WO2017084570A1 - 净水机的控制方法及净水机 - Google Patents

净水机的控制方法及净水机 Download PDF

Info

Publication number
WO2017084570A1
WO2017084570A1 PCT/CN2016/106019 CN2016106019W WO2017084570A1 WO 2017084570 A1 WO2017084570 A1 WO 2017084570A1 CN 2016106019 W CN2016106019 W CN 2016106019W WO 2017084570 A1 WO2017084570 A1 WO 2017084570A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
valve
passage
membrane element
scale
Prior art date
Application number
PCT/CN2016/106019
Other languages
English (en)
French (fr)
Inventor
薛莲
黄燕
何耀华
王晨
王汉领
李丽
Original Assignee
艾欧史密斯(南京)水处理产品有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾欧史密斯(南京)水处理产品有限公司 filed Critical 艾欧史密斯(南京)水处理产品有限公司
Publication of WO2017084570A1 publication Critical patent/WO2017084570A1/zh
Priority to US15/983,516 priority Critical patent/US20180265379A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/20Operation control schemes defined by a periodically repeated sequence comprising filtration cycles combined with cleaning or gas supply, e.g. aeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/02Forward flushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/10Use of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/167Use of scale inhibitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/281Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling by applying a special coating to the membrane or to any module element
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/005Valves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention

Definitions

  • the present application relates to the field of water purification, and in particular to a method for controlling a water purifier and a water purifier.
  • the problem of drinking water is the most concerned issue of the people. It is an indisputable fact that there are many unhealthy substances in the water. This is also the main reason for the people's awareness of healthy drinking water, and it is also the hot source of the water purification equipment market. There are many harmful substances in the water, such as sediments, oxides, suspended solids and various harmful bacteria and other impurities. If left untreated, drinking for many years may have an impact on health. Water purification is not thorough enough and consumes a lot of energy.
  • RO water purifier In order to solve the above problem of drinking water, the reverse osmosis water purifier (RO water purifier) is generally used to purify the raw water.
  • RO water purifier is a kind of reverse water filtration method, which pressurizes raw water and uses physical principle to filter and treat. No compound is added during the preparation process to produce pure water which can be directly used for human consumption.
  • the RO water purifier uses the RO membrane to make the raw water into pure water and wastewater during the water production process, and the wastewater is discharged through the wastewater ratio (also called the wastewater proportionalizer) or used for other purposes.
  • a scale inhibition mechanism is usually provided on the water pipe of the RO water purifier, and then Ca+ in the raw water or waste water is added. , Mg+ plasma complex absorption, protect RO membrane and wastewater ratio, prevent wastewater from scaling.
  • the scale inhibition mechanism in the water purifier is in a state of being immersed in water for a long time, and the scale inhibitor in the scale inhibition mechanism will dissolve in the water, and as the immersion time is prolonged, the scale inhibitor will be in a long time. It dissolves too quickly and consumes too much, which requires frequent replacement of the scale inhibitor and increases the cost.
  • the present application provides a water purifier control method and a water purifier to solve at least the above technology.
  • the present application provides a method for controlling a water purifier, the method comprising:
  • a water making passage that connects raw water is established, and pure water is produced through the water making passage.
  • the water purifier includes a water inlet valve, a booster pump, an RO membrane element, a scale inhibition mechanism, and a wastewater ratio that are sequentially connected;
  • the establishing a water supply passage connecting the raw water, and preparing the pure water through the water making passage includes: opening the water inlet valve to establish the water making passage, and controlling the boosting pump to operate to obtain pure water.
  • the water outlet of the scale inhibiting mechanism is connected to the water inlet of the booster pump;
  • the first predetermined time for the anti-scaling mechanism to clean the RO membrane element comprises:
  • the water outlet of the scale inhibiting mechanism is connected to the water inlet of the booster pump and is provided with a first on-off valve;
  • the step of establishing the water supply passage connecting the raw water further includes: closing the first on-off valve;
  • the first preset time includes: opening the first on-off valve, closing the inlet valve to establish the first cleaning passage, and controlling the booster pump to operate the first preset time to cause the scale inhibition
  • the mechanism cleans the RO membrane element of the water purifier.
  • controlling the booster pump to operate the first predetermined time to cause the scale inhibiting mechanism to clean the RO membrane element of the water purifier comprises: controlling the boosting The pump operates the first predetermined time to cause the scale inhibiting mechanism to circulate the RO membrane element of the water purifier.
  • the waste water outlet of the RO membrane element is connected with a flush valve
  • the step of establishing the water supply passage connecting the raw water further comprises: opening the second on-off valve, closing the flushing valve;
  • the establishing an emptying passage connecting the scale inhibiting mechanism, and draining the liquid in the scale inhibiting mechanism through the draining passage comprises: opening the first switching valve and the flushing valve, closing the inlet a water valve and the second switching valve to establish the venting passage; controlling the booster pump to operate for a third predetermined time to vent the liquid in the scale inhibiting mechanism.
  • the establishing a second cleaning passage connecting the raw water, and cleaning the RO membrane element by using the raw water through the second cleaning passage for a second predetermined time comprises: opening the inlet valve and the inlet a flush valve that closes the first switching valve and the second switching valve to establish the second cleaning passage, and controls the boost pump to operate for a second predetermined time to clean the RO membrane element.
  • the present application further provides a water purifier comprising: the water purifier includes a water inlet valve, a booster pump, an RO membrane element, a scale inhibiting mechanism, and a wastewater ratio, which are sequentially connected; the scale inhibiting mechanism An evacuation passage is connected, which is capable of venting the liquid in the scale inhibiting mechanism.
  • the water outlet of the scale inhibiting mechanism is in communication with the water inlet of the booster pump and is provided with a first on-off valve.
  • a second switching valve is disposed between the water outlet of the RO membrane element and the water inlet of the scale inhibiting mechanism; a flush valve is connected to the waste water outlet of the RO membrane element; The venting passage is established when an on-off valve and the flush valve are open and the inlet valve and the second switching valve are closed, the booster pump being operable to vent liquid in the scale inhibiting mechanism .
  • the water inlet valve, the flushing valve, the first switching valve, and the second switching valve are all solenoid valves; the water purifier further includes the inlet valve And a controller connected to the flushing valve, the first switching valve and the second switching valve.
  • the scale inhibiting mechanism has a silicon phosphate crystal scale inhibitor.
  • the control method of the water purifier can effectively evacuate the liquid in the scale inhibiting mechanism in an unwatered state by establishing an emptying passage connecting the scale inhibiting mechanism, thereby effectively avoiding The scale inhibitor in the scale inhibition mechanism is always in a dissolved state and is consumed too quickly.
  • the first cleaning passage is also established in the method, and the cleaning operation of the RO membrane component is realized, the clogging problem of the RO membrane component can be effectively prevented, and the life of the RO membrane component is prolonged.
  • a second cleaning passage is also established in the method, and the ions on the RO membrane can be cleaned by such an arrangement to prevent ion permeation to the pure water side of the RO membrane to cause ion over-standard problems.
  • FIG. 1 is a flow chart of a control method of a water purifier according to an embodiment of the present application
  • FIG. 2 is a piping diagram of a water purifier according to an embodiment of the present application.
  • an embodiment of the present application provides a method for controlling a water purifier, which is applicable to, but not limited to, preventing the water purifier from being consumed too quickly and preventing the ion from exceeding the standard.
  • the method for controlling the water purifier includes the following steps:
  • the water purifier communicates the scale inhibition mechanism with the RO membrane element through the first cleaning passage, and the liquid with the scale inhibitor (dissolved) in the scale inhibition mechanism is moved from the first cleaning passage to the RO membrane element.
  • the liquid with the scale inhibitor passes through the RO membrane (reverse osmosis membrane) of the RO membrane element, the RO membrane is cleaned, and impurities (Ca+, Ma+ ions, etc.) on the RO membrane surface are washed and taken away to prevent RO.
  • the membrane element creates a problem of clogging and prolongs the life of the RO membrane.
  • the RO membrane element and the scale inhibition mechanism may be connected in series or in parallel, and the present application is not limited thereto.
  • a valve structure or a drive mechanism may be provided between the scale inhibiting mechanism and the RO membrane element, and of course, the booster pump in the water passage may be used for driving.
  • the water outlet of the scale inhibiting mechanism communicates with the water inlet of the RO membrane element, so that the liquid in the scale inhibiting mechanism is discharged into the RO membrane element.
  • the first cleaning passage of the present embodiment and other passages may be different pipelines (only the RO membrane component is a common part), and the two may also utilize each other's passages.
  • the water purifier establishes the first cleaning passage, it can be realized only by opening and closing the valve on the pipeline, and at the same time, the purpose of cleaning the RO membrane component by the scale inhibiting mechanism is achieved by controlling the operation of the driving mechanism.
  • the first cleaning passage is a circulation line configuration
  • the liquid with the scale inhibitor can be circulated through the RO membrane element, thereby making the resistance
  • the scale mechanism performs cyclic cleaning on the RO membrane element to complete the effective cleaning of the RO membrane element.
  • it is not necessary to perform a cyclic cleaning operation for the liquid with the scale inhibitor that is, even in the first cleaning passage of the circulation line configuration, the liquid pair with the scale inhibitor After the RO membrane element is cleaned once, it can be discharged or re-entered into the scale inhibition mechanism.
  • the first cleaning passage does not need to be a circulation pipeline structure, and it may also be a non-circulating pipeline configuration, and it is only necessary to ensure that the liquid in the scale inhibiting mechanism can clean the RO membrane component.
  • S200 Establish an emptying passage connecting the scale inhibiting mechanism, and drain the liquid in the scale inhibiting mechanism through the emptying passage.
  • the water purifier can be set up with an independent pipeline and a scale inhibition mechanism to establish an emptying passage, which will be in the scale inhibition mechanism.
  • the liquid is drained, thereby preventing the scale inhibiting mechanism from being soaked in the liquid for dissolution for a long time, and avoiding the consumption of the scale inhibitor too fast, thereby effectively prolonging the service life of the scale inhibiting mechanism.
  • the emptying passage may be a separate pipeline structure, or may be matched with the water making passage and the first cleaning passage.
  • the exhausting mechanism may be connected to a discharge mechanism.
  • the tube and the suction device at the same time, the scale inhibition mechanism is isolated in the first cleaning pipeline or the water production pipeline when emptying, and specifically, the scale inhibition mechanism can be isolated by adding a valve;
  • a valve may be added to the existing water making passage and the first washing passage of the water purifier, or the existing valve may be used for opening and closing control to form the emptying passage.
  • the emptying passage can have various configurations, and the present application is not limited thereto.
  • the existing waste water ratio can be used to balance the intake air, and an additional pressure balance mechanism can be additionally provided to ensure the smooth operation of the emptying operation.
  • the suction device may be a booster pump on the water passage or a drive mechanism on the first wash passage, or it may be provided separately.
  • the suction device and the drive mechanism can utilize the booster pump in the water supply passage for the purpose of cost saving and improvement of pipeline integration.
  • step S200 may be performed before the step S100, or may be performed after the step S100, or may be performed between the steps S100.
  • the application is not limited. Based on practical application considerations, performing steps S100 and S200 in sequence is a preferred embodiment of the present embodiment.
  • the second cleaning passage is connected to the raw water, and the original RO membrane is cleaned by the raw water, thereby removing the ion cleaning on the RO membrane, and at this time, The RO membrane element is in a state in which pure water is not produced, and the raw water forms a flush on the RO membrane.
  • the second preset time is the running time of the booster pump, which can be set manually or fixed time. The application is not limited.
  • the second cleaning passage may be a separate pipeline structure, or may be shared with the water supply passage, the first cleaning passage, and the emptying passage, for example, the second cleaning passage is a separate tube.
  • the raw water can be introduced into the RO membrane element through the connecting pipe by establishing a connecting pipe between the raw water pipeline and the RO membrane element, and the pure water port of the RO membrane component can be closed.
  • a valve may be added to the existing water making passage, the first cleaning passage, and the emptying passage of the water purifier or the existing valve may be used for opening and closing control to form the second cleaning passage. .
  • the configuration of the second cleaning passage can be various, and the present application is not limited thereto.
  • step S300 may be performed before step S200 or may be performed after step S200, which is not limited in this application.
  • steps S100, S200, and S300 may be sequentially performed as a preferred solution.
  • control method of the water purifier provided by the embodiment may further include:
  • the water purifier performs water production through the RO membrane element, which can be executed according to the water supply instruction given by the user, or can be automatically detected by monitoring the startup and shutdown of the water-passing device (such as a faucet, a water heater), and whether or not there is flow.
  • Step S50 is started.
  • the water purifier establishes the water supply passage
  • the water supply passage can be established by controlling the valve switch.
  • the water making passage may include, but is not limited to, a booster pump, an RO membrane element, and a wastewater ratio that are sequentially connected.
  • the inlet valve of the raw water pipeline can be provided before the booster pump, and the water passage is established by controlling the opening and closing of the inlet valve.
  • other valves, control components, and pipeline members may be provided in the water making passage to achieve multi-stage control, connect other pipelines, or improve the integration of the pipeline.
  • a scale inhibition mechanism may be disposed in the water making passage, and the scale inhibition mechanism may be disposed upstream of the wastewater ratio, and then the scale inhibition mechanism prevents scale formation in the wastewater, thereby affecting the specific life of the wastewater.
  • the specific setting position of the scale inhibiting mechanism can be flexibly set, and it can be disposed upstream of the RO membrane element or downstream of the RO membrane element, which is not limited in the application.
  • the water making passage can have various connection structures, which can be a pipeline that performs independent water production, and can also be combined with other pipelines (first cleaning passage, second cleaning passage, and row).
  • the empty passages share a part of the components and the pipes. Therefore, the specific connection structure of the water-making pipeline is not limited in this application, and only the purpose of obtaining pure water through the water-making passage can be achieved.
  • step S50 may be performed before the step S100 or may be performed after the step S100, which is not limited in this application.
  • step S50 and the step S100 can also be performed simultaneously, that is, the water making passage and the first washing passage are simultaneously established, thereby achieving the purpose of purifying the RO membrane element while obtaining pure water, which can not only improve the raw water.
  • the water production rate can also effectively improve the cleaning efficiency.
  • the wastewater ratio can be drained. It is also possible to drain the water regularly after a certain period of water production and cleaning.
  • steps S100, S200, and S300 may be performed before step S50 or after step S50, and the present application is also not limited.
  • the water purifier may include a water inlet valve, a booster pump, an RO membrane element, a scale inhibiting mechanism, and a wastewater ratio that are sequentially connected.
  • the step S50 includes: opening the water inlet valve to establish the water making passage, and controlling the boosting pump to operate to obtain pure water.
  • the inlet valve can be connected to the raw water pipeline, and the booster pump pressurizes the raw water so that the raw water can be reverse osmosis to the pure water side of the RO membrane, and the wastewater ratio (also referred to as a wastewater proportionalizer) can be used to discharge the wastewater.
  • the wastewater ratio also referred to as a wastewater proportionalizer
  • a certain amount of resistance in order to ensure effective production of pure water and to ensure the quality of the water produced by the pure water.
  • the scale inhibition mechanism is disposed downstream of the RO membrane element and upstream of the wastewater ratio, so that the wastewater passes through the scale inhibition mechanism and then enters the wastewater ratio, which effectively avoids fouling of the wastewater.
  • the scale inhibition mechanism is located downstream of the RO membrane element, and is located upstream of the RO membrane element compared to the scale inhibition mechanism.
  • the ions generated by the scale inhibitor dissolution in the scale inhibition mechanism do not contact the RO membrane. Furthermore, the problem of excessive ionization on the pure water side of the RO membrane is not formed during the water production process.
  • the inlet valve can be an electric control valve (such as a solenoid valve; it can also be a signal control valve, which is not limited in this application).
  • the pure water outlet of the RO membrane element is generally connected to a faucet or other water storage. After the water device receives the flow signal of the faucet or other water storage device, the water purifier can control the opening of the water inlet valve to establish the water making passage, thereby obtaining pure water.
  • the water making passage structure in the above embodiment is received, and the water outlet of the scale inhibiting mechanism is in communication with the water inlet of the booster pump.
  • the step S50 and the step S100 may include: opening the water inlet valve to simultaneously establish the water making passage and the first washing passage; controlling the boosting pump to operate to obtain pure water and simultaneously
  • the scale inhibition mechanism cleans the RO membrane element.
  • the water passage structure of the above embodiment is received, and the water outlet of the scale inhibiting mechanism is in communication with the water inlet of the booster pump and a first on-off valve may be disposed therebetween.
  • the step of establishing the water supply passage connecting the raw water further includes closing the first on-off valve. That is, the step S50
  • the method includes: opening the water inlet valve, closing the first switching valve to establish the water making passage, and controlling the boosting pump to operate to obtain pure water.
  • the step S100 includes: opening the first on-off valve, closing the inlet valve to establish the first cleaning passage, and controlling the booster pump to operate the first preset time to make the scale inhibiting mechanism The RO membrane element of the water purifier is cleaned.
  • the first cleaning passage in the embodiment utilizes a part of the pipeline of the above-mentioned water making passage, and the liquid in the scale inhibiting mechanism is sucked onto the RO membrane element by the booster pump to complete the RO membrane element.
  • the water outlet of the scale inhibiting mechanism is connected to the water inlet of the booster pump through a pipeline, and the first on-off valve is disposed on the pipeline.
  • the first on-off valve may be an electric control valve (for example, a solenoid valve; or a signal control valve, which is not limited in the application), and the water purifier may perform the step S100 in the un-watering period.
  • the water purifier can select the time position and length to be performed without a water time period and complete the step S100.
  • controlling the boosting pump to operate the first predetermined time to cause the scale inhibiting mechanism to clean the RO membrane element of the water purifier comprises: controlling the boosting pump to operate the first A predetermined time is required for the scale inhibiting mechanism to circulate the RO membrane element of the water purifier. That is, the step S100 includes: opening the first switching valve, closing the water inlet valve to establish the first cleaning passage, and controlling the boosting pump to operate the first preset time to make the resistance The scale mechanism circulates the RO membrane element of the water purifier.
  • the first cleaning passage established after the first inlet valve is closed to close the inlet valve is a circulation pipeline structure, so as to achieve a better cleaning effect
  • the scale inhibiting mechanism cyclically cleans the RO membrane element of the water purifier.
  • the first preset time is the running time of the booster pump, which can be set manually or fixed time. The application is not limited.
  • opening the water inlet valve may simultaneously establish the water making passage and the first washing passage (when the first opening and closing valve is opened), and controlling the operation of the boosting pump can be performed. Taking the pure water, the scale inhibiting mechanism can simultaneously clean the RO membrane element.
  • the first cleaning passage is received, and a second switching valve may be disposed between the water outlet of the RO membrane element and the water inlet of the scale inhibiting mechanism; A flush valve is connected to the outlet.
  • the step of establishing the water supply passage connecting the raw water further includes opening the second on-off valve to close the flush valve. That is, the step S50 includes: opening the water inlet valve and the second switching valve, closing the first switching valve and the flushing valve to establish the water making passage, and controlling the boosting pump to operate. Take pure water.
  • the step S100 includes: opening the first on-off valve and the second on-off valve, closing the water inlet valve and the flush valve to establish the first cleaning passage, and controlling the boost pump operation
  • the first predetermined time is such that the scale inhibiting mechanism cleans the RO membrane element of the water purifier.
  • the step S200 includes: opening the first switching valve and the flushing valve, closing the water inlet valve and the second switching valve to establish the emptying passage; and controlling the boosting pump to operate a third pre-control Time is set to evacuate the liquid in the scale inhibiting mechanism.
  • the evacuation passage in the present embodiment further utilizes a part of the water passage and the first purge passage, and the liquid in the scale inhibition mechanism is sucked through the RO membrane element by a booster pump. After the flushing valve is discharged, the emptying operation of the scale inhibiting mechanism is completed, and the problem that the scale inhibitor is still immersed in the liquid when not using water is avoided.
  • the second switching valve, the RO membrane element, and the flushing valve may be connected by a three-way structure, and the flushing valve may be connected to a drain pipe to discharge the liquid in the scale inhibiting mechanism through the pipeline.
  • the second on-off valve and the flush valve may both be an electric control valve (for example, a solenoid valve; or a signal control valve, which is not limited in the application), and the water purifier may perform the step S200 in the un-watering period.
  • the water purifier can select the time position and length to be performed without a water time period and complete the step S200.
  • the third preset time is the running time of the booster pump, which can be set manually or fixed time, and the application is not limited.
  • the step S300 includes: opening the water inlet valve and the flushing valve, closing the first switching valve and the second switching valve to establish the second cleaning passage And controlling the booster pump to operate the second predetermined time to clean the RO membrane element using raw water.
  • the water purifier can establish the second cleaning passage by controlling the opening and closing of the valve, without adding other pipes or components, not only reducing the manufacturing cost, but also effectively preventing the problem of excessive ion generation.
  • the control method of the water purifier can effectively evacuate the liquid in the scale inhibiting mechanism in an unwatered state by establishing an emptying passage connecting the scale inhibiting mechanism, thereby effectively avoiding
  • the scale inhibitor in the scale inhibition mechanism is always in a dissolved state and is consumed too quickly.
  • the first cleaning passage is also established in the method, and the cleaning operation of the RO membrane component is realized, the clogging problem of the RO membrane component can be effectively prevented, and the life of the RO membrane component is prolonged.
  • a second cleaning passage is also established in the method, and the scale inhibitor ions on the RO membrane can be cleaned by the arrangement to avoid the problem that the scale-inhibiting ions penetrate to the pure water side of the RO membrane to generate an ion exceeding standard.
  • another embodiment of the present application further provides a water purifier comprising: the water purifier including a water inlet valve, a booster pump, an RO membrane element, a scale inhibiting mechanism, and a wastewater ratio;
  • the scale inhibiting mechanism is coupled to an evacuation passage that is capable of venting liquid in the scale inhibiting mechanism.
  • the water purifier can be provided with an independent pipeline and a scale inhibition mechanism to establish an emptying passage, and the liquid in the scale inhibiting mechanism is evacuated, thereby preventing the scale inhibiting mechanism from being immersed in the liquid for dissolution for a long time, and avoiding scale inhibition.
  • the agent is consumed too quickly, which can effectively extend the service life of the scale inhibition mechanism.
  • the emptying passage may be a separate pipeline structure, or may be matched with a water supply passage and a cleaning passage in the water purifier.
  • a discharge mechanism may be connected to the scale inhibition mechanism.
  • the pipe and the suction device are simultaneously separated from the cleaning pipe or the water pipe during the emptying.
  • the scale inhibiting mechanism can be isolated by adding a valve; When the cleaning passages are matched, a valve may be added to the existing water making passage and the washing passage of the water purifier or the existing valve may be used for opening and closing control to form the emptying passage.
  • the configuration of the emptying passage can have various types, and the present application is not limited thereto.
  • the existing wastewater in order to balance the pressure inside the scale inhibition mechanism, the existing wastewater can be utilized to balance the intake air, and an additional pressure balance mechanism can be configured to ensure the smooth operation of the evacuation work.
  • the suction device may be a booster pump on the water passage or a drive mechanism on the wash passage, or it may be provided separately.
  • the suction device and the drive mechanism can utilize the booster pump in the water supply passage for the purpose of cost saving and improvement of pipeline integration.
  • the inlet valve, the booster pump, the RO membrane element, the scale inhibition mechanism, and the wastewater ratio are all connected by a pipe, wherein the waste water outlet of the RO membrane element is connected to the water inlet of the scale inhibition mechanism, and the scale inhibition mechanism The water outlet is connected to the water inlet of the wastewater ratio, and the wastewater is discharged than the wastewater.
  • the scale inhibiting mechanism may have at least one scale inhibitor, and the scale inhibitor may be selected from the group consisting of an organic phosphorus series scale inhibitor, a polycarboxylic acid scale inhibitor and a dispersant, a composite scale inhibitor, a RO scale inhibitor, and a concentration scale inhibition agent.
  • the scale inhibition mechanism may have a silicon phosphate crystal scale inhibitor.
  • the inlet valve can be connected to the raw water pipeline, and after the inlet valve is opened, a water production passage can be established, and pure water can be obtained through the water passage.
  • the booster pump pressurizes the raw water so that the raw water can be reverse osmosis to the pure water side of the RO membrane, and the wastewater ratio (also referred to as the wastewater proportionalizer) can give a certain resistance to the discharge of the waste water, thereby ensuring effective treatment. Produce pure water and guarantee the water quality effect of the pure water produced.
  • the scale inhibition mechanism is disposed downstream of the RO membrane element and upstream of the wastewater ratio, so that the wastewater passes through the scale inhibition mechanism and then enters the wastewater ratio, which effectively avoids fouling of the wastewater.
  • the scale inhibition mechanism is located downstream of the RO membrane element, and is located upstream of the RO membrane element compared to the scale inhibition mechanism.
  • the inlet valve can be an electric control valve (such as a solenoid valve; it can also be a signal control valve, which is not limited in this application).
  • the pure water outlet of the RO membrane element is generally connected to a faucet or other water storage. Water setting After the water purifier receives the flow signal of the faucet or other water storage device, the water inlet valve can be controlled to open, and the water making passage is established to obtain pure water.
  • the water outlet of the scale inhibiting mechanism is in communication with the water inlet of the booster pump and a first on-off valve may be disposed therebetween.
  • a first cleaning passage can be established in the water purifier. Specifically, the first cleaning valve is opened, and the first cleaning passage can be established by closing the water inlet valve.
  • controlling the booster pump to operate the first predetermined time may cause the scale inhibiting mechanism to clean the RO membrane element of the water purifier.
  • the first cleaning passage established in the embodiment utilizes a part of the pipeline of the above-mentioned water making passage, and the liquid in the scale inhibiting mechanism is sucked onto the RO membrane element by the booster pump to complete the cleaning of the RO membrane element.
  • the water outlet of the scale inhibiting mechanism is connected to the water inlet of the booster pump through a pipeline, and the first on-off valve is disposed on the pipeline.
  • the first on-off valve may be an electric control valve (for example, a solenoid valve; or a signal control valve, which is not limited in the application), and the water purifier may perform cleaning of the RO membrane element during the unheated period.
  • the water purifier can select the time position and the length are reasonable and the water time period is not completed and the cleaning of the RO membrane element is completed.
  • a second on-off valve may be disposed between the water outlet of the RO membrane element and the water inlet of the scale inhibiting mechanism; and the flushing valve is connected to the waste water outlet of the RO membrane element.
  • the venting passage is established when the first switching valve and the flushing valve are open and the inlet valve and the second switching valve are closed, and the boosting pump is operable to operate the scale inhibiting mechanism The liquid is drained.
  • the emptying passage further utilizes some of the above-mentioned water making passage and the pipeline of the first washing passage, which can improve integration and save manufacturing cost; and at the same time, the liquid in the scale inhibiting mechanism is sucked through the RO by the booster pump. After the membrane element and the flushing valve are discharged, the emptying operation of the scale inhibiting mechanism is completed, and the problem that the scale inhibitor is still immersed in the liquid when not using water is avoided.
  • the second switching valve, the RO membrane element, and the flushing valve may be connected by a three-way structure, and the flushing valve may be connected to a drain pipe to discharge the liquid in the scale inhibiting mechanism through the pipeline.
  • the second on-off valve and the flush valve may be electric control valves (for example, solenoid valves; or signal control valves, which are not limited in this application), and the water purifier may perform the emptying operation in the un-watering period.
  • the water purifier can select the time position and the length are reasonable and the water time period is not performed and complete the above emptying work.
  • the pipeline structure is continuously received.
  • the first inlet valve and the second inlet valve may be closed to open the inlet valve and the flush valve to establish a second cleaning passage.
  • controlling the booster pump to operate the second predetermined time may clean the RO membrane element using raw water.
  • the water inlet valve, the flush valve, the first switching valve, and the second switching valve may all be solenoid valves.
  • the water purifier further includes a controller connected to the water inlet valve, the flush valve, the first switching valve, and the second switching valve.
  • the controller can realize the water making passage, the first cleaning passage, the emptying passage, and the second cleaning by controlling the inlet valve, the flushing valve, the first switching valve and the second switching valve, respectively.
  • the paths are established separately to perform different tasks.
  • any numerical value recited herein includes all values of the lower and upper values in increments of one unit from the lower limit to the upper limit, and at least two unit intervals between any lower value and any higher value. Just fine. For example, if the number of components or process variables (eg, temperature, pressure, time, etc.) is stated to be from 1 to 90, preferably from 20 to 80, more preferably from 30 to 70, the purpose is to illustrate Values such as 15 to 85, 22 to 68, 43 to 51, 30 to 32 are also explicitly recited in the specification. For values less than 1, one unit is appropriately considered to be 0.0001, 0.001, 0.01, 0.1. These are merely examples that are intended to be expressly stated, and all possible combinations of numerical values recited between the minimum and maximum values are considered to be explicitly described in this specification in a similar manner.
  • ⁇ RTI ID 0.0> ⁇ / RTI> ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种净水机的控制方法,包括:建立连通净水机的阻垢机构与RO膜元件的第一清洗通路,通过第一清洗通路使阻垢机构对RO膜元件进行清洗第一预设时间;建立连接阻垢机构的排空通路,通过排空通路将阻垢机构中的液体排空;建立连通原水的第二清洗通路,通过第二清洗通路使用原水对RO膜元件清洗第二预设时间;还包括建立连通原水的制水通路,通过制水通路制取纯水。净水机,包括顺序连接的进水阀、增压泵、RO膜元件、阻垢机构以及废水比。

Description

净水机的控制方法及净水机
交叉参考相关引用
本申请要求2015年11月20日递交的申请号为201510809043.9、发明名称为“净水机的控制方法及净水机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及水质净化领域,尤其涉及一种净水机的控制方法及净水机。
背景技术
饮水问题是最民众非常关注的问题,水中有很多不利于健康的物质已是不争的事实,这也是老百姓健康饮水意识得到加强的主要原因,也是净水设备市场火爆的根源。水中有不少有害物质,如沉淀物、氧化物、悬浮物和各种对人体有害的细菌等杂质,如果不加处理,常年累月的饮用有可能对身体健康造成影响,现有技术中的水净化不够彻底,而且耗能多。
为解决上述饮水问题,目前普遍使用反渗透净水机(RO净水机)对原水进行净化。RO净水机是一种通过反渗透过滤方法,对原水进行加压,利用物理原理过滤处理,在制备过程中不添加任何化合物,生产出可直接供人类饮用的纯水。RO净水机在制水过程中通过RO膜将原水分为纯水及废水,废水通过废水比(也称为废水比例器)后排出或用作其他用途。为防止制水过程中,废水比或RO膜上积累有过多的杂质进而形成堵塞问题,目前,通常在RO净水机的制水管路上设有阻垢机构,进而将原水或废水中的Ca+、Mg+等离子络合吸收,保护RO膜及废水比,防止废水比结垢。
但是,目前净水机中的阻垢机构处于长期浸泡在水中的状态,阻垢机构中的阻垢剂在水中会进行溶解,而随着浸泡时间的延长,会导致阻垢剂处于长时间的溶解中而消耗过快,进而需要频繁的更换阻垢剂,增加费用。
另外,随着阻垢剂的溶解及时间的作用下,阻垢剂中的部分离子有可能渗透至RO膜纯水侧,造成饮用水离子超标的问题,给用户的健康产生风险。
发明内容
鉴于现有技术的不足,本申请提供净水机的控制方法及净水机,以至少解决上述技 术问题之一。
为达到上述目的,本申请提供一种净水机的控制方法,所述方法包括:
建立连通净水机的阻垢机构与RO膜元件的第一清洗通路,通过所述第一清洗通路使所述阻垢机构对所述RO膜元件清洗第一预设时间;
建立连接所述阻垢机构的排空通路,通过所述排空通路将所述阻垢机构中的液体排空;
建立连通原水的第二清洗通路,通过所述第二清洗通路使用原水对所述RO膜元件清洗第二预设时间。
作为一种优选的实施方式,建立连通原水的制水通路,通过所述制水通路制取纯水。
作为一种优选的实施方式,所述净水机包括顺序连接的进水阀、增压泵、RO膜元件、阻垢机构以及废水比;
所述建立连通原水的制水通路,通过所述制水通路制取纯水包括:打开所述进水阀以建立所述制水通路,控制所述增压泵运行以进行制取纯水。
作为一种优选的实施方式,所述阻垢机构的出水口与增压泵的进水口相连通;
所述建立连通原水的制水通路,通过所述制水通路制取纯水以及所述建立连通净水机的阻垢机构与RO膜元件的第一清洗通路,通过所述第一清洗通路使所述阻垢机构对所述RO膜元件清洗第一预设时间包括:
打开所述进水阀以同时建立所述制水通路及所述第一清洗通路;控制所述增压泵运行以制取纯水并同时使所述阻垢机构对所述RO膜元件清洗。
作为一种优选的实施方式,所述阻垢机构的出水口与增压泵的进水口相连通且之间设置有第一开关阀;
在所述建立连通原水的制水通路中还包括:关闭所述第一开关阀;
所述建立连通净水机的阻垢机构与RO膜元件的第一清洗通路,通过所述第一清洗通路使所述净水机的阻垢机构对所述净水机的RO膜元件进行清洗第一预设时间包括:打开所述第一开关阀,关闭所述进水阀以建立所述第一清洗通路,控制所述增压泵运行所述第一预设时间以使所述阻垢机构对所述净水机的RO膜元件清洗。
作为一种优选的实施方式,所述控制所述增压泵运行所述第一预设时间以使所述阻垢机构对所述净水机的RO膜元件进行清洗包括:控制所述增压泵运行所述第一预设时间以使所述阻垢机构对所述净水机的RO膜元件循环清洗。
作为一种优选的实施方式,所述RO膜元件的出水口与所述阻垢机构的进水口之间 设有第二开关阀;所述RO膜元件的废水出口连接有冲洗阀;
在所述建立连通原水的制水通路中还包括:打开所述第二开关阀,关闭所述冲洗阀;
在所述连通净水机的阻垢机构与RO膜元件的第一清洗通路中还包括:打开所述第二开关阀,关闭所述冲洗阀;
所述建立连接所述阻垢机构的排空通路,通过所述排空通路将所述阻垢机构中的液体排空包括:打开所述第一开关阀和所述冲洗阀,关闭所述进水阀和所述第二开关阀以建立所述排空通路;控制所述增压泵运行第三预设时间以将所述阻垢机构中的液体排空。
作为一种优选的实施方式,所述建立连通原水的第二清洗通路,通过所述第二清洗通路使用原水对所述RO膜元件清洗第二预设时间包括:打开所述进水阀和所述冲洗阀,关闭所述第一开关阀和所述第二开关阀以建立所述第二清洗通路,控制所述增压泵运行所述第二预设时间以对所述RO膜元件清洗。
为达到上述目的,本申请还提供一种净水机,包括:所述净水机包括顺序连接的进水阀、增压泵、RO膜元件、阻垢机构以及废水比;所述阻垢机构连接有排空通路,所述排空通路能够将所述阻垢机构中的液体排空。
作为一种优选的实施方式,所述阻垢机构的出水口与增压泵的进水口相连通且之间设置有第一开关阀。
作为一种优选的实施方式,所述RO膜元件的出水口与所述阻垢机构的进水口之间设有第二开关阀;所述RO膜元件的废水出口连接有冲洗阀;所述第一开关阀和所述冲洗阀打开且所述进水阀和所述第二开关阀关闭时建立所述排空通路,所述增压泵能够运行以将所述阻垢机构中的液体排空。
作为一种优选的实施方式,所述进水阀、所述冲洗阀、所述第一开关阀及所述第二开关阀均为电磁阀;所述净水机还包括与所述进水阀、所述冲洗阀、所述第一开关阀及所述第二开关阀均连接的控制器。
作为一种优选的实施方式,所述阻垢机构具有硅磷晶阻垢剂。
通过以上描述可以看出,本申请所提供的净水机的控制方法,通过建立连接阻垢机构的排空通路,可以在未制水状态下将阻垢机构内的液体排空,进而有效避免阻垢机构内的阻垢剂一直处于溶解状态而消耗过快。同时,在所述方法中还建立有所述第一清洗通路,实现了对RO膜元件的清洗工作,可以有效防止RO膜元件的堵塞问题,延长RO膜元件的寿命。另外,在所述方法中还建立有第二清洗通路,通过此种设置可以将RO膜上的离子进行清洗,避免离子渗透至RO膜的纯水侧产生离子超标问题。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一种实施方式所提供的净水机的控制方法流程图;
图2为本申请一种实施方式所提供的净水机的管路图。
具体实施方式
为了使本技术领域的人员更好地理解本申请中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个 或多个相关的所列项目的任意的和所有的组合。
请参阅图1,本申请一种实施方式提供一种净水机的控制方法,该方法应用但不限于防止净水机阻垢剂消耗过快以及防止离子超标问题。本实施方式中,所述净水机的控制方法包括以下步骤:
S100、建立连通净水机的阻垢机构与RO膜元件的第一清洗通路,通过所述第一清洗通路使所述阻垢机构对所述RO膜元件清洗第一预设时间。
在本步骤中,净水机通过第一清洗通路将阻垢机构与RO膜元件连通,阻垢机构中的带有阻垢剂(已溶解)的液体由第一清洗通路被移动至RO膜元件中,带有阻垢剂的液体经过RO膜元件的RO膜(反渗透膜)时会对RO膜进行清洗,将RO膜面上的杂质(Ca+、Ma+离子等)清洗并带走,防止RO膜元件产生堵塞的问题,延长RO膜的使用寿命。
所述第一清洗通路中,RO膜元件与阻垢机构可以串联,也可以并联,本申请并不作限制。阻垢机构与RO膜元件之间可以设有阀门结构也可以设有驱动机构,当然,也可以利用制水通路中的增压泵进行驱动。当然,在步骤S100中,阻垢机构的出水口与RO膜元件的进水口连通,从而使阻垢机构中的液体排入至RO膜元件内。
从上文描述可知,本实施方式的第一清洗通路与其他通路(比如制水通路)之间可以为不同管路(仅有RO膜元件为公共部分),二者也可以为互相利用对方通路上的部分元器件的管路构造,进而提高净水机管路的集成度。当然,净水机在建立第一清洗通路时,可以仅通过对管路上的阀门的开闭控制实现即可,同时,通过控制驱动机构的运行达到阻垢机构清洗RO膜元件的目的。
清洗RO膜元件第一预设时间以保证对RO膜元件有效清洗,在第一清洗通路为循环管路构造的情况下,可以使带有阻垢剂的液体循环经过RO膜元件,从而使阻垢机构对RO膜元件进行循环清洗,完成对RO膜元件的有效清洗。当然,在第一清洗通路中,对于带有阻垢剂的液体并不一定需要执行循环清洗工作,即,即使在循环管路构造的第一清洗通路中,将带有阻垢剂的液体对RO膜元件清洗一次后即可排出或重新进入阻垢机构。另外,第一清洗通路也并不需要为循环管路构造,其也可以为非循环管路构造,只需保证阻垢机构中的液体能够对RO膜元件进行清洗即可。
S200、建立连接所述阻垢机构的排空通路,通过所述排空通路将所述阻垢机构中的液体排空。
在本步骤中,净水机可以设置独立的管路与阻垢机构建立排空通路,将阻垢机构中 的液体排空,进而避免阻垢机构长期浸泡在液体中进行溶解,避免阻垢剂消耗过快,进而可以有效延长阻垢机构的使用寿命。
本实施方式中,排空通路可以为单独管路构造,也可以与制水通路、第一清洗通路相配合,比如,在排空通路为单独管路构造时,可以为阻垢机构连接一排放管及抽吸装置,同时,在排空时将阻垢机构在第一清洗管路或制水管路中隔离出来,具体的,可以通过加设阀门来将阻垢机构隔离出来;在与制水通路、第一清洗通路相配合时,可以在净水机现有的制水通路、第一清洗通路上加设阀门或利用现有阀门进行开闭控制,进而形成所述排空通路。
可以看出在本实施方式中,所述排空通路可以具有多种构造形式,本申请并不作限制。当然,在排空阻垢机构时,为平衡阻垢机构内部的压力可以利用现有的废水比进行进气平衡,也可以额外配置压力平衡机构,以保证排空工作的顺利进行。
在对阻垢机构进行液体排空时,抽吸装置可以为利用制水通路上的增压泵、也可以利用第一清洗通路上的驱动机构,当然也可以为单独设置。基于节约成本、提高管道集成度的目的,抽吸装置、驱动机构均可以利用制水通路中的增压泵。
同样需要说明的是,该步骤S200与步骤S100之间并无明确的执行顺序关系,该步骤S200可以在步骤S100之前执行,也可以正在步骤S100之后执行,也可以在步骤S100之间进行,本申请并不作限定。而基于实际应用考虑,以顺序执行步骤S100、S200为本实施方式较佳的方案。
S300、建立连通原水的第二清洗通路,通过所述第二清洗通路使用原水对所述RO膜元件清洗第二预设时间。
考虑到虽然步骤S100中通过带有阻垢剂的液体将RO膜清洗后防止RO膜结垢堵塞,但有可能在RO膜上留有阻垢离子(比如磷),为防止过多的阻垢离子在RO膜形成渗透而具有饮用水离子超标的风险,本步骤S300中,第二清洗通路连通原水,通过原水将RO膜原件清洗,进而将RO膜上的离子清洗带走,而此时,RO膜元件处于不制取纯水的状态,进而原水会在RO膜上形成冲刷。第二预设时间为增压泵的运行时间,可以人为设定,也可以为固定时间,本申请并不作限制。
同样的,本实施方式中,第二清洗通路可以为单独管路构造,也可以与制水通路、第一清洗通路、排空通路相共用部分管路,比如,在第二清洗通路为单独管路构造时,可以通过在原水管路路与RO膜元件之间设立连接管道,通过连接管道将原水引入RO膜元件中,同时,RO膜元件的纯水口关闭即可。在与制水通路、第一清洗通路、排空通 路相共用部分管路时,可以在净水机现有的制水通路、第一清洗通路、排空通路上加设阀门或利用现有阀门进行开闭控制,进而形成所述第二清洗通路。
可以看出在本实施方式中,所述第二清洗通路的构造形式可以具有多种,本申请并不作限制。
需要说明的是,该步骤S300与上述步骤S200之间并无明确的执行顺序关系,该步骤S300可以在步骤S200之前执行,也可以正在步骤S200之后执行,本申请并不作限定。较佳的,可以以顺序执行步骤S100、S200、S300作为较佳的方案。
作为一个可行的实施方式,本实施方式所提供的净水机的控制方法还可以包括:
S50、建立连通原水的制水通路,通过所述制水通路制取纯水。
在本步骤中,净水机通过RO膜元件进行制水,其可以根据用户给予的制水指令开始执行,也可以通过监测过水器件(比如水龙头、热水器)的启动关闭、有无流量来自动启动步骤S50。净水机在建立制水通路时,可以通过控制阀门开关来建立制水通路。
净水机制取纯水时,需要通过增压泵给予原水一定的压力来通过RO膜元件,进而将原水过滤分为纯水及废水。制水通路中可以包括但不限于:顺次连通的增压泵、RO膜元件、废水比。当然,增压泵前可以设置有连接原水管路的进水阀,通过控制进水阀的开启关闭来建立制水通路。另外,在制水通路还可以设置有其他阀门、控制元件、管道构件等,以实现多级控制、连接其他管路、或者提高管路集成度到的效果。
还有,在制水通路中可以设置有阻垢机构,阻垢机构可以设置于废水比的上游,进而通过阻垢机构防止废水比中结垢,影响废水比寿命。当然,阻垢机构的具体设置位置可以灵活设定,其可以设置于RO膜元件上游,也可以设置在RO膜元件下游,本申请并不作限定。
可以看出在本实施方式中,制水通路可以有多种连接构造,其可以为行使独立制水作用的管路,其也可以与其他管路(第一清洗通路、第二清洗通路、排空通路)共用部分元件、管道,所以,本申请对于制水管路的具体连接构造并不作限定,只需达到通过所述制水通路可以制取纯水的目的即可。
需要说明的是,该步骤S50与步骤S100之间并无明确的执行顺序关系,该步骤S50可以在步骤S100之前执行,也可以正在步骤S100之后执行,本申请并不作限定。
另外,该步骤S50与步骤S100也可以同时进行,即,同时建立制水通路及第一清洗通路,进而达到制取纯水的同时完成对RO膜元件的清洗的目的,这不仅可以提高原水的制水率,还可以有效提高清洗效率。在制水以及清洗过程中,废水比可以进行排水, 也可以在进行一定时间的制水及清洗后定时排水。
当然,执行步骤S100、S200、S300可以在步骤S50之前进行也可以在步骤S50之后执行,本申请同样不作限制。
在一个具体的实施方式中,所述净水机可以包括顺序连接的进水阀、增压泵、RO膜元件、阻垢机构以及废水比。
所述步骤S50包括:打开所述进水阀以建立所述制水通路,控制所述增压泵运行以进行制取纯水。
在本实施方式中,进水阀可以连接原水管路,增压泵为原水加压以使原水可以反渗透至RO膜纯水侧,废水比(也可以称为废水比例器)可以给予废水排出时一定的阻力,进而保证有效的制取纯水及保障所制取纯水的水质效果。阻垢机构设置于RO膜元件的下游及废水比的上游,使得废水经过阻垢机构后再进入废水比内,这就有效的避免的废水比内结垢。同时,阻垢机构位于RO膜元件的下游,相较于阻垢机构位于RO膜元件的上游,在制水过程中,阻垢机构中阻垢剂溶解所产生的离子不会接触到RO膜,进而也不会在制水过程中在RO膜的纯水侧形成离子超标问题。
为较好的进行自动控制,进水阀可以为电动控制阀(例如电磁阀;也可以为信号控制阀,本申请并不作限制),RO膜元件的纯水出口一般连接至水龙头或其他用水储水设备,净水机在接收到水龙头或其他用水储水设备的流量信号后,即可控制打开所述进水阀,建立所述制水通路,进而制取纯水。
在一个可行的实施方式中,承接上述实施方式中的制水通路构造,所述阻垢机构的出水口与增压泵的进水口相连通。
所述步骤S50以及所述步骤S100可以包括:打开所述进水阀以同时建立所述制水通路及所述第一清洗通路;控制所述增压泵运行以制取纯水并同时使所述阻垢机构对所述RO膜元件清洗。
通过此种设置,为第一清洗通路引入原水。在补充原水的基础上,RO膜元件可以开始制水,此时,同时建立制水通路及第一清洗通路,由RO膜元件排出进入阻垢机构的废水会再次与原水汇合,然后再次进入RO膜元件内进行制水。这不仅可以提高原水的制水率,还可以有效提高清洗效率。
在另一个实施方式中,承接上述实施方式中的制水通路构造,所述阻垢机构的出水口与增压泵的进水口相连通且之间可以设置有第一开关阀。
在所述建立连通原水的制水通路中还包括关闭所述第一开关阀。即,所述步骤S50 包括:打开所述进水阀,关闭所述第一开关阀以建立所述制水通路,控制所述增压泵运行以进行制取纯水。
所述步骤S100包括:打开所述第一开关阀,关闭所述进水阀以建立所述第一清洗通路,控制所述增压泵运行所述第一预设时间以使所述阻垢机构对所述净水机的RO膜元件清洗。
可以看出,本实施方式中的第一清洗通路利用了部分上述制水通路的管路,并通过增压泵将阻垢机构中的液体抽吸至RO膜元件上,完成对RO膜元件的清洗。具体的,阻垢机构的出水口与增压泵的进水口之间通过管道连接,该管道上设置所述第一开关阀。同样的,第一开关阀可以为电动控制阀(例如电磁阀;也可以为信号控制阀,本申请并不作限制),净水机可以在未制水时间段执行所述步骤S100。较佳的,净水机可以挑选出时间位置及长度均合理未用水时间段执行且完成所述步骤S100。
更进一步的,所述控制所述增压泵运行所述第一预设时间以使所述阻垢机构对所述净水机的RO膜元件清洗包括:控制所述增压泵运行所述第一预设时间以使所述阻垢机构对所述净水机的RO膜元件循环清洗。即,所述步骤S100包括:打开所述第一开关阀,关闭所述进水阀以建立所述第一清洗通路,控制所述增压泵运行所述第一预设时间以使所述阻垢机构对所述净水机的RO膜元件进行循环清洗。
其中,由于承接了制水通路的管路构造,打开所述第一开关阀关闭所述进水阀后所建立的第一清洗通路为循环管路构造,为达到较好的清洗效果,可以使所述阻垢机构对所述净水机的RO膜元件进行循环清洗。第一预设时间为增压泵的运行时间,可以人为设定,也可以为固定时间,本申请并不作限制。
另外,在本实施方式中,打开所述进水阀也可以同时建立所述制水通路及所述第一清洗通路(此时第一开关阀打开),控制所述增压泵运行既可以制取纯水又可以同时使所述阻垢机构对所述RO膜元件清洗。
在一个较佳的实施方式中,承接上述第一清洗通路,所述RO膜元件的出水口与所述阻垢机构的进水口之间可以设有第二开关阀;所述RO膜元件的废水出口连接有冲洗阀。
在所述建立连通原水的制水通路中还包括打开所述第二开关阀,关闭所述冲洗阀。即,所述步骤S50包括:打开所述进水阀及所述第二开关阀,关闭所述第一开关阀及冲洗阀以建立所述制水通路,控制所述增压泵运行以进行制取纯水。
在所述通净水机的阻垢机构与RO膜元件的第一清洗通路中还包括打开所述第二开 关阀,关闭所述冲洗阀。即,所述步骤S100包括:打开所述第一开关阀和所述第二开关阀,关闭所述进水阀和所述冲洗阀以建立所述第一清洗通路,控制所述增压泵运行所述第一预设时间以使所述阻垢机构对所述净水机的RO膜元件进行清洗。
所述步骤S200包括:打开所述第一开关阀和所述冲洗阀,关闭所述进水阀和所述第二开关阀以建立所述排空通路;控制所述增压泵运行第三预设时间以将所述阻垢机构中的液体排空。
在本实施方式中,本实施方式中的排空通路进一步利用了部分上述制水通路、第一清洗通路的管路,并通过增压泵将阻垢机构中的液体抽吸经RO膜元件、冲洗阀后排出,完成对阻垢机构的排空工作,避免了阻垢剂未用水时依然浸泡于液体中的问题。
具体的,第二开关阀、RO膜元件、冲洗阀之间可以通过三通结构进行连接,冲洗阀可以连接一排水管道,进而将阻垢机构中的液体通过管道排出。同样的,第二开关阀、冲洗阀均可以为电动控制阀(例如电磁阀;也可以为信号控制阀,本申请并不作限制),净水机可以在未制水时间段执行所述步骤S200。较佳的,净水机可以挑选出时间位置及长度均合理未用水时间段执行且完成所述步骤S200。第三预设时间为增压泵的运行时间,可以人为设定,也可以为固定时间,本申请并不作限制。
进一步的,继续承接上述管路构造,所述步骤S300包括:打开所述进水阀和所述冲洗阀,关闭所述第一开关阀和所述第二开关阀以建立所述第二清洗通路,控制所述增压泵运行所述第二预设时间以使用原水对所述RO膜元件清洗。
在该步骤S300中,净水机通过控制阀门的开闭即可建立所述第二清洗通路,无需增设其他管道或元器件,不仅降低制造成本,而且可以有效防止产生离子超标问题。
通过以上描述可以看出,本申请所提供的净水机的控制方法,通过建立连接阻垢机构的排空通路,可以在未制水状态下将阻垢机构内的液体排空,进而有效避免阻垢机构内的阻垢剂一直处于溶解状态而消耗过快。同时,在所述方法中还建立有所述第一清洗通路,实现了对RO膜元件的清洗工作,可以有效防止RO膜元件的堵塞问题,延长RO膜元件的寿命。另外,在所述方法中还建立有第二清洗通路,通过此种设置可以将RO膜上的阻垢离子进行清洗,避免阻垢离子渗透至RO膜的纯水侧产生离子超标问题。
请参阅图2,本申请另一种实施方式还提供一种净水机,包括:所述净水机包括顺序连接的进水阀、增压泵、RO膜元件、阻垢机构以及废水比;所述阻垢机构连接有排空通路,所述排空通路能够将所述阻垢机构中的液体排空。
在本实施方式中,净水机可以设置独立的管路与阻垢机构建立排空通路,将阻垢机构中的液体排空,进而避免阻垢机构长期浸泡在液体中进行溶解,避免阻垢剂消耗过快,可以有效延长阻垢机构的使用寿命。
其中,排空通路可以为单独管路构造,也可以与净水机中的制水通路、清洗通路相配合,比如,在排空通路为单独管路构造时,可以为阻垢机构连接一排放管及抽吸装置,同时,在排空时将阻垢机构在清洗管路或制水管路中隔离出来,具体的,可以通过加设阀门来将阻垢机构隔离出来;在与制水通路、清洗通路相配合时,可以在净水机现有的制水通路、清洗通路上加设阀门或利用现有阀门进行开闭控制,进而形成所述排空通路。
可以看出在本实施方式中,所述排空通路的构造形式可以具有多种,本申请并不作限制。当然,在排空阻垢机构时,为平衡阻垢机构内部的压力可以利用现有的废水比进气平衡,也可以额外配置压力平衡机构,以保证排空工作的顺利进行。
在对阻垢机构进行液体排空时,抽吸装置可以为利用制水通路上的增压泵、也可以利用清洗通路上的驱动机构,当然也可以为单独设置。基于节约成本、提高管道集成度的目的,抽吸装置、驱动机构均可以利用制水通路中的增压泵。
本实施方式中,进水阀、增压泵、RO膜元件、阻垢机构以及废水比之间均通过管道连接,其中,RO膜元件的废水出口连接阻垢机构的进水口,阻垢机构的出水口连接废水比的进水口,废水比将废水排出。所述阻垢机构中可以具有至少一种阻垢剂,阻垢剂可以选自有机磷系列阻垢剂、聚羧酸类阻垢分散剂、复合阻垢剂、RO阻垢剂、浓缩阻垢剂、无磷阻垢剂中的一种或多种,较佳的,阻垢机构可以具有硅磷晶阻垢剂。
在本实施方式中,进水阀可以连接原水管路,打开所述进水阀后可以建立制水通路,通过制水通路可以制取纯水。在制水通路中,增压泵为原水加压以使原水可以反渗透至RO膜纯水侧,废水比(也可以称为废水比例器)可以给予废水排出时一定的阻力,进而保证有效的制取纯水及保障所制取纯水的水质效果。
阻垢机构设置于RO膜元件的下游及废水比的上游,使得废水经过阻垢机构后再进入废水比内,这就有效的避免的废水比内结垢。同时,阻垢机构位于RO膜元件的下游,相较于阻垢机构位于RO膜元件的上游,在制水过程中,阻垢机构中阻垢剂溶解所产生的离子不会接触到RO膜,进而也不会在制水过程中在RO膜的纯水侧形成离子超标问题。
为较好的进行自动控制,进水阀可以为电动控制阀(例如电磁阀;也可以为信号控制阀,本申请并不作限制),RO膜元件的纯水出口一般连接至水龙头或其他用水储水设 备,净水机在接收到水龙头或其他用水储水设备的流量信号后,即可控制打开所述进水阀,建立所述制水通路,进而制取纯水。
所述阻垢机构的出水口与增压泵的进水口相连通且之间可以设置有第一开关阀。通过设有所述第一开关阀,可以在净水机中建立第一清洗通路。具体的,打开所述第一开关阀,关闭所述进水阀即可以建立所述第一清洗通路。在所述第一清洗通路中,控制所述增压泵运行所述第一预设时间可以使所述阻垢机构对所述净水机的RO膜元件进行清洗。
本实施方式中所建立的第一清洗通路利用了部分上述制水通路的管路,并通过增压泵将阻垢机构中的液体抽吸至RO膜元件上,完成对RO膜元件的清洗。具体的,阻垢机构的出水口与增压泵的进水口之间通过管道连接,该管道上设置有所述第一开关阀。同样的,第一开关阀可以为电动控制阀(例如电磁阀;也可以为信号控制阀,本申请并不作限制),净水机可以在未制水时间段执行清洗RO膜元件。较佳的,净水机可以挑选出时间位置及长度均合理未用水时间段执行且完成清洗所述RO膜元件。
在一较佳的实施方式中,所述RO膜元件的出水口与所述阻垢机构的进水口之间可以设有第二开关阀;所述RO膜元件的废水出口连接有冲洗阀。所述第一开关阀和所述冲洗阀打开且所述进水阀和所述第二开关阀关闭时建立所述排空通路,所述增压泵能够运行以将所述阻垢机构中的液体排空。
本实施方式中,排空通路进一步利用了部分上述制水通路、第一清洗通路的管路,可以提高集成度且节省制造成本;同时通过增压泵将阻垢机构中的液体抽吸经RO膜元件、冲洗阀后排出,完成对阻垢机构的排空工作,避免了阻垢剂未用水时依然浸泡于液体中的问题。
具体的,第二开关阀、RO膜元件、冲洗阀之间可以通过三通结构进行连接,冲洗阀可以连接一排水管道,进而将阻垢机构中的液体通过管道排出。同样的,第二开关阀、冲洗阀均可以为电动控制阀(例如电磁阀;也可以为信号控制阀,本申请并不作限制),净水机可以在未制水时间段执行排空工作。较佳的,净水机可以挑选出时间位置及长度均合理未用水时间段执行且完成上述排空工作。
进一步的,继续承接上述管路构造,本实施方式中,还可以通过打开所述进水阀和所述冲洗阀,关闭所述第一开关阀和所述第二开关阀建立第二清洗通路。在第二清洗通路中,控制所述增压泵运行所述第二预设时间可以使用原水对所述RO膜元件清洗。
这是考虑到虽然第一清洗通路清洗过程中通过带有阻垢剂的液体将RO膜清洗后防 止RO膜结垢堵塞,但有可能在RO膜上留有阻垢离子(比如磷),为防止过多的阻垢离子在RO膜形成渗透而具有饮用水离子超标的风险,在第二清洗通路中连通原水,通过原水将RO膜原件清洗,进而将RO膜上的离子清洗带走,而此时,RO膜元件处于不制取纯水的状态,进而原水会在RO膜上形成冲刷。
所述进水阀、所述冲洗阀、所述第一开关阀及所述第二开关阀可以均为电磁阀。所述净水机还包括与所述进水阀、所述冲洗阀、所述第一开关阀及所述第二开关阀均连接的控制器。控制器通过分别控制所述进水阀、所述冲洗阀、所述第一开关阀及所述第二开关阀的控制可以实现上述制水通路、第一清洗通路、排空通路、第二清洗通路的分别建立,进而执行不同的工作。
本文引用的任何数字值都包括从下限值到上限值之间以一个单位递增的下值和上值的所有值,在任何下值和任何更高值之间存在至少两个单位的间隔即可。举例来说,如果阐述了一个部件的数量或过程变量(例如温度、压力、时间等)的值是从1到90,优选从20到80,更优选从30到70,则目的是为了说明该说明书中也明确地列举了诸如15到85、22到68、43到51、30到32等值。对于小于1的值,适当地认为一个单位是0.0001、0.001、0.01、0.1。这些仅仅是想要明确表达的示例,可以认为在最低值和最高值之间列举的数值的所有可能组合都是以类似方式在该说明书明确地阐述了的。
除非另有说明,所有范围都包括端点以及端点之间的所有数字。与范围一起使用的“大约”或“近似”适合于该范围的两个端点。因而,“大约20到30”旨在覆盖“大约20到大约30”,至少包括指明的端点。
披露的所有文章和参考资料,包括专利申请和出版物,出于各种目的通过援引结合于此。描述组合的术语“基本由…构成”应该包括所确定的元件、成分、部件或步骤以及实质上没有影响该组合的基本新颖特征的其他元件、成分、部件或步骤。使用术语“包含”或“包括”来描述这里的元件、成分、部件或步骤的组合也想到了基本由这些元件、成分、部件或步骤构成的实施方式。这里通过使用术语“可以”,旨在说明“可以”包括的所描述的任何属性都是可选的。
多个元件、成分、部件或步骤能够由单个集成元件、成分、部件或步骤来提供。另选地,单个集成元件、成分、部件或步骤可以被分成分离的多个元件、成分、部件或步骤。用来描述元件、成分、部件或步骤的公开“一”或“一个”并不说为了排除其他的元件、成分、部件或步骤。
应该理解,以上描述是为了进行图示说明而不是为了进行限制。通过阅读上述描述, 在所提供的示例之外的许多实施方式和许多应用对本领域技术人员来说都将是显而易见的。因此,本教导的范围不应该参照上述描述来确定,而是应该参照所附权利要求以及这些权利要求所拥有的等价物的全部范围来确定。出于全面之目的,所有文章和参考包括专利申请和公告的公开都通过参考结合在本文中。在前述权利要求中省略这里公开的主题的任何方面并不是为了放弃该主体内容,也不应该认为发明人没有将该主题考虑为所公开的发明主题的一部分。

Claims (20)

  1. 一种净水机的控制方法,其特征在于,所述方法包括:
    建立连通净水机的阻垢机构与RO膜元件的第一清洗通路,通过所述第一清洗通路使所述阻垢机构对所述RO膜元件清洗第一预设时间;
    建立连接所述阻垢机构的排空通路,通过所述排空通路将所述阻垢机构中的液体排空;
    建立连通原水的第二清洗通路,通过所述第二清洗通路使用原水对所述RO膜元件清洗第二预设时间。
  2. 如权利要求1所述的控制方法,其特征在于,所述方法还包括:
    建立连通原水的制水通路,通过所述制水通路制取纯水。
  3. 如权利要求2所述方法,其特征在于,所述净水机包括顺序连接的进水阀、增压泵、RO膜元件、阻垢机构以及废水比;
    所述建立连通原水的制水通路,通过所述制水通路制取纯水包括:打开所述进水阀以建立所述制水通路,控制所述增压泵运行以进行制取纯水。
  4. 如权利要求3所述的方法,其特征在于,所述阻垢机构的出水口与增压泵的进水口相连通;
    所述建立连通原水的制水通路,通过所述制水通路制取纯水以及所述建立连通净水机的阻垢机构与RO膜元件的第一清洗通路,通过所述第一清洗通路使所述阻垢机构对所述RO膜元件清洗第一预设时间包括:
    打开所述进水阀以同时建立所述制水通路及所述第一清洗通路;控制所述增压泵运行以制取纯水并同时使所述阻垢机构对所述RO膜元件清洗。
  5. 如权利要求3所述的方法,其特征在于,所述阻垢机构的出水口与增压泵的进水口相连通且之间设置有第一开关阀;
    在所述建立连通原水的制水通路中还包括:关闭所述第一开关阀;
    所述建立连通净水机的阻垢机构与RO膜元件的第一清洗通路,通过所述第一清洗通路使所述净水机的阻垢机构对所述净水机的RO膜元件清洗第一预设时间包括:打开所述第一开关阀,关闭所述进水阀以建立所述第一清洗通路,控制所述增压泵运行所述第一预设时间以使所述阻垢机构对所述净水机的RO膜元件清洗。
  6. 如权利要求5所述的方法,其特征在于,所述控制所述增压泵运行所述第一预设时间以使所述阻垢机构对所述净水机的RO膜元件进行清洗包括:控制所述增压泵运 行所述第一预设时间以使所述阻垢机构对所述净水机的RO膜元件循环清洗。
  7. 如权利要求5所述的方法,其特征在于,所述RO膜元件的出水口与所述阻垢机构的进水口之间设有第二开关阀;所述RO膜元件的废水出口连接有冲洗阀;
    在所述建立连通原水的制水通路中还包括:打开所述第二开关阀,关闭所述冲洗阀;
    在所述连通净水机的阻垢机构与RO膜元件的第一清洗通路中还包括:打开所述第二开关阀,关闭所述冲洗阀;
    所述建立连接所述阻垢机构的排空通路,通过所述排空通路将所述阻垢机构中的液体排空包括:打开所述第一开关阀和所述冲洗阀,关闭所述进水阀和所述第二开关阀以建立所述排空通路;控制所述增压泵运行第三预设时间以将所述阻垢机构中的液体排空。
  8. 如权利要求7所述的方法,其特征在于,所述建立连通原水的第二清洗通路,通过所述第二清洗通路使用原水对所述RO膜元件清洗第二预设时间包括:打开所述进水阀和所述冲洗阀,关闭所述第一开关阀和所述第二开关阀以建立所述第二清洗通路,控制所述增压泵运行所述第二预设时间以对所述RO膜元件清洗。
  9. 一种净水机,其特征在于,包括:所述净水机包括顺序连接的进水阀、增压泵、RO膜元件、阻垢机构以及废水比;所述阻垢机构连接有排空通路,所述排空通路能够将所述阻垢机构中的液体排空。
  10. 如权利要求9所述的净水机,其特征在于,所述阻垢机构的出水口与增压泵的进水口相连通且之间设置有第一开关阀。
  11. 如权利要求10所述的净水机,其特征在于,所述RO膜元件的出水口与所述阻垢机构的进水口之间设有第二开关阀;所述RO膜元件的废水出口连接有冲洗阀;所述第一开关阀和所述冲洗阀打开且所述进水阀和所述第二开关阀关闭时建立所述排空通路,所述增压泵能够运行以将所述阻垢机构中的液体排空。
  12. 如权利要求11所述的净水机,其特征在于,所述进水阀、所述冲洗阀、所述第一开关阀及所述第二开关阀均为电磁阀;所述净水机还包括与所述进水阀、所述冲洗阀、所述第一开关阀及所述第二开关阀均连接的控制器。
  13. 如权利要求9至12任一所述的净水机,其特征在于,所述阻垢机构具有硅磷晶阻垢剂。
  14. 一种净水机,其特征在于,包括顺序连接的进水阀、增压泵、RO膜元件、阻垢机构以及废水比。
  15. 如权利要求14所述的净水机,其特征在于:所述阻垢机构的出水口与增压泵的进水口相连通。
  16. 如权利要求15所述的净水机,其特征在于:所述阻垢机构的出水口与增压泵的进水口相连通且之间设置有第一开关阀。
  17. 一种如权利要求14所述净水机的控制方法,其特征在于,包括:
    打开所述进水阀以建立制水通路,控制所述增压泵运行以进行制取纯水。
  18. 如权利要求17所述的方法,其特征在于,所述阻垢机构的出水口与增压泵的进水口相连通,所述方法包括:
    打开所述进水阀以同时建立制水通路及第一清洗通路;控制所述增压泵运行以制取纯水并同时使所述阻垢机构对所述RO膜元件清洗。
  19. 如权利要求17所述的方法,其特征在于,所述阻垢机构的出水口与增压泵的进水口相连通且之间设置有第一开关阀,所述方法包括:
    打开所述进水阀,关闭所述第一开关阀以建立所述制水通路,控制所述增压泵运行以进行制取纯水;
    打开所述第一开关阀,打开所述进水阀以建立制水通路及第一清洗通路,控制所述增压泵运行既制取纯水又同时使所述阻垢机构对所述RO膜元件清洗。
  20. 如权利要求17所述的方法,其特征在于,所述方法包括:
    打开所述进水阀以建立制水通路,控制所述增压泵运行以进行制取纯水并清洗废水比。
PCT/CN2016/106019 2015-11-20 2016-11-16 净水机的控制方法及净水机 WO2017084570A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/983,516 US20180265379A1 (en) 2015-11-20 2018-05-18 Water Purifier and Control Method For the Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510809043.9A CN105293776B (zh) 2015-11-20 2015-11-20 净水机的控制方法及净水机
CN201510809043.9 2015-11-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/983,516 Continuation US20180265379A1 (en) 2015-11-20 2018-05-18 Water Purifier and Control Method For the Same

Publications (1)

Publication Number Publication Date
WO2017084570A1 true WO2017084570A1 (zh) 2017-05-26

Family

ID=55191719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106019 WO2017084570A1 (zh) 2015-11-20 2016-11-16 净水机的控制方法及净水机

Country Status (3)

Country Link
US (1) US20180265379A1 (zh)
CN (2) CN106242106A (zh)
WO (1) WO2017084570A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110615504A (zh) * 2019-10-08 2019-12-27 浙江诺水科技发展有限公司 一种即开即用式净水器
CN110655213A (zh) * 2018-05-30 2020-01-07 艾欧史密斯(中国)环境电器有限公司 净水机及控制方法
CN111659255A (zh) * 2019-03-08 2020-09-15 佛山市美的清湖净水设备有限公司 净水系统及净水设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106242106A (zh) * 2015-11-20 2016-12-21 艾欧史密斯(南京)水处理产品有限公司 净水机的控制方法及净水机
US11097225B1 (en) * 2020-04-08 2021-08-24 Aqua Tru Llc Methods to minimize scaling in water filtration systems
CN113896284A (zh) * 2021-10-22 2022-01-07 杭州老板电器股份有限公司 具有零陈水输出功能的净水机及其零陈水输出控制方法
CN113786653B (zh) * 2021-10-29 2022-10-25 珠海格力电器股份有限公司 一种净水设备及其控制方法及控制装置
CN114272670B (zh) * 2021-12-27 2023-01-20 珠海格力电器股份有限公司 净水设备及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003236541A (ja) * 2002-02-20 2003-08-26 Kobe Steel Ltd 海水の淡水化処理法および装置
CN201371042Y (zh) * 2009-02-18 2009-12-30 吴跃军 家用全自动反渗透纯水机
CN203699984U (zh) * 2014-01-16 2014-07-09 江苏宇通环保设备有限公司 一种反渗透脱盐系统
CN204174012U (zh) * 2014-08-28 2015-02-25 宁波泽沃水处理科技有限公司 纯水处理装置
CN105293776A (zh) * 2015-11-20 2016-02-03 艾欧史密斯(南京)水处理产品有限公司 净水机的控制方法及净水机
CN205133303U (zh) * 2015-11-20 2016-04-06 艾欧史密斯(南京)水处理产品有限公司 净水机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201959724U (zh) * 2010-01-27 2011-09-07 杜弘道 一种可用于高硬水的节水型反渗透净水机
CN201962127U (zh) * 2010-03-02 2011-09-07 杜弘道 一种热水器自动控制缓释阻垢装置
CN203247157U (zh) * 2013-05-21 2013-10-23 江苏省八杯水电器有限公司 一种无废水ro机
CN105585173A (zh) * 2014-10-31 2016-05-18 道易(青岛)净水设备制造有限公司 带监控的渗透净水机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003236541A (ja) * 2002-02-20 2003-08-26 Kobe Steel Ltd 海水の淡水化処理法および装置
CN201371042Y (zh) * 2009-02-18 2009-12-30 吴跃军 家用全自动反渗透纯水机
CN203699984U (zh) * 2014-01-16 2014-07-09 江苏宇通环保设备有限公司 一种反渗透脱盐系统
CN204174012U (zh) * 2014-08-28 2015-02-25 宁波泽沃水处理科技有限公司 纯水处理装置
CN105293776A (zh) * 2015-11-20 2016-02-03 艾欧史密斯(南京)水处理产品有限公司 净水机的控制方法及净水机
CN205133303U (zh) * 2015-11-20 2016-04-06 艾欧史密斯(南京)水处理产品有限公司 净水机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110655213A (zh) * 2018-05-30 2020-01-07 艾欧史密斯(中国)环境电器有限公司 净水机及控制方法
CN110655213B (zh) * 2018-05-30 2022-03-15 艾欧史密斯(中国)环境电器有限公司 净水机及控制方法
CN111659255A (zh) * 2019-03-08 2020-09-15 佛山市美的清湖净水设备有限公司 净水系统及净水设备
CN110615504A (zh) * 2019-10-08 2019-12-27 浙江诺水科技发展有限公司 一种即开即用式净水器

Also Published As

Publication number Publication date
CN105293776A (zh) 2016-02-03
CN105293776B (zh) 2021-01-01
CN106242106A (zh) 2016-12-21
US20180265379A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
WO2017084570A1 (zh) 净水机的控制方法及净水机
JP5982626B2 (ja) 水質浄化システム
CN107265720A (zh) 无废水反渗透净水机控制方法及净水机
CN111102734A (zh) 一种热水设备及其控制方法
KR20170130544A (ko) 세탁기의 제어방법 및 세탁기
CN107915281A (zh) 一种反渗透净水系统
CN203922880U (zh) 一种净水机
CN110282782A (zh) 一种内压式超滤净水设备及其使用方法
CN206828244U (zh) 微废水节能型ro反渗透净水机
US20140096799A1 (en) Method for sterilizing water treatment apparatus having plurality of tanks
KR20110128773A (ko) 자동으로 필터 세척이 가능한 정수기
KR101446127B1 (ko) 수처리장치
KR101521937B1 (ko) 정수기용 위생키트
CN105986433B (zh) 洗衣机
CN105764400A (zh) 包含一体式过滤器模块的洗涤机
KR101459001B1 (ko) 수처리장치 및 수처리방법
CN106082477A (zh) 一种节水型反渗透净水机及控制系统
CN205473165U (zh) 一种超滤净水机
KR101447963B1 (ko) 수처리방법
US20230097477A1 (en) Control system for processing high concentration water on two sides of reverse osmosis membrane
CN203794714U (zh) 智能全自动处理一体化自动控制净水装置
CN217267816U (zh) 一种自动取排水系统
CN217676922U (zh) 净水系统
KR101476323B1 (ko) 수처리장치 및 수처리방법
CN209397040U (zh) 一种纯水机废水浓度调节装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16865747

Country of ref document: EP

Kind code of ref document: A1