WO2020085362A1 - Composition, film, laminate structure, light-emitting device, and display - Google Patents

Composition, film, laminate structure, light-emitting device, and display Download PDF

Info

Publication number
WO2020085362A1
WO2020085362A1 PCT/JP2019/041472 JP2019041472W WO2020085362A1 WO 2020085362 A1 WO2020085362 A1 WO 2020085362A1 JP 2019041472 W JP2019041472 W JP 2019041472W WO 2020085362 A1 WO2020085362 A1 WO 2020085362A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
carbon atoms
composition
component
Prior art date
Application number
PCT/JP2019/041472
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 内藤
謙太朗 間瀬
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201980070470.6A priority Critical patent/CN112912341B/en
Publication of WO2020085362A1 publication Critical patent/WO2020085362A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/16Halides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials

Definitions

  • the present invention relates to a composition, a film, a laminated structure, a light emitting device and a display.
  • LED backlights have been developed that include a blue LED (light emitting diode) and a composition having a light emitting property.
  • a blue LED light emitting diode
  • a composition having a light emitting property As a compound having a light emitting property contained in the composition, interest in a light emitting semiconductor material has been increasing (Non-Patent Document 1).
  • Non-Patent Document 1 when a composition containing a light emitting semiconductor material as described in Non-Patent Document 1 is used as a light emitting material, further improvement in heat resistance is required.
  • the present invention has been made in view of the above circumstances, and is a composition having high heat resistance including a light emitting semiconductor material, a film using the composition, a laminated structure using the film, and the laminated structure.
  • An object of the present invention is to provide a light emitting device having a body and a display.
  • Component Luminescent semiconductor material
  • Component At least one compound or ion selected from the group consisting of tertiary amines, tertiary ammonium cations, and salts formed from tertiary ammonium cations
  • A is a component located at each vertex of a hexahedron centered on B in the perovskite type crystal structure, and is a monovalent cation.
  • X represents a component located at each vertex of the octahedron centered on B in the perovskite type crystal structure, and is at least one anion selected from the group consisting of a halide ion and a thiocyanate ion.
  • B is a component located at the center of the hexahedron having A at its apex and the octahedron having X at its apex, and is a metal ion.
  • Component (5) silazane, silazane modified product, compound represented by the following formula (C1), modified product of compound represented by the following formula (C1), compound represented by the following formula (C2), below A modified product of the compound represented by formula (C2), a compound represented by the following formula (A5-51), a modified product of the compound represented by the following formula (A5-51), and a compound represented by the following formula (A5-52) ), One or more compounds selected from the group consisting of a compound represented by the following formula (A5-52), a modified product of sodium silicate, and a modified product of sodium silicate.
  • Y 5 represents a single bond, an oxygen atom or a sulfur atom.
  • R 30 and R 31 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, or 2 carbon atoms. It represents up to 20 unsaturated hydrocarbon groups.
  • R 30 is an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, or an unsaturated hydrocarbon group having 2 to 20 carbon atoms.
  • R 31 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, or an unsaturated hydrocarbon group having 2 to 20 carbon atoms.
  • R 30 , R 31 and R 32 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, or a carbon atom having 3 to 30 carbon atoms. It represents 2 to 20 unsaturated hydrocarbon groups.
  • the hydrogen atoms contained in the alkyl group, cycloalkyl group and unsaturated hydrocarbon group represented by R 30 , R 31 and R 32 may be independently substituted with a halogen atom or an amino group.
  • a is an integer of 1 to 3.
  • a plurality of Y 5 s may be the same or different.
  • a plurality of R 30's may be the same or different.
  • a plurality of R 32's may be the same or different.
  • a plurality of R 31's may be the same or different.
  • a C is a divalent hydrocarbon group
  • Y 15 is an oxygen atom or a sulfur atom.
  • R 122 and R 123 are each independently, Represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a cycloalkyl group having 3 to 30 carbon atoms
  • R 124 represents an alkyl group having 1 to 20 carbon atoms, or a cycloalkyl group having 3 to 30 carbon atoms
  • R 125 and R 126 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a cycloalkyl group having 3 to 30 carbon atoms.
  • hydrogen atoms are contained in the alkyl group and cycloalkyl group represented by .R 122 ⁇ R 126 representing a each independently may be substituted with a halogen atom or an amino group.
  • Component Polymer [5] A film using the composition according to any one of [1] to [4] as a forming material.
  • [6] A laminated structure including the film according to [5].
  • a composition having high heat resistance including a light emitting semiconductor material, a film using the composition, a laminated structure using the film, a light emitting device and a display including the laminated structure.
  • the light emitting semiconductor material (1) contained in the composition of the present embodiment has a light emitting property.
  • Luminescent refers to the property of emitting light.
  • the light emitting property is preferably a property of emitting light when excited by an electron, and more preferably a property of emitting light when excited by an electron by excitation light.
  • the wavelength of the excitation light may be, for example, 200 nm to 800 nm, 250 nm to 750 nm, or 300 nm to 700 nm.
  • composition of the present embodiment contains the component (1) and the component (2).
  • Component Luminescent semiconductor material (2)
  • Component At least one compound or ion selected from the group consisting of tertiary amines, tertiary ammonium cations, and salts formed from tertiary ammonium cations
  • the component (1) may be described as “(1) semiconductor material”, and the component (2) may be simply referred to as “(2) surface modifier”.
  • the surface modifier is a compound or ion having the action of (1) adsorbing on the surface of the semiconductor material and (1) stably dispersing the semiconductor material in the composition.
  • the composition of the present embodiment may be a composition containing (1) a semiconductor material and (2) a surface modifier, and may further include components other than (1) the semiconductor material and (2) the surface modifier. Good.
  • composition of the present embodiment contains (1) a semiconductor material, (2) a surface modifier, and is at least selected from the group consisting of (3) component, (4) component, and (4-1) component. It may contain one kind.
  • (3) solvent, (4) polymerizable compound, and (4-1) polymer may be collectively referred to as “dispersion medium”.
  • the composition of the present embodiment may be dispersed in these dispersion media.
  • composition of this embodiment may be dispersed in a dispersion medium.
  • “dispersed” refers to (1) a state in which a semiconductor material is suspended in a dispersion medium, or (1) a state in which a semiconductor material is suspended in a dispersion medium. (1) When the semiconductor material is dispersed in the dispersion medium, (1) part of the semiconductor material may be precipitated.
  • the content ratio of the dispersion medium with respect to the total mass of the composition is not particularly limited.
  • the content ratio of the dispersion medium with respect to the total mass of the composition is preferably 99.99% by mass or less, and 99.9% by mass. It is more preferably at most% by mass, further preferably at most 99% by mass.
  • the content ratio of the dispersion medium to the total mass of the composition is preferably 0.1% by mass or more, more preferably 1% by mass or more, and 10% by mass or more. Is more preferred, 50% by mass or more is more preferred, 80% by mass or more is more preferred, and 90% by mass or more is most preferred.
  • Examples of combinations of the upper limit value and the lower limit value are 0.1 to 99.99% by mass, 1 to 99.9% by mass, 1 to 99% by mass, 10 to 99% by mass, 20 to 99% by mass, and 50. ⁇ 99% by mass and 90 to 99% by mass.
  • composition of the present embodiment may further contain the component (5).
  • component (5) silazane, silazane modified product, compound represented by the formula (C1), modified compound of the compound represented by the formula (C1), compound represented by the formula (C2), A modified product of the compound represented by the formula (C2), a compound represented by the formula (A5-51), a modified product of the compound represented by the formula (A5-51), and the formula (A5-52) ), And one or more compounds selected from the group consisting of a modified form of the compound represented by the formula (A5-52), sodium silicate, and a modified form of sodium silicate.
  • the content ratio of (1) semiconductor material to the total mass of the composition is not particularly limited. From the viewpoint of making the light-emitting semiconductor material less likely to aggregate and preventing the concentration quenching, the content ratio of (1) the semiconductor material to the total mass of the composition is preferably 50 mass% or less, and 1 mass% or less. Is more preferable, and 0.3% by mass or less is further preferable. From the viewpoint of obtaining good emission intensity, the content ratio of (1) semiconductor material to the total mass of the composition is preferably 0.0001 mass% or more, and more preferably 0.0005 mass% or more. It is more preferably 0.001% by mass or more.
  • Examples of combinations of the upper limit value and the lower limit value include 0.0001 to 50% by mass, 0.0005 to 1% by mass, and 0.001 to 0.3% by mass.
  • a composition in which the content ratio of (1) semiconductor material to the total mass of the composition is within the above range is preferable because (1) aggregation of the semiconductor material is less likely to occur and luminescence is excellently exhibited.
  • the content ratio of (2) the surface modifier to the total mass of the composition is not particularly limited. From the viewpoint of improving durability, the content ratio of the (2) surface modifier to the total mass of the composition is preferably 30% by mass or less, more preferably 1% by mass or less, and 0.5% by mass. The following is more preferable. Further, (1) from the viewpoint of improving the heat resistance of the semiconductor material, it is preferably 0.0001 mass% or more, more preferably 0.001 mass% or more, and 0.01 mass% or more. Is more preferable.
  • Examples of combinations of the upper limit value and the lower limit value include 0.0001 to 30% by mass, 0.001 to 1% by mass, and 0.01 to 0.5% by mass.
  • a composition in which the content ratio of (2) the surface modifier to the total mass of the composition is within the above range is preferable because (1) the semiconductor material has excellent heat resistance.
  • the content ratio of the (5) modified body group to the total mass of the composition is not particularly limited.
  • the content ratio of the (5) modified body group to the total mass of the composition is preferably 30% by mass or less, It is more preferably 10% by mass or less, and further preferably 7.5% by mass or less.
  • the content ratio of (1) semiconductor material to the total mass of the composition is preferably 0.001% by mass or more, and more preferably 0.01% by mass or more. Is more preferably 0.1% by mass or more.
  • the upper limit value and the lower limit value can be arbitrarily combined.
  • Examples of the combination of the upper limit value and the lower limit value include 0.001 to 30% by mass, 0.001 to 10% by mass, and 0.1 to 7.5% by mass.
  • the composition in which the content ratio of the modified body group (5) to the total mass of the composition is within the above range is preferable from the viewpoint of durability.
  • composition of the present embodiment may include other components other than the above (1) to (5).
  • the composition of the present embodiment may have, for example, the component (6).
  • the details of the component (6) will be described later.
  • (6) At least one compound or ion selected from the group consisting of carboxylic acid, carboxylate ion and carboxylate salt
  • component (6) is referred to as “(6) other surface modifier”.
  • the content ratio of (6) other surface modifier to the total mass of the composition is not particularly limited. From the viewpoint of improving durability, the content ratio of (6) the other surface modifier to the total mass of the composition is preferably 30 mass% or less, more preferably 1 mass% or less, and 0.5 It is more preferable that the content is not more than mass%. Further, (1) from the viewpoint of improving the heat resistance of the semiconductor material, it is preferably 0.0001 mass% or more, more preferably 0.001 mass% or more, and 0.01 mass% or more. Is more preferable.
  • Examples of combinations of the upper limit value and the lower limit value include 0.0001 to 30% by mass, 0.001 to 1% by mass, and 0.01 to 0.5% by mass.
  • a composition in which the content ratio of (6) the other surface modifier to the total mass of the composition is within the above range is preferable because (1) the semiconductor material has excellent heat resistance.
  • composition of the present embodiment may further contain a small amount of impurities, (1) a compound having an amorphous structure composed of elements constituting a semiconductor material, and a polymerization initiator.
  • the total content of some impurities, (1) the compound having an amorphous structure composed of the elements constituting the semiconductor material, and the polymerization initiator is 10% by mass or less based on the total mass of the composition. Is preferable, 5 mass% or less is more preferable, and 1 mass% or less is further preferable.
  • (1) semiconductor material contained in the composition of the present embodiment include the following (i) to (viii).
  • (I) Group II-VI compound semiconductor-containing semiconductor material ii) Group II-V compound semiconductor-containing semiconductor material (iii) Group III-V compound semiconductor-containing semiconductor material (iv) Group III-IV Semiconductor Material Containing Compound Semiconductor (v) Semiconductor Material Containing Group III-VI Compound Semiconductor (vi) Semiconductor Material Containing Group IV-VI Compound Semiconductor (vii) Semiconductor Material Containing Transition Metal-p-Block Compound Semiconductor ( viii) a semiconductor material containing a compound semiconductor having a perovskite structure
  • the group II-VI compound semiconductor include a compound semiconductor containing a group 2 element and a group 16 element of the periodic table, and a compound semiconductor containing a group 12 element and a group 16 element of the periodic table.
  • a "periodic table” means a long period type periodic table.
  • a compound semiconductor containing a Group 2 element and a Group 16 element is referred to as a “compound semiconductor (i-1)” and a compound semiconductor containing a Group 12 element and a Group 16 element is referred to as a “compound semiconductor (i-1)”. -2) ".
  • examples of binary compound semiconductors include MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, or BaTe.
  • (i-1), (I-1-1) A ternary compound semiconductor containing one group 2 element and two group 16 elements (i-1-2) Two group 2 elements and one group 16 element A ternary compound semiconductor (i-1-3) containing two kinds of elements and a quaternary compound semiconductor containing two kinds of group 16 elements may be used.
  • binary compound semiconductors include ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, or HgTe.
  • a ternary compound semiconductor containing one group 12 element and two group 16 elements (i-2-2) two group 12 elements and one group 16 element
  • a ternary compound semiconductor (i-2-3) including two kinds may include a quaternary compound semiconductor including two kinds of Group 12 elements and two kinds of Group 16 elements.
  • the group II-VI compound semiconductor may contain an element other than the group 2 element, the group 12 element, and the group 16 element as a doping element.
  • the group II-V compound semiconductor contains a group 12 element and a group 15 element.
  • binary compound semiconductors include, for example, Zn 3 P 2 , Zn 3 As 2 , Cd 3 P 2 , Cd 3 As 2 , Cd 3 N 2 , or Zn 3 N. 2 .
  • (Ii-1) A ternary compound semiconductor containing one group 12 element and two group 15 elements
  • (ii-2) A ternary compound semiconductor containing two group 12 elements and one group 15 element
  • the compound semiconductor (ii-3) of the group may be a quaternary compound semiconductor containing two kinds of Group 12 elements and two kinds of Group 15 elements.
  • the group II-V compound semiconductor may contain an element other than the group 12 element and the group 15 element as a doping element.
  • the Group III-V compound semiconductor contains a Group 13 element and a Group 15 element.
  • binary compound semiconductors include, for example, BP, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, AlN, or BN. Can be mentioned.
  • (Iii-1) A ternary compound semiconductor containing one group 13 element and two group 15 elements
  • (iii-2) A ternary compound semiconductor containing two group 13 elements and one group 15 element System compound semiconductor (iii-3)
  • a quaternary compound semiconductor containing two kinds of Group 13 elements and two kinds of Group 15 elements may be used.
  • the group III-V compound semiconductor may contain an element other than the group 13 element and the group 15 element as a doping element.
  • the group III-IV compound semiconductor contains a group 13 element and a group 14 element.
  • examples of binary compound semiconductors include B 4 C 3 , Al 4 C 3 , and Ga 4 C 3 .
  • the compound semiconductor (iv-3) of the system may be a quaternary compound semiconductor containing two kinds of Group 13 elements and two kinds of Group 14 elements.
  • the group III-IV compound semiconductor may contain an element other than the group 13 element and the group 14 element as a doping element.
  • the group III-VI compound semiconductor contains a group 13 element and a group 16 element.
  • binary compound semiconductors include, for example, Al 2 S 3 , Al 2 Se 3 , Al 2 Te 3 , Ga 2 S 3 , Ga 2 Se 3 , Ga 2 Te 3 , GaTe, In 2 S 3 , In 2 Se 3 , In 2 Te 3 , or InTe.
  • (V-1) A ternary compound semiconductor containing one group 13 element and two group 16 elements
  • (v-2) A ternary compound semiconductor containing two group 13 elements and one group 16 element
  • the compound semiconductor (v-3) of the system may be a quaternary compound semiconductor containing two kinds of group 13 elements and two kinds of group 16 elements.
  • the group III-VI compound semiconductor may contain an element other than the group 13 element and the group 16 element as a doping element.
  • the group IV-VI compound semiconductor contains a group 14 element and a group 16 element.
  • binary compound semiconductors include PbS, PbSe, PbTe, SnS, SnSe, or SnTe.
  • (Vi-1) A ternary compound semiconductor containing one group 14 element and two group 16 elements
  • (vi-2) A ternary compound semiconductor containing two group 14 elements and one group 16 element System compound semiconductor
  • (vi-3) A quaternary compound semiconductor containing two kinds of Group 14 elements and two kinds of Group 16 elements may be used.
  • the group III-VI compound semiconductor may contain an element other than the group 14 element and the group 16 element as a doping element.
  • the transition metal-p-block compound semiconductor contains a transition metal element and a p-block element.
  • the "p-block element” is an element belonging to Groups 13 to 18 of the periodic table.
  • transition metal-p-block compound semiconductors examples include NiS and CrS.
  • transition metal-p-block compound semiconductor (Vii-1) ternary compound semiconductor containing one transition metal element and two p-block elements (vii-2) ternary compound semiconductor containing two transition metal elements and one p-block element Compound semiconductor (vii-3) A quaternary compound semiconductor containing two kinds of transition metal elements and two kinds of p-block elements may be used.
  • the transition metal-p-block compound semiconductor may contain a transition metal element and an element other than the p-block element as a doping element.
  • a compound semiconductor containing Cd which is a Group 12 element and a compound semiconductor containing In which is a Group 13 element are preferable.
  • the compound semiconductor containing Cd and Se and the compound semiconductor containing In and P are preferable.
  • the compound semiconductor containing Cd and Se is preferably a binary compound semiconductor, a ternary compound semiconductor, or a quaternary compound semiconductor.
  • CdSe which is a binary compound semiconductor, is particularly preferable.
  • the compound semiconductor containing In and P is preferably a binary compound semiconductor, a ternary compound semiconductor, or a quaternary compound semiconductor.
  • InP which is a binary compound semiconductor, is particularly preferable.
  • the compound semiconductor having a perovskite structure has a perovskite type crystal structure having A, B and X as constituent components.
  • a compound semiconductor having a perovskite structure may be simply referred to as “perovskite compound”.
  • A is a component located at each vertex of a hexahedron centered on B and is a monovalent cation.
  • X represents a component located at each vertex of the octahedron centered on B in the perovskite type crystal structure, and is at least one anion selected from the group consisting of a halide ion and a thiocyanate ion.
  • B is a component located at the center of the hexahedron having A at its apex and the octahedron having X at its apex, and is a metal ion.
  • the perovskite compound containing A, B, and X as constituent components is not particularly limited, and may be a compound having any of a three-dimensional structure, a two-dimensional structure, and a pseudo two-dimensional structure (quasi-2D). .
  • the composition formula of the perovskite compound is represented by ABX (3 + ⁇ ) .
  • the composition formula of the perovskite compound is represented by A 2 BX (4 + ⁇ ) .
  • is a number that can be appropriately changed according to the charge balance of B, and is ⁇ 0.7 or more and 0.7 or less.
  • A is a monovalent cation
  • B is a divalent cation
  • X is a monovalent anion
  • can be selected so that the perovskite compound becomes electrically neutral.
  • the electrically neutral perovskite compound means that the charge of the perovskite compound is zero.
  • the perovskite compound includes an octahedron whose center is B and whose apex is X.
  • the octahedron is represented by BX 6 . If perovskite compound has a 3-dimensional structure, BX 6 contained in the perovskite compound, share one X is located at the apex in octahedral (BX 6), 2 octahedral adjacent in the crystal (BX 6) By doing so, a three-dimensional network is constructed.
  • perovskite compound has a two-dimensional structure, BX 6 contained in the perovskite compound, shared by the two X located at the vertices in octahedral (BX 6), 2 octahedral adjacent in the crystal (BX 6) By doing so, the ridgeline of the octahedron is shared and a two-dimensionally continuous layer is formed.
  • the perovskite compound has a structure in which two-dimensionally continuous layers of BX 6 and layers of A are alternately laminated.
  • the crystal structure of the perovskite compound can be confirmed by an X-ray diffraction pattern.
  • the perovskite compound preferably has a three-dimensional structure.
  • a constituting the perovskite compound is a monovalent cation.
  • Examples of A include cesium ion, organic ammonium ion, and amidinium ion.
  • organic ammonium ion Specific examples of the organic ammonium ion of A include a cation represented by the following formula (A3).
  • R 6 to R 9 each independently represent a hydrogen atom, an alkyl group, or a cycloalkyl group. However, at least one of R 6 to R 9 is an alkyl group or a cycloalkyl group, and all of R 6 to R 9 are not hydrogen atoms at the same time.
  • the alkyl groups represented by R 6 to R 9 may each independently be linear or branched.
  • the alkyl groups represented by R 6 to R 9 may each independently have an amino group as a substituent.
  • R 6 to R 9 are each an alkyl group
  • the number of carbon atoms is independently 1 to 20, usually 1 to 4, preferably 1 to 3, and more preferably 1. Is more preferable.
  • the cycloalkyl groups represented by R 6 to R 9 may each independently have an amino group as a substituent.
  • the number of carbon atoms of the cycloalkyl group represented by R 6 to R 9 is, independently of each other, usually 3 to 30, preferably 3 to 11, and more preferably 3 to 8.
  • the number of carbon atoms also includes the number of carbon atoms of the substituent.
  • the groups represented by R 6 to R 9 are preferably each independently a hydrogen atom or an alkyl group.
  • the perovskite compound contains, as A, an organic ammonium ion represented by the above formula (A3)
  • A an organic ammonium ion represented by the above formula (A3)
  • the number of alkyl groups and cycloalkyl groups contained in the formula (A3) be small.
  • the number of carbon atoms of the alkyl group and the cycloalkyl group which can be included in the formula (A3) is preferably small. Thereby, a perovskite compound having a three-dimensional structure with high emission intensity can be obtained.
  • the total number of carbon atoms contained in the alkyl group and cycloalkyl group represented by R 6 to R 9 is preferably 1 to 4.
  • one of R 6 ⁇ R 9 is an alkyl group having 1 to 3 carbon atoms
  • three of R 6 ⁇ R 9 is a hydrogen atom More preferably.
  • the alkyl group of R 6 to R 9 is a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group.
  • the cycloalkyl group of R 6 ⁇ R 9, include those independently R 6 ⁇ exemplified alkyl group having 3 or more carbon atoms in the alkyl group R 9 is to form a ring.
  • Examples include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, norbornyl group, isobornyl group, 1-adamantyl group, 2-adamantyl group, tricyclodecyl group.
  • Etc. can be illustrated.
  • Examples of the organic ammonium ion represented by A include CH 3 NH 3 + (also called methylammonium ion), C 2 H 5 NH 3 + (also called ethylammonium ion) or C 3 H 7 NH 3 + (propyl). It is also preferably an ammonium ion), more preferably CH 3 NH 3 + or C 2 H 5 NH 3 + , and further preferably CH 3 NH 3 + .
  • amidinium ion examples include an amidinium ion represented by the following formula (A4).
  • R 10 R 11 N CH—NR 12 R 13 ) + ...
  • R 10 to R 13 are each independently a hydrogen atom, an alkyl group which may have an amino group as a substituent, or a cycloalkyl which may have an amino group as a substituent. Represents a group.
  • the alkyl groups represented by R 10 to R 13 may each independently be linear or branched.
  • the alkyl groups represented by R 10 to R 13 may each independently have an amino group as a substituent.
  • the number of carbon atoms of the alkyl group represented by R 10 to R 13 is independently 1 to 20, usually 1 to 4, and more preferably 1 to 3.
  • the cycloalkyl groups represented by R 10 to R 13 may each independently have an amino group as a substituent.
  • the number of carbon atoms of the cycloalkyl group represented by R 10 to R 13 is, independently of each other, usually 3 to 30, preferably 3 to 11, and more preferably 3 to 8.
  • the number of carbon atoms includes the number of carbon atoms of the substituent.
  • alkyl group of R 10 to R 13 include the same groups as the alkyl groups exemplified in R 6 to R 9 each independently.
  • cycloalkyl group of R 10 to R 13 include the same groups as the cycloalkyl group exemplified in R 6 to R 9 each independently.
  • the groups represented by R 10 to R 13 are preferably each independently a hydrogen atom or an alkyl group.
  • the total number of carbon atoms contained in the alkyl group and cycloalkyl group represented by R 10 to R 13 is preferably 1 to 4, and R 10 is an alkyl group having 1 to 3 carbon atoms. More preferably, it is a group and R 11 to R 13 are hydrogen atoms.
  • the perovskite compound when A is a cesium ion, an organic ammonium ion having 3 or less carbon atoms, or an amidinium ion having 3 or less carbon atoms, the perovskite compound generally has a three-dimensional structure.
  • the perovskite compound when A is an organic ammonium ion having 4 or more carbon atoms or an amidinium ion having 4 or more carbon atoms, the perovskite compound has either a two-dimensional structure or a pseudo two-dimensional (quasi-2D) structure. Have one or both. In this case, the perovskite compound can have a two-dimensional structure or a pseudo-two-dimensional structure in a part or the whole of the crystal. When a plurality of two-dimensional perovskite type crystal structures are laminated, it becomes equivalent to a three-dimensional perovskite type crystal structure (references: P. PBoix et al., J. Phys. Chem. Lett. 2015, 6, 898-907, etc.).
  • a of the perovskite compound is preferably a cesium ion or an amidinium ion.
  • Component B constituting the perovskite compound may be one or more kinds of metal ions selected from the group consisting of monovalent metal ions, divalent metal ions, and trivalent metal ions.
  • B preferably contains a divalent metal ion, more preferably contains at least one metal ion selected from the group consisting of lead and tin, and even more preferably lead.
  • Component X constituting the perovskite compound may be at least one anion selected from the group consisting of a halide ion and a thiocyanate ion.
  • halide ion chloride ion, bromide ion, fluoride ion, iodide ion can be mentioned.
  • X preferably contains bromide ion or iodide ion, more preferably contains bromide ion, and further preferably contains bromide ion and iodide ion.
  • the content ratio of halide ions can be appropriately selected depending on the emission wavelength.
  • a combination of bromide ion and chloride ion or a combination of bromide ion and iodide ion can be used.
  • X is preferably a combination of bromide ion and iodide ion.
  • X can be appropriately selected according to the desired emission wavelength.
  • a perovskite compound in which X is a bromide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 480 nm or more, preferably 500 nm or more, more preferably 520 nm or more.
  • the perovskite compound in which X is a bromide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 700 nm or less, preferably 600 nm or less, more preferably 580 nm or less.
  • the upper limit value and the lower limit value of the above wavelength range can be arbitrarily combined.
  • the peak of fluorescence emitted is usually 480 to 700 nm, preferably 500 to 600 nm, and more preferably 520 to 580 nm.
  • the perovskite compound in which X is an iodide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 520 nm or more, preferably 530 nm or more, more preferably 540 nm or more.
  • a perovskite compound in which X is an iodide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 800 nm or less, preferably 750 nm or less, more preferably 730 nm or less.
  • the upper limit value and the lower limit value of the above wavelength range can be arbitrarily combined.
  • the fluorescence peak emitted is usually 520 to 800 nm, preferably 530 to 750 nm, and more preferably 540 to 730 nm.
  • a perovskite compound in which X is a chloride ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 300 nm or more, preferably 310 nm or more, more preferably 330 nm or more.
  • the perovskite compound in which X is a chloride ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 600 nm or less, preferably 580 nm or less, and more preferably 550 nm or less.
  • the upper limit value and the lower limit value of the above wavelength range can be arbitrarily combined.
  • the peak of fluorescence emitted is usually 300 to 600 nm, preferably 310 to 580 nm, and more preferably 330 to 550 nm.
  • the perovskite compound having a three-dimensional structure examples include CH 3 NH 3 Pb (1-a) Ca a Br 3 (0 ⁇ a ⁇ 0.7), CH 3 NH 3 Pb (1-a) Sr a Br 3 (0 ⁇ a ⁇ 0.7), CH 3 NH 3 Pb (1-a) La a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, 0 ⁇ ⁇ 0.7), CH 3 NH 3 Pb ( 1-a) Ba a Br 3 (0 ⁇ a ⁇ 0.7), CH 3 NH 3 Pb (1-a) Dy a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, 0 ⁇ ⁇ 0.7 ) Can also be mentioned.
  • Preferred examples of the three-dimensional perovskite compound include CH 3 NH 3 Pb (1-a) Na a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ ⁇ 0), CH 3 NH 3 Pb (1-a) Li a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ ⁇ 0) can also be mentioned.
  • Preferred examples of the three-dimensional perovskite compound include CsPb (1-a) Na a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ ⁇ 0) and CsPb (1-a) Li. There can also be mentioned a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ ⁇ 0).
  • the three-dimensional perovskite compound include CH 3 NH 3 Pb (1-a) Na a Br (3 + ⁇ y) I y (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ ⁇ 0, 0 ⁇ y ⁇ 3), CH 3 NH 3 Pb (1-a) Li a Br (3 + ⁇ y) I y (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ ⁇ 0, 0 ⁇ y ⁇ 3 ), CH 3 NH 3 Pb (1-a) Na a Br (3 + ⁇ y) Cl y (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ ⁇ 0, 0 ⁇ y ⁇ 3), CH 3 NH 3 Pb (1-a) Li a Br (3 + ⁇ -y) Cl y (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ ⁇ 0, 0 ⁇ y ⁇ 3) can also be mentioned.
  • Preferred examples of the three-dimensional perovskite compound include CsPbBr 3 , CsPbCl 3 , CsPbI 3 , CsPbBr (3-y) I y (0 ⁇ y ⁇ 3), CsPbBr (3-y) Cl y (0 ⁇ y ⁇ 3) can also be mentioned.
  • Preferred examples of the perovskite compound having a three-dimensional structure include CH 3 NH 3 Pb (1-a) Zn a Br 3 (0 ⁇ a ⁇ 0.7), CH 3 NH 3 Pb (1-a) Al a Br ( 3 + ⁇ ) (0 ⁇ a ⁇ 0.7, 0 ⁇ ⁇ ⁇ 0.7), CH 3 NH 3 Pb (1-a) Co a Br 3 (0 ⁇ a ⁇ 0.7), CH 3 NH 3 Pb ( 1-a) Mn a Br 3 (0 ⁇ a ⁇ 0.7) and CH 3 NH 3 Pb (1-a) Mg a Br 3 (0 ⁇ a ⁇ 0.7) can also be mentioned.
  • Preferred examples of perovskite compound having a three-dimensional structure is, CsPb (1-a) Zn a Br 3 (0 ⁇ a ⁇ 0.7), CsPb (1-a) Al a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0 .7, 0 ⁇ ⁇ 0.7), CsPb (1-a) Co a Br 3 (0 ⁇ a ⁇ 0.7), CsPb (1-a) Mna a Br 3 (0 ⁇ a ⁇ 0.7) ) And CsPb (1-a) Mg a Br 3 (0 ⁇ a ⁇ 0.7) can also be mentioned.
  • Preferred examples of the three-dimensional perovskite compound are CH 3 NH 3 Pb (1-a) Zn a Br (3-y) I y (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 3), CH 3 NH 3 Pb (1-a) Al a Br (3 + ⁇ -y) I y (0 ⁇ a ⁇ 0.7,0 ⁇ ⁇ 0.7,0 ⁇ y ⁇ 3), CH 3 NH 3 Pb (1- a) Co a Br (3- y) I y (0 ⁇ a ⁇ 0.7,0 ⁇ y ⁇ 3), CH 3 NH 3 Pb (1-a) Mn a Br (3-y) I y (0 ⁇ A ⁇ 0.7, 0 ⁇ y ⁇ 3), CH 3 NH 3 Pb (1-a) Mg a Br (3-y) I y (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 3), CH 3 NH 3 Pb (1-a) Zn a Br (3-y) Cl y (0
  • CsPbBr 3 , CsPbBr (3-y) I y (0 ⁇ y ⁇ 3), and (H 2 N CH—NH 2 ) PbBr 3 are more preferable, and (H 2 N Further preferred is ⁇ CH—NH 2 ) PbBr 3 .
  • Preferred examples of the perovskite compound having a two-dimensional structure include (C 4 H 9 NH 3 ) 2 PbBr 4 , (C 4 H 9 NH 3 ) 2 PbCl 4 , (C 4 H 9 NH 3 ) 2 PbI 4 , and (C 7 H 15 NH 3 ) 2 PbBr 4 , (C 7 H 15 NH 3 ) 2 PbCl 4 , (C 7 H 15 NH 3 ) 2 PbI 4 , (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4 + ⁇ ) (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ 0), (C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4 + ⁇ ) (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ 0), (C 4 H 9 NH 3 ) 2 Pb (1-a)
  • Preferable examples of the two-dimensional perovskite compound also include (C 4 H 9 NH 3 ) 2 PbBr 4 and (C 7 H 15 NH 3 ) 2 PbBr 4 .
  • Preferred examples of the two-dimensional perovskite compound include (C 4 H 9 NH 3 ) 2 PbBr (4-y) Cl y (0 ⁇ y ⁇ 4), (C 4 H 9 NH 3 ) 2 PbBr (4- y) I y (0 ⁇ y ⁇ 4) can also be mentioned.
  • the perovskite compound having a two-dimensional structure examples include (C 4 H 9 NH 3 ) 2 Pb (1-a) Zn a Br 4 (0 ⁇ a ⁇ 0.7), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mg a Br 4 (0 ⁇ a ⁇ 0.7), (C 4 H 9 NH 3 ) 2 Pb (1-a) Co a Br 4 (0 ⁇ a ⁇ 0.7), ( C 4 H 9 NH 3) 2 Pb (1-a) Mn a Br 4 (0 ⁇ a ⁇ 0.7) may also be mentioned.
  • the perovskite compound having a two-dimensional structure examples include (C 7 H 15 NH 3 ) 2 Pb (1-a) Zn a Br 4 (0 ⁇ a ⁇ 0.7), (C 7 H 15 NH 3 ) 2 Pb (1-a) Mg a Br 4 (0 ⁇ a ⁇ 0.7), (C 7 H 15 NH 3 ) 2 Pb (1-a) Co a Br 4 (0 ⁇ a ⁇ 0.7), ( C 7 H 15 NH 3) 2 Pb (1-a) Mn a Br 4 (0 ⁇ a ⁇ 0.7) may also be mentioned.
  • the average particle size of the particulate (1) semiconductor material is particularly limited as long as it has the effect of the present invention. Not done.
  • the average particle size of the semiconductor particles is preferably 1 nm or more because the crystal structure can be maintained well.
  • the average particle diameter of the semiconductor particles is more preferably 2 nm or more, further preferably 3 nm or more.
  • the average particle size of the semiconductor particles is preferably 10 ⁇ m or less because the semiconductor material is unlikely to settle and the desired light emitting characteristics are easily maintained.
  • the average particle diameter of the semiconductor particles is more preferably 1 ⁇ m or less, further preferably 500 nm or less.
  • the “emission characteristic” refers to optical properties such as quantum yield of converted light, emission intensity, and color purity obtained by irradiating light-emitting semiconductor particles with excitation light. The color purity can be evaluated by the full width at half maximum of the spectrum of converted light.
  • the upper limit value and the lower limit value of the average particle diameter of the semiconductor particles can be arbitrarily combined.
  • the average particle size of the semiconductor particles is preferably 1 nm or more and 10 ⁇ m or less, more preferably 2 nm or more and 1 ⁇ m or less, and further preferably 3 nm or more and 500 nm or less.
  • the average particle size of semiconductor particles can be measured by, for example, a transmission electron microscope (hereinafter, also referred to as TEM) or a scanning electron microscope (hereinafter, also referred to as SEM).
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • the average particle diameter can be obtained by measuring the maximum Feret diameter of 20 semiconductor particles by TEM or SEM and calculating the average maximum Feret diameter which is the arithmetic mean value of the measured values.
  • the “maximum Feret diameter” means the maximum distance between two parallel straight lines sandwiching a semiconductor particle on a TEM or SEM image.
  • the median diameter (D50) of semiconductor particles is not particularly limited as long as it has the effect of the present invention.
  • the thickness is preferably 3 nm or more because the crystal structure can be favorably maintained.
  • the median diameter of the semiconductor particles is more preferably 4 nm or more, further preferably 5 nm or more.
  • the median diameter (D50) of the semiconductor particles is preferably 5 ⁇ m or less because the semiconductor material is less likely to settle and the desired light emission characteristics are easily maintained.
  • the median diameter of the semiconductor particles is more preferably 500 nm or less, further preferably 100 nm or less.
  • the upper limit value and the lower limit value of the median diameter (D50) of the semiconductor particles can be arbitrarily combined.
  • the median diameter (D50) of the semiconductor particles is preferably 3 nm or more and 5 ⁇ m or less, more preferably 4 nm or more and 500 nm or less, and further preferably 5 nm or more and 100 nm or less.
  • the particle size distribution of semiconductor particles can be measured by, for example, TEM or SEM. Specifically, the maximum Feret diameter of 20 semiconductor particles is observed by TEM or SEM, and the median diameter (D50) can be obtained from the distribution of the maximum Feret diameter.
  • the above (1) semiconductor material may be used alone or in combination of two or more.
  • the surface modifier is at least one compound or ion selected from the group consisting of a tertiary amine, a tertiary ammonium cation, and a salt formed from a tertiary ammonium cation, and in the composition, ( 1) It is located on the surface of the semiconductor material, and (1) acts as a surface modifier (also called a capping ligand) of the semiconductor material. More specifically, (2) the surface modifier preferably covers at least a part of the surface of (1) the semiconductor material. (2) When the surface modifier serves as a surface modifier and covers at least part of the surface of (1) the semiconductor material, (1) the heat resistance of the semiconductor material is improved.
  • the surface modifier that covers at least a part of the surface of the semiconductor material can be confirmed by, for example, observing the composition using SEM or TEM. Furthermore, detailed element distribution can be analyzed by energy dispersive X-ray analysis (EDX) measurement using SEM or TEM.
  • EDX energy dispersive X-ray analysis
  • tertiary amine examples include a tertiary amine represented by the following formula (A5).
  • R 41 to R 43 each independently represent an alkyl group, a cycloalkyl group, an aryl group, an alkenyl group, or an alkynyl group, and may each independently have a substituent.
  • substituents include a hydrocarbon group, an amino group, a cyano group, a mercapto group, and a nitro group.
  • the hydrogen atoms contained in R 41 to R 43 may each independently be substituted with a halogen atom.
  • the organic groups of R 41 to R 43 are not particularly limited, but are preferably each independently an organic group having 20 or less carbon atoms.
  • the number of carbon atoms is the number including the number of carbon atoms of the substituent.
  • the alkyl group of R 41 to R 43 is a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group.
  • the cycloalkyl group represented by R 41 to R 43 may be substituted with a hydrocarbon group as long as the total number of carbon atoms is 20 or less, and may be substituted with a cyclobutyl group or a substituent. Examples thereof include a cyclopentyl group which may have and a cyclohexyl group which may have a substituent.
  • the aryl group of R 41 to R 43 includes a phenyl group which may have a substituent, a naphthyl group which may have a substituent, an anthracenyl group which may have a substituent, and a substituent which has a substituent.
  • fluorenyl group is a hydrocarbon group, and the hydrocarbon group can be substituted at any substitution position within the range of 20 or less carbon atoms, and the substitution position may be plural.
  • the hydrocarbon group as a substituent may have an alkyl group which may have a substituent, an alkenyl group which may have a substituent, an alkynyl group which may have a substituent, or a substituent which may have a substituent. Examples include good aryl groups and the like.
  • alkenyl group of R 41 to R 43 examples include vinyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group, undecenyl group, dodecenyl group, tridecenyl group, tetradecenyl group, Examples include pentadecenyl group, hexadecenyl group, heptadecenyl group, octadecenyl group, nonadecenyl group and icosenyl group.
  • alkynyl group of R 41 to R 43 examples include ethynyl group, propynyl group, butynyl group, pentynyl group, hexynyl group, heptynyl group, octynyl group, nonynyl group, decynyl group, undecynyl group, dodecynyl group, tridecynyl group, tetradecynyl group, Examples include pentadecynyl group, hexadecynyl group, heptadecynyl group, octadecynyl group, nonadecynyl group and icosinyl group.
  • the organic groups of R 41 and R 42 each independently have preferably 10 or less carbon atoms, more preferably 3 or less carbon atoms, and particularly preferably 1.
  • the organic group of R 43 preferably has 3 or more carbon atoms, more preferably 8 or more carbon atoms, and even more preferably 16 or more carbon atoms.
  • the sum of the number of carbon atoms of the organic groups of R 41 to R 43 is preferably 50 or less, more preferably 30 or less, and further preferably 25 or less.
  • the size of the tertiary amine becomes (1) an appropriate size for coating the semiconductor material, resulting in (1) The heat resistance of the semiconductor material is improved.
  • R 41 to R 43 are linear alkyl groups. That is, the organic groups of R 41 and R 42 are preferably each independently an n-alkyl group having 10 or less carbon atoms, and more preferably an n-alkyl group having 3 or less carbon atoms. And particularly preferably a methyl group.
  • the organic group of R 43 is preferably an n-alkyl group having 3 or more carbon atoms, more preferably an n-alkyl group having 8 or more carbon atoms, and having 16 or more carbon atoms. Is more preferably an n-alkyl group.
  • R 41 , R 42 and R 43 , R 41 and R 42 are each independently an alkyl group selected from the group consisting of a methyl group, an ethyl group and an n-propyl group
  • R 43 is It is preferably an alkyl group selected from the group consisting of an n-hexadecanyl group, an n-heptadecanyl group, an n-octadecanyl group, an n-nonadecanyl group and an n-icosanyl group.
  • Examples of the compound of formula (A5) include Nn-octyldimethylamine, N, N-dimethyldecylamine, N, N-dimethyllaurylamine, N, N-dimethylmyristylamine, N, N-dimethylhexadecylamine, N, N-dimethylstearylamine, N, N-dimethyl-n-octadecylamine, didecylmethylamine, N, N-di-n-octylmethylamine, triheptylamine, N-methyldidodecylamine, tri-n -Octylamine and trinonylamine are listed, and from the viewpoint of improving durability, Nn-octyldimethylamine, N, N-dimethyldecylamine, N, N-dimethyllaurylamine, N, N-dimethylmyristylamine, N, N-dimethylhexadecylamine, N, N-
  • tertiary ammonium cation examples include a tertiary ammonium cation represented by the following formula (A6).
  • the semiconductor material (1) is a perovskite compound
  • the constituent component A of the perovskite compound and (2) the tertiary ammonium cation as a surface modifier are different.
  • R 41 ⁇ R 43 show the same group as R 41 ⁇ R 43 the above formula (A5) has.
  • the counter anion is not particularly limited.
  • a halide ion or a carboxylate ion is preferable.
  • the halide ion include bromide ion, chloride ion, iodide ion, and fluoride ion.
  • the above-mentioned (2) surface modifier may be used alone or in combination of two or more kinds.
  • the other surface modifier is at least one compound or ion selected from the group consisting of carboxylic acid, carboxylate ion and carboxylate salt.
  • the other surface modifier is a surface modifier other than the above (2) surface modifier, and is (1) located on the surface of the semiconductor material in the composition of the present embodiment, and (1) the semiconductor material. Acts as a surface modifier of. More specifically, (6) the other surface modifier preferably covers at least a part of the surface of (1) the semiconductor material. (6) By using at least a part of the surface of the semiconductor material (1) as a surface modifier with another surface modifier, (1) the heat resistance of the semiconductor material is improved.
  • the other surface modifier that covers at least a part of the surface of the semiconductor material can be confirmed by observing the composition using, for example, SEM or TEM. it can. Further, detailed element distribution can be analyzed by EDX measurement using SEM or TEM.
  • the carboxylate ion, which is a surface modifier is represented by the following formula (A2).
  • the carboxylate salt, which is a surface modifier is a salt containing an ion represented by the following formula (A2). R 5 -CO 2 - ⁇ (A2 )
  • Examples of the carboxylic acid that is the surface modifier include a carboxylic acid having a proton (H + ) bonded to the carboxylate anion represented by (A2) above.
  • R 5 represents a monovalent hydrocarbon group.
  • the hydrocarbon group represented by R 5 may be either a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • Examples of the saturated hydrocarbon group include an alkyl group and a cycloalkyl group.
  • the alkyl group represented by R 5 may be linear or branched.
  • the alkyl group represented by R 5 usually has 1 to 20 carbon atoms, preferably 5 to 20 carbon atoms, and more preferably 8 to 20 carbon atoms.
  • the number of carbon atoms of the cycloalkyl group is usually 3 to 30, preferably 3 to 20, and more preferably 3 to 11.
  • the number of carbon atoms also includes the number of carbon atoms of the substituent.
  • the unsaturated hydrocarbon group represented by R 5 may be linear or branched.
  • the unsaturated hydrocarbon group represented by R 5 usually has 2 to 20 carbon atoms, preferably 5 to 20 carbon atoms, and more preferably 8 to 20 carbon atoms.
  • R 5 is preferably an alkyl group or an unsaturated hydrocarbon group.
  • the unsaturated hydrocarbon group is preferably an alkenyl group.
  • alkyl group of R 5 include the alkyl groups exemplified in R 6 to R 9 .
  • cycloalkyl group for R 5 include the cycloalkyl groups exemplified for R 6 to R 9 .
  • alkenyl group of R 5 examples include ethenyl group, propenyl group, 3-butenyl group, 2-butenyl group, 2-pentenyl group, 2-hexenyl group, 2-nonenyl group, 2-dodecenyl group, 9-octadecenyl group. Groups.
  • the oleate anion is preferable as the carboxylate anion represented by the formula (A2).
  • the counter cation is not particularly limited, but preferable examples include an alkali metal cation, an alkaline earth metal cation, and an ammonium cation.
  • Oleic acid is preferable as the carboxylic acid as the surface modifier.
  • the solvent (3) contained in the composition of the present embodiment is not particularly limited as long as it is a medium in which (1) the semiconductor material can be dispersed.
  • the solvent contained in the composition of this embodiment is preferably (1) a solvent in which the semiconductor material is difficult to dissolve.
  • solvent refers to a substance that is in a liquid state at 1 atm and 25 ° C. However, the solvent does not include a polymerizable compound and a polymer described later.
  • Examples of the solvent include the following (a) to (k).
  • Examples of (a) ester include methyl formate, ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate, pentyl acetate and the like.
  • ketones examples include ⁇ -butyrolactone, N-methyl-2-pyrrolidone, acetone, diisobutyl ketone, cyclopentanone, cyclohexanone, and methylcyclohexanone.
  • ether (c) examples include diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, 4-methyldioxolane, tetrahydrofuran, methyltetrahydrofuran, anisole and phenetole. Etc. can be mentioned.
  • glycol ethers examples include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, and triethylene glycol dimethyl ether.
  • Examples of the organic solvent having an amide group include N, N-dimethylformamide, acetamide, N, N-dimethylacetamide and the like.
  • Examples of the organic solvent having a nitrile group include acetonitrile, isobutyronitrile, propionitrile, and methoxyacetonitrile.
  • Examples of the organic solvent having a carbonate group include ethylene carbonate and propylene carbonate.
  • halogenated hydrocarbons examples include methylene chloride and chloroform.
  • Examples of the (j) hydrocarbon include n-pentane, cyclohexane, n-hexane, 1-octadecene, benzene, toluene and xylene.
  • the above solvent may be used alone or in combination of two or more.
  • the (4) polymerizable compound contained in the composition of the present embodiment is preferably one that is difficult to dissolve the (1) semiconductor material of the present embodiment at the temperature for producing the composition of the present embodiment.
  • the “polymerizable compound” means a monomer compound (monomer) having a polymerizable group.
  • the polymerizable compound may include a monomer that is in a liquid state at 1 atmosphere and 25 ° C.
  • the polymerizable compound when the composition is produced at room temperature under normal pressure, is not particularly limited.
  • the polymerizable compound include known polymerizable compounds such as styrene, acrylic acid ester, methacrylic acid ester, and acrylonitrile. Among them, as the polymerizable compound, one or both of acrylic acid ester and methacrylic acid ester, which are monomers of the acrylic resin, are preferable.
  • the polymerizable compound may be used alone or in combination of two or more.
  • the ratio of the total amount of acrylic acid ester and methacrylic acid ester to all (4) polymerizable compounds may be 10 mol% or more. The same ratio may be 30 mol% or more, 50 mol% or more, 80 mol% or more, and 100 mol%.
  • the polymer contained in the composition of the present embodiment is preferably a polymer having a low solubility of (1) the semiconductor material of the present embodiment at the temperature for producing the composition of the present embodiment.
  • the polymer when the composition is produced at room temperature under normal pressure, is not particularly limited, and examples thereof include known polymers such as polystyrene, acrylic resin, and epoxy resin. Among them, acrylic resin is preferable as the polymer.
  • the acrylic resin contains either one or both of a structural unit derived from an acrylate ester and a structural unit derived from a methacrylic acid ester.
  • the ratio of the total amount of the structural unit derived from the acrylate ester and the structural unit derived from the methacrylic acid ester to all the structural units contained in the (4-1) polymer is 10 mol%. It may be more than. The same ratio may be 30% mol or more, 50 mol% or more, 80 mol% or more, or 100 mol%.
  • the weight average molecular weight of the (4-1) polymer is preferably 100 to 1200000, more preferably 1000 to 800000, and further preferably 5000 to 150,000.
  • the “weight average molecular weight” means a polystyrene conversion value measured by a gel permeation chromatography (GPC) method.
  • the above-mentioned (4-1) polymer may be used alone or in combination of two or more kinds.
  • the modified product group includes silazane, a silazane modified product, a compound represented by the formula (C1) described below, a modified compound of the compound represented by the formula (C1), and a compound represented by the formula (C2) described below.
  • the modified body group form a shell structure with (2) a surface modifying agent-coated (1) semiconductor material as a core. Specifically, it is preferable that (5) the modified body group is coated on (1) the surface of the semiconductor material, (2) at least part of the surface of the surface modifier, and (2) the surface. At least a part of the surface of the semiconductor material which is not covered with the modifier (1) may be covered.
  • the composition of (1) the semiconductor material or (2) the surface modifier is coated with at least a part of the surface, and the composition of the modified body is observed, for example, by SEM or TEM. It can be confirmed by Further, detailed element distribution can be analyzed by EDX measurement using SEM or TEM.
  • the term “modified” means that a silicon compound having a Si—N bond, a Si—SR bond (R is a hydrogen atom or an organic group) or a Si—OR bond (R is a hydrogen atom or an organic group) is hydrolyzed. Then, a silicon compound having a Si—O—Si bond is produced.
  • the Si-O-Si bond may be formed by an intermolecular condensation reaction or an intramolecular condensation reaction.
  • the “modified form” refers to a compound obtained by modifying a silicon compound having a Si—N bond, a Si—SR bond or a Si—OR bond.
  • Silazane is a compound having a Si-N-Si bond.
  • the silazane may be linear, branched or cyclic.
  • the silazane may be a low molecular weight silazane or a high molecular weight silazane.
  • the polymer silazane may be referred to as polysilazane.
  • low molecular weight means that the number average molecular weight is less than 600.
  • polymer means that the number average molecular weight is 600 or more and 2000 or less.
  • the “number average molecular weight” means a polystyrene conversion value measured by a gel permeation chromatography (GPC) method.
  • the silazane is preferably a low-molecular silazane, for example, a disilazane represented by the following formula (B1).
  • R 14 and R 15 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, or a cycloalkyl having 3 to 20 carbon atoms. Represents a group, an aryl group having 6 to 20 carbon atoms, or an alkylsilyl group having 1 to 20 carbon atoms.
  • R 14 and R 15 may have a substituent such as an amino group.
  • Plural R15s may be the same or different.
  • Examples of the low-molecular silazane represented by the formula (B1) include 1,3-divinyl-1,1,3,3-tetramethyldisilazane, 1,3-diphenyltetramethyldisilazane, and 1,1,1, 3,3,3-hexamethyldisilazane can be mentioned.
  • silazane for example, a low molecular silazane represented by the following formula (B2) is also preferable.
  • a plurality of R 14's may be the same or different.
  • a plurality of R 15's may be the same or different.
  • n 1 represents an integer of 1 or more and 20 or less. n 1 may be an integer of 1 or more and 10 or less, or 1 or 2.
  • Examples of the low-molecular silazane represented by the formula (B2) include octamethylcyclotetrasilazane, 2,2,4,4,6,6-hexamethylcyclotrisilazane, and 2,4,6-trimethyl-2,4. , 6-trivinylcyclotrisilazane.
  • octamethylcyclotetrasilazane and 1,3-diphenyltetramethyldisilazane are preferable, and octamethylcyclotetrasilazane is more preferable.
  • silazane for example, a polymer silazane represented by the following formula (B3) (polysilazane) is preferable.
  • Polysilazane is a polymer compound having a Si—N—Si bond.
  • the constitutional unit of the polysilazane represented by the formula (B3) may be one kind or plural kinds.
  • R 14, and R 15 are the same as R 14, and R 15 in the formula (B1).
  • * represents a bond.
  • R 14 is bonded to the bond of the N atom at the end of the molecular chain.
  • R 15 is bonded to the bond of the Si atom at the end of the molecular chain.
  • a plurality of R 14's may be the same or different.
  • a plurality of R 15's may be the same or different.
  • M represents an integer of 2 or more and 10000 or less.
  • the polysilazane represented by the formula (B3) may be, for example, perhydropolysilazane in which all of R 14 and R 15 are hydrogen atoms.
  • the polysilazane represented by the formula (B3) may be, for example, an organopolysilazane in which at least one R 15 is a group other than a hydrogen atom.
  • Perhydropolysilazane and organopolysilazane may be appropriately selected depending on the intended use, and they may be mixed and used.
  • silazane for example, polysilazane having a structure represented by the following formula (B4) is also preferable.
  • the polysilazane may have a ring structure in a part of the molecule, for example, may have the structure represented by the formula (B4).
  • * represents a bond.
  • the bond of the formula (B4) may be bonded to the bond of the polysilazane represented by the formula (B3) or the bond of the constitutional unit of the polysilazane represented by the formula (B3).
  • the bond of the structure represented by the formula (B4) is a bond of the structure represented by another formula (B4). It may be directly connected to the hand.
  • R 14 is bonded to the bond of the non-N atom.
  • R 15 is bonded to the bond of the non-Si atom.
  • n 2 represents an integer of 1 or more and 10000 or less. n 2 may be an integer of 1 or more and 10 or less, or 1 or 2.
  • a general polysilazane has, for example, a structure having a linear structure and a ring structure such as a 6-membered ring or an 8-membered ring, that is, a structure represented by (B3) or (B4) above.
  • a general polysilazane has a number average molecular weight (Mn) of about 600 to 2000 (in terms of polystyrene), and may be a liquid or solid substance depending on the molecular weight.
  • a commercially available product may be used as the polysilazane.
  • (Manufactured by the company) AZNN-120-20, Durazane (registered trademark) 1500 Slow Cure, Durazane 1500 Rapid Rapid, Durazane 1800, and Durazane 1033 (manufactured by Merck Performance Materials Co., Ltd.).
  • the polysilazane is preferably AZNN-120-20, Durazane1500 Slow Cure, Durazane1500 Rapid Cure, more preferably Durazane1500 Slow Cure, Durazane1500 Rapidzur, and further preferably Durazane1500.
  • the ratio of silicon atoms not bonded to nitrogen atoms is preferably 0.1 to 100% with respect to all silicon atoms. Further, the ratio of silicon atoms not bonded to nitrogen atoms is more preferably 10 to 98%, further preferably 30 to 95%.
  • the “ratio of silicon atoms not bonded to nitrogen atoms” is ((Si (mol) ⁇ (N (mol) in SiN bond) / Si (mol) ⁇ 100), using the measured value described later. Considering the reforming reaction, the “ratio of silicon atoms not bonded to nitrogen atoms” means the “ratio of silicon atoms contained in the siloxane bond generated in the modification treatment”.
  • the ratio of silicon atoms not bonded to nitrogen atoms is preferably 0.1 to 100% with respect to all silicon atoms. Further, the ratio of silicon atoms not bonded to nitrogen atoms is more preferably 10 to 98%, further preferably 30 to 95%.
  • the ratio of silicon atoms not bonded to nitrogen atoms is preferably 0.1 to 99% with respect to all silicon atoms. Further, the proportion of silicon atoms not bonded to nitrogen atoms is more preferably 10 to 97%, further preferably 30 to 95%.
  • the number of Si atoms and the number of SiN bonds in the modified product can be measured by X-ray photoelectron spectroscopy (XPS).
  • the “ratio of silicon atoms not bonded to nitrogen atoms” of the modified product which is determined by using the value measured by the above method, is preferably 0.1 to 99%, and 10 to 99%. Is more preferable, and further preferably 30 to 95%.
  • the silazane contained in the modified product group or a modified product thereof is not particularly limited, but organopolysilazane or a modified product thereof is preferable from the viewpoint of improving dispersibility and suppressing aggregation.
  • organopolysilazane examples are represented by the formula (B3), and at least one of R 14 and R 15 is an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, or 3 to It may be a cycloalkyl group having 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an organopolysilazane which is an alkylsilyl group having 1 to 20 carbon atoms.
  • the organopolysilazane includes, for example, a structure represented by the formula (B4), at least one bond is bonded to R 14 or R 15, and at least one of R 14 and R 15 is the number of carbon atoms.
  • the organopolysilazane includes an organopolysilazane represented by the formula (B3) and at least one of R 14 and R 15 is a methyl group, or a structure represented by the formula (B4), and at least one bond is R 14 or It is preferably polysilazane which is bonded to R 15 and at least one of R 14 and R 15 is a methyl group.
  • the modified compound group may be a compound represented by the following formula (C1) or a compound represented by the following formula (C2).
  • Y 5 represents a single bond, an oxygen atom or a sulfur atom.
  • R 30 and R 31 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, or 2 carbon atoms. It represents up to 20 unsaturated hydrocarbon groups.
  • R 30 is an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, or an unsaturated hydrocarbon group having 2 to 20 carbon atoms.
  • R 31 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, or an unsaturated hydrocarbon group having 2 to 20 carbon atoms.
  • R 30 , R 31 , and R 32 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, or a carbon atom having 3 to 30 carbon atoms. It represents 2 to 20 unsaturated hydrocarbon groups.
  • the hydrogen atoms contained in the alkyl group, cycloalkyl group, and unsaturated hydrocarbon group represented by R 30 , R 31 , and R 32 are each independently a halogen atom or an amino group. May be replaced with.
  • Examples of the halogen atom which may be substituted for the hydrogen atom contained in the alkyl group, cycloalkyl group and unsaturated hydrocarbon group represented by R 30 , R 31 and R 32 include a fluorine atom, a chlorine atom and a bromine atom. , And iodine atoms are preferable, and fluorine atoms are preferable from the viewpoint of chemical stability.
  • a is an integer of 1 to 3.
  • a plurality of Y 5 s may be the same or different.
  • a plurality of R 30's may be the same or different.
  • a plurality of R 32's may be the same or different.
  • a plurality of R 31's may be the same or different.
  • the alkyl group represented by R 30 and R 31 may be linear or branched.
  • the number of carbon atoms of the alkyl group represented by R 30 is 1 to 20 because reforming proceeds rapidly. preferable.
  • the number of carbon atoms of the alkyl group represented by R 30 is more preferably 1 to 3, and even more preferably 1.
  • the alkyl group represented by R 30 preferably has 5 to 20 carbon atoms, and 8 to 20 carbon atoms. Is more preferable.
  • Y 5 is preferably an oxygen atom because reforming proceeds rapidly.
  • the number of carbon atoms of the alkyl group represented by R 30 and R 32 is preferably 1 to 20 each independently because reforming proceeds rapidly. Further, the number of carbon atoms of the alkyl group represented by R 30 and R 32 is more preferably independently 1 to 3, and further preferably 1.
  • the alkyl group represented by R 31 preferably has 1 to 5 carbon atoms and 1 to 2 carbon atoms. More preferably, it is more preferably 1.
  • alkyl group represented by R 30 , R 31 and R 32 include the alkyl groups exemplified in the groups represented by R 6 to R 9 .
  • the cycloalkyl group represented by R 30 , R 31 and R 32 preferably has 3 to 20 carbon atoms, and more preferably 3 to 11 carbon atoms.
  • the number of carbon atoms includes the number of carbon atoms of the substituent.
  • the cycloalkyl group represented by R 30 , R 31 and R 32 When the hydrogen atoms in the cycloalkyl group represented by R 30 , R 31 and R 32 are each independently substituted with an alkyl group, the cycloalkyl group has 4 or more carbon atoms.
  • the alkyl group in which the hydrogen atom in the cycloalkyl group may be substituted has 1 to 27 carbon atoms.
  • cycloalkyl group represented by R 30 , R 31 and R 32 include the cycloalkyl groups exemplified in the groups represented by R 6 to R 9 .
  • the unsaturated hydrocarbon group represented by R 30 , R 31 and R 32 may be linear, branched, or cyclic.
  • the unsaturated hydrocarbon group represented by R 30 , R 31 and R 32 preferably has 5 to 20 carbon atoms, and more preferably 8 to 20 carbon atoms.
  • the unsaturated hydrocarbon group represented by R 30 , R 31 and R 32 is preferably an alkenyl group, and more preferably an alkenyl group having 8 to 20 carbon atoms.
  • Examples of the alkenyl group represented by R 30 , R 31 and R 32 include linear or branched alkyl groups exemplified in the groups represented by R 6 to R 9 and having one carbon atom
  • An example is one in which a single bond (C—C) is replaced with a double bond (C ⁇ C).
  • the position of the double bond in the alkenyl group is not limited.
  • alkenyl group examples include, for example, ethenyl group, propenyl group, 3-butenyl group, 2-butenyl group, 2-pentenyl group, 2-hexenyl group, 2-nonenyl group, 2-dodecenyl group, 9 An octadecenyl group.
  • R 30 and R 32 are preferably an alkyl group or an unsaturated hydrocarbon group, and more preferably an alkyl group.
  • R 31 is preferably a hydrogen atom, an alkyl group, or an unsaturated hydrocarbon group, and more preferably an alkyl group.
  • the compound represented by the formula (C1) and the compound represented by the formula (C2) are hydrolyzed. It is liable to be modified and a modified product is easily generated. Therefore, the modified body of the compound represented by the formula (C1) and the modified body of the compound represented by the formula (C2) easily cover the surface of the semiconductor material (1). As a result, it is considered that (1) the semiconductor material is less likely to deteriorate even in a thermal environment, and the (1) semiconductor material having high durability can be obtained.
  • Specific examples of the compound represented by the formula (C1) include tetraethoxysilane, tetramethoxysilane, tetrabutoxysilane, tetrapropoxysilane, tetraisopropoxysilane, 3-aminopropyltriethoxysilane, and 3-aminopropyltrisilane.
  • trimethoxyphenylsilane methoxydimethyl (phenyl) silane, dimethoxydiphenylsilane, dimethoxymethylphenylsilane, cyclohexyltrimethoxysilane, dodecyltriethoxysilane, dodecyltrimethoxysilane.
  • the modified compound group may be a compound represented by the following formula (A5-51) or a compound represented by the following formula (A5-52).
  • a C is a divalent hydrocarbon group
  • Y 15 is an oxygen atom or a sulfur atom.
  • R 122 and R 123 each independently represent a hydrogen atom, an alkyl group, or a cycloalkyl group.
  • R 124 represents an alkyl group or a cycloalkyl group.
  • R 125 and R 126 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, or a cycloalkyl group.
  • R 122 to R 126 are alkyl groups, they may be linear or branched.
  • the alkyl group has usually 1 to 20 carbon atoms, preferably 5 to 20 carbon atoms, and more preferably 8 to 20 carbon atoms.
  • the cycloalkyl group may have an alkyl group as a substituent.
  • the cycloalkyl group has usually 3 to 30 carbon atoms, preferably 3 to 20 carbon atoms, and more preferably 3 to 11 carbon atoms.
  • the number of carbon atoms includes the number of carbon atoms of the substituent.
  • the hydrogen atoms contained in the alkyl group and cycloalkyl group represented by R 122 to R 126 may be each independently substituted with a halogen atom or an amino group.
  • halogen atom which may be substituted for the hydrogen atom contained in the alkyl group and cycloalkyl group represented by R 122 to R 126 , include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • a fluorine atom is preferable from the viewpoint of stability.
  • alkyl group of R 122 to R 126 include the alkyl groups exemplified in R 6 to R 9 .
  • cycloalkyl group of R 122 to R 126 include the cycloalkyl group exemplified in R 6 to R 9 .
  • Examples of the alkoxy group of R 125 and R 126 include monovalent groups in which the linear or branched alkyl group exemplified in R 6 to R 9 is bonded to an oxygen atom.
  • R 125 and R 126 are an alkoxy group, a methoxy group, an ethoxy group, a butoxy group and the like can be mentioned, and a methoxy group is preferable.
  • Divalent hydrocarbon group represented by A C may be any groups from the hydrocarbon compound removal of two hydrogen atoms, said hydrocarbon compound may be an aliphatic hydrocarbon, aromatic It may be a hydrocarbon or a saturated aliphatic hydrocarbon.
  • AC is an alkylene group, it may be linear or branched.
  • the alkylene group has usually 1 to 100 carbon atoms, preferably 1 to 20 carbon atoms, and more preferably 1 to 5 carbon atoms.
  • Examples of the compound represented by the formula (A5-51) include trimethoxy [3- (methylamino) propyl] silane, 3-aminopropyltriethoxysilane, 3-aminopropyldimethoxymethylsilane, and 3-aminopropyldiethoxymethylsilane. , 3-aminopropyltrimethoxysilane is preferred.
  • the compound represented by the formula (A5-51) is preferably a compound in which R 122 and R 123 are hydrogen atoms, R 124 is an alkyl group, and R 125 and R 126 are alkoxy groups.
  • R 122 and R 123 are hydrogen atoms
  • R 124 is an alkyl group
  • R 125 and R 126 are alkoxy groups.
  • 3-aminopropyltriethoxysilane and 3-aminopropyltrimethoxysilane are more preferable.
  • 3-aminopropyltrimethoxysilane is more preferable.
  • 3-mercaptopropyltrimethoxysilane and 3-mercaptopropyltriethoxysilane are more preferable.
  • the modified body group may be sodium silicate (Na 2 SiO 3 ).
  • the above-mentioned (5) modified body group may be used alone or in combination of two or more kinds.
  • the compounding ratio of (1) a semiconductor material and (2) a surface modifier can be appropriately determined according to the type of components constituting the composition and the like.
  • the molar ratio [(1) semiconductor material / (2) surface modifier] of (1) semiconductor material to (2) surface modifier is 0.0001 to 1,000. It may be 0.01 to 100.
  • the resin composition in which the range of the compounding ratio of (1) the semiconductor material and (2) the surface modifier is within the above range is (1) the aggregation of the semiconductor material is less likely to occur, and the light emitting property is also excellently exhibited. It is preferable in terms.
  • the molar ratio [N / B] between the metal ion that is the B component of the perovskite compound and (2) the N element of the tertiary amine May be 0.001 to 100, 0.01 to 10, or 0.1 to 1.
  • the compounding ratio of (1) the semiconductor material and (5) the modified body group may be such that (5) the modified body group exhibits the action of improving the durability.
  • (1) the molar ratio of the metal ion that is the B component of the semiconductor material to (5) the Si element of the modified body group [Si / B] may be 0.001 to 2000 or 0.01 to 500.
  • the modified compound group is a silazane represented by the formula (B1) or (B2) and a modified compound thereof, and (1) the semiconductor material is a perovskite compound.
  • the molar ratio [Si / B] of the metal ion, which is the B component of the semiconductor material, and (5) the Si of the modified body group may be 1 to 1000, or 10 to 500. It may be 20 to 300.
  • the modified body group is polysilazane having the structure represented by the formula (B3), and (1) the semiconductor material is a perovskite compound, the (1) semiconductor material is The molar ratio [Si / B] between the metal ion that is the B component and the Si element in the modified body group (5) may be 0.001 to 2000, or 0.01 to 2000. , 0.1 to 1000, 1 to 500, or 2 to 300.
  • composition in which the compounding ratio of the (1) semiconductor material and the (5) modified body group is within the above range exhibits the effect of improving the durability of the (5) modified body group particularly well. It is preferable in that
  • the molar ratio [Si / B] between the metal ion, which is the B component of the perovskite compound, and the Si element of the modified product can be determined by the following method.
  • the substance amount (B) (unit: mol) of the metal ion that is the B component of the perovskite compound is measured by inductively coupled plasma mass spectrometry (ICP-MS) to measure the mass of the metal that is the B component, and the measured value is the substance amount. Converted to.
  • ICP-MS inductively coupled plasma mass spectrometry
  • the substance amount (Si) of the Si element of the reformer is calculated from the value obtained by converting the mass of the raw material compound of the reformer used into the substance amount and the Si amount (substance amount) contained in the unit mass of the raw material compound. .
  • the unit mass of the raw material compound is the molecular weight of the raw material compound if the raw material compound is a low molecular compound, and the molecular weight of the repeating unit of the raw material compound if the raw material compound is a high molecular compound.
  • the molar ratio [Si / B] can be calculated from the substance amount (Si) of the Si element and the substance amount (B) of the metal ion that is the B component of the perovskite compound.
  • composition of the present embodiment is not limited to that produced by the method for producing the composition of the following embodiments.
  • the semiconductor materials (i) to (vii) can be manufactured by a method of heating a mixed liquid obtained by mixing a simple substance of the elements constituting the semiconductor material or a compound of the elements constituting the semiconductor material and a fat-soluble solvent. .
  • Examples of the compound containing an element constituting the semiconductor material are not particularly limited, but include oxides, acetates, organometallic compounds, halides, nitrates and the like.
  • the fat-soluble solvent examples include nitrogen-containing compounds having a hydrocarbon group having 4 to 20 carbon atoms and oxygen-containing compounds having a hydrocarbon group having 4 to 20 carbon atoms.
  • hydrocarbon group having 4 to 20 carbon atoms examples include a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
  • saturated aliphatic hydrocarbon group having 4 to 20 carbon atoms examples include n-butyl group, isobutyl group, n-pentyl group, octyl group, decyl group, dodecyl group, hexadecyl group and octadecyl group.
  • an oleyl group As an unsaturated aliphatic hydrocarbon group having 4 to 20 carbon atoms, an oleyl group can be mentioned.
  • Examples of the alicyclic hydrocarbon group having 4 to 20 carbon atoms include cyclopentyl group and cyclohexyl group.
  • aromatic hydrocarbon group having 4 to 20 carbon atoms examples include phenyl group, benzyl group, naphthyl group and naphthylmethyl group.
  • hydrocarbon group having 4 to 20 carbon atoms a saturated aliphatic hydrocarbon group and an unsaturated aliphatic hydrocarbon group are preferable.
  • Examples of the nitrogen-containing compound include amines and amides.
  • Examples of the oxygen-containing compound include fatty acids.
  • nitrogen-containing compounds having a hydrocarbon group with 4 to 20 carbon atoms are preferable.
  • nitrogen-containing compounds include alkylamines such as n-butylamine, isobutylamine, n-pentylamine, n-hexylamine, octylamine, decylamine, dodecylamine, hexadecylamine and octadecylamine, and oleylamine.
  • Alkenylamines are preferred.
  • a fat-soluble solvent can bind to the surface of a semiconductor material produced by synthesis.
  • Examples of the bond when the lipophilic solvent bonds to the surface of the semiconductor material include chemical bonds such as covalent bond, ionic bond, coordination bond, hydrogen bond, and van der Waals bond.
  • the heating temperature of the above mixed solution may be appropriately set depending on the type of raw material (single substance or compound) used.
  • the heating temperature of the mixed solution is, for example, preferably 130 to 300 ° C, more preferably 240 to 300 ° C. It is preferable for the heating temperature to be at least the above lower limit value because the crystal structure is easily unified. When the heating temperature is not higher than the above upper limit, the crystal structure of the semiconductor material that is produced is less likely to collapse, and the target product is easily obtained, which is preferable.
  • the heating time of the mixed solution may be appropriately set depending on the types of raw materials (single or compound) used and the heating temperature.
  • the heating time of the mixed liquid is, for example, preferably several seconds to several hours, more preferably 1 to 60 minutes.
  • a precipitate containing the target semiconductor material can be obtained.
  • the target semiconductor material can be obtained.
  • a solvent in which the synthesized semiconductor material is insoluble or sparingly soluble is added to reduce the solubility of the semiconductor material in the supernatant liquid to form a precipitate, and the semiconductor material contained in the supernatant liquid is added. You may collect it.
  • the “solvent in which the semiconductor material is insoluble or sparingly soluble” include methanol, ethanol, acetone, acetonitrile and the like.
  • the separated precipitate may be put in an organic solvent (eg, chloroform, toluene, hexane, n-butanol, etc.) to form a solution containing the semiconductor material.
  • an organic solvent eg, chloroform, toluene, hexane, n-butanol, etc.
  • the manufacturing method of the semiconductor material of (viii) can be manufactured by the method described below with reference to known literatures (Nano Lett. 2015, 15, 3692-3696, ACS Nano, 2015, 9, 4533-4542).
  • First manufacturing method As a method for producing a perovskite compound, a step of dissolving a compound containing an A component, a compound containing a B component, and a compound containing an X component, which form the perovskite compound, in a first solvent; A manufacturing method including a step of mixing two solvents.
  • the second solvent has a lower solubility for the perovskite compound than the first solvent.
  • the solubility means the solubility at the temperature at which the step of mixing the obtained solution and the second solvent is performed.
  • the first solvent and the second solvent at least two kinds selected from the group of organic solvents mentioned above as (a) to (k) can be mentioned.
  • the above-mentioned (d) alcohol, (e) glycol ether, and (f) amide group are used as the first solvent.
  • the organic solvent which it has and (k) dimethyl sulfoxide can be mentioned.
  • the second solvent may be the above-mentioned (a) ester, (b) ketone, (c) ether, or (g). ) Organic solvents having a nitrile group, (h) organic solvents having a carbonate group, (i) halogenated hydrocarbons, and (j) hydrocarbons.
  • the compound containing the component A, the compound containing the component B, and the compound containing the component X are dissolved in the first solvent to obtain a solution.
  • the “compound including the component A” may include the component X.
  • the “compound including the component B” may include the component X.
  • the solution obtained and the second solvent are mixed.
  • the (I) solution may be added to the second solvent, or the (II) second solvent may be added to the solution. Since the particles of the perovskite compound generated in the first production method are easily dispersed in the solution, it is advisable to add the solution (I) to the second solvent.
  • the temperature of the solution and the second solvent there is no particular limitation on the temperature of the solution and the second solvent. Since the obtained perovskite compound is easily precipitated, the temperature is preferably in the range of -20 ° C to 40 ° C, more preferably in the range of -5 ° C to 30 ° C. The temperature of the solution and the temperature of the second solvent may be the same or different.
  • the difference in solubility between the first solvent and the second solvent in the perovskite compound is preferably 100 ⁇ g / solvent 100 g to 90 g / solvent 100 g, and more preferably 1 mg / solvent 100 g to 90 g / solvent 100 g.
  • the first solvent is an organic solvent having an amide group such as N, N-dimethylacetamide or dimethyl sulfoxide
  • the second solvent is a halogenated hydrocarbon or a hydrocarbon.
  • the solubility of the first solvent and the second solvent in the perovskite compound when performing the step of mixing at room temperature (10 ° C to 30 ° C) Is preferable because it is easy to control the difference of 100 ⁇ g / solvent 100 g to 90 g / solvent 100 g.
  • the solubility of the perovskite compound decreases in the resulting mixed solution, and the perovskite compound precipitates. As a result, a dispersion liquid containing the perovskite compound is obtained.
  • the perovskite compound By performing solid-liquid separation on the obtained dispersion liquid containing the perovskite compound, the perovskite compound can be recovered.
  • the solid-liquid separation method include filtration and concentration by evaporation of the solvent. By performing solid-liquid separation, only the perovskite compound can be recovered.
  • the above-mentioned production method preferably includes the step of adding the above-mentioned surface modifier, because the particles of the perovskite compound obtained are easily and stably dispersed in the dispersion liquid.
  • the step of adding the surface modifier is preferably performed before the step of mixing the solution and the second solvent.
  • the surface modifier may be added to the first solvent, the solution, or the second solvent. Further, the surface modifier may be added to both the first solvent and the second solvent.
  • the above-mentioned manufacturing method includes a step of removing coarse particles by a method such as centrifugation or filtration after the step of mixing the solution and the second solvent.
  • the size of the coarse particles removed in the removing step is preferably 10 ⁇ m or more, more preferably 1 ⁇ m or more, and further preferably 500 nm or more.
  • (Second manufacturing method) As a method for producing a perovskite compound, a step of dissolving a compound including an A component, a compound including a B component, and a compound including an X component, which form the perovskite compound, in a high temperature third solvent, and cooling the solution. And a manufacturing method including a step.
  • the compound containing the component A, the compound containing the component B, and the compound containing the component X are dissolved in a high-temperature third solvent to obtain a solution.
  • the “compound including the component A” may include the component X.
  • the “compound including the component B” may include the component X.
  • each compound may be added to and dissolved in a high temperature third solvent to obtain a solution. Further, in this step, after adding each compound to the third solvent, the temperature may be raised to obtain a solution.
  • the third solvent includes a solvent capable of dissolving a compound containing the component A, which is a raw material, a compound containing the component B, and a compound containing the component X.
  • examples of the third solvent include the above-mentioned first solvent and second solvent.
  • High temperature means a solvent at a temperature at which each raw material dissolves.
  • the temperature of the high temperature third solvent is preferably 60 to 600 ° C., and more preferably 80 to 400 ° C.
  • the resulting solution is then cooled.
  • the cooling temperature is preferably ⁇ 20 to 50 ° C., more preferably ⁇ 10 to 30 ° C.
  • the cooling rate is preferably 0.1 to 1500 ° C./min, more preferably 10 to 150 ° C./min.
  • the perovskite compound By cooling the hot solution, the perovskite compound can be precipitated due to the difference in solubility due to the temperature difference between the solutions. As a result, a dispersion liquid containing the perovskite compound is obtained.
  • the perovskite compound can be recovered by solid-liquid separation of the obtained dispersion liquid containing the perovskite compound.
  • the solid-liquid separation method include the method described in the first manufacturing method.
  • the above-mentioned production method preferably includes the step of adding the above-mentioned surface modifier, because the particles of the perovskite compound obtained are easily and stably dispersed in the dispersion liquid.
  • the step of adding the surface modifier is preferably performed before the step of cooling.
  • the surface modifier may be added to the third solvent, and is added to a solution containing at least one of the compound containing the component A, the compound containing the component B, and the compound containing the component X. Good.
  • a step of removing coarse particles by a method such as centrifugation and filtration shown in the first manufacturing method is included.
  • the manufacturing method includes a step of obtaining the second solution, a step of mixing the first solution and the second solution to obtain a mixed solution, and a step of cooling the obtained mixed solution.
  • the compound containing the component A and the compound containing the component B are dissolved in a high temperature fourth solvent to obtain a first solution.
  • the fourth solvent includes a solvent capable of dissolving the compound containing the component A and the compound containing the component B.
  • examples of the fourth solvent include the above-mentioned third solvent.
  • the “high temperature” may be a temperature at which the compound containing the component A and the compound containing the component B are dissolved.
  • the temperature of the high-temperature fourth solvent is preferably 60 to 600 ° C, more preferably 80 to 400 ° C.
  • the compound containing the X component is dissolved in the fifth solvent to obtain the second solution.
  • the compound containing the X component may contain the B component.
  • Examples of the fifth solvent include a solvent capable of dissolving the compound containing the component X.
  • examples of the fifth solvent include the above-mentioned third solvent.
  • the first solution and the second solution obtained are mixed to obtain a mixed solution.
  • mixing the first solution and the second solution one may be dropped on the other. Further, it is advisable to mix the first solution and the second solution while stirring.
  • the cooling temperature is preferably ⁇ 20 to 50 ° C., more preferably ⁇ 10 to 30 ° C.
  • the cooling rate is preferably 0.1 to 1500 ° C./min, more preferably 10 to 150 ° C./min.
  • the perovskite compound By cooling the mixed solution, the perovskite compound can be precipitated due to the difference in solubility due to the difference in temperature of the mixed solution. As a result, a dispersion liquid containing the perovskite compound is obtained.
  • the perovskite compound can be recovered by solid-liquid separation of the obtained dispersion liquid containing the perovskite compound.
  • the solid-liquid separation method include the method described in the first manufacturing method.
  • the above-mentioned production method preferably includes the step of adding the above-mentioned surface modifier, because the particles of the perovskite compound obtained are easily and stably dispersed in the dispersion liquid.
  • the step of adding the surface modifier is preferably performed before the step of cooling.
  • the surface modifier may be added to any of the fourth solvent, the fifth solvent, the first solution, the second solution and the mixed solution.
  • a step of removing coarse particles by a method such as centrifugation and filtration shown in the first manufacturing method is included.
  • composition obtained by the method 1 for producing a composition is referred to as a “liquid composition”.
  • the liquid composition of the present embodiment can be produced by mixing (1) a semiconductor material and (2) a surface modifier with one or both of (3) a solvent and (4) a polymerizable compound. it can.
  • the temperature at the time of mixing there is no particular limitation on the temperature at the time of mixing. Since the semiconductor material (1) and the surface modifier (2) are easily mixed uniformly, the temperature range is preferably 0 ° C to 100 ° C, more preferably 10 ° C to 80 ° C.
  • the method for producing a composition containing (1) a semiconductor material, (2) a surface modifier and (3) a solvent may be, for example, the following production method (a1) or the following production method (a2). May be.
  • Manufacturing method (a1) A method for manufacturing a composition, which comprises: (1) mixing a semiconductor material with (3) a solvent; and (2) mixing the obtained mixture with a surface modifier.
  • Manufacturing method (a2) A method for manufacturing a composition including the steps of (1) mixing a semiconductor material with (2) a surface modifier, and mixing the resulting mixture with (3) a solvent.
  • the solvent (3) used in the production methods (a1) and (a2) is preferably one that is difficult to dissolve the semiconductor material (1) described above.
  • the mixture obtained by the production method (a1) and the compositions obtained by the production methods (a1) and (a2) become a dispersion liquid.
  • the method for producing the composition may be the production method (a3) using the following (5A) or the production method (a4). May be.
  • the above (5A) is referred to as “(5A) raw material compound”.
  • the (5A) raw material compound becomes a (5) modified body group by performing a modification treatment.
  • the polymer (4-1) may be dissolved or dispersed in the solvent (3).
  • stirring is preferable from the viewpoint of improving dispersibility.
  • the temperature is not particularly limited, but from the viewpoint of uniform mixing, it is preferably in the range of 0 ° C or higher and 100 ° C or lower, and in the range of 10 ° C or higher and 80 ° C or lower. Is more preferable.
  • the manufacturing method of the composition is preferably (1) the manufacturing method (a1) or the manufacturing method (a3) from the viewpoint of improving the dispersibility of the semiconductor material.
  • modification treatment method examples include known methods such as (5A) a method of irradiating the raw material compound with ultraviolet rays, and (5A) a method of reacting the raw material compound with water vapor.
  • 5A a method of irradiating the raw material compound with ultraviolet rays
  • 5A a method of reacting the raw material compound with water vapor.
  • the treatment of reacting the starting compound (5A) with water vapor may be referred to as “humidification treatment”.
  • the wavelength of ultraviolet rays used in the method of irradiating ultraviolet rays is usually 10 to 400 nm, preferably 10 to 350 nm, more preferably 100 to 180 nm.
  • Examples of the light source for generating ultraviolet rays include metal halide lamps, high pressure mercury lamps, low pressure mercury lamps, xenon arc lamps, carbon arc lamps, excimer lamps, and UV laser light.
  • the composition When the humidification treatment is performed, the composition may be left standing or stirred for a certain period of time under the temperature and humidity conditions described below.
  • the temperature in the humidification treatment may be a temperature at which reforming progresses sufficiently.
  • the temperature in the humidifying treatment is, for example, preferably 5 to 150 ° C., more preferably 10 to 100 ° C., and further preferably 15 to 80 ° C.
  • the humidity in the humidification treatment may be such that the (5A) raw material compound in the composition is sufficiently supplied with water.
  • the humidity in the humidifying treatment is, for example, preferably 30% to 100%, more preferably 40% to 95%, and further preferably 60% to 90%.
  • the humidity means relative humidity at the temperature at which the humidifying process is performed.
  • the time required for the humidification treatment may be any time that allows the reforming to proceed sufficiently.
  • the time required for the humidifying treatment is, for example, preferably 10 minutes or more and 1 week or less, more preferably 1 hour or more and 5 days or less, and further preferably 2 hours or more and 3 days or less.
  • stirring is preferable.
  • the water in the humidification treatment may be supplied by circulating a gas containing water vapor in the reaction vessel, or by supplying water from the interface by stirring in an atmosphere containing water vapor.
  • the durability of the resulting composition is improved, so that the flow rate of the gas containing water vapor is preferably 0.01 L / min or more and 100 L / min or less, and 0.1 L / min. It is more preferably 10 L / min or less and more preferably 0.15 L / min or more and 5 L / min or less.
  • the gas containing steam include nitrogen containing a saturated amount of steam.
  • the semiconductor material is a perovskite compound
  • the surface modifier is the same as the above-mentioned (1) semiconductor material. They may be mixed in any step included in the manufacturing method. For example, the following manufacturing method (a5) may be used, or the following manufacturing method (a6) may be used.
  • Production method (a5) First, a compound containing a B component, a compound containing an X component, a compound containing an A component, which constitutes a perovskite compound, (2) a surface modifier, and (5) a modified body group.
  • a manufacturing method including a step of dissolving in a solvent to obtain a solution and a step of mixing the obtained solution and a second solvent can be mentioned.
  • the first solvent and the second solvent are the same as the above-mentioned solvents.
  • the manufacturing method includes a step of dissolving the solution in a third solvent to obtain a solution, and a step of cooling the solution.
  • the third solvent is the same as the above-mentioned solvent.
  • the conditions of each step included in these manufacturing methods are the same as the conditions in the first manufacturing method and the second manufacturing method in the above-mentioned (viii) method for manufacturing a semiconductor material.
  • Production method (c1) (4) a step of dispersing (1) a semiconductor material in a polymerizable compound to obtain a dispersion, the obtained dispersion, (2) a surface modifier, and (5) a group of modified products. And a mixing step.
  • Production method (c2) a step of dispersing (2) a surface modifier and (5) a group of modifiers in (4) a polymerizable compound to obtain a dispersion, the obtained dispersion and (1) a semiconductor material. And a step of mixing.
  • Production method (c3) A production method including a step of dispersing a mixture of (1) a semiconductor material, (2) a surface modifier and (5) a group of modifiers in (4) a polymerizable compound.
  • the manufacturing method (c1) is preferable from the viewpoint of (1) enhancing dispersibility of the semiconductor material.
  • the polymerizable compound (4) in the step of obtaining each dispersion, may be added dropwise to each material, or each material may be added dropwise to the polymerizable compound (4).
  • a semiconductor material, (2) a surface modifier, and (5) a modified compound group is preferably added dropwise to (4) a polymerizable compound because it is easily dispersed uniformly.
  • the dispersion in each mixing step, may be dropped onto each material, or each material may be dropped onto the dispersion. At least one of (1) a semiconductor material, (2) a surface modifier, and (5) a modified body group is preferably added dropwise to the dispersion because it is easily dispersed uniformly.
  • At least one of the solvent (3) and the polymer (4-1) may be dissolved or dispersed in the polymerizable compound (4).
  • the solvent that dissolves or disperses the polymer (4-1) is not particularly limited.
  • the solvent is preferably (1) a solvent in which the semiconductor material is difficult to dissolve.
  • Examples of the solvent in which the polymer (4-1) is dissolved include the same solvents as the above-mentioned third solvent.
  • the second solvent is preferable because it has low polarity and (1) it is considered that it is difficult to dissolve the semiconductor material.
  • halogenated hydrocarbons and hydrocarbons are more preferable.
  • the method for producing the composition of the present embodiment may be the following production method (c4) or production method (c5).
  • Production method (c4) (1) a step of dispersing a semiconductor material in a solvent to obtain a dispersion, and a step of mixing the obtained dispersion with a polymerizable compound (4) to obtain a mixed solution,
  • a method for producing a composition comprising a step of mixing the obtained mixed liquid, (2) a surface modifier, and (5) a group of modified bodies.
  • Production method (c5) (1) a step of dispersing a semiconductor material in a solvent to obtain a dispersion liquid, the obtained dispersion liquid, (2) a surface modifier and (5A) a raw material compound are mixed and mixed. A step of obtaining a liquid, a step of subjecting the obtained mixed solution to a modification treatment (5) to obtain a mixed solution containing a group of modified bodies, and a step of mixing the obtained mixed solution with (3) a polymerizable compound And a method for producing the composition.
  • composition Manufacturing Method 2 a step of mixing (1) a semiconductor material, (2) a surface modifier, (4) a polymerizable compound, and (5) a modified body group, 4) a step of polymerizing the polymerizable compound, and a production method including the step.
  • the composition obtained by the method 2 for producing a composition is such that the total of (1) a semiconductor material, (2) a surface modifier, (4-1) a polymer, and (5) a modified body group is the total mass of the composition. It is preferably 90% by mass or more.
  • the method for producing the composition of the present embodiment includes (1) a semiconductor material, (2) a surface modifier, (3) a polymer (4-1) dissolved in a solvent, and (5).
  • a manufacturing method including a step of mixing the modified body group and a step of (3) removing the solvent can also be mentioned.
  • the same mixing method as the method shown in the above-mentioned production method 1 of the composition can be used.
  • Examples of the method for producing the composition include the following production methods (d1) to (d6).
  • Production method (d1) (4) a step of dispersing (1) a semiconductor material in a polymerizable compound to obtain a dispersion, the obtained dispersion, (2) a surface modifier, and (5) a group of modified products.
  • a production method comprising a step of mixing and a step (4) of polymerizing a polymerizable compound.
  • Production method (d3) a step of dispersing (2) a surface modifier and (5) a group of modifiers in a polymerizable compound (4) to obtain a dispersion, the obtained dispersion and (1) a semiconductor material. And a step of polymerizing the polymerizable compound (4).
  • Production method (d4) a step of dispersing (2) a surface modifier and (5) a group of modifiers in (3) a solvent in which (4-1) a polymer is dissolved to obtain a dispersion,
  • a manufacturing method comprising a step of mixing a dispersion and (1) a semiconductor material, and a step of removing a solvent.
  • Production method (d5) a step of dispersing a mixture of (1) a semiconductor material, (2) a surface modifier and (5) a group of modified compounds in (4) a polymerizable compound, and (4) a polymerizable compound. And a step of polymerizing the method.
  • Production method (d6) a step of dispersing a mixture of (1) a semiconductor material, (2) a surface modifier and (5) a group of modifiers in (3) a solvent in which (4-1) a polymer is dissolved And a step of removing the solvent.
  • the step of removing the solvent (3) included in the production methods (d2), (d4), and (d6) may be a step of allowing to stand at room temperature and naturally drying, or using a vacuum dryer.
  • the drying may be performed under reduced pressure, or the step (3) of evaporating the solvent by heating may be performed.
  • the solvent (3) can be removed by, for example, drying at 0 ° C. or higher and 300 ° C. or lower for 1 minute or more and 7 days or less.
  • the step (4) of polymerizing the polymerizable compound included in the production methods (d1), (d3) and (d5) can be carried out by appropriately using a known polymerization reaction such as radical polymerization.
  • radical polymerization a radical polymerization initiator is added to a mixture of (1) a semiconductor material, (2) a surface modifier, (4) a polymerizable compound, and (5) a modified group,
  • the polymerization reaction can be promoted by generating radicals.
  • the radical polymerization initiator is not particularly limited, and examples thereof include a photo radical polymerization initiator.
  • photo-radical polymerization initiator examples include bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide.
  • composition Manufacturing Method 3 ⁇ Composition Manufacturing Method 3 >> Further, as the method for producing the composition of the present embodiment, the following production method (d7) can also be adopted.
  • Manufacturing method (d7) a manufacturing method including a step of melt-kneading (1) a semiconductor material, (2) a surface modifier, and (4-1) a polymer.
  • Production method (d9) a step of producing a liquid composition containing (1) a semiconductor material and (2) a surface modifier, a step of extracting solid matter from the obtained liquid composition, and the obtained solid matter And a step of melt-kneading (4-1) the polymer.
  • Production method (d10) (1) a step of producing a liquid composition containing a semiconductor material, (2) a surface modifier, and (5) a group of modified substances, and taking out a solid content from the obtained liquid composition.
  • a production method comprising the steps of: and a step of melt-kneading the obtained solid content and (4-1) polymer.
  • a mixture of the (4-1) polymer and another material may be melt-kneaded, and the melted (4-1) polymer may be mixed with other materials.
  • Materials may be added.
  • the "other material” refers to a material used in each production method in addition to (4-1) a polymer, and specifically, (1) a semiconductor material, (2) a surface modifier, (5A) a raw material compound, and (5) Refers to a group of modified substances.
  • the (5) modified product group added in the melt-kneading step of the production method (d11) can be obtained by modifying the starting compound (5A).
  • melt-kneading the polymer (4-1) in the production methods (d7) to (d11) a known method of kneading the polymer can be adopted.
  • extrusion processing using a single screw extruder or a twin screw extruder can be adopted.
  • the method described above can be adopted for the step of performing the modification treatment of the manufacturing method (d8).
  • the above-mentioned production method (a1) or (a2) can be adopted in the step of producing the liquid composition of the production methods (d9) and (d11).
  • the above-mentioned production method (a3) or (a4) can be adopted in the step of producing the liquid composition of the production method (d10).
  • the amount of the perovskite compound contained in the composition of the present embodiment is determined by an inductively coupled plasma mass spectrometer ICP-MS (for example, PerkinElmer, ELAN DRCII), and an ion chromatograph (for example, Thermo Fisher Scientific Co., Ltd.). , Integration) can be used for the measurement.
  • ICP-MS for example, PerkinElmer, ELAN DRCII
  • ion chromatograph for example, Thermo Fisher Scientific Co., Ltd.
  • Integration can be used for the measurement.
  • the perovskite compound is dissolved in a good solvent such as N, N-dimethylformamide and then measured.
  • the emission spectrum of the composition of the present embodiment is measured using an absolute PL quantum yield measuring device (for example, C9920-02 manufactured by Hamamatsu Photonics KK) under excitation light of 450 nm, room temperature, and the atmosphere.
  • an absolute PL quantum yield measuring device for example, C9920-02 manufactured by Hamamatsu Photonics KK
  • the quantum yield of the composition of the present embodiment is measured using an absolute PL quantum yield measuring device (for example, C9920-02 manufactured by Hamamatsu Photonics Co., Ltd.) under excitation light of 450 nm, room temperature, and the atmosphere.
  • an absolute PL quantum yield measuring device for example, C9920-02 manufactured by Hamamatsu Photonics Co., Ltd.
  • the composition of the embodiment has a retention rate of 20% or more, 40% or more, 60% or more, or 80% or more in each of the above-described measurement methods. It may be present or may be 85% or more. Since the effect of heat resistance of the composition is high, the maintenance rate is preferably high.
  • the film according to this embodiment uses the above-mentioned composition as a forming material.
  • the film according to the present embodiment contains (1) a semiconductor material, (2) a surface modifier, and (4-1) a polymer, and (1) a semiconductor material, (2) a surface modifier, and (4). -1)
  • the total amount of polymers is 90% by mass or more based on the total mass of the film.
  • the shape of the film is not particularly limited and may be any shape such as a sheet shape or a bar shape.
  • the “bar-like shape” means, for example, a band-like shape in plan view extending in one direction. Examples of the band-like shape in plan view include a plate-like shape in which each side has a different length.
  • the thickness of the film may be 0.01 ⁇ m to 1000 mm, 0.1 ⁇ m to 10 mm, or 1 ⁇ m to 1 mm.
  • the thickness of the film refers to the front surface and the back surface in the thickness direction of the film when the side having the smallest value in the length, width and height of the film is defined as the “thickness direction”. Refers to the distance between. Specifically, the thickness of the film is measured at any three points on the film using a micrometer, and the average value of the measured values at the three points is taken as the film thickness.
  • the film may be a single layer or multiple layers. In the case of multiple layers, the same type of composition may be used for each layer, or different types of compositions may be used for each layer.
  • the laminated structure according to the present embodiment has a plurality of layers, and at least one layer is the above-mentioned film.
  • examples of layers other than the above-mentioned films include arbitrary layers such as a substrate, a barrier layer, and a light scattering layer.
  • the shape of the laminated film is not particularly limited, and may be any shape such as a sheet shape and a bar shape.
  • the substrate is not particularly limited, but may be a film.
  • the substrate is preferably light transmissive.
  • a laminated structure including a substrate having a light-transmitting property is preferable because (1) it is easy to extract light emitted from the semiconductor material.
  • a material for forming the substrate for example, a polymer such as polyethylene terephthalate or a known material such as glass can be used.
  • a polymer such as polyethylene terephthalate or a known material such as glass can be used.
  • the above-mentioned film may be provided on the substrate.
  • FIG. 1 is a sectional view schematically showing the configuration of the laminated structure of this embodiment.
  • the film 10 of the present embodiment is provided between the first substrate 20 and the second substrate 21.
  • the film 10 is sealed by the sealing layer 22.
  • One aspect of the present invention is a first substrate 20, a second substrate 21, a film 10 according to the present embodiment located between the first substrate 20 and the second substrate 21, and a sealing.
  • a laminated structure having a layer 22 and the encapsulating layer 22 is disposed on a surface of the film 10 which is not in contact with the first substrate 20 and the second substrate 21. It is the structure 1a.
  • the layer that the laminated structure according to the present embodiment may have is not particularly limited, and examples thereof include a barrier layer.
  • a barrier layer may be included from the viewpoint of protecting the above-mentioned composition from water vapor in the outside air and air in the atmosphere.
  • the barrier layer is not particularly limited, but is preferably transparent from the viewpoint of extracting emitted light.
  • a polymer such as polyethylene terephthalate or a known barrier layer such as a glass film can be used.
  • the layer that the laminated structure according to the present embodiment may have is not particularly limited, and examples thereof include a light scattering layer. From the viewpoint of effectively utilizing the incident light, a light scattering layer may be included.
  • the light scattering layer is not particularly limited, but is preferably transparent from the viewpoint of extracting emitted light.
  • As the light scattering layer light scattering particles such as silica particles, or a known light scattering layer such as an amplification diffusion film can be used.
  • the light emitting device according to this embodiment can be obtained by combining the film or laminated structure of this embodiment with a light source.
  • the light-emitting device is a device that emits light by irradiating a film or a laminated structure provided in a light emission direction of the light source with light emitted from the light source so that the film or the laminated structure emits light.
  • the layers other than the above-mentioned film, substrate, barrier layer, and light scattering layer include a light reflection member, a brightness enhancement portion, a prism sheet, a light guide plate, and a medium between elements Any layer such as a material layer may be used.
  • One aspect of the present invention is a light emitting device 2 in which a prism sheet 50, a light guide plate 60, a first laminated structure 1a, and a light source 30 are laminated in this order.
  • a light source that constitutes the light emitting device of this embodiment (1) a light source that emits light included in the absorption wavelength band of the semiconductor material is used.
  • a light source having an emission wavelength of 600 nm or less is preferable from the viewpoint of emitting the semiconductor material in the film or the laminated structure described above.
  • a known light source such as a light emitting diode (LED) such as a blue light emitting diode, a laser, or an EL can be used.
  • the layer that may be included in the laminated structure forming the light emitting device of the present embodiment is not particularly limited, and examples thereof include a light reflecting member.
  • a light emitting device having a light reflecting member can efficiently irradiate light from a light source toward a film or a laminated structure.
  • the light reflection member is not particularly limited, but may be a reflection film.
  • a known reflecting film such as a reflecting mirror, a film of reflecting particles, a reflecting metal film or a reflector can be used.
  • the layer that may be included in the laminated structure that configures the light emitting device of the present embodiment is not particularly limited, and examples thereof include a brightness enhancement portion.
  • the brightness enhancement section may be included from the viewpoint of reflecting a part of the light back toward the direction in which the light is transmitted.
  • the layer that may be included in the laminated structure that configures the light emitting device of the present embodiment is not particularly limited, but a prism sheet can be used.
  • the prism sheet typically has a base material portion and a prism portion. The base material portion may be omitted depending on the adjacent member.
  • the prism sheet can be attached to an adjacent member via any appropriate adhesive layer (eg, adhesive layer, pressure-sensitive adhesive layer).
  • adhesive layer e.g, adhesive layer, pressure-sensitive adhesive layer.
  • the prism sheet is configured by arranging a plurality of unit prisms that are convex on the side opposite to the viewing side (back side).
  • the convex portion of the prism sheet By arranging the convex portion of the prism sheet so as to face the back surface side, it becomes easy to collect light that passes through the prism sheet.
  • the convex portion of the prism sheet is arranged facing the back side, compared to the case where the convex portion is arranged facing the viewing side, less light is reflected without entering the prism sheet, and a display with high brightness is displayed. Can be obtained.
  • the layer that may be included in the laminated structure that configures the light emitting device of the present embodiment is not particularly limited, and examples thereof include a light guide plate.
  • a light guide plate for example, a light guide plate having a lens pattern formed on the back side so that light from the lateral direction can be deflected in the thickness direction, a prism shape on either or both of the back side and the viewing side. Any appropriate light guide plate can be used, such as a light guide plate on which the above are formed.
  • the layer that may be included in the laminated structure that constitutes the light emitting device of the present embodiment is not particularly limited, but a layer composed of one or more medium materials (on the optical path between adjacent elements (layers) ( Media material layers between elements).
  • the one or more media contained in the media material layer between the elements include, but are not limited to, vacuum, air, gas, optical material, adhesive, optical adhesive, glass, polymer, solid, liquid, gel, cured. Materials, optical coupling materials, index matching or index mismatching materials, gradient index materials, cladding or anti-cladding materials, spacers, silica gel, brightness enhancing materials, scattering or diffusing materials, reflective or anti-reflective materials, wavelength selection Materials, wavelength selective anti-reflective materials, color filters, or suitable media known in the art.
  • the light emitting device of the present embodiment include those provided with a wavelength conversion material for EL displays and liquid crystal displays. Specifically, the following respective structures (E1) to (E4) can be mentioned.
  • composition of the present embodiment is put in a glass tube or the like and sealed, and the composition is arranged between the blue light emitting diode as a light source and the light guide plate so as to be along the end surface (side surface) of the light guide plate. Then, a backlight that converts blue light into green light or red light (on-edge backlight).
  • the composition of the present embodiment is formed into a sheet, and a film obtained by sandwiching the composition with two barrier films and sealing is placed on the light guide plate and placed on the end surface (side surface) of the light guide plate.
  • a backlight surface-mounted backlight that converts blue light emitted from the blue light emitting diode to the sheet through a light guide plate into green light or red light.
  • E3 A backlight (on-chip) that disperses the composition of the present embodiment in a resin or the like and installs it in the vicinity of a light emitting portion of a blue light emitting diode to convert the emitted blue light into green light or red light. Method backlight).
  • the composition of the present embodiment is molded and placed in the subsequent stage of the blue light emitting diode as a light source to convert blue light into green light or red light. Illumination that emits white light is included.
  • the display 3 of this embodiment includes a liquid crystal panel 40 and the above-described light emitting device 2 in this order from the viewing side.
  • the light emitting device 2 includes a second stacked structure body 1b and a light source 30.
  • the above-mentioned first laminated structure 1a further includes a prism sheet 50 and a light guide plate 60.
  • the display may further comprise any suitable other member.
  • One aspect of the present invention is a liquid crystal display 3 in which a liquid crystal panel 40, a prism sheet 50, a light guide plate 60, a first laminated structure 1a, and a light source 30 are laminated in this order.
  • the liquid crystal panel typically includes a liquid crystal cell, a viewing side polarizing plate arranged on the viewing side of the liquid crystal cell, and a back side polarizing plate arranged on the back side of the liquid crystal cell.
  • the viewing-side polarizing plate and the back-side polarizing plate may be arranged such that their absorption axes are substantially orthogonal or parallel.
  • the liquid crystal cell has a pair of substrates and a liquid crystal layer as a display medium sandwiched between the pair of substrates.
  • one substrate is provided with a color filter and a black matrix
  • the other substrate is provided with a switching element for controlling electro-optical characteristics of liquid crystal and a scanning line for giving a gate signal to this switching element.
  • a signal line for supplying a source signal, a pixel electrode, and a counter electrode.
  • the distance (cell gap) between the substrates can be controlled by a spacer or the like.
  • An alignment film made of polyimide, for example, can be provided on the side of the substrate that is in contact with the liquid crystal layer.
  • the polarizing plate typically has a polarizer and protective layers disposed on both sides of the polarizer.
  • the polarizer is typically an absorption-type polarizer. Any appropriate polarizer is used as the polarizer.
  • a dichroic substance such as iodine or a dichroic dye is adsorbed on a hydrophilic polymer film such as a polyvinyl alcohol film, a partially formalized polyvinyl alcohol film, or an ethylene / vinyl acetate copolymer partially saponified film.
  • Uniaxially stretched film, polyene oriented film such as polyvinyl alcohol dehydrated product, polyvinyl chloride dehydrochlorinated product and the like.
  • a polarizer obtained by uniaxially stretching a polyvinyl alcohol film by adsorbing a dichroic substance such as iodine has a high polarization dichroic ratio, and is particularly preferable.
  • composition of the present embodiment include the following uses.
  • composition of this embodiment can be used, for example, as a material for a light emitting layer of a light emitting diode (LED).
  • the composition of the present embodiment and conductive particles such as ZnS are mixed and laminated in a film shape, the n-type transport layer is laminated on one surface, and the other surface is laminated on the other surface.
  • Particles of (1) and (2) which have a structure in which a p-type transport layer is laminated and in which a hole of a p-type semiconductor and an electron of an n-type semiconductor are included in the composition of the junction surface by passing an electric current. Among them, there is a method of emitting light by canceling charges.
  • composition of the present embodiment can be used as an electron transporting material contained in the active layer of a solar cell.
  • the structure of the solar cell is not particularly limited, but examples thereof include a fluorine-doped tin oxide (FTO) substrate, a titanium oxide dense layer, a porous aluminum oxide layer, an active layer containing the composition of the present embodiment, and 2. It has a hole transport layer such as 2 ', 7,7'-tetrakis (N, N'-di-p-methoxyphenylamine) -9,9'-spirobifluorene (Spiro-MeOTAD), and a silver (Ag) electrode in this order.
  • FTO fluorine-doped tin oxide
  • the titanium oxide dense layer has a function of electron transport, an effect of suppressing the roughness of FTO, and a function of suppressing reverse electron transfer.
  • the porous aluminum oxide layer has a function of improving light absorption efficiency.
  • composition of the present embodiment contained in the active layer has the functions of charge separation and electron transport.
  • the composition of the present embodiment is applied to a living body such as an image detection unit (image sensor) for a solid-state imaging device such as an X-ray imaging device and a CMOS image sensor, a fingerprint detection unit, a face detection unit, a vein detection unit and an iris detection unit. It can be used as a photoelectric conversion element (photodetection element) material included in a detection section for detecting a predetermined characteristic of a part or a detection section of an optical biosensor such as a pulse oximeter.
  • a photoelectric conversion element photodetection element
  • Examples of the film production method include the following production methods (e1) to (e3).
  • Manufacturing method (e1) A method for manufacturing a film, which includes a step of applying a liquid composition to obtain a coating film, and a step of (3) removing a solvent from the coating film.
  • a method of manufacturing a film including.
  • Production method (e3) A method for producing a film by molding the composition obtained by the above-mentioned production methods (d1) to (d6).
  • the film produced by the above production methods (e1) and (e2) may be peeled off from the production position and used.
  • Examples of the method for manufacturing the laminated structure include the following manufacturing methods (f1) to (f3).
  • Production method (f1) Lamination including a step of producing a liquid composition, a step of applying the obtained liquid composition onto a substrate, and a step of removing (3) a solvent from the obtained coating film Structure manufacturing method.
  • Manufacturing method (f2) A manufacturing method of a laminated structure including a step of attaching a film to a substrate.
  • Production method (f3) (4) A step of producing a liquid composition containing a polymerizable compound, a step of applying the obtained liquid composition on a substrate, and a step of applying the obtained coating film (4) And a step of polymerizing the polymerizable compound.
  • the above-mentioned manufacturing methods (c1) to (c5) can be adopted in the steps of manufacturing the liquid composition in the manufacturing methods (f1) and (f3).
  • the step of applying the liquid composition on the substrate in the production methods (f1) and (f3) is not particularly limited, but is a gravure coating method, a bar coating method, a printing method, a spray method, a spin coating method, a dip method, Known coating and coating methods such as a die coating method can be used.
  • the step of removing the solvent (3) in the production method (f1) may be the same step as the step of removing the solvent (3) included in the production methods (d2), (d4), and (d6) described above. it can.
  • the step of polymerizing the (4) polymerizable compound in the production method (f3) is the same step as the step of polymerizing the (4) polymerizable compound contained in the above-mentioned production methods (d1), (d3), and (d5).
  • any adhesive can be used.
  • the adhesive is (1) not particularly limited as long as it does not dissolve the semiconductor material, and a known adhesive can be used.
  • the method for producing a laminated structure may further include a step of laminating an arbitrary film on the obtained laminated structure.
  • a reflection film or a diffusion film can be mentioned.
  • Arbitrary adhesives can be used in the process of laminating the films.
  • the above-mentioned adhesive is not particularly limited as long as it does not dissolve (1) the semiconductor material, and a known adhesive can be used.
  • ⁇ Manufacturing Method of Light-Emitting Device For example, a manufacturing method including the above-mentioned light source and a step of installing the above-mentioned film or laminated structure on the optical path of light emitted from the light source can be mentioned.
  • X-ray photoelectron spectroscopy of the compositions obtained in Examples 1 to 3 (Quantera SXM, manufactured by ULVAC-PHI Co., Ltd., AlK ⁇ photoelectron take-off angle of 45 degrees, aperture diameter of 100 ⁇ m, C 1s of surface contaminated hydrocarbons. The peak attributed to is used as a reference for charge correction with 284.6 eV), and the ratio (N / Pb (molar ratio)) of the moles of Pb in the perovskite and the moles of N in the amine compound contained in the composition was measured. ) Was calculated. XPS measurement was performed after casting 0.05 mL of a composition containing perovskite on a glass substrate of 1 cm ⁇ 1 cm and drying.
  • a dispersion liquid was obtained by redispersing (1) the semiconductor material obtained by the method described below in toluene that was precisely weighed. Then, the perovskite compound was dissolved in the obtained dispersion by adding N, N-dimethylformamide.
  • Cs and Pb contained in the dispersion were quantified using ICP-MS (ELAN DRCII manufactured by PerkinElmer).
  • Br contained in the dispersion was quantified using an ion chromatograph (Integration, manufactured by Thermo Fisher Scientific Co., Ltd.).
  • the mass of the perovskite compound contained in the dispersion was calculated from the sum of the measured values, and the dispersion concentration was calculated from the mass of the perovskite compound and the amount of toluene.
  • the distance between the parallel lines when the image of the semiconductor material shown in the obtained electron micrograph was sandwiched by two parallel lines was calculated as the Feret diameter.
  • the arithmetic average value of the Feret diameters of 20 semiconductor materials was obtained, and the average Feret diameter was obtained.
  • the substance amount (B) (unit: mol) of the metal ion, which is the B component of the perovskite compound, is calculated by inductive coupling.
  • the mass of the metal as the component B was measured by plasma mass spectrometry (ICP-MS), and the measured value was converted into the amount of the substance to obtain the value.
  • the substance amount (Si) of the Si element of the reformer is calculated from the value obtained by converting the mass of the raw material compound of the reformer used into the substance amount and the Si amount (substance amount) contained in the unit mass of the raw material compound. It was The unit mass of the raw material compound is the molecular weight of the raw material compound if the raw material compound is a low molecular compound, and the molecular weight of the repeating unit of the raw material compound if the raw material compound is a high molecular compound.
  • the molar ratio [Si / B] was calculated from the substance amount (Si) of the Si element and the substance amount (B) of the metal ion that is the B component of the perovskite compound.
  • Example 1 0.814 g of cesium carbonate, 40 mL of a solvent of 1-octadecene, and 2.5 mL of oleic acid were mixed. The mixture was stirred with a magnetic stirrer and heated at 150 ° C. for 1 hour while flowing nitrogen to prepare a cesium carbonate solution.
  • 0.276 g of lead bromide (PbBr 2 ) was mixed with 20 mL of 1-octadecene solvent. After stirring with a magnetic stirrer and heating at 120 ° C. for 1 hour while flowing nitrogen, 2 mL of oleic acid and 2.117 mL of N, N-dimethyl-n-octadecylamine were added to prepare a lead bromide dispersion. Prepared.
  • the dispersion was centrifuged at 10,000 rpm for 5 minutes to separate the precipitate, and then 15 mL of ethyl acetate and 5 mL of toluene were added to disperse the dispersion, and then the dispersion was centrifuged again at 10,000 rpm for 5 minutes to separate the precipitate. Washed. After washing three times, a precipitate perovskite compound was obtained. After the perovskite compound was dispersed in 10 mL of toluene, 0.5 mL was again collected and dispersed in 4.5 mL of toluene to obtain a dispersion liquid containing the perovskite compound and the solvent.
  • the concentration of the perovskite compound measured by ICP-MS and ion chromatography was 1200 ppm ( ⁇ g / g).
  • the N / Pb molar ratio measured by XPS was 0.32.
  • organopolysilazane (Durazane 1500 Slow Cure, manufactured by Merck Performance Materials, Inc .: 0.967 g / cm 3 ) was mixed with the above-mentioned dispersion liquid.
  • the above dispersion liquid was subjected to a modification treatment for 1 day while stirring with a stirrer at a humidity condition of 25 ° C and 80%.
  • the above dispersion liquid was subjected to a modification treatment for 1 day while stirring with a stirrer at a humidity condition of 25 ° C and 80%.
  • 0.276 g of lead bromide (PbBr 2 ) was mixed with 20 mL of 1-octadecene solvent. After stirring with a magnetic stirrer and heating at a temperature of 120 ° C. for 1 hour while flowing nitrogen, 2 mL of oleic acid and 2 mL of oleylamine were added to prepare a lead bromide dispersion liquid.
  • the dispersion was centrifuged at 10,000 rpm for 5 minutes to obtain a perovskite compound as a precipitate. After dispersing the perovskite compound in 5 mL of toluene, 0.5 mL was again collected and dispersed in 4.5 mL of toluene to obtain a dispersion liquid containing the perovskite compound and oleylamine.
  • the concentration of the perovskite compound measured by ICP-MS and ion chromatography was 2000 ppm ( ⁇ g / g).
  • the average ferret diameter of the perovskite compound observed by TEM was 11 nm.
  • the quantum yield measured by a quantum yield measuring device was 30%.
  • 100 ⁇ L of organopolysilazane (Durazane 1500 Slow Cure, manufactured by Merck Performance Materials, Inc .: 0.967 g / cm 3 ) was mixed with Dispersion Liquid 1 containing the above-mentioned perovskite compound and a solvent.
  • the above dispersion liquid was subjected to a modification treatment for 1 day while stirring with a stirrer at a humidity condition of 25 ° C and 80%.
  • compositions according to Examples 1 to 3 to which the present invention was applied had excellent heat resistance as compared with the composition of Comparative Example 1 to which the present invention was not applied. .
  • a film can be obtained by forming the composition described in Examples 1 to 3 into a sheet, and by sandwiching the film with two barrier films and sealing the film, the film is placed on the light guide plate.
  • a backlight capable of converting blue light emitted from the blue light emitting diode placed on the end face (side surface) of the sheet through the light guide plate into green light or red light is manufactured.
  • the wavelength conversion material can be obtained by mixing the composition described in Examples 1 to 3 and the resist and then removing the solvent. By arranging the obtained wavelength conversion material between the blue light emitting diode which is the light source and the light guide plate or in the subsequent stage of the OLED which is the light source, a backlight capable of converting the blue light of the light source into green light or red light is provided. To manufacture.
  • a titanium oxide dense layer is laminated on the surface of a fluorine-doped tin oxide (FTO) substrate, a porous aluminum oxide layer is laminated thereon, and the composition described in Examples 1 to 3 is laminated thereon. After removing the solvent, holes such as 2,2 '-, 7,7'-tetrakis- (N, N'-di-p-methoxyphenylamine) -9,9'-spirobifluorene (Spiro-OMeTAD) are removed from above. A transport layer is laminated, and a silver (Ag) layer is laminated on it to prepare a solar cell.
  • FTO fluorine-doped tin oxide
  • composition of the present embodiment can be obtained by removing the solvent of the compositions described in Examples 1 to 3 and molding. By placing this composition in the subsequent stage of the blue light emitting diode, the composition of the blue light emitting diode can be obtained.
  • the composition of this embodiment can be obtained by removing the solvent of the composition described in Examples 1 to 3 and molding.
  • a photoelectric conversion element (photodetection element) material used for a detection unit that detects light is manufactured.
  • the photoelectric conversion element material is used for a part of a living body such as an image detection part (image sensor) for a solid-state imaging device such as an X-ray imaging device and a CMOS image sensor, a fingerprint detection part, a face detection part, a vein detection part and an iris detection part. It is used in optical biosensors such as pulse oximeters that detect specific characteristics.
  • a composition having high heat resistance including a light emitting semiconductor material, a film using the composition, a laminated structure using the film, a light emitting device and a display including the laminated structure. It becomes possible. Therefore, the composition of the present invention, the film using the composition, the laminated structure using the film, the light emitting device and the display including the laminated structure can be suitably used for light emitting applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

This composition contains a component (1) and a component (2). Component (1): a light-emitting semiconductor material Component (2): at least one compound or ion selected from the group consisting of tertiary amines, tertiary ammonium cations, and salts formed from tertiary ammonium cations.

Description

組成物、フィルム、積層構造体、発光装置及びディスプレイComposition, film, laminated structure, light emitting device and display
 本発明は、組成物、フィルム、積層構造体、発光装置及びディスプレイに関する。 The present invention relates to a composition, a film, a laminated structure, a light emitting device and a display.
 青色LED(発光ダイオード)と、発光性を有する組成物とを備えるLEDバックライトが開発されている。近年、前記組成物に含まれる発光性を有する化合物として、発光性の半導体材料に対する関心が高まっている(非特許文献1)。 LED backlights have been developed that include a blue LED (light emitting diode) and a composition having a light emitting property. In recent years, as a compound having a light emitting property contained in the composition, interest in a light emitting semiconductor material has been increasing (Non-Patent Document 1).
 しかしながら、上記非特許文献1に記載のような発光性の半導体材料を含む組成物を発光材料として用いる場合、さらなる耐熱性の向上が求められている。 However, when a composition containing a light emitting semiconductor material as described in Non-Patent Document 1 is used as a light emitting material, further improvement in heat resistance is required.
 本発明は、上記事情に鑑みてなされたものであって、発光性の半導体材料を含む耐熱性が高い組成物、前記組成物を用いたフィルム、前記フィルムを用いた積層構造体、前記積層構造体を備える発光装置及びディスプレイを提供することを課題とする。 The present invention has been made in view of the above circumstances, and is a composition having high heat resistance including a light emitting semiconductor material, a film using the composition, a laminated structure using the film, and the laminated structure. An object of the present invention is to provide a light emitting device having a body and a display.
 上記課題を解決するため、本発明は、以下の態様を有する。
[1] (1)成分と、(2)成分と、を含む組成物。
 (1)成分:発光性の半導体材料
 (2)成分:第3級アミン、第3級アンモニウムカチオン、及び第3級アンモニウムカチオンから形成される塩からなる群より選ばれる少なくとも一種の化合物又はイオン

[2] (1)成分がA、B、及びXを構成成分とするペロブスカイト化合物である、[1]に記載の組成物。
(Aは、ペロブスカイト型結晶構造において、Bを中心とする六面体の各頂点に位置する成分であって、1価の陽イオンである。
 Xは、ペロブスカイト型結晶構造において、Bを中心とする八面体の各頂点に位置する成分を表し、ハロゲン化物イオン、及びチオシアン酸イオンからなる群より選ばれる少なくとも一種の陰イオンである。
 Bは、ペロブスカイト型結晶構造において、Aを頂点に配置する六面体、及びXを頂点に配置する八面体の中心に位置する成分であって、金属イオンである。)
[3] さらに(5)成分を含む[1]又は[2]に記載の組成物。
 (5)成分:シラザン、シラザン改質体、下記式(C1)で表される化合物、下記式(C1)で表される化合物の改質体、下記式(C2)で表される化合物、下記式(C2)で表される化合物の改質体、下記式(A5-51)で表される化合物、下記式(A5-51)で表される化合物の改質体、下記式(A5-52)で表される化合物、下記式(A5-52)で表される化合物の改質体、ケイ酸ナトリウム及びケイ酸ナトリウムの改質体からなる群より選択される1種以上の化合物
In order to solve the above-mentioned subject, the present invention has the following modes.
[1] A composition containing the component (1) and the component (2).
(1) Component: Luminescent semiconductor material (2) Component: At least one compound or ion selected from the group consisting of tertiary amines, tertiary ammonium cations, and salts formed from tertiary ammonium cations

[2] The composition according to [1], wherein the component (1) is a perovskite compound containing A, B, and X as constituent components.
(A is a component located at each vertex of a hexahedron centered on B in the perovskite type crystal structure, and is a monovalent cation.
X represents a component located at each vertex of the octahedron centered on B in the perovskite type crystal structure, and is at least one anion selected from the group consisting of a halide ion and a thiocyanate ion.
In the perovskite type crystal structure, B is a component located at the center of the hexahedron having A at its apex and the octahedron having X at its apex, and is a metal ion. )
[3] The composition according to [1] or [2], which further contains the component (5).
Component (5): silazane, silazane modified product, compound represented by the following formula (C1), modified product of compound represented by the following formula (C1), compound represented by the following formula (C2), below A modified product of the compound represented by formula (C2), a compound represented by the following formula (A5-51), a modified product of the compound represented by the following formula (A5-51), and a compound represented by the following formula (A5-52) ), One or more compounds selected from the group consisting of a compound represented by the following formula (A5-52), a modified product of sodium silicate, and a modified product of sodium silicate.
Figure JPOXMLDOC01-appb-C000003
(式(C1)中、Yは単結合、酸素原子又は硫黄原子を表す。
 Yが酸素原子の場合、R30及びR31は、それぞれ独立に水素原子、炭素原子数が1~20のアルキル基、炭素原子数が3~30のシクロアルキル基、又は炭素原子数が2~20の不飽和炭化水素基を表す。
 Yが単結合又は硫黄原子の場合、R30は炭素原子数1~20のアルキル基、炭素原子数が3~30のシクロアルキル基、又は炭素原子数が2~20の不飽和炭化水素基を表し、R31は水素原子、炭素原子数1~20のアルキル基、炭素原子数が3~30のシクロアルキル基、又は炭素原子数が2~20の不飽和炭化水素基を表す。
 式(C2)中、R30、R31及びR32は、それぞれ独立に水素原子、炭素原子数が1~20のアルキル基、炭素原子数が3~30のシクロアルキル基、又は炭素原子数が2~20の不飽和炭化水素基を表す。
 式(C1)及び式(C2)において、
 R30、R31及びR32で表されるアルキル基、シクロアルキル基及び不飽和炭化水素基に含まれる水素原子は、それぞれ独立に、ハロゲン原子又はアミノ基で置換されていてもよい。
 aは1~3の整数である。
 aが2又は3のとき、複数存在するYは、同一であってもよく、異なっていてもよい。
 aが2又は3のとき、複数存在するR30は、同一であってもよく、異なっていてもよい。
 aが2又は3のとき、複数存在するR32は、同一であってもよく、異なっていてもよい。
 aが1又は2のとき、複数存在するR31は、同一であってもよく、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000003
(In formula (C1), Y 5 represents a single bond, an oxygen atom or a sulfur atom.
When Y 5 is an oxygen atom, R 30 and R 31 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, or 2 carbon atoms. It represents up to 20 unsaturated hydrocarbon groups.
When Y 5 is a single bond or a sulfur atom, R 30 is an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, or an unsaturated hydrocarbon group having 2 to 20 carbon atoms. R 31 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, or an unsaturated hydrocarbon group having 2 to 20 carbon atoms.
In formula (C2), R 30 , R 31 and R 32 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, or a carbon atom having 3 to 30 carbon atoms. It represents 2 to 20 unsaturated hydrocarbon groups.
In formula (C1) and formula (C2),
The hydrogen atoms contained in the alkyl group, cycloalkyl group and unsaturated hydrocarbon group represented by R 30 , R 31 and R 32 may be independently substituted with a halogen atom or an amino group.
a is an integer of 1 to 3.
When a is 2 or 3, a plurality of Y 5 s may be the same or different.
When a is 2 or 3, a plurality of R 30's may be the same or different.
When a is 2 or 3, a plurality of R 32's may be the same or different.
When a is 1 or 2, a plurality of R 31's may be the same or different. )
Figure JPOXMLDOC01-appb-C000004
(式(A5-51)及び式(A5-52)中、Aは2価の炭化水素基であり、Y15は酸素原子又は硫黄原子である。R122及びR123は、それぞれ独立に、水素原子、炭素原子数1~20のアルキル基、又は炭素原子数3~30のシクロアルキル基を表し、R124は、炭素原子数1~20のアルキル基、又は炭素原子数3~30のシクロアルキル基を表し、R125及びR126は、それぞれ独立に、水素原子、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、又は炭素原子数3~30のシクロアルキル基を表す。R122~R126で表されるアルキル基及びシクロアルキル基に含まれる水素原子は、それぞれ独立に、ハロゲン原子又はアミノ基で置換されていてもよい。)[4] さらに(3)成分、(4)成分、及び(4-1)成分からなる群より選ばれる少なくとも一種を含む、[1]~[3]のいずれか1に記載の組成物。
 (3)成分:溶媒
 (4)成分:重合性化合物
 (4-1)成分:重合体
[5] [1]~[4]のいずれか1に記載の組成物を形成材料とするフィルム。
[6] [5]に記載のフィルムを含む積層構造体。
[7] [6]に記載の積層構造体を備える発光装置。
[8] [6]に記載の積層構造体を備えるディスプレイ。
Figure JPOXMLDOC01-appb-C000004
(In the formulas (A5-51) and (A5-52), A C is a divalent hydrocarbon group, Y 15 is an oxygen atom or a sulfur atom. R 122 and R 123 are each independently, Represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a cycloalkyl group having 3 to 30 carbon atoms, R 124 represents an alkyl group having 1 to 20 carbon atoms, or a cycloalkyl group having 3 to 30 carbon atoms R 125 and R 126 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a cycloalkyl group having 3 to 30 carbon atoms. hydrogen atoms are contained in the alkyl group and cycloalkyl group represented by .R 122 ~ R 126 representing a each independently may be substituted with a halogen atom or an amino group.) [4] and (3) Min, (4) component, and (4-1) at least one selected from the group consisting of components, [1] ~ The composition according to any one of [3].
Component (3): Solvent (4) Component: Polymerizable compound (4-1) Component: Polymer [5] A film using the composition according to any one of [1] to [4] as a forming material.
[6] A laminated structure including the film according to [5].
[7] A light emitting device including the laminated structure according to [6].
[8] A display including the laminated structure according to [6].
 本発明によれば、発光性の半導体材料を含む耐熱性が高い組成物、前記組成物を用いたフィルム、前記フィルムを用いた積層構造体、前記積層構造体を備える発光装置及びディスプレイを提供することができる。 According to the present invention, there are provided a composition having high heat resistance including a light emitting semiconductor material, a film using the composition, a laminated structure using the film, a light emitting device and a display including the laminated structure. be able to.
本発明に係る積層構造体の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the laminated structure which concerns on this invention. 本発明に係るディスプレイの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the display which concerns on this invention.
<組成物>
 本実施形態の組成物に含まれる(1)の発光性の半導体材料は、発光性を有する。「発光性」とは、光を発する性質を指す。発光性は、電子の励起により発光する性質であることが好ましく、励起光による電子の励起により発光する性質であることがより好ましい。
励起光の波長は、例えば、200nm~800nmであってもよく、250nm~750nmであってもよく、300nm~700nmであってもよい。
<Composition>
The light emitting semiconductor material (1) contained in the composition of the present embodiment has a light emitting property. “Luminescent” refers to the property of emitting light. The light emitting property is preferably a property of emitting light when excited by an electron, and more preferably a property of emitting light when excited by an electron by excitation light.
The wavelength of the excitation light may be, for example, 200 nm to 800 nm, 250 nm to 750 nm, or 300 nm to 700 nm.
 本実施形態の組成物は、(1)成分、及び(2)成分と、を含む。
 (1)成分:発光性の半導体材料
 (2)成分:第3級アミン、第3級アンモニウムカチオン、及び第3級アンモニウムカチオンから形成される塩からなる群より選ばれる少なくとも一種の化合物又はイオン
The composition of the present embodiment contains the component (1) and the component (2).
(1) Component: Luminescent semiconductor material (2) Component: At least one compound or ion selected from the group consisting of tertiary amines, tertiary ammonium cations, and salts formed from tertiary ammonium cations
 以下の説明では、(1)成分を、「(1)半導体材料」と記載する場合があり、(2)成分を、単に、「(2)表面修飾剤」と称すことがある。 In the following description, the component (1) may be described as “(1) semiconductor material”, and the component (2) may be simply referred to as “(2) surface modifier”.
 詳細は後述するが、(2)表面修飾剤は、(1)半導体材料の表面に吸着して、(1)半導体材料を組成物中に安定して分散させる作用を有する化合物又はイオンである。 As will be described in detail later, (2) the surface modifier is a compound or ion having the action of (1) adsorbing on the surface of the semiconductor material and (1) stably dispersing the semiconductor material in the composition.
 本実施形態の組成物は(1)半導体材料と(2)表面修飾剤とを含む組成物であればよく、(1)半導体材料及び(2)表面修飾剤以外の成分をさらに含んでいてもよい。 The composition of the present embodiment may be a composition containing (1) a semiconductor material and (2) a surface modifier, and may further include components other than (1) the semiconductor material and (2) the surface modifier. Good.
 本実施形態の組成物は、(1)半導体材料と、(2)表面修飾剤とを含み、さらに(3)成分、(4)成分、及び(4-1)成分からなる群より選ばれる少なくとも一種を含んでいてもよい。
 (3)成分:溶媒
 (4)成分:重合性化合物
 (4-1)成分:重合体
The composition of the present embodiment contains (1) a semiconductor material, (2) a surface modifier, and is at least selected from the group consisting of (3) component, (4) component, and (4-1) component. It may contain one kind.
(3) component: solvent (4) component: polymerizable compound (4-1) component: polymer
 以下の説明においては、(3)溶媒、(4)重合性化合物、(4-1)重合体を総称して「分散媒」と称することがある。本実施形態の組成物は、これらの分散媒に分散していてもよい。 In the following description, (3) solvent, (4) polymerizable compound, and (4-1) polymer may be collectively referred to as “dispersion medium”. The composition of the present embodiment may be dispersed in these dispersion media.
 本実施形態の組成物は、分散媒に分散していてもよい。
 本明細書において「分散している」とは、(1)半導体材料が、分散媒に浮遊している状態、又は(1)半導体材料が、分散媒に懸濁している状態のことを指す。(1)半導体材料が分散媒に分散している場合、(1)半導体材料の一部は沈降していてもよい。
The composition of this embodiment may be dispersed in a dispersion medium.
In the present specification, “dispersed” refers to (1) a state in which a semiconductor material is suspended in a dispersion medium, or (1) a state in which a semiconductor material is suspended in a dispersion medium. (1) When the semiconductor material is dispersed in the dispersion medium, (1) part of the semiconductor material may be precipitated.
 組成物において、組成物の総質量に対する分散媒の含有割合は、特に限定されるものではない。(1)半導体材料の分散性を向上させる観点、及び耐久性を向上させる観点から、組成物の総質量に対する分散媒の含有割合は、99.99質量%以下であることが好ましく、99.9質量%以下であることがより好ましく、99質量%以下であることがさらに好ましい。 In the composition, the content ratio of the dispersion medium with respect to the total mass of the composition is not particularly limited. (1) From the viewpoint of improving the dispersibility of the semiconductor material and improving the durability, the content ratio of the dispersion medium with respect to the total mass of the composition is preferably 99.99% by mass or less, and 99.9% by mass. It is more preferably at most% by mass, further preferably at most 99% by mass.
 また、耐久性を向上させる観点から、組成物の総質量に対する分散媒の含有割合は、0.1質量%以上であることが好ましく、1質量%以上であることがより好ましく、10質量%以上であることがさらに好ましく、50質量%以上であることがさらに好ましく、80質量%以上であることがさらに好ましく、90質量%以上であることがもっとも好ましい。 From the viewpoint of improving durability, the content ratio of the dispersion medium to the total mass of the composition is preferably 0.1% by mass or more, more preferably 1% by mass or more, and 10% by mass or more. Is more preferred, 50% by mass or more is more preferred, 80% by mass or more is more preferred, and 90% by mass or more is most preferred.
 上記上限値及び下限値は任意に組み合わせることができる。 The above upper and lower limits can be combined arbitrarily.
 上記上限値及び下限値の組み合わせの一例としては、0.1~99.99質量%、1~99.9質量%、1~99質量%、10~99質量%、20~99質量%、50~99質量%、90~99質量%が挙げられる。 Examples of combinations of the upper limit value and the lower limit value are 0.1 to 99.99% by mass, 1 to 99.9% by mass, 1 to 99% by mass, 10 to 99% by mass, 20 to 99% by mass, and 50. ˜99% by mass and 90 to 99% by mass.
 本実施形態の組成物は、さらに(5)成分を含んでいてもよい。なお、(5)成分の詳細については後述する。
 (5)成分:シラザン、シラザン改質体、前記式(C1)で表される化合物、前記式(C1)で表される化合物の改質体、前記式(C2)で表される化合物、前記式(C2)で表される化合物の改質体、前記式(A5-51)で表される化合物、前記式(A5-51)で表される化合物の改質体、前記式(A5-52)で表される化合物、及び前記式(A5-52)で表される化合物の改質体、ケイ酸ナトリウム及びケイ酸ナトリウムの改質体からなる群より選択される1種以上の化合物
The composition of the present embodiment may further contain the component (5). The details of component (5) will be described later.
Component (5): silazane, silazane modified product, compound represented by the formula (C1), modified compound of the compound represented by the formula (C1), compound represented by the formula (C2), A modified product of the compound represented by the formula (C2), a compound represented by the formula (A5-51), a modified product of the compound represented by the formula (A5-51), and the formula (A5-52) ), And one or more compounds selected from the group consisting of a modified form of the compound represented by the formula (A5-52), sodium silicate, and a modified form of sodium silicate.
 以下の説明では、(5)成分のことを「(5)改質体群」と称する。 In the following description, the component (5) will be referred to as the "(5) modified substance group".
 組成物において、組成物の総質量に対する(1)半導体材料の含有割合は、特に限定されるものではない。発光性の半導体材料を凝集させにくくする観点、及び濃度消光を防ぐ観点から、組成物の総質量に対する(1)半導体材料の含有割合は、50質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.3質量%以下であることがさらに好ましい。また、良好な発光強度を得る観点から、組成物の総質量に対する(1)半導体材料の含有割合は、0.0001質量%以上であることが好ましく、0.0005質量%以上であることがより好ましく、0.001質量%以上であることがさらに好ましい。 In the composition, the content ratio of (1) semiconductor material to the total mass of the composition is not particularly limited. From the viewpoint of making the light-emitting semiconductor material less likely to aggregate and preventing the concentration quenching, the content ratio of (1) the semiconductor material to the total mass of the composition is preferably 50 mass% or less, and 1 mass% or less. Is more preferable, and 0.3% by mass or less is further preferable. From the viewpoint of obtaining good emission intensity, the content ratio of (1) semiconductor material to the total mass of the composition is preferably 0.0001 mass% or more, and more preferably 0.0005 mass% or more. It is more preferably 0.001% by mass or more.
 上記上限値及び下限値は任意に組み合わせることができる。 The above upper and lower limits can be combined arbitrarily.
 上記上限値及び下限値の組み合わせの一例としては、0.0001~50質量%、0.0005~1質量%、0.001~0.3質量%が挙げられる。 Examples of combinations of the upper limit value and the lower limit value include 0.0001 to 50% by mass, 0.0005 to 1% by mass, and 0.001 to 0.3% by mass.
 組成物の総質量に対する(1)半導体材料の含有割合が上記範囲内である組成物は、(1)半導体材料の凝集が生じ難く、発光性も良好に発揮される点で好ましい。 A composition in which the content ratio of (1) semiconductor material to the total mass of the composition is within the above range is preferable because (1) aggregation of the semiconductor material is less likely to occur and luminescence is excellently exhibited.
 組成物において、組成物の総質量に対する(2)表面修飾剤の含有割合は、特に限定されるものではない。耐久性向上の観点から、組成物の総質量に対する(2)表面修飾剤の含有割合は、30質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.5質量%以下であることがさらに好ましい。また、(1)半導体材料の耐熱性を向上させる観点から、0.0001質量%以上であることが好ましく、0.001質量%以上であることがより好ましく、0.01質量%以上であることがさらに好ましい。 In the composition, the content ratio of (2) the surface modifier to the total mass of the composition is not particularly limited. From the viewpoint of improving durability, the content ratio of the (2) surface modifier to the total mass of the composition is preferably 30% by mass or less, more preferably 1% by mass or less, and 0.5% by mass. The following is more preferable. Further, (1) from the viewpoint of improving the heat resistance of the semiconductor material, it is preferably 0.0001 mass% or more, more preferably 0.001 mass% or more, and 0.01 mass% or more. Is more preferable.
 上記上限値及び下限値は任意に組み合わせることができる。 The above upper and lower limits can be combined arbitrarily.
 上記上限値及び下限値の組み合わせの一例としては、0.0001~30質量%、0.001~1質量%、0.01~0.5質量%が挙げられる。 Examples of combinations of the upper limit value and the lower limit value include 0.0001 to 30% by mass, 0.001 to 1% by mass, and 0.01 to 0.5% by mass.
 組成物の総質量に対する(2)表面修飾剤の含有割合が上記範囲内である組成物は、(1)半導体材料が耐熱性に優れる点で好ましい。 A composition in which the content ratio of (2) the surface modifier to the total mass of the composition is within the above range is preferable because (1) the semiconductor material has excellent heat resistance.
 組成物において、組成物の総質量に対する(5)改質体群の含有割合は、特に限定されるものではない。(1)半導体材料の分散性を向上させる観点、及び耐久性を向上させる観点から、組成物の総質量に対する(5)改質体群の含有割合は、30質量%以下であることが好ましく、10質量%以下であることがより好ましく、7.5質量%以下であることがさらに好ましい。また、耐久性を向上させる観点から、組成物の総質量に対する(1)半導体材料の含有割合は、0.001質量%以上であることが好ましく、0.01質量%以上であることがより好ましく、0.1質量%以上であることがさらに好ましい。
 上記上限値及び下限値は任意に組み合わせることができる。
 上記上限値及び下限値の組み合わせの一例としては、0.001~30質量%、0.001~10質量%、0.1~7.5質量%が挙げられる。
 組成物の総質量に対する(5)改質体群の含有割合が上記範囲内である組成物は、耐久性の観点で好ましい。
In the composition, the content ratio of the (5) modified body group to the total mass of the composition is not particularly limited. (1) From the viewpoint of improving the dispersibility of the semiconductor material and the viewpoint of improving the durability, the content ratio of the (5) modified body group to the total mass of the composition is preferably 30% by mass or less, It is more preferably 10% by mass or less, and further preferably 7.5% by mass or less. From the viewpoint of improving durability, the content ratio of (1) semiconductor material to the total mass of the composition is preferably 0.001% by mass or more, and more preferably 0.01% by mass or more. Is more preferably 0.1% by mass or more.
The upper limit value and the lower limit value can be arbitrarily combined.
Examples of the combination of the upper limit value and the lower limit value include 0.001 to 30% by mass, 0.001 to 10% by mass, and 0.1 to 7.5% by mass.
The composition in which the content ratio of the modified body group (5) to the total mass of the composition is within the above range is preferable from the viewpoint of durability.
 本実施形態の組成物は、上述の(1)~(5)以外のその他の成分を有していてもよい。
 本実施形態の組成物は例えば、(6)成分を有していてもよい。なお、(6)成分の詳細については後述する。
 (6)カルボン酸、カルボキシレートイオン及びカルボキシレート塩からなる群より選択される少なくとも1種の化合物又はイオン
The composition of the present embodiment may include other components other than the above (1) to (5).
The composition of the present embodiment may have, for example, the component (6). The details of the component (6) will be described later.
(6) At least one compound or ion selected from the group consisting of carboxylic acid, carboxylate ion and carboxylate salt
 以下の説明では、(6)成分のことを「(6)その他の表面修飾剤」と称する。 In the following explanation, the component (6) is referred to as “(6) other surface modifier”.
 組成物において、組成物の総質量に対する(6)その他の表面修飾剤の含有割合は、特に限定されるものではない。耐久性向上の観点から、組成物の総質量に対する(6)その他の表面修飾剤の含有割合は、30質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.5質量%以下であることがさらに好ましい。また、(1)半導体材料の耐熱性を向上させる観点から、0.0001質量%以上であることが好ましく、0.001質量%以上であることがより好ましく、0.01質量%以上であることがさらに好ましい。 In the composition, the content ratio of (6) other surface modifier to the total mass of the composition is not particularly limited. From the viewpoint of improving durability, the content ratio of (6) the other surface modifier to the total mass of the composition is preferably 30 mass% or less, more preferably 1 mass% or less, and 0.5 It is more preferable that the content is not more than mass%. Further, (1) from the viewpoint of improving the heat resistance of the semiconductor material, it is preferably 0.0001 mass% or more, more preferably 0.001 mass% or more, and 0.01 mass% or more. Is more preferable.
 上記上限値及び下限値は任意に組み合わせることができる。 The above upper and lower limits can be combined arbitrarily.
 上記上限値及び下限値の組み合わせの一例としては、0.0001~30質量%、0.001~1質量%、0.01~0.5質量%が挙げられる。 Examples of combinations of the upper limit value and the lower limit value include 0.0001 to 30% by mass, 0.001 to 1% by mass, and 0.01 to 0.5% by mass.
 組成物の総質量に対する(6)その他の表面修飾剤の含有割合が上記範囲内である組成物は、(1)半導体材料が耐熱性に優れる点で好ましい。 A composition in which the content ratio of (6) the other surface modifier to the total mass of the composition is within the above range is preferable because (1) the semiconductor material has excellent heat resistance.
 また、例えば、本実施形態の組成物は、若干の不純物、(1)半導体材料を構成する元素からなるアモルファス構造を有する化合物、重合開始剤をさらに含んでいてもよい。 Further, for example, the composition of the present embodiment may further contain a small amount of impurities, (1) a compound having an amorphous structure composed of elements constituting a semiconductor material, and a polymerization initiator.
 本実施形態の組成物における、若干の不純物、(1)半導体材料を構成する元素からなるアモルファス構造を有する化合物、重合開始剤の合計含有割合は、組成物の総質量に対して10質量%以下であることが好ましく、5質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。 In the composition of the present embodiment, the total content of some impurities, (1) the compound having an amorphous structure composed of the elements constituting the semiconductor material, and the polymerization initiator is 10% by mass or less based on the total mass of the composition. Is preferable, 5 mass% or less is more preferable, and 1 mass% or less is further preferable.
 以下、本実施形態の組成物に含まれる(1)半導体材料、(2)表面修飾剤、(3)溶媒、(4)重合性化合物、(4-1)重合体、(5)改質体群等について説明を行う。 Hereinafter, (1) a semiconductor material, (2) a surface modifier, (3) a solvent, (4) a polymerizable compound, (4-1) a polymer, and (5) a modified substance contained in the composition of the present embodiment. A group etc. are demonstrated.
<<(1)半導体材料>>
 本実施形態の組成物に含まれる(1)半導体材料としては、下記(i)~(viii)を挙げることができる。
(i)II族-VI族化合物半導体を含む半導体材料
(ii)II族-V族化合物半導体を含む半導体材料
(iii)III族-V族化合物半導体を含む半導体材料
(iv)III族-IV族化合物半導体を含む半導体材料
(v)III族-VI族化合物半導体を含む半導体材料
(vi)IV族-VI族化合物半導体を含む半導体材料
(vii)遷移金属-p-ブロック化合物半導体を含む半導体材料
(viii)ペロブスカイト構造を有する化合物半導体を含む半導体材料
<< (1) Semiconductor material >>
Examples of the (1) semiconductor material contained in the composition of the present embodiment include the following (i) to (viii).
(I) Group II-VI compound semiconductor-containing semiconductor material (ii) Group II-V compound semiconductor-containing semiconductor material (iii) Group III-V compound semiconductor-containing semiconductor material (iv) Group III-IV Semiconductor Material Containing Compound Semiconductor (v) Semiconductor Material Containing Group III-VI Compound Semiconductor (vi) Semiconductor Material Containing Group IV-VI Compound Semiconductor (vii) Semiconductor Material Containing Transition Metal-p-Block Compound Semiconductor ( viii) a semiconductor material containing a compound semiconductor having a perovskite structure
<(i)II族-VI族化合物半導体を含む半導体材料>
 II族-VI族化合物半導体としては、周期表の第2族元素と第16族元素とを含む化合物半導体と、周期表の第12族元素と第16族元素とを含む化合物半導体とを挙げることができる。
 なお、本明細書において、「周期表」とは、長周期型周期表を意味する。
<(I) Semiconductor Material Containing Group II-VI Compound Semiconductor>
Examples of the group II-VI compound semiconductor include a compound semiconductor containing a group 2 element and a group 16 element of the periodic table, and a compound semiconductor containing a group 12 element and a group 16 element of the periodic table. You can
In addition, in this specification, a "periodic table" means a long period type periodic table.
 以下の説明では、第2族元素と第16族元素とを含む化合物半導体を「化合物半導体(i-1)」、第12族元素と第16族元素とを含む化合物半導体を「化合物半導体(i-2)」と称することがある。 In the following description, a compound semiconductor containing a Group 2 element and a Group 16 element is referred to as a “compound semiconductor (i-1)” and a compound semiconductor containing a Group 12 element and a Group 16 element is referred to as a “compound semiconductor (i-1)”. -2) ".
 化合物半導体(i-1)のうち、二元系の化合物半導体としては、例えば、MgS、MgSe、MgTe、CaS、CaSe、CaTe、SrS、SrSe、SrTe、BaS、BaSe、又はBaTeが挙げられる。 Among the compound semiconductors (i-1), examples of binary compound semiconductors include MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, or BaTe.
 また、化合物半導体(i-1)としては、
(i-1-1)第2族元素を1種類、第16族元素を2種類含む三元系の化合物半導体
(i-1-2)第2族元素を2種類、第16族元素を1種類含む三元系の化合物半導体
(i-1-3)第2族元素を2種類、第16族元素を2種類含む四元系の化合物半導体
であってもよい。
Further, as the compound semiconductor (i-1),
(I-1-1) A ternary compound semiconductor containing one group 2 element and two group 16 elements (i-1-2) Two group 2 elements and one group 16 element A ternary compound semiconductor (i-1-3) containing two kinds of elements and a quaternary compound semiconductor containing two kinds of group 16 elements may be used.
 化合物半導体(i-2)のうち、二元系の化合物半導体としては、例えば、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、HgSe、又はHgTeが挙げられる。 Among the compound semiconductors (i-2), examples of binary compound semiconductors include ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, or HgTe.
 また、化合物半導体(i-2)としては、
(i-2-1)第12族元素を1種類、第16族元素を2種類含む三元系の化合物半導体(i-2-2)第12族元素を2種類、第16族元素を1種類含む三元系の化合物半導体(i-2-3)第12族元素を2種類、第16族元素を2種類含む四元系の化合物半導体であってもよい。
Further, as the compound semiconductor (i-2),
(I-2-1) A ternary compound semiconductor containing one group 12 element and two group 16 elements (i-2-2) two group 12 elements and one group 16 element A ternary compound semiconductor (i-2-3) including two kinds may include a quaternary compound semiconductor including two kinds of Group 12 elements and two kinds of Group 16 elements.
 II族-VI族化合物半導体は、第2族元素、第12族元素、及び第16族元素以外の元素をドープ元素として含んでいてもよい。 The group II-VI compound semiconductor may contain an element other than the group 2 element, the group 12 element, and the group 16 element as a doping element.
<(ii)II族-V族化合物半導体を含む半導体材料>
 II族-V族化合物半導体は、第12族元素と、第15族元素とを含む。
<(Ii) Semiconductor Material Containing Group II-V Compound Semiconductor>
The group II-V compound semiconductor contains a group 12 element and a group 15 element.
 II族-V族化合物半導体のうち、二元系の化合物半導体としては、例えば、Zn、ZnAs、Cd、CdAs、Cd、又はZnが挙げられる。 Among the group II-V group compound semiconductors, examples of binary compound semiconductors include, for example, Zn 3 P 2 , Zn 3 As 2 , Cd 3 P 2 , Cd 3 As 2 , Cd 3 N 2 , or Zn 3 N. 2 .
 また、II族-V族化合物半導体としては、
(ii-1)第12族元素を1種類、第15族元素を2種類含む三元系の化合物半導体
(ii-2)第12族元素を2種類、第15族元素を1種類含む三元系の化合物半導体
(ii-3)第12族元素を2種類、第15族元素を2種類含む四元系の化合物半導体
であってもよい。
Further, as the II-V compound semiconductor,
(Ii-1) A ternary compound semiconductor containing one group 12 element and two group 15 elements (ii-2) A ternary compound semiconductor containing two group 12 elements and one group 15 element The compound semiconductor (ii-3) of the group may be a quaternary compound semiconductor containing two kinds of Group 12 elements and two kinds of Group 15 elements.
 II族-V族化合物半導体は、第12族元素、及び第15族元素以外の元素をドープ元素として含んでいてもよい。 The group II-V compound semiconductor may contain an element other than the group 12 element and the group 15 element as a doping element.
<(iii)III族-V族化合物半導体を含む半導体材料>
 III族-V族化合物半導体は、第13族元素と、第15族元素とを含む。
<(Iii) Semiconductor Material Containing Group III-V Compound Semiconductor>
The Group III-V compound semiconductor contains a Group 13 element and a Group 15 element.
 III族-V族化合物半導体のうち、二元系の化合物半導体としては、例えば、BP、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、AlN、又はBNが挙げられる。 Among the group III-V group compound semiconductors, binary compound semiconductors include, for example, BP, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, AlN, or BN. Can be mentioned.
 また、III族-V族化合物半導体としては、
(iii-1)第13族元素を1種類、第15族元素を2種類含む三元系の化合物半導体(iii-2)第13族元素を2種類、第15族元素を1種類含む三元系の化合物半導体(iii-3)第13族元素を2種類、第15族元素を2種類含む四元系の化合物半導体であってもよい。
Further, as the group III-V compound semiconductor,
(Iii-1) A ternary compound semiconductor containing one group 13 element and two group 15 elements (iii-2) A ternary compound semiconductor containing two group 13 elements and one group 15 element System compound semiconductor (iii-3) A quaternary compound semiconductor containing two kinds of Group 13 elements and two kinds of Group 15 elements may be used.
 III族-V族化合物半導体は、第13族元素、及び第15族元素以外の元素をドープ元素として含んでいてもよい。 The group III-V compound semiconductor may contain an element other than the group 13 element and the group 15 element as a doping element.
<(iv)III族-IV族化合物半導体を含む半導体材料>
 III族-IV族化合物半導体は、第13族元素と、第14族元素とを含む。
<(Iv) Semiconductor Material Containing Group III-IV Compound Semiconductor>
The group III-IV compound semiconductor contains a group 13 element and a group 14 element.
 III族-IV族化合物半導体のうち、二元系の化合物半導体としては、例えば、B、Al、Gaが挙げられる。 Among the group III-IV group compound semiconductors, examples of binary compound semiconductors include B 4 C 3 , Al 4 C 3 , and Ga 4 C 3 .
 また、III族-IV族化合物半導体としては、
(iv-1)第13族元素を1種類、第14族元素を2種類含む三元系の化合物半導体
(iv-2)第13族元素を2種類、第14族元素を1種類含む三元系の化合物半導体
(iv-3)第13族元素を2種類、第14族元素を2種類含む四元系の化合物半導体
であってもよい。
Further, as the group III-IV compound semiconductor,
(Iv-1) ternary compound semiconductor containing one group 13 element and two group 14 elements (iv-2) ternary compound semiconductor containing two group 13 elements and one group 14 element The compound semiconductor (iv-3) of the system may be a quaternary compound semiconductor containing two kinds of Group 13 elements and two kinds of Group 14 elements.
 III族-IV族化合物半導体は、第13族元素、及び第14族元素以外の元素をドープ元素として含んでいてもよい。 The group III-IV compound semiconductor may contain an element other than the group 13 element and the group 14 element as a doping element.
<(v)III族-VI族化合物半導体を含む半導体材料>
 III族-VI族化合物半導体は、第13族元素と、第16族元素とを含む。
<(V) Semiconductor Material Containing Group III-VI Compound Semiconductor>
The group III-VI compound semiconductor contains a group 13 element and a group 16 element.
 III族-VI族化合物半導体のうち、二元系の化合物半導体としては、例えば、Al、AlSe、AlTe、Ga、GaSe、GaTe、GaTe、In、InSe、InTe、又はInTeが挙げられる。 Of the group III-VI compound semiconductors, binary compound semiconductors include, for example, Al 2 S 3 , Al 2 Se 3 , Al 2 Te 3 , Ga 2 S 3 , Ga 2 Se 3 , Ga 2 Te 3 , GaTe, In 2 S 3 , In 2 Se 3 , In 2 Te 3 , or InTe.
 また、III族-VI族化合物半導体としては、
(v-1)第13族元素を1種類、第16族元素を2種類含む三元系の化合物半導体
(v-2)第13族元素を2種類、第16族元素を1種類含む三元系の化合物半導体
(v-3)第13族元素を2種類、第16族元素を2種類含む四元系の化合物半導体
であってもよい。
Further, as the group III-VI compound semiconductor,
(V-1) A ternary compound semiconductor containing one group 13 element and two group 16 elements (v-2) A ternary compound semiconductor containing two group 13 elements and one group 16 element The compound semiconductor (v-3) of the system may be a quaternary compound semiconductor containing two kinds of group 13 elements and two kinds of group 16 elements.
 III族-VI族化合物半導体は、第13族元素、及び第16族元素以外の元素をドープ元素として含んでいてもよい。 The group III-VI compound semiconductor may contain an element other than the group 13 element and the group 16 element as a doping element.
<(vi)IV族-VI族化合物半導体を含む半導体材料>
 IV族-VI族化合物半導体は、第14族元素と、第16族元素とを含む。
<(Vi) Semiconductor Material Containing Group IV-VI Compound Semiconductor>
The group IV-VI compound semiconductor contains a group 14 element and a group 16 element.
 IV族-VI族化合物半導体のうち、二元系の化合物半導体としては、例えば、PbS、PbSe、PbTe、SnS、SnSe、又はSnTeが挙げられる。 Among the group IV-VI compound semiconductors, examples of binary compound semiconductors include PbS, PbSe, PbTe, SnS, SnSe, or SnTe.
 また、IV族-VI族化合物半導体としては、
(vi-1)第14族元素を1種類、第16族元素を2種類含む三元系の化合物半導体
(vi-2)第14族元素を2種類、第16族元素を1種類含む三元系の化合物半導体
(vi-3)第14族元素を2種類、第16族元素を2種類含む四元系の化合物半導体
であってもよい。
Further, as the group IV-VI compound semiconductor,
(Vi-1) A ternary compound semiconductor containing one group 14 element and two group 16 elements (vi-2) A ternary compound semiconductor containing two group 14 elements and one group 16 element System compound semiconductor (vi-3) A quaternary compound semiconductor containing two kinds of Group 14 elements and two kinds of Group 16 elements may be used.
 III族-VI族化合物半導体は、第14族元素、及び第16族元素以外の元素をドープ元素として含んでいてもよい。 The group III-VI compound semiconductor may contain an element other than the group 14 element and the group 16 element as a doping element.
<(vii)遷移金属-p-ブロック化合物半導体を含む半導体材料>
 遷移金属-p-ブロック化合物半導体は、遷移金属元素と、p-ブロック元素とを含む。「p-ブロック元素」とは、周期表の第13族から第18族に属する元素である。
<(Vii) Semiconductor Material Including Transition Metal-p-Block Compound Semiconductor>
The transition metal-p-block compound semiconductor contains a transition metal element and a p-block element. The "p-block element" is an element belonging to Groups 13 to 18 of the periodic table.
 遷移金属-p-ブロック化合物半導体のうち、二元系の化合物半導体としては、例えば、NiS、CrSが挙げられる。 Among the transition metal-p-block compound semiconductors, examples of binary compound semiconductors include NiS and CrS.
 また、遷移金属-p-ブロック化合物半導体としては、
(vii-1)遷移金属元素を1種類、p-ブロック元素を2種類含む三元系の化合物半導体
(vii-2)遷移金属元素を2種類、p-ブロック元素を1種類含む三元系の化合物半導体
(vii-3)遷移金属元素を2種類、p-ブロック元素を2種類含む四元系の化合物半導体
であってもよい。
Further, as the transition metal-p-block compound semiconductor,
(Vii-1) ternary compound semiconductor containing one transition metal element and two p-block elements (vii-2) ternary compound semiconductor containing two transition metal elements and one p-block element Compound semiconductor (vii-3) A quaternary compound semiconductor containing two kinds of transition metal elements and two kinds of p-block elements may be used.
 遷移金属-p-ブロック化合物半導体は、遷移金属元素、及びp-ブロック元素以外の元素をドープ元素として含んでいてもよい。 The transition metal-p-block compound semiconductor may contain a transition metal element and an element other than the p-block element as a doping element.
 上述の三元系の化合物半導体や四元系の化合物半導体の具体例としては、ZnCdS、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、ZnCdSSe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe、GaNP、GaNAs、GaPAs、AlNP、AlNAs、AlPAs、InNP、InNAs、InPAs、GaAlNP、GaAlNAs、GaAlPAs、GaInNP、GaInNAs、GaInPAs、InAlNP、InAlNAs、CuInS、又はInAlPAs等が挙げられる。 Specific examples of the compound semiconductor of a compound semiconductor or quaternary ternary above, ZnCdS, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe , CdHgTe, HgZnS, HgZnSe, HgZnTe, ZnCdSSe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe, GaNP, GaNAs, GaPAs, AlNP, AlNAs, AlPAs, InNP, InNAs, InPAs, GaAlNP, GaAlNAs , GaAlPAs, GaInNP, GaInNAs, GaInP s, InAlNP, InAlNAs, CuInS 2 , or InAlPAs the like.
 本実施形態の組成物においては、上述の化合物半導体の中でも、第12族元素であるCdを含む化合物半導体、及び第13族元素であるInを含む化合物半導体が好ましい。また、本実施形態の組成物においては、上述の化合物半導体の中でも、CdとSeとを含む化合物半導体、及びInとPとを含む化合物半導体が好ましい。 In the composition of the present embodiment, among the above compound semiconductors, a compound semiconductor containing Cd which is a Group 12 element and a compound semiconductor containing In which is a Group 13 element are preferable. In the composition of the present embodiment, among the above compound semiconductors, the compound semiconductor containing Cd and Se and the compound semiconductor containing In and P are preferable.
 CdとSeとを含む化合物半導体は、二元系の化合物半導体、三元系の化合物半導体、四元系の化合物半導体のいずれも好ましい。中でも、二元系の化合物半導体であるCdSeが特に好ましい。 The compound semiconductor containing Cd and Se is preferably a binary compound semiconductor, a ternary compound semiconductor, or a quaternary compound semiconductor. Among them, CdSe, which is a binary compound semiconductor, is particularly preferable.
 InとPとを含む化合物半導体は、二元系の化合物半導体、三元系の化合物半導体、四元系の化合物半導体のいずれも好ましい。中でも、二元系の化合物半導体であるInPが特に好ましい。 The compound semiconductor containing In and P is preferably a binary compound semiconductor, a ternary compound semiconductor, or a quaternary compound semiconductor. Of these, InP, which is a binary compound semiconductor, is particularly preferable.
<(viii)ペロブスカイト構造を有する化合物半導体を含む半導体材料>
 ペロブスカイト構造を有する化合物半導体は、A、B、及びXを構成成分とするペロブスカイト型結晶構造を有する。以下の説明においては、ペロブスカイト構造を有する化合物半導体を、単に「ペロブスカイト化合物」と称することがある。
<(Viii) Semiconductor Material Including Compound Semiconductor Having Perovskite Structure>
The compound semiconductor having a perovskite structure has a perovskite type crystal structure having A, B and X as constituent components. In the following description, a compound semiconductor having a perovskite structure may be simply referred to as “perovskite compound”.
 Aは、ペロブスカイト型結晶構造において、Bを中心とする六面体の各頂点に位置する成分であって、1価の陽イオンである。
 Xは、ペロブスカイト型結晶構造において、Bを中心とする八面体の各頂点に位置する成分を表し、ハロゲン化物イオン、及びチオシアン酸イオンからなる群より選ばれる少なくとも一種の陰イオンである。
 Bは、ペロブスカイト型結晶構造において、Aを頂点に配置する六面体、及びXを頂点に配置する八面体の中心に位置する成分であって、金属イオンである。
In the perovskite type crystal structure, A is a component located at each vertex of a hexahedron centered on B and is a monovalent cation.
X represents a component located at each vertex of the octahedron centered on B in the perovskite type crystal structure, and is at least one anion selected from the group consisting of a halide ion and a thiocyanate ion.
In the perovskite type crystal structure, B is a component located at the center of the hexahedron having A at its apex and the octahedron having X at its apex, and is a metal ion.
 A、B、及びXを構成成分とするペロブスカイト化合物としては、特に限定されず、3次元構造、2次元構造、疑似2次元構造(quasi-2D)のいずれの構造を有する化合物であってもよい。
 3次元構造の場合、ペロブスカイト化合物の組成式は、ABX(3+δ)で表される。
 2次元構造の場合、ペロブスカイト化合物の組成式は、ABX(4+δ)で表される。
The perovskite compound containing A, B, and X as constituent components is not particularly limited, and may be a compound having any of a three-dimensional structure, a two-dimensional structure, and a pseudo two-dimensional structure (quasi-2D). .
In the case of a three-dimensional structure, the composition formula of the perovskite compound is represented by ABX (3 + δ) .
In the case of a two-dimensional structure, the composition formula of the perovskite compound is represented by A 2 BX (4 + δ) .
 ここで、δは、Bの電荷バランスに応じて適宜変更が可能な数であり、-0.7以上0.7以下である。例えば、Aが1価の陽イオン、Bが2価の陽イオン、Xが1価の陰イオンである場合、ペロブスカイト化合物が電気的に中性となるようにδを選択することができる。ペロブスカイト化合物が電気的に中性とは、ペロブスカイト化合物の電荷が0であることを意味する。 Here, δ is a number that can be appropriately changed according to the charge balance of B, and is −0.7 or more and 0.7 or less. For example, when A is a monovalent cation, B is a divalent cation, and X is a monovalent anion, δ can be selected so that the perovskite compound becomes electrically neutral. The electrically neutral perovskite compound means that the charge of the perovskite compound is zero.
 ペロブスカイト化合物は、Bを中心とし、頂点をXとする八面体を含む。八面体は、BXで表される。
 ペロブスカイト化合物が3次元構造を有する場合、ペロブスカイト化合物に含まれるBXは、八面体(BX)において頂点に位置する1つのXを、結晶中で隣り合う2つの八面体(BX)で共有することで、3次元ネットワークを構成する。
The perovskite compound includes an octahedron whose center is B and whose apex is X. The octahedron is represented by BX 6 .
If perovskite compound has a 3-dimensional structure, BX 6 contained in the perovskite compound, share one X is located at the apex in octahedral (BX 6), 2 octahedral adjacent in the crystal (BX 6) By doing so, a three-dimensional network is constructed.
 ペロブスカイト化合物が2次元構造を有する場合、ペロブスカイト化合物に含まれるBXは、八面体(BX)において頂点に位置する2つのXを、結晶中で隣り合う2つの八面体(BX)で共有することで八面体の稜線を共有し、2次元的に連なった層を構成する。ペロブスカイト化合物では、2次元的に連なったBXからなる層と、Aからなる層と、が交互に積層された構造を有する。 If perovskite compound has a two-dimensional structure, BX 6 contained in the perovskite compound, shared by the two X located at the vertices in octahedral (BX 6), 2 octahedral adjacent in the crystal (BX 6) By doing so, the ridgeline of the octahedron is shared and a two-dimensionally continuous layer is formed. The perovskite compound has a structure in which two-dimensionally continuous layers of BX 6 and layers of A are alternately laminated.
 本明細書において、ペロブスカイト化合物の結晶構造は、X線回折パターンにより確認することができる。 In the present specification, the crystal structure of the perovskite compound can be confirmed by an X-ray diffraction pattern.
 ペロブスカイト化合物が3次元構造のペロブスカイト型結晶構造を有する場合、通常、X線回折パターンにおいて、2θ=12~18°の位置に(hkl)=(001)に由来するピークが確認される。又は2θ=18~25°の位置に(hkl)=(110)に由来するピークが確認される。 When the perovskite compound has a three-dimensional perovskite type crystal structure, a peak derived from (hkl) = (001) is usually confirmed at a position of 2θ = 12 to 18 ° in the X-ray diffraction pattern. Alternatively, a peak derived from (hkl) = (110) is confirmed at a position of 2θ = 18 to 25 °.
 ペロブスカイト化合物が3次元構造のペロブスカイト型結晶構造を有する場合、2θ=13~16°の位置に、(hkl)=(001)に由来するピークが確認される、又は2θ=20~23°の位置に、(hkl)=(110)に由来するピークが確認されることが好ましい。 When the perovskite compound has a three-dimensional perovskite type crystal structure, a peak derived from (hkl) = (001) is confirmed at a position of 2θ = 13 to 16 °, or a position of 2θ = 20 to 23 ° In addition, it is preferable that a peak derived from (hkl) = (110) is confirmed.
 ペロブスカイト化合物が2次元構造のペロブスカイト型結晶構造を有する場合、通常、X線回折パターンにおいて、2θ=1~10°の位置に、(hkl)=(002)由来のピークが確認される。また、2θ=2~8°の位置に、(hkl)=(002)由来のピークが確認されることが好ましい。 When the perovskite compound has a two-dimensional perovskite type crystal structure, a peak derived from (hkl) = (002) is usually confirmed at the position of 2θ = 1 to 10 ° in the X-ray diffraction pattern. Further, it is preferable to confirm a peak derived from (hkl) = (002) at a position of 2θ = 2 to 8 °.
 ペロブスカイト化合物は、3次元構造を有することが好ましい。 The perovskite compound preferably has a three-dimensional structure.
(構成成分A)
 ペロブスカイト化合物を構成するAは、1価の陽イオンである。Aとしては、セシウムイオン、有機アンモニウムイオン、又はアミジニウムイオンが挙げられる。
(Component A)
A constituting the perovskite compound is a monovalent cation. Examples of A include cesium ion, organic ammonium ion, and amidinium ion.
(有機アンモニウムイオン)
 Aの有機アンモニウムイオンとして具体的には、下記式(A3)で表される陽イオンが挙げられる。
(Organic ammonium ion)
Specific examples of the organic ammonium ion of A include a cation represented by the following formula (A3).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(A3)中、R~Rは、それぞれ独立に、水素原子、アルキル基、又はシクロアルキル基を表す。但し、R~Rは、少なくとも1つがアルキル基又はシクロアルキル基であり、R~Rの全てが同時に水素原子となることはない。 In formula (A3), R 6 to R 9 each independently represent a hydrogen atom, an alkyl group, or a cycloalkyl group. However, at least one of R 6 to R 9 is an alkyl group or a cycloalkyl group, and all of R 6 to R 9 are not hydrogen atoms at the same time.
 R~Rで表されるアルキル基は、それぞれ独立に直鎖状であっても、分岐鎖状であってもよい。また、R~Rで表されるアルキル基は、それぞれ独立に置換基としてアミノ基を有していてもよい。 The alkyl groups represented by R 6 to R 9 may each independently be linear or branched. The alkyl groups represented by R 6 to R 9 may each independently have an amino group as a substituent.
 R~Rがアルキル基である場合、炭素原子数は、それぞれ独立に通常1~20であり、1~4であることが好ましく、1~3であることがより好ましく、1であることがさらに好ましい。 When R 6 to R 9 are each an alkyl group, the number of carbon atoms is independently 1 to 20, usually 1 to 4, preferably 1 to 3, and more preferably 1. Is more preferable.
 R~Rで表されるシクロアルキル基は、それぞれ独立に置換基として、アミノ基を有していてもよい。 The cycloalkyl groups represented by R 6 to R 9 may each independently have an amino group as a substituent.
 R~Rで表されるシクロアルキル基の炭素原子数は、それぞれ独立に通常3~30であり、3~11であることが好ましく、3~8であることがより好ましい。炭素原子数は、置換基の炭素原子数も含む。 The number of carbon atoms of the cycloalkyl group represented by R 6 to R 9 is, independently of each other, usually 3 to 30, preferably 3 to 11, and more preferably 3 to 8. The number of carbon atoms also includes the number of carbon atoms of the substituent.
 R~Rで表される基としては、それぞれ独立に、水素原子又はアルキル基であることが好ましい。 The groups represented by R 6 to R 9 are preferably each independently a hydrogen atom or an alkyl group.
 ペロブスカイト化合物が、Aとして上記式(A3)で表される有機アンモニウムイオンを含む場合、式(A3)に含まれ得るアルキル基及びシクロアルキル基の数は少ないとよい。また、式(A3)に含まれ得るアルキル基及びシクロアルキル基の炭素原子数は小さいとよい。これにより、発光強度が高い3次元構造のペロブスカイト化合物を得ることができる。 When the perovskite compound contains, as A, an organic ammonium ion represented by the above formula (A3), it is preferable that the number of alkyl groups and cycloalkyl groups contained in the formula (A3) be small. In addition, the number of carbon atoms of the alkyl group and the cycloalkyl group which can be included in the formula (A3) is preferably small. Thereby, a perovskite compound having a three-dimensional structure with high emission intensity can be obtained.
 式(A3)で表される有機アンモニウムイオンにおいて、R~Rで表されるアルキル基及びシクロアルキル基に含まれる炭素原子数の合計数は1~4であることが好ましい。また、式(A3)で表される有機アンモニウムイオンにおいて、R~Rのうちの1つが炭素原子数1~3のアルキル基であり、R~Rのうちの3つが水素原子であることがより好ましい。 In the organic ammonium ion represented by the formula (A3), the total number of carbon atoms contained in the alkyl group and cycloalkyl group represented by R 6 to R 9 is preferably 1 to 4. In the organic ammonium ion of the formula (A3), one of R 6 ~ R 9 is an alkyl group having 1 to 3 carbon atoms, three of R 6 ~ R 9 is a hydrogen atom More preferably.
 R~Rのアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、n-オクチル基、イソオクチル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基が例示できる。 The alkyl group of R 6 to R 9 is a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group. , Neopentyl group, tert-pentyl group, 1-methylbutyl group, n-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, n-heptyl group Group, 2-methylhexyl group, 3-methylhexyl group, 2,2-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3,3-dimethylpentyl group, 3-ethylpentyl group Group, 2,2,3-trimethylbutyl group, n-octyl group, isooctyl group, 2-ethylhexyl group, nonyl group, decyl group, undecyl group Dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group can be exemplified.
 R~Rのシクロアルキル基としては、それぞれ独立にR~Rのアルキル基で例示した炭素原子数3以上のアルキル基が環を形成したものが挙げられる。一例として、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ノルボルニル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロデシル基等を例示できる。 The cycloalkyl group of R 6 ~ R 9, include those independently R 6 ~ exemplified alkyl group having 3 or more carbon atoms in the alkyl group R 9 is to form a ring. Examples include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, norbornyl group, isobornyl group, 1-adamantyl group, 2-adamantyl group, tricyclodecyl group. Etc. can be illustrated.
 Aで表される有機アンモニウムイオンとしては、CHNH (メチルアンモニウムイオンともいう。)、CNH (エチルアンモニウムイオンともいう。)又はCNH (プロピルアンモニウムイオンともいう。)であることが好ましく、CHNH 又はCNH であることより好ましく、CHNH であることがさらに好ましい。 Examples of the organic ammonium ion represented by A include CH 3 NH 3 + (also called methylammonium ion), C 2 H 5 NH 3 + (also called ethylammonium ion) or C 3 H 7 NH 3 + (propyl). It is also preferably an ammonium ion), more preferably CH 3 NH 3 + or C 2 H 5 NH 3 + , and further preferably CH 3 NH 3 + .
(アミジニウムイオン)
 Aで表されるアミジニウムイオンとしては、例えば、下記式(A4)で表されるアミジニウムイオンが挙げられる。
(R1011N=CH-NR1213・・・(A4)
(Amidinium ion)
Examples of the amidinium ion represented by A include an amidinium ion represented by the following formula (A4).
(R 10 R 11 N = CH—NR 12 R 13 ) + ... (A4)
 式(A4)中、R10~R13は、それぞれ独立に、水素原子、置換基としてアミノ基を有していてもよいアルキル基、又は置換基としてアミノ基を有していてもよいシクロアルキル基を表す。 In formula (A4), R 10 to R 13 are each independently a hydrogen atom, an alkyl group which may have an amino group as a substituent, or a cycloalkyl which may have an amino group as a substituent. Represents a group.
 R10~R13で表されるアルキル基は、それぞれ独立に直鎖状であっても、分岐鎖状であってもよい。また、R10~R13で表されるアルキル基は、それぞれ独立に置換基としてアミノ基を有していてもよい。 The alkyl groups represented by R 10 to R 13 may each independently be linear or branched. The alkyl groups represented by R 10 to R 13 may each independently have an amino group as a substituent.
 R10~R13で表されるアルキル基の炭素原子数は、それぞれ独立に通常1~20であり、1~4であることが好ましく、1~3であることがより好ましい。 The number of carbon atoms of the alkyl group represented by R 10 to R 13 is independently 1 to 20, usually 1 to 4, and more preferably 1 to 3.
 R10~R13で表されるシクロアルキル基は、それぞれ独立に置換基として、アミノ基を有していてもよい。 The cycloalkyl groups represented by R 10 to R 13 may each independently have an amino group as a substituent.
 R10~R13で表されるシクロアルキル基の炭素原子数は、それぞれ独立に通常3~30であり、3~11であることが好ましく、3~8であることがより好ましい。炭素原子数は、置換基の炭素原子数を含む。 The number of carbon atoms of the cycloalkyl group represented by R 10 to R 13 is, independently of each other, usually 3 to 30, preferably 3 to 11, and more preferably 3 to 8. The number of carbon atoms includes the number of carbon atoms of the substituent.
 R10~R13のアルキル基の具体例としては、それぞれ独立にR~Rにおいて例示したアルキル基と同じ基が挙げられる。
 R10~R13のシクロアルキル基の具体例としては、それぞれ独立にR~Rにおいて例示したシクロアルキル基と同じ基が挙げられる。
Specific examples of the alkyl group of R 10 to R 13 include the same groups as the alkyl groups exemplified in R 6 to R 9 each independently.
Specific examples of the cycloalkyl group of R 10 to R 13 include the same groups as the cycloalkyl group exemplified in R 6 to R 9 each independently.
 R10~R13で表される基としては、それぞれ独立に水素原子又はアルキル基が好ましい。 The groups represented by R 10 to R 13 are preferably each independently a hydrogen atom or an alkyl group.
 式(A4)に含まれる、アルキル基及びシクロアルキル基の数を少なくすること、並びにアルキル基及びシクロアルキル基の炭素原子数を小さくすることにより、発光強度が高い3次元構造のペロブスカイト化合物を得ることができる。 By reducing the number of alkyl groups and cycloalkyl groups contained in the formula (A4) and reducing the number of carbon atoms of the alkyl groups and cycloalkyl groups, a perovskite compound having a three-dimensional structure with high emission intensity is obtained. be able to.
 アミジニウムイオンにおいて、R10~R13で表されるアルキル基及びシクロアルキル基に含まれる炭素原子数の合計数は1~4であることが好ましく、R10が炭素原子数1~3のアルキル基であり、R11~R13が水素原子であることがより好ましい。 In the amidinium ion, the total number of carbon atoms contained in the alkyl group and cycloalkyl group represented by R 10 to R 13 is preferably 1 to 4, and R 10 is an alkyl group having 1 to 3 carbon atoms. More preferably, it is a group and R 11 to R 13 are hydrogen atoms.
 ペロブスカイト化合物において、Aがセシウムイオン、炭素原子数が3以下の有機アンモニウムイオン、又は炭素原子数が3以下のアミジニウムイオンである場合、一般的にペロブスカイト化合物は3次元構造を有する。 In the perovskite compound, when A is a cesium ion, an organic ammonium ion having 3 or less carbon atoms, or an amidinium ion having 3 or less carbon atoms, the perovskite compound generally has a three-dimensional structure.
 ペロブスカイト化合物において、Aが炭素原子数4以上の有機アンモニウムイオン、又は炭素原子数4以上のアミジニウムイオンである場合、ペロブスカイト化合物は、2次元構造及び擬似2次元(quasi-2D)構造のいずれか一方又は両方を有する。この場合、ペロブスカイト化合物は、2次元構造又は疑似2次元構造を、結晶の一部又は全体に有することができる。
 2次元のペロブスカイト型結晶構造が複数積層すると3次元のペロブスカイト型結晶構造と同等になる(参考文献:P.PBoixら、J.Phys.Chem.Lett.2015,6,898-907など)。
In the perovskite compound, when A is an organic ammonium ion having 4 or more carbon atoms or an amidinium ion having 4 or more carbon atoms, the perovskite compound has either a two-dimensional structure or a pseudo two-dimensional (quasi-2D) structure. Have one or both. In this case, the perovskite compound can have a two-dimensional structure or a pseudo-two-dimensional structure in a part or the whole of the crystal.
When a plurality of two-dimensional perovskite type crystal structures are laminated, it becomes equivalent to a three-dimensional perovskite type crystal structure (references: P. PBoix et al., J. Phys. Chem. Lett. 2015, 6, 898-907, etc.).
 ペロブスカイト化合物中のAは、セシウムイオン又はアミジニウムイオンが好ましい。 A of the perovskite compound is preferably a cesium ion or an amidinium ion.
(構成成分B)
 ペロブスカイト化合物を構成するBは、1価の金属イオン、2価の金属イオン、及び3価の金属イオンからなる群より選ばれる1種類以上の金属イオンであってよい。Bは2価の金属イオンを含むことが好ましく、鉛、及びスズからなる群より選ばれる1種類以上の金属イオンを含むことがより好ましく、鉛がさらに好ましい。
(Component B)
B constituting the perovskite compound may be one or more kinds of metal ions selected from the group consisting of monovalent metal ions, divalent metal ions, and trivalent metal ions. B preferably contains a divalent metal ion, more preferably contains at least one metal ion selected from the group consisting of lead and tin, and even more preferably lead.
(構成成分X)
 ペロブスカイト化合物を構成するXは、ハロゲン化物イオン、及びチオシアン酸イオンからなる群より選ばれる少なくとも一種の陰イオンであってよい。
(Component X)
X constituting the perovskite compound may be at least one anion selected from the group consisting of a halide ion and a thiocyanate ion.
 ハロゲン化物イオンとしては、塩化物イオン、臭化物イオン、フッ化物イオン、ヨウ化物イオンを挙げることができる。Xは、臭化物イオン又はヨウ化物イオンを含むことが好ましく、臭化物イオンを含むことがより好ましく、臭化物イオン及びヨウ化物イオンを含むことがさらに好ましい。 As the halide ion, chloride ion, bromide ion, fluoride ion, iodide ion can be mentioned. X preferably contains bromide ion or iodide ion, more preferably contains bromide ion, and further preferably contains bromide ion and iodide ion.
 Xが2種以上のハロゲン化物イオンである場合、ハロゲン化物イオンの含有比率は、発光波長により適宜選ぶことができる。例えば、臭化物イオンと塩化物イオンとの組み合わせ、又は、臭化物イオンとヨウ化物イオンとの組み合わせとすることができる。
 Xは、臭化物イオンとヨウ化物イオンとの組み合わせであることが好ましい。
When X is two or more kinds of halide ions, the content ratio of halide ions can be appropriately selected depending on the emission wavelength. For example, a combination of bromide ion and chloride ion or a combination of bromide ion and iodide ion can be used.
X is preferably a combination of bromide ion and iodide ion.
 Xは、所望の発光波長に応じて適宜選択することができる。 X can be appropriately selected according to the desired emission wavelength.
 Xが臭化物イオンであるペロブスカイト化合物は、通常480nm以上、好ましくは500nm以上、より好ましくは520nm以上の波長範囲に強度の極大ピークがある蛍光を発することができる。 A perovskite compound in which X is a bromide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 480 nm or more, preferably 500 nm or more, more preferably 520 nm or more.
 また、Xが臭化物イオンであるペロブスカイト化合物は、通常700nm以下、好ましくは600nm以下、より好ましくは580nm以下の波長範囲に強度の極大ピークがある蛍光を発することができる。
 上記波長範囲の上限値及び下限値は、任意に組み合わせることができる。
The perovskite compound in which X is a bromide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 700 nm or less, preferably 600 nm or less, more preferably 580 nm or less.
The upper limit value and the lower limit value of the above wavelength range can be arbitrarily combined.
 ペロブスカイト化合物中のXが臭化物イオンの場合、発する蛍光のピークは、通常480~700nmであり、500~600nmであることが好ましく、520~580nmであることがより好ましい。 When X in the perovskite compound is a bromide ion, the peak of fluorescence emitted is usually 480 to 700 nm, preferably 500 to 600 nm, and more preferably 520 to 580 nm.
 Xがヨウ化物イオンであるペロブスカイト化合物は、通常520nm以上、好ましくは530nm以上、より好ましくは540nm以上の波長範囲に強度の極大ピークがある蛍光を発することができる。 The perovskite compound in which X is an iodide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 520 nm or more, preferably 530 nm or more, more preferably 540 nm or more.
 また、Xがヨウ化物イオンであるペロブスカイト化合物は、通常800nm以下、好ましくは750nm以下、より好ましくは730nm以下の波長範囲に強度の極大ピークがある蛍光を発することができる。
 上記波長範囲の上限値及び下限値は、任意に組み合わせることができる。
A perovskite compound in which X is an iodide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 800 nm or less, preferably 750 nm or less, more preferably 730 nm or less.
The upper limit value and the lower limit value of the above wavelength range can be arbitrarily combined.
 ペロブスカイト化合物中のXがヨウ化物イオンの場合、発する蛍光のピークは、通常520~800nmであり、530~750nmであることが好ましく、540~730nmであることがより好ましい。 When X in the perovskite compound is an iodide ion, the fluorescence peak emitted is usually 520 to 800 nm, preferably 530 to 750 nm, and more preferably 540 to 730 nm.
 Xが塩化物イオンであるペロブスカイト化合物は、通常300nm以上、好ましくは310nm以上、より好ましくは330nm以上の波長範囲に強度の極大ピークがある蛍光を発することができる。 A perovskite compound in which X is a chloride ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 300 nm or more, preferably 310 nm or more, more preferably 330 nm or more.
 また、Xが塩化物イオンであるペロブスカイト化合物は、通常600nm以下、好ましくは580nm以下、より好ましくは550nm以下の波長範囲に強度の極大ピークがある蛍光を発することができる。
 上記波長範囲の上限値及び下限値は、任意に組み合わせることができる。
Further, the perovskite compound in which X is a chloride ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 600 nm or less, preferably 580 nm or less, and more preferably 550 nm or less.
The upper limit value and the lower limit value of the above wavelength range can be arbitrarily combined.
 ペロブスカイト化合物中のXが塩化物イオンの場合、発する蛍光のピークは、通常300~600nmであり、310~580nmであることが好ましく、330~550nmであることがより好ましい。 When X in the perovskite compound is a chloride ion, the peak of fluorescence emitted is usually 300 to 600 nm, preferably 310 to 580 nm, and more preferably 330 to 550 nm.
(3次元構造のペロブスカイト化合物の例示)
 ABX(3+δ)で表される3次元構造のペロブスカイト化合物の好ましい例としては、CHNHPbBr、CHNHPbCl、CHNHPbI、CHNHPbBr(3-y)(0<y<3)、CHNHPbBr(3-y)Cl(0<y<3)、(HN=CH-NH)PbBr、(HN=CH-NH)PbCl、(HN=CH-NH)PbIを挙げることができる。
(Exemplary perovskite compound having a three-dimensional structure)
Preferred examples of the perovskite compound having a three-dimensional structure represented by ABX (3 + δ) include CH 3 NH 3 PbBr 3 , CH 3 NH 3 PbCl 3 , CH 3 NH 3 PbI 3 , CH 3 NH 3 PbBr (3-y. ) I y (0 <y <3), CH 3 NH 3 PbBr (3-y) Cl y (0 <y <3), (H 2 N = CH—NH 2 ) PbBr 3 , (H 2 N = CH) --NH 2 ) PbCl 3 and (H 2 N═CH—NH 2 ) PbI 3 may be mentioned.
 3次元構造のペロブスカイト化合物の好ましい例としては、CHNHPb(1-a)CaBr(0<a≦0.7)、CHNHPb(1-a)SrBr(0<a≦0.7)、CHNHPb(1-a)LaBr(3+δ)(0<a≦0.7,0<δ≦0.7)、CHNHPb(1-a)BaBr(0<a≦0.7)、CHNHPb(1-a)DyBr(3+δ)(0<a≦0.7,0<δ≦0.7)も挙げることができる。 Preferable examples of the perovskite compound having a three-dimensional structure include CH 3 NH 3 Pb (1-a) Ca a Br 3 (0 <a ≦ 0.7), CH 3 NH 3 Pb (1-a) Sr a Br 3 (0 <a ≦ 0.7), CH 3 NH 3 Pb (1-a) La a Br (3 + δ) (0 <a ≦ 0.7, 0 <δ ≦ 0.7), CH 3 NH 3 Pb ( 1-a) Ba a Br 3 (0 <a ≦ 0.7), CH 3 NH 3 Pb (1-a) Dy a Br (3 + δ) (0 <a ≦ 0.7, 0 <δ ≦ 0.7 ) Can also be mentioned.
 3次元構造のペロブスカイト化合物の好ましい例としては、CHNHPb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、CHNHPb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ<0)も挙げることができる。 Preferred examples of the three-dimensional perovskite compound include CH 3 NH 3 Pb (1-a) Na a Br (3 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ <0), CH 3 NH 3 Pb (1-a) Li a Br (3 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ <0) can also be mentioned.
 3次元構造のペロブスカイト化合物の好ましい例としては、CsPb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、CsPb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ<0)も挙げることができる。 Preferred examples of the three-dimensional perovskite compound include CsPb (1-a) Na a Br (3 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ <0) and CsPb (1-a) Li. There can also be mentioned a Br (3 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ <0).
 3次元構造のペロブスカイト化合物の好ましい例としては、CHNHPb(1-a)NaBr(3+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<3)、CHNHPb(1-a)LiBr(3+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<3)、CHNHPb(1-a)NaBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<3)、CHNHPb(1-a)LiBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<3)も挙げることができる。 Preferable examples of the three-dimensional perovskite compound include CH 3 NH 3 Pb (1-a) Na a Br (3 + δ−y) I y (0 <a ≦ 0.7, −0.7 ≦ δ <0, 0 <y <3), CH 3 NH 3 Pb (1-a) Li a Br (3 + δ−y) I y (0 <a ≦ 0.7, −0.7 ≦ δ <0, 0 <y <3 ), CH 3 NH 3 Pb (1-a) Na a Br (3 + δ−y) Cl y (0 <a ≦ 0.7, −0.7 ≦ δ <0, 0 <y <3), CH 3 NH 3 Pb (1-a) Li a Br (3 + δ-y) Cl y (0 <a ≦ 0.7, −0.7 ≦ δ <0, 0 <y <3) can also be mentioned.
 3次元構造のペロブスカイト化合物の好ましい例としては、(HN=CH-NH)Pb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、(HN=CH-NH)Pb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、(HN=CH-NH)Pb(1-a)NaBr(3+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<3)、(HN=CH-NH)Pb(1-a)NaBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<3)も挙げることができる。 As a preferable example of the perovskite compound having a three-dimensional structure, (H 2 N═CH—NH 2 ) Pb (1-a) Na a Br (3 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ < 0), (H 2 N = CH—NH 2 ) Pb (1-a) Li a Br (3 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ <0), (H 2 N = CH -NH 2 ) Pb (1-a) Na a Br (3 + δ-y) I y (0 <a ≦ 0.7, −0.7 ≦ δ <0, 0 <y <3), (H 2 N = CH-NH 2 ) Pb (1-a) Na a Br (3 + δ-y) Cl y (0 <a ≦ 0.7, −0.7 ≦ δ <0, 0 <y <3) can also be mentioned. .
 3次元構造のペロブスカイト化合物の好ましい例としては、CsPbBr、CsPbCl、CsPbI、CsPbBr(3-y)(0<y<3)、CsPbBr(3-y)Cl(0<y<3)も挙げることができる。 Preferred examples of the three-dimensional perovskite compound include CsPbBr 3 , CsPbCl 3 , CsPbI 3 , CsPbBr (3-y) I y (0 <y <3), CsPbBr (3-y) Cl y (0 <y < 3) can also be mentioned.
 3次元構造のペロブスカイト化合物の好ましい例としては、CHNHPb(1-a)ZnBr(0<a≦0.7)、CHNHPb(1-a)AlBr(3+δ)(0<a≦0.7、0≦δ≦0.7)、CHNHPb(1-a)CoBr(0<a≦0.7)、CHNHPb(1-a)MnBr(0<a≦0.7)、CHNHPb(1-a)MgBr(0<a≦0.7)も挙げることができる。 Preferred examples of the perovskite compound having a three-dimensional structure include CH 3 NH 3 Pb (1-a) Zn a Br 3 (0 <a ≦ 0.7), CH 3 NH 3 Pb (1-a) Al a Br ( 3 + δ) (0 <a ≦ 0.7, 0 ≦ δ ≦ 0.7), CH 3 NH 3 Pb (1-a) Co a Br 3 (0 <a ≦ 0.7), CH 3 NH 3 Pb ( 1-a) Mn a Br 3 (0 <a ≦ 0.7) and CH 3 NH 3 Pb (1-a) Mg a Br 3 (0 <a ≦ 0.7) can also be mentioned.
 3次元構造のペロブスカイト化合物の好ましい例としては、CsPb(1-a)ZnBr(0<a≦0.7)、CsPb(1-a)AlBr(3+δ)(0<a≦0.7、0<δ≦0.7)、CsPb(1-a)CoBr(0<a≦0.7)、CsPb(1-a)MnBr(0<a≦0.7)、CsPb(1-a)MgBr(0<a≦0.7)も挙げることができる。 Preferred examples of perovskite compound having a three-dimensional structure is, CsPb (1-a) Zn a Br 3 (0 <a ≦ 0.7), CsPb (1-a) Al a Br (3 + δ) (0 <a ≦ 0 .7, 0 <δ ≦ 0.7), CsPb (1-a) Co a Br 3 (0 <a ≦ 0.7), CsPb (1-a) Mna a Br 3 (0 <a ≦ 0.7) ) And CsPb (1-a) Mg a Br 3 (0 <a ≦ 0.7) can also be mentioned.
 3次元構造のペロブスカイト化合物の好ましい例としては、CHNHPb(1-a)ZnBr(3-y)(0<a≦0.7、0<y<3)、CHNHPb(1-a)AlBr(3+δ-y)(0<a≦0.7,0<δ≦0.7,0<y<3)、CHNHPb(1-a)CoBr(3-y)(0<a≦0.7、0<y<3)、CHNHPb(1-a)MnBr(3-y)(0<a≦0.7,0<y<3)、CHNHPb(1-a)MgBr(3-y)(0<a≦0.7、0<y<3)、CHNHPb(1-a)ZnBr(3-y)Cl(0<a≦0.7、0<y<3)、CHNHPb(1-a)AlBr(3+δ-y)Cl(0<a≦0.7、0<δ≦0.7、0<y<3)、CHNHPb(1-a)CoBr(3+δ-y)Cl(0<a≦0.7、0<y<3)、CHNHPb(1-a)MnBr(3-y)Cl(0<a≦0.7、0<y<3)、CHNHPb(1-a)MgBr(3-y)Cl(0<a≦0.7、0<y<3)も挙げることができる。 Preferred examples of the three-dimensional perovskite compound are CH 3 NH 3 Pb (1-a) Zn a Br (3-y) I y (0 <a ≦ 0.7, 0 <y <3), CH 3 NH 3 Pb (1-a) Al a Br (3 + δ-y) I y (0 <a ≦ 0.7,0 <δ ≦ 0.7,0 <y <3), CH 3 NH 3 Pb (1- a) Co a Br (3- y) I y (0 <a ≦ 0.7,0 <y <3), CH 3 NH 3 Pb (1-a) Mn a Br (3-y) I y (0 <A ≦ 0.7, 0 <y <3), CH 3 NH 3 Pb (1-a) Mg a Br (3-y) I y (0 <a ≦ 0.7, 0 <y <3), CH 3 NH 3 Pb (1-a) Zn a Br (3-y) Cl y (0 <a ≦ 0.7, 0 <y <3), CH 3 NH 3 Pb (1-a) Al a Br ( 3 + δ- ) Cl y (0 <a ≦ 0.7,0 <δ ≦ 0.7,0 <y <3), CH 3 NH 3 Pb (1-a) Co a Br (3 + δ-y) Cl y (0 < a ≦ 0.7, 0 <y <3), CH 3 NH 3 Pb (1-a) Mn a Br (3-y) Cl y (0 <a ≦ 0.7, 0 <y <3), CH 3 NH 3 Pb (1-a) Mg a Br (3-y) Cl y (0 <a ≦ 0.7, 0 <y <3) may also be mentioned.
 3次元構造のペロブスカイト化合物の好ましい例としては、(HN=CH-NH)ZnBr(0<a≦0.7)、(HN=CH-NH)MgBr(0<a≦0.7)、(HN=CH-NH)Pb(1-a)ZnBr(3-y)(0<a≦0.7、0<y<3)、(HN=CH-NH)Pb(1-a)ZnBr(3-y)Cl(0<a≦0.7、0<y<3)も挙げることができる。 Preferable examples of the three-dimensional perovskite compound include (H 2 N═CH—NH 2 ) Zn a Br 3 (0 <a ≦ 0.7), (H 2 N═CH—NH 2 ) Mga a Br 3 (0 <a ≦ 0.7), (H 2 N═CH—NH 2 ) Pb (1-a) Zn a Br (3-y) I y (0 <a ≦ 0.7, 0 <y <3 ), (H 2 N = CH—NH 2 ) Pb (1-a) Zn a Br (3-y) Cl y (0 <a ≦ 0.7, 0 <y <3).
 上述した3次元構造のペロブスカイト化合物の中でも、CsPbBr、CsPbBr(3-y)(0<y<3)、(HN=CH-NH)PbBrがより好ましく、(HN=CH-NH)PbBrがさらに好ましい。 Among the three-dimensional perovskite compounds described above, CsPbBr 3 , CsPbBr (3-y) I y (0 <y <3), and (H 2 N = CH—NH 2 ) PbBr 3 are more preferable, and (H 2 N Further preferred is ═CH—NH 2 ) PbBr 3 .
(2次元構造のペロブスカイト化合物の例示)
 2次元構造のペロブスカイト化合物の好ましい例としては、(CNHPbBr、(CNHPbCl、(CNHPbI、(C15NHPbBr、(C15NHPbCl、(C15NHPbI、(CNHPb(1-a)LiBr(4+δ)(0<a≦0.7、-0.7≦δ<0)、(CNHPb(1-a)NaBr(4+δ)(0<a≦0.7、-0.7≦δ<0)、(CNHPb(1-a)RbBr(4+δ)(0<a≦0.7、-0.7≦δ<0)を挙げることができる。
(Examples of perovskite compounds having a two-dimensional structure)
Preferred examples of the perovskite compound having a two-dimensional structure include (C 4 H 9 NH 3 ) 2 PbBr 4 , (C 4 H 9 NH 3 ) 2 PbCl 4 , (C 4 H 9 NH 3 ) 2 PbI 4 , and (C 7 H 15 NH 3 ) 2 PbBr 4 , (C 7 H 15 NH 3 ) 2 PbCl 4 , (C 7 H 15 NH 3 ) 2 PbI 4 , (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ <0), (C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ <0), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rb a Br (4 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ <0) can be mentioned.
 2次元構造のペロブスカイト化合物の好ましい例としては、(C15NHPb(1-a)NaBr(4+δ)(0<a≦0.7、-0.7≦δ<0)、(C15NHPb(1-a)LiBr(4+δ)(0<a≦0.7、-0.7≦δ<0)、(C15NHPb(1-a)RbBr(4+δ)(0<a≦0.7、-0.7≦δ<0)も挙げることができる。 As a preferable example of the perovskite compound having a two-dimensional structure, (C 7 H 15 NH 3 ) 2 Pb (1-a) Na a Br (4 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ <0 ), (C 7 H 15 NH 3 ) 2 Pb (1-a) Li a Br (4 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ <0), (C 7 H 15 NH 3 ). 2 Pb (1-a) Rb a Br (4 + δ) (0 <a ≦ 0.7, −0.7 ≦ δ <0) can also be mentioned.
 2次元構造のペロブスカイト化合物の好ましい例としては、(CNHPb(1-a)NaBr(4+δ-y)(0<a≦0.7、-0.7≦δ<0、0<y<4)、(CNHPb(1-a)LiBr(4+δ-y)(0<a≦0.7、-0.7≦δ<0、0<y<4)、(CNHPb(1-a)RbBr(4+δ-y)(0<a≦0.7、-0.7≦δ<0、0<y<4)も挙げることができる。 As a preferable example of the perovskite compound having a two-dimensional structure, (C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4 + δ-y) I y (0 <a ≦ 0.7, −0.7 ≦ δ <0, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4 + δ−y) I y (0 <a ≦ 0.7, −0.7 ≦ δ <0, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rb a Br (4 + δ−y) I y (0 <a ≦ 0.7, −0.7 ≦ δ <0, 0 <y <4) can also be mentioned.
 2次元構造のペロブスカイト化合物の好ましい例としては、(CNHPb(1-a)NaBr(4+δ-y)Cl(0<a≦0.7、-0.7≦δ<0、0<y<4)、(CNHPb(1-a)LiBr(4+δ-y)Cl(0<a≦0.7、-0.7≦δ<0、0<y<4)、(CNHPb(1-a)RbBr(4+δ-y)Cl(0<a≦0.7、-0.7≦δ<0、0<y<4)も挙げることができる。 As a preferable example of the perovskite compound having a two-dimensional structure, (C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4 + δ-y) Cl y (0 <a ≦ 0.7, −0.7 ≦ δ <0, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4 + δ−y) Cl y (0 <a ≦ 0.7, −0.7 ≦ δ <0, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rb a Br (4 + δ−y) Cl y (0 <a ≦ 0.7, −0.7 ≦ δ <0, 0 <y <4) can also be mentioned.
 2次元構造のペロブスカイト化合物の好ましい例としては、(CNHPbBr、(C15NHPbBrも挙げることができる。 Preferable examples of the two-dimensional perovskite compound also include (C 4 H 9 NH 3 ) 2 PbBr 4 and (C 7 H 15 NH 3 ) 2 PbBr 4 .
 2次元構造のペロブスカイト化合物の好ましい例としては、(CNHPbBr(4-y)Cl(0<y<4)、(CNHPbBr(4-y)(0<y<4)も挙げることができる。 Preferred examples of the two-dimensional perovskite compound include (C 4 H 9 NH 3 ) 2 PbBr (4-y) Cl y (0 <y <4), (C 4 H 9 NH 3 ) 2 PbBr (4- y) I y (0 <y <4) can also be mentioned.
 2次元構造のペロブスカイト化合物の好ましい例としては、(CNHPb(1-a)ZnBr(0<a≦0.7)、(CNHPb(1-a)MgBr(0<a≦0.7)、(CNHPb(1-a)CoBr(0<a≦0.7)、(CNHPb(1-a)MnBr(0<a≦0.7)も挙げることができる。 Preferable examples of the perovskite compound having a two-dimensional structure include (C 4 H 9 NH 3 ) 2 Pb (1-a) Zn a Br 4 (0 <a ≦ 0.7), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mg a Br 4 (0 <a ≦ 0.7), (C 4 H 9 NH 3 ) 2 Pb (1-a) Co a Br 4 (0 <a ≦ 0.7), ( C 4 H 9 NH 3) 2 Pb (1-a) Mn a Br 4 (0 <a ≦ 0.7) may also be mentioned.
 2次元構造のペロブスカイト化合物の好ましい例としては、(C15NHPb(1-a)ZnBr(0<a≦0.7)、(C15NHPb(1-a)MgBr(0<a≦0.7)、(C15NHPb(1-a)CoBr(0<a≦0.7)、(C15NHPb(1-a)MnBr(0<a≦0.7)も挙げることができる。 Preferable examples of the perovskite compound having a two-dimensional structure include (C 7 H 15 NH 3 ) 2 Pb (1-a) Zn a Br 4 (0 <a ≦ 0.7), (C 7 H 15 NH 3 ) 2 Pb (1-a) Mg a Br 4 (0 <a ≦ 0.7), (C 7 H 15 NH 3 ) 2 Pb (1-a) Co a Br 4 (0 <a ≦ 0.7), ( C 7 H 15 NH 3) 2 Pb (1-a) Mn a Br 4 (0 <a ≦ 0.7) may also be mentioned.
 2次元構造のペロブスカイト化合物の好ましい例としては、(CNHPb(1-a)ZnBr(4-y)(0<a≦0.7、0<y<4)、(CNHPb(1-a)MgBr(4-y)(0<a≦0.7、0<y<4)、(CNHPb(1-a)CoBr(4-y)(0<a≦0.7、0<y<4)、(CNHPb(1-a)MnBr(4-y)(0<a≦0.7、0<y<4)も挙げることができる。 As a preferable example of the perovskite compound having a two-dimensional structure, (C 4 H 9 NH 3 ) 2 Pb (1-a) Zn a Br (4-y) I y (0 <a ≦ 0.7, 0 <y < 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mg a Br (4-y) I y (0 <a ≦ 0.7, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Co a Br (4-y) I y (0 <a ≦ 0.7, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mn a Br (4-y) I y (0 <a ≦ 0.7,0 <y <4) can also be mentioned.
 2次元構造のペロブスカイト化合物の好ましい例としては、(CNHPb(1-a)ZnBr(4-y)Cl(0<a≦0.7、0<y<4)、(CNHPb(1-a)MgBr(4-y)Cl(0<a≦0.7、0<y<4)、(CNHPb(1-a)CoBr(4-y)Cl(0<a≦0.7、0<y<4)、(CNHPb(1-a)MnBr(4-y)Cl(0<a≦0.7、0<y<4)も挙げることができる。 As a preferable example of the perovskite compound having a two-dimensional structure, (C 4 H 9 NH 3 ) 2 Pb (1-a) Zn a Br (4-y) Cl y (0 <a ≦ 0.7, 0 <y < 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mg a Br (4-y) Cl y (0 <a ≦ 0.7, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Co a Br (4-y) Cl y (0 <a ≦ 0.7, 0 <y <4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mn a Br (4-y) Cl y (0 <a ≦ 0.7,0 <y <4) can also be mentioned.
(半導体材料の粒径)
 組成物に含まれる、(1)半導体材料が粒子状である場合、粒子状の(1)半導体材料(以下、半導体粒子と称する)の平均粒径は、本発明の効果を有する限り、特に限定されない。半導体粒子の平均粒径は、良好に結晶構造を維持させることができるため、1nm以上であることが好ましい。半導体粒子の平均粒径は、2nm以上であることがより好ましく、3nm以上であることがさらに好ましい。
(Particle size of semiconductor material)
When the (1) semiconductor material contained in the composition is in a particulate form, the average particle size of the particulate (1) semiconductor material (hereinafter referred to as semiconductor particles) is particularly limited as long as it has the effect of the present invention. Not done. The average particle size of the semiconductor particles is preferably 1 nm or more because the crystal structure can be maintained well. The average particle diameter of the semiconductor particles is more preferably 2 nm or more, further preferably 3 nm or more.
 また、半導体粒子の平均粒径は、半導体材料が沈降しにくくなるため、また所望の発光特性を維持しやすくなるため、10μm以下であることが好ましい。半導体粒子の平均粒径は、1μm以下であることがより好ましく、500nm以下であることがさらに好ましい。なお、「発光特性」とは、発光性の半導体粒子に励起光を照射して得られる変換光の量子収率、発光強度、色純度などの光学物性を指す。色純度は、変換光のスペクトルの半値幅で評価することができる。 Further, the average particle size of the semiconductor particles is preferably 10 μm or less because the semiconductor material is unlikely to settle and the desired light emitting characteristics are easily maintained. The average particle diameter of the semiconductor particles is more preferably 1 μm or less, further preferably 500 nm or less. The “emission characteristic” refers to optical properties such as quantum yield of converted light, emission intensity, and color purity obtained by irradiating light-emitting semiconductor particles with excitation light. The color purity can be evaluated by the full width at half maximum of the spectrum of converted light.
 半導体粒子の平均粒径の上限値及び下限値は任意に組み合わせることができる。
 例えば、半導体粒子の平均粒径は、1nm以上10μm以下であることが好ましく、2nm以上1μm以下であることがより好ましく、3nm以上500nm以下であることがさらに好ましい。
The upper limit value and the lower limit value of the average particle diameter of the semiconductor particles can be arbitrarily combined.
For example, the average particle size of the semiconductor particles is preferably 1 nm or more and 10 μm or less, more preferably 2 nm or more and 1 μm or less, and further preferably 3 nm or more and 500 nm or less.
 本明細書において、半導体粒子の平均粒径は、例えば、透過型電子顕微鏡(以下、TEMともいう)、又は走査型電子顕微鏡(以下、SEMともいう)により測定することができる。具体的には、TEM、又はSEMにより、20個の半導体粒子の最大フェレー径を測定し、測定値の算術平均値である平均最大フェレー径を計算することにより、平均粒径を求めることができる。
 本明細書において「最大フェレー径」とは、TEM又はSEM画像上において、半導体粒子を挟む2本の平行な直線の最大距離を意味する。
In the present specification, the average particle size of semiconductor particles can be measured by, for example, a transmission electron microscope (hereinafter, also referred to as TEM) or a scanning electron microscope (hereinafter, also referred to as SEM). Specifically, the average particle diameter can be obtained by measuring the maximum Feret diameter of 20 semiconductor particles by TEM or SEM and calculating the average maximum Feret diameter which is the arithmetic mean value of the measured values. .
In the present specification, the “maximum Feret diameter” means the maximum distance between two parallel straight lines sandwiching a semiconductor particle on a TEM or SEM image.
 半導体の粒子のメディアン径(D50)は、本発明の効果を有する限り、特に限定されない。良好に結晶構造を維持させることができるため、3nm以上であることが好ましい。半導体粒子のメディアン径は、4nm以上であることがより好ましく、5nm以上であることがさらに好ましい。 The median diameter (D50) of semiconductor particles is not particularly limited as long as it has the effect of the present invention. The thickness is preferably 3 nm or more because the crystal structure can be favorably maintained. The median diameter of the semiconductor particles is more preferably 4 nm or more, further preferably 5 nm or more.
 また、半導体粒子のメディアン径(D50)は、半導体材料が沈降しにくくなるため、また所望の発光特性を維持しやすくなるため、5μm以下であることが好ましい。半導体粒子のメディアン径は、500nm以下であることがより好ましく、100nm以下であることがさらに好ましい。 Further, the median diameter (D50) of the semiconductor particles is preferably 5 μm or less because the semiconductor material is less likely to settle and the desired light emission characteristics are easily maintained. The median diameter of the semiconductor particles is more preferably 500 nm or less, further preferably 100 nm or less.
 半導体粒子のメディアン径(D50)の上限値及び下限値は、任意に組み合わせることができる。
 例えば、半導体粒子のメディアン径(D50)は、3nm以上5μm以下であることが好ましく、4nm以上500nm以下であることがより好ましく、5nm以上100nm以下であることがさらに好ましい。
The upper limit value and the lower limit value of the median diameter (D50) of the semiconductor particles can be arbitrarily combined.
For example, the median diameter (D50) of the semiconductor particles is preferably 3 nm or more and 5 μm or less, more preferably 4 nm or more and 500 nm or less, and further preferably 5 nm or more and 100 nm or less.
 本明細書において、半導体粒子の粒度分布は、例えばTEM、SEMにより測定することができる。具体的には、TEM、又はSEMにより、20個の半導体粒子の最大フェレー径を観察し、最大フェレー径の分布から、メディアン径(D50)を求めることができる。 In the present specification, the particle size distribution of semiconductor particles can be measured by, for example, TEM or SEM. Specifically, the maximum Feret diameter of 20 semiconductor particles is observed by TEM or SEM, and the median diameter (D50) can be obtained from the distribution of the maximum Feret diameter.
 本実施形態においては、上述の(1)半導体材料を1種のみ用いてもよく、2種以上を併用してもよい。 In the present embodiment, the above (1) semiconductor material may be used alone or in combination of two or more.
<<(2)表面修飾剤>>
 (2)表面修飾剤は第3級アミン、第3級アンモニウムカチオン、及び第3級アンモニウムカチオンから形成される塩からなる群より選ばれる少なくとも一種の化合物又はイオンであり、組成物中において、(1)半導体材料の表面に位置し、(1)半導体材料の表面修飾剤(キャッピング配位子ともいう)として作用する。より具体的には、(2)表面修飾剤は、(1)半導体材料の表面の少なくとも一部を被覆していることが好ましい。(2)表面修飾剤が表面修飾剤として、(1)半導体材料の表面の少なくとも一部を被覆することにより、(1)半導体材料の耐熱性が向上する。
<< (2) Surface modifier >>
(2) The surface modifier is at least one compound or ion selected from the group consisting of a tertiary amine, a tertiary ammonium cation, and a salt formed from a tertiary ammonium cation, and in the composition, ( 1) It is located on the surface of the semiconductor material, and (1) acts as a surface modifier (also called a capping ligand) of the semiconductor material. More specifically, (2) the surface modifier preferably covers at least a part of the surface of (1) the semiconductor material. (2) When the surface modifier serves as a surface modifier and covers at least part of the surface of (1) the semiconductor material, (1) the heat resistance of the semiconductor material is improved.
 本実施形態において、(1)半導体材料の表面の少なくとも一部を被覆する(2)表面修飾剤は、例えば、組成物をSEM、又はTEMなどを用いて観察することによって確認することができる。さらに、SEM、又はTEMを用いたエネルギー分散型X線分析(EDX)測定によって、詳細な元素分布を解析することができる。 In the present embodiment, (1) the surface modifier that covers at least a part of the surface of the semiconductor material can be confirmed by, for example, observing the composition using SEM or TEM. Furthermore, detailed element distribution can be analyzed by energy dispersive X-ray analysis (EDX) measurement using SEM or TEM.
<第3級アミン>
 第3級アミンとしては、例えば、下記式(A5)で表される第3級アミンが挙げられる。
<Tertiary amine>
Examples of the tertiary amine include a tertiary amine represented by the following formula (A5).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(A5)中、R41~R43は、それぞれ独立に、アルキル基、シクロアルキル基、アリール基、アルケニル基、又はアルキニル基を表し、それぞれ独立に置換基を有していてもよい。前記置換基としては、炭化水素基、アミノ基、シアノ基、メルカプト基、ニトロ基等が例として挙げられる。R41~R43に含まれる水素原子は、それぞれ独立に、ハロゲン原子で置換されていてもよい。 In formula (A5), R 41 to R 43 each independently represent an alkyl group, a cycloalkyl group, an aryl group, an alkenyl group, or an alkynyl group, and may each independently have a substituent. Examples of the substituent include a hydrocarbon group, an amino group, a cyano group, a mercapto group, and a nitro group. The hydrogen atoms contained in R 41 to R 43 may each independently be substituted with a halogen atom.
 R41~R43の有機基は、特に制限はないがそれぞれ独立に20以下の炭素原子数の有機基であることが好ましい。なお、炭素原子数は置換基の炭素原子数を含めた数である。 The organic groups of R 41 to R 43 are not particularly limited, but are preferably each independently an organic group having 20 or less carbon atoms. The number of carbon atoms is the number including the number of carbon atoms of the substituent.
 R41~R43のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、n-オクチル基、イソオクチル基、2-エチルヘキシル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-イコシル基等が例として挙げられる。また、上記n-アルキル基は側鎖としてさらにアルキル基を有し、分岐鎖状となっていてもよい。 The alkyl group of R 41 to R 43 is a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group. , Neopentyl group, tert-pentyl group, 1-methylbutyl group, n-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, n-heptyl group Group, 2-methylhexyl group, 3-methylhexyl group, 2,2-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3,3-dimethylpentyl group, 3-ethylpentyl group Group, 2,2,3-trimethylbutyl group, n-octyl group, isooctyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group, -Undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-icosyl group, etc. Take as an example. Further, the n-alkyl group may further have an alkyl group as a side chain to form a branched chain.
 R41~R43のシクロアルキル基としては、炭素原子数の合計が20以下の範囲であれば炭化水素基で置換されていてもよく、置換基を有してもよいシクロブチル基、置換基を有してもよいシクロペンチル基、置換基を有してもよいシクロヘキシル基等が例として挙げられる。 The cycloalkyl group represented by R 41 to R 43 may be substituted with a hydrocarbon group as long as the total number of carbon atoms is 20 or less, and may be substituted with a cyclobutyl group or a substituent. Examples thereof include a cyclopentyl group which may have and a cyclohexyl group which may have a substituent.
 R41~R43のアリール基としては、置換基を有してもよいフェニル基、置換基を有してもよいナフチル基、置換基を有してもよいアントラセニル基、置換基を有してもよいフルオレニル基などが挙げられる。ここで置換基は炭化水素基であり、炭化水素基全体の炭素原子数が20以下の範囲で任意の置換位置に置換することができ、置換位置が複数であってもよい。置換基としての炭化水素基としては、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアルキニル基、置換基を有してもよいアリール基等が例として挙げられる。 The aryl group of R 41 to R 43 includes a phenyl group which may have a substituent, a naphthyl group which may have a substituent, an anthracenyl group which may have a substituent, and a substituent which has a substituent. And fluorenyl group. Here, the substituent is a hydrocarbon group, and the hydrocarbon group can be substituted at any substitution position within the range of 20 or less carbon atoms, and the substitution position may be plural. The hydrocarbon group as a substituent may have an alkyl group which may have a substituent, an alkenyl group which may have a substituent, an alkynyl group which may have a substituent, or a substituent which may have a substituent. Examples include good aryl groups and the like.
 R41~R43のアルケニル基としては、ビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基等が例として挙げられる。 Examples of the alkenyl group of R 41 to R 43 include vinyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group, undecenyl group, dodecenyl group, tridecenyl group, tetradecenyl group, Examples include pentadecenyl group, hexadecenyl group, heptadecenyl group, octadecenyl group, nonadecenyl group and icosenyl group.
 R41~R43のアルキニル基としては、エチニル基、プロピニル基、ブチニル基、ペンチニル基、ヘキシニル基、ヘプチニル基、オクチニル基、ノニニル基、デシニル基、ウンデシニル基、ドデシニル基、トリデシニル基、テトラデシニル基、ペンタデシニル基、ヘキサデシニル基、ヘプタデシニル基、オクタデシニル基、ノナデシニル基、イコシニル基等が例として挙げられる。 Examples of the alkynyl group of R 41 to R 43 include ethynyl group, propynyl group, butynyl group, pentynyl group, hexynyl group, heptynyl group, octynyl group, nonynyl group, decynyl group, undecynyl group, dodecynyl group, tridecynyl group, tetradecynyl group, Examples include pentadecynyl group, hexadecynyl group, heptadecynyl group, octadecynyl group, nonadecynyl group and icosinyl group.
 その中でも、R41、R42の有機基はそれぞれ独立に炭素原子数が10以下であることが好ましく、3以下であることがより好ましく、1であることが特に好ましい。R43の有機基は炭素原子数が3以上であることが好ましく、8以上であることがより好ましく、16以上であることがより好ましい。 Among them, the organic groups of R 41 and R 42 each independently have preferably 10 or less carbon atoms, more preferably 3 or less carbon atoms, and particularly preferably 1. The organic group of R 43 preferably has 3 or more carbon atoms, more preferably 8 or more carbon atoms, and even more preferably 16 or more carbon atoms.
 さらにR41~R43の有機基の炭素原子数の和は、50以下であることが好ましく、30以下であることがより好ましく、25以下であることがさらに好ましい。R41~R43の有機基の炭素原子数の和が前記上限値以下であると、第3級アミンの大きさが、(1)半導体材料を被覆する上で適切な大きさとなり、結果として、(1)半導体材料の耐熱性が向上する。 Further, the sum of the number of carbon atoms of the organic groups of R 41 to R 43 is preferably 50 or less, more preferably 30 or less, and further preferably 25 or less. When the sum of the number of carbon atoms of the organic groups of R 41 to R 43 is less than or equal to the above upper limit, the size of the tertiary amine becomes (1) an appropriate size for coating the semiconductor material, resulting in (1) The heat resistance of the semiconductor material is improved.
 R41~R43は直鎖のアルキル基であることが特に好ましい。すなわち、R41、R42の有機基はそれぞれ独立に炭素原子数が10以下であるn-アルキル基であることが好ましく、炭素原子数が3以下であるn-アルキル基であることがより好ましく、メチル基であることが特に好ましい。また、R43の有機基は、炭素原子数が3以上のn-アルキル基であることが好ましく、炭素原子数が8以上のn-アルキル基であることがより好ましく、炭素原子数が16以上のn-アルキル基であることがさらに好ましい。 It is particularly preferable that R 41 to R 43 are linear alkyl groups. That is, the organic groups of R 41 and R 42 are preferably each independently an n-alkyl group having 10 or less carbon atoms, and more preferably an n-alkyl group having 3 or less carbon atoms. And particularly preferably a methyl group. The organic group of R 43 is preferably an n-alkyl group having 3 or more carbon atoms, more preferably an n-alkyl group having 8 or more carbon atoms, and having 16 or more carbon atoms. Is more preferably an n-alkyl group.
 このようなR41、R42、R43の組み合わせとしては、R41、R42がそれぞれ独立に、メチル基、エチル基、n-プロピル基からなる群から選ばれるアルキル基であり、R43がn-ヘキサデカニル基、n-ヘプタデカニル基、n-オクタデカニル基、n-ノナデカニル基、n-イコサニル基からなる群から選ばれるアルキル基であることが好ましい。 As such a combination of R 41 , R 42 and R 43 , R 41 and R 42 are each independently an alkyl group selected from the group consisting of a methyl group, an ethyl group and an n-propyl group, and R 43 is It is preferably an alkyl group selected from the group consisting of an n-hexadecanyl group, an n-heptadecanyl group, an n-octadecanyl group, an n-nonadecanyl group and an n-icosanyl group.
 式(A5)の化合物としては、N-n-オクチルジメチルアミン、N,N-ジメチルデシルアミン、N,N-ジメチルラウリルアミン、N,N-ジメチルミリスチルアミン、N,N-ジメチルヘキサデシルアミン、N,N-ジメチルステアリルアミン、N,N-ジメチル-n-オクタデシルアミン、ジデシルメチルアミン、N,N-ジ-n-オクチルメチルアミン、トリヘプチルアミン、N-メチルジドデシルアミン、トリ-n-オクチルアミン、トリノニルアミンが挙げられ、耐久性向上の観点から、N-n-オクチルジメチルアミン、N,N-ジメチルデシルアミン、N,N-ジメチルラウリルアミン、N,N-ジメチルミリスチルアミン、N,N-ジメチルヘキサデシルアミン、N,N-ジメチルステアリルアミン、N,N-ジメチル-n-オクタデシルアミンが好ましく、N,N-ジメチル-n-オクタデシルアミンが最も好ましい。 Examples of the compound of formula (A5) include Nn-octyldimethylamine, N, N-dimethyldecylamine, N, N-dimethyllaurylamine, N, N-dimethylmyristylamine, N, N-dimethylhexadecylamine, N, N-dimethylstearylamine, N, N-dimethyl-n-octadecylamine, didecylmethylamine, N, N-di-n-octylmethylamine, triheptylamine, N-methyldidodecylamine, tri-n -Octylamine and trinonylamine are listed, and from the viewpoint of improving durability, Nn-octyldimethylamine, N, N-dimethyldecylamine, N, N-dimethyllaurylamine, N, N-dimethylmyristylamine, N, N-dimethylhexadecylamine, N, N-dimethylstearylamine, N, N-dimethyl Preferably n- octadecylamine, N, N-dimethyl -n- octadecylamine are most preferred.
<第3級アンモニウムカチオン、第3級アンモニウムカチオンから形成される塩>
 第3級アンモニウムカチオンとしては、例えば、下記式(A6)で表される第3級アンモニウムカチオンが挙げられる。ただし、本実施形態の組成物において、前記(1)半導体材料がペロブスカイト化合物の場合、ペロブスカイト化合物の構成成分Aと、(2)表面修飾剤としての第3級アンモニウムカチオンとは異なる。
<Tertiary Ammonium Cation, Salt Formed from Tertiary Ammonium Cation>
Examples of the tertiary ammonium cation include a tertiary ammonium cation represented by the following formula (A6). However, in the composition of the present embodiment, when the semiconductor material (1) is a perovskite compound, the constituent component A of the perovskite compound and (2) the tertiary ammonium cation as a surface modifier are different.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式(A6)において、R41~R43は、上記式(A5)が有するR41~R43と同じ基を示す。 In the above formula (A6), R 41 ~ R 43 show the same group as R 41 ~ R 43 the above formula (A5) has.
 上記式(A6)で表される第3級アンモニウムカチオンが塩を形成する場合、カウンターアニオンとしては、特に制限はない。カウンターアニオンとしては、ハロゲン化物イオンやカルボキシレートイオンなどが好ましい。ハロゲン化物イオンとしては、臭化物イオン、塩化物イオン、ヨウ化物イオン、フッ化物イオンが挙げられる。 When the tertiary ammonium cation represented by the above formula (A6) forms a salt, the counter anion is not particularly limited. As the counter anion, a halide ion or a carboxylate ion is preferable. Examples of the halide ion include bromide ion, chloride ion, iodide ion, and fluoride ion.
 本実施形態においては、上述の(2)表面修飾剤を1種のみ用いてもよく、2種以上を併用してもよい。 In the present embodiment, the above-mentioned (2) surface modifier may be used alone or in combination of two or more kinds.
<<(6)その他の表面修飾剤>>
 (6)その他の表面修飾剤は、カルボン酸、カルボキシレートイオン及びカルボキシレート塩からなる群より選択される少なくとも1種の化合物又はイオンである。
<< (6) Other surface modifiers >>
(6) The other surface modifier is at least one compound or ion selected from the group consisting of carboxylic acid, carboxylate ion and carboxylate salt.
 (6)その他の表面修飾剤は、前記(2)表面修飾剤以外の表面修飾剤であり、本実施形態の組成物中において、(1)半導体材料の表面に位置し、(1)半導体材料の表面修飾剤として作用する。より具体的には、(6)その他の表面修飾剤は、(1)半導体材料の表面の少なくとも一部を被覆していることが好ましい。(6)その他の表面修飾剤が表面修飾剤として、(1)半導体材料の表面の少なくとも一部を被覆することにより、(1)半導体材料の耐熱性が向上する。 (6) The other surface modifier is a surface modifier other than the above (2) surface modifier, and is (1) located on the surface of the semiconductor material in the composition of the present embodiment, and (1) the semiconductor material. Acts as a surface modifier of. More specifically, (6) the other surface modifier preferably covers at least a part of the surface of (1) the semiconductor material. (6) By using at least a part of the surface of the semiconductor material (1) as a surface modifier with another surface modifier, (1) the heat resistance of the semiconductor material is improved.
 本実施形態において、(1)半導体材料の表面の少なくとも一部を被覆する(6)その他の表面修飾剤は、例えば、組成物をSEM、又はTEMなどを用いて観察することによって確認することができる。さらに、SEM、又はTEMを用いたEDX測定によって、詳細な元素分布を解析することができる。 In the present embodiment, (1) the other surface modifier that covers at least a part of the surface of the semiconductor material can be confirmed by observing the composition using, for example, SEM or TEM. it can. Further, detailed element distribution can be analyzed by EDX measurement using SEM or TEM.
<カルボン酸、カルボキシレートイオン、カルボキシレート塩>
 表面修飾剤であるカルボキシレートイオンは、下記式(A2)で表される。表面修飾剤であるカルボキシレート塩は、下記式(A2)で表されるイオンを含む塩である。
 R-CO ・・・(A2)
<Carboxylic acid, carboxylate ion, carboxylate salt>
The carboxylate ion, which is a surface modifier, is represented by the following formula (A2). The carboxylate salt, which is a surface modifier, is a salt containing an ion represented by the following formula (A2).
R 5 -CO 2 - ··· (A2 )
 表面修飾剤であるカルボン酸は、上記(A2)で表されるカルボキシレートアニオンにプロトン(H)が結合したカルボン酸が挙げられる。 Examples of the carboxylic acid that is the surface modifier include a carboxylic acid having a proton (H + ) bonded to the carboxylate anion represented by (A2) above.
 式(A2)で表されるイオンにおいて、Rは、一価の炭化水素基を表す。Rで表される炭化水素基は、飽和炭化水素基であってもよく、不飽和炭化水素基であってもよい。
飽和炭化水素基としては、アルキル基、又はシクロアルキル基を挙げることができる。
In the ion represented by the formula (A2), R 5 represents a monovalent hydrocarbon group. The hydrocarbon group represented by R 5 may be either a saturated hydrocarbon group or an unsaturated hydrocarbon group.
Examples of the saturated hydrocarbon group include an alkyl group and a cycloalkyl group.
 Rで表されるアルキル基は、直鎖状であっても分岐鎖状であってもよい。 The alkyl group represented by R 5 may be linear or branched.
 Rで表されるアルキル基の炭素原子数は、通常1~20であり、5~20であることが好ましく、8~20であることがより好ましい。 The alkyl group represented by R 5 usually has 1 to 20 carbon atoms, preferably 5 to 20 carbon atoms, and more preferably 8 to 20 carbon atoms.
 シクロアルキル基の炭素原子数は、通常3~30であり、3~20であることが好ましく、3~11であることがより好ましい。炭素原子数は、置換基の炭素原子数も含む。 The number of carbon atoms of the cycloalkyl group is usually 3 to 30, preferably 3 to 20, and more preferably 3 to 11. The number of carbon atoms also includes the number of carbon atoms of the substituent.
 Rで表される不飽和炭化水素基は、直鎖状であっても、分岐鎖状であってもよい。 The unsaturated hydrocarbon group represented by R 5 may be linear or branched.
 Rで表される不飽和炭化水素基の炭素原子数は、通常2~20であり、5~20であることが好ましく、8~20であることがより好ましい。 The unsaturated hydrocarbon group represented by R 5 usually has 2 to 20 carbon atoms, preferably 5 to 20 carbon atoms, and more preferably 8 to 20 carbon atoms.
 Rはアルキル基又は不飽和炭化水素基であることが好ましい。不飽和炭化水素基としては、アルケニル基が好ましい。 R 5 is preferably an alkyl group or an unsaturated hydrocarbon group. The unsaturated hydrocarbon group is preferably an alkenyl group.
 Rのアルキル基の具体例としては、R~Rにおいて例示したアルキル基が挙げられる。
 Rのシクロアルキル基の具体例としては、R~Rにおいて例示したシクロアルキル基が挙げられる。
Specific examples of the alkyl group of R 5 include the alkyl groups exemplified in R 6 to R 9 .
Specific examples of the cycloalkyl group for R 5 include the cycloalkyl groups exemplified for R 6 to R 9 .
 Rのアルケニル基の具体例としては、エテニル基、プロペニル基、3-ブテニル基、2-ブテニル基、2-ペンテニル基、2-ヘキセニル基、2-ノネニル基、2-ドデセニル基、9-オクタデセニル基が挙げられる。 Specific examples of the alkenyl group of R 5 include ethenyl group, propenyl group, 3-butenyl group, 2-butenyl group, 2-pentenyl group, 2-hexenyl group, 2-nonenyl group, 2-dodecenyl group, 9-octadecenyl group. Groups.
 式(A2)で表されるカルボキシレートアニオンは、オレイン酸アニオンが好ましい。 The oleate anion is preferable as the carboxylate anion represented by the formula (A2).
 カルボキシレートアニオンが塩を形成する場合、カウンターカチオンとしては、特に制限は無いが、アルカリ金属カチオン、アルカリ土類金属カチオン、アンモニウムカチオンなどが好ましい例として挙げられる。 When the carboxylate anion forms a salt, the counter cation is not particularly limited, but preferable examples include an alkali metal cation, an alkaline earth metal cation, and an ammonium cation.
 表面修飾剤であるカルボン酸としては、オレイン酸が好ましい。
<<(3)溶媒>>
 本実施形態の組成物が有する(3)溶媒は、(1)半導体材料を分散させることができる媒体であれば特に限定されない。本実施形態の組成物が有する溶媒は、(1)半導体材料を溶解し難いものが好ましい。
Oleic acid is preferable as the carboxylic acid as the surface modifier.
<< (3) Solvent >>
The solvent (3) contained in the composition of the present embodiment is not particularly limited as long as it is a medium in which (1) the semiconductor material can be dispersed. The solvent contained in the composition of this embodiment is preferably (1) a solvent in which the semiconductor material is difficult to dissolve.
 本明細書において「溶媒」とは、1気圧、25℃において液体状態である物質のことをいう。但し、溶媒には、後述する重合性化合物及び重合体は含まない。 The term “solvent” as used herein refers to a substance that is in a liquid state at 1 atm and 25 ° C. However, the solvent does not include a polymerizable compound and a polymer described later.
 溶媒としては、下記(a)~(k)を挙げることができる。
 (a):エステル
 (b):ケトン
 (c):エーテル
 (d):アルコール
 (e):グリコールエーテル
 (f):アミド基を有する有機溶媒
 (g):ニトリル基を有する有機溶媒
 (h):カーボネート基を有する有機溶媒
 (i):ハロゲン化炭化水素
 (j):炭化水素
 (k):ジメチルスルホキシド
Examples of the solvent include the following (a) to (k).
(A): Ester (b): Ketone (c): Ether (d): Alcohol (e): Glycol ether (f): Organic solvent having an amide group (g): Organic solvent having a nitrile group (h): Organic solvent having a carbonate group (i): halogenated hydrocarbon (j): hydrocarbon (k): dimethyl sulfoxide
 (a)エステルとしては、例えば、メチルホルメート、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート、ペンチルアセテート等を挙げることができる。 Examples of (a) ester include methyl formate, ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate, pentyl acetate and the like.
 (b)ケトンとしては、γ-ブチロラクトン、N-メチル-2-ピロリドン、アセトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等を挙げることができる。 Examples of (b) ketones include γ-butyrolactone, N-methyl-2-pyrrolidone, acetone, diisobutyl ketone, cyclopentanone, cyclohexanone, and methylcyclohexanone.
 (c)エーテルとしては、ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4-ジオキサン、1,3-ジオキソラン、4-メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、アニソール、フェネトール等を挙げることができる。 Examples of the ether (c) include diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, 4-methyldioxolane, tetrahydrofuran, methyltetrahydrofuran, anisole and phenetole. Etc. can be mentioned.
 (d)アルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、tert-ブタノール、1-ペンタノール、2-メチル-2-ブタノール、メトキシプロパノール、ジアセトンアルコール、シクロヘキサノール、2-フルオロエタノール、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロ-1-プロパノール等を挙げることができる。 (D) As alcohol, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butanol, 1-pentanol, 2-methyl-2-butanol, methoxypropanol, diacetone alcohol , Cyclohexanol, 2-fluoroethanol, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol and the like.
 (e)グリコールエーテルとしては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、トリエチレングリコールジメチルエーテル等を挙げることができる。 Examples of (e) glycol ethers include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, and triethylene glycol dimethyl ether.
 (f)アミド基を有する有機溶媒としては、N,N-ジメチルホルムアミド、アセトアミド、N,N-ジメチルアセトアミド等を挙げることができる。 (F) Examples of the organic solvent having an amide group include N, N-dimethylformamide, acetamide, N, N-dimethylacetamide and the like.
 (g)ニトリル基を有する有機溶媒としては、アセトニトリル、イソブチロニトリル、プロピオニトリル、メトキシアセトニトリル等を挙げることができる。 (G) Examples of the organic solvent having a nitrile group include acetonitrile, isobutyronitrile, propionitrile, and methoxyacetonitrile.
 (h)カーボネート基を有する有機溶媒としては、エチレンカーボネート、プロピレンカーボネート等を挙げることができる。 (H) Examples of the organic solvent having a carbonate group include ethylene carbonate and propylene carbonate.
 (i)ハロゲン化炭化水素としては、塩化メチレン、クロロホルム等を挙げることができる。 (I) Examples of halogenated hydrocarbons include methylene chloride and chloroform.
 (j)炭化水素としては、n-ペンタン、シクロヘキサン、n-ヘキサン、1-オクタデセン、ベンゼン、トルエン、キシレン等を挙げることができる。 Examples of the (j) hydrocarbon include n-pentane, cyclohexane, n-hexane, 1-octadecene, benzene, toluene and xylene.
 これらの溶媒の中でも、(a)エステル、(b)ケトン、(c)エーテル、(g)ニトリル基を有する有機溶媒、(h)カーボネート基を有する有機溶媒、(i)ハロゲン化炭化水素及び(j)炭化水素は、極性が低く、(1)半導体材料を溶解し難いと考えられるため好ましい。 Among these solvents, (a) ester, (b) ketone, (c) ether, (g) nitrile group-containing organic solvent, (h) carbonate group-containing organic solvent, (i) halogenated hydrocarbon and ( j) Hydrocarbons are preferable because they have low polarity and are considered to be difficult to dissolve (1) semiconductor materials.
 さらに、本実施形態の組成物に用いる溶媒としては、(i)ハロゲン化炭化水素、(j)炭化水素がより好ましい。 Further, as the solvent used in the composition of the present embodiment, (i) halogenated hydrocarbon and (j) hydrocarbon are more preferable.
 本実施形態の組成物においては、上述の溶媒を1種のみ用いてもよく、2種以上を併用してもよい。 In the composition of the present embodiment, the above solvent may be used alone or in combination of two or more.
<<(4)重合性化合物>>
 本実施形態の組成物が有する(4)重合性化合物は、本実施形態の組成物を製造する温度において、本実施形態の(1)半導体材料を溶解し難いものが好ましい。
<< (4) Polymerizable compound >>
The (4) polymerizable compound contained in the composition of the present embodiment is preferably one that is difficult to dissolve the (1) semiconductor material of the present embodiment at the temperature for producing the composition of the present embodiment.
 本明細書において「重合性化合物」とは、重合性基を有する単量体化合物(モノマー)を意味する。例えば、重合性化合物は、1気圧、25℃において液体状態であるモノマーを挙げることができる。 In the present specification, the “polymerizable compound” means a monomer compound (monomer) having a polymerizable group. For example, the polymerizable compound may include a monomer that is in a liquid state at 1 atmosphere and 25 ° C.
 例えば、室温、常圧下において組成物を製造する場合、重合性化合物としては、特に制限は無い。重合性化合物としては、例えば、スチレン、アクリル酸エステル、メタクリル酸エステル、アクリロニトリル等の公知の重合性化合物が挙げられる。中でも、重合性化合物としては、アクリル系樹脂の単量体であるアクリル酸エステル及びメタクリル酸エステルのいずれか一方又は両方が好ましい。 For example, when the composition is produced at room temperature under normal pressure, the polymerizable compound is not particularly limited. Examples of the polymerizable compound include known polymerizable compounds such as styrene, acrylic acid ester, methacrylic acid ester, and acrylonitrile. Among them, as the polymerizable compound, one or both of acrylic acid ester and methacrylic acid ester, which are monomers of the acrylic resin, are preferable.
 本実施形態の組成物においては、重合性化合物を1種のみ用いてもよく、2種以上を併用してもよい。 In the composition of the present embodiment, the polymerizable compound may be used alone or in combination of two or more.
 本実施形態の組成物において、全ての(4)重合性化合物に対する、アクリル酸エステル及びメタクリル酸エステルの合計量の割合は、10mol%以上であってもよい。同割合は、30mol%以上であってもよく、50mol%以上であってもよく、80mol%以上であってもよく、100mol%であってもよい。 In the composition of the present embodiment, the ratio of the total amount of acrylic acid ester and methacrylic acid ester to all (4) polymerizable compounds may be 10 mol% or more. The same ratio may be 30 mol% or more, 50 mol% or more, 80 mol% or more, and 100 mol%.
<<(4-1)重合体>>
 本実施形態の組成物に含まれる重合体は、本実施形態の組成物を製造する温度において、本実施形態の(1)半導体材料の溶解度が低い重合体が好ましい。
<< (4-1) Polymer >>
The polymer contained in the composition of the present embodiment is preferably a polymer having a low solubility of (1) the semiconductor material of the present embodiment at the temperature for producing the composition of the present embodiment.
 例えば、室温、常圧下において組成物を製造する場合、重合体としては、特に制限は無いが、例えば、ポリスチレン、アクリル系樹脂、エポキシ樹脂等の公知の重合体が挙げられる。中でも、重合体としては、アクリル系樹脂が好ましい。アクリル系樹脂は、アクリル酸エステルに由来する構成単位及びメタクリル酸エステルに由来する構成単位のいずれか一方又は両方を含む。 For example, when the composition is produced at room temperature under normal pressure, the polymer is not particularly limited, and examples thereof include known polymers such as polystyrene, acrylic resin, and epoxy resin. Among them, acrylic resin is preferable as the polymer. The acrylic resin contains either one or both of a structural unit derived from an acrylate ester and a structural unit derived from a methacrylic acid ester.
 本実施形態の組成物において、(4-1)重合体に含まれる全ての構成単位に対する、アクリル酸エステルに由来する構成単位及びメタクリル酸エステルに由来する構成単位の合計量の割合は、10mol%以上であってもよい。同割合は、30%mol以上であってもよく、50mol%以上であってもよく、80mol%以上であってもよく100mol%であってもよい。 In the composition of the present embodiment, the ratio of the total amount of the structural unit derived from the acrylate ester and the structural unit derived from the methacrylic acid ester to all the structural units contained in the (4-1) polymer is 10 mol%. It may be more than. The same ratio may be 30% mol or more, 50 mol% or more, 80 mol% or more, or 100 mol%.
 (4-1)重合体の重量平均分子量は、100~1200000であることが好ましく、1000~800000であることがより好ましく、5000~150000であることがさらに好ましい。 The weight average molecular weight of the (4-1) polymer is preferably 100 to 1200000, more preferably 1000 to 800000, and further preferably 5000 to 150,000.
 本明細書において「重量平均分子量」とは、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値を意味する。 In the present specification, the “weight average molecular weight” means a polystyrene conversion value measured by a gel permeation chromatography (GPC) method.
 本実施形態においては、上述の(4-1)重合体を1種のみ用いてもよく、2種以上を併用してもよい。 In the present embodiment, the above-mentioned (4-1) polymer may be used alone or in combination of two or more kinds.
<<(5)改質体群>>
 (5)改質体群は、シラザン、シラザン改質体、後述の式(C1)で表される化合物、式(C1)で表される化合物の改質体、後述の式(C2)で表される化合物、式(C2)で表される化合物の改質体、後述の式(A5-51)で表される化合物、式(A5-51)で表される化合物の改質体、後述の式(A5-52)で表される化合物、式(A5-52)で表される化合物の改質体、ケイ酸ナトリウム及びケイ酸ナトリウムの改質体からなる群より選択される1種以上の化合物である。
<< (5) Modified body group >>
(5) The modified product group includes silazane, a silazane modified product, a compound represented by the formula (C1) described below, a modified compound of the compound represented by the formula (C1), and a compound represented by the formula (C2) described below. Compound, a modified product of the compound represented by the formula (C2), a compound represented by the formula (A5-51) described later, a modified product of the compound represented by the formula (A5-51), One or more selected from the group consisting of a compound represented by the formula (A5-52), a modified product of the compound represented by the formula (A5-52), sodium silicate, and a modified product of sodium silicate; It is a compound.
 組成物中、(5)改質体群は、(2)表面修飾剤に被覆された(1)半導体材料をコアとしてシェル構造を形成することが好ましい。具体的には、(5)改質体群は(1)半導体材料の表面に被覆している(2)表面修飾剤の表面の少なくとも一部に被覆していることが好ましく、(2)表面修飾剤が被覆していない(1)半導体材料の表面の少なくとも一部に被覆していてもよい。 In the composition, it is preferable that (5) the modified body group form a shell structure with (2) a surface modifying agent-coated (1) semiconductor material as a core. Specifically, it is preferable that (5) the modified body group is coated on (1) the surface of the semiconductor material, (2) at least part of the surface of the surface modifier, and (2) the surface. At least a part of the surface of the semiconductor material which is not covered with the modifier (1) may be covered.
 本実施形態において、(1)半導体材料又は(2)表面修飾剤の表面の少なくとも一部を被覆する(5)改質体群は、例えば、組成物をSEM、又はTEMなどを用いて観察することによって確認することができる。さらに、SEM、又はTEMを用いたEDX測定によって、詳細な元素分布を解析することができる。 In the present embodiment, the composition of (1) the semiconductor material or (2) the surface modifier is coated with at least a part of the surface, and the composition of the modified body is observed, for example, by SEM or TEM. It can be confirmed by Further, detailed element distribution can be analyzed by EDX measurement using SEM or TEM.
 本明細書において「改質」とは、Si-N結合、Si-SR結合(Rは水素原子又は有機基)又はSi-OR結合(Rは水素原子又は有機基)を有するケイ素化合物が加水分解し、Si-O-Si結合を有するケイ素化合物が生成することをいう。Si-O-Si結合は、分子間の縮合反応で生成してもよく、分子内の縮合反応で生成してもよい。 As used herein, the term “modified” means that a silicon compound having a Si—N bond, a Si—SR bond (R is a hydrogen atom or an organic group) or a Si—OR bond (R is a hydrogen atom or an organic group) is hydrolyzed. Then, a silicon compound having a Si—O—Si bond is produced. The Si-O-Si bond may be formed by an intermolecular condensation reaction or an intramolecular condensation reaction.
 本明細書において、「改質体」とは、Si-N結合、Si-SR結合又はSi-OR結合を有するケイ素化合物を改質することにより得られた化合物をいう。 In the present specification, the “modified form” refers to a compound obtained by modifying a silicon compound having a Si—N bond, a Si—SR bond or a Si—OR bond.
(1.シラザン)
 シラザンは、Si-N-Si結合を有する化合物である。シラザンは、直鎖状、分岐鎖状、又は環状のいずれであってもよい。
(1. Silazane)
Silazane is a compound having a Si-N-Si bond. The silazane may be linear, branched or cyclic.
 シラザンは、低分子シラザンであっても、高分子シラザンであってもよい。本明細書では、高分子シラザンをポリシラザンと記載することがある。 The silazane may be a low molecular weight silazane or a high molecular weight silazane. In the present specification, the polymer silazane may be referred to as polysilazane.
 本明細書において「低分子」とは、数平均分子量が600未満であることを意味する。
また、本明細書において「高分子」とは、数平均分子量が600以上2000以下であることを意味する。
As used herein, the term "low molecular weight" means that the number average molecular weight is less than 600.
Further, in the present specification, “polymer” means that the number average molecular weight is 600 or more and 2000 or less.
 本明細書において「数平均分子量」とはゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値を意味する。 In the present specification, the “number average molecular weight” means a polystyrene conversion value measured by a gel permeation chromatography (GPC) method.
(1-1.低分子シラザン)
 シラザンとしては、例えば、低分子シラザンである下記式(B1)で表されるジシラザンであることが好ましい。
(1-1. Low molecular weight silazane)
The silazane is preferably a low-molecular silazane, for example, a disilazane represented by the following formula (B1).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(B1)中、R14及びR15は、それぞれ独立して、水素原子、炭素原子数1~20のアルキル基、炭素原子数1~20のアルケニル基、炭素原子数3~20のシクロアルキル基、炭素原子数6~20のアリール基、又は炭素原子数1~20のアルキルシリル基を表す。 In formula (B1), R 14 and R 15 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, or a cycloalkyl having 3 to 20 carbon atoms. Represents a group, an aryl group having 6 to 20 carbon atoms, or an alkylsilyl group having 1 to 20 carbon atoms.
 R14及びR15は、アミノ基などの置換基を有していてもよい。複数あるR15は、同一であってもよく、異なっていてもよい。 R 14 and R 15 may have a substituent such as an amino group. Plural R15s may be the same or different.
 式(B1)で表される低分子シラザンとしては、1,3-ジビニル-1,1,3,3-テトラメチルジシラザン、1,3-ジフェニルテトラメチルジシラザン、及び1,1,1,3,3,3-ヘキサメチルジシラザンが挙げられる。 Examples of the low-molecular silazane represented by the formula (B1) include 1,3-divinyl-1,1,3,3-tetramethyldisilazane, 1,3-diphenyltetramethyldisilazane, and 1,1,1, 3,3,3-hexamethyldisilazane can be mentioned.
(1-2.低分子シラザン)
 シラザンとしては、例えば、下記式(B2)で表される低分子シラザンも好ましい。
(1-2. Low molecular weight silazane)
As the silazane, for example, a low molecular silazane represented by the following formula (B2) is also preferable.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(B2)中、R14、及びR15は上記式(B1)におけるR14、及びR15と同様である。 Wherein (B2), R 14, and R 15 are the same as R 14, and R 15 in the formula (B1).
 複数あるR14は、同一であってもよく、異なっていてもよい。
 複数あるR15は、同一であってもよく、異なっていてもよい。
A plurality of R 14's may be the same or different.
A plurality of R 15's may be the same or different.
 式(B2)中、nは1以上20以下の整数を表す。nは、1以上10以下の整数でもよく、1又は2でもよい。 In formula (B2), n 1 represents an integer of 1 or more and 20 or less. n 1 may be an integer of 1 or more and 10 or less, or 1 or 2.
 式(B2)で表される低分子シラザンとしては、オクタメチルシクロテトラシラザン、2,2,4,4,6,6-ヘキサメチルシクロトリシラザン、及び2,4,6-トリメチル-2,4,6-トリビニルシクロトリシラザンが挙げられる。 Examples of the low-molecular silazane represented by the formula (B2) include octamethylcyclotetrasilazane, 2,2,4,4,6,6-hexamethylcyclotrisilazane, and 2,4,6-trimethyl-2,4. , 6-trivinylcyclotrisilazane.
 低分子のシラザンとしては、オクタメチルシクロテトラシラザン、及び1,3-ジフェニルテトラメチルジシラザンが好ましく、オクタメチルシクロテトラシラザンがより好ましい。 As the low-molecular silazane, octamethylcyclotetrasilazane and 1,3-diphenyltetramethyldisilazane are preferable, and octamethylcyclotetrasilazane is more preferable.
(1-3.高分子シラザン)
 シラザンとしては、例えば、下記式(B3)で表される高分子シラザン(ポリシラザン)が好ましい。
(1-3. Polymer silazane)
As the silazane, for example, a polymer silazane represented by the following formula (B3) (polysilazane) is preferable.
 ポリシラザンは、Si-N-Si結合を有する高分子化合物である。式(B3)で表されるポリシラザンの構成単位は、一種であっても、複数種であってもよい。 Polysilazane is a polymer compound having a Si—N—Si bond. The constitutional unit of the polysilazane represented by the formula (B3) may be one kind or plural kinds.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(B3)中、R14、及びR15は、上記式(B1)におけるR14、及びR15と同様である。 Wherein (B3), R 14, and R 15 are the same as R 14, and R 15 in the formula (B1).
 式(B3)中、*は、結合手を表す。分子鎖末端のN原子の結合手には、R14が結合している。
 分子鎖末端のSi原子の結合手には、R15が結合している。
In formula (B3), * represents a bond. R 14 is bonded to the bond of the N atom at the end of the molecular chain.
R 15 is bonded to the bond of the Si atom at the end of the molecular chain.
 複数あるR14は、同一であってもよく、異なっていてもよい。
 複数あるR15は、同一であってもよく、異なっていてもよい。
A plurality of R 14's may be the same or different.
A plurality of R 15's may be the same or different.
 mは、2以上10000以下の整数を表す。 M represents an integer of 2 or more and 10000 or less.
 式(B3)で表されるポリシラザンは、例えば、R14、及びR15のすべてが水素原子であるパーヒドロポリシラザンでもよい。 The polysilazane represented by the formula (B3) may be, for example, perhydropolysilazane in which all of R 14 and R 15 are hydrogen atoms.
 また、式(B3)で表されるポリシラザンは、例えば、少なくとも1つのR15が水素原子以外の基であるオルガノポリシラザンであってもよい。用途に応じて適宜、パーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。 Moreover, the polysilazane represented by the formula (B3) may be, for example, an organopolysilazane in which at least one R 15 is a group other than a hydrogen atom. Perhydropolysilazane and organopolysilazane may be appropriately selected depending on the intended use, and they may be mixed and used.
(1-4.高分子シラザン)
 シラザンとしては、例えば、下記式(B4)で表される構造を有するポリシラザンも好ましい。
(1-4. Polymer silazane)
As the silazane, for example, polysilazane having a structure represented by the following formula (B4) is also preferable.
 ポリシラザンは、分子内の一部に環構造を有していてもよく、例えば、式(B4)で表される構造を有していてもよい。 The polysilazane may have a ring structure in a part of the molecule, for example, may have the structure represented by the formula (B4).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(B4)中、*は、結合手を表す。
 式(B4)の結合手は、式(B3)で表されるポリシラザンの結合手、又は式(B3)で表されるポリシラザンの構成単位の結合手と結合していてもよい。
In formula (B4), * represents a bond.
The bond of the formula (B4) may be bonded to the bond of the polysilazane represented by the formula (B3) or the bond of the constitutional unit of the polysilazane represented by the formula (B3).
 また、ポリシラザンが、分子内に複数の式(B4)で表される構造を含む場合、式(B4)で表される構造の結合手は、他の式(B4)で表される構造の結合手と直接結合していてもよい。 When the polysilazane contains a plurality of structures represented by the formula (B4) in the molecule, the bond of the structure represented by the formula (B4) is a bond of the structure represented by another formula (B4). It may be directly connected to the hand.
 式(B3)で表されるポリシラザンの結合手、式(B3)で表されるポリシラザンの構成単位の結合手、及び他の式(B4)で表される構造の結合手のいずれとも結合していないN原子の結合手には、R14が結合している。 It is bonded to any of the bond of the polysilazane represented by the formula (B3), the bond of the constitutional unit of the polysilazane represented by the formula (B3), and the bond of the structure represented by the other formula (B4). R 14 is bonded to the bond of the non-N atom.
 式(B3)で表されるポリシラザンの結合手、式(B3)で表されるポリシラザンの構成単位の結合手、及び他の式(B4)で表される構造の結合手のいずれとも結合していないSi原子の結合手には、R15が結合している。 It is bonded to any of the bond of the polysilazane represented by the formula (B3), the bond of the constitutional unit of the polysilazane represented by the formula (B3), and the bond of the structure represented by the other formula (B4). R 15 is bonded to the bond of the non-Si atom.
 nは、1以上10000以下の整数を表す。nは、1以上10以下の整数でもよく、1又は2でもよい。 n 2 represents an integer of 1 or more and 10000 or less. n 2 may be an integer of 1 or more and 10 or less, or 1 or 2.
 一般的なポリシラザンは、例えば、直鎖構造と、6員環、又は8員環等の環構造とが存在した構造、すなわち上記(B3)、(B4)で表される構造を有する。一般的なポリシラザンの分子量は、数平均分子量(Mn)で600~2000程度(ポリスチレン換算)であり、分子量によって液体又は固体の物質でありうる。 A general polysilazane has, for example, a structure having a linear structure and a ring structure such as a 6-membered ring or an 8-membered ring, that is, a structure represented by (B3) or (B4) above. A general polysilazane has a number average molecular weight (Mn) of about 600 to 2000 (in terms of polystyrene), and may be a liquid or solid substance depending on the molecular weight.
 ポリシラザンは、市販品を使用してもよく、市販品としては、NN120-10、NN120-20、NAX120-20、NN110、NAX120、NAX110、NL120A、NL110A、NL150A、NP110、NP140(AZエレクトロニックマテリアルズ株式会社製)並びに、AZNN-120-20、Durazane(登録商標)1500 Slow Cure、Durazane1500 Rapid Cure、Durazane1800、及びDurazane1033(メルクパフォーマンスマテリアルズ株式会社製)等が挙げられる。 A commercially available product may be used as the polysilazane. (Manufactured by the company), AZNN-120-20, Durazane (registered trademark) 1500 Slow Cure, Durazane 1500 Rapid Rapid, Durazane 1800, and Durazane 1033 (manufactured by Merck Performance Materials Co., Ltd.).
 ポリシラザンは、好ましくはAZNN-120-20、Durazane1500 Slow Cure、Durazane1500 Rapid Cureであり、より好ましくはDurazane1500 Slow Cure、Durazane1500 Rapid Cureであり、さらに好ましくはDurazane1500 Rapid Cureである。 The polysilazane is preferably AZNN-120-20, Durazane1500 Slow Cure, Durazane1500 Rapid Cure, more preferably Durazane1500 Slow Cure, Durazane1500 Rapidzur, and further preferably Durazane1500.
 式(B2)で表される低分子シラザンの改質体について、窒素原子と結合していないケイ素原子の割合は全ケイ素原子に対して0.1~100%であることが好ましい。また、窒素原子と結合していないケイ素原子の割合は、10~98%であることがより好ましく、30~95%であることがさらに好ましい。 In the modified low molecular weight silazane represented by the formula (B2), the ratio of silicon atoms not bonded to nitrogen atoms is preferably 0.1 to 100% with respect to all silicon atoms. Further, the ratio of silicon atoms not bonded to nitrogen atoms is more preferably 10 to 98%, further preferably 30 to 95%.
 なお、「窒素原子と結合していないケイ素原子の割合」は、後述する測定値を用いて、((Si(モル)-(SiN結合中のN(モル))/Si(モル)×100で求められる。改質反応を考慮すると、「窒素原子と結合していないケイ素原子の割合」とは、「改質処理にて生じるシロキサン結合に含まれるケイ素原子の割合」を意味する。 The “ratio of silicon atoms not bonded to nitrogen atoms” is ((Si (mol) − (N (mol) in SiN bond) / Si (mol) × 100), using the measured value described later. Considering the reforming reaction, the “ratio of silicon atoms not bonded to nitrogen atoms” means the “ratio of silicon atoms contained in the siloxane bond generated in the modification treatment”.
 式(B3)で表されるポリシラザンの改質体について、窒素原子と結合していないケイ素原子の割合は全ケイ素原子に対して0.1~100%であることが好ましい。また、窒素原子と結合していないケイ素原子の割合は、10~98%であることがより好ましく、30~95%であることがさらに好ましい。 In the modified polysilazane represented by the formula (B3), the ratio of silicon atoms not bonded to nitrogen atoms is preferably 0.1 to 100% with respect to all silicon atoms. Further, the ratio of silicon atoms not bonded to nitrogen atoms is more preferably 10 to 98%, further preferably 30 to 95%.
 式(B4)で表される構造を有するポリシラザンの改質体について、窒素原子と結合していないケイ素原子の割合は全ケイ素原子に対して0.1~99%であることが好ましい。また、窒素原子と結合していないケイ素原子の割合は、10~97%であることがより好ましく、30~95%であることがさらに好ましい。 In the modified polysilazane having the structure represented by the formula (B4), the ratio of silicon atoms not bonded to nitrogen atoms is preferably 0.1 to 99% with respect to all silicon atoms. Further, the proportion of silicon atoms not bonded to nitrogen atoms is more preferably 10 to 97%, further preferably 30 to 95%.
 改質体中のSi原子数、SiN結合の数は、X線光電子分光法(XPS)によって測定することができる。 The number of Si atoms and the number of SiN bonds in the modified product can be measured by X-ray photoelectron spectroscopy (XPS).
 改質体について、上述の方法による測定値を用いて求められる「窒素原子と結合していないケイ素原子の割合」は、0.1~99%であることが好ましく、10~99%であることがより好ましく、30~95%であることがさらに好ましい。 The “ratio of silicon atoms not bonded to nitrogen atoms” of the modified product, which is determined by using the value measured by the above method, is preferably 0.1 to 99%, and 10 to 99%. Is more preferable, and further preferably 30 to 95%.
 (5)改質体群に含まれるシラザン、又はその改質体としては、特に制限は無いが、分散性を向上させ、凝集を抑制できる観点からオルガノポリシラザン、又はその改質体が好ましい。 (5) The silazane contained in the modified product group or a modified product thereof is not particularly limited, but organopolysilazane or a modified product thereof is preferable from the viewpoint of improving dispersibility and suppressing aggregation.
 オルガノポリシラザンとしては、例えば、式(B3)で表され、R14及びR15の少なくとも1つが、炭素原子数1~20のアルキル基、炭素原子数1~20のアルケニル基、炭素原子数3~20のシクロアルキル基、炭素原子数6~20のアリール基、又は炭素原子数1~20のアルキルシリル基であるオルガノポリシラザンであってもよい。 Examples of the organopolysilazane are represented by the formula (B3), and at least one of R 14 and R 15 is an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, or 3 to It may be a cycloalkyl group having 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an organopolysilazane which is an alkylsilyl group having 1 to 20 carbon atoms.
 また、オルガノポリシラザンとしては、例えば、式(B4)で表される構造を含み、少なくとも1つの結合手がR14又はR15と結合し、前記R14及びR15の少なくとも1つが、炭素原子数1~20のアルキル基、炭素原子数1~20のアルケニル基、炭素原子数3~20のシクロアルキル基、炭素原子数6~20のアリール基、又は炭素原子数1~20のアルキルシリル基であるオルガノポリシラザンであってもよい。 In addition, the organopolysilazane includes, for example, a structure represented by the formula (B4), at least one bond is bonded to R 14 or R 15, and at least one of R 14 and R 15 is the number of carbon atoms. An alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an alkylsilyl group having 1 to 20 carbon atoms It may be some organopolysilazane.
 オルガノポリシラザンは、式(B3)で表されR14及びR15の少なくとも1つがメチル基であるオルガノポリシラザン、又は、式(B4)で表される構造を含み、少なくとも1つの結合手がR14又はR15と結合し、前記R14及びR15の少なくとも1つがメチル基であるポリシラザンであることが好ましい。 The organopolysilazane includes an organopolysilazane represented by the formula (B3) and at least one of R 14 and R 15 is a methyl group, or a structure represented by the formula (B4), and at least one bond is R 14 or It is preferably polysilazane which is bonded to R 15 and at least one of R 14 and R 15 is a methyl group.
(2.式(C1)で表される化合物、式(C2)で表される化合物)
 (5)改質体群としては、下記式(C1)で表される化合物、下記式(C2)で表される化合物であってもよい。
(2. Compound represented by formula (C1), compound represented by formula (C2))
(5) The modified compound group may be a compound represented by the following formula (C1) or a compound represented by the following formula (C2).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(C1)において、Yは単結合、酸素原子又は硫黄原子を表す。 In formula (C1), Y 5 represents a single bond, an oxygen atom or a sulfur atom.
 Yが酸素原子の場合、R30、R31は、それぞれ独立に水素原子、炭素原子数が1~20のアルキル基、炭素原子数が3~30のシクロアルキル基、又は炭素原子数が2~20の不飽和炭化水素基を表す。 When Y 5 is an oxygen atom, R 30 and R 31 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, or 2 carbon atoms. It represents up to 20 unsaturated hydrocarbon groups.
 Yが単結合又は硫黄原子の場合、R30は炭素原子数1~20のアルキル基、炭素原子数が3~30のシクロアルキル基、又は炭素原子数が2~20の不飽和炭化水素基を表し、R31は水素原子、炭素原子数1~20のアルキル基、炭素原子数が3~30のシクロアルキル基、又は炭素原子数が2~20の不飽和炭化水素基を表す。 When Y 5 is a single bond or a sulfur atom, R 30 is an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, or an unsaturated hydrocarbon group having 2 to 20 carbon atoms. R 31 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, or an unsaturated hydrocarbon group having 2 to 20 carbon atoms.
 式(C2)において、R30、R31、R32は、それぞれ独立に水素原子、炭素原子数が1~20のアルキル基、炭素原子数が3~30のシクロアルキル基、又は炭素原子数が2~20の不飽和炭化水素基を表す。 In formula (C2), R 30 , R 31 , and R 32 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, or a carbon atom having 3 to 30 carbon atoms. It represents 2 to 20 unsaturated hydrocarbon groups.
 式(C1)、(C2)において、R30、R31、R32で表されるアルキル基、シクロアルキル基、不飽和炭化水素基に含まれる水素原子は、それぞれ独立に、ハロゲン原子又はアミノ基で置換されていてもよい。 In formulas (C1) and (C2), the hydrogen atoms contained in the alkyl group, cycloalkyl group, and unsaturated hydrocarbon group represented by R 30 , R 31 , and R 32 are each independently a halogen atom or an amino group. May be replaced with.
 R30、R31、R32で表されるアルキル基、シクロアルキル基、不飽和炭化水素基に含まれる水素原子を置換してもよいハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、化学的安定性の観点からフッ素原子が好ましい。 Examples of the halogen atom which may be substituted for the hydrogen atom contained in the alkyl group, cycloalkyl group and unsaturated hydrocarbon group represented by R 30 , R 31 and R 32 include a fluorine atom, a chlorine atom and a bromine atom. , And iodine atoms are preferable, and fluorine atoms are preferable from the viewpoint of chemical stability.
 式(C1)、(C2)において、aは1~3の整数である。
 aが2又は3のとき、複数存在するYは、同一であってもよく、異なっていてもよい。
 aが2又は3のとき、複数存在するR30は、同一であってもよく、異なっていてもよい。
 aが2又は3のとき、複数存在するR32は、同一であってもよく、異なっていてもよい。
 aが1又は2のとき、複数存在するR31は、同一であってもよく、異なっていてもよい。
In the formulas (C1) and (C2), a is an integer of 1 to 3.
When a is 2 or 3, a plurality of Y 5 s may be the same or different.
When a is 2 or 3, a plurality of R 30's may be the same or different.
When a is 2 or 3, a plurality of R 32's may be the same or different.
When a is 1 or 2, a plurality of R 31's may be the same or different.
 R30及びR31で表されるアルキル基は、直鎖状であっても、分岐鎖状であってもよい。 The alkyl group represented by R 30 and R 31 may be linear or branched.
 式(C1)で表される化合物において、Yが酸素原子である場合、R30で表されるアルキル基の炭素原子数は、改質が素早く進行することから、1~20であることが好ましい。また、R30で表されるアルキル基の炭素原子数は、1~3であることがより好ましく、1であることがさらに好ましい。 In the compound represented by the formula (C1), when Y 5 is an oxygen atom, the number of carbon atoms of the alkyl group represented by R 30 is 1 to 20 because reforming proceeds rapidly. preferable. The number of carbon atoms of the alkyl group represented by R 30 is more preferably 1 to 3, and even more preferably 1.
 式(C1)で表される化合物において、Yが単結合、又は硫黄原子である場合、R30で表されるアルキル基の炭素原子数は、5~20であることが好ましく、8~20であることがより好ましい。 In the compound represented by the formula (C1), when Y 5 is a single bond or a sulfur atom, the alkyl group represented by R 30 preferably has 5 to 20 carbon atoms, and 8 to 20 carbon atoms. Is more preferable.
 式(C1)で表される化合物において、Yは、改質が素早く進行することから、酸素原子が好ましい。 In the compound represented by the formula (C1), Y 5 is preferably an oxygen atom because reforming proceeds rapidly.
 式(C2)で表される化合物において、R30及びR32で表されるアルキル基の炭素原子数は、改質が素早く進行することから、それぞれ独立に1~20であることが好ましい。また、R30及びR32で表されるアルキル基の炭素原子数は、それぞれ独立に1~3であることがより好ましく、1であることがさらに好ましい。 In the compound represented by the formula (C2), the number of carbon atoms of the alkyl group represented by R 30 and R 32 is preferably 1 to 20 each independently because reforming proceeds rapidly. Further, the number of carbon atoms of the alkyl group represented by R 30 and R 32 is more preferably independently 1 to 3, and further preferably 1.
 式(C1)で表される化合物、及び式(C2)で表される化合物ともに、R31で表されるアルキル基の炭素原子数は、1~5であることが好ましく、1~2であることがより好ましく、1であることがさらに好ましい。 In both the compound represented by the formula (C1) and the compound represented by the formula (C2), the alkyl group represented by R 31 preferably has 1 to 5 carbon atoms and 1 to 2 carbon atoms. More preferably, it is more preferably 1.
 R30、R31及びR32で表されるアルキル基の具体例としては、R~Rで表される基において例示したアルキル基が挙げられる。 Specific examples of the alkyl group represented by R 30 , R 31 and R 32 include the alkyl groups exemplified in the groups represented by R 6 to R 9 .
 R30、R31及びR32で表されるシクロアルキル基の炭素原子数は、3~20であることが好ましく、3~11であることがより好ましい。炭素原子数は、置換基の炭素原子数を含む。 The cycloalkyl group represented by R 30 , R 31 and R 32 preferably has 3 to 20 carbon atoms, and more preferably 3 to 11 carbon atoms. The number of carbon atoms includes the number of carbon atoms of the substituent.
 R30、R31及びR32で表されるシクロアルキル基にある水素原子が、それぞれ独立に、アルキル基で置換されている場合、シクロアルキル基の炭素原子数は、4以上である。シクロアルキル基にある水素原子が置換されてもよいアルキル基は、炭素原子数が1~27である。 When the hydrogen atoms in the cycloalkyl group represented by R 30 , R 31 and R 32 are each independently substituted with an alkyl group, the cycloalkyl group has 4 or more carbon atoms. The alkyl group in which the hydrogen atom in the cycloalkyl group may be substituted has 1 to 27 carbon atoms.
 R30,R31及びR32で表されるシクロアルキル基の具体例としては、R~Rで表される基において例示したシクロアルキル基が挙げられる。 Specific examples of the cycloalkyl group represented by R 30 , R 31 and R 32 include the cycloalkyl groups exemplified in the groups represented by R 6 to R 9 .
 R30、R31及びR32で表される不飽和炭化水素基は、直鎖状であっても、分岐鎖状であってもよく、環状であってもよい。 The unsaturated hydrocarbon group represented by R 30 , R 31 and R 32 may be linear, branched, or cyclic.
 R30、R31及びR32で表される不飽和炭化水素基の炭素原子数は、5~20であることが好ましく、8~20であることがより好ましい。 The unsaturated hydrocarbon group represented by R 30 , R 31 and R 32 preferably has 5 to 20 carbon atoms, and more preferably 8 to 20 carbon atoms.
 R30、R31及びR32で表される不飽和炭化水素基としては、アルケニル基が好ましく、炭素原子数8~20のアルケニル基であることがより好ましい。 The unsaturated hydrocarbon group represented by R 30 , R 31 and R 32 is preferably an alkenyl group, and more preferably an alkenyl group having 8 to 20 carbon atoms.
 R30、R31及びR32で表されるアルケニル基としては、R~Rで表される基において例示した直鎖状又は分岐鎖状のアルキル基において、いずれか一つの炭素原子間の単結合(C-C)が、二重結合(C=C)に置換されたものが例示できる。アルケニル基において、二重結合の位置は限定されない。 Examples of the alkenyl group represented by R 30 , R 31 and R 32 include linear or branched alkyl groups exemplified in the groups represented by R 6 to R 9 and having one carbon atom An example is one in which a single bond (C—C) is replaced with a double bond (C═C). The position of the double bond in the alkenyl group is not limited.
 このようなアルケニル基の好ましいものとしては、例えば、エテニル基、プロペニル基、3-ブテニル基、2-ブテニル基、2-ペンテニル基、2-ヘキセニル基、2-ノネニル基、2-ドデセニル基、9-オクタデセニル基が挙げられる。 Preferable examples of such alkenyl group include, for example, ethenyl group, propenyl group, 3-butenyl group, 2-butenyl group, 2-pentenyl group, 2-hexenyl group, 2-nonenyl group, 2-dodecenyl group, 9 An octadecenyl group.
 R30及びR32は、アルキル基、又は不飽和炭化水素基であることが好ましく、アルキル基であることがより好ましい。 R 30 and R 32 are preferably an alkyl group or an unsaturated hydrocarbon group, and more preferably an alkyl group.
 R31は、水素原子、アルキル基、又は不飽和炭化水素基であることが好ましく、アルキル基であることがより好ましい。 R 31 is preferably a hydrogen atom, an alkyl group, or an unsaturated hydrocarbon group, and more preferably an alkyl group.
 R31で表されるアルキル基、シクロアルキル基及び不飽和炭化水素基が上述の炭素原子数であると、式(C1)で表される化合物、式(C2)で表される化合物が加水分解されやすく、改質体を生じやすい。そのため、式(C1)で表される化合物の改質体、及び式(C2)で表される化合物の改質体が(1)半導体材料の表面を覆いやすい。その結果、熱環境下においても(1)半導体材料が劣化しにくく、耐久性が高い(1)半導体材料が得られると考えられる。 When the alkyl group, cycloalkyl group and unsaturated hydrocarbon group represented by R 31 have the above-mentioned number of carbon atoms, the compound represented by the formula (C1) and the compound represented by the formula (C2) are hydrolyzed. It is liable to be modified and a modified product is easily generated. Therefore, the modified body of the compound represented by the formula (C1) and the modified body of the compound represented by the formula (C2) easily cover the surface of the semiconductor material (1). As a result, it is considered that (1) the semiconductor material is less likely to deteriorate even in a thermal environment, and the (1) semiconductor material having high durability can be obtained.
 式(C1)で表される化合物としては、具体的に、テトラエトキシシラン、テトラメトキシシラン、テトラブトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、トリメトキシフェニルシラン、エトキシトリエチルシラン、メトキシトリメチルシラン、メトキシジメチル(フェニル)シラン、ペンタフルオロフェニルエトキシジメチルシラン、トリメチルエトキシシラン、3-クロロプロピルジメトキシメチルシラン、(3-クロロプロピル)ジエトキシ(メチル)シラン、(クロロメチル)ジメトキシ(メチル)シラン、(クロロメチル)ジエトキシ(メチル)シラン、ジエトキシジメチルシラン、ジメトキシジメチルシラン、ジメトキシジフェニルシラン、ジメトキシメチルフェニルシラン、ジエトキシジフェニルシラン、ジメトキシメチルビニルシラン、ジエトキシ(メチル)フェニルシラン、ジメトキシ(メチル)(3,3,3-トリフルオロプロピル)シラン、アリルトリエトキシシラン、アリルトリメトキシシラン、(3-ブロモプロピル)トリメトキシシラン、シクロヘキシルトリメトキシシラン、(クロロメチル)トリエトキシシラン、(クロロメチル)トリメトキシシラン、ドデシルトリエトキシシラン、ドデシルトリメトキシシラン、トリエトキシエチルシラン、デシルトリメトキシシラン、エチルトリメトキシシラン、ヘキシルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキサデシルトリメトキシシラン、トリメトキシ(メチル)シラン、トリエトキシメチルシラン、トリメトキシ(1H,1H,2H,2H-ヘプタデカフルオロデシル)シラン、トリエトキシ-1H,1H,2H,2H-トリデカフルオロ-n-オクチルシラン、トリメトキシ(1H,1H,2H,2H-ノナフルオロヘキシル)シラン、トリメトキシ(3,3,3-トリフルオロプロピル)シラン、1H,1H,2H,2H-パーフルオロオクチルトリエトキシシラン等が挙げられる。 Specific examples of the compound represented by the formula (C1) include tetraethoxysilane, tetramethoxysilane, tetrabutoxysilane, tetrapropoxysilane, tetraisopropoxysilane, 3-aminopropyltriethoxysilane, and 3-aminopropyltrisilane. Methoxysilane, trimethoxyphenylsilane, ethoxytriethylsilane, methoxytrimethylsilane, methoxydimethyl (phenyl) silane, pentafluorophenylethoxydimethylsilane, trimethylethoxysilane, 3-chloropropyldimethoxymethylsilane, (3-chloropropyl) diethoxy ( Methyl) silane, (chloromethyl) dimethoxy (methyl) silane, (chloromethyl) diethoxy (methyl) silane, diethoxydimethylsilane, dimethoxydimethylsilane, dime Xydiphenylsilane, dimethoxymethylphenylsilane, diethoxydiphenylsilane, dimethoxymethylvinylsilane, diethoxy (methyl) phenylsilane, dimethoxy (methyl) (3,3,3-trifluoropropyl) silane, allyltriethoxysilane, allyltrimethoxy Silane, (3-bromopropyl) trimethoxysilane, cyclohexyltrimethoxysilane, (chloromethyl) triethoxysilane, (chloromethyl) trimethoxysilane, dodecyltriethoxysilane, dodecyltrimethoxysilane, triethoxyethylsilane, decyltri Methoxysilane, ethyltrimethoxysilane, hexyltriethoxysilane, hexyltrimethoxysilane, hexadecyltrimethoxysilane, trimethoxy (methyl) silane, Liethoxymethylsilane, trimethoxy (1H, 1H, 2H, 2H-heptadecafluorodecyl) silane, triethoxy-1H, 1H, 2H, 2H-tridecafluoro-n-octylsilane, trimethoxy (1H, 1H, 2H, 2H -Nonafluorohexyl) silane, trimethoxy (3,3,3-trifluoropropyl) silane, 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane and the like.
 なかでも、式(C1)で表される化合物としては、トリメトキシフェニルシラン、メトキシジメチル(フェニル)シラン、ジメトキシジフェニルシラン、ジメトキシメチルフェニルシラン、シクロヘキシルトリメトキシシラン、ドデシルトリエトキシシラン、ドデシルトリメトキシシラン、デシルトリメトキシシラン、ヘキシルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキサデシルトリメトキシシラン、トリメトキシ(1H,1H,2H,2H-ヘプタデカフルオロデシル)シラン、トリエトキシ-1H,1H,2H,2H-トリデカフルオロ-n-オクチルシラン、トリメトキシ(1H,1H,2H,2H-ノナフルオロヘキシル)シラン、トリメトキシ(3,3,3-トリフルオロプロピル)シラン、1H,1H,2H,2H-パーフルオロオクチルトリエトキシシラン、テトラエトキシシラン、テトラメトキシシラン、テトラブトキシシラン、テトライソプロポキシシランが好ましく、テトラエトキシシラン、テトラメトキシシラン、テトラブトキシシラン、テトライソプロポキシシランがより好ましく、テトラメトキシシランがもっとも好ましい。 Among them, as the compound represented by the formula (C1), trimethoxyphenylsilane, methoxydimethyl (phenyl) silane, dimethoxydiphenylsilane, dimethoxymethylphenylsilane, cyclohexyltrimethoxysilane, dodecyltriethoxysilane, dodecyltrimethoxysilane. , Decyltrimethoxysilane, hexyltriethoxysilane, hexyltrimethoxysilane, hexadecyltrimethoxysilane, trimethoxy (1H, 1H, 2H, 2H-heptadecafluorodecyl) silane, triethoxy-1H, 1H, 2H, 2H-tri Decafluoro-n-octylsilane, trimethoxy (1H, 1H, 2H, 2H-nonafluorohexyl) silane, trimethoxy (3,3,3-trifluoropropyl) silane, 1H, 1H, 2H, H-perfluorooctyltriethoxysilane, tetraethoxysilane, tetramethoxysilane, tetrabutoxysilane and tetraisopropoxysilane are preferable, tetraethoxysilane, tetramethoxysilane, tetrabutoxysilane and tetraisopropoxysilane are more preferable, and tetramethoxy Silane is most preferred.
 さらに、式(C1)で表される化合物としては、ドデシルトリメトキシシラン、トリメトキシフェニルシラン、1H,1H,2H,2H-パーフルオロオクチルトリエトキシシラン、トリメトキシ(1H,1H,2H,2H-ノナフルオロヘキシル)シランでもよい。 Further, as the compound represented by the formula (C1), dodecyltrimethoxysilane, trimethoxyphenylsilane, 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane, trimethoxy (1H, 1H, 2H, 2H-nona It may be fluorohexyl) silane.
(3.式(A5-51)で表される化合物、式(A5-52)で表される化合物)
 (5)改質体群としては、下記式(A5-51)で表される化合物、下記式(A5-52)で表される化合物であってもよい。
(3. Compound represented by formula (A5-51), compound represented by formula (A5-52))
(5) The modified compound group may be a compound represented by the following formula (A5-51) or a compound represented by the following formula (A5-52).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(A5-51)及び式(A5-52)において、Aは2価の炭化水素基であり、Y15は酸素原子又は硫黄原子である。 In formulas (A5-51) and (A5-52), A C is a divalent hydrocarbon group, and Y 15 is an oxygen atom or a sulfur atom.
 式(A5-51)及び式(A5-52)において、R122及びR123は、それぞれ独立に、水素原子、アルキル基、又はシクロアルキル基を表す。 In formula (A5-51) and formula (A5-52), R 122 and R 123 each independently represent a hydrogen atom, an alkyl group, or a cycloalkyl group.
 式(A5-51)及び式(A5-52)において、R124は、アルキル基、又はシクロアルキル基を表す。 In formulas (A5-51) and (A5-52), R 124 represents an alkyl group or a cycloalkyl group.
 式(A5-51)及び式(A5-52)において、R125及びR126は、それぞれ独立に、水素原子、アルキル基、アルコキシ基、又はシクロアルキル基を表す。 In formulas (A5-51) and (A5-52), R 125 and R 126 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, or a cycloalkyl group.
 R122~R126がアルキル基である場合、直鎖状であっても分岐鎖状であってもよい。アルキル基の炭素原子数は、通常1~20であり、5~20であることが好ましく、8~20であることがより好ましい。 When R 122 to R 126 are alkyl groups, they may be linear or branched. The alkyl group has usually 1 to 20 carbon atoms, preferably 5 to 20 carbon atoms, and more preferably 8 to 20 carbon atoms.
 R122~R126がシクロアルキル基である場合、シクロアルキル基は、置換基としてアルキル基を有していてもよい。シクロアルキル基の炭素原子数は、通常3~30であり、3~20であることが好ましく、3~11であることがより好ましい。炭素原子数は、置換基の炭素原子数を含む。 When R 122 to R 126 are cycloalkyl groups, the cycloalkyl group may have an alkyl group as a substituent. The cycloalkyl group has usually 3 to 30 carbon atoms, preferably 3 to 20 carbon atoms, and more preferably 3 to 11 carbon atoms. The number of carbon atoms includes the number of carbon atoms of the substituent.
 R122~R126で表されるアルキル基、シクロアルキル基に含まれる水素原子は、それぞれ独立に、ハロゲン原子又はアミノ基で置換されていてもよい。 The hydrogen atoms contained in the alkyl group and cycloalkyl group represented by R 122 to R 126 may be each independently substituted with a halogen atom or an amino group.
 R122~R126で表されるアルキル基、シクロアルキル基に含まれる水素原子を置換してもよいハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、化学的安定性の観点からフッ素原子が好ましい。 Examples of the halogen atom, which may be substituted for the hydrogen atom contained in the alkyl group and cycloalkyl group represented by R 122 to R 126 , include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. A fluorine atom is preferable from the viewpoint of stability.
 R122~R126のアルキル基の具体例としては、R~Rにおいて例示したアルキル基が挙げられる。 Specific examples of the alkyl group of R 122 to R 126 include the alkyl groups exemplified in R 6 to R 9 .
 R122~R126のシクロアルキル基の具体例としては、R~Rにおいて例示したシクロアルキル基が挙げられる。 Specific examples of the cycloalkyl group of R 122 to R 126 include the cycloalkyl group exemplified in R 6 to R 9 .
 R125、R126のアルコキシ基としては、R~Rにおいて例示した直鎖状又は分岐鎖状のアルキル基が酸素原子に結合した1価の基が例示できる。 Examples of the alkoxy group of R 125 and R 126 include monovalent groups in which the linear or branched alkyl group exemplified in R 6 to R 9 is bonded to an oxygen atom.
 R125、R126がアルコキシ基である場合、メトキシ基、エトキシ基、ブトキシ基などが挙げられ、好ましくはメトキシ基である。 When R 125 and R 126 are an alkoxy group, a methoxy group, an ethoxy group, a butoxy group and the like can be mentioned, and a methoxy group is preferable.
 Aで表される2価の炭化水素基は、炭化水素化合物から2個の水素原子を除去した基であればよく、前記炭化水素化合物は、脂肪族炭化水素であってもよく、芳香族炭化水素であってもよく、飽和脂肪族炭化水素であってもよい。Aがアルキレン基である場合、直鎖状であっても分岐鎖状であってもよい。アルキレン基の炭素原子数は、通常1~100であり、1~20であることが好ましく、1~5であることがより好ましい。 Divalent hydrocarbon group represented by A C may be any groups from the hydrocarbon compound removal of two hydrogen atoms, said hydrocarbon compound may be an aliphatic hydrocarbon, aromatic It may be a hydrocarbon or a saturated aliphatic hydrocarbon. When AC is an alkylene group, it may be linear or branched. The alkylene group has usually 1 to 100 carbon atoms, preferably 1 to 20 carbon atoms, and more preferably 1 to 5 carbon atoms.
 式(A5-51)で表される化合物としては、トリメトキシ[3-(メチルアミノ)プロピル]シラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジメトキシメチルシラン、3-アミノプロピルジエトキシメチルシラン、3-アミノプロピルトリメトキシシラン、が好ましい。 Examples of the compound represented by the formula (A5-51) include trimethoxy [3- (methylamino) propyl] silane, 3-aminopropyltriethoxysilane, 3-aminopropyldimethoxymethylsilane, and 3-aminopropyldiethoxymethylsilane. , 3-aminopropyltrimethoxysilane is preferred.
 式(A5-51)で表される化合物としては、R122及びR123が水素原子であり、R124がアルキル基であり、R125及びR126がアルコキシ基である化合物が好ましい。例えば3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシランがより好ましい。 The compound represented by the formula (A5-51) is preferably a compound in which R 122 and R 123 are hydrogen atoms, R 124 is an alkyl group, and R 125 and R 126 are alkoxy groups. For example, 3-aminopropyltriethoxysilane and 3-aminopropyltrimethoxysilane are more preferable.
 式(A5-51)で表される化合物としては、3-アミノプロピルトリメトキシシランがさらに好ましい。
 式(A5-52)で表される化合物としては、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシランがさらに好ましい。
As the compound represented by the formula (A5-51), 3-aminopropyltrimethoxysilane is more preferable.
As the compound represented by the formula (A5-52), 3-mercaptopropyltrimethoxysilane and 3-mercaptopropyltriethoxysilane are more preferable.
(ケイ酸ナトリウム)
 (5)改質体群としては、ケイ酸ナトリウム(NaSiO)であってもよい。
(Sodium silicate)
(5) The modified body group may be sodium silicate (Na 2 SiO 3 ).
 ケイ酸ナトリウムは、酸で処理することにより加水分解が進行し、改質される。 ㆍ Sodium silicate undergoes hydrolysis and is modified by treatment with acid.
 本実施形態においては、上述の(5)改質体群を1種のみ用いてもよく、2種以上を併用してもよい。 In the present embodiment, the above-mentioned (5) modified body group may be used alone or in combination of two or more kinds.
<各成分の配合比について>
 本実施形態の組成物において、(1)半導体材料と、(2)表面修飾剤との配合比は、組成物を構成する成分の種類等に応じて、適宜定めることができる。
 本実施形態の組成物において、(1)半導体材料と、(2)表面修飾剤とのモル比[(1)半導体材料/(2)表面修飾剤]は、0.0001~1000であってもよく、0.01~100であってもよい。
 (1)半導体材料と、(2)表面修飾剤との配合比に係る範囲が上記範囲内である樹脂組成物は、(1)半導体材料の凝集が生じ難く、発光性も良好に発揮される点で好ましい。
<Regarding the compounding ratio of each component>
In the composition of the present embodiment, the compounding ratio of (1) a semiconductor material and (2) a surface modifier can be appropriately determined according to the type of components constituting the composition and the like.
In the composition of the present embodiment, the molar ratio [(1) semiconductor material / (2) surface modifier] of (1) semiconductor material to (2) surface modifier is 0.0001 to 1,000. It may be 0.01 to 100.
The resin composition in which the range of the compounding ratio of (1) the semiconductor material and (2) the surface modifier is within the above range is (1) the aggregation of the semiconductor material is less likely to occur, and the light emitting property is also excellently exhibited. It is preferable in terms.
 本実施形態の組成物において、(1)半導体材料がペロブスカイト化合物である場合、ペロブスカイト化合物のB成分である金属イオンと、(2)第3級アミンのN元素とのモル比[N/B]は、0.001~100であってもよく、0.01~10であってもよく、0.1~1であってもよい。 In the composition of the present embodiment, (1) when the semiconductor material is a perovskite compound, the molar ratio [N / B] between the metal ion that is the B component of the perovskite compound and (2) the N element of the tertiary amine. May be 0.001 to 100, 0.01 to 10, or 0.1 to 1.
 本実施形態の組成物において、(1)半導体材料と(5)改質体群との配合比は、(5)改質体群による、耐久性向上の作用が発揮される程度であればよく、(1)半導体材料及び(5)改質体群の種類等に応じて、適宜定めることができる。
 本実施形態の組成物において、(1)半導体材料がペロブスカイト化合物である場合、(1)半導体材料のB成分である金属イオンと、(5)改質体群のSi元素とのモル比[Si/B]は、0.001~2000であってもよく、0.01~500であってもよい。
In the composition of the present embodiment, the compounding ratio of (1) the semiconductor material and (5) the modified body group may be such that (5) the modified body group exhibits the action of improving the durability. , (1) semiconductor material and (5) type of modified body group, etc.
In the composition of the present embodiment, when (1) the semiconductor material is a perovskite compound, (1) the molar ratio of the metal ion that is the B component of the semiconductor material to (5) the Si element of the modified body group [Si / B] may be 0.001 to 2000 or 0.01 to 500.
 本実施形態の組成物において、(5)改質体群が、式(B1)又は(B2)で表されるシラザン、及びその改質体であり、(1)半導体材料がペロブスカイト化合物である場合、(1)半導体材料のB成分である金属イオンと、(5)改質体群のSiとのモル比[Si/B]は、1~1000であってもよく、10~500であってもよく、20~300であってもよい。 In the composition of the present embodiment, (5) the modified compound group is a silazane represented by the formula (B1) or (B2) and a modified compound thereof, and (1) the semiconductor material is a perovskite compound. , (1) the molar ratio [Si / B] of the metal ion, which is the B component of the semiconductor material, and (5) the Si of the modified body group may be 1 to 1000, or 10 to 500. It may be 20 to 300.
 本実施形態の組成物において、(5)改質体群が、式(B3)で表される構造を有するポリシラザンであり、(1)半導体材料がペロブスカイト化合物である場合、(1)半導体材料のB成分である金属イオンと、(5)改質体群のSi元素とのモル比[Si/B]は、0.001~2000であってもよく、0.01~2000であってもよく、0.1~1000であってもよく、1~500であってもよく、2~300であってもよい。 In the composition of the present embodiment, (5) the modified body group is polysilazane having the structure represented by the formula (B3), and (1) the semiconductor material is a perovskite compound, the (1) semiconductor material is The molar ratio [Si / B] between the metal ion that is the B component and the Si element in the modified body group (5) may be 0.001 to 2000, or 0.01 to 2000. , 0.1 to 1000, 1 to 500, or 2 to 300.
 (1)半導体材料と(5)改質体群との配合比に係る範囲が上記範囲内である組成物は、(5)改質体群による、耐久性向上の作用が、特に良好に発揮される点で好ましい。 The composition in which the compounding ratio of the (1) semiconductor material and the (5) modified body group is within the above range exhibits the effect of improving the durability of the (5) modified body group particularly well. It is preferable in that
 上記ペロブスカイト化合物のB成分である金属イオンと、改質体のSi元素とのモル比[Si/B]は、以下のような方法で求めることができる。 The molar ratio [Si / B] between the metal ion, which is the B component of the perovskite compound, and the Si element of the modified product can be determined by the following method.
 ペロブスカイト化合物のB成分である金属イオンの物質量(B)(単位:モル)は、誘導結合プラズマ質量分析(ICP-MS)によって、B成分である金属の質量を測定し、測定値を物質量に換算して求める。 The substance amount (B) (unit: mol) of the metal ion that is the B component of the perovskite compound is measured by inductively coupled plasma mass spectrometry (ICP-MS) to measure the mass of the metal that is the B component, and the measured value is the substance amount. Converted to.
 改質体のSi元素の物質量(Si)は、用いた改質体の原料化合物の質量を物質量に換算した値と、単位質量の原料化合物に含まれるSi量(物質量)とから求める。原料化合物の単位質量とは、原料化合物が低分子化合物であれば原料化合物の分子量であり、原料化合物が高分子化合物であれば原料化合物の繰り返し単位の分子量である。 The substance amount (Si) of the Si element of the reformer is calculated from the value obtained by converting the mass of the raw material compound of the reformer used into the substance amount and the Si amount (substance amount) contained in the unit mass of the raw material compound. . The unit mass of the raw material compound is the molecular weight of the raw material compound if the raw material compound is a low molecular compound, and the molecular weight of the repeating unit of the raw material compound if the raw material compound is a high molecular compound.
 Si元素の物質量(Si)と、ペロブスカイト化合物のB成分である金属イオンの物質量(B)とから、モル比[Si/B]を算出することができる。 The molar ratio [Si / B] can be calculated from the substance amount (Si) of the Si element and the substance amount (B) of the metal ion that is the B component of the perovskite compound.
<組成物の製造方法>
 以下、本発明における組成物の製造方法に関し、実施形態を示して説明する。なお、本実施形態の組成物は、以下の実施形態の組成物の製造方法によって製造されるものに限定されるものではない。
<Method for producing composition>
Hereinafter, the method for producing the composition of the present invention will be described with reference to embodiments. The composition of the present embodiment is not limited to that produced by the method for producing the composition of the following embodiments.
<(1)半導体材料の製造方法>
((i)~(vii)の半導体材料の製造方法)
 (i)~(vii)の半導体材料は、半導体材料を構成する元素の単体又は半導体材料を構成する元素の化合物と、脂溶性溶媒とを混合した混合液を加熱する方法で製造することができる。
<(1) Method for manufacturing semiconductor material>
(Methods for manufacturing semiconductor materials (i) to (vii))
The semiconductor materials (i) to (vii) can be manufactured by a method of heating a mixed liquid obtained by mixing a simple substance of the elements constituting the semiconductor material or a compound of the elements constituting the semiconductor material and a fat-soluble solvent. .
 半導体材料を構成する元素を含む化合物の例としては、特に制限はないが、酸化物、酢酸塩、有機金属化合物、ハロゲン化物、硝酸塩等が挙げられる。 Examples of the compound containing an element constituting the semiconductor material are not particularly limited, but include oxides, acetates, organometallic compounds, halides, nitrates and the like.
 脂溶性溶媒としては、例えば炭素原子数4~20の炭化水素基を有する含窒素化合物、炭素原子数4~20の炭化水素基を有する含酸素化合物などが挙げられる。 Examples of the fat-soluble solvent include nitrogen-containing compounds having a hydrocarbon group having 4 to 20 carbon atoms and oxygen-containing compounds having a hydrocarbon group having 4 to 20 carbon atoms.
 炭素原子数4~20の炭化水素基としては、飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基を挙げることができる。 Examples of the hydrocarbon group having 4 to 20 carbon atoms include a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
 炭素原子数4~20の飽和脂肪族炭化水素基としては、n-ブチル基、イソブチル基、n-ペンチル基、オクチル基、デシル基、ドデシル基、ヘキサデシル基、オクタデシル基などを挙げることができる。 Examples of the saturated aliphatic hydrocarbon group having 4 to 20 carbon atoms include n-butyl group, isobutyl group, n-pentyl group, octyl group, decyl group, dodecyl group, hexadecyl group and octadecyl group.
 炭素原子数4~20の不飽和脂肪族炭化水素基としては、オレイル基を挙げることができる。 As an unsaturated aliphatic hydrocarbon group having 4 to 20 carbon atoms, an oleyl group can be mentioned.
 炭素原子数4~20の脂環式炭化水素基としては、シクロペンチル基、シクロヘキシル基などを挙げることができる。 Examples of the alicyclic hydrocarbon group having 4 to 20 carbon atoms include cyclopentyl group and cyclohexyl group.
 炭素原子数4~20の芳香族炭化水素基としては、フェニル基、ベンジル基、ナフチル基、ナフチルメチル基などを挙げることができる。 Examples of the aromatic hydrocarbon group having 4 to 20 carbon atoms include phenyl group, benzyl group, naphthyl group and naphthylmethyl group.
 炭素原子数4~20の炭化水素基としては、飽和脂肪族炭化水素基、及び不飽和脂肪族炭化水素基が好ましい。 As the hydrocarbon group having 4 to 20 carbon atoms, a saturated aliphatic hydrocarbon group and an unsaturated aliphatic hydrocarbon group are preferable.
 含窒素化合物としては、アミン類やアミド類を挙げることができる。
 含酸素化合物としては、脂肪酸類を挙げることができる。
Examples of the nitrogen-containing compound include amines and amides.
Examples of the oxygen-containing compound include fatty acids.
 このような脂溶性溶媒のうち、炭素原子数4~20の炭化水素基を有する含窒素化合物が好ましい。このような含窒素化合物としては、例えばn-ブチルアミン、イソブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミン、ヘキサデシルアミン、オクタデシルアミンなどのアルキルアミンや、オレイルアミンなどのアルケニルアミンが好ましい。 Among such fat-soluble solvents, nitrogen-containing compounds having a hydrocarbon group with 4 to 20 carbon atoms are preferable. Examples of such nitrogen-containing compounds include alkylamines such as n-butylamine, isobutylamine, n-pentylamine, n-hexylamine, octylamine, decylamine, dodecylamine, hexadecylamine and octadecylamine, and oleylamine. Alkenylamines are preferred.
 こうした脂溶性溶媒は、合成により生じる半導体材料の表面に結合可能である。脂溶性溶媒が半導体材料の表面に結合する際の結合としては、例えば共有結合、イオン結合、配位結合、水素結合、ファンデルワールス結合等の化学結合が挙げられる。 -Such a fat-soluble solvent can bind to the surface of a semiconductor material produced by synthesis. Examples of the bond when the lipophilic solvent bonds to the surface of the semiconductor material include chemical bonds such as covalent bond, ionic bond, coordination bond, hydrogen bond, and van der Waals bond.
 上記混合液の加熱温度は、使用する原料(単体や化合物)の種類によって適宜設定すればよい。混合液の加熱温度は、例えば、130~300℃が好ましく、240~300℃がより好ましい。加熱温度が上記下限値以上であると結晶構造が単一化しやすいため好ましい。加熱温度が上記上限値以下であると、生じる半導体材料の結晶構造が崩壊しにくく、目的物が得られやすいため好ましい。 The heating temperature of the above mixed solution may be appropriately set depending on the type of raw material (single substance or compound) used. The heating temperature of the mixed solution is, for example, preferably 130 to 300 ° C, more preferably 240 to 300 ° C. It is preferable for the heating temperature to be at least the above lower limit value because the crystal structure is easily unified. When the heating temperature is not higher than the above upper limit, the crystal structure of the semiconductor material that is produced is less likely to collapse, and the target product is easily obtained, which is preferable.
 混合液の加熱時間は、使用する原料(単体や化合物)の種類、加熱温度によって適宜設定すればよい。混合液の加熱時間は、例えば、数秒間~数時間が好ましく、1~60分間がより好ましい。 The heating time of the mixed solution may be appropriately set depending on the types of raw materials (single or compound) used and the heating temperature. The heating time of the mixed liquid is, for example, preferably several seconds to several hours, more preferably 1 to 60 minutes.
 上述の半導体材料の製造方法においては、加熱後の混合液を冷却することにより、目的物である半導体材料を含む沈殿物が得られる。沈殿物を分離して適宜洗浄することで、目的物である半導体材料が得られる。 In the above-mentioned semiconductor material manufacturing method, by cooling the mixed solution after heating, a precipitate containing the target semiconductor material can be obtained. By separating the precipitate and washing it appropriately, the target semiconductor material can be obtained.
 沈殿物を分離した上澄み液については、合成した半導体材料が不溶又は難溶な溶媒を添加し、上澄み液における半導体材料の溶解度を低下させて沈殿物を生じさせ、上澄み液に含まれる半導体材料を回収してもよい。「半導体材料が不溶又は難溶な溶媒」としては、例えばメタノール、エタノール、アセトン、アセトニトリルなどを挙げることができる。 For the supernatant liquid from which the precipitate is separated, a solvent in which the synthesized semiconductor material is insoluble or sparingly soluble is added to reduce the solubility of the semiconductor material in the supernatant liquid to form a precipitate, and the semiconductor material contained in the supernatant liquid is added. You may collect it. Examples of the “solvent in which the semiconductor material is insoluble or sparingly soluble” include methanol, ethanol, acetone, acetonitrile and the like.
 上述の半導体材料の製造方法においては、分離した沈殿物を有機溶媒(例えばクロロホルム、トルエン、ヘキサン、n-ブタノールなど)に入れて半導体材料を含む溶液としてもよい。 In the above-mentioned semiconductor material manufacturing method, the separated precipitate may be put in an organic solvent (eg, chloroform, toluene, hexane, n-butanol, etc.) to form a solution containing the semiconductor material.
((viii)の半導体材料の製造方法)
 (viii)の半導体材料の製造方法は、既知文献(Nano Lett. 2015, 15, 3692-3696、ACSNano,2015,9,4533-4542)を参考に、以下に述べる方法によって製造することができる。
(Method for manufacturing semiconductor material of (viii))
The manufacturing method of the semiconductor material of (viii) can be manufactured by the method described below with reference to known literatures (Nano Lett. 2015, 15, 3692-3696, ACS Nano, 2015, 9, 4533-4542).
(第1の製造方法)
 ペロブスカイト化合物の製造方法としては、ペロブスカイト化合物を構成するA成分を含む化合物、B成分を含む化合物、及びX成分を含む化合物を第1溶媒に溶解させ溶液を得る工程と、得られた溶液と第2溶媒とを混合する工程とを含む製造方法が挙げられる。
(First manufacturing method)
As a method for producing a perovskite compound, a step of dissolving a compound containing an A component, a compound containing a B component, and a compound containing an X component, which form the perovskite compound, in a first solvent; A manufacturing method including a step of mixing two solvents.
 第2溶媒は、ペロブスカイト化合物に対する溶解度が第1溶媒よりも低い溶媒である。
なお、溶解度とは、得られた溶液と第2溶媒とを混合する工程を行う温度における溶解度を意味する。
The second solvent has a lower solubility for the perovskite compound than the first solvent.
The solubility means the solubility at the temperature at which the step of mixing the obtained solution and the second solvent is performed.
 第1溶媒及び第2溶媒としては、上述の(a)~(k)として挙げる有機溶媒の群から選ばれる少なくとも2種を挙げることができる。 As the first solvent and the second solvent, at least two kinds selected from the group of organic solvents mentioned above as (a) to (k) can be mentioned.
 例えば、室温(10℃~30℃)で溶液と第2溶媒とを混合する工程を行う場合、第1溶媒としては、上述の(d)アルコール、(e)グリコールエーテル、(f)アミド基を有する有機溶媒、(k)ジメチルスルホキシドを挙げることができる。 For example, when performing the step of mixing the solution and the second solvent at room temperature (10 ° C. to 30 ° C.), the above-mentioned (d) alcohol, (e) glycol ether, and (f) amide group are used as the first solvent. The organic solvent which it has and (k) dimethyl sulfoxide can be mentioned.
 また、室温(10℃~30℃)で溶液と第2溶媒とを混合する工程を行う場合、第2溶媒としては、上述の(a)エステル、(b)ケトン、(c)エーテル、(g)ニトリル基を有する有機溶媒、(h)カーボネート基を有する有機溶媒、(i)ハロゲン化炭化水素、(j)炭化水素を挙げることができる。 When the step of mixing the solution and the second solvent at room temperature (10 ° C. to 30 ° C.) is performed, the second solvent may be the above-mentioned (a) ester, (b) ketone, (c) ether, or (g). ) Organic solvents having a nitrile group, (h) organic solvents having a carbonate group, (i) halogenated hydrocarbons, and (j) hydrocarbons.
 以下、第1の製造方法を具体的に説明する。
 まず、A成分を含む化合物、B成分を含む化合物、及びX成分を含む化合物を第1溶媒に溶解させ、溶液を得る。「A成分を含む化合物」は、X成分を含んでいてもよい。「B成分を含む化合物」は、X成分を含んでいてもよい。
Hereinafter, the first manufacturing method will be specifically described.
First, the compound containing the component A, the compound containing the component B, and the compound containing the component X are dissolved in the first solvent to obtain a solution. The “compound including the component A” may include the component X. The “compound including the component B” may include the component X.
 次いで、得られた溶液と第2溶媒とを混合する。溶液と、第2溶媒とを混合する工程は、(I)溶液を第2溶媒に加えることとしてもよく、(II)第2溶媒を溶液に加えることとしてもよい。第1の製造方法で生じるペロブスカイト化合物の粒子が溶液中に分散しやすいため、(I)溶液を第2溶媒に加えるとよい。 Next, the solution obtained and the second solvent are mixed. In the step of mixing the solution and the second solvent, the (I) solution may be added to the second solvent, or the (II) second solvent may be added to the solution. Since the particles of the perovskite compound generated in the first production method are easily dispersed in the solution, it is advisable to add the solution (I) to the second solvent.
 溶液と第2溶媒とを混合する際には、一方を他方に滴下するとよい。また、撹拌しながら溶液と第2溶媒とを混合するとよい。 When mixing the solution and the second solvent, one may be dropped on the other. Moreover, it is good to mix a solution and a 2nd solvent, stirring.
 溶液と第2溶媒とを混合する工程において、溶液と第2溶媒との温度には特に制限は無い。得られるペロブスカイト化合物が析出し易いため、-20℃~40℃の範囲であることが好ましく、-5℃~30℃の範囲であることがより好ましい。溶液の温度及び第2溶媒の温度は、同じであってもよく、異なっていてもよい。 In the step of mixing the solution and the second solvent, there is no particular limitation on the temperature of the solution and the second solvent. Since the obtained perovskite compound is easily precipitated, the temperature is preferably in the range of -20 ° C to 40 ° C, more preferably in the range of -5 ° C to 30 ° C. The temperature of the solution and the temperature of the second solvent may be the same or different.
 第1溶媒と第2溶媒とのペロブスカイト化合物に対する溶解度の差は100μg/溶媒100g~90g/溶媒100gであることが好ましく、1mg/溶媒100g~90g/溶媒100gであることがより好ましい。 The difference in solubility between the first solvent and the second solvent in the perovskite compound is preferably 100 μg / solvent 100 g to 90 g / solvent 100 g, and more preferably 1 mg / solvent 100 g to 90 g / solvent 100 g.
 第1溶媒と第2溶媒との組み合わせとして、第1溶媒がN,N-ジメチルアセトアミド等のアミド基を有する有機溶媒やジメチルスルホキシドであり、第2溶媒がハロゲン化炭化水素や炭化水素であると好ましい。第1溶媒と第2溶媒とがこれらの溶媒の組み合わせであると、例えば、室温(10℃~30℃)で混合する工程を行う場合に、第1溶媒と第2溶媒とのペロブスカイト化合物に対する溶解度の差を100μg/溶媒100g~90g/溶媒100gに制御しやすいため好ましい。 As a combination of the first solvent and the second solvent, the first solvent is an organic solvent having an amide group such as N, N-dimethylacetamide or dimethyl sulfoxide, and the second solvent is a halogenated hydrocarbon or a hydrocarbon. preferable. When the first solvent and the second solvent are a combination of these solvents, for example, the solubility of the first solvent and the second solvent in the perovskite compound when performing the step of mixing at room temperature (10 ° C to 30 ° C) Is preferable because it is easy to control the difference of 100 μg / solvent 100 g to 90 g / solvent 100 g.
 溶液と第2溶媒とを混合することにより、得られる混合液においてはペロブスカイト化合物の溶解度が低下し、ペロブスカイト化合物が析出する。これにより、ペロブスカイト化合物を含む分散液が得られる。 By mixing the solution and the second solvent, the solubility of the perovskite compound decreases in the resulting mixed solution, and the perovskite compound precipitates. As a result, a dispersion liquid containing the perovskite compound is obtained.
 得られたペロブスカイト化合物を含む分散液について固液分離を行うことで、ペロブスカイト化合物を回収することができる。固液分離の方法としては、ろ過、溶媒の蒸発による濃縮などが挙げられる。固液分離を行うことで、ペロブスカイト化合物のみを回収することができる。 By performing solid-liquid separation on the obtained dispersion liquid containing the perovskite compound, the perovskite compound can be recovered. Examples of the solid-liquid separation method include filtration and concentration by evaporation of the solvent. By performing solid-liquid separation, only the perovskite compound can be recovered.
 なお、上述した製造方法においては、得られるペロブスカイト化合物の粒子が分散液中で安定して分散しやすいため、上述の表面修飾剤を加える工程を含んでいることが好ましい。 Note that the above-mentioned production method preferably includes the step of adding the above-mentioned surface modifier, because the particles of the perovskite compound obtained are easily and stably dispersed in the dispersion liquid.
 表面修飾剤を加える工程は、溶液と第2溶媒とを混合する工程の前に行うことが好ましい。具体的には、表面修飾剤は、第1溶媒に添加してもよく、溶液に添加してもよく、第2溶媒に添加してもよい。また、表面修飾剤は、第1溶媒、及び第2溶媒の両方に添加してもよい。 The step of adding the surface modifier is preferably performed before the step of mixing the solution and the second solvent. Specifically, the surface modifier may be added to the first solvent, the solution, or the second solvent. Further, the surface modifier may be added to both the first solvent and the second solvent.
 また、上述した製造方法においては、溶液と第2溶媒とを混合する工程のあと、遠心分離、ろ過などの手法により粗大粒子を除去する工程を含んでいていることが好ましい。除去する工程によって除去する粗大粒子のサイズは、好ましくは10μm以上、より好ましくは1μm以上、さらに好ましくは500nm以上である。 In addition, it is preferable that the above-mentioned manufacturing method includes a step of removing coarse particles by a method such as centrifugation or filtration after the step of mixing the solution and the second solvent. The size of the coarse particles removed in the removing step is preferably 10 μm or more, more preferably 1 μm or more, and further preferably 500 nm or more.
(第2の製造方法)
 ペロブスカイト化合物の製造方法としては、ペロブスカイト化合物を構成するA成分を含む化合物、B成分を含む化合物、及びX成分を含む化合物を高温の第3溶媒に溶解させ溶液を得る工程と、溶液を冷却する工程とを含む製造方法が挙げられる。
(Second manufacturing method)
As a method for producing a perovskite compound, a step of dissolving a compound including an A component, a compound including a B component, and a compound including an X component, which form the perovskite compound, in a high temperature third solvent, and cooling the solution. And a manufacturing method including a step.
 以下、第2の製造方法を具体的に説明する。 The following will specifically describe the second manufacturing method.
 まず、A成分を含む化合物、B成分を含む化合物、及びX成分を含む化合物を高温の第3溶媒に溶解させ溶液を得る。「A成分を含む化合物」は、X成分を含んでいてもよい。
「B成分を含む化合物」は、X成分を含んでいてもよい。
 本工程は、高温の第3溶媒に各化合物を加えて溶解させ溶液を得ることとしてもよい。
 また、本工程は、第3溶媒に各化合物を加えた後、昇温することで溶液を得ることとしてもよい。
First, the compound containing the component A, the compound containing the component B, and the compound containing the component X are dissolved in a high-temperature third solvent to obtain a solution. The “compound including the component A” may include the component X.
The “compound including the component B” may include the component X.
In this step, each compound may be added to and dissolved in a high temperature third solvent to obtain a solution.
Further, in this step, after adding each compound to the third solvent, the temperature may be raised to obtain a solution.
 第3溶媒としては、原料であるA成分を含む化合物と、B成分を含む化合物と、及びX成分を含む化合物とを溶解することができる溶媒が挙げられる。具体的には、第3溶媒としては、例えば、上述の第1溶媒、第2溶媒が挙げられる。 The third solvent includes a solvent capable of dissolving a compound containing the component A, which is a raw material, a compound containing the component B, and a compound containing the component X. Specifically, examples of the third solvent include the above-mentioned first solvent and second solvent.
 「高温」とは、各原料が溶解する温度の溶媒であればよい。例えば、高温の第3溶媒の温度として、60~600℃であることが好ましく、80~400℃であることがより好ましい。 “High temperature” means a solvent at a temperature at which each raw material dissolves. For example, the temperature of the high temperature third solvent is preferably 60 to 600 ° C., and more preferably 80 to 400 ° C.
 次いで、得られた溶液を冷却する。
 冷却する温度としては、-20~50℃が好ましく、-10~30℃がより好ましい。
 冷却速度としては、0.1~1500℃/分が好ましく、10~150℃/分がより好ましい。
The resulting solution is then cooled.
The cooling temperature is preferably −20 to 50 ° C., more preferably −10 to 30 ° C.
The cooling rate is preferably 0.1 to 1500 ° C./min, more preferably 10 to 150 ° C./min.
 高温の溶液を冷却することで、溶液の温度差に起因した溶解度の差により、ペロブスカイト化合物を析出させることができる。これにより、ペロブスカイト化合物を含む分散液が得られる。 By cooling the hot solution, the perovskite compound can be precipitated due to the difference in solubility due to the temperature difference between the solutions. As a result, a dispersion liquid containing the perovskite compound is obtained.
 得られたペロブスカイト化合物を含む分散液については、固液分離を行うことで、ペロブスカイト化合物を回収することができる。固液分離の方法としては、第1の製造方法で示した方法が挙げられる。 The perovskite compound can be recovered by solid-liquid separation of the obtained dispersion liquid containing the perovskite compound. Examples of the solid-liquid separation method include the method described in the first manufacturing method.
 なお、上述した製造方法においては、得られるペロブスカイト化合物の粒子が分散液中で安定して分散しやすいため、上述の表面修飾剤を加える工程を含んでいることが好ましい。 Note that the above-mentioned production method preferably includes the step of adding the above-mentioned surface modifier, because the particles of the perovskite compound obtained are easily and stably dispersed in the dispersion liquid.
 表面修飾剤を加える工程は、冷却する工程の前に行うことが好ましい。具体的には、表面修飾剤は、第3溶媒に添加してもよく、A成分を含む化合物、B成分を含む化合物、及びX成分を含む化合物のうち少なくとも1種を含む溶液に添加してもよい。 The step of adding the surface modifier is preferably performed before the step of cooling. Specifically, the surface modifier may be added to the third solvent, and is added to a solution containing at least one of the compound containing the component A, the compound containing the component B, and the compound containing the component X. Good.
 また、上述した製造方法においては、冷却する工程のあと、第1の製造方法で示した遠心分離、ろ過などの手法により粗大粒子を除去する工程を含んでいていることが好ましい。 Further, in the above-mentioned manufacturing method, it is preferable that after the cooling step, a step of removing coarse particles by a method such as centrifugation and filtration shown in the first manufacturing method is included.
(第3の製造方法)
 ペロブスカイト化合物の製造方法としては、ペロブスカイト化合物を構成するA成分を含む化合物と、B成分を含む化合物とを溶解させた第1溶液を得る工程と、ペロブスカイト化合物を構成するX成分を含む化合物を溶解させた第2溶液を得る工程と、第1溶液と第2溶液を混合して混合液を得る工程と、得られた混合液を冷却する工程とを含む製造方法が挙げられる。
(Third manufacturing method)
As a method for producing a perovskite compound, a step of obtaining a first solution in which a compound containing an A component constituting a perovskite compound and a compound containing a B component are dissolved, and a compound containing an X component constituting a perovskite compound are dissolved. The manufacturing method includes a step of obtaining the second solution, a step of mixing the first solution and the second solution to obtain a mixed solution, and a step of cooling the obtained mixed solution.
 以下、第3の製造方法を具体的に説明する。 The following will specifically describe the third manufacturing method.
 まず、A成分を含む化合物と、B成分を含む化合物とを高温の第4溶媒に溶解させ第1溶液を得る。 First, the compound containing the component A and the compound containing the component B are dissolved in a high temperature fourth solvent to obtain a first solution.
 第4溶媒としては、A成分を含む化合物と、B成分を含む化合物とを溶解することができる溶媒が挙げられる。具体的には、第4溶媒としては、上述の第3溶媒が挙げられる。 The fourth solvent includes a solvent capable of dissolving the compound containing the component A and the compound containing the component B. Specifically, examples of the fourth solvent include the above-mentioned third solvent.
 「高温」とは、A成分を含む化合物と、B成分を含む化合物とが溶解する温度であればよい。例えば、高温の第4溶媒の温度として、60~600℃であることが好ましく、80~400℃であることがより好ましい。 The “high temperature” may be a temperature at which the compound containing the component A and the compound containing the component B are dissolved. For example, the temperature of the high-temperature fourth solvent is preferably 60 to 600 ° C, more preferably 80 to 400 ° C.
 また、X成分を含む化合物を第5溶媒に溶解させ第2溶液を得る。X成分を含む化合物は、B成分を含んでいてもよい。 Also, the compound containing the X component is dissolved in the fifth solvent to obtain the second solution. The compound containing the X component may contain the B component.
 第5溶媒としては、X成分を含む化合物とを溶解することができる溶媒が挙げられる。
具体的には、第5溶媒としては、上述の第3溶媒が挙げられる。
Examples of the fifth solvent include a solvent capable of dissolving the compound containing the component X.
Specifically, examples of the fifth solvent include the above-mentioned third solvent.
 次いで、得られた第1溶液と第2溶液を混合して混合液を得る。第1溶液と第2溶液とを混合する際には、一方を他方に滴下するとよい。また、撹拌しながら第1溶液と第2溶液とを混合するとよい。 Next, the first solution and the second solution obtained are mixed to obtain a mixed solution. When mixing the first solution and the second solution, one may be dropped on the other. Further, it is advisable to mix the first solution and the second solution while stirring.
 次いで、得られた混合液を冷却する。
 冷却する温度としては、-20~50℃が好ましく、-10~30℃がより好ましい。
 冷却速度としては、0.1~1500℃/分が好ましく、10~150℃/分がより好ましい。
Then, the obtained mixed liquid is cooled.
The cooling temperature is preferably −20 to 50 ° C., more preferably −10 to 30 ° C.
The cooling rate is preferably 0.1 to 1500 ° C./min, more preferably 10 to 150 ° C./min.
 混合液を冷却することで、混合液の温度差に起因した溶解度の差により、ペロブスカイト化合物を析出させることができる。これにより、ペロブスカイト化合物を含む分散液が得られる。 By cooling the mixed solution, the perovskite compound can be precipitated due to the difference in solubility due to the difference in temperature of the mixed solution. As a result, a dispersion liquid containing the perovskite compound is obtained.
 得られたペロブスカイト化合物を含む分散液については、固液分離を行うことで、ペロブスカイト化合物を回収することができる。固液分離の方法としては、第1の製造方法で示した方法が挙げられる。 The perovskite compound can be recovered by solid-liquid separation of the obtained dispersion liquid containing the perovskite compound. Examples of the solid-liquid separation method include the method described in the first manufacturing method.
 なお、上述した製造方法においては、得られるペロブスカイト化合物の粒子が分散液中で安定して分散しやすいため、上述の表面修飾剤を加える工程を含んでいることが好ましい。 Note that the above-mentioned production method preferably includes the step of adding the above-mentioned surface modifier, because the particles of the perovskite compound obtained are easily and stably dispersed in the dispersion liquid.
 表面修飾剤を加える工程は、冷却する工程の前に行うことが好ましい。具体的には、表面修飾剤は、第4溶媒、第5溶媒、第1溶液、第2溶液、混合液のいずれに添加してもよい。 The step of adding the surface modifier is preferably performed before the step of cooling. Specifically, the surface modifier may be added to any of the fourth solvent, the fifth solvent, the first solution, the second solution and the mixed solution.
 また、上述した製造方法においては、冷却する工程のあと、第1の製造方法で示した遠心分離、ろ過などの手法により粗大粒子を除去する工程を含んでいていることが好ましい。 Further, in the above-mentioned manufacturing method, it is preferable that after the cooling step, a step of removing coarse particles by a method such as centrifugation and filtration shown in the first manufacturing method is included.
<<組成物の製造方法1>>
 以下、得られる組成物の性状を理解しやすくするため、組成物の製造方法1で得られる組成物を「液状組成物」と称する。
<< Production Method 1 of Composition >>
Hereinafter, in order to facilitate understanding of the properties of the obtained composition, the composition obtained by the method 1 for producing a composition is referred to as a “liquid composition”.
 本実施形態の液状組成物は、(1)半導体材料及び(2)表面修飾剤に、さらに(3)溶媒及び(4)重合性化合物のいずれか一方又は両方と混合することで製造することができる。 The liquid composition of the present embodiment can be produced by mixing (1) a semiconductor material and (2) a surface modifier with one or both of (3) a solvent and (4) a polymerizable compound. it can.
 (1)半導体材料及び(2)表面修飾剤と、(3)溶媒及び(4)重合性化合物のいずれか一方又は両方と、を混合する際には、撹拌しながら行うことが好ましい。 When (1) the semiconductor material and (2) the surface modifier and one or both of the (3) solvent and (4) polymerizable compound are mixed, it is preferable to carry out the stirring.
 (1)半導体材料及び(2)表面修飾剤と(4)重合性化合物とを混合する際、混合時の温度には特に制限は無い。(1)半導体材料及び(2)表面修飾剤が均一に混合しやすいため、0℃~100℃の範囲であることが好ましく、10℃~80℃の範囲であることがより好ましい。 When mixing (1) a semiconductor material, (2) a surface modifier and (4) a polymerizable compound, there is no particular limitation on the temperature at the time of mixing. Since the semiconductor material (1) and the surface modifier (2) are easily mixed uniformly, the temperature range is preferably 0 ° C to 100 ° C, more preferably 10 ° C to 80 ° C.
((3)溶媒を含む液状組成物の製造方法)
 (1)半導体材料、(2)表面修飾剤と(3)溶媒とを含む組成物の製造方法としては、例えば、下記製造方法(a1)であってもよく、下記製造方法(a2)であってもよい。
((3) Method for producing liquid composition containing solvent)
The method for producing a composition containing (1) a semiconductor material, (2) a surface modifier and (3) a solvent may be, for example, the following production method (a1) or the following production method (a2). May be.
 製造方法(a1):(1)半導体材料と(3)溶媒とを混合する工程と、得られた混合物と(2)表面修飾剤とを混合する工程と、を含む組成物の製造方法。 Manufacturing method (a1): A method for manufacturing a composition, which comprises: (1) mixing a semiconductor material with (3) a solvent; and (2) mixing the obtained mixture with a surface modifier.
 製造方法(a2):(1)半導体材料と(2)表面修飾剤を混合する工程と、得られた混合物と(3)溶媒とを混合する工程と、を含む組成物の製造方法。 Manufacturing method (a2): A method for manufacturing a composition including the steps of (1) mixing a semiconductor material with (2) a surface modifier, and mixing the resulting mixture with (3) a solvent.
 製造方法(a1)、(a2)で用いる(3)溶媒は、上述した(1)半導体材料を溶解しにくいものが好ましい。このような(3)溶媒を用いると、製造方法(a1)で得られる混合物、及び製造方法(a1)、(a2)で得られる組成物は、分散液となる。 The solvent (3) used in the production methods (a1) and (a2) is preferably one that is difficult to dissolve the semiconductor material (1) described above. When such a solvent (3) is used, the mixture obtained by the production method (a1) and the compositions obtained by the production methods (a1) and (a2) become a dispersion liquid.
 本実施形態の組成物が(5)改質体群を含む場合、組成物の製造方法としては、下記(5A)を用いる製造方法(a3)であってもよく、製造方法(a4)であってもよい。
 (5A):シラザン、式(C1)で表される化合物、式(C2)で表される化合物、式(A5-51)で表される化合物、式(A5-52)で表される化合物、及びケイ酸ナトリウムからなる群より選択される1種以上の化合物
When the composition of the present embodiment includes (5) modified product group, the method for producing the composition may be the production method (a3) using the following (5A) or the production method (a4). May be.
(5A): silazane, a compound represented by the formula (C1), a compound represented by the formula (C2), a compound represented by the formula (A5-51), a compound represented by the formula (A5-52), And one or more compounds selected from the group consisting of sodium silicate
 以下の説明では上記(5A)のことを、「(5A)原料化合物」と称する。(5A)原料化合物は、改質処理を施すことにより(5)改質体群となる。 In the following explanation, the above (5A) is referred to as “(5A) raw material compound”. The (5A) raw material compound becomes a (5) modified body group by performing a modification treatment.
 製造方法(a3):(1)半導体材料と(3)溶媒とを混合する工程と、得られた混合物、(2)表面修飾剤及び(5A)原料化合物を混合する工程と、得られた混合物に改質処理を施す工程と、を含む組成物の製造方法。 Production method (a3): (1) a step of mixing a semiconductor material and (3) a solvent, a step of mixing the obtained mixture, (2) a surface modifier and (5A) a raw material compound, and the obtained mixture And a step of subjecting the composition to a modification treatment, to produce a composition.
 製造方法(a4):(1)半導体材料、(2)表面修飾剤及び(5A)原料化合物を混合する工程と、得られた混合物と(3)溶媒とを混合する工程と、得られた混合物に改質処理を施す工程と、を含む組成物の製造方法。 Production method (a4): (1) a step of mixing a semiconductor material, (2) a surface modifier and (5A) a raw material compound, a step of mixing the obtained mixture with a (3) solvent, and the obtained mixture And a step of subjecting the composition to a modification treatment, to produce a composition.
 (3)溶媒には、(4-1)重合体が溶解又は分散していてもよい。 (4) The polymer (4-1) may be dissolved or dispersed in the solvent (3).
 上述の製造方法に含まれる混合する工程では、撹拌を行うことが分散性を高める観点から好ましい。 In the mixing step included in the above manufacturing method, stirring is preferable from the viewpoint of improving dispersibility.
 上述の製造方法に含まれる混合する工程において、温度には特に制限は無いが、均一に混合する観点から、0℃以上100℃以下の範囲であることが好ましく、10℃以上80℃以下の範囲であることがより好ましい。 In the mixing step included in the above-mentioned manufacturing method, the temperature is not particularly limited, but from the viewpoint of uniform mixing, it is preferably in the range of 0 ° C or higher and 100 ° C or lower, and in the range of 10 ° C or higher and 80 ° C or lower. Is more preferable.
 組成物の製造方法は、(1)半導体材料の分散性を向上させる観点から、製造方法(a1)、又は製造方法(a3)であることが好ましい。 The manufacturing method of the composition is preferably (1) the manufacturing method (a1) or the manufacturing method (a3) from the viewpoint of improving the dispersibility of the semiconductor material.
(改質処理を施す方法)
 改質処理の方法は、(5A)原料化合物に対し紫外線を照射する方法、及び(5A)原料化合物と水蒸気とを反応させる方法等の公知の方法が挙げられる。以下の説明では、(5A)原料化合物と水蒸気とを反応させる処理のことを、「加湿処理」と称することがある。
(Method of applying modification treatment)
Examples of the modification treatment method include known methods such as (5A) a method of irradiating the raw material compound with ultraviolet rays, and (5A) a method of reacting the raw material compound with water vapor. In the following description, the treatment of reacting the starting compound (5A) with water vapor may be referred to as “humidification treatment”.
 中でも、加湿処理を施すことが、(1)半導体材料の近傍により強固な保護領域を形成する観点から好ましい。 Above all, it is preferable to apply a humidification treatment from the viewpoint of (1) forming a stronger protective region in the vicinity of the semiconductor material.
 紫外線を照射する方法で用いられる紫外線の波長は、通常10~400nmであり、10~350nmが好ましく、100~180nmがより好ましい。紫外線の発生させる光源としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ、UVレーザー光等が挙げられる。 The wavelength of ultraviolet rays used in the method of irradiating ultraviolet rays is usually 10 to 400 nm, preferably 10 to 350 nm, more preferably 100 to 180 nm. Examples of the light source for generating ultraviolet rays include metal halide lamps, high pressure mercury lamps, low pressure mercury lamps, xenon arc lamps, carbon arc lamps, excimer lamps, and UV laser light.
 加湿処理を施す場合、例えば、後述する温度、及び湿度条件下で一定の時間、組成物を静置してもよく、撹拌してもよい。 When the humidification treatment is performed, the composition may be left standing or stirred for a certain period of time under the temperature and humidity conditions described below.
 加湿処理における温度は、十分に改質が進行する温度であればよい。加湿処理における温度は、例えば、5~150℃であることが好ましく、10~100℃であることがより好ましく、15~80℃であることがさらに好ましい。 The temperature in the humidification treatment may be a temperature at which reforming progresses sufficiently. The temperature in the humidifying treatment is, for example, preferably 5 to 150 ° C., more preferably 10 to 100 ° C., and further preferably 15 to 80 ° C.
 加湿処理における湿度は、組成物中の(5A)原料化合物に十分に水分が供給される湿度であればよい。加湿処理における湿度は、例えば30%~100%であることが好ましく、40%~95%であることがより好ましく、60%~90%であることがさらに好ましい。上記湿度は、加湿処理を行う温度における相対湿度を意味する。 The humidity in the humidification treatment may be such that the (5A) raw material compound in the composition is sufficiently supplied with water. The humidity in the humidifying treatment is, for example, preferably 30% to 100%, more preferably 40% to 95%, and further preferably 60% to 90%. The humidity means relative humidity at the temperature at which the humidifying process is performed.
 加湿処理に要する時間は、十分に改質が進行する時間であればよい。加湿処理に要する時間は、例えば、10分間以上1週間以下であることが好ましく、1時間以上5日間以下であることがより好ましく、2時間以上3日間以下であることがさらに好ましい。 ㆍ The time required for the humidification treatment may be any time that allows the reforming to proceed sufficiently. The time required for the humidifying treatment is, for example, preferably 10 minutes or more and 1 week or less, more preferably 1 hour or more and 5 days or less, and further preferably 2 hours or more and 3 days or less.
 組成物に含まれる(5A)原料化合物の分散性を高める観点から、撹拌することが好ましい。 From the viewpoint of enhancing the dispersibility of the raw material compound (5A) contained in the composition, stirring is preferable.
 加湿処理における水の供給は、水蒸気を含むガスを反応容器中に流通させることによってもよく、水蒸気を含む雰囲気中で撹拌することで、界面から水分を供給してもよい。 The water in the humidification treatment may be supplied by circulating a gas containing water vapor in the reaction vessel, or by supplying water from the interface by stirring in an atmosphere containing water vapor.
 水蒸気を含むガスを反応容器中に流通させる場合、得られる組成物の耐久性が向上するため、水蒸気を含むガス流量は、0.01L/分以上100L/分以下が好ましく、0.1L/分以上10L/分以下がより好ましく、0.15L/分以上5L/分以下がさらに好ましい。水蒸気を含むガスとしては、例えば飽和量の水蒸気を含む窒素を挙げることができる。 When a gas containing water vapor is circulated in the reaction vessel, the durability of the resulting composition is improved, so that the flow rate of the gas containing water vapor is preferably 0.01 L / min or more and 100 L / min or less, and 0.1 L / min. It is more preferably 10 L / min or less and more preferably 0.15 L / min or more and 5 L / min or less. Examples of the gas containing steam include nitrogen containing a saturated amount of steam.
 (1)半導体材料がペロブスカイト化合物の場合、本実施形態の組成物の製造方法において(2)表面修飾剤、(3)溶媒及び(5)改質体群は、上述した(1)半導体材料の製造方法に含まれるいずれかの工程で混合させてもよい。例えば、下記製造方法(a5)であってもよく、下記製造方法(a6)であってもよい。 (1) When the semiconductor material is a perovskite compound, (2) the surface modifier, (3) the solvent and (5) the modified body group in the method for producing the composition of the present embodiment are the same as the above-mentioned (1) semiconductor material. They may be mixed in any step included in the manufacturing method. For example, the following manufacturing method (a5) may be used, or the following manufacturing method (a6) may be used.
 製造方法(a5):ペロブスカイト化合物を構成するB成分を含む化合物、X成分を含む化合物、及びA成分を含む化合物と、(2)表面修飾剤と、(5)改質体群とを第1溶媒に溶解させ溶液を得る工程と、得られた溶液と第2溶媒とを混合する工程とを含む製造方法が挙げられる。
 第1溶媒、第2溶媒は、上述した溶媒と同じである。
Production method (a5): First, a compound containing a B component, a compound containing an X component, a compound containing an A component, which constitutes a perovskite compound, (2) a surface modifier, and (5) a modified body group. A manufacturing method including a step of dissolving in a solvent to obtain a solution and a step of mixing the obtained solution and a second solvent can be mentioned.
The first solvent and the second solvent are the same as the above-mentioned solvents.
 製造方法(a6):ペロブスカイト化合物を構成するB成分を含む化合物、X成分を含む化合物、及びA成分を含む化合物と、(2)表面修飾剤と、(5)改質体群とを高温の第3溶媒に溶解させ溶液を得る工程と、溶液を冷却する工程とを含む製造方法が挙げられる。
 第3溶媒は、上述した溶媒と同じである。
Production method (a6): A compound containing a component B, a compound containing an component X, and a compound containing component A, which constitute the perovskite compound, (2) a surface modifier, and (5) a group of modified substances at high temperature. The manufacturing method includes a step of dissolving the solution in a third solvent to obtain a solution, and a step of cooling the solution.
The third solvent is the same as the above-mentioned solvent.
 これらの製造方法に含まれる各工程の条件は、上述の(viii)の半導体材料の製造方法における第1の製造方法、及び第2の製造方法で条件と同様である。 The conditions of each step included in these manufacturing methods are the same as the conditions in the first manufacturing method and the second manufacturing method in the above-mentioned (viii) method for manufacturing a semiconductor material.
((4)重合性化合物を含む液状組成物の製造方法)
 (1)半導体材料、(2)表面修飾剤、(4)重合性化合物、及び(5)改質体群を含む組成物の製造方法は、例えば、下記製造方法(c1)~(c3)が挙げられる。
((4) Method for producing liquid composition containing polymerizable compound)
The method for producing a composition containing (1) a semiconductor material, (2) a surface modifier, (4) a polymerizable compound, and (5) a group of modified compounds is, for example, the following production methods (c1) to (c3). Can be mentioned.
 製造方法(c1):(4)重合性化合物に(1)半導体材料を分散させ分散体を得る工程と、得られた分散体と(2)表面修飾剤と(5)改質体群とを混合する工程と、を含む製造方法。 Production method (c1): (4) a step of dispersing (1) a semiconductor material in a polymerizable compound to obtain a dispersion, the obtained dispersion, (2) a surface modifier, and (5) a group of modified products. And a mixing step.
 製造方法(c2):(4)重合性化合物に(2)表面修飾剤と(5)改質体群とを分散させ分散体を得る工程と、得られた分散体と(1)半導体材料とを混合する工程と、を含む製造方法。 Production method (c2): a step of dispersing (2) a surface modifier and (5) a group of modifiers in (4) a polymerizable compound to obtain a dispersion, the obtained dispersion and (1) a semiconductor material. And a step of mixing.
 製造方法(c3):(4)重合性化合物に、(1)半導体材料と(2)表面修飾剤と(5)改質体群との混合物を分散させる工程を含む製造方法。 Production method (c3): A production method including a step of dispersing a mixture of (1) a semiconductor material, (2) a surface modifier and (5) a group of modifiers in (4) a polymerizable compound.
 製造方法(c1)~(c3)において、(1)半導体材料の分散性を高める観点から製造方法(c1)であることが好ましい。 In the manufacturing methods (c1) to (c3), the manufacturing method (c1) is preferable from the viewpoint of (1) enhancing dispersibility of the semiconductor material.
 製造方法(c1)~(c3)において、各分散体を得る工程では、(4)重合性化合物を、各材料に滴下してもよいし、各材料を(4)重合性化合物に滴下してよい。
 均一に分散しやすいため、(1)半導体材料、(2)表面修飾剤、(5)改質体群の少なくとも一つを(4)重合性化合物に滴下することが好ましい。
In the manufacturing method (c1) to (c3), in the step of obtaining each dispersion, the polymerizable compound (4) may be added dropwise to each material, or each material may be added dropwise to the polymerizable compound (4). Good.
At least one of (1) a semiconductor material, (2) a surface modifier, and (5) a modified compound group is preferably added dropwise to (4) a polymerizable compound because it is easily dispersed uniformly.
 製造方法(c1)~(c3)において、各混合する工程では、分散体を各材料に滴下してもよいし、各材料を分散体に滴下してもよい。
 均一に分散しやすいため、(1)半導体材料、(2)表面修飾剤、(5)改質体群の少なくとも一つを分散体に滴下することが好ましい。
In the manufacturing methods (c1) to (c3), in each mixing step, the dispersion may be dropped onto each material, or each material may be dropped onto the dispersion.
At least one of (1) a semiconductor material, (2) a surface modifier, and (5) a modified body group is preferably added dropwise to the dispersion because it is easily dispersed uniformly.
 (4)重合性化合物には、(3)溶媒と(4-1)重合体との少なくともいずれか一方が溶解又は分散していてもよい。 At least one of the solvent (3) and the polymer (4-1) may be dissolved or dispersed in the polymerizable compound (4).
 (4-1)重合体を溶解又は分散させる溶媒は、特に限定されない。溶媒としては、(1)半導体材料を溶解し難いものが好ましい。
 (4-1)重合体が溶解している溶媒としては、例えば、上述の第3溶媒とおなじ溶媒が挙げられる。
The solvent that dissolves or disperses the polymer (4-1) is not particularly limited. The solvent is preferably (1) a solvent in which the semiconductor material is difficult to dissolve.
Examples of the solvent in which the polymer (4-1) is dissolved include the same solvents as the above-mentioned third solvent.
 中でも第2溶媒は極性が低く、(1)半導体材料を溶解し難いと考えられるため好ましい。 Among them, the second solvent is preferable because it has low polarity and (1) it is considered that it is difficult to dissolve the semiconductor material.
 第2溶媒の中でも、ハロゲン化炭化水素、及び炭化水素がより好ましい。 Among the second solvents, halogenated hydrocarbons and hydrocarbons are more preferable.
 また、本実施形態の組成物の製造方法は、下記製造方法(c4)であってもよく、製造方法(c5)であってもよい。 The method for producing the composition of the present embodiment may be the following production method (c4) or production method (c5).
 製造方法(c4):(1)半導体材料を(3)溶媒に分散させ分散液を得る工程と、得られた分散液に、(4)重合性化合物を混合して混合液を得る工程と、得られた混合液と(2)表面修飾剤と(5)改質体群とを混合する工程とを有する、組成物の製造方法。 Production method (c4): (1) a step of dispersing a semiconductor material in a solvent to obtain a dispersion, and a step of mixing the obtained dispersion with a polymerizable compound (4) to obtain a mixed solution, A method for producing a composition, comprising a step of mixing the obtained mixed liquid, (2) a surface modifier, and (5) a group of modified bodies.
 製造方法(c5):(1)半導体材料を(3)溶媒に分散させ分散液を得る工程と、得られた分散液と(2)表面修飾剤と(5A)原料化合物とを混合し、混合液を得る工程と、得られた混合液に改質処理を施し(5)改質体群を含む混合液を得る工程と、得られた混合液と(3)重合性化合物とを混合する工程とを有する、組成物の製造方法。 Production method (c5): (1) a step of dispersing a semiconductor material in a solvent to obtain a dispersion liquid, the obtained dispersion liquid, (2) a surface modifier and (5A) a raw material compound are mixed and mixed. A step of obtaining a liquid, a step of subjecting the obtained mixed solution to a modification treatment (5) to obtain a mixed solution containing a group of modified bodies, and a step of mixing the obtained mixed solution with (3) a polymerizable compound And a method for producing the composition.
 組成物の製造方法1において、(6)その他の表面修飾剤を使用するときは、(2)表面修飾剤とともに添加することができる。 In the method 1 for producing a composition, when (6) another surface modifier is used, it can be added together with (2) the surface modifier.
<<組成物の製造方法2>>
 本実施形態の組成物の製造方法としては、(1)半導体材料と、(2)表面修飾剤と、(4)重合性化合物と、(5)改質体群とを混合する工程と、(4)重合性化合物を重合させる工程と、を含む製造方法を挙げることができる。
<< Composition Manufacturing Method 2 >>
As the method for producing the composition of the present embodiment, a step of mixing (1) a semiconductor material, (2) a surface modifier, (4) a polymerizable compound, and (5) a modified body group, 4) a step of polymerizing the polymerizable compound, and a production method including the step.
 組成物の製造方法2で得られる組成物は、(1)半導体材料、(2)表面修飾剤、(4-1)重合体、(5)改質体群の合計が組成物の総質量に対し90質量%以上であることが好ましい。 The composition obtained by the method 2 for producing a composition is such that the total of (1) a semiconductor material, (2) a surface modifier, (4-1) a polymer, and (5) a modified body group is the total mass of the composition. It is preferably 90% by mass or more.
 また、本実施形態の組成物の製造方法としては、(1)半導体材料と、(2)表面修飾剤と、(3)溶媒に溶解している(4-1)重合体と、(5)改質体群とを混合する工程と、(3)溶媒を除去する工程と、を含む製造方法も挙げることができる。 The method for producing the composition of the present embodiment includes (1) a semiconductor material, (2) a surface modifier, (3) a polymer (4-1) dissolved in a solvent, and (5). A manufacturing method including a step of mixing the modified body group and a step of (3) removing the solvent can also be mentioned.
 上述の製造方法に含まれる混合する工程には、上述の組成物の製造方法1で示した方法と同様の混合方法を用いることができる。 For the mixing step included in the above-mentioned production method, the same mixing method as the method shown in the above-mentioned production method 1 of the composition can be used.
 組成物の製造方法は、例えば、下記(d1)~(d6)の製造方法が挙げられる。 Examples of the method for producing the composition include the following production methods (d1) to (d6).
 製造方法(d1):(4)重合性化合物に(1)半導体材料を分散させ分散体を得る工程と、得られた分散体と(2)表面修飾剤と(5)改質体群とを混合する工程と、(4)重合性化合物を重合させる工程と、を含む製造方法。 Production method (d1): (4) a step of dispersing (1) a semiconductor material in a polymerizable compound to obtain a dispersion, the obtained dispersion, (2) a surface modifier, and (5) a group of modified products. A production method comprising a step of mixing and a step (4) of polymerizing a polymerizable compound.
 製造方法(d2):(4-1)重合体を溶解させた(3)溶媒に(1)半導体材料を分散させ分散体を得る工程と、得られた分散体と(2)表面修飾剤と(5)改質体群とを混合する工程と、溶媒を除去する工程と、を含む製造方法。 Production method (d2): (4-1) a step of dispersing a semiconductor material in (3) a solvent in which a polymer is dissolved to obtain a dispersion, the obtained dispersion, and (2) a surface modifier. (5) A manufacturing method including a step of mixing the modified body group and a step of removing the solvent.
 製造方法(d3):(4)重合性化合物に(2)表面修飾剤と(5)改質体群とを分散させ分散体を得る工程と、得られた分散体と(1)半導体材料とを混合する工程と、(4)重合性化合物を重合させる工程と、を含む製造方法。 Production method (d3): a step of dispersing (2) a surface modifier and (5) a group of modifiers in a polymerizable compound (4) to obtain a dispersion, the obtained dispersion and (1) a semiconductor material. And a step of polymerizing the polymerizable compound (4).
 製造方法(d4):(4-1)重合体を溶解させた(3)溶媒に(2)表面修飾剤と(5)改質体群とを分散させ分散体を得る工程と、得られた分散体と(1)半導体材料とを混合する工程と、溶媒を除去する工程と、を含む製造方法。 Production method (d4): a step of dispersing (2) a surface modifier and (5) a group of modifiers in (3) a solvent in which (4-1) a polymer is dissolved to obtain a dispersion, A manufacturing method comprising a step of mixing a dispersion and (1) a semiconductor material, and a step of removing a solvent.
 製造方法(d5):(4)重合性化合物に、(1)半導体材料と(2)表面修飾剤と(5)改質体群との混合物を分散させる工程と、(4)重合性化合物を重合させる工程と、を含む製造方法。 Production method (d5): a step of dispersing a mixture of (1) a semiconductor material, (2) a surface modifier and (5) a group of modified compounds in (4) a polymerizable compound, and (4) a polymerizable compound. And a step of polymerizing the method.
 製造方法(d6):(4-1)重合体を溶解させた(3)溶媒に、(1)半導体材料と(2)表面修飾剤と(5)改質体群との混合物を分散させる工程と、溶媒を除去する工程と、を含む製造方法。 Production method (d6): a step of dispersing a mixture of (1) a semiconductor material, (2) a surface modifier and (5) a group of modifiers in (3) a solvent in which (4-1) a polymer is dissolved And a step of removing the solvent.
 製造方法(d2)、(d4)及び(d6)に含まれる、(3)溶媒を除去する工程は、室温で静置し、自然乾燥させる工程であってもよいし、真空乾燥機を用いた減圧乾燥であってもよいし、加熱によって(3)溶媒を蒸発させる工程であってもよい。 The step of removing the solvent (3) included in the production methods (d2), (d4), and (d6) may be a step of allowing to stand at room temperature and naturally drying, or using a vacuum dryer. The drying may be performed under reduced pressure, or the step (3) of evaporating the solvent by heating may be performed.
 (3)溶媒を除去する工程では、例えば、0℃以上300℃以下で、1分間以上7日間以下乾燥させることで、(3)溶媒を除去することができる。 In the step (3) of removing the solvent, the solvent (3) can be removed by, for example, drying at 0 ° C. or higher and 300 ° C. or lower for 1 minute or more and 7 days or less.
 製造方法(d1)、(d3)及び(d5)に含まれる、(4)重合性化合物を重合させる工程は、ラジカル重合などの公知の重合反応を適宜用いることで行うことができる。 The step (4) of polymerizing the polymerizable compound included in the production methods (d1), (d3) and (d5) can be carried out by appropriately using a known polymerization reaction such as radical polymerization.
 例えばラジカル重合の場合は、(1)半導体材料と、(2)表面修飾剤と、(4)重合性化合物と、(5)改質体群との混合物に、ラジカル重合開始剤を添加し、ラジカルを発生させることで重合反応を進行させることができる。 For example, in the case of radical polymerization, a radical polymerization initiator is added to a mixture of (1) a semiconductor material, (2) a surface modifier, (4) a polymerizable compound, and (5) a modified group, The polymerization reaction can be promoted by generating radicals.
 ラジカル重合開始剤は特に限定されるものではないが、例えば、光ラジカル重合開始剤等が挙げられる。 The radical polymerization initiator is not particularly limited, and examples thereof include a photo radical polymerization initiator.
 上記光ラジカル重合開始剤としては、例えば、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド等が挙げられる。 Examples of the above photo-radical polymerization initiator include bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide.
 組成物の製造方法2において、(6)その他の表面修飾剤を使用するときは、(2)表面修飾剤とともに添加することができる。 When (6) another surface modifier is used in the method 2 for producing a composition, it can be added together with (2) the surface modifier.
<<組成物の製造方法3>>
 また、本実施形態の組成物の製造方法は、下記(d7)の製造方法も採用することができる。
<< Composition Manufacturing Method 3 >>
Further, as the method for producing the composition of the present embodiment, the following production method (d7) can also be adopted.
 製造方法(d7):(1)半導体材料と、(2)表面修飾剤と、(4-1)重合体とを溶融混練する工程を含む製造方法。 Manufacturing method (d7): a manufacturing method including a step of melt-kneading (1) a semiconductor material, (2) a surface modifier, and (4-1) a polymer.
 製造方法(d8):(1)半導体材料と、(2)表面修飾剤と、(4-1)重合体と、(5A)原料化合物とを溶融混練する工程と、(4-1)重合体が溶融した状態で改質処理を施す工程と、を含む製造方法。 Production method (d8): (1) semiconductor material, (2) surface modifier, (4-1) polymer, (5A) step of melt-kneading raw material compound, and (4-1) polymer And a step of performing a modification treatment in a molten state.
 製造方法(d9):(1)半導体材料と、(2)表面修飾剤とを含む液状組成物を製造する工程と、得られた液状組成物から固形分を取り出す工程と、得られた固形分と(4-1)重合体とを溶融混練する工程と、を含む製造方法。 Production method (d9): a step of producing a liquid composition containing (1) a semiconductor material and (2) a surface modifier, a step of extracting solid matter from the obtained liquid composition, and the obtained solid matter And a step of melt-kneading (4-1) the polymer.
 製造方法(d10):(1)半導体材料と、(2)表面修飾剤と、(5)改質体群を含む液状組成物を製造する工程と、得られた液状組成物から固形分を取り出す工程と、得られた固形分と(4-1)重合体とを溶融混練する工程と、を含む製造方法。 Production method (d10): (1) a step of producing a liquid composition containing a semiconductor material, (2) a surface modifier, and (5) a group of modified substances, and taking out a solid content from the obtained liquid composition. A production method comprising the steps of: and a step of melt-kneading the obtained solid content and (4-1) polymer.
 製造方法(d11):(1)半導体材料と、(2)表面修飾剤とを含む液状組成物を製造する工程と、得られた液状組成物から固形分を取り出す工程と、得られた固形分と、(5)改質体群と、(4-1)重合体とを溶融混練する工程と、を含む製造方法。 Production method (d11): a step of producing a liquid composition containing (1) a semiconductor material and (2) a surface modifier, a step of extracting solid matter from the obtained liquid composition, and the obtained solid matter And a step (5) of melt-kneading the modified product group and (4-1) the polymer.
 製造方法(d7)~(d11)の溶融混練する工程では、(4-1)重合体と他の材料との混合物を溶融混練してもよく、溶融した(4-1)重合体に他の材料を添加してもよい。「他の材料」とは、(4-1)重合体の他に各製造方法で用いる材料を指し、具体的には(1)半導体材料、(2)表面修飾剤、(5A)原料化合物及び(5)改質体群を指す。 In the melt-kneading step of the production methods (d7) to (d11), a mixture of the (4-1) polymer and another material may be melt-kneaded, and the melted (4-1) polymer may be mixed with other materials. Materials may be added. The "other material" refers to a material used in each production method in addition to (4-1) a polymer, and specifically, (1) a semiconductor material, (2) a surface modifier, (5A) a raw material compound, and (5) Refers to a group of modified substances.
 製造方法(d11)の溶融混練する工程で添加する(5)改質体群は、(5A)原料化合物を改質処理することで得られる。 The (5) modified product group added in the melt-kneading step of the production method (d11) can be obtained by modifying the starting compound (5A).
 製造方法(d7)~(d11)において(4-1)重合体を溶融混練する方法としては、重合体の混練方法として公知の方法を採用することができる。例えば、単軸押出機、又は二軸押出機を用いた押出加工を採用することができる。 As the method of melt-kneading the polymer (4-1) in the production methods (d7) to (d11), a known method of kneading the polymer can be adopted. For example, extrusion processing using a single screw extruder or a twin screw extruder can be adopted.
 製造方法(d8)の改質処理を施す工程は、上述した方法を採用することができる。 The method described above can be adopted for the step of performing the modification treatment of the manufacturing method (d8).
 製造方法(d9)及び(d11)の液状組成物を製造する工程は、上述の製造方法(a1)又は(a2)を採用することができる。 The above-mentioned production method (a1) or (a2) can be adopted in the step of producing the liquid composition of the production methods (d9) and (d11).
 製造方法(d10)の液状組成物を製造する工程は、上述の製造方法(a3)又は(a4)を採用することができる。 The above-mentioned production method (a3) or (a4) can be adopted in the step of producing the liquid composition of the production method (d10).
 製造方法(d9)~(d11)の固形分を取り出す工程は、例えば加熱、減圧、送風及びこれらの組み合わせにより、液状組成物から液状組成物を構成する(3)溶媒及び(4)重合性化合物を除去することで行う。 In the steps of taking out the solid content in the production methods (d9) to (d11), (3) the solvent and (4) the polymerizable compound constituting the liquid composition from the liquid composition by, for example, heating, decompression, air blowing and a combination thereof. By removing.
 組成物の製造方法3において、(6)その他の表面修飾剤を使用するときは、(2)表面修飾剤とともに添加することができる。 In the method 3 for producing a composition, when (6) another surface modifier is used, it can be added together with (2) the surface modifier.
≪ペロブスカイト化合物の測定≫
 本実施形態の組成物に含まれるペロブスカイト化合物の量は、誘導結合プラズマ質量分析計ICP-MS(例えば、PerkinElmer社製、ELAN DRCII)、及びイオンクロマトグラフ(例えば、サーモフィッシャーサイエンティフィック株式会社製、Integrion)を用いて測定することができる。
 ペロブスカイト化合物をN,N-ジメチルホルムアミド等の良溶媒を用いて溶解した後に測定を行う。
≪(5)改質体群に含まれるSi元素の濃度測定≫
 本実施形態の組成物に含まれる(5)改質体群の含有するSi元素の濃度(μg/g)は、誘導結合プラズマ質量分析計ICP-MS(例えば、PerkinElmer社製、ELAN DRCII)を用いて測定する。
 それぞれの測定は、N,N-ジメチルホルムアミド等の良溶媒と(5)改質体群との溶液を用いて行う。
<< Measurement of perovskite compounds >>
The amount of the perovskite compound contained in the composition of the present embodiment is determined by an inductively coupled plasma mass spectrometer ICP-MS (for example, PerkinElmer, ELAN DRCII), and an ion chromatograph (for example, Thermo Fisher Scientific Co., Ltd.). , Integration) can be used for the measurement.
The perovskite compound is dissolved in a good solvent such as N, N-dimethylformamide and then measured.
<< (5) Concentration measurement of Si element contained in modified body group >>
For the concentration (μg / g) of the Si element contained in the modified body group (5) contained in the composition of the present embodiment, an inductively coupled plasma mass spectrometer ICP-MS (for example, ELAN DRCII manufactured by PerkinElmer) is used. Use to measure.
Each measurement is performed using a solution of a good solvent such as N, N-dimethylformamide and the modified group (5).
≪発光スペクトルの測定≫
 本実施形態の組成物の発光スペクトルは、絶対PL量子収率測定装置(例えば、浜松ホトニクス株式会社製、C9920-02)を用いて、励起光450nm、室温、大気下で測定する。
<< Measurement of emission spectrum >>
The emission spectrum of the composition of the present embodiment is measured using an absolute PL quantum yield measuring device (for example, C9920-02 manufactured by Hamamatsu Photonics KK) under excitation light of 450 nm, room temperature, and the atmosphere.
≪量子収率の測定≫
 本実施形態の組成物の量子収率は、絶対PL量子収率測定装置(例えば、浜松ホトニクス株式会社製、C9920-02)を用いて、励起光450nm、室温、大気下で測定する。
<< Measurement of quantum yield >>
The quantum yield of the composition of the present embodiment is measured using an absolute PL quantum yield measuring device (for example, C9920-02 manufactured by Hamamatsu Photonics Co., Ltd.) under excitation light of 450 nm, room temperature, and the atmosphere.
≪耐熱性の評価≫
 本実施形態の組成物をホットプレート上で260℃、2分間加熱し、加熱前後の量子収率を測定して、下記の式を用いて維持率を評価する。
維持率(%)=耐熱性試験後の量子収率÷耐熱性試験前の量子収率×100
<< Evaluation of heat resistance >>
The composition of the present embodiment is heated on a hot plate at 260 ° C. for 2 minutes, the quantum yield before and after heating is measured, and the retention rate is evaluated using the following formula.
Maintenance rate (%) = quantum yield after heat resistance test / quantum yield before heat resistance test × 100
 実施形態の組成物は、上記のそれぞれの測定方法において、維持率が、20%以上であってもよく、40%以上であってもよく、60%以上であってもよく、80%以上であってもよく、85%以上であってもよい。組成物の耐熱性の作用が高いことから、維持率は高いほうがよい。 The composition of the embodiment has a retention rate of 20% or more, 40% or more, 60% or more, or 80% or more in each of the above-described measurement methods. It may be present or may be 85% or more. Since the effect of heat resistance of the composition is high, the maintenance rate is preferably high.
<<フィルム>>
 本実施形態に係るフィルムは、上述の組成物を形成材料とする。例えば、本実施形態に係るフィルムは、(1)半導体材料、(2)表面修飾剤、及び(4-1)重合体を含み、(1)半導体材料、(2)表面修飾剤、及び(4-1)重合体の合計がフィルムの総質量に対し90質量%以上である。
<< film >>
The film according to this embodiment uses the above-mentioned composition as a forming material. For example, the film according to the present embodiment contains (1) a semiconductor material, (2) a surface modifier, and (4-1) a polymer, and (1) a semiconductor material, (2) a surface modifier, and (4). -1) The total amount of polymers is 90% by mass or more based on the total mass of the film.
 フィルム形状は特に限定されるものではなく、シート状、バー状等の任意の形状であることができる。本明細書において「バー状の形状」とは、例えば、一方向に延在する平面視帯状の形状を意味する。平面視帯状の形状としては、各辺の長さが異なる板状の形状が例示される。 The shape of the film is not particularly limited and may be any shape such as a sheet shape or a bar shape. In the present specification, the “bar-like shape” means, for example, a band-like shape in plan view extending in one direction. Examples of the band-like shape in plan view include a plate-like shape in which each side has a different length.
 フィルムの厚みは、0.01μm~1000mmであってもよく、0.1μm~10mmであってもよく、1μm~1mmであってもよい。 The thickness of the film may be 0.01 μm to 1000 mm, 0.1 μm to 10 mm, or 1 μm to 1 mm.
 本明細書において前記フィルムの厚みは、フィルムの縦、横、高さの中で最も値の小さい辺を「厚さ方向」としたときの、フィルムの厚さ方向のおもて面と裏面との間の距離を指す。具体的には、マイクロメータを用い、フィルムの任意の3点においてフィルムの厚みを測定し、3点の測定値の平均値を、フィルムの厚みとする。 In the present specification, the thickness of the film refers to the front surface and the back surface in the thickness direction of the film when the side having the smallest value in the length, width and height of the film is defined as the “thickness direction”. Refers to the distance between. Specifically, the thickness of the film is measured at any three points on the film using a micrometer, and the average value of the measured values at the three points is taken as the film thickness.
 フィルムは、単層であってもよく、複層であってもよい。複層の場合、各層は同一の種類の組成物が用いられていてもよく、互いに異なる種類の組成物が用いられていてもよい。 The film may be a single layer or multiple layers. In the case of multiple layers, the same type of composition may be used for each layer, or different types of compositions may be used for each layer.
<<積層構造体>>
 本実施形態に係る積層構造体は、複数の層を有し、少なくとも一層が、上述のフィルムである。
<< laminated structure >>
The laminated structure according to the present embodiment has a plurality of layers, and at least one layer is the above-mentioned film.
 積層構造体が有する複数の層のうち、上述のフィルム以外の層としては、基板、バリア層、光散乱層等の任意の層が挙げられる。
 積層されるフィルムの形状は特に限定されるものではなく、シート状、バー状等の任意の形状であることができる。
Among the plurality of layers included in the laminated structure, examples of layers other than the above-mentioned films include arbitrary layers such as a substrate, a barrier layer, and a light scattering layer.
The shape of the laminated film is not particularly limited, and may be any shape such as a sheet shape and a bar shape.
(基板)
 基板は、特に制限はないが、フィルムであってもよい。基板は、光透過性を有するものが好ましい。光透過性を有する基板を有する積層構造体では、(1)半導体材料が発した光を取り出しやすいため好ましい。
(substrate)
The substrate is not particularly limited, but may be a film. The substrate is preferably light transmissive. A laminated structure including a substrate having a light-transmitting property is preferable because (1) it is easy to extract light emitted from the semiconductor material.
 基板の形成材料としては、例えば、ポリエチレンテレフタレートなどのポリマーや、ガラスなどの公知の材料を用いることができる。
 例えば、積層構造体において、上述のフィルムを、基板上に設けていてもよい。
As a material for forming the substrate, for example, a polymer such as polyethylene terephthalate or a known material such as glass can be used.
For example, in the laminated structure, the above-mentioned film may be provided on the substrate.
 図1は、本実施形態の積層構造体の構成を模式的に示す断面図である。第1の積層構造体1aは、第1の基板20及び第2の基板21の間に、本実施形態のフィルム10が設けられている。フィルム10は、封止層22によって封止されている。 FIG. 1 is a sectional view schematically showing the configuration of the laminated structure of this embodiment. In the first laminated structure 1 a, the film 10 of the present embodiment is provided between the first substrate 20 and the second substrate 21. The film 10 is sealed by the sealing layer 22.
 本発明の一つの側面は、第1の基板20と、第2の基板21と、第1の基板20と第2の基板21との間に位置する本実施形態に係るフィルム10と、封止層22と、を有する積層構造体であって、封止層22が、フィルム10の第1の基板20、及び第2の基板21と接していない面上に配置されることを特徴とする積層構造体1aである。 One aspect of the present invention is a first substrate 20, a second substrate 21, a film 10 according to the present embodiment located between the first substrate 20 and the second substrate 21, and a sealing. A laminated structure having a layer 22 and the encapsulating layer 22 is disposed on a surface of the film 10 which is not in contact with the first substrate 20 and the second substrate 21. It is the structure 1a.
(バリア層)
 本実施形態に係る積層構造体が有していてもよい層としては、特に制限は無いが、バリア層が挙げられる。外気の水蒸気、及び大気中の空気から前述の組成物を保護する観点から、バリア層を含んでいてもよい。
(Barrier layer)
The layer that the laminated structure according to the present embodiment may have is not particularly limited, and examples thereof include a barrier layer. A barrier layer may be included from the viewpoint of protecting the above-mentioned composition from water vapor in the outside air and air in the atmosphere.
 バリア層は、特に制限は無いが、発光した光を取り出す観点から、透明なものが好ましい。バリア層としては、例えば、ポリエチレンテレフタレートなどのポリマーや、ガラス膜などの公知のバリア層を用いることができる。 The barrier layer is not particularly limited, but is preferably transparent from the viewpoint of extracting emitted light. As the barrier layer, for example, a polymer such as polyethylene terephthalate or a known barrier layer such as a glass film can be used.
(光散乱層)
 本実施形態に係る積層構造体が有していてもよい層としては、特に制限は無いが、光散乱層が挙げられる。入射した光を有効に利用する観点から、光散乱層を含んでいてもよい。
 光散乱層は、特に制限は無いが、発光した光を取り出す観点から、透明なものが好ましい。光散乱層としては、シリカ粒子などの光散乱粒子や、増幅拡散フィルムなどの公知の光散乱層を用いることができる。
(Light scattering layer)
The layer that the laminated structure according to the present embodiment may have is not particularly limited, and examples thereof include a light scattering layer. From the viewpoint of effectively utilizing the incident light, a light scattering layer may be included.
The light scattering layer is not particularly limited, but is preferably transparent from the viewpoint of extracting emitted light. As the light scattering layer, light scattering particles such as silica particles, or a known light scattering layer such as an amplification diffusion film can be used.
<<発光装置>>
 本実施形態に係る発光装置は、本実施形態のフィルム又は積層構造体と、光源とを合せることで得ることができる。発光装置は、光源から発光した光を、光源の光射出方向に設置したフィルム又は積層構造体に照射することで、フィルム又は積層構造体を発光させ、光を取り出す装置である。
<< Light emitting device >>
The light emitting device according to this embodiment can be obtained by combining the film or laminated structure of this embodiment with a light source. The light-emitting device is a device that emits light by irradiating a film or a laminated structure provided in a light emission direction of the light source with light emitted from the light source so that the film or the laminated structure emits light.
 発光装置における積層構造体が有する複数の層のうち、上述のフィルム、基板、バリア層、光散乱層以外の層としては、光反射部材、輝度強化部、プリズムシート、導光板、要素間の媒体材料層等の任意の層が挙げられる。 Among the plurality of layers included in the laminated structure in the light emitting device, the layers other than the above-mentioned film, substrate, barrier layer, and light scattering layer include a light reflection member, a brightness enhancement portion, a prism sheet, a light guide plate, and a medium between elements Any layer such as a material layer may be used.
 本発明の一つの側面は、プリズムシート50と、導光板60と、第1の積層構造体1aと、光源30と、がこの順に積層された発光装置2である。 One aspect of the present invention is a light emitting device 2 in which a prism sheet 50, a light guide plate 60, a first laminated structure 1a, and a light source 30 are laminated in this order.
(光源)
 本実施形態の発光装置を構成する光源としては、(1)半導体材料の吸収波長帯に含まれる光を射出する光源を用いる。例えば、上述のフィルム、又は積層構造体中の半導体材料を発光させるという観点から、600nm以下の発光波長を有する光源が好ましい。光源としては、例えば、青色発光ダイオードなどの発光ダイオード(LED)、レーザー、ELなどの公知の光源を用いることができる。
(light source)
As a light source that constitutes the light emitting device of this embodiment, (1) a light source that emits light included in the absorption wavelength band of the semiconductor material is used. For example, a light source having an emission wavelength of 600 nm or less is preferable from the viewpoint of emitting the semiconductor material in the film or the laminated structure described above. As the light source, for example, a known light source such as a light emitting diode (LED) such as a blue light emitting diode, a laser, or an EL can be used.
(光反射部材)
 本実施形態の発光装置を構成する積層構造体が有していてもよい層としては、特に制限は無いが、光反射部材が挙げられる。光反射部材を有する発光装置は、光源の光を効率的にフィルム、又は積層構造体に向かって照射することができる。
(Light reflection member)
The layer that may be included in the laminated structure forming the light emitting device of the present embodiment is not particularly limited, and examples thereof include a light reflecting member. A light emitting device having a light reflecting member can efficiently irradiate light from a light source toward a film or a laminated structure.
 光反射部材は、特に制限は無いが、反射フィルムであっても良い。反射フィルムとしては、例えば、反射鏡、反射粒子のフィルム、反射金属フィルムや反射体などの公知の反射フィルムを用いることができる。 The light reflection member is not particularly limited, but may be a reflection film. As the reflecting film, for example, a known reflecting film such as a reflecting mirror, a film of reflecting particles, a reflecting metal film or a reflector can be used.
(輝度強化部)
 本実施形態の発光装置を構成する積層構造体が有していてもよい層としては、特に制限は無いが、輝度強化部が挙げられる。光の一部分を、光が伝送された方向に向かって反射して戻す観点から、輝度強化部を含んでいてもよい。
(Brightness enhancement section)
The layer that may be included in the laminated structure that configures the light emitting device of the present embodiment is not particularly limited, and examples thereof include a brightness enhancement portion. The brightness enhancement section may be included from the viewpoint of reflecting a part of the light back toward the direction in which the light is transmitted.
(プリズムシート)
 本実施形態の発光装置を構成する積層構造体が有していてもよい層としては、特に制限は無いが、プリズムシートが挙げられる。プリズムシートは、代表的には、基材部とプリズム部とを有する。なお、基材部は、隣接する部材に応じて省略してもよい。
(Prism sheet)
The layer that may be included in the laminated structure that configures the light emitting device of the present embodiment is not particularly limited, but a prism sheet can be used. The prism sheet typically has a base material portion and a prism portion. The base material portion may be omitted depending on the adjacent member.
 プリズムシートは、任意の適切な接着層(例えば、接着剤層、粘着剤層)を介して隣接する部材に貼り合わせることができる。 The prism sheet can be attached to an adjacent member via any appropriate adhesive layer (eg, adhesive layer, pressure-sensitive adhesive layer).
 発光装置を後述のディスプレイに用いる場合、プリズムシートは、視認側とは反対側(背面側)に凸となる複数の単位プリズムが並列されて構成されている。プリズムシートの凸部を背面側に向けて配置することにより、プリズムシートを透過する光が集光されやすくなる。また、プリズムシートの凸部を背面側に向けて配置すれば、凸部を視認側に向けて配置する場合と比較して、プリズムシートに入射せずに反射する光が少なく、輝度の高いディスプレイを得ることができる。 When the light emitting device is used in a display described later, the prism sheet is configured by arranging a plurality of unit prisms that are convex on the side opposite to the viewing side (back side). By arranging the convex portion of the prism sheet so as to face the back surface side, it becomes easy to collect light that passes through the prism sheet. Also, when the convex portion of the prism sheet is arranged facing the back side, compared to the case where the convex portion is arranged facing the viewing side, less light is reflected without entering the prism sheet, and a display with high brightness is displayed. Can be obtained.
(導光板)
 本実施形態の発光装置を構成する積層構造体が有していてもよい層としては、特に制限は無いが、導光板が挙げられる。導光板としては、例えば、横方向からの光を厚さ方向に偏向可能となるよう、背面側にレンズパターンが形成された導光板、背面側と視認側とのいずれか一方又は両方にプリズム形状等が形成された導光板など、任意の適切な導光板を用いることができる。
(Light guide plate)
The layer that may be included in the laminated structure that configures the light emitting device of the present embodiment is not particularly limited, and examples thereof include a light guide plate. As the light guide plate, for example, a light guide plate having a lens pattern formed on the back side so that light from the lateral direction can be deflected in the thickness direction, a prism shape on either or both of the back side and the viewing side. Any appropriate light guide plate can be used, such as a light guide plate on which the above are formed.
(要素間の媒体材料層)
 本実施形態の発光装置を構成する積層構造体が有していてもよい層としては、特に制限は無いが、隣接する要素(層)間の光路上に1つ以上の媒体材料からなる層(要素間の媒体材料層)が挙げられる。
(Medium material layer between elements)
The layer that may be included in the laminated structure that constitutes the light emitting device of the present embodiment is not particularly limited, but a layer composed of one or more medium materials (on the optical path between adjacent elements (layers) ( Media material layers between elements).
 要素間の媒体材料層に含まれる1つ以上の媒体には、特に制限は無いが、真空、空気、ガス、光学材料、接着剤、光学接着剤、ガラス、ポリマー、固体、液体、ゲル、硬化材料、光学結合材料、屈折率整合又は屈折率不整合材料、屈折率勾配材料、クラッディング又は抗クラッディング材料、スペーサー、シリカゲル、輝度強化材料、散乱又は拡散材料、反射又は抗反射材料、波長選択性材料、波長選択性抗反射材料、色フィルター、又は上記技術分野で既知の好適な媒体、が含まれる。 The one or more media contained in the media material layer between the elements include, but are not limited to, vacuum, air, gas, optical material, adhesive, optical adhesive, glass, polymer, solid, liquid, gel, cured. Materials, optical coupling materials, index matching or index mismatching materials, gradient index materials, cladding or anti-cladding materials, spacers, silica gel, brightness enhancing materials, scattering or diffusing materials, reflective or anti-reflective materials, wavelength selection Materials, wavelength selective anti-reflective materials, color filters, or suitable media known in the art.
 本実施形態の発光装置の具体例としては、例えば、ELディスプレイや液晶ディスプレイ用の波長変換材料を備えたものが挙げられる。
 具体的には、以下の(E1)~(E4)の各構成を挙げることができる。
Specific examples of the light emitting device of the present embodiment include those provided with a wavelength conversion material for EL displays and liquid crystal displays.
Specifically, the following respective structures (E1) to (E4) can be mentioned.
 構成(E1):本実施形態の組成物をガラスチューブ等の中に入れて封止し、これを導光板の端面(側面)に沿うように、光源である青色発光ダイオードと導光板の間に配置して、青色光を緑色光や赤色光に変換するバックライト(オンエッジ方式のバックライト)。 Configuration (E1): The composition of the present embodiment is put in a glass tube or the like and sealed, and the composition is arranged between the blue light emitting diode as a light source and the light guide plate so as to be along the end surface (side surface) of the light guide plate. Then, a backlight that converts blue light into green light or red light (on-edge backlight).
 構成(E2):本実施形態の組成物をシート化し、これを2枚のバリアーフィルムで挟んで封止したフィルムを、導光板の上に設置して、導光板の端面(側面)に置かれた青色発光ダイオードから導光板を通して前記シートに照射される青色の光を緑色光や赤色光に変換するバックライト(表面実装方式のバックライト)。 Configuration (E2): The composition of the present embodiment is formed into a sheet, and a film obtained by sandwiching the composition with two barrier films and sealing is placed on the light guide plate and placed on the end surface (side surface) of the light guide plate. A backlight (surface-mounted backlight) that converts blue light emitted from the blue light emitting diode to the sheet through a light guide plate into green light or red light.
 構成(E3):本実施形態の組成物を、樹脂等に分散させて青色発光ダイオードの発光部近傍に設置し、照射される青色の光を緑色光や赤色光に変換するバックライト(オンチップ方式のバックライト)。 Configuration (E3): A backlight (on-chip) that disperses the composition of the present embodiment in a resin or the like and installs it in the vicinity of a light emitting portion of a blue light emitting diode to convert the emitted blue light into green light or red light. Method backlight).
 構成(E4):本実施形態の組成物を、レジスト中に分散させて、カラーフィルター上に設置し、光源から照射される青色の光を緑色光や赤色光に変換するバックライト。 [Structure (E4): A backlight that disperses the composition of the present embodiment in a resist and installs it on a color filter to convert blue light emitted from a light source into green light or red light.
 また、本実施形態に係る発光装置の具体例としては、本実施形態の組成物を成形し、光源である青色発光ダイオードの後段に配置して、青色光を緑色光や赤色光に変換して白色光を発する照明が挙げられる。 Further, as a specific example of the light emitting device according to the present embodiment, the composition of the present embodiment is molded and placed in the subsequent stage of the blue light emitting diode as a light source to convert blue light into green light or red light. Illumination that emits white light is included.
<<ディスプレイ>>
 図2に示すように、本実施形態のディスプレイ3は、液晶パネル40と、前述の発光装置2とを視認側からこの順に備える。発光装置2は、第2の積層構造体1bと光源30とを備える。第2の積層構造体1bは、前述の第1の積層構造体1aが、プリズムシート50と、導光板60と、をさらに備えたものである。ディスプレイは、任意の適切なその他の部材をさらに備えていてもよい。
<< Display >>
As shown in FIG. 2, the display 3 of this embodiment includes a liquid crystal panel 40 and the above-described light emitting device 2 in this order from the viewing side. The light emitting device 2 includes a second stacked structure body 1b and a light source 30. In the second laminated structure 1b, the above-mentioned first laminated structure 1a further includes a prism sheet 50 and a light guide plate 60. The display may further comprise any suitable other member.
 本発明の一つの側面は、液晶パネル40と、プリズムシート50と、導光板60と、第1の積層構造体1aと、光源30と、がこの順に積層された液晶ディスプレイ3である。 One aspect of the present invention is a liquid crystal display 3 in which a liquid crystal panel 40, a prism sheet 50, a light guide plate 60, a first laminated structure 1a, and a light source 30 are laminated in this order.
(液晶パネル)
 上記液晶パネルは、代表的には、液晶セルと、液晶セルの視認側に配置された視認側偏光板と、液晶セルの背面側に配置された背面側偏光板とを備える。視認側偏光板及び背面側偏光板は、それぞれの吸収軸が実質的に直交又は平行となるようにして配置され得る。
(LCD panel)
The liquid crystal panel typically includes a liquid crystal cell, a viewing side polarizing plate arranged on the viewing side of the liquid crystal cell, and a back side polarizing plate arranged on the back side of the liquid crystal cell. The viewing-side polarizing plate and the back-side polarizing plate may be arranged such that their absorption axes are substantially orthogonal or parallel.
(液晶セル)
 液晶セルは、一対の基板と、一対の基板間に挟持された表示媒体としての液晶層とを有する。一般的な構成においては、一方の基板に、カラーフィルター及びブラックマトリクスが設けられており、他方の基板に、液晶の電気光学特性を制御するスイッチング素子と、このスイッチング素子にゲート信号を与える走査線及びソース信号を与える信号線と、画素電極及び対向電極とが設けられている。上記基板の間隔(セルギャップ)は、スペーサー等によって制御できる。上記基板の液晶層と接する側には、例えば、ポリイミドからなる配向膜等を設けることができる。
(Liquid crystal cell)
The liquid crystal cell has a pair of substrates and a liquid crystal layer as a display medium sandwiched between the pair of substrates. In a general configuration, one substrate is provided with a color filter and a black matrix, and the other substrate is provided with a switching element for controlling electro-optical characteristics of liquid crystal and a scanning line for giving a gate signal to this switching element. And a signal line for supplying a source signal, a pixel electrode, and a counter electrode. The distance (cell gap) between the substrates can be controlled by a spacer or the like. An alignment film made of polyimide, for example, can be provided on the side of the substrate that is in contact with the liquid crystal layer.
(偏光板)
 偏光板は、代表的には、偏光子と、偏光子の両側に配置された保護層とを有する。偏光子は、代表的には、吸収型偏光子である。
 偏光子としては、任意の適切な偏光子が用いられる。例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。これらの中でも、ポリビニルアルコール系フィルムにヨウ素などの二色性物質を吸着させて一軸延伸した偏光子が、偏光二色比が高く、特に好ましい。
(Polarizer)
The polarizing plate typically has a polarizer and protective layers disposed on both sides of the polarizer. The polarizer is typically an absorption-type polarizer.
Any appropriate polarizer is used as the polarizer. For example, a dichroic substance such as iodine or a dichroic dye is adsorbed on a hydrophilic polymer film such as a polyvinyl alcohol film, a partially formalized polyvinyl alcohol film, or an ethylene / vinyl acetate copolymer partially saponified film. Uniaxially stretched film, polyene oriented film such as polyvinyl alcohol dehydrated product, polyvinyl chloride dehydrochlorinated product and the like. Among these, a polarizer obtained by uniaxially stretching a polyvinyl alcohol film by adsorbing a dichroic substance such as iodine, has a high polarization dichroic ratio, and is particularly preferable.
<<組成物の用途>>
 本実施形態の組成物の用途としては、以下のような用途を挙げることができる。
<< Application of composition >>
The uses of the composition of the present embodiment include the following uses.
<LED>
 本実施形態の組成物は、例えば、発光ダイオード(LED)の発光層の材料として用いることができる。
<LED>
The composition of this embodiment can be used, for example, as a material for a light emitting layer of a light emitting diode (LED).
 本実施形態の組成物を含むLEDとしては、例えば、本実施形態の組成物とZnSなどの導電性粒子を混合して膜状に積層し、片面にn型輸送層を積層し、もう片面にp型輸送層を積層した構造をしており、電流を流すことで、p型半導体の正孔と、n型半導体の電子が接合面の組成物に含まれる(1)及び(2)の粒子中で電荷を打ち消すことで発光する方式が挙げられる。 As the LED including the composition of the present embodiment, for example, the composition of the present embodiment and conductive particles such as ZnS are mixed and laminated in a film shape, the n-type transport layer is laminated on one surface, and the other surface is laminated on the other surface. Particles of (1) and (2), which have a structure in which a p-type transport layer is laminated and in which a hole of a p-type semiconductor and an electron of an n-type semiconductor are included in the composition of the junction surface by passing an electric current. Among them, there is a method of emitting light by canceling charges.
<太陽電池>
 本実施形態の組成物は、太陽電池の活性層に含まれる電子輸送性材料として利用することができる。
<Solar cell>
The composition of the present embodiment can be used as an electron transporting material contained in the active layer of a solar cell.
 前記太陽電池としては、構成は特に限定されないが、例えば、フッ素ドープされた酸化スズ(FTO)基板、酸化チタン緻密層、多孔質酸化アルミニウム層、本実施形態の組成物を含む活性層、2,2’,7,7’-tetrakis(N,N’-di-p-methoxyphenylamine)-9,9’-spirobifluorene (Spiro-MeOTAD)などのホール輸送層、及び銀(Ag)電極をこの順で有する太陽電池が挙げられる。 The structure of the solar cell is not particularly limited, but examples thereof include a fluorine-doped tin oxide (FTO) substrate, a titanium oxide dense layer, a porous aluminum oxide layer, an active layer containing the composition of the present embodiment, and 2. It has a hole transport layer such as 2 ', 7,7'-tetrakis (N, N'-di-p-methoxyphenylamine) -9,9'-spirobifluorene (Spiro-MeOTAD), and a silver (Ag) electrode in this order. A solar cell is mentioned.
 酸化チタン緻密層は、電子輸送の機能、FTOのラフネスを抑える効果、及び逆電子移動を抑制する機能を有する。 The titanium oxide dense layer has a function of electron transport, an effect of suppressing the roughness of FTO, and a function of suppressing reverse electron transfer.
 多孔質酸化アルミニウム層は、光吸収効率を向上させる機能を有する。 The porous aluminum oxide layer has a function of improving light absorption efficiency.
 活性層に含まれる、本実施形態の組成物は、電荷分離及び電子輸送の機能を有する。 The composition of the present embodiment contained in the active layer has the functions of charge separation and electron transport.
<センサー>
 本実施形態の組成物は、X線撮像装置及びCMOSイメージセンサーなどの固体撮像装置用のイメージ検出部(イメージセンサー)、指紋検出部、顔検出部、静脈検出部及び虹彩検出部などの生体の一部分の所定の特徴を検出する検出部、パルスオキシメーターなどの光学バイオセンサーの検出部に使用する含まれる光電変換素子(光検出素子)材料として利用することができる。
<Sensor>
The composition of the present embodiment is applied to a living body such as an image detection unit (image sensor) for a solid-state imaging device such as an X-ray imaging device and a CMOS image sensor, a fingerprint detection unit, a face detection unit, a vein detection unit and an iris detection unit. It can be used as a photoelectric conversion element (photodetection element) material included in a detection section for detecting a predetermined characteristic of a part or a detection section of an optical biosensor such as a pulse oximeter.
<<フィルムの製造方法>>
 フィルムの製造方法は、例えば、下記(e1)~(e3)の製造方法が挙げられる。
<< Film manufacturing method >>
Examples of the film production method include the following production methods (e1) to (e3).
 製造方法(e1):液状組成物を塗工して塗膜を得る工程と、塗膜から(3)溶媒を除去する工程と、を含むフィルムの製造方法。 Manufacturing method (e1): A method for manufacturing a film, which includes a step of applying a liquid composition to obtain a coating film, and a step of (3) removing a solvent from the coating film.
 製造方法(e2):(4)重合性化合物を含む液状組成物を塗工して塗膜を得る工程と、得られた塗膜に含まれる(4)重合性化合物を重合させる工程と、を含むフィルムの製造方法。 Production method (e2): (4) a step of applying a liquid composition containing a polymerizable compound to obtain a coating film, and a step of polymerizing the (4) polymerizable compound contained in the obtained coating film. A method of manufacturing a film including.
 製造方法(e3):上述の製造方法(d1)~(d6)で得られた組成物を成形加工するフィルムの製造方法。 Production method (e3): A method for producing a film by molding the composition obtained by the above-mentioned production methods (d1) to (d6).
 上記製造方法(e1)(e2)で製造したフィルムは、製造位置から剥離して用いてもよい。 The film produced by the above production methods (e1) and (e2) may be peeled off from the production position and used.
<<積層構造体の製造方法>>
 積層構造体の製造方法は、例えば、下記(f1)~(f3)の製造方法が挙げられる。
<< Manufacturing Method of Laminated Structure >>
Examples of the method for manufacturing the laminated structure include the following manufacturing methods (f1) to (f3).
 製造方法(f1):液状組成物を製造する工程と、得られた液状組成物を基板上に塗工する工程と、得られた塗膜から(3)溶媒を除去する工程と、を含む積層構造体の製造方法。 Production method (f1): Lamination including a step of producing a liquid composition, a step of applying the obtained liquid composition onto a substrate, and a step of removing (3) a solvent from the obtained coating film Structure manufacturing method.
 製造方法(f2):フィルムを基板に張り合わせる工程を含む積層構造体の製造方法。 Manufacturing method (f2): A manufacturing method of a laminated structure including a step of attaching a film to a substrate.
 製造方法(f3):(4)重合性化合物を含む液状組成物を製造する工程と、得られた液状組成物を基板上に塗工する工程と、得られた塗膜に含まれる(4)重合性化合物を重合させる工程と、を含む製造方法。 Production method (f3): (4) A step of producing a liquid composition containing a polymerizable compound, a step of applying the obtained liquid composition on a substrate, and a step of applying the obtained coating film (4) And a step of polymerizing the polymerizable compound.
 製造方法(f1)、(f3)における液状組成物を製造する工程は、上述の製造方法(c1)~(c5)を採用することができる。 The above-mentioned manufacturing methods (c1) to (c5) can be adopted in the steps of manufacturing the liquid composition in the manufacturing methods (f1) and (f3).
 製造方法(f1)、(f3)における液状組成物を基板上に塗工する工程は、特に制限は無いが、グラビア塗布法、バー塗布法、印刷法、スプレー法、スピンコーティング法、ディップ法、ダイコート法などの、公知の塗布、塗工方法を用いることができる。 The step of applying the liquid composition on the substrate in the production methods (f1) and (f3) is not particularly limited, but is a gravure coating method, a bar coating method, a printing method, a spray method, a spin coating method, a dip method, Known coating and coating methods such as a die coating method can be used.
 製造方法(f1)における(3)溶媒を除去する工程は、上述した製造方法(d2)、(d4)、(d6)に含まれる(3)溶媒を除去する工程と同様の工程とすることができる。 The step of removing the solvent (3) in the production method (f1) may be the same step as the step of removing the solvent (3) included in the production methods (d2), (d4), and (d6) described above. it can.
 製造方法(f3)における(4)重合性化合物を重合させる工程は、上述した製造方法(d1)、(d3)、(d5)に含まれる(4)重合性化合物を重合させる工程と同様の工程とすることができる。 The step of polymerizing the (4) polymerizable compound in the production method (f3) is the same step as the step of polymerizing the (4) polymerizable compound contained in the above-mentioned production methods (d1), (d3), and (d5). Can be
 製造方法(f2)におけるフィルムを基板に張り合わせる工程では、任意の接着剤を用いることができる。 In the step of bonding the film to the substrate in the manufacturing method (f2), any adhesive can be used.
 接着剤は、(1)半導体材料を溶解しない物であれば特に制限は無く、公知の接着剤を用いることができる。 The adhesive is (1) not particularly limited as long as it does not dissolve the semiconductor material, and a known adhesive can be used.
 積層構造体の製造方法は、得られた積層構造体に、さらに任意のフィルムを張り合わせる工程を含んでいてもよい。 The method for producing a laminated structure may further include a step of laminating an arbitrary film on the obtained laminated structure.
 張り合わせる任意のフィルムとしては、例えば、反射フィルム、拡散フィルムが挙げられる。 As an arbitrary film to be laminated, for example, a reflection film or a diffusion film can be mentioned.
 フィルムを張り合わせる工程では、任意の接着剤を用いることができる。 Arbitrary adhesives can be used in the process of laminating the films.
 上述の接着剤は、(1)半導体材料を溶解しない物であれば特に制限は無く、公知の接着剤を用いることができる。 The above-mentioned adhesive is not particularly limited as long as it does not dissolve (1) the semiconductor material, and a known adhesive can be used.
<<発光装置の製造方法>>
 例えば、上述の光源と、光源から射出される光の光路上に上述のフィルム、又は積層構造体を設置する工程とを含む製造方法が挙げられる。
<< Manufacturing Method of Light-Emitting Device >>
For example, a manufacturing method including the above-mentioned light source and a step of installing the above-mentioned film or laminated structure on the optical path of light emitted from the light source can be mentioned.
 なお、本発明の技術範囲は上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 The technical scope of the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.
(アミン化合物に含まれるN含有量の測定)
 実施例1~3で得られた組成物のX線光電子分光(XPS)(Quantera SXM、アルバック・ファイ株式会社製、AlKα線光電子取り出し角45度、アパーチャー直径を100μm、表面汚染炭化水素のC 1sに帰属されるピークを284.6eVとして帯電補正の基準として使用)測定により、組成物に含まれるペロブスカイト中のPbのモルとアミン化合物中のNのモルとの比(N/Pb(モル比))を算出した。XPS測定は、ペロブスカイトを含む組成物0.05mLを1cm×1cmのガラス基板にキャスト、乾燥した後に行った。
(Measurement of N content contained in amine compound)
X-ray photoelectron spectroscopy (XPS) of the compositions obtained in Examples 1 to 3 (Quantera SXM, manufactured by ULVAC-PHI Co., Ltd., AlKα photoelectron take-off angle of 45 degrees, aperture diameter of 100 μm, C 1s of surface contaminated hydrocarbons. The peak attributed to is used as a reference for charge correction with 284.6 eV), and the ratio (N / Pb (molar ratio)) of the moles of Pb in the perovskite and the moles of N in the amine compound contained in the composition was measured. ) Was calculated. XPS measurement was performed after casting 0.05 mL of a composition containing perovskite on a glass substrate of 1 cm × 1 cm and drying.
(ペロブスカイト化合物の濃度測定)
 実施例1~3、及び比較例1で得られた組成物におけるペロブスカイト化合物の濃度は以下の方法により測定した。
(Measurement of concentration of perovskite compound)
The concentration of the perovskite compound in the compositions obtained in Examples 1 to 3 and Comparative Example 1 was measured by the following method.
 まず、後述の方法で得られた(1)半導体材料を、精秤したトルエンに再分散させることで分散液を得た。次いで、得られた分散液に、N,N-ジメチルホルムアミドを添加することでペロブスカイト化合物を溶解させた。 First, a dispersion liquid was obtained by redispersing (1) the semiconductor material obtained by the method described below in toluene that was precisely weighed. Then, the perovskite compound was dissolved in the obtained dispersion by adding N, N-dimethylformamide.
 その後、ICP-MS(PerkinElmer社製、ELAN DRCII)を用いて分散液に含まれるCs及びPbを定量した。また、イオンクロマトグラフ(サーモフィッシャーサイエンティフィック株式会社製、Integrion)を用いて分散液に含まれるBrを定量した。各測定値の合計から分散液に含まれるペロブスカイト化合物の質量を求め、ペロブスカイト化合物の質量とトルエン量とから分散液濃度を求めた。 After that, Cs and Pb contained in the dispersion were quantified using ICP-MS (ELAN DRCII manufactured by PerkinElmer). In addition, Br contained in the dispersion was quantified using an ion chromatograph (Integration, manufactured by Thermo Fisher Scientific Co., Ltd.). The mass of the perovskite compound contained in the dispersion was calculated from the sum of the measured values, and the dispersion concentration was calculated from the mass of the perovskite compound and the amount of toluene.
(量子収率の測定)
 実施例1~3、及び比較例1で得られた組成物の量子収率を、絶対PL量子収率測定装置(浜松ホトニクス株式会社製、C9920-02)を用いて、励起光450nm、室温、大気下で測定した。
(Measurement of quantum yield)
The quantum yields of the compositions obtained in Examples 1 to 3 and Comparative Example 1 were measured by using an absolute PL quantum yield measuring device (C9920-02, manufactured by Hamamatsu Photonics Co., Ltd.), excitation light 450 nm, room temperature, It was measured under the atmosphere.
(耐熱性評価)
 実施例1~3、及び比較例1で得られた組成物をホットプレート上で、260℃で、2分間加熱し耐熱性試験を行った。耐熱性試験前後の量子収率を測定して、下記の式を用いて維持率を求めた。こうして求めた維持率が高いほど耐熱性が高いと評価できる。
維持率(%)=耐熱性試験後の量子収率÷耐熱性試験前の量子収率×100
(Heat resistance evaluation)
The compositions obtained in Examples 1 to 3 and Comparative Example 1 were heated on a hot plate at 260 ° C. for 2 minutes to perform a heat resistance test. The quantum yield before and after the heat resistance test was measured, and the retention rate was calculated using the following formula. It can be evaluated that the higher the maintenance rate thus obtained is, the higher the heat resistance is.
Maintenance rate (%) = quantum yield after heat resistance test / quantum yield before heat resistance test × 100
(透過型電子顕微鏡による(1)半導体材料の観察)
 (1)半導体材料は透過型電子顕微鏡(日本電子株式会社製、JEM-2200FS)を用いて観察した。観察用の試料は、組成物から支持膜付きグリッドに(1)半導体材料を採取することで得た。観察条件は、加速電圧を200kVとした。
((1) Observation of semiconductor material by transmission electron microscope)
(1) The semiconductor material was observed using a transmission electron microscope (JEM-2200FS manufactured by JEOL Ltd.). The sample for observation was obtained by collecting (1) a semiconductor material from the composition on a grid with a supporting film. The observation conditions were an acceleration voltage of 200 kV.
 得られた電子顕微鏡写真に写る半導体材料の像を、2本の平行線で挟んだときの平行線の間隔をフェレー径として求めた。20個の半導体材料のフェレー径の算術平均値を求め、平均のフェレー径を求めた。 The distance between the parallel lines when the image of the semiconductor material shown in the obtained electron micrograph was sandwiched by two parallel lines was calculated as the Feret diameter. The arithmetic average value of the Feret diameters of 20 semiconductor materials was obtained, and the average Feret diameter was obtained.
(ペロブスカイト化合物のB成分と、改質体のSi元素とのモル比[Si/B]の算出) ペロブスカイト化合物のB成分である金属イオンの物質量(B)(単位:モル)は、誘導結合プラズマ質量分析(ICP-MS)によって、B成分である金属の質量を測定し、測定値を物質量に換算して求めた。 (Calculation of the molar ratio [Si / B] between the B component of the perovskite compound and the Si element of the modified body) The substance amount (B) (unit: mol) of the metal ion, which is the B component of the perovskite compound, is calculated by inductive coupling. The mass of the metal as the component B was measured by plasma mass spectrometry (ICP-MS), and the measured value was converted into the amount of the substance to obtain the value.
 改質体のSi元素の物質量(Si)は、用いた改質体の原料化合物の質量を物質量に換算した値と、単位質量の原料化合物に含まれるSi量(物質量)とから求めた。原料化合物の単位質量とは、原料化合物が低分子化合物であれば原料化合物の分子量であり、原料化合物が高分子化合物であれば原料化合物の繰り返し単位の分子量である。 The substance amount (Si) of the Si element of the reformer is calculated from the value obtained by converting the mass of the raw material compound of the reformer used into the substance amount and the Si amount (substance amount) contained in the unit mass of the raw material compound. It was The unit mass of the raw material compound is the molecular weight of the raw material compound if the raw material compound is a low molecular compound, and the molecular weight of the repeating unit of the raw material compound if the raw material compound is a high molecular compound.
 Si元素の物質量(Si)と、ペロブスカイト化合物のB成分である金属イオンの物質量(B)とから、モル比[Si/B]を算出した。 The molar ratio [Si / B] was calculated from the substance amount (Si) of the Si element and the substance amount (B) of the metal ion that is the B component of the perovskite compound.
[実施例1]
 炭酸セシウム0.814gと、1-オクタデセンの溶媒40mLと、オレイン酸2.5mLとを混合した。マグネチックスターラーで攪拌して、窒素を流しながら150℃で1時間加熱して炭酸セシウム溶液を調製した。
[Example 1]
0.814 g of cesium carbonate, 40 mL of a solvent of 1-octadecene, and 2.5 mL of oleic acid were mixed. The mixture was stirred with a magnetic stirrer and heated at 150 ° C. for 1 hour while flowing nitrogen to prepare a cesium carbonate solution.
 臭化鉛(PbBr)0.276gを1-オクタデセンの溶媒20mLと混合した。マグネチックスターラーで攪拌して窒素を流しながら120℃の温度で1時間加熱した後、オレイン酸2mL、及びN,N-ジメチル-n-オクタデシルアミン2.117mLを添加して臭化鉛分散液を調製した。 0.276 g of lead bromide (PbBr 2 ) was mixed with 20 mL of 1-octadecene solvent. After stirring with a magnetic stirrer and heating at 120 ° C. for 1 hour while flowing nitrogen, 2 mL of oleic acid and 2.117 mL of N, N-dimethyl-n-octadecylamine were added to prepare a lead bromide dispersion. Prepared.
 臭化鉛分散液を130℃の温度に昇温した後、上述の炭酸セシウム溶液を1.6mL添加した。添加後、反応容器を氷水に漬けることで、室温まで降温し、分散液を得た。 After heating the lead bromide dispersion to a temperature of 130 ° C., 1.6 mL of the above cesium carbonate solution was added. After the addition, the reaction vessel was soaked in ice water to lower the temperature to room temperature to obtain a dispersion liquid.
 次いで、分散液を10000rpm、5分間遠心分離し、沈殿物を分離した後、酢酸エチル15mL、及びトルエン5mLを加えて分散させた後に再度10000rpm、5分間で遠心分離し、沈殿物を分離して洗浄した。洗浄を3度実施した後、沈殿物のペロブスカイト化合物を得た。ペロブスカイト化合物をトルエン10mLに分散させた後に、再度0.5mLを分取して、トルエン4.5mLに分散させることで、ペロブスカイト化合物及び溶媒を含む分散液を得た。 Then, the dispersion was centrifuged at 10,000 rpm for 5 minutes to separate the precipitate, and then 15 mL of ethyl acetate and 5 mL of toluene were added to disperse the dispersion, and then the dispersion was centrifuged again at 10,000 rpm for 5 minutes to separate the precipitate. Washed. After washing three times, a precipitate perovskite compound was obtained. After the perovskite compound was dispersed in 10 mL of toluene, 0.5 mL was again collected and dispersed in 4.5 mL of toluene to obtain a dispersion liquid containing the perovskite compound and the solvent.
 ICP-MS、及びイオンクロマトグラフによって測定したペロブスカイト化合物の濃度は、1200ppm(μg/g)であった。XPSによって測定したN/Pbモル比は0.32であった。 The concentration of the perovskite compound measured by ICP-MS and ion chromatography was 1200 ppm (μg / g). The N / Pb molar ratio measured by XPS was 0.32.
 溶媒を自然乾燥させて回収した化合物のX線回折パターンをX線回折測定装置(XRD、Cu Kα線、X’pert PRO MPD、スペクトリス社製)で測定した所、2θ=14°の位置に(hkl)=(001)由来のピークを有しており、3次元のペロブスカイト型結晶構造を有していることを確認した。 When the X-ray diffraction pattern of the compound recovered by naturally drying the solvent was measured by an X-ray diffraction measurement device (XRD, Cu Kα ray, X'pert PRO MPD, Spectris Co., Ltd.), it was found at the position of 2θ = 14 ° ( It has a peak derived from hkl) = (001) and was confirmed to have a three-dimensional perovskite type crystal structure.
 次いで上述の分散液にオルガノポリシラザン(Durazane 1500 Slow Cure、メルクパフォーマンスマテリアルズ株式会社製: 0.967g/cm)を100μL混合した。分散液において、オルガノポリシラザンに含まれるSi元素とペロブスカイト化合物に含まれるPb元素とのモル比はSi/Pb=172であった。 Next, 100 μL of organopolysilazane (Durazane 1500 Slow Cure, manufactured by Merck Performance Materials, Inc .: 0.967 g / cm 3 ) was mixed with the above-mentioned dispersion liquid. In the dispersion liquid, the molar ratio of the Si element contained in the organopolysilazane and the Pb element contained in the perovskite compound was Si / Pb = 172.
 上述の分散液を25℃、80%の湿度条件で、スターラーで攪拌しながら、1日間改質処理した。 -The above dispersion liquid was subjected to a modification treatment for 1 day while stirring with a stirrer at a humidity condition of 25 ° C and 80%.
 上述の改質処理後の分散液50μLを1cm×1cmサイズのガラス基板上にキャストし、自然乾燥させたのち、100℃で12時間ベーク処理して組成物を得た。耐熱性試験前後の量子収率を測定して維持率を算出すると、維持率は42.7%であった。結果を表1に示す。 50 μL of the dispersion liquid after the above modification treatment was cast on a glass substrate of 1 cm × 1 cm size, naturally dried, and then baked at 100 ° C. for 12 hours to obtain a composition. When the maintenance rate was calculated by measuring the quantum yield before and after the heat resistance test, the maintenance rate was 42.7%. The results are shown in Table 1.
[実施例2]
 実施例1と同様の方法で、ペロブスカイト化合物及びN,N-ジメチル-n-オクタデシルアミンを含む分散液を得た。
 次いで上述の分散液にオルガノポリシラザン(Durazane 1500 Rapid Cure、メルクパフォーマンスマテリアルズ株式会社製:0.967g/cm)を100μL混合した。分散液において、オルガノポリシラザンに含まれるSi元素とペロブスカイト化合物に含まれるPb元素とのモル比はSi/Pb=50.4であった。
[Example 2]
By the same method as in Example 1, a dispersion liquid containing a perovskite compound and N, N-dimethyl-n-octadecylamine was obtained.
Next, 100 μL of organopolysilazane (Durazane 1500 Rapid Cure, manufactured by Merck Performance Materials, Inc .: 0.967 g / cm 3 ) was mixed with the above-mentioned dispersion liquid. In the dispersion liquid, the molar ratio of the Si element contained in the organopolysilazane and the Pb element contained in the perovskite compound was Si / Pb = 50.4.
 上述の分散液を25℃、80%の湿度条件で、スターラーで攪拌しながら、1日間改質処理した。 -The above dispersion liquid was subjected to a modification treatment for 1 day while stirring with a stirrer at a humidity condition of 25 ° C and 80%.
 上述の改質処理後の分散液50μLを1cm×1cmサイズのガラス基板上にキャストし、自然乾燥させたのち、100℃で12時間ベーク処理して組成物を得た。耐久試験前後の量子収率を測定して維持率を算出すると、維持率は86.4%であった。結果を表1に示す。 50 μL of the dispersion liquid after the above modification treatment was cast on a glass substrate of 1 cm × 1 cm size, naturally dried, and then baked at 100 ° C. for 12 hours to obtain a composition. When the maintenance rate was calculated by measuring the quantum yield before and after the durability test, the maintenance rate was 86.4%. The results are shown in Table 1.
[実施例3]
 オルガノポリシラザン(Durazane 1500 Rapid Cure、メルクパフォーマンスマテリアルズ株式会社製:0.967g/cm)の添加量を300μLとする以外は、実施例2と同様の方法で組成物を得た。分散液中のオルガノポリシラザンに含まれるSi元素とペロブスカイト化合物に含まれるPb元素とのモル比はSi/Pb=151であった。
[Example 3]
A composition was obtained in the same manner as in Example 2 except that the addition amount of organopolysilazane (Durazane 1500 Rapid Cure, manufactured by Merck Performance Materials, Inc .: 0.967 g / cm 3 ) was 300 μL. The molar ratio of the Si element contained in the organopolysilazane and the Pb element contained in the perovskite compound in the dispersion was Si / Pb = 151.
 上述の分散液50μLを1cm×1cmサイズのガラス基板上にキャストし、自然乾燥させたのち、100℃で12時間ベーク処理して組成物を得た。耐熱性試験前後の量子収率を測定して維持率を算出すると、維持率は77.9%であった。結果を表1に示す。 50 μL of the above dispersion liquid was cast on a glass substrate of 1 cm × 1 cm size, naturally dried, and then baked at 100 ° C. for 12 hours to obtain a composition. When the maintenance rate was calculated by measuring the quantum yield before and after the heat resistance test, the maintenance rate was 77.9%. The results are shown in Table 1.
[比較例1]
 炭酸セシウム0.814gと、1-オクタデセンの溶媒40mLと、オレイン酸2.5mLとを混合した。マグネチックスターラーで攪拌して、窒素を流しながら150℃で1時間加熱して炭酸セシウム溶液を調製した。
[Comparative Example 1]
0.814 g of cesium carbonate, 40 mL of a solvent of 1-octadecene, and 2.5 mL of oleic acid were mixed. The mixture was stirred with a magnetic stirrer and heated at 150 ° C. for 1 hour while flowing nitrogen to prepare a cesium carbonate solution.
 臭化鉛(PbBr)0.276gを1-オクタデセンの溶媒20mLと混合した。マグネチックスターラーで攪拌して窒素を流しながら120℃の温度で1時間加熱した後、オレイン酸2mL、及びオレイルアミン2mLを添加して臭化鉛分散液を調製した。 0.276 g of lead bromide (PbBr 2 ) was mixed with 20 mL of 1-octadecene solvent. After stirring with a magnetic stirrer and heating at a temperature of 120 ° C. for 1 hour while flowing nitrogen, 2 mL of oleic acid and 2 mL of oleylamine were added to prepare a lead bromide dispersion liquid.
 臭化鉛分散液を160℃の温度に昇温した後、上述の炭酸セシウム溶液を1.6mL添加した。添加後、反応容器を氷水に漬けることで、室温まで降温し、分散液を得た。 After raising the temperature of the lead bromide dispersion to 160 ° C., 1.6 mL of the above cesium carbonate solution was added. After the addition, the reaction vessel was soaked in ice water to lower the temperature to room temperature to obtain a dispersion liquid.
 次いで、分散液を10000rpm、5分間遠心分離し、沈殿物のペロブスカイト化合物を得た。ペロブスカイト化合物をトルエン5mLに分散させた後に、再度0.5mLを分取して、トルエン4.5mLに分散させることで、ペロブスカイト化合物及びオレイルアミンを含む分散液を得た。 Next, the dispersion was centrifuged at 10,000 rpm for 5 minutes to obtain a perovskite compound as a precipitate. After dispersing the perovskite compound in 5 mL of toluene, 0.5 mL was again collected and dispersed in 4.5 mL of toluene to obtain a dispersion liquid containing the perovskite compound and oleylamine.
ICP-MS、及びイオンクロマトグラフによって測定したペロブスカイト化合物の濃度は、2000ppm(μg/g)であった。 The concentration of the perovskite compound measured by ICP-MS and ion chromatography was 2000 ppm (μg / g).
 溶媒を自然乾燥させて回収した化合物のX線回折パターンをX線回折測定装置(XRD、Cu Kα線、X’pert PRO MPD、スペクトリス社製)で測定した所、2θ=14°の位置に(hkl)=(001)由来のピークを有しており、3次元のペロブスカイト型結晶構造を有していることを確認した。 When the X-ray diffraction pattern of the compound recovered by naturally drying the solvent was measured by an X-ray diffraction measurement device (XRD, Cu Kα ray, X'pert PRO MPD, Spectris Co., Ltd.), it was found at the position of 2θ = 14 ° ( It has a peak derived from hkl) = (001) and was confirmed to have a three-dimensional perovskite type crystal structure.
 TEMで観察したペロブスカイト化合物の平均のフェレー径は11nmであった。 The average ferret diameter of the perovskite compound observed by TEM was 11 nm.
 トルエンでペロブスカイト化合物の濃度が200ppm(μg/g)になるように希釈した後、量子収率測定装置によって測定した量子収率は30%であった。
 次いで上述のペロブスカイト化合物及び溶媒を含む分散液1にオルガノポリシラザン(Durazane 1500 Slow Cure、メルクパフォーマンスマテリアルズ株式会社製:0.967g/cm)を100μL混合した。分散液において、オルガノポリシラザンに含まれるSi元素とペロブスカイト化合物に含まれるPb元素とのモル比はSi/Pb=76であった。
After diluting with toluene so that the concentration of the perovskite compound was 200 ppm (μg / g), the quantum yield measured by a quantum yield measuring device was 30%.
Next, 100 μL of organopolysilazane (Durazane 1500 Slow Cure, manufactured by Merck Performance Materials, Inc .: 0.967 g / cm 3 ) was mixed with Dispersion Liquid 1 containing the above-mentioned perovskite compound and a solvent. In the dispersion liquid, the molar ratio of the Si element contained in the organopolysilazane and the Pb element contained in the perovskite compound was Si / Pb = 76.
 上述の分散液を25℃、80%の湿度条件で、スターラーで攪拌しながら、1日間改質処理した。 -The above dispersion liquid was subjected to a modification treatment for 1 day while stirring with a stirrer at a humidity condition of 25 ° C and 80%.
 上述の改質処理後の分散液50μLを1cm×1cmサイズのガラス基板上にキャストし、自然乾燥させたのち、100℃で12時間ベーク処理して組成物を得た。耐熱性試験前後の量子収率を測定して維持率を算出すると、維持率は8%であった。結果を表1に示す。 50 μL of the dispersion liquid after the above modification treatment was cast on a glass substrate of 1 cm × 1 cm size, naturally dried, and then baked at 100 ° C. for 12 hours to obtain a composition. When the maintenance rate was calculated by measuring the quantum yield before and after the heat resistance test, the maintenance rate was 8%. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 上記の結果から、本発明を適用した実施例1~3に係る組成物は、本発明を適用しない比較例1の組成物と比べて、優れた耐熱性を有していることが確認できた。 From the above results, it was confirmed that the compositions according to Examples 1 to 3 to which the present invention was applied had excellent heat resistance as compared with the composition of Comparative Example 1 to which the present invention was not applied. .
[参考例1]
 実施例1~3に記載の組成物を、ガラスチューブ等の中に入れて封止した後に、これを光源である青色発光ダイオードと導光板の間に配置することで、青色発光ダイオードの青色光を緑色光や赤色光に変換することができるバックライトを製造する。
[Reference Example 1]
The composition described in Examples 1 to 3 is put in a glass tube or the like and sealed, and then the composition is placed between a blue light emitting diode which is a light source and a light guide plate, whereby blue light of the blue light emitting diode is emitted. Manufacture backlights that can be converted into green and red light.
[参考例2]
 実施例1~3に記載の組成物をシート化する事でフィルムを得ることができ、これを2枚のバリアーフィルムで挟んで封止したフィルムを導光板の上に設置することで、導光板の端面(側面)に置かれた青色発光ダイオードから導光板を通して前記シートに照射される青色の光を緑色光や赤色光に変換することができるバックライトを製造する。
[Reference example 2]
A film can be obtained by forming the composition described in Examples 1 to 3 into a sheet, and by sandwiching the film with two barrier films and sealing the film, the film is placed on the light guide plate. A backlight capable of converting blue light emitted from the blue light emitting diode placed on the end face (side surface) of the sheet through the light guide plate into green light or red light is manufactured.
[参考例3]
 実施例1~3に記載の組成物を、青色発光ダイオードの発光部近傍に設置することで照射される青色の光を緑色光や赤色光に変換することができるバックライトを製造する。
[Reference Example 3]
By installing the compositions described in Examples 1 to 3 in the vicinity of the light emitting portion of a blue light emitting diode, a backlight capable of converting the emitted blue light into green light or red light is manufactured.
[参考例4]
 実施例1~3に記載の組成物とレジストを混合した後に、溶媒を除去する事で波長変換材料を得ることができる。得られた波長変換材料を光源である青色発光ダイオードと導光板の間や、光源であるOLEDの後段に配置することで、光源の青色光を緑色光や赤色光に変換することができるバックライトを製造する。
[Reference Example 4]
The wavelength conversion material can be obtained by mixing the composition described in Examples 1 to 3 and the resist and then removing the solvent. By arranging the obtained wavelength conversion material between the blue light emitting diode which is the light source and the light guide plate or in the subsequent stage of the OLED which is the light source, a backlight capable of converting the blue light of the light source into green light or red light is provided. To manufacture.
[参考例5]
 実施例1~3に記載の組成物をZnSなどの導電性粒子を混合して成膜し、片面にn型輸送層を積層し、もう片面をp型輸送層で積層することでLEDを得る。電流を流すことによりp型半導体の正孔と、n型半導体の電子が接合面のペロブスカイト化合物中で電荷を打ち消されることで発光させることができる。
[Reference Example 5]
The composition described in Examples 1 to 3 is mixed with conductive particles such as ZnS to form a film, an n-type transport layer is laminated on one side, and a p-type transport layer is laminated on the other side to obtain an LED. . When a current is passed, holes in the p-type semiconductor and electrons in the n-type semiconductor cancel out the charges in the perovskite compound on the junction surface, so that light can be emitted.
[参考例6]
 フッ素ドープされた酸化スズ(FTO)基板の表面上に、酸化チタン緻密層を積層させ、その上から多孔質酸化アルミニウム層を積層し、その上に実施例1~3に記載の組成物を積層し、溶媒を除去した後にその上から2,2‘-,7,7’-tetrakis-(N,N‘-di-p-methoxyphenylamine)-9,9’-spirobifluorene (Spiro-OMeTAD)などのホール輸送層を積層し、その上に銀(Ag)層を積層し、太陽電池を作製する。
[Reference Example 6]
A titanium oxide dense layer is laminated on the surface of a fluorine-doped tin oxide (FTO) substrate, a porous aluminum oxide layer is laminated thereon, and the composition described in Examples 1 to 3 is laminated thereon. After removing the solvent, holes such as 2,2 '-, 7,7'-tetrakis- (N, N'-di-p-methoxyphenylamine) -9,9'-spirobifluorene (Spiro-OMeTAD) are removed from above. A transport layer is laminated, and a silver (Ag) layer is laminated on it to prepare a solar cell.
[参考例7]
 実施例1~3に記載の組成物の溶媒を除去して成形する事で本実施形態の組成物を得ることができ、これを青色発光ダイオードの後段に設置することで、青色発光ダイオードから組成物に照射される青色の光を緑色光や赤色光に変換して白色光を発するレーザーダイオード照明を製造する。
[Reference Example 7]
The composition of the present embodiment can be obtained by removing the solvent of the compositions described in Examples 1 to 3 and molding. By placing this composition in the subsequent stage of the blue light emitting diode, the composition of the blue light emitting diode can be obtained. We manufacture laser diode lighting that emits white light by converting the blue light that illuminates an object into green light and red light.
[参考例8]
 実施例1~3に記載の組成物の溶媒を除去して成形する事で本実施形態の組成物を得ることができる。得られた組成物を光電変換層の一部とすることで、光を検知する検出部に使用する含まれる光電変換素子(光検出素子)材料を製造する。光電変換素子材料は、X線撮像装置及びCMOSイメージセンサーなどの固体撮像装置用のイメージ検出部(イメージセンサー)、指紋検出部、顔検出部、静脈検出部及び虹彩検出部などの生体の一部分の所定の特徴を検出する検出部、パルスオキシメーターなどの光学バイオセンサーに用いられる。
[Reference Example 8]
The composition of this embodiment can be obtained by removing the solvent of the composition described in Examples 1 to 3 and molding. By using the obtained composition as a part of a photoelectric conversion layer, a photoelectric conversion element (photodetection element) material used for a detection unit that detects light is manufactured. The photoelectric conversion element material is used for a part of a living body such as an image detection part (image sensor) for a solid-state imaging device such as an X-ray imaging device and a CMOS image sensor, a fingerprint detection part, a face detection part, a vein detection part and an iris detection part. It is used in optical biosensors such as pulse oximeters that detect specific characteristics.
 本発明によれば、発光性の半導体材料を含む耐熱性が高い組成物、前記組成物を用いたフィルム、前記フィルムを用いた積層構造体、前記積層構造体を備える発光装置及びディスプレイを提供することが可能となる。
 したがって、本発明の組成物、前記組成物を用いたフィルム、前記フィルムを用いた積層構造体、前記積層構造体を備える発光装置及びディスプレイは、発光用途において好適に使用することができる。
According to the present invention, there are provided a composition having high heat resistance including a light emitting semiconductor material, a film using the composition, a laminated structure using the film, a light emitting device and a display including the laminated structure. It becomes possible.
Therefore, the composition of the present invention, the film using the composition, the laminated structure using the film, the light emitting device and the display including the laminated structure can be suitably used for light emitting applications.
1a…第1の積層構造体、1b…第2の積層構造体、10…フィルム、20…第1の基板、21…第2の基板、22…封止層、2…発光装置、3…ディスプレイ、30…光源、40…液晶パネル、50…プリズムシート、60…導光板 1a ... 1st laminated structure, 1b ... 2nd laminated structure, 10 ... film, 20 ... 1st substrate, 21 ... 2nd substrate, 22 ... sealing layer, 2 ... light-emitting device, 3 ... display , 30 ... Light source, 40 ... Liquid crystal panel, 50 ... Prism sheet, 60 ... Light guide plate

Claims (8)

  1.  (1)成分と、(2)成分と、を含む組成物。
     (1)成分:発光性の半導体材料
     (2)成分:第3級アミン、第3級アンモニウムカチオン、及び第3級アンモニウムカチオンから形成される塩からなる群より選ばれる少なくとも一種の化合物又はイオン
    A composition comprising the component (1) and the component (2).
    (1) Component: Luminescent semiconductor material (2) Component: At least one compound or ion selected from the group consisting of tertiary amines, tertiary ammonium cations, and salts formed from tertiary ammonium cations
  2.  (1)成分がA、B、及びXを構成成分とするペロブスカイト化合物である、請求項1に記載の組成物。
    (Aは、ペロブスカイト型結晶構造において、Bを中心とする六面体の各頂点に位置する成分であって、1価の陽イオンである。
     Xは、ペロブスカイト型結晶構造において、Bを中心とする八面体の各頂点に位置する成分を表し、ハロゲン化物イオン、及びチオシアン酸イオンからなる群より選ばれる少なくとも一種の陰イオンである。
     Bは、ペロブスカイト型結晶構造において、Aを頂点に配置する六面体、及びXを頂点に配置する八面体の中心に位置する成分であって、金属イオンである。)
    The composition according to claim 1, wherein the component (1) is a perovskite compound containing A, B, and X as constituent components.
    (A is a component located at each vertex of a hexahedron centered on B in the perovskite type crystal structure, and is a monovalent cation.
    X represents a component located at each vertex of the octahedron centered on B in the perovskite type crystal structure, and is at least one anion selected from the group consisting of a halide ion and a thiocyanate ion.
    In the perovskite type crystal structure, B is a component located at the center of the hexahedron having A at its apex and the octahedron having X at its apex, and is a metal ion. )
  3.  さらに(5)成分を含む請求項1又は2に記載の組成物。
     (5)成分:シラザン、シラザン改質体、下記式(C1)で表される化合物、下記式(C1)で表される化合物の改質体、下記式(C2)で表される化合物、下記式(C2)で表される化合物の改質体、下記式(A5-51)で表される化合物、下記式(A5-51)で表される化合物の改質体、下記式(A5-52)で表される化合物、下記式(A5-52)で表される化合物の改質体、ケイ酸ナトリウム及びケイ酸ナトリウムの改質体からなる群より選択される1種以上の化合物
    Figure JPOXMLDOC01-appb-C000001
    (式(C1)中、Yは単結合、酸素原子又は硫黄原子を表す。
     Yが酸素原子の場合、R30及びR31は、それぞれ独立に水素原子、炭素原子数が1~20のアルキル基、炭素原子数が3~30のシクロアルキル基、又は炭素原子数が2~20の不飽和炭化水素基を表す。
     Yが単結合又は硫黄原子の場合、R30は炭素原子数1~20のアルキル基、炭素原子数が3~30のシクロアルキル基、又は炭素原子数が2~20の不飽和炭化水素基を表し、R31は水素原子、炭素原子数1~20のアルキル基、炭素原子数が3~30のシクロアルキル基、又は炭素原子数が2~20の不飽和炭化水素基を表す。
     式(C2)中、R30、R31及びR32は、それぞれ独立に水素原子、炭素原子数が1~20のアルキル基、炭素原子数が3~30のシクロアルキル基、又は炭素原子数が2~20の不飽和炭化水素基を表す。
     式(C1)及び式(C2)において、
     R30、R31及びR32で表されるアルキル基、シクロアルキル基及び不飽和炭化水素基に含まれる水素原子は、それぞれ独立に、ハロゲン原子又はアミノ基で置換されていてもよい。
     aは1~3の整数である。
     aが2又は3のとき、複数存在するYは、同一であってもよく、異なっていてもよい。
     aが2又は3のとき、複数存在するR30は、同一であってもよく、異なっていてもよい。
     aが2又は3のとき、複数存在するR32は、同一であってもよく、異なっていてもよい。
     aが1又は2のとき、複数存在するR31は、同一であってもよく、異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (式(A5-51)及び式(A5-52)中、Aは2価の炭化水素基であり、Y15は酸素原子又は硫黄原子である。
     R122及びR123は、それぞれ独立に、水素原子、炭素原子数1~20のアルキル基、又は炭素原子数3~30のシクロアルキル基を表し、R124は、炭素原子数1~20のアルキル基、又は炭素原子数3~30のシクロアルキル基を表し、R125及びR126は、それぞれ独立に、水素原子、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、又は炭素原子数3~30のシクロアルキル基を表す。
     R122~R126で表されるアルキル基及びシクロアルキル基に含まれる水素原子は、それぞれ独立に、ハロゲン原子又はアミノ基で置換されていてもよい。)
    The composition according to claim 1 or 2, further comprising (5) component.
    Component (5): silazane, silazane modified product, compound represented by the following formula (C1), modified product of compound represented by the following formula (C1), compound represented by the following formula (C2), below A modified product of the compound represented by formula (C2), a compound represented by the following formula (A5-51), a modified product of the compound represented by the following formula (A5-51), and a compound represented by the following formula (A5-52) ), One or more compounds selected from the group consisting of a compound represented by the following formula (A5-52), a modified product of sodium silicate, and a modified product of sodium silicate.
    Figure JPOXMLDOC01-appb-C000001
    (In formula (C1), Y 5 represents a single bond, an oxygen atom or a sulfur atom.
    When Y 5 is an oxygen atom, R 30 and R 31 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, or 2 carbon atoms. It represents up to 20 unsaturated hydrocarbon groups.
    When Y 5 is a single bond or a sulfur atom, R 30 is an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, or an unsaturated hydrocarbon group having 2 to 20 carbon atoms. R 31 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, or an unsaturated hydrocarbon group having 2 to 20 carbon atoms.
    In formula (C2), R 30 , R 31 and R 32 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, or a carbon atom having 3 to 30 carbon atoms. It represents 2 to 20 unsaturated hydrocarbon groups.
    In formula (C1) and formula (C2),
    The hydrogen atoms contained in the alkyl group, cycloalkyl group and unsaturated hydrocarbon group represented by R 30 , R 31 and R 32 may be independently substituted with a halogen atom or an amino group.
    a is an integer of 1 to 3.
    When a is 2 or 3, a plurality of Y 5 s may be the same or different.
    When a is 2 or 3, a plurality of R 30's may be the same or different.
    When a is 2 or 3, a plurality of R 32's may be the same or different.
    When a is 1 or 2, a plurality of R 31's may be the same or different. )
    Figure JPOXMLDOC01-appb-C000002
    (In formulas (A5-51) and (A5-52), A C represents a divalent hydrocarbon group, and Y 15 represents an oxygen atom or a sulfur atom.
    R 122 and R 123 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a cycloalkyl group having 3 to 30 carbon atoms, and R 124 is an alkyl group having 1 to 20 carbon atoms. Or a cycloalkyl group having 3 to 30 carbon atoms, R 125 and R 126 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, Alternatively, it represents a cycloalkyl group having 3 to 30 carbon atoms.
    The hydrogen atoms contained in the alkyl group and cycloalkyl group represented by R 122 to R 126 may be each independently substituted with a halogen atom or an amino group. )
  4.  さらに(3)成分、(4)成分、及び(4-1)成分からなる群より選ばれる少なくとも一種を含む、請求項1~3のいずれか1項に記載の組成物。
     (3)成分:溶媒
     (4)成分:重合性化合物
     (4-1)成分:重合体
    The composition according to any one of claims 1 to 3, further comprising at least one selected from the group consisting of component (3), component (4), and component (4-1).
    (3) component: solvent (4) component: polymerizable compound (4-1) component: polymer
  5.  請求項1~4のいずれか一項に記載の組成物を形成材料とするフィルム。 A film comprising the composition according to any one of claims 1 to 4 as a forming material.
  6.  請求項5に記載のフィルムを含む積層構造体。 A laminated structure including the film according to claim 5.
  7.  請求項6に記載の積層構造体を備える発光装置。 A light emitting device comprising the laminated structure according to claim 6.
  8.  請求項6に記載の積層構造体を備えるディスプレイ。 A display provided with the laminated structure according to claim 6.
PCT/JP2019/041472 2018-10-26 2019-10-23 Composition, film, laminate structure, light-emitting device, and display WO2020085362A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980070470.6A CN112912341B (en) 2018-10-26 2019-10-23 Composition, film, laminated structure, light-emitting device, and display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-202351 2018-10-26
JP2018202351A JP7133437B2 (en) 2018-10-26 2018-10-26 Compositions, films, laminated structures, light-emitting devices and displays

Publications (1)

Publication Number Publication Date
WO2020085362A1 true WO2020085362A1 (en) 2020-04-30

Family

ID=70331441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041472 WO2020085362A1 (en) 2018-10-26 2019-10-23 Composition, film, laminate structure, light-emitting device, and display

Country Status (4)

Country Link
JP (1) JP7133437B2 (en)
CN (1) CN112912341B (en)
TW (1) TWI830795B (en)
WO (1) WO2020085362A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107600A1 (en) * 2020-11-18 2022-05-27 Dic株式会社 Luminescent particles and production method therefor, luminescent-particle dispersion, photoconversion film, layered product, photoconversion layer, color filter, and luminescent element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422031B (en) * 2021-07-01 2022-04-12 大连理工大学 Preparation method and application of carbon-coated zinc diphosphide composite material prepared by three-step method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332522B2 (en) * 1982-07-29 1988-06-30 Shinnippon Seitetsu Kk
JP2008094968A (en) * 2006-10-12 2008-04-24 Sharp Corp Nanocrystal particle phosphor, coated nanocrystal particle phosphor and manufacturing method of the coated nanocrystal particle phosphor
JP2014141684A (en) * 2012-12-28 2014-08-07 Shin Etsu Chem Co Ltd Surface treatment method of fluophor
WO2018117130A1 (en) * 2016-12-22 2018-06-28 住友化学株式会社 Composition, film, laminated structure, light-emitting device, display, and method for producing composition
JP2018522959A (en) * 2015-05-14 2018-08-16 北京理工大学 Perovskite / polymer composite luminescent material, manufacturing method and application

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096609A1 (en) * 2007-02-05 2008-08-14 Idemitsu Kosan Co., Ltd. Transition metal complex compound and organic electroluminescent device using the same
KR101485470B1 (en) * 2010-04-22 2015-01-22 히타치가세이가부시끼가이샤 Organic electronic material, polymerization initiator and thermal polymerization initiator, ink composition, organic thin film and production method for same, organic electronic element, organic electroluminescent element, lighting device, display element, and display device
KR102410080B1 (en) * 2014-07-31 2022-06-16 스미토모 긴조쿠 고잔 가부시키가이샤 Conductive paste
US10920137B2 (en) * 2015-07-31 2021-02-16 Avantama Ag Luminescent crystals and manufacturing thereof
JP6714412B2 (en) * 2015-11-17 2020-06-24 国立大学法人九州大学 Two-dimensional perovskite forming material, laminate, device and transistor
CN110088231B (en) * 2016-12-22 2022-09-09 住友化学株式会社 Composition, film, laminated structure, light-emitting device, and display
JP6830967B2 (en) * 2016-12-22 2021-02-17 住友化学株式会社 Compositions, films, laminated structures, light emitting devices, and displays
CN110392724B (en) * 2017-03-13 2023-07-25 住友化学株式会社 Mixtures of perovskite compounds
JP6332522B1 (en) * 2017-05-17 2018-05-30 住友化学株式会社 Composition and method for producing the composition
TWI766999B (en) * 2017-05-17 2022-06-11 日商住友化學股份有限公司 Film
CN110785473B (en) * 2017-06-23 2022-12-16 住友化学株式会社 Composition, film, laminated structure, light-emitting device, and display
JP7096818B2 (en) * 2017-06-23 2022-07-06 住友化学株式会社 Composition, film, laminated structure, light emitting device, display, and method for manufacturing the composition.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332522B2 (en) * 1982-07-29 1988-06-30 Shinnippon Seitetsu Kk
JP2008094968A (en) * 2006-10-12 2008-04-24 Sharp Corp Nanocrystal particle phosphor, coated nanocrystal particle phosphor and manufacturing method of the coated nanocrystal particle phosphor
JP2014141684A (en) * 2012-12-28 2014-08-07 Shin Etsu Chem Co Ltd Surface treatment method of fluophor
JP2018522959A (en) * 2015-05-14 2018-08-16 北京理工大学 Perovskite / polymer composite luminescent material, manufacturing method and application
WO2018117130A1 (en) * 2016-12-22 2018-06-28 住友化学株式会社 Composition, film, laminated structure, light-emitting device, display, and method for producing composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107600A1 (en) * 2020-11-18 2022-05-27 Dic株式会社 Luminescent particles and production method therefor, luminescent-particle dispersion, photoconversion film, layered product, photoconversion layer, color filter, and luminescent element
JPWO2022107600A1 (en) * 2020-11-18 2022-05-27
JP7381724B2 (en) 2020-11-18 2023-11-15 Dic株式会社 Luminescent particles and their manufacturing methods, luminescent particle dispersions, light conversion films, laminates, light conversion layers, color filters, and light emitting devices

Also Published As

Publication number Publication date
CN112912341B (en) 2023-05-02
JP7133437B2 (en) 2022-09-08
JP2020066568A (en) 2020-04-30
TW202028423A (en) 2020-08-01
TWI830795B (en) 2024-02-01
CN112912341A (en) 2021-06-04

Similar Documents

Publication Publication Date Title
JP7133741B1 (en) Compositions, films, laminated structures, light-emitting devices and displays
WO2018117130A1 (en) Composition, film, laminated structure, light-emitting device, display, and method for producing composition
WO2020085513A1 (en) Particle, composition, film, laminated structure, light-emitting device, and display
WO2020085362A1 (en) Composition, film, laminate structure, light-emitting device, and display
WO2020085364A1 (en) Composition, film, laminated structure, light-emitting device, and display
WO2020085516A1 (en) Composition, film, laminated structure, light-emitting device, and display
WO2020085363A1 (en) Composition, film, laminate structure, light-emitting device, and display
JP7340373B2 (en) Compositions, films, laminate structures, light emitting devices and displays
WO2020085514A1 (en) Composition, film, laminate structure, light-emitting device, and display
WO2020085361A1 (en) Particles, composition, film, layered structure, light-emitting device, and display
JP7470532B2 (en) Compound, composition, film, laminated structure, light-emitting device, display, and method for producing compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19877148

Country of ref document: EP

Kind code of ref document: A1