WO2017085767A1 - 小麦アレルゲンに結合する核酸分子およびその用途 - Google Patents

小麦アレルゲンに結合する核酸分子およびその用途 Download PDF

Info

Publication number
WO2017085767A1
WO2017085767A1 PCT/JP2015/082139 JP2015082139W WO2017085767A1 WO 2017085767 A1 WO2017085767 A1 WO 2017085767A1 JP 2015082139 W JP2015082139 W JP 2015082139W WO 2017085767 A1 WO2017085767 A1 WO 2017085767A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
acid molecule
wheat allergen
wheat
allergen
Prior art date
Application number
PCT/JP2015/082139
Other languages
English (en)
French (fr)
Inventor
朋子 白鳥
金子 直人
行大 白鳥
克紀 堀井
宏貴 皆川
穣 秋冨
嘉仁 吉田
巌 和賀
Original Assignee
Necソリューションイノベータ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necソリューションイノベータ株式会社 filed Critical Necソリューションイノベータ株式会社
Priority to CN201580084587.1A priority Critical patent/CN108350460A/zh
Priority to PCT/JP2015/082139 priority patent/WO2017085767A1/ja
Priority to JP2017551410A priority patent/JP6598315B2/ja
Priority to EP15908707.1A priority patent/EP3378939B1/en
Priority to US15/776,142 priority patent/US10934548B2/en
Publication of WO2017085767A1 publication Critical patent/WO2017085767A1/ja
Priority to HK18113018.1A priority patent/HK1253878A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers

Definitions

  • the present invention relates to nucleic acid molecules that bind to wheat allergens and uses thereof.
  • Wheat is a food that is frequently consumed on a daily basis, but in recent years, the number of wheat allergic patients has increased and has been regarded as a problem. Since many processed foods of bread and noodles use wheat, it is extremely important to analyze whether wheat is mixed as a raw material in processed foods and their production lines. .
  • Allergic allergens are generally proteins and their degradation products (peptides), and analysis methods using antibodies using these as antigens are the mainstream.
  • wheat for example, gluten, which is a wheat protein, is known as an allergen.
  • As an analysis method for gluten a method using an ELISA method has been reported (Non-Patent Document 1, Non-Patent Document 2).
  • an antibody is a protein and has a problem in stability, it is difficult to use the antibody for a simple test method at a low cost.
  • an object of the present invention is to provide a new nucleic acid molecule that can be used for detection of wheat allergen.
  • the wheat allergen-binding nucleic acid molecule of the present invention is a nucleic acid molecule having a dissociation constant for wheat allergen of 20 nM or less.
  • the wheat allergen analysis sensor of the present invention includes the wheat allergen-binding nucleic acid molecule of the present invention.
  • the method for analyzing wheat allergens of the present invention comprises contacting a sample with the wheat allergen-binding nucleic acid molecule of the present invention, and binding the wheat allergen in the sample and the nucleic acid molecule to thereby bind the wheat allergen in the sample.
  • the wheat allergen-binding nucleic acid molecule of the present invention can bind to a wheat allergen with the dissociation constant as described above. For this reason, according to the wheat allergen-binding nucleic acid molecule of the present invention, for example, the wheat allergen can be detected with excellent accuracy depending on the presence or absence of binding to the wheat allergen in the sample. Therefore, the wheat allergen-binding nucleic acid molecule of the present invention can be said to be a very useful tool for detecting wheat allergens in fields such as food production, food management, and food distribution.
  • FIG. 1 is a schematic diagram showing an example of a predicted secondary structure of a wheat allergen-binding nucleic acid molecule of the present invention.
  • FIG. 2 is a graph showing aptamer binding ability to wheat allergen in Example 1 of the present invention.
  • the wheat allergen is gluten or a subunit thereof.
  • the wheat allergen is a native allergen or a heat-denatured allergen.
  • the nucleic acid molecule of the present invention includes, for example, at least one polynucleotide selected from the group consisting of the following (a) to (d).
  • A a polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 1 and 2
  • B one or several bases deleted, substituted, inserted and / or added in any one of the nucleotide sequences of (a)
  • C a polynucleotide that binds to the wheat allergen
  • C a polynucleotide that binds to the wheat allergen
  • c a nucleotide sequence that has 80% or more identity to the nucleotide sequence of (a)
  • D a polynucleotide comprising a complementary base sequence and binding to a wheat allergen to a polynucleotide that hybridizes under stringent conditions to a polynucleotide comprising any one of the base sequences of (a) above
  • the polynucleotide is DNA.
  • the analysis sensor of the present invention further includes, for example, a nucleic acid molecule that forms a G quartet structure.
  • the nucleic acid molecule forming the G quartet structure is DNAzyme or RNAzyme.
  • the analysis sensor of the present invention further includes porphyrin, for example.
  • the sample is at least one selected from the group consisting of food, food raw materials, and food additives.
  • the wheat allergen-binding nucleic acid molecule of the present invention is a nucleic acid molecule having a dissociation constant for wheat allergen of 20 nM or less.
  • the nucleic acid molecule of the present invention binds to, for example, gluten, a subunit thereof, or a domain thereof, which is a major allergen of wheat.
  • the wheat allergen may be, for example, an unmodified allergen that is not denatured by heating or a denatured allergen that is denatured by heating.
  • the nucleic acid molecule of the present invention can bind to any allergen.
  • the nucleic acid molecule of the present invention has a dissociation constant for the wheat allergen of, for example, 20 nM or less and 15 nM or less.
  • the detection limit concentration of the wheat allergen is, for example, 250 nM or 125 nM.
  • the nucleic acid molecule of the present invention has a dissociation constant for the gluten of, for example, 20 nM or less, 15 nM or less.
  • the detection limit concentration of the gluten is, for example, 250 nM or 125 nM.
  • the binding between the nucleic acid molecule of the present invention and the wheat allergen can be determined by, for example, surface plasmon resonance molecular interaction (SPR) analysis.
  • SPR surface plasmon resonance molecular interaction
  • ProteON trade name, BioRad
  • BioRad BioRad
  • the nucleic acid molecule of the present invention is, for example, a nucleic acid molecule containing the following polynucleotide (a).
  • the nucleic acid molecule containing the polynucleotide (a) also includes the meaning of a nucleic acid molecule containing at least one polynucleotide selected from the group consisting of (b) to (d), for example.
  • A a polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 1 and 2
  • B one or several bases deleted, substituted, inserted and / or added in any one of the nucleotide sequences of (a)
  • C a polynucleotide that binds to the wheat allergen
  • C a polynucleotide that has 80% or more identity to the nucleotide sequence of (a)
  • D a polynucleotide comprising a complementary base sequence and binding to a wheat allergen to a polynucleotide that hybridizes under stringent conditions to a polynucleotide comprising any one of the base sequences of (a) above nucleotide
  • the structural unit of the polynucleotide is, for example, a nucleotide residue, and examples thereof include a deoxyribonucleotide residue and a ribonucleotide residue.
  • the polynucleotide is, for example, DNA composed of deoxyribonucleotide residues, DNA containing deoxyribonucleotide residues and ribonucleotide residues, and may further contain non-nucleotide residues.
  • the wheat allergen-binding nucleic acid molecule of the present invention is hereinafter also referred to as a DNA aptamer, for example.
  • the nucleic acid molecule of the present invention may be, for example, a molecule composed of any of the polynucleotides (a) to (d) or a molecule containing the polynucleotide.
  • the nucleic acid molecule of the present invention may contain two or more of any of the polynucleotides (a) to (d) as described later.
  • the two or more polynucleotides may have the same sequence or different sequences.
  • the nucleic acid molecule of the present invention may further have, for example, a linker and / or an additional sequence.
  • the polynucleotide (a) is a polynucleotide comprising any one of the nucleotide sequences of SEQ ID NOS: 1 and 2.
  • SEQ ID NO: 2 is a miniaturized array of SEQ ID NO: 1.
  • Table 1 the underlined region of SEQ ID NO: 1 corresponds to the base sequence of SEQ ID NO: 2.
  • FIG. 1 shows a predicted secondary structure of a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1 or 2, but the present invention is not limited to this.
  • “one or several” may be, for example, within a range in which the polynucleotide of (b) binds to the wheat allergen.
  • the “one or several” is, for example, 1 to 10, 1 to 7, 1 to 5, 1 to 3, 1 or 2 in any one of the base sequences of (a).
  • the numerical range of numbers such as the number of bases and the number of sequences, for example, discloses all positive integers belonging to the range. That is, for example, the description “1 to 5 bases” means all disclosures of “1, 2, 3, 4, 5 bases” (the same applies hereinafter).
  • identity may be, for example, a range in which the polynucleotide of (c) binds to the wheat allergen.
  • the identity is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more.
  • the identity can be calculated with default parameters using analysis software such as BLAST and FASTA (hereinafter the same).
  • the “hybridizable polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide in (a).
  • the hybridization can be detected by, for example, various hybridization assays.
  • the hybridization assay is not particularly limited. For example, “Molecular Cloning: A Laboratory Manual 2nd Ed.” (Cold Spring Harbor Laboratories) edited by Sambrook et al., “Molecular Cloning: A Laboratory Manual 2nd Edition”. (1989)] and the like can also be employed.
  • the “stringent conditions” may be, for example, any of low stringent conditions, moderate stringent conditions, and highly stringent conditions.
  • Low stringent conditions are, for example, conditions of 5 ⁇ SSC, 5 ⁇ Denhardt's solution, 0.5% SDS, 50% formamide, and 32 ° C.
  • Medium stringent conditions are, for example, 5 ⁇ SSC, 5 ⁇ Denhardt's solution, 0.5% SDS, 50% formamide, 42 ° C.
  • “High stringent conditions” are, for example, conditions of 5 ⁇ SSC, 5 ⁇ Denhardt's solution, 0.5% SDS, 50% formamide, 50 ° C.
  • the degree of stringency can be set by those skilled in the art by appropriately selecting conditions such as temperature, salt concentration, probe concentration and length, ionic strength, time, and the like.
  • “Stringent conditions” are, for example, Zanburuku previously described (Sambrook) et al., Eds., "Molecular Cloning: A Laboratory Manual 2nd Edition (Molecular Cloning:. A Laboratory Manual 2 nd Ed) " [(Cold Spring Harbor Laboratory Press (1989)] and the like can also be employed.
  • the nucleic acid molecule of the present invention may include, for example, one of the polynucleotide sequences (a) to (d) or a plurality of the polynucleotide sequences. In the latter case, it is preferable that a plurality of polynucleotide sequences are linked to form a single-stranded polynucleotide.
  • the sequences of the plurality of polynucleotides may be directly linked to each other or indirectly linked via a linker.
  • the polynucleotide sequences are preferably linked directly or indirectly at the respective ends.
  • the sequences of the plurality of polynucleotides may be the same or different, for example.
  • sequences of the plurality of polynucleotides are preferably the same, for example.
  • the number of the sequences is not particularly limited, and is, for example, 2 or more, 2 to 20, 2 to 10, 2 or 3.
  • the linker is not particularly limited.
  • the length of the linker is not particularly limited, and is, for example, 1 to 200 bases long, 1 to 20 bases long, 3 to 12 bases long, and 5 to 9 bases long.
  • the structural unit of the linker is, for example, a nucleotide residue, and examples thereof include a deoxyribonucleotide residue and a ribonucleotide residue.
  • the linker is not particularly limited, and examples thereof include polynucleotides such as DNA consisting of deoxyribonucleotide residues and DNA containing ribonucleotide residues.
  • linker examples include polydeoxythymine (poly dT), polydeoxyadenine (poly dA), poly dAdT which is a repeating sequence of A and T, and preferably poly dT and poly dAdT.
  • the polynucleotide is preferably a single-stranded polynucleotide.
  • the single-stranded polynucleotide is preferably capable of forming a stem structure and a loop structure by, for example, self-annealing.
  • the polynucleotide is preferably capable of forming a stem loop structure, an internal loop structure, and / or a bulge structure, for example.
  • the nucleic acid molecule of the present invention may be, for example, double stranded.
  • one single-stranded polynucleotide includes any of the polynucleotides (a) to (d), and the other single-stranded polynucleotide is not limited.
  • the other single-stranded polynucleotide include a polynucleotide comprising a base sequence complementary to any one of the polynucleotides (a) to (d).
  • the nucleic acid molecule of the present invention is double-stranded, it is preferably dissociated into a single-stranded polynucleotide by denaturation or the like prior to use.
  • the dissociated single-stranded polynucleotide of any one of (a) to (d) preferably has, for example, a stem structure and a loop structure as described above.
  • the stem structure and the loop structure can be formed means, for example, that the stem structure and the loop structure are actually formed, and even if the stem structure and the loop structure are not formed, the stem structure depending on the conditions. And the ability to form a loop structure.
  • a stem structure and a loop structure can be formed includes, for example, both experimental confirmation and prediction by a computer simulation.
  • the structural unit of the nucleic acid molecule of the present invention is, for example, a nucleotide residue.
  • the nucleotide residue include deoxyribonucleotide residue and ribonucleotide residue.
  • Examples of the nucleic acid molecule of the present invention include DNA composed only of deoxyribonucleotide residues, DNA containing one or several ribonucleotide residues, and the like. In the latter case, “one or several” is not particularly limited. For example, in the polynucleotide, for example, 1 to 91, 1 to 30, 1 to 15, 1 to 7, 1 to 3 One or two.
  • the polynucleotide may include a modified base.
  • the modified base is not particularly limited, and examples thereof include a base modified with a natural base (non-artificial base), and preferably has the same function as the natural base.
  • the natural base is not particularly limited, and examples thereof include a purine base having a purine skeleton and a pyrimidine base having a pyrimidine skeleton.
  • the purine base is not particularly limited, and examples thereof include adenine (a) and guanine (g).
  • the pyrimidine base is not particularly limited, and examples thereof include cytosine (c), thymine (t), uracil (u) and the like.
  • the base modification site is not particularly limited.
  • examples of the purine base modification site include the 7th and 8th positions of the purine skeleton.
  • examples of the modification site of the pyrimidine base include the 5th and 6th positions of the pyrimidine skeleton.
  • modified uracil or modified thymine when “ ⁇ O” is bonded to carbon at position 4 and a group other than “—CH 3 ” or “—H” is bonded to carbon at position 5, it is called modified uracil or modified thymine. Can do.
  • the modifying group of the modifying base is not particularly limited, and examples thereof include a methyl group, a fluoro group, an amino group, a thio group, a benzylaminocarbonyl group represented by the following formula (1), and a tryptaminocarbonyl represented by the following formula (2).
  • the modified base is not particularly limited.
  • modified adenine modified with adenine, modified thymine modified with thymine, modified guanine modified with guanine, modified cytosine modified with cytosine and modified modified with uracil examples include uracil and the like, and the modified thymine, the modified uracil and the modified cytosine are preferable.
  • modified adenine examples include 7'-deazaadenine and the like.
  • modified guanine examples include, for example, 7'-deazaguanine.
  • modified cytosine examples include 5'-methylcytosine (5-Me-dC).
  • modified thymine examples include 5'-benzylaminocarbonylthymine, 5'-tryptaminocarbonylthymine, 5'-isobutylaminocarbonylthymine and the like.
  • modified uracil examples include 5'-benzylaminocarbonyluracil (BndU), 5'-tryptaminocarbonyluracil (TrpdU), 5'-isobutylaminocarbonyluracil and the like.
  • the exemplified modified uracil can also be referred to as a modified base of thymine.
  • the polynucleotide may contain, for example, only one of the modified bases or two or more kinds of the modified bases.
  • the nucleic acid molecule of the present invention may contain, for example, a modified nucleotide.
  • the modified nucleotide may be a nucleotide having the modified base described above, a nucleotide having a modified sugar in which a sugar residue is modified, It may be a nucleotide having a modified base and the modified sugar.
  • the sugar residue is not particularly limited, and examples thereof include deoxyribose residue or ribose residue.
  • the modification site in the sugar residue is not particularly limited, and examples thereof include the 2'-position and the 4'-position of the sugar residue, and both of them may be modified.
  • Examples of the modifying group of the modified sugar include a methyl group, a fluoro group, an amino group, and a thio group.
  • the base when the base is a pyrimidine base, for example, the 2'-position and / or the 4'-position of the sugar residue is preferably modified.
  • Specific examples of the modified nucleotide residue include, for example, a 2′-methylated-uracil nucleotide residue and a 2′-methylated-cytosine nucleotide residue in which the deoxyribose residue or the 2 ′ position of the ribose residue is modified.
  • the number of the modified nucleotides is not particularly limited, and is, for example, 1 to 100, 1 to 90, 1 to 80, 1 to 70 in the polynucleotide. Further, the modified nucleotides in the full length of the nucleic acid molecule including the polynucleotide are not particularly limited, and are, for example, 1 to 91, 1 to 78, or the same as the above-mentioned range.
  • the nucleic acid molecule of the present invention may contain, for example, one or several artificial nucleic acid monomer residues.
  • the “one or several” is not particularly limited, and is, for example, 1 to 100, 1 to 50, 1 to 30, or 1 to 10 in the polynucleotide.
  • Examples of the artificial nucleic acid monomer residue include PNA (peptide nucleic acid), LNA (Locked Nucleic Acid), ENA (2'-O, 4'-C-Ethylenebridged Nucleic Acids) and the like.
  • the nucleic acid in the monomer residue is the same as described above, for example.
  • the nucleic acid molecule of the present invention is preferably nuclease resistant, for example.
  • the nucleic acid molecule of the present invention preferably has, for example, the modified nucleotide residue and / or the artificial nucleic acid monomer residue for nuclease resistance. Since the nucleic acid molecule of the present invention is nuclease resistant, for example, tens of kDa PEG (polyethylene glycol) or deoxythymidine may be bound to the 5 'end or 3' end.
  • the nucleic acid molecule of the present invention may further have an additional sequence, for example.
  • the additional sequence is preferably bound to, for example, at least one of the 5 'end and the 3' end of the nucleic acid molecule, and more preferably the 3 'end.
  • the additional sequence is not particularly limited.
  • the length of the additional sequence is not particularly limited, and is, for example, 1 to 200 bases long, 1 to 50 bases long, 1 to 25 bases long, or 18 to 24 bases long.
  • the structural unit of the additional sequence is, for example, a nucleotide residue, and examples thereof include a deoxyribonucleotide residue and a ribonucleotide residue.
  • the additional sequence is not particularly limited, and examples thereof include polynucleotides such as DNA consisting of deoxyribonucleotide residues and DNA containing ribonucleotide residues. Specific examples of the additional sequence include poly dT and poly dA.
  • the nucleic acid molecule of the present invention can be used, for example, immobilized on a carrier.
  • a carrier for example, either the 5 'end or the 3' end is preferably immobilized, and more preferably the 3 'end.
  • the nucleic acid molecule may be immobilized directly or indirectly on the carrier. In the latter case, for example, it is preferable to immobilize via the additional sequence.
  • the nucleic acid molecule of the present invention may further have a labeling substance, for example.
  • the labeling substance is preferably bound to, for example, at least one of the 5 'end and the 3' end of the nucleic acid molecule, and more preferably the 5 'end.
  • the labeling substance is not particularly limited, and for example, description to be described later can be used.
  • the method for producing the nucleic acid molecule of the present invention is not particularly limited, and can be synthesized by, for example, a genetic engineering technique such as a nucleic acid synthesis method using chemical synthesis or a known method.
  • the nucleic acid molecule of the present invention can also be obtained, for example, by the so-called SELEX method.
  • the target is preferably gluten, which is a wheat allergen.
  • the nucleic acid molecule of the present invention exhibits binding properties to the wheat allergen.
  • the use of the nucleic acid molecule of the present invention is not particularly limited as long as it uses the binding property to the wheat allergen.
  • the nucleic acid molecule of the present invention can be used in various methods, for example, instead of the antibody against the wheat allergen.
  • the wheat allergen analysis sensor of the present invention includes the wheat allergen-binding nucleic acid molecule of the present invention as described above.
  • the sensor of this invention should just contain the wheat allergen binding nucleic acid molecule of the said this invention, and another structure is not restrict
  • the sensor of the present invention becomes, for example, an active type when the wheat allergen is bound to the wheat allergen-binding nucleic acid molecule, and becomes an inactive type when the wheat allergen is not bound to the wheat allergen-binding nucleic acid molecule.
  • a nucleic acid molecule for detecting binding that detects the binding may be further included.
  • the binding of the wheat allergen to the wheat allergen-binding nucleic acid molecule depends on whether the nucleic acid molecule for binding detection is an active type or an inactive type. The presence / absence of the wheat allergen can be analyzed.
  • binding detection nucleic acid molecule examples include a nucleic acid molecule that forms a G quartet structure.
  • the nucleic acid molecule that forms the G-culted structure is, for example, an active type when a G-culted structure is formed, and an inactive state when a G-culted structure is not formed.
  • nucleic acid molecule forming the G quartet structure examples include DNAzyme and RNAzyme, and preferably DNAzyme.
  • An active DNAzyme having a G-culted structure exhibits a peroxidase-like activity that catalyzes a redox reaction, for example. Therefore, when the sensor of the present invention has DNAzyme, the presence or amount of binding of the wheat allergen to the wheat allergen-binding nucleic acid molecule can be analyzed by detecting the catalytic activity of the DNAzyme.
  • the sensor of the present invention coexists, for example, porphyrin.
  • the porphyrin is not particularly limited, and examples thereof include unsubstituted porphyrin and derivatives thereof.
  • the derivatives include substituted porphyrins and metal porphyrins complexed with metal elements.
  • Examples of the substituted porphyrin include N-methylmesoporphyrin.
  • Examples of the metal porphyrin include hemin, which is a trivalent iron complex.
  • the porphyrin is, for example, preferably the metal porphyrin, more preferably hemin.
  • active DNAzyme having a G-culted structure generates fluorescence by forming a complex with porphyrin, for example. Therefore, when the sensor of the present invention has DNAzyme, binding of the wheat allergen to the wheat allergen-binding nucleic acid molecule by coexisting the porphyrin and detecting fluorescence due to the complex formation of the DNAzyme and the porphyrin The presence or absence or the amount of binding can be analyzed.
  • the porphyrin is not particularly limited, and for example, N-methylmesoporphyrin (NMM), Zn-DIGP, ZnPP9, and TMPyP are preferable.
  • the sensor of the present invention may further include a labeling substance, for example.
  • the labeling substance is preferably bound to, for example, at least one of the 5 'end and the 3' end of the nucleic acid molecule, and more preferably the 5 'end.
  • the labeling substance is not particularly limited, and examples thereof include fluorescent substances, dyes, isotopes and enzymes.
  • the fluorescent substance include pyrene, TAMRA, fluorescein, Cy3 dye, Cy5 dye, FAM dye, rhodamine dye, Texas red dye, JOE, MAX, HEX, TYE and the like, and the dye includes, for example, And Alexa dyes such as Alexa 488 and Alexa 647.
  • the enzyme include luciferase, alkaline phosphatase, peroxidase, ⁇ -galactosidase, and glucuronidase.
  • the labeling substance may be linked directly to the nucleic acid molecule or indirectly via a linker, for example.
  • the linker is not particularly limited, and for example, the above examples can be used.
  • the analysis method of the present invention is a method for analyzing wheat allergen, wherein a sample is brought into contact with the wheat allergen-binding nucleic acid molecule of the present invention, and the wheat allergen in the sample and the above-mentioned It comprises a step of detecting wheat allergen in the sample by binding with a nucleic acid molecule.
  • the analysis method of the present invention is characterized by using the nucleic acid molecule of the present invention, and other steps and conditions are not particularly limited.
  • the wheat allergen analysis sensor of the present invention may be used as the nucleic acid molecule of the present invention.
  • the wheat allergen in the sample is specifically detected by detecting the binding of the wheat allergen and the nucleic acid molecule, for example. Can be detected. Specifically, for example, since the presence or absence of wheat allergen in the sample or the amount of wheat allergen can be analyzed, it can be said that qualitative or quantitative determination is possible.
  • the sample is not particularly limited.
  • the sample include foods, food materials, food additives, and the like.
  • Examples of the sample include a deposit in a food processing shop or a cooking place, a cleaning liquid after cleaning, and the like.
  • the sample may be, for example, a liquid sample or a solid sample.
  • the sample is preferably a liquid sample because it is easy to contact with the nucleic acid molecule and is easy to handle.
  • a mixed solution, an extract, a dissolved solution, and the like may be prepared using a solvent and used.
  • the solvent is not particularly limited, and examples thereof include water, physiological saline, and buffer solution.
  • the detection step detects, for example, a contact step of bringing the sample and the nucleic acid molecule into contact with each other to bind the wheat allergen and the nucleic acid molecule in the sample, and binding of the wheat allergen and the nucleic acid molecule.
  • the detection step further includes, for example, a step of analyzing the presence or amount of wheat allergen in the sample based on the result of the binding detection step.
  • the method for contacting the sample and the nucleic acid molecule is not particularly limited.
  • the contact between the sample and the nucleic acid molecule is preferably performed in a liquid, for example.
  • the liquid is not particularly limited, and examples thereof include water, physiological saline, and buffer solution.
  • the contact condition between the sample and the nucleic acid molecule is not particularly limited.
  • the contact temperature is, for example, 4 to 37 ° C. or 18 to 25 ° C.
  • the contact time is, for example, 10 to 120 minutes or 30 to 60 minutes.
  • the nucleic acid molecule may be, for example, an immobilized nucleic acid molecule immobilized on a carrier or an unfixed free nucleic acid molecule.
  • the sample is contacted in a container.
  • the nucleic acid molecule is preferably, for example, the immobilized nucleic acid molecule because of its excellent handleability.
  • the carrier is not particularly limited, and examples thereof include a substrate, a bead, and a container. Examples of the container include a microplate and a tube.
  • the nucleic acid molecule is immobilized as described above, for example.
  • the binding detection step is a step of detecting the binding between the wheat allergen in the sample and the nucleic acid molecule as described above.
  • the presence or absence of wheat allergen in the sample can be analyzed (qualitative), and by detecting the degree of binding (binding amount) between the two, for example, The amount of wheat allergen in the sample can be analyzed (quantified).
  • the binding between the wheat allergen and the nucleic acid molecule cannot be detected, it can be determined that the wheat allergen is not present in the sample. If the binding is detected, the wheat allergen is present in the sample. It can be judged.
  • the method for analyzing the binding between the wheat allergen and the nucleic acid molecule is not particularly limited.
  • a conventionally known method for detecting the binding between substances can be adopted, and specific examples include the above-mentioned SPR, fluorescence polarization method and the like.
  • the binding may be, for example, detection of a complex of the wheat allergen and the nucleic acid molecule.
  • the detection of the binding between the wheat allergen and the nucleic acid molecule by the fluorescence polarization method can be performed, for example, as follows.
  • the fluorescence polarization method is generally characterized in that when the labeling substance is irradiated with polarized excitation light, the fluorescence emitted from the labeling substance exhibits different degrees of polarization depending on the molecular weight of the molecule labeled with the labeling substance.
  • Is a measurement method based on In the present invention for example, by using the nucleic acid molecule labeled with the labeling substance (labeled nucleic acid molecule), the binding between the wheat allergen and the nucleic acid molecule can be detected by the fluorescence polarization method. .
  • the former when the labeled nucleic acid molecule is compared with a state that is not bound to the wheat allergen and a state that is bound to the wheat allergen, the former has a relatively low molecular weight, and therefore has a relatively low degree of polarization.
  • the latter has a relatively high degree of polarization due to its relatively high molecular weight. For this reason, for example, by comparing the degree of polarization of the labeled nucleic acid molecule before contact with the sample and the degree of polarization of the labeled nucleic acid molecule after contact with the sample, the wheat allergen and the label are compared. Binding to the activated nucleic acid molecule can be detected.
  • the polarization of the labeled nucleic acid molecule after contact with the sample is evaluated based on the degree of polarization of at least one of the labeled nucleic acid molecule not bound to the wheat allergen and the labeled nucleic acid molecule bound to the wheat allergen. By evaluating the degree, the binding between the wheat allergen and the labeled nucleic acid molecule can also be detected.
  • the nucleic acid molecule of the present invention can be easily used as a sensor only by labeling with the labeling substance.
  • the detection wavelength of the labeling substance varies depending on the type thereof, for example, the influence of the fluorescence derived from the sample can be reduced by selecting the labeling substance according to the type of the sample.
  • the labeled nucleic acid molecule is not particularly limited as long as the nucleic acid molecule of the present invention is labeled with the labeling substance, for example.
  • Examples of the labeled nucleic acid molecule include a form in which the labeling substance is linked to the nucleic acid molecule of the present invention.
  • the labeling substance may be directly linked to the nucleic acid molecule of the present invention, or the labeling substance is indirectly linked via a linker or the like as described above. You may connect to.
  • the length of the linker is not particularly limited and is, for example, 0 to 10 bases, 0 to 7 bases, or 0 to 5 bases.
  • the labeling substance may be linked to, for example, any part of the nucleic acid molecule of the present invention, and specific examples include 5 ′ end and 3 ′ end, and may be linked to both ends. It may be linked to any one of the ends, preferably the 5 ′ end.
  • labeled nucleic acid molecule examples include, for example, the nucleic acid molecule of the present invention and a complementary strand that is complementary to the nucleic acid molecule (hereinafter also referred to as “labeled complementary strand”). And a hybrid molecule in which the nucleic acid molecule and the labeled complementary strand are hybridized.
  • the complementary strand only needs to have a sequence complementary to a part of the nucleic acid molecule of the present invention, for example, may be composed of only the complementary sequence, or includes the complementary sequence. But you can.
  • the complementary strand may be complementary to any region of the nucleic acid molecule of the present invention, and is preferably complementary to the 5 'end region or 3' end region.
  • the nucleic acid molecule of the present invention preferably has a linker at the 5 'end or 3' end, and the complementary sequence is preferably complementary to the linker.
  • the length of the linker is not particularly limited, and is, for example, 10 to 30 bases long, 15 to 25 bases long, or 18 to 24 bases long.
  • the length of the complementary strand is not particularly limited, and is, for example, 10 to 30 bases long, 15 to 25 bases long, or 18 to 24 bases long.
  • the labeling substance may be linked to, for example, any part of the complementary strand, and specific examples include the 5 ′ end and the 3 ′ end. Alternatively, it may be linked to either one of the ends.
  • the labeling substance is preferably linked to the 5 ′ end of the complementary strand
  • the labeled complementary strand is When complementary to the 5 ′ end region of the nucleic acid molecule of the present invention, the labeling substance is preferably linked to the 3 ′ end of the complementary strand.
  • the labeling substance is not particularly limited, and the examples described above can be used, and among these, the fluorescent substance and the dye are preferable.
  • the analysis method of the present invention includes, for example, a contact step of bringing the sample and the labeled nucleic acid molecule into contact with each other, and binding the wheat allergen and the labeled nucleic acid molecule in the sample. , Irradiating the labeled nucleic acid molecule with polarized excitation light to measure the degree of polarization of the labeled nucleic acid molecule, and comparing the measurement result and the evaluation criteria in the measuring step to compare the wheat allergen and the labeling It is preferable to include a detection step of detecting a step of detecting binding with the nucleic acid molecule.
  • the wavelength of the polarized excitation light and the detection wavelength of the polarization degree are not particularly limited, and can be appropriately set according to, for example, the type of the labeling substance.
  • the wavelength of the polarized excitation light is, for example, 620 to 680 nm
  • the detection wavelength of the degree of polarization is, for example, 660 to 800 nm.
  • the irradiation time of the polarized excitation light is not particularly limited, and examples thereof include 1 to 5 nanoseconds.
  • the evaluation criterion may be determined in advance or may be determined for each measurement, for example.
  • a wheat allergen non-binding standard and a wheat allergen binding standard can be set.
  • the former criterion is, for example, the degree of polarization of only the labeled nucleic acid molecule to which wheat allergen is not bound
  • the latter criterion is, for example, the degree of polarization of the labeled nucleic acid molecule to which wheat allergen is bound.
  • the former standard for example, if the measured value in the measurement step is higher than the standard, it can be determined that wheat allergen is present. It can be determined that wheat allergen is present. On the other hand, if the measurement value in the measurement step is comparable or low to the standard, it can be determined that wheat allergen is not present.
  • the former criterion may be, for example, the degree of polarization of the labeled nucleic acid molecule before the contacting step.
  • the measured value in the measurement step is lower than the standard, it can be determined that wheat allergen is not present.
  • the measured value in the measurement step is the same or higher than the reference, it can be determined that wheat allergen is present, and if it is relatively higher than the reference, it is determined that a relatively large amount of wheat allergen is present. it can.
  • the reference may be a correlation between the amount of wheat allergen and the degree of polarization.
  • the correlation is shown by contacting a plurality of known concentrations of wheat allergens with a predetermined amount of the labeled nucleic acid molecule and measuring the degree of polarization of the labeled nucleic acid molecules bound to each concentration of wheat allergen. A correlation equation is obtained. And the quantity of the wheat allergen in the said sample can be judged from this correlation type
  • the wheat allergen analysis sensor of the present invention When the wheat allergen analysis sensor of the present invention is used as the nucleic acid molecule of the present invention, the wheat allergen can be detected by, for example, detecting a redox reaction or detecting fluorescence.
  • the DNAzyme is G by the binding of the wheat allergen to the wheat allergen-binding nucleic acid molecule. It forms a culted structure and becomes an active form showing the catalytic activity of a peroxidase-like redox reaction. For this reason, the binding of the wheat allergen to the wheat allergen-binding nucleic acid molecule can be detected by detecting the redox reaction. In this case, for example, it is preferable to use a substrate for the oxidation-reduction reaction in combination.
  • the substrate is not particularly limited, and for example, 3,3 ′, 5,5′-tetramethylbenzidine (TMB), 1,2-phenylenediamine (OPD), 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic Acid Ammonium Salt (ABTS), 3,3'-Diaminobenzodinine (DAB), 3,3'-Diaminobenzoidine Tetrahhydrochloride Hydrate (DAB4HCl), 3-Amino-9-ethylChalo-1 (EC) 4-N, 4-C 2,4,6-Tribromo-3-hydroxybenzoic Acid, 2, 4-Dichlorophenol, 4-Aminoantipyrine, 4-Aminoantipyrine Hydrochloride, luminol and the like.
  • TMB 5,5′-tetramethylbenzidine
  • OPD 1,2-phenylenediamine
  • ABTS 3,3'-Diaminobenzothiazoline-6-sulfonic Acid Ammonium Salt
  • DAB 3,3'-Dia
  • the DNAzyme When the sensor of the present invention has a DNAzyme that forms a G-culted structure as the binding detection nucleic acid molecule, the DNAzyme has a G quartet structure due to the binding of the wheat allergen to the wheat allergen-binding nucleic acid molecule. Fluorescence is generated by forming a complex with porphyrin. For this reason, the wheat allergen to the wheat allergen-binding nucleic acid molecule can be detected by detecting the fluorescence.
  • the detection kit of the present invention comprises the wheat allergen-binding nucleic acid molecule of the present invention.
  • the detection kit of the present invention is not limited as long as it contains the nucleic acid molecule of the present invention. If the detection kit of the present invention is used, for example, the wheat allergen can be detected as described above.
  • the detection kit of the present invention may include, for example, the sensor of the present invention as the nucleic acid molecule of the present invention.
  • the detection kit of the present invention may include other components in addition to the nucleic acid molecule of the present invention, for example. Examples of the component include the carrier, the porphyrin, a buffer solution, and instructions for use.
  • Example 1 For each aptamer, the binding ability and kinetic parameters for the wheat allergen were confirmed.
  • the aptamer was added with 20 base-long polydeoxyadenine (poly dA) at the end, and used as a poly dA addition aptamer in SPR described later.
  • the poly dA was added to the 5 'end.
  • a chip ProteOn ⁇ ⁇ ⁇ ⁇ NLC SensorProChip, BioRad
  • immobilized streptavidin was set on the ProteON XPR36 as a dedicated sensor chip for ProteON.
  • 5 ⁇ mol / L of biotinylated poly dT was injected into the flow cell of the sensor chip using ultrapure water (DDW) and allowed to bind until the signal intensity (RU: Resonance Unit) was about 900 RU.
  • the biotinylated poly dT was prepared by biotinylating the 5 'end or 3' end of deoxythymidine having a length of 24 bases.
  • an aptamer solidification measurement value (A) as a signal indicating the amount of solidification of the aptamer to the sensor chip.
  • the sample was injected with an SPR buffer at a flow rate of 50 ⁇ L / min for 120 seconds, and then washed by flowing the SPR buffer under the same conditions. In parallel with the injection of the sample and the washing with the SPR buffer, the signal intensity was measured.
  • a protein binding measurement value (B) As a signal indicating the binding amount of the aptamer and protein.
  • the concentration of the sample was 500 nmol / L, 250 nmol / L, 125 nmol / L, 62.5 nmol / L.
  • the composition of the SPR buffer was 40 mmol / L HEPES, 125 mmol / L NaCl, 5 mmol / L KCl, 1 mmol / L MgCl 2 and 0.01% Tween (registered trademark) 20, and the pH was 7.5.
  • FIG. 2 is a graph showing the ability of aptamers to bind to the gluten.
  • the horizontal axis represents measurement time (seconds), and the vertical axis represents signal intensity (RU).
  • RU signal intensity
  • 0 to 120 seconds are the injection time of the sample, and 120 seconds and after are the time for washing with the SPR buffer (the same applies hereinafter).
  • the plots are gluten protein concentrations of 500 nmol / L, 250 nmol / L, 125 nmol / L, and 62.5 nmol / L from the top.
  • the wheat allergen-binding nucleic acid molecule of the present invention can bind to a wheat allergen with the dissociation constant as described above. For this reason, according to the wheat allergen-binding nucleic acid molecule of the present invention, for example, the wheat allergen can be detected with excellent accuracy by the presence or absence of binding to the wheat allergen in the sample. Therefore, the wheat allergen-binding nucleic acid molecule of the present invention can be said to be a very useful tool for detecting wheat allergens in fields such as food production, food management, and food distribution.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Plant Pathology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

小麦アレルゲンの検出に利用可能な新たな核酸分子を提供する。 本発明の小麦アレルゲン結合核酸は、小麦アレルゲンに対する解離定数が、20nM以下の核酸分子であることを特徴とし、例えば、配列番号1および2のいずれかの塩基配列からなるポリヌクレオチドを含むことが好ましい。

Description

小麦アレルゲンに結合する核酸分子およびその用途
 本発明は、小麦アレルゲンに結合する核酸分子およびその用途に関する。
 小麦は、日常的に頻繁に摂取される食品であるが、近年、小麦アレルギーの患者が増加しており、問題視されている。パンおよび麺の加工食品等は、小麦を使用するものが多く存在するため、加工食品やその製造ライン等においては、原料として小麦が混入しているか否かを分析することは、極めて重要である。
 アレルギーのアレルゲンは、一般的に、タンパク質やその分解物(ペプチド)であり、これらを抗原とする抗体を使用した分析方法が、主流である。小麦に関しては、例えば、小麦タンパク質であるグルテンがアレルゲンとして知られている。グルテンに対する分析方法として、ELISA法を用いた方法が報告されている(非特許文献1、非特許文献2)。
 しかし、抗体は、タンパク質であり、安定性に問題があるため、低コストで簡易な検査法に抗体を用いることが難しい。
穐山 浩ら、「特定原材料(小麦)測定の厚生労働省通知ELISA法確立のための複数機関による評価研究」、食品衛生学雑誌、2004年、Vol.45, No.3, pp.128-134 Sorell, L. et.al., "An innovative sandwich ELISA system based on an antibody cocktail for gluten analysis", FEBS Letters, 1998, Vol. 439, pp.46-50
 そこで、本発明の目的は、小麦アレルゲンの検出に利用可能な新たな核酸分子を提供することにある。
 本発明の小麦アレルゲン結合核酸分子は、小麦アレルゲンに対する解離定数が、20nM以下の核酸分子であることを特徴とする。
 本発明の小麦アレルゲン分析用センサは、前記本発明の小麦アレルゲン結合核酸分子を含むことを特徴とする。
 本発明の小麦アレルゲンの分析方法は、試料と前記本発明の小麦アレルゲン結合核酸分子とを接触させ、前記試料中の小麦アレルゲンと前記核酸分子とを結合させることにより、前記試料中の小麦アレルゲンを検出する工程を含むことを特徴とする。
 本発明の小麦アレルゲン結合核酸分子は、小麦アレルゲンに対して前述のような解離定数で結合することができる。このため、本発明の小麦アレルゲン結合核酸分子によれば、例えば、試料中の小麦アレルゲンとの結合の有無によって、優れた精度で、小麦アレルゲンを検出できる。したがって、本発明の小麦アレルゲン結合核酸分子は、例えば、食品製造、食品管理、食品の流通等の分野における小麦アレルゲンの検出に、極めて有用なツールといえる。
図1は、本発明の小麦アレルゲン結合核酸分子の推定二次構造の一例を示す概略図である。 図2は、本発明の実施例1において、小麦アレルゲンに対する、アプタマーの結合能を示すグラフである。
 本発明の核酸分子は、例えば、前記小麦アレルゲンが、グルテンまたはそのサブユニットである。
 本発明の核酸分子は、例えば、前記小麦アレルゲンが、未変性アレルゲンまたは加熱変性アレルゲンである。
 本発明の核酸分子は、例えば、下記(a)~(d)からなる群から選択された少なくとも一つのポリヌクレオチドを含む。
(a)配列番号1および2のいずれかの塩基配列からなるポリヌクレオチド
(b)前記(a)のいずれかの塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、前記小麦アレルゲンに結合するポリヌクレオチド
(c)前記(a)のいずれかの塩基配列に対して、80%以上の同一性を有する塩基配列からなり、前記小麦アレルゲンに結合するポリヌクレオチド
(d)前記(a)のいずれかの塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、小麦アレルゲンに結合するポリヌクレオチド
 本発明の核酸分子は、例えば、前記ポリヌクレオチドが、DNAである。
 本発明の分析用センサは、例えば、さらに、Gカルテット構造を形成する核酸分子を含む。
 本発明の分析用センサは、例えば、前記Gカルテット構造を形成する核酸分子が、DNAzymeまたはRNAzymeである。
 本発明の分析用センサは、例えば、さらに、ポルフィリンを含む。
 本発明の分析方法は、例えば、前記試料が、食品、食品原料および食品添加物からなる群から選択された少なくとも一つである。
(1)小麦アレルゲン結合核酸分子
 本発明の小麦アレルゲン結合核酸分子は、前述のように、小麦アレルゲンに対する解離定数が、20nM以下の核酸分子であることを特徴とする。
 本発明の核酸分子は、例えば、小麦の主要アレルゲンである、グルテン、そのサブユニット、またはそのドメインに結合する。
 前記小麦アレルゲンは、例えば、加熱による変性が生じていない未変性アレルゲンでもよいし、加熱による変性が生じた変性アレルゲンでもよい。本発明の核酸分子は、例えば、いずれのアレルゲンに対しても結合可能である。
 本発明の核酸分子は、前記小麦アレルゲンに対する解離定数が、例えば、20nM以下、15nM以下である。本発明の核酸分子は、前記小麦アレルゲンの検出限界濃度が、例えば、250nM、125nMである。
 本発明の核酸分子は、前記グルテンに対する解離定数が、例えば、20nM以下、15nM以下である。本発明の核酸分子は、前記グルテンの検出限界濃度が、例えば、250nM、125nMである。
 本発明の核酸分子と前記小麦アレルゲンとの結合は、例えば、表面プラズモン共鳴分子相互作用(SPR;Surface Plasmon resonance)解析等により決定できる。前記解析は、例えば、ProteON(商品名 BioRad社)が使用できる。
 本発明の小麦アレルゲン結合核酸分子について、具体例を以下に示す。本発明の核酸分子は、例えば、下記(a)のポリヌクレオチドを含む核酸分子である。本発明において、前記(a)のポリヌクレオチドを含む核酸分子は、例えば、(b)~(d)からなる群から選択された少なくとも一つのポリヌクレオチドを含む核酸分子、の意味も含む。
(a)配列番号1および2のいずれかの塩基配列からなるポリヌクレオチド
(b)前記(a)のいずれかの塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、前記小麦アレルゲンに結合するポリヌクレオチド
(c)前記(a)のいずれかの塩基配列に対して、80%以上の同一性を有する塩基配列からなり、前記小麦アレルゲンに結合するポリヌクレオチド
(d)前記(a)のいずれかの塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、小麦アレルゲンに結合するポリヌクレオチド
 本発明の核酸分子において、前記ポリヌクレオチドの構成単位は、例えば、ヌクレオチド残基であり、デオキシリボヌクレオチド残基およびリボヌクレオチド残基があげられる。前記ポリヌクレオチドは、後述するように、例えば、デオキシリボヌクレオチド残基からなるDNA、デオキシリボヌクレオチド残基およびリボヌクレオチド残基を含むDNAであり、さらに、非ヌクレオチド残基を含んでもよい。本発明の小麦アレルゲン結合核酸分子は、例えば、以下、DNAアプタマーともいう。
 本発明の核酸分子は、例えば、前記(a)~(d)のいずれかのポリヌクレオチドからなる分子でもよいし、前記ポリヌクレオチドを含む分子でもよい。後者の場合、本発明の核酸分子は、例えば、後述するように、前記(a)~(d)のいずれかのポリヌクレオチドを2つ以上含んでもよい。前記2つ以上のポリヌクレオチドは、同じ配列でもよいし、異なる配列でもよい。また、後者の場合、本発明の核酸分子は、例えば、さらに、リンカーおよび/または付加配列等を有してもよい。
 前記(a)のポリヌクレオチドは、前記配列番号1および2のいずれかの塩基配列からなるポリヌクレオチドである。
Figure JPOXMLDOC01-appb-T000001
 配列番号2は、配列番号1の小型化配列である。前記表1において、配列番号1の下線部領域は、配列番号2の塩基配列に対応する。図1に、配列番号1または2の塩基配列からなるポリヌクレオチドの推定二次構造を示すが、本発明は、これには限定されない。
 前記(b)において、「1もしくは数個」は、例えば、前記(b)のポリヌクレオチドが、小麦アレルゲンに結合する範囲であればよい。前記「1もしくは数個」は、前記(a)のいずれかの塩基配列において、例えば、1~10個、1~7個、1~5個、1~3個、1または2個である。本発明において、塩基数および配列数等の個数の数値範囲は、例えば、その範囲に属する正の整数を全て開示するものである。つまり、例えば、「1~5塩基」との記載は、「1、2、3、4、5塩基」の全ての開示を意味する(以下、同様)。
 前記(c)において、「同一性」は、例えば、前記(c)のポリヌクレオチドが、小麦アレルゲンに結合する範囲であればよい。前記同一性は、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。前記同一性は、例えば、BLAST、FASTA等の解析ソフトウェアを用いて、デフォルトのパラメータにより算出できる(以下、同様)。
 前記(d)において、「ハイブリダイズ可能なポリヌクレオチド」は、例えば、前記(a)のポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。前記ハイブリダイズは、例えば、各種ハイブリダイゼーションアッセイにより検出できる。前記ハイブリダイゼーションアッセイは、特に制限されず、例えば、ザンブルーク(Sambrook)ら編「モレキュラー・クローニング:ア・ラボラトリーマニュアル第2版(Molecular Cloning: A Laboratory Manual 2nd Ed.)」〔(Cold Spring Harbor Laboratory Press (1989)〕等に記載されている方法を採用することもできる。
 前記(d)において、「ストリンジェントな条件」は、例えば、低ストリンジェントな条件、中ストリンジェントな条件、高ストリンジェントな条件のいずれでもよい。「低ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、32℃の条件である。「中ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、42℃の条件である。「高ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、50℃の条件である。ストリンジェンシーの程度は、当業者であれば、例えば、温度、塩濃度、プローブの濃度および長さ、イオン強度、時間等の条件を適宜選択することで、設定可能である。「ストリンジェントな条件」は、例えば、前述したザンブルーク(Sambrook)ら編「モレキュラー・クローニング:ア・ラボラトリーマニュアル第2版(Molecular Cloning: A Laboratory Manual 2nd Ed.)」〔(Cold Spring Harbor Laboratory Press (1989)〕等に記載の条件を採用することもできる。
 本発明の核酸分子は、例えば、前記(a)~(d)のいずれかのポリヌクレオチドの配列を1つ含んでもよいし、前記ポリヌクレオチドの配列を複数含んでもよい。後者の場合、複数のポリヌクレオチドの配列が連結して、一本鎖のポリヌクレオチドを形成していることが好ましい。前記複数のポリヌクレオチドの配列は、例えば、それぞれが直接的に連結してもよいし、リンカーを介して、それぞれが間接的に連結してもよい。前記ポリヌクレオチドの配列は、それぞれの末端において、直接的または間接的に連結していることが好ましい。前記複数のポリヌクレオチドの配列は、例えば、同じでもよいし、異なってもよい。前記複数のポリヌクレオチドの配列は、例えば、同じであることが好ましい。前記ポリヌクレオチドの配列を複数含む場合、前記配列の数は、特に制限されず、例えば、2以上、2~20、2~10、2または3である。
 前記リンカーは、特に制限されない。前記リンカーの長さは、特に制限されず、例えば、1~200塩基長、1~20塩基長、3~12塩基長、5~9塩基長である。前記リンカーの構成単位は、例えば、ヌクレオチド残基であり、デオキシリボヌクレオチド残基およびリボヌクレオチド残基等があげられる。前記リンカーは、特に制限されず、例えば、デオキシリボヌクレオチド残基からなるDNA、リボヌクレオチド残基を含むDNA等のポリヌクレオチドがあげられる。前記リンカーの具体例として、例えば、ポリデオキシチミン(ポリdT)、ポリデオキシアデニン(ポリdA)、AとTの繰り返し配列であるポリdAdT等があげられ、好ましくはポリdT、ポリdAdTである。
 本発明の核酸分子において、前記ポリヌクレオチドは、一本鎖ポリヌクレオチドであることが好ましい。前記一本鎖ポリヌクレオチドは、例えば、自己アニーリングによりステム構造およびループ構造を形成可能であることが好ましい。前記ポリヌクレオチドは、例えば、ステムループ構造、インターナルループ構造および/またはバルジ構造等を形成可能であることが好ましい。
 本発明の核酸分子は、例えば、二本鎖でもよい。二本鎖の場合、例えば、一方の一本鎖ポリヌクレオチドは、前記(a)~(d)のいずれかのポリヌクレオチドを含み、他方の一本鎖ポリヌクレオチドは、制限されない。前記他方の一本鎖ポリヌクレオチドは、例えば、前記(a)~(d)のいずれかのポリヌクレオチドに相補的な塩基配列を含むポリヌクレオチドがあげられる。本発明の核酸分子が二本鎖の場合、例えば、使用に先立って、変性等により、一本鎖ポリヌクレオチドに解離させることが好ましい。また、解離した前記(a)~(d)のいずれかの一本鎖ポリヌクレオチドは、例えば、前述のように、ステム構造およびループ構造を形成していることが好ましい。
 本発明において、「ステム構造およびループ構造を形成可能」とは、例えば、実際にステム構造およびループ構造を形成すること、ならびに、ステム構造およびループ構造が形成されていなくても、条件によってステム構造およびループ構造を形成可能なことも含む。「ステム構造およびループ構造を形成可能」とは、例えば、実験的に確認した場合、および、コンピュータ等のシミュレーションで予測した場合の双方を含む。
 本発明の核酸分子の構成単位は、例えば、ヌクレオチド残基である。前記ヌクレオチド残基は、例えば、デオキシリボヌクレオチド残基およびリボヌクレオチド残基があげられる。本発明の核酸分子は、例えば、デオキシリボヌクレオチド残基のみから構成されるDNA、1もしくは数個のリボヌクレオチド残基を含むDNA等があげられる。後者の場合、「1もしくは数個」は、特に制限されず、例えば、前記ポリヌクレオチドにおいて、例えば、1~91個、1~30個、1~15個、1~7個、1~3個、1または2個である。
 前記ポリヌクレオチドは、修飾塩基を含んでもよい。前記修飾塩基は、特に制限されず、例えば、天然塩基(非人工塩基)が修飾された塩基があげられ、前記天然塩基と同様の機能を有することが好ましい。前記天然塩基は、特に制限されず、例えば、プリン骨格を有するプリン塩基、ピリミジン骨格を有するピリミジン塩基等があげられる。前記プリン塩基は、特に制限されず、例えば、アデニン(a)、グアニン(g)があげられる。前記ピリミジン塩基は、特に制限されず、例えば、シトシン(c)、チミン(t)、ウラシル(u)等があげられる。前記塩基の修飾部位は、特に制限されない。前記塩基がプリン塩基の場合、前記プリン塩基の修飾部位は、例えば、前記プリン骨格の7位および8位があげられる。前記塩基がピリミジン塩基の場合、前記ピリミジン塩基の修飾部位は、例えば、前記ピリミジン骨格の5位および6位があげられる。前記ピリミジン骨格において、4位の炭素に「=O」が結合し、5位の炭素に「-CH」または「-H」以外の基が結合している場合、修飾ウラシルまたは修飾チミンということができる。
 前記修飾塩基の修飾基は、特に制限されず、例えば、メチル基、フルオロ基、アミノ基、チオ基、下記式(1)のベンジルアミノカルボニル基(benzylaminocarbonyl)、下記式(2)のトリプタミノカルボニル基(tryptaminocarbonyl)およびイソブチルアミノカルボニル基(isobutylaminocarbonyl)等があげられる。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 前記修飾塩基は、特に制限されず、例えば、アデニンが修飾された修飾アデニン、チミンが修飾された修飾チミン、グアニンが修飾された修飾グアニン、シトシンが修飾された修飾シトシンおよびウラシルが修飾された修飾ウラシル等があげられ、前記修飾チミン、前記修飾ウラシルおよび前記修飾シトシンが好ましい。
 前記修飾アデニンの具体例としては、例えば、7’-デアザアデニン等があげられる。
 前記修飾グアニンの具体例としては、例えば、7’-デアザグアニン等があげられる。
 前記修飾シトシンの具体例としては、例えば、5’-メチルシトシン(5-Me-dC)等があげられる。
 前記修飾チミンの具体例としては、例えば、5’-ベンジルアミノカルボニルチミン、5’-トリプタミノカルボニルチミン、5’-イソブチルアミノカルボニルチミン等があげられる。
 前記修飾ウラシルの具体例としては、例えば、5’-ベンジルアミノカルボニルウラシル(BndU)、5’-トリプタミノカルボニルウラシル(TrpdU)および5’-イソブチルアミノカルボニルウラシル等があげられる。例示した前記修飾ウラシルは、チミンの修飾塩基ということもできる。
 前記ポリヌクレオチドは、例えば、いずれか1種類の前記修飾塩基のみを含んでもよいし、2種類以上の前記修飾塩基を含んでもよい。
 本発明の核酸分子は、例えば、修飾ヌクレオチドを含んでもよい、前記修飾ヌクレオチドは、前述の前記修飾塩基を有するヌクレオチドでもよいし、糖残基が修飾された修飾糖を有するヌクレオチドでもよいし、前記修飾塩基および前記修飾糖を有するヌクレオチドでもよい。
 前記糖残基は、特に制限されず、例えば、デオキシリボース残基またはリボース残基があげられる。前記糖残基における修飾部位は、特に制限されず、例えば、前記糖残基の2’位または4’位があげられ、いずれか一方でも両方が修飾されてもよい。前記修飾糖の修飾基は、例えば、メチル基、フルオロ基、アミノ基、チオ基等があげられる。
 前記修飾ヌクレオチド残基において、塩基がピリミジン塩基の場合、例えば、前記糖残基の2’位および/または4’位が修飾されていることが好ましい。前記修飾ヌクレオチド残基の具体例は、例えば、デオキシリボース残基またはリボース残基の2’位が修飾された、2’-メチル化-ウラシルヌクレオチド残基、2’-メチル化-シトシンヌクレオチド残基、2’-フルオロ化-ウラシルヌクレオチド残基、2’-フルオロ化-シトシンヌクレオチド残基、2’-アミノ化-ウラシルヌクレオチド残基、2’-アミノ化-シトシンヌクレオチド残基、2’-チオ化-ウラシルヌクレオチド残基、2’-チオ化-シトシンヌクレオチド残基等があげられる。
 前記修飾ヌクレオチドの個数は、特に制限されず、例えば、前記ポリヌクレオチドにおいて、例えば、1~100個、1~90個、1~80個、1~70個である。また、前記ポリヌクレオチドを含む前記核酸分子の全長における前記修飾ヌクレオチドも、特に制限されず、例えば、1~91個、1~78個、または前述の範囲と同様である。
 本発明の核酸分子は、例えば、1もしくは数個の人工核酸モノマー残基を含んでもよい。前記「1もしくは数個」は、特に制限されず、例えば、前記ポリヌクレオチドにおいて、例えば、1~100個、1~50個、1~30個、1~10個である。前記人工核酸モノマー残基は、例えば、PNA(ペプチド核酸)、LNA(Locked Nucleic Acid)、ENA(2’-O,4’-C-Ethylenebridged Nucleic Acids)等があげられる。前記モノマー残基における核酸は、例えば、前述と同様である。
 本発明の核酸分子は、例えば、ヌクレアーゼ耐性であることが好ましい。本発明の核酸分子は、ヌクレアーゼ耐性のため、例えば、前記修飾化ヌクレオチド残基および/または前記人工核酸モノマー残基を有することが好ましい。本発明の核酸分子は、ヌクレアーゼ耐性のため、例えば、5’末端または3’末端に、数10kDaのPEG(ポリエチレングリコール)またはデオキシチミジン等が結合してもよい。
 本発明の核酸分子は、例えば、さらに付加配列を有してもよい。前記付加配列は、例えば、前記核酸分子の5’末端および3’末端の少なくとも一方に結合していることが好ましく、より好ましくは3’末端である。前記付加配列は、特に制限されない。前記付加配列の長さは、特に制限されず、例えば、1~200塩基長、1~50塩基長、1~25塩基長、18~24塩基長である。前記付加配列の構成単位は、例えば、ヌクレオチド残基であり、デオキシリボヌクレオチド残基およびリボヌクレオチド残基等があげられる。前記付加配列は、特に制限されず、例えば、デオキシリボヌクレオチド残基からなるDNA、リボヌクレオチド残基を含むDNA等のポリヌクレオチドがあげられる。前記付加配列の具体例として、例えば、ポリdT、ポリdA等があげられる。
 本発明の核酸分子は、例えば、担体に固定化して使用できる。前記本発明の核酸分子は、例えば、5’末端および3’末端のいずれかを固定化することが好ましく、より好ましくは3’末端である。本発明の核酸分子を固定化する場合、例えば、前記核酸分子は、前記担体に、直接的に固定化してもよいし、間接的に固定化してもよい。後者の場合、例えば、前記付加配列を介して固定化することが好ましい。
 本発明の核酸分子は、例えば、さらに標識物質を有してもよい。前記標識物質は、例えば、前記核酸分子の5’末端および3’末端の少なくとも一方に結合していることが好ましく、より好ましくは5’末端である。前記標識物質は、特に制限されず、例えば、後述する説明を援用できる。
 本発明の核酸分子の製造方法は、特に制限されず、例えば、化学合成を利用した核酸合成方法等、遺伝子工学的手法、公知の方法により合成できる。本発明の核酸分子は、例えば、いわゆるSELEX法によっても得ることができる。この場合、ターゲットは、小麦アレルゲンであるグルテンが好ましい。
 本発明の核酸分子は、前述のように、前記小麦アレルゲンに結合性を示す。このため、本発明の核酸分子の用途は、前記小麦アレルゲンへの結合性を利用する用途であれば、特に制限されない。本発明の核酸分子は、例えば、前記小麦アレルゲンに対する抗体に代えて、種々の方法に使用できる。
(2)小麦アレルゲン分析用センサ
 本発明の小麦アレルゲン分析用センサは、前述のように、本発明の小麦アレルゲン結合核酸分子を含むことを特徴とする。本発明のセンサは、前記本発明の小麦アレルゲン結合核酸分子を含んでいればよく、その他の構成は、何ら制限されない。
 本発明のセンサは、例えば、前記小麦アレルゲン結合核酸分子に前記小麦アレルゲンが結合した状態で、活性型となり、前記小麦アレルゲン結合核酸分子に前記小麦アレルゲンが未結合の状態で、不活性型となる、前記結合を検出する結合検出用核酸分子を、さらに含んでもよい。本発明のセンサは、前記結合検出用核酸分子を含む場合、前記結合検出用核酸分子が活性型であるか不活性型であるかによって、前記小麦アレルゲン結合核酸分子への前記小麦アレルゲンの結合の有無を確認でき、それによって、前記小麦アレルゲンの有無を分析することができる。
 前記結合検出用核酸分子としては、例えば、Gカルテット構造を形成する核酸分子があげられる。前記Gカルテッド構造を形成する核酸分子は、例えば、Gカルテッド構造を形成した状態が、活性型であり、Gカルテッド構造を非形成の状態が、不活性型である。
 前記Gカルテット構造を形成する核酸分子は、例えば、DNAzymeまたはRNAzyme等があげられ、好ましくはDNAzymeである。
 Gカルテッド構造を形成した活性型DNAzymeは、例えば、酸化還元反応を触媒するペルオキシダーゼ様の活性を示す。このため、本発明のセンサがDNAzymeを有する場合、前記DNAzymeの触媒活性を検出することによって、前記小麦アレルゲン結合核酸分子への前記小麦アレルゲンの結合の有無または結合量を分析することができる。
 この場合、本発明のセンサは、例えば、ポルフィリンを共存させることが好ましい。前記ポルフィリンは、特に制限されず、例えば、無置換体のポルフィリン、その誘導体があげられる。前記誘導体は、例えば、置換体のポルフィリンおよび金属元素と錯体を形成した金属ポルフィリン等があげられる。前記置換体のポルフィリンは、例えば、N-メチルメソポルフィリン等があげられる。前記金属ポルフィリンは、例えば、三価鉄錯体であるヘミン等があげられる。前記ポルフィリンは、例えば、前記金属ポルフィリンが好ましく、より好ましくはヘミンである。
 また、Gカルテッド構造を形成した活性型のDNAzymeは、例えば、ポルフィリンと複合体を形成することで、蛍光を生じる。このため、本発明のセンサがDNAzymeを有する場合、前記ポルフィリンを共存させ、前記DNAzymeと前記ポルフィリンとの複合体形成による蛍光を検出することによって、前記小麦アレルゲン結合核酸分子への前記小麦アレルゲンの結合の有無または結合量を分析することができる。
 前記ポルフィリンは、特に制限されず、例えば、N-メチルメソポルフィリン(NMM)、Zn-DIGP、ZnPP9およびTMPyP等が好ましい。
 本発明のセンサは、例えば、さらに標識物質を有してもよい。前記標識物質は、例えば、前記核酸分子の5’末端および3’末端の少なくとも一方に結合していることが好ましく、より好ましくは5’末端である。前記標識物質は、特に制限されず、例えば、蛍光物質、色素、同位体、酵素等があげられる。前記蛍光物質は、例えば、ピレン、TAMRA、フルオレセイン、Cy3色素、Cy5色素、FAM色素、ローダミン色素、テキサスレッド色素、JOE、MAX、HEX、TYE等の蛍光団があげられ、前記色素は、例えば、Alexa488、Alexa647等のAlexa色素等があげられる。前記酵素は、例えば、ルシフェラーゼ、アルカリフォスファターゼ、ペルオキシダーゼ、β-ガラクトシダーゼ、グルクロニダーゼ等があげられる。
 前記標識物質は、例えば、前記核酸分子に直接的に連結してもよいし、リンカーを介して、間接的に連結してもよい。前記リンカーは、特に制限されず、例えば、前述の例示を援用できる。
(3)分析方法
 本発明の分析方法は、前述のように、小麦アレルゲンの分析方法であって、試料と前記本発明の小麦アレルゲン結合核酸分子とを接触させ、前記試料中の小麦アレルゲンと前記核酸分子とを結合させることにより、前記試料中の小麦アレルゲンを検出する工程を含むことを特徴とする。本発明の分析方法は、前記本発明の核酸分子を使用することが特徴であって、その他の工程および条件等は、特に制限されない。また、本発明の分析方法は、前記本発明の核酸分子として、前記本発明の小麦アレルゲン分析用センサを使用してもよい。
 本発明によれば、前記本発明の核酸分子が、小麦アレルゲンに特異的に結合することから、例えば、小麦アレルゲンと前記核酸分子との結合を検出することによって、試料中の小麦アレルゲンを特異的に検出可能である。具体的には、例えば、試料中の小麦アレルゲンの有無または小麦アレルゲンの量を分析可能であることから、定性または定量も可能といえる。
 本発明において、前記試料は、特に制限されない。前記試料は、例えば、食品、食品原料、食品添加物等があげられる。また、前記試料は、例えば、食品加工場または調理場等における付着物、洗浄後の洗浄液等があげられる。
 前記試料は、例えば、液体試料でもよいし、固体試料でもよい。前記試料は、例えば、前記核酸分子と接触させ易く、取扱いが簡便であることから、液体試料が好ましい。前記固体試料の場合、例えば、溶媒を用いて、混合液、抽出液、溶解液等を調製し、これを使用してもよい。前記溶媒は、特に制限されず、例えば、水、生理食塩水、緩衝液等があげられる。
 前記検出工程は、例えば、前記試料と前記核酸分子とを接触させて、前記試料中の小麦アレルゲンと前記核酸分子とを結合させる接触工程と、前記小麦アレルゲンと前記核酸分子との結合を検出する結合検出工程とを含む。また、前記検出工程は、例えば、さらに、前記結合検出工程の結果に基づいて、前記試料中の小麦アレルゲンの有無または量を分析する工程を含む。
 前記接触工程において、前記試料と前記核酸分子との接触方法は、特に制限されない。前記試料と前記核酸分子との接触は、例えば、液体中で行われることが好ましい。前記液体は、特に制限されず、例えば、水、生理食塩水、緩衝液等があげられる。
 前記接触工程において、前記試料と前記核酸分子との接触条件は、特に制限されない。接触温度は、例えば、4~37℃、18~25℃であり、接触時間は、例えば、10~120分、30~60分である。
 前記接触工程において、前記核酸分子は、例えば、担体に固定化された固定化核酸分子でもよいし、未固定の遊離した核酸分子でもよい。後者の場合、例えば、容器内で、前記試料と接触させる。前記核酸分子は、例えば、取扱性に優れることから、前記固定化核酸分子が好ましい。前記担体は、特に制限されず、例えば、基板、ビーズ、容器等があげられ、前記容器は、例えば、マイクロプレート、チューブ等があげられる。前記核酸分子の固定化は、例えば、前述の通りである。
 前記結合検出工程は、前述のように、前記試料中の小麦アレルゲンと前記核酸分子との結合を検出する工程である。前記両者の結合の有無を検出することによって、例えば、前記試料中の小麦アレルゲンの有無を分析(定性)でき、また、前記両者の結合の程度(結合量)を検出することによって、例えば、前記試料中の小麦アレルゲンの量を分析(定量)できる。
 そして、前記小麦アレルゲンと前記核酸分子との結合が検出できなかった場合は、前記試料中に小麦アレルゲンは存在しないと判断でき、前記結合が検出された場合は、前記試料中に小麦アレルゲンが存在すると判断できる。
 前記小麦アレルゲンと前記核酸分子との結合の分析方法は、特に制限されない。前記方法は、例えば、物質間の結合を検出する従来公知の方法が採用でき、具体例として、前述のSPR、蛍光偏光法等があげられる。また、前記結合は、例えば、前記小麦アレルゲンと前記核酸分子との複合体の検出でもよい。
 前記蛍光偏光法による前記小麦アレルゲンと前記核酸分子との結合の検出は、例えば、以下のようにして行うことができる。
 前記蛍光偏光法は、一般に、偏光励起光を前記標識物質に照射した際、前記標識物質から発せられる蛍光が、前記標識物質で標識された分子の分子量に応じて異なった偏光度を示すという特性に基づく測定方法である。本発明においては、例えば、前記標識物質で標識化した前記核酸分子(標識化核酸分子)を使用することで、前記蛍光偏光法により前記小麦アレルゲンと前記核酸分子との結合を検出することができる。具体的には、前記標識化核酸分子は、小麦アレルゲンと未結合の状態と、小麦アレルゲンと結合した状態とを比較した場合、前者は、相対的に分子量が小さいため、相対的に偏光度が低く、一方、後者は、相対的に分子量が大きいため、相対的に偏光度が高い。このため、例えば、試料と接触させる前の前記標識化核酸分子の偏光度と、前記試料と接触させた後の前記標識化核酸分子の前記偏光度とを比較することで、小麦アレルゲンと前記標識化核酸分子との結合を検出できる。また、小麦アレルゲンと未結合の前記標識化核酸分子および小麦アレルゲンと結合した前記標識化核酸分子の少なくとも一方の偏光度を評価基準として、前記試料と接触させた後の前記標識化核酸分子の偏光度を評価することでも、小麦アレルゲンと前記標識化核酸分子との結合を検出できる。
 前記蛍光偏光法によれば、例えば、前記本発明の核酸分子を、前記標識物質で標識化するのみで、センサとして容易に使用できる。また、前記標識物質は、その種類によって検出波長が異なるため、例えば、試料の種類に応じて前記標識物質を選択することで、前記試料由来の蛍光の影響を低減することもできる。
 前記標識化核酸分子は、例えば、前記本発明の核酸分子が前記標識物質で標識化されていればよく、その標識方法は、特に制限されない。
 前記標識化核酸分子としては、例えば、前記本発明の核酸分子に前記標識物質が連結した形態があげられる。この形態は、例えば、前述の記載が援用でき、前記本発明の核酸分子に、前記標識物質が直接的に連結してもよいし、前述のようにリンカー等を介して前記標識物質が間接的に連結してもよい。前記リンカーの長さは、特に制限されず、例えば、0~10塩基長、0~7塩基長、0~5塩基長である。前記標識物質は、例えば、前記本発明の核酸分子のいずれの部位に連結されてもよく、具体例としては、5’末端および3’末端があげられ、両末端に連結してもよいし、いずれか一方の末端に連結してもよく、好ましくは、5’末端である。
 前記標識化核酸分子としては、この他に、例えば、前記本発明の核酸分子と、これに相補的であって且つ標識物質が連結した相補鎖(以下、「標識化相補鎖」ともいう)とを含み、前記核酸分子と前記標識化相補鎖とがハイブリダイズしたハイブリッド分子があげられる。
 前記相補鎖は、例えば、前記本発明の核酸分子の一部に相補的な配列を有していればよく、前記相補的な配列のみから構成されてもよいし、前記相補的な配列を含んでもよい。前記相補鎖は、前記本発明の核酸分子のどの領域に対して相補的でもよく、好ましくは、5’末端領域または3’末端領域に相補的である。また、例えば、前記本発明の核酸分子が、その5’末端または3’末端にリンカーを有し、前記相補的な配列は、前記リンカーに相補的であることが好ましい。前記リンカーの長さは、特に制限されず、例えば、10~30塩基長、15~25塩基長、18~24塩基長である。前記相補鎖の長さは、特に制限されず、例えば、10~30塩基長、15~25塩基長、18~24塩基長である。
 前記標識化相補鎖において、前記標識物質は、例えば、前記相補鎖のいずれの部位に連結されてもよく、具体例としては、5’末端および3’末端があげられ、両末端に連結してもよいし、いずれか一方の末端に連結してもよい。前記標識化相補鎖が、前記本発明の核酸分子の3’末端領域に相補的な場合、前記標識物質は、前記相補鎖の5’末端に連結することが好ましく、前記標識化相補鎖が、前記本発明の核酸分子の5’末端領域に相補的な場合、前記標識物質は、前記相補鎖の3’末端に連結することが好ましい。
 前記標識物質は、特に制限されず、前述した例示を援用でき、中でも前記蛍光物質および前記色素が好ましい。
 前記蛍光偏光法を採用する場合、本発明の分析方法は、例えば、前記試料と前記標識化核酸分子とを接触させ、前記試料中の小麦アレルゲンと前記標識化核酸分子とを結合させる接触工程と、前記標識化核酸分子に偏光励起光を照射して、前記標識化核酸分子の偏光度を測定する測定工程と、前記測定工程における測定結果と評価基準とを比較し、小麦アレルゲンと前記標識化核酸分子との結合を検出する工程を検出する検出工程を含むことが好ましい。
 前記測定工程において、前記偏光励起光の波長および前記偏光度の検出波長は、特に制限されず、例えば、前記標識物質の種類に応じて適宜設定できる。具体例として、前記標識物質がAlexa647の場合、前記偏光励起光の波長は、例えば、620~680nmであり、偏光度の検出波長は、例えば、660~800nmである。前記偏光励起光の照射時間は、特に制限されず、例えば、1~5ナノ秒があげられる。
 前記検出工程において、前記評価基準は、例えば、予め決定してもよいし、測定ごとに決定してもよい。前記評価基準としては、例えば、小麦アレルゲン未結合の基準、小麦アレルゲン結合の基準が設定できる。前者の基準は、例えば、小麦アレルゲンが結合していない前記標識化核酸分子のみの偏光度であり、後者の基準は、例えば、小麦アレルゲンが結合した前記標識化核酸分子の偏光度である。
 前者の基準を用いる場合は、例えば、前記測定工程における測定値が、前記基準よりも高ければ、小麦アレルゲンが存在すると判断でき、また、前記基準よりも相対的に高ければ、相対的に多くの小麦アレルゲンが存在すると判断できる。他方、前記測定工程における測定値が、前記基準と同程度または低ければ、小麦アレルゲンが存在しないと判断できる。前者の基準は、例えば、前記接触工程前の前記標識化核酸分子の偏光度でもよい。
 また、後者の基準を用いる場合は、例えば、前記測定工程における測定値が、前記基準よりも低ければ、小麦アレルゲンが存在しないと判断できる。他方、前記測定工程における測定値が、前記基準と同程度または高ければ、小麦アレルゲンが存在すると判断でき、また、前記基準よりも相対的に高ければ、相対的に多くの小麦アレルゲンが存在すると判断できる。
 また、前記基準は、小麦アレルゲンの量と偏光度との相関関係であってもよい。例えば、複数の既知濃度の小麦アレルゲンと所定量の前記標識化核酸分子とを接触させ、各濃度の小麦アレルゲンに結合した前記標識化核酸分子の偏光度を測定することにより、前記相関関係を示す相関式が得られる。そして、この相関式と、前記測定工程における測定値とから、前記試料における小麦アレルゲンの量を判断することができる。
 また、本発明の核酸分子として、前記本発明の小麦アレルゲン分析用センサを使用する場合、例えば、酸化還元反応の検出または蛍光発生の検出によって、前記小麦アレルゲンの検出を行うことができる。
 前述のように、前記本発明のセンサが、前記結合検出用核酸分子としてGカルテッド構造を形成するDNAzymeを有する場合、前記小麦アレルゲン結合核酸分子への前記小麦アレルゲンの結合によって、前記DNAzymeは、Gカルテッド構造を形成し、ペルオキシダーゼ様の酸化還元反応の触媒活性を示す活性型となる。このため、前記酸化還元反応を検出することによって、前記小麦アレルゲン結合核酸分子への前記小麦アレルゲンの結合を検出できる。この場合、例えば、前記酸化還元反応の基質を併用することが好ましい。
 前記基質は、特に制限されず、例えば、3,3’,5,5’-Tetramethylbenzidine(TMB)、1,2-Phenylenediamine(OPD)、2,2’-Azinobis(3-ethylbenzothiazoline-6-sulfonic Acid Ammonium Salt(ABTS)、3,3’-Diaminobenzidine(DAB)、3,3’-Diaminobenzidine Tetrahydrochloride Hydrate(DAB4HCl)、3-Amino-9-ethylcarbazole(AEC)、4-Chloro-1-naphthol(4C1N)、2,4,6-Tribromo-3-hydroxybenzoic Acid、2,4-Dichlorophenol、4-Aminoantipyrine、4-Aminoantipyrine Hydrochloride、ルミノール等があげられる。
 また、前記本発明のセンサが、前記結合検出用核酸分子としてGカルテッド構造を形成するDNAzymeを有する場合、前記小麦アレルゲン結合核酸分子への前記小麦アレルゲンの結合によって、前記DNAzymeは、Gカルテット構造を形成し、ポルフィリンとの複合体を形成することで、蛍光を発生する。このため、前記蛍光を検出することによって、前記小麦アレルゲン結合核酸分子への小麦アレルゲンを検出できる。
(4)検出キット
 本発明の検出キットは、前記本発明の小麦アレルゲン結合核酸分子を含むことを特徴とする。本発明の検出キットは、前記本発明の核酸分子を含んでいればよく、その他の構成は何ら制限されない。本発明の検出キットを使用すれば、前述のように、例えば、前記小麦アレルゲンの検出等を行うことができる。
 本発明の検出キットは、例えば、前記本発明の核酸分子として、前記本発明のセンサを含んでもよい。また、前記本発明の検出キットは、例えば、前記本発明の核酸分子の他に、その他の構成要素を含んでもよい。前記構成要素は、例えば、前記担体、前記ポルフィリン、緩衝液、使用説明書等があげられる。
 つぎに、本発明の実施例について説明する。ただし、本発明は、下記実施例により制限されない。市販の試薬は、特に示さない限り、それらのプロトコールに基づいて使用した。
[実施例1]
 各アプタマーについて、小麦アレルゲンに対する結合能および動態パラメータを確認した。
(1)アプタマー
 下記ポリヌクレオチドを合成し、実施例のアプタマーとした。
Figure JPOXMLDOC01-appb-T000004
前記アプタマーは、その末端に、20塩基長のポリデオキシアデニン(ポリdA)を付加し、ポリdA付加アプタマーとして、後述するSPRに使用した。前記ポリdAは、5’末端に付加した。
(2)試料
 市販の小麦由来グルテン(079-00572/ Gluten, from wheat 、和光純薬社製)を、試料として、以下の試験に使用した。
(3)SPRによる結合能の解析
 結合能の解析には、ProteON XPR36(BioRad社製)を、その使用説明書にしたがって使用した。
 まず、ProteON専用のセンサーチップとして、ストレプトアビジンが固定化されたチップ(ProteOn NLC Sensor Chip、BioRad社)を、ProteON XPR36にセットした。前記センサーチップのフローセルに、超純水(DDW)を用いて、5μmol/Lのビオチン化ポリdTをインジェクションし、シグナル強度(RU:Resonance Unit)が約900RUになるまで結合させた。前記ビオチン化ポリdTは、24塩基長のデオキシチミジンの5’末端または3’末端をビオチン化して調製した。そして、前記チップの前記フローセルに、SPRバッファーを用いて、1μmol/Lの前記ポリdA付加アプタマーを、流速25μL/minで80秒間インジェクションし、シグナル強度が約800RUになるまで結合させた。この結果を、アプタマーのセンサーチップへの固層化量を示すシグナルとして、アプタマー固層化測定値(A)という。続いて、前記試料を、SPRバッファーを用いて、流速50μL/minで120秒間インジェクションし、引き続き、同じ条件で、SPRバッファーを流して洗浄を行った。前記試料のインジェクションおよび前記SPRバッファーによる洗浄に並行して、シグナル強度の測定を行った。この結果を、前記アプタマーとタンパクの結合量を示すシグナルとして、タンパク質結合測定値(B)という。前記試料の濃度は、500nmol/L、250nmol/L、125nmol/L、62.5nmol/Lとした。
 前記SPRバッファーの組成は、40mmol/L HEPES、125mmol/L NaCl、5mmol/L KCl、1mmol/L MgCl2および0.01% Tween(登録商標)20とし、pHは、7.5とした。
 これらの結果を図2に示す。図2は、前記グルテンに対するアプタマーの結合能を示すグラフであり、横軸は、測定時間(秒)を示し、縦軸は、シグナル強度(RU)を示す。横軸において、0~120秒が、前記試料のインジェクション時間であり、120秒以降が、前記SPRバッファーによる洗浄の時間である(以下、同様)。図2の各グラフにおいて、プロットは、上から、グルテンタンパク質の濃度が500nmol/L、250nmol/L、125nmol/L、62.5nmol/Lである。
 図2に示すように、いずれのアプタマーを使用した場合も、前記グルテンに対して、結合性を示した。
 また、前記図2のSPR解析の結果から、動態パラメータを算出した。これらの結果を下記表3に示す。下記表3に示すように、いずれのアプタマーを使用した場合も、グルテンに対する解離定数(KD)は、20nM以下であり、非常に優れた結合性であることがわかった。
Figure JPOXMLDOC01-appb-T000005
 以上、実施形態および実施例を参照して本発明を説明したが、本発明は、上記実施形態および実施例に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をできる。
 本発明の小麦アレルゲン結合核酸分子は、小麦アレルゲンに対して前述のような解離定数で結合することができる。このため、本発明の小麦アレルゲン結合核酸分子によれば、例えば、試料中の小麦アレルゲンとの結合の有無によって、優れた精度で、小麦アレルゲンを検出できる。したがって、本発明の小麦アレルゲン結合核酸分子は、例えば、食品製造、食品管理、食品の流通等の分野における小麦アレルゲンの検出に、極めて有用なツールといえる。

 

Claims (11)

  1. 小麦アレルゲンに対する解離定数が、20nM以下の核酸分子であることを特徴とする、小麦アレルゲン結合核酸分子。
  2. 前記小麦アレルゲンが、グルテンまたはそのサブユニットである、請求項1記載の小麦アレルゲン結合核酸分子。
  3. 前記小麦アレルゲンが、未変性アレルゲンまたは加熱変性アレルゲンである、請求項1または2記載の小麦アレルゲン結合核酸分子。
  4. 下記(a)のポリヌクレオチドを含む、請求項1から3のいずれか一項に記載の小麦アレルゲン結合核酸分子。
    (a)配列番号1および2のいずれかの塩基配列からなるポリヌクレオチド
  5. 前記ポリヌクレオチドが、DNAである、請求項4記載の小麦アレルゲン結合核酸分子。
  6. 請求項1から5のいずれか一項に記載の小麦アレルゲン結合核酸分子を含むことを特徴とする、小麦アレルゲン分析用センサ。
  7. さらに、Gカルテット構造を形成する核酸分子を含む、請求項6記載の小麦アレルゲン分析用センサ。
  8. 前記Gカルテット構造を形成する核酸分子が、DNAzymeまたはRNAzymeである、請求項7記載の小麦アレルゲン分析用センサ。
  9. さらに、ポルフィリンを含む、請求項6から8のいずれか一項に記載の小麦アレルゲン分析用センサ。
  10. 試料と請求項1から5のいずれか一項に記載の小麦アレルゲン結合核酸分子とを接触させ、前記試料中の小麦アレルゲンと前記核酸分子とを結合させることにより、前記試料中の小麦アレルゲンを検出する工程を含むことを特徴とする、小麦アレルゲンの分析方法。
  11. 前記試料が、食品、食品原料および食品添加物からなる群から選択された少なくとも一つである、請求項10記載の小麦アレルゲンの分析方法。
PCT/JP2015/082139 2015-11-16 2015-11-16 小麦アレルゲンに結合する核酸分子およびその用途 WO2017085767A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201580084587.1A CN108350460A (zh) 2015-11-16 2015-11-16 小麦过敏原结合核酸分子及其用途
PCT/JP2015/082139 WO2017085767A1 (ja) 2015-11-16 2015-11-16 小麦アレルゲンに結合する核酸分子およびその用途
JP2017551410A JP6598315B2 (ja) 2015-11-16 2015-11-16 小麦アレルゲンに結合する核酸分子およびその用途
EP15908707.1A EP3378939B1 (en) 2015-11-16 2015-11-16 Wheat allergen-binding nucleic acid molecule and use thereof
US15/776,142 US10934548B2 (en) 2015-11-16 2015-11-16 Wheat allergen-binding nucleic acid molecule and use thereof
HK18113018.1A HK1253878A1 (zh) 2015-11-16 2018-10-11 小麥過敏原結合核酸分子及其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/082139 WO2017085767A1 (ja) 2015-11-16 2015-11-16 小麦アレルゲンに結合する核酸分子およびその用途

Publications (1)

Publication Number Publication Date
WO2017085767A1 true WO2017085767A1 (ja) 2017-05-26

Family

ID=58718579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082139 WO2017085767A1 (ja) 2015-11-16 2015-11-16 小麦アレルゲンに結合する核酸分子およびその用途

Country Status (6)

Country Link
US (1) US10934548B2 (ja)
EP (1) EP3378939B1 (ja)
JP (1) JP6598315B2 (ja)
CN (1) CN108350460A (ja)
HK (1) HK1253878A1 (ja)
WO (1) WO2017085767A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097220A1 (ja) * 2016-11-24 2018-05-31 Necソリューションイノベータ株式会社 核酸分子およびその用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012113072A1 (en) * 2011-02-27 2012-08-30 Neoventures Biotechnology Inc. A method for the selection of dna ligands for a molecular target
WO2013178844A1 (es) * 2012-05-31 2013-12-05 Universidad De Oviedo Aptámeros específicos contra el gluten y método de detección del gluten asociado
WO2015083391A1 (ja) * 2013-12-04 2015-06-11 Necソリューションイノベータ株式会社 ピーナッツに結合する核酸分子およびその用途
WO2015151350A1 (ja) * 2014-03-31 2015-10-08 Necソリューションイノベータ株式会社 卵アレルゲンに結合する核酸分子およびその用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9689025B2 (en) * 2009-08-07 2017-06-27 Nec Solution Innovators, Ltd. Nucleic acid element for use in analysis, and analytical method, analytical reagent, and analytical instrument using same
JP5999786B2 (ja) 2012-03-23 2016-09-28 Necソリューションイノベータ株式会社 Atpまたはampの分析用デバイスおよび分析方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012113072A1 (en) * 2011-02-27 2012-08-30 Neoventures Biotechnology Inc. A method for the selection of dna ligands for a molecular target
WO2013178844A1 (es) * 2012-05-31 2013-12-05 Universidad De Oviedo Aptámeros específicos contra el gluten y método de detección del gluten asociado
WO2015083391A1 (ja) * 2013-12-04 2015-06-11 Necソリューションイノベータ株式会社 ピーナッツに結合する核酸分子およびその用途
WO2015151350A1 (ja) * 2014-03-31 2015-10-08 Necソリューションイノベータ株式会社 卵アレルゲンに結合する核酸分子およびその用途

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AMAYA-GONZALEZ, S. ET AL.: "Affinity of aptamers binding 33-mer gliadin peptide and gluten proteins: Influence of immobilization and labeling tags", ANALYTICA CHIMICA ACTA, vol. 873, 11 May 2015 (2015-05-11), pages 63 - 70, XP055383531, ISSN: 0003-2670 *
AMAYA-GONZALEZ, S. ET AL.: "Aptamer binding to celiac disease-triggering hydrophobic proteins: a sensitive gluten detection approach", ANALYTICAL CHEMISTRY, vol. 86, no. 5, 4 March 2014 (2014-03-04), pages 2733 - 2739, XP055383534, ISSN: 0003-2700 *
AMAYA-GONZALEZ, S. ET AL.: "Aptamer-based analysis: a promising alternative for food safety control", SENSORS, vol. 13, no. 12, 28 November 2013 (2013-11-28), pages 16292 - 16311, XP055233452, ISSN: 1424-8220 *
AMAYA-GONZALEZ, S. ET AL.: "Sensitive gluten determination in gluten-free foods by an electrochemical aptamer-based assay", ANALYTICAL & BIOANALYTICAL CHEMISTRY, vol. 407, no. 20, August 2015 (2015-08-01), pages 6021 - 6029, XP035520273, ISSN: 1618-2650 *
PINTO, A. ET AL.: "Label-free detection of gliadin food allergen mediated by real-time apta-PCR", ANALYTICAL & BIOANALYTICAL CHEMISTRY, vol. 406, no. 2, January 2014 (2014-01-01), pages 515 - 524, XP055383537, ISSN: 1618-2650 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097220A1 (ja) * 2016-11-24 2018-05-31 Necソリューションイノベータ株式会社 核酸分子およびその用途

Also Published As

Publication number Publication date
HK1253878A1 (zh) 2019-07-05
EP3378939B1 (en) 2020-03-04
EP3378939A1 (en) 2018-09-26
JP6598315B2 (ja) 2019-10-30
CN108350460A (zh) 2018-07-31
US20200248181A1 (en) 2020-08-06
EP3378939A4 (en) 2019-07-10
US10934548B2 (en) 2021-03-02
JPWO2017085767A1 (ja) 2018-08-23

Similar Documents

Publication Publication Date Title
EP2859121B1 (en) Aptamer-based multiplexed assays
JP5731016B2 (ja) リガンドを高感度に検出する核酸分子並びに該核酸分子のスクリーニング方法および該核酸分子の感度の最適化方法
Lee et al. A label-free and enzyme-free signal amplification strategy for a sensitive RNase H activity assay
JP2009183192A (ja) インスリン結合性アプタマー
JP6212136B2 (ja) ピーナッツに結合する核酸分子およびその用途
Li et al. PD-L1 aptamer isolation via Modular-SELEX and its applications in cancer cell detection and tumor tissue section imaging
JP6347498B2 (ja) 卵アレルゲンに結合する核酸分子およびその用途
JP6414907B2 (ja) そばアレルゲンに結合する核酸分子およびその用途
JP6598315B2 (ja) 小麦アレルゲンに結合する核酸分子およびその用途
JP6399611B2 (ja) エビアレルゲンに結合する核酸分子およびその用途
JP6642859B2 (ja) コルチゾール分析用センサ、コルチゾール分析方法、ストレス評価試薬、ストレス評価方法、コルチゾール関連疾患の試験試薬、およびコルチゾール関連疾患の罹患可能性を試験する方法
JP7405400B2 (ja) 核酸分子およびその用途
Lucarelli et al. Selection and characterization of DNA aptamers for the rat major urinary protein 13 (MUP13) as selective biorecognition elements for sensitive detection of rat pests
WO2018092915A1 (ja) 核酸分子およびその用途
JP6963221B2 (ja) 核酸分子およびその用途
JPWO2018097220A1 (ja) 核酸分子およびその用途
JP2018171035A (ja) 核酸分子およびその用途
Gao et al. A Catalytic DNA Probe with Stem-loop Motif for Human T47D Breast Cancer Cells
WO2018092374A1 (ja) 核酸分子およびその用途
JP2018170985A (ja) 核酸分子およびその用途
JP2019149979A (ja) 分泌型免疫グロブリンA(sIgA)結合核酸分子、sIgA検出用センサ、sIgA検出試薬、およびsIgAの分析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908707

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551410

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015908707

Country of ref document: EP