 2017-12-20 Composition, film, laminated structure, light-emitting device, display, and method for producing composition WO2018117130A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202211290469.4A CN115521774A (en) 2016-12-22 2017-12-20 Composition, film, laminated structure, light-emitting device, display, and method for producing composition
CN201780078423.7A CN110088230A (en) 2016-12-22 2017-12-20 The manufacturing method of composition, film, laminate structure, light emitting device, display and composition
JP2018558017A JP6830964B2 (en) 2016-12-22 2017-12-20 Compositions, films, laminated structures, light emitting devices, displays, and methods for producing compositions.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-250174 2016-12-22
JP2016250174 2016-12-22

Publications (1)

Publication Number Publication Date
WO2018117130A1 true WO2018117130A1 (en) 2018-06-28

Family

ID=62626503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045618 WO2018117130A1 (en) 2016-12-22 2017-12-20 Composition, film, laminated structure, light-emitting device, display, and method for producing composition

Country Status (4)

Country Link
JP (1) JP6830964B2 (en)
CN (2) CN115521774A (en)
TW (1) TW201840670A (en)
WO (1) WO2018117130A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019150824A1 (en) * 2018-01-30 2019-08-08 住友化学株式会社 Composition, film, laminate structure, light-emitting device, and display
WO2020085362A1 (en) * 2018-10-26 2020-04-30 住友化学株式会社 Composition, film, laminate structure, light-emitting device, and display
WO2020085364A1 (en) * 2018-10-26 2020-04-30 住友化学株式会社 Composition, film, laminated structure, light-emitting device, and display
JP2020066726A (en) * 2018-10-26 2020-04-30 住友化学株式会社 Composition, film, laminate structure, light emitting device and display
CN112912444A (en) * 2018-10-26 2021-06-04 住友化学株式会社 Composition, film, laminated structure, light-emitting device, and display

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014534322A (en) * 2011-11-09 2014-12-18 パシフィック ライト テクノロジーズ コーポレーション Semiconductor structure with nanocrystalline core and nanocrystalline shell
JP2016000803A (en) * 2014-05-19 2016-01-07 富士フイルム株式会社 Quantum dot-containing polymerizable composition, wavelength conversion member, backlight unit, liquid crystal display device, and production method of wavelength conversion member
JP2017043674A (en) * 2015-08-25 2017-03-02 シャープ株式会社 Nanoparticle phosphor and light emitting element
WO2017085831A1 (en) * 2015-11-19 2017-05-26 コニカミノルタ株式会社 Luminescent object and production process therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101702000B1 (en) * 2011-10-21 2017-02-03 삼성전자 주식회사 Semiconductor nanocrystal-polymer composite particle, method of preparing the same and composite film and optoelectronic device including the same
CN102492428B (en) * 2011-11-22 2014-01-22 无锡中德伯尔生物技术有限公司 Uniform fluorescent microball and preparation method
KR102355119B1 (en) * 2014-03-18 2022-01-26 주식회사 쿠라레 Electronic device
CN104861958B (en) * 2015-05-14 2017-02-15 北京理工大学 Perovskite/polymer composite luminescent material and preparation method thereof
CN106025042B (en) * 2016-07-25 2019-05-31 吉林大学 Stable white light LED and preparation method based on coated with silica perovskite quantum dot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014534322A (en) * 2011-11-09 2014-12-18 パシフィック ライト テクノロジーズ コーポレーション Semiconductor structure with nanocrystalline core and nanocrystalline shell
JP2016000803A (en) * 2014-05-19 2016-01-07 富士フイルム株式会社 Quantum dot-containing polymerizable composition, wavelength conversion member, backlight unit, liquid crystal display device, and production method of wavelength conversion member
JP2017043674A (en) * 2015-08-25 2017-03-02 シャープ株式会社 Nanoparticle phosphor and light emitting element
WO2017085831A1 (en) * 2015-11-19 2017-05-26 コニカミノルタ株式会社 Luminescent object and production process therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LUO, BINBIN ET AL.: "Organolead Halide Perovskite Nanocrystals: Branched Capping Ligands Control Crystal Size and Stability", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 55, 13 June 2016 (2016-06-13), pages 8864 - 8868, ISSN: 1521-3773 *
SUN, CHUNETAL: "Efficient and Stable White LEDswith Silica-Coated Inorganic Perovskite Quantum Dots", ADVANCED MATERIALS, vol. 28, 26 September 2016 (2016-09-26), pages 10088 - 10094, ISSN: 0935-9648 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019150824A1 (en) * 2018-01-30 2019-08-08 住友化学株式会社 Composition, film, laminate structure, light-emitting device, and display
JP2019131656A (en) * 2018-01-30 2019-08-08 住友化学株式会社 Composition, film, laminate structure, light-emitting device and display
WO2020085362A1 (en) * 2018-10-26 2020-04-30 住友化学株式会社 Composition, film, laminate structure, light-emitting device, and display
WO2020085364A1 (en) * 2018-10-26 2020-04-30 住友化学株式会社 Composition, film, laminated structure, light-emitting device, and display
JP2020066726A (en) * 2018-10-26 2020-04-30 住友化学株式会社 Composition, film, laminate structure, light emitting device and display
WO2020085516A1 (en) * 2018-10-26 2020-04-30 住友化学株式会社 Composition, film, laminated structure, light-emitting device, and display
JP2020066727A (en) * 2018-10-26 2020-04-30 住友化学株式会社 Composition, film, laminate structure, light emitting device and display
JP2020066568A (en) * 2018-10-26 2020-04-30 住友化学株式会社 Composition, film, laminate structure, light emitting device and display
CN112912444A (en) * 2018-10-26 2021-06-04 住友化学株式会社 Composition, film, laminated structure, light-emitting device, and display
CN112912463A (en) * 2018-10-26 2021-06-04 住友化学株式会社 Composition, film, laminated structure, light-emitting device, and display
CN112912464A (en) * 2018-10-26 2021-06-04 住友化学株式会社 Composition, film, laminated structure, light-emitting device, and display
CN112912341A (en) * 2018-10-26 2021-06-04 住友化学株式会社 Composition, film, laminated structure, light-emitting device, and display
US20210395609A1 (en) * 2018-10-26 2021-12-23 Sumitomo Chemical Company, Limited Composition, Film, Laminated Structure, Light-Emitting Device and Display
JP7133437B2 (en) 2018-10-26 2022-09-08 住友化学株式会社 Compositions, films, laminated structures, light-emitting devices and displays
CN112912341B (en) * 2018-10-26 2023-05-02 住友化学株式会社 Composition, film, laminated structure, light-emitting device, and display
CN112912464B (en) * 2018-10-26 2023-12-29 住友化学株式会社 Composition, film, laminated structure, light-emitting device, and display

Also Published As

Publication number Publication date
JPWO2018117130A1 (en) 2019-10-31
CN110088230A (en) 2019-08-02
CN115521774A (en) 2022-12-27
JP6830964B2 (en) 2021-02-17
TW201840670A (en) 2018-11-16

Similar Documents

Publication Publication Date Title
JP6600759B2 (en) Mixtures containing perovskite compounds
JP6830965B2 (en) Compositions, films, laminated structures, light emitting devices, and displays
JP7133741B1 (en) Compositions, films, laminated structures, light-emitting devices and displays
JP6830964B2 (en) Compositions, films, laminated structures, light emitting devices, displays, and methods for producing compositions.
JP6612477B2 (en) the film
JP6830967B2 (en) Compositions, films, laminated structures, light emitting devices, and displays
JP6830966B2 (en) Compositions, films, laminated structures, light emitting devices, and displays
WO2020085363A1 (en) Composition, film, laminate structure, light-emitting device, and display
WO2020085362A1 (en) Composition, film, laminate structure, light-emitting device, and display
WO2020085364A1 (en) Composition, film, laminated structure, light-emitting device, and display
WO2020179579A1 (en) Compound, composition, film, laminated structure, light-emitting device, display, and compound production method
TWI830795B (en) Compositions, films, laminated structures, light-emitting devices and displays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884606

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558017

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884606

Country of ref document: EP

Kind code of ref document: A1