WO2017084395A1 - 扫地机器人回充电系统及其回充控制方法 - Google Patents
扫地机器人回充电系统及其回充控制方法 Download PDFInfo
- Publication number
- WO2017084395A1 WO2017084395A1 PCT/CN2016/094697 CN2016094697W WO2017084395A1 WO 2017084395 A1 WO2017084395 A1 WO 2017084395A1 CN 2016094697 W CN2016094697 W CN 2016094697W WO 2017084395 A1 WO2017084395 A1 WO 2017084395A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cleaning robot
- field region
- near field
- infrared receiving
- robot
- Prior art date
Links
- 238000004140 cleaning Methods 0.000 title claims abstract description 308
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000007600 charging Methods 0.000 claims abstract description 264
- 238000003032 molecular docking Methods 0.000 claims abstract description 29
- 238000010408 sweeping Methods 0.000 claims description 142
- 238000004904 shortening Methods 0.000 abstract description 5
- 230000001680 brushing effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0242—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
- A47L9/28—Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
- A47L9/2805—Parameters or conditions being sensed
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0225—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L2201/00—Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
- A47L2201/02—Docking stations; Docking operations
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L2201/00—Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
- A47L2201/04—Automatic control of the travelling movement; Automatic obstacle detection
Definitions
- the invention relates to the field of robot technology, in particular to a cleaning robot back charging system and a back charging control method of a cleaning robot back charging system.
- the way the sweeping robot returns to the charging stand is relatively simple.
- the direction of the charging stand is determined by the strength and weakness of the received left and right infrared signals.
- the sweeping robot can be controlled to return to the charging stand, the return speed is slow, and the probability of accurately docking with the charging stand is relatively low, and the complexity cannot be adapted. surroundings.
- an object of the present invention is to provide a cleaning robot back-charging system capable of controlling the cleaning robot to quickly return to the charging stand and accurately docking with the charging stand.
- Another object of the present invention is to provide a backfill control method for a cleaning system of a cleaning robot.
- an embodiment of the present invention provides a cleaning robot back-charging system, including: a charging base for transmitting a plurality of sets of differently encoded infrared signals to divide a front area of the charging stand And being six different signal regions, wherein the six different signal regions include a left near field region, a middle near field region, a right near field region, and a left far field region, a middle far field region, and a right far field region; and are disposed on the cleaning robot
- Six infrared receiving tubes the first to fourth infrared receiving tubes of the six infrared receiving tubes are disposed in front and rear, bilaterally symmetric manner at four corners of the cleaning robot, and the six infrared receiving tubes
- the fifth and sixth infrared receiving tubes in the tube are disposed at a front end or a tail end of the cleaning robot in a front and rear central axis symmetry manner; and the charging control device is configured to determine the need for the cleaning robot Controlling the six infrared receiving tubes to be turned
- the cleaning robot back charging system controls the cleaning robot to quickly return to the charging base through the infrared signal emitted by the charging seat received by the six infrared receiving tubes disposed on the cleaning robot, thereby effectively shortening the charging of the cleaning robot. Return time and applicable to complex environments.
- the infrared receiving tube disposed at the front end or the tail end of the cleaning robot is used to control the fast and accurate docking of the cleaning robot and the charging base, thereby effectively avoiding the docking process.
- the problem of unstable docking caused by brushing the charging stand with the left and right side brushes is adopted.
- an angle between a receiving surface of the first infrared receiving tube and the second infrared receiving tube of the first to fourth infrared receiving tubes is 90°, and the first to fourth infrared receiving tubes
- the angle between the receiving surface of the first infrared receiving tube and the third infrared receiving tube is 90°, and the angle between the receiving surfaces of the second infrared receiving tube and the fourth infrared receiving tube in the first to fourth infrared receiving tubes
- the angles of the receiving surfaces of the third infrared receiving tube and the fourth infrared receiving tube in the first to fourth infrared receiving tubes are 90°, and the receiving surface clips of the fifth and sixth infrared receiving tubes The angle is 90°.
- the back charge control device controlling the sweeping robot to walk to the left near field region or the right near field region, and the sweeping robot is located at the Controlling the sweeping robot to walk toward the intermediate near field region when the left near field region or the right near field region, and controlling the tail end of the sweeping robot to be aligned and close when the sweeping robot is located in the intermediate near field region
- the charging stand until the tail end of the cleaning robot is successfully docked with the charging stand; if it is determined according to the received infrared signal that the cleaning robot is located in the left near field region or the right near field region, the charging back
- the control device controls the sweeping robot to walk toward the intermediate near field region, and the sweeping robot is located in the intermediate near
- the back charge control device controlling the sweeping robot to walk to the left near field region or the right near field region, and the sweeping robot is located at the Controlling, by the left near field region or the right near field region, the sweeping robot to walk toward the intermediate near field region, and controlling the front end of the sweeping robot to be aligned and close to when the sweeping robot is located in the intermediate near field region a charging stand until the front end of the cleaning robot is successfully docked with the charging stand; if it is determined that the cleaning robot is located in the left near field region or the right near field region according to the received infrared signal, the back charging control device Controlling the sweeping robot to walk toward the intermediate near field region, and the sweeping robot is located
- another embodiment of the present invention provides a back charge control method for a cleaning robot back charging system, where the cleaning robot back charging system includes a charging base and six infrared receiving tubes disposed on the cleaning robot.
- the charging stand is configured to emit a plurality of sets of differently encoded infrared signals to divide a front area of the charging stand into six different signal areas, wherein the six different signal areas include a left near field area, a middle near field area, a right near field region and a left far field region, a middle far field region, and a right far field region, wherein the first to fourth infrared receiving tubes of the six infrared receiving tubes are disposed in front and rear, bilaterally symmetrically on the sweeping robot At the four corners, the fifth and sixth infrared receiving tubes of the six infrared receiving tubes are disposed at the front end or the trailing end of the cleaning robot in a front and rear central axis symmetry manner, and the refilling control method includes the following Step: controlling the six inf
- the refilling control method of the embodiment of the present invention can control the cleaning robot to quickly return to the charging base, thereby effectively shortening the charging return time of the cleaning robot, and controlling the cleaning robot and the charging base to achieve fast and accurate docking, thereby effectively avoiding the use in the docking process.
- the left and right sides brush the problem of unstable docking caused by the charging stand, and can be applied to a complicated environment.
- an angle between a receiving surface of the first infrared receiving tube and the second infrared receiving tube of the first to fourth infrared receiving tubes is 90°, and the first to fourth infrared receiving tubes
- the angle between the receiving surface of the first infrared receiving tube and the third infrared receiving tube is 90°, and the angle between the receiving surfaces of the second infrared receiving tube and the fourth infrared receiving tube in the first to fourth infrared receiving tubes
- the angles of the receiving surfaces of the third infrared receiving tube and the fourth infrared receiving tube in the first to fourth infrared receiving tubes are 90°, and the receiving surface clips of the fifth and sixth infrared receiving tubes The angle is 90°.
- the fifth and sixth infrared receiving tubes are disposed at a rear end of the cleaning robot in a front-back axis symmetry manner, wherein the sweeping is determined based on the received infrared signal
- Robot position Controlling, in the left far field region or the right far field region, the sweeping robot to walk to the left near field region or the right near field region, and in the left near field region or the right near the sweeping robot Controlling the sweeping robot to walk toward the intermediate near-field region, and controlling the tail end of the sweeping robot to be aligned and close to the charging stand when the sweeping robot is located in the intermediate near-field region
- the trailing end of the cleaning robot is successfully docked with the charging base; if it is determined that the cleaning robot is located in the left near field region or the right near field region according to the received infrared signal, controlling the cleaning robot to the middle near field
- the area is walked, and when the sweeping robot is located in the middle near field region, the tail end of the cleaning robot is controlled
- the fifth and sixth infrared receiving tubes are disposed at a front end of the cleaning robot in a front and rear central axis symmetry, wherein the sweeping is determined based on the received infrared signal a robot located in the left far field region or the right far field region, controlling the sweeping robot to walk to the left near field region or the right near field region, and in the left near field region or the Controlling, by the right near field region, the sweeping robot to walk toward the intermediate near field region, and controlling the front end of the sweeping robot to be aligned and close to the charging stand when the sweeping robot is located in the intermediate near field region;
- the front end of the cleaning robot is successfully docked with the charging base; if it is determined that the cleaning robot is located in the left near field region or the right near field region according to the received infrared signal, controlling the cleaning robot to the intermediate near field region Walking and controlling the front end of the cleaning robot to be aligned and positioned when the cleaning robot is located in the intermediate near field
- FIG. 1 is a schematic diagram of a cleaning robot back charging system in accordance with one embodiment of the present invention.
- FIG. 2 is a diagram showing a set position of six infrared receiving tubes in accordance with one embodiment of the present invention.
- FIG. 3 is a view showing a positional arrangement of six infrared receiving tubes according to another embodiment of the present invention.
- FIG. 4 is a schematic diagram of a receiving area formed by six infrared receiving tubes in accordance with one embodiment of the present invention.
- Figure 5 is a schematic illustration of a sweeping robot walking toward a left near field region, in accordance with one embodiment of the present invention.
- FIG. 6 is a schematic diagram of a sweeping robot walking from a left near field region to a middle near field region, in accordance with one embodiment of the present invention.
- Figure 7 is a schematic illustration of a sweeping robot as it reaches an intermediate near field region, in accordance with one embodiment of the present invention.
- Figure 8 is a schematic illustration of a cleaning robot adjusting its position in accordance with one embodiment of the present invention.
- FIG. 9 is a flow chart of the refill control of the cleaning robot back-charging system in accordance with one embodiment of the present invention.
- FIG. 10 is a flow chart of a refill control method of a cleaning robot back-charging system in accordance with an embodiment of the present invention.
- the cleaning robot back charging system includes: a charging stand 100, six infrared receiving tubes and a back charging control device (not specifically shown) disposed on the cleaning robot.
- the charging stand 100 is configured to emit a plurality of sets of differently encoded infrared signals to divide the front area of the charging stand 100 into six different signal areas, wherein the six different signal areas include a left near field area S1 and a middle near field area S2.
- the six infrared receiving tubes are respectively a first infrared receiving tube P1, a second infrared receiving tube P2, a third infrared receiving tube P3, a fourth infrared receiving tube P4, a fifth infrared receiving tube P5 and a sixth infrared receiving tube P6, six
- the first to fourth infrared receiving tubes of the infrared receiving tubes are disposed at the four end corners of the sweeping robot in a front, rear, left and right symmetrical manner, and the fifth and sixth infrared receiving tubes of the six infrared receiving tubes are before and after the center
- the axisymmetric way is set at the front or the end of the sweeping robot.
- the back charging control device is configured to control the six infrared receiving tubes to be turned on when determining that the cleaning robot needs to be charged, and control the cleaning robot to the middle when any one of the six infrared receiving tubes receives the infrared signal emitted by the charging base 100
- the near field region S2 travels until the fifth and sixth infrared receiving tubes receive the intermediate near field infrared signal, and the back charging control device controls the cleaning robot to continue to walk until the cleaning robot docks with the charging stand 100 successfully.
- the first infrared receiving tube P1 and the second infrared receiving tube P2 are symmetrically disposed about the central axis A-A', and the third infrared receiving tube P3 and the fourth infrared receiving tube P4 are about the center.
- Axis A-A' is symmetrically set and, The first infrared receiving tube P1 and the third infrared receiving tube P3 are symmetrical about the central axis B-B', and the second infrared receiving tube P2 and the fourth infrared receiving tube P4 are symmetrical about the central axis B-B'.
- the fifth infrared receiving tube P5 and the sixth infrared receiving tube P6 are symmetrically disposed at the trailing end of the cleaning robot with respect to the central axis A-A'. As shown in Fig. 3, the fifth infrared receiving tube P5 and the sixth infrared receiving tube P6 are symmetrically disposed at the front end of the cleaning robot with respect to the central axis A-A'. In this way, when the cleaning robot advances or retreats, the first infrared receiving tube P1 and the second infrared receiving tube P2 or the fifth infrared receiving tube P5 and the sixth infrared receiving tube P6 can be used as a reference to find different sets of different chargings of the charging stand 100.
- the encoded infrared signal when the sweeping robot is traveling laterally (left and right), the charging stand 100 can be searched by referring to the first infrared receiving tube P1 and the third infrared receiving tube P3 or the second infrared receiving tube P2 and the fourth infrared receiving tube P4. Multiple sets of differently encoded infrared signals are transmitted.
- the back charge control device of the sweeping robot will control the six infrared receiving tubes to be turned on.
- the back charging control device controls the sweeping robot from the left far field area S4, the intermediate far field area S5, the right far field area S6, Any one of the left near field region S1 and the right near field region S3 travels toward the intermediate near field region S2 until the fifth and sixth infrared receiving tubes receive the intermediate near field infrared signal, that is, the fifth and sixth infrared receiving tubes are in the middle Near field area S2.
- the charging control device adjusts the front end or the rear end direction of the cleaning robot to align the charging port of the cleaning robot with the charging base 100, and controls the cleaning robot to walk in a straight line until the cleaning robot docks with the charging base 100 successfully.
- the cleaning robot back charging system of the embodiment of the present invention can control the sweeping robot to quickly reach the middle near field region according to the infrared signal emitted by the charging seat received by the six infrared receiving tubes, and adjust the sweeping robot in the middle near field region. Aligning the charging port of the cleaning robot with the charging base, so that the cleaning robot and the charging base are accurately docked, thereby effectively reducing the charging and returning time of the cleaning robot, and effectively avoiding the docking caused by the brushing of the charging seat by the left and right sides during the docking process. Unstable problems, and the system is suitable for complex environments.
- the angles of the receiving surfaces of the first infrared receiving tube P1 and the second infrared receiving tube P2 in the first to fourth infrared receiving tubes are 90°, first to first
- the angle between the receiving surfaces of the first infrared receiving tube P1 and the third infrared receiving tube P3 in the four infrared receiving tube is 90°, and the second infrared receiving tube P2 and the fourth infrared receiving tube in the first to fourth infrared receiving tubes
- the receiving surface of P4 has an angle of 90°
- the angles of the receiving surfaces of the third infrared receiving tube P3 and the fourth infrared receiving tube P4 in the first to fourth infrared receiving tubes are 90°
- the fifth and sixth infrared receiving tubes The receiving surface has an angle of 90°.
- each of the first to sixth infrared receiving tubes may be a 90-degree infrared sensor. Since the angles of the receiving surfaces of the first and second infrared receiving tubes are 90°, the angles of the receiving surfaces of the third and fourth infrared receiving tubes are 90°, and the angles of the receiving surfaces of the fifth and sixth infrared receiving tubes are 90°. °, so that the accuracy of the sweeping robot can be adjusted to the left and right, so that the charging port of the sweeping robot and the charging stand 100 can be quickly and accurately docked, and the sweeping robot can be improved or The accuracy when going backwards.
- the angles of the receiving surfaces of the first and third infrared receiving tubes are 90°
- the angles of the receiving surfaces of the second and fourth infrared receiving tubes are 90°, so that the accuracy of the sweeping robot during lateral walking can be very high. high.
- the infrared signal receiving blind zone can be effectively reduced, so that the cleaning robot can receive the infrared signal emitted by the charging base at any position.
- the chargeback control device controls the sweeping robot to walk to the left near field region S1 or the right near field region S3, and controls the sweeping robot to the middle near field region when the sweeping robot is located in the left near field region S1 or the right near field region S3.
- the robot walking, and controlling the tail end of the cleaning robot to be aligned with the charging base 100 when the cleaning robot is located in the middle near field S2, until the tail end of the cleaning robot is successfully docked with the charging base 100; if the grounding is determined according to the received infrared signal
- the robot is located in the left near field region S1 or the right near field region S3, and the back charge control device controls the sweeping robot to walk toward the intermediate near field region S2, and controls the tail end of the sweeping robot to be aligned and close to the charging stand when the sweeping robot is located in the middle near field region S2.
- the infrared signal is determined to be located in the middle near field region S2, and the back charging control device controls the tail end of the cleaning robot to be aligned and close to the charging stand 100 until the tail end of the cleaning robot docks with the charging stand 100; if according to the received The infrared signal determines that the cleaning robot is located in the intermediate far field region S5, and the back charging control device controls the cleaning robot to walk toward the intermediate near field region S2, and controls the tail end of the cleaning robot to be aligned and close to the charging seat when the cleaning robot is located in the middle near field region S2. 100, until the tail end of the cleaning robot docks with the charging stand 100 successfully.
- the charging port of the cleaning robot is disposed at the tail end of the cleaning robot.
- the back charging control device adjusts the forward direction of the sweeping robot, and controls the sweeping robot to be the first
- the preset speed eg, 0.35 m/s
- the charging control device controls the cleaning robot to rotate a certain angle, as shown in FIG. 6, and controls the cleaning robot to approach the intermediate near-field region S2 with a radius R track until any one of the six infrared receiving tubes
- the intermediate near field infrared signal is received, as shown in FIG.
- the charging control device controls the cleaning robot to rotate in place until the fifth and sixth infrared receiving tubes receive the intermediate near-field infrared signal, that is, control the tail end of the cleaning robot to be aligned with the charging stand 100, as shown in FIG.
- the recharging control device controls the cleaning robot to approach the charging base 100 until the tail end of the cleaning robot is successfully docked with the charging base 100, thereby realizing quick and precise docking of the cleaning robot and the charging base. It can be understood that when the charging port of the cleaning robot is disposed at the tail end, the problem of front end assembly difficulty and complicated structural design caused by the cleaning member disposed at the front end can be alleviated. The recharging process in other cases will not be described here.
- the chargeback control device controls the sweeping robot to travel to the left near field region S1 or the right near field region S2, and controls the sweeping robot to the near field when the sweeping robot is located in the left near field region S1 or the right near field region S3.
- the area S2 is walking, and when the cleaning robot is located in the middle near field area S2, the front end of the cleaning robot is controlled to be aligned with the charging base 100 until the front end of the cleaning robot is successfully docked with the charging base 100; if the cleaning robot is judged according to the received infrared signal Located in the left near field region S1 or the right near field region S3, the back charge control device controls the sweeping robot to walk toward the intermediate near field region S2, and controls the front end of the sweeping robot to be aligned and close to the charging stand 100 when the sweeping robot is located in the intermediate near field region S2.
- the back charging control device controls the front end of the cleaning robot to be aligned and close to the charging stand 100 until the cleaning robot The front end is successfully docked with the charging stand 100;
- the received infrared signal determines that the cleaning robot is located in the intermediate far field region S2, and the back charging control device controls the cleaning robot to walk toward the intermediate near field region S2, and controls the front end of the cleaning robot to be aligned and close when the cleaning robot is located in the middle near field region S2.
- the charging stand 100 is connected to the charging stand 100 until the front end of the cleaning robot is successfully connected.
- the charging port of the cleaning robot is disposed at the front end of the cleaning robot, and the specific charging process will not be described here.
- the front end or the tail end of the cleaning robot is docked with the charging base, thereby effectively avoiding the problem of unstable docking caused by the brushing of the charging seat by the left and right side brushing in the docking process.
- FIG. 9 is a flow chart of the refill control of the cleaning robot back-charging system in accordance with one embodiment of the present invention. As shown in FIG. 9, the cleaning process of the cleaning robot may include the following steps:
- step S101 Determine whether the infrared receiving tube receives the infrared signal. If one of the six infrared receiving tubes receives the infrared signal emitted by the charging stand, step S102 is performed; if not, the process returns to step S101.
- the back charging control device shields the infrared signals received by the third to sixth infrared receiving tubes, and receives according to the first and second infrared
- the infrared signal received by the tube controls the cleaning robot to travel at a speed of 0.35 m/s;
- the back charging control device shields the third and fourth infrared receiving tubes from receiving Signaling, and controlling the sweeping robot to travel at a speed of 0.35 m/s according to the infrared signals received by the first and second infrared receiving tubes or the fifth and sixth infrared receiving tubes.
- the fifth and the fifth can also be shielded.
- the infrared signal received by the six infrared receiving tubes are disposed at the tail end of the cleaning robot.
- step S103 Determine whether the infrared receiving tube of the front end receives the near field infrared signal, that is, determine whether the first and second infrared receiving tubes receive one of a left near field infrared signal, a right near field infrared signal, and an intermediate near field infrared signal. If yes, go to step S104; if no, go back to step S102.
- step S104 Determine whether the near-field infrared signal is an intermediate near-field infrared signal. If yes, go to step S109; if no, go to step S105.
- S105 Control the sweeping robot to rotate right/left by 90° according to the received left/right near-field infrared signal. Specifically, when the first and second infrared receiving tubes receive the left near field infrared signal, the sweeping robot is controlled to rotate to the right by 90°; when the first and second infrared receiving tubes receive the right near field infrared signal, the sweeping robot is controlled. Rotate 90° to the left.
- step S107 Determine whether an infrared receiving tube receives the intermediate near-field infrared signal. If yes, go to step S108; if no, go back to step S106.
- the cleaning robot back charging system controls the cleaning robot to quickly return to the charging base through the infrared signal emitted by the charging seat received by the six infrared receiving tubes disposed on the cleaning robot, thereby effectively shortening the charging of the cleaning robot. Return time and applicable to complex environments.
- the infrared receiving tube disposed at the front end or the tail end of the cleaning robot is used to control the quick and accurate docking of the cleaning robot and the charging base, thereby effectively avoiding the problem of unstable docking caused by the brushing of the charging seat by the left and right sides during the docking process.
- the cleaning robot back charging system comprises a charging base and six infrared receiving tubes disposed on the cleaning robot, and the charging base is configured to emit a plurality of different encoded infrared signals to divide the front area of the charging base into six different signal areas.
- the six different signal regions include a left near field region, a middle near field region, a right near field region and a left far field region, a middle far field region, and a right far field region, and first to fourth infrared receiving in the six infrared receiving tubes
- the tube is disposed at the four end angles of the sweeping robot in a symmetrical manner, and the fifth and sixth infrared receiving tubes of the six infrared receiving tubes are disposed at the front end or the trailing end of the sweeping robot in a front and rear central axis symmetry manner. .
- the details are shown in Figure 1-3, and are not described here.
- the angles of the receiving surfaces of the first infrared receiving tube and the second infrared receiving tube in the first to fourth infrared receiving tubes are 90°, first to fourth infrared
- the angle between the receiving surface of the first infrared receiving tube and the third infrared receiving tube in the receiving tube is 90°
- the angles of the receiving surfaces of the third infrared receiving tube and the fourth infrared receiving tube in the first to fourth infrared receiving tubes are 90°
- the angles of the receiving surfaces of the fifth and sixth infrared receiving tubes are 90°.
- each of the first to sixth infrared receiving tubes may be a 90-degree infrared sensor. Due to the first and second infrared reception The angle of the receiving surface of the tube is 90°, the angle of the receiving surface of the third and fourth infrared receiving tubes is 90°, and the angle of the receiving surface of the fifth and sixth infrared receiving tubes is 90°, so that the sweeping robot can be left and right
- the precision of the adjustment is very high, so that the charging port of the cleaning robot and the charging base can be quickly and accurately docked, and the accuracy of the cleaning robot in moving forward or backward can be improved.
- the angles of the receiving surfaces of the first and third infrared receiving tubes are 90°
- the angles of the receiving surfaces of the second and fourth infrared receiving tubes are 90°, so that the accuracy of the sweeping robot during lateral walking can be very high. high.
- the infrared signal receiving blind zone can be effectively reduced, so that the cleaning robot can receive the infrared signal emitted by the charging base at any position.
- the recharging control method of the cleaning robot back charging system includes the following steps:
- the sweeping robot is controlled to walk toward the middle near field area.
- the cleaning robot is controlled to continue to walk until the cleaning robot docks with the charging base.
- the six infrared receiving tubes are controlled to be turned on.
- the sweeping robot is controlled from the left far field region, the middle far field region, the right far field region, the left near field region, and the right near field region. Any one of the regions travels toward the intermediate near-field region until the fifth and sixth infrared receiving tubes receive the intermediate near-field infrared signal, that is, the fifth and sixth infrared receiving tubes are in the intermediate near-field region.
- the charging control device adjusts the front end or the rear end direction of the cleaning robot to align the charging port of the cleaning robot with the charging base, and controls the cleaning robot to walk in a straight line until the cleaning robot docks with the charging base successfully.
- the fifth and sixth infrared receiving tubes are disposed at the rear end of the cleaning robot in a front and rear central axis symmetry manner, wherein if the cleaning robot is located in the left far field region according to the received infrared signal Or right far field area, controlling the sweeping robot to walk to the left near field region or the right near field region, and controlling the sweeping robot to walk toward the middle near field region when the sweeping robot is located in the left near field region or the right near field region, and the sweeping robot is located in the middle near field
- the area is controlled, the tail end of the cleaning robot is aligned and close to the charging base until the tail end of the cleaning robot is successfully docked with the charging base; if it is determined according to the received infrared signal that the cleaning robot is located in the left near field region or the right near field region, the sweeping robot is controlled to The middle near field region travels, and when the sweeping robot is located in the middle near field region, the tail end of the sweeping robot is controlled
- the forward direction of the sweeping robot is adjusted, and the sweeping robot is controlled to the first preset speed (eg, 0.35 m/s) walks to the left near field area until the sweeping robot receives the left near field infrared signal. Then controlling the sweeping robot to rotate a certain angle, as shown in FIG. 6, and controlling the sweeping robot to approach the intermediate near-field region with a radius R track until any one of the six infrared receiving tubes receives the intermediate near field Infrared signal, as shown in Figure 7.
- the first preset speed eg, 0.35 m/s
- the cleaning robot is controlled to rotate in place until the fifth and sixth infrared receiving tubes receive the intermediate near-field infrared signal, that is, the tail end of the cleaning robot is controlled to be aligned with the charging stand, as shown in FIG.
- the sweeping robot is controlled to approach the charging stand until the tail end of the sweeping robot is successfully docked with the charging stand, thereby realizing the quick and accurate docking of the sweeping robot and the charging stand. It can be understood that when the charging port of the cleaning robot is disposed at the tail end, the problem of front end assembly difficulty and complicated structural design caused by the cleaning member disposed at the front end can be alleviated. The recharging process in other cases will not be described here.
- the fifth and sixth infrared receiving tubes are disposed in front and rear center axis symmetry in the front end of the cleaning robot, wherein if the cleaning robot is located in the left far field region according to the received infrared signal Or right far field area, controlling the sweeping robot to walk to the left near field region or the right near field region, and controlling the sweeping robot to walk toward the middle near field region when the sweeping robot is located in the left near field region or the right near field region, and the sweeping robot is located in the middle near field
- the front end of the cleaning robot is aligned and close to the charging base until the front end of the cleaning robot is successfully docked with the charging base; if it is determined according to the received infrared signal that the cleaning robot is located in the left near field region or the right near field region, the sweeping robot is controlled to the middle.
- the field area is walking, and the front end of the cleaning robot is controlled to be aligned with the charging base when the cleaning robot is located in the middle near field area until the front end of the cleaning robot is successfully docked with the charging base; if the cleaning robot is located in the middle according to the received infrared signal Field area, control The front end of the ground robot is aligned and close to the charging base until the front end of the cleaning robot is successfully docked with the charging base; if it is determined that the cleaning robot is located in the middle far field according to the received infrared signal, the sweeping robot is controlled to walk toward the middle near field, and When the sweeping robot is located in the middle near field area, the front end of the sweeping robot is controlled to be aligned with the charging base until the front end of the cleaning robot is successfully docked with the charging base.
- the charging port of the cleaning robot is disposed at the front end of the cleaning robot, and the specific charging process will not be described here.
- the refilling control method of the embodiment of the present invention can control the cleaning robot to quickly return to the charging base, thereby effectively shortening the charging return time of the cleaning robot, and controlling the cleaning robot and the charging base to achieve fast and accurate docking, thereby effectively avoiding the use in the docking process.
- the left and right sides brush the problem of unstable docking caused by the charging stand, and can be applied to a complicated environment.
- first and second are used for descriptive purposes only, and not It is understood to indicate or imply a relative importance or implicit indication of the number of technical features indicated. Thus, features defining “first” and “second” may include one or more of the features either explicitly or implicitly. In the description of the present invention, the meaning of "a plurality" is two or more unless specifically and specifically defined otherwise.
- the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical connection, or can be electrical connection; can be directly connected, or can be indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements.
- installation can be understood on a case-by-case basis.
- the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
- the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
- the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Manipulator (AREA)
- Toys (AREA)
Abstract
一种扫地机器人回充电系统及其回充控制方法,所述系统包括:充电座(100),用于将充电座(100)的前方区域划分为六个不同信号区域(S1-S6);设置在扫地机器人上的六个红外接收管(P1-P6);回充电控制装置,用于在扫地机器人需要充电时控制六个红外接收管(P1-P6)开启,并在任意一个红外接收管接收到充电座(100)发射的红外信号时控制扫地机器人向中间近场区域(S2)行走,直至第五红外接收管(P5)和第六红外接收管(P6)接收到中间近场红外信号时,回充电控制装置控制扫地机器人继续行走直至扫地机器人与充电座(100)对接成功。该系统能够控制扫地机器人快速返回至充电座(100),有效缩短了充电回航时间,并且采用前端或尾端对接方式,避免了对接过程中采用左右边刷刷动充电座(100)造成的对接不稳定,从而实现准确对接。
Description
本发明涉及机器人技术领域,特别涉及一种扫地机器人回充电系统以及一种扫地机器人回充电系统的回充控制方法。
目前,扫地机器人返回充电座的方式比较简单。例如,通过接收到的左右红外信号的强弱关系来判断充电座的方向,虽然能够控制扫地机器人返回至充电座,但返回速度慢,且与充电座准确对接的概率比较低,而且无法适应复杂环境。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种能够控制扫地机器人快速返回充电座,并与充电座准确对接的扫地机器人回充电系统。
本发明的另一个目的在于提出一种扫地机器人回充电系统的回充控制方法。
为实现上述目的,本发明一方面实施例提出了一种扫地机器人回充电系统,包括:充电座,所述充电座用于发射多组不同编码的红外信号以将所述充电座的前方区域划分为六个不同信号区域,其中,所述六个不同信号区域包括左近场区域、中间近场区域、右近场区域和左远场区域、中间远场区域、右远场区域;设置在扫地机器人上的六个红外接收管,所述六个红外接收管中的第一至第四红外接收管以前后、左右对称的方式设置在所述扫地机器人的四个端角处,所述六个红外接收管中的第五和第六红外接收管以前后中心轴对称的方式设置在所述扫地机器人的前端或尾端;回充电控制装置,所述回充电控制装置用于在判断所述扫地机器人需要充电时控制所述六个红外接收管开启,并在所述六个红外接收管中的任意一个红外接收管接收到所述充电座发射的红外信号时控制所述扫地机器人向所述中间近场区域行走,直至所述第五和第六红外接收管接收到中间近场红外信号时,所述回充电控制装置控制所述扫地机器人继续行走直至所述扫地机器人与所述充电座对接成功。
根据本发明实施例的扫地机器人回充电系统,通过设置在扫地机器人上的六个红外接收管接收到的充电座发射的红外信号来控制扫地机器人快速返回至充电座,从而有效缩短扫地机器人的充电回航时间,且适用于复杂环境。同时,通过设置在扫地机器人的前端或者尾端的红外接收管来控制扫地机器人与充电座的快速准确对接,有效避免了对接过程中
采用左右边刷刷动充电座造成的对接不稳定的问题。
根据本发明的一个实施例,所述第一至第四红外接收管中的第一红外接收管和第二红外接收管的接收面夹角为90°,所述第一至第四红外接收管中的第一红外接收管和第三红外接收管的接收面夹角为90°,所述第一至第四红外接收管中的第二红外接收管和第四红外接收管的接收面夹角为90°,所述第一至第四红外接收管中的第三红外接收管和第四红外接收管的接收面夹角为90°,所述第五和第六红外接收管的接收面夹角为90°。
根据本发明的一个实施例,当所述第五和第六红外接收管以前后中心轴对称的方式设置在所述扫地机器人的尾端时,其中,如果根据接收到的红外信号判断所述扫地机器人位于所述左远场区域或所述右远场区域,所述回充电控制装置控制所述扫地机器人向所述左近场区域或所述右近场区域行走,并在所述扫地机器人位于所述左近场区域或所述右近场区域时控制所述扫地机器人向所述中间近场区域行走,以及在所述扫地机器人位于所述中间近场区域时控制所述扫地机器人的尾端对准并靠近所述充电座,直至所述扫地机器人的尾端与所述充电座对接成功;如果根据接收到的红外信号判断所述扫地机器人位于所述左近场区域或所述右近场区域,所述回充电控制装置控制所述扫地机器人向所述中间近场区域行走,并在所述扫地机器人位于所述中间近场区域时控制所述扫地机器人的尾端对准并靠近所述充电座,直至所述扫地机器人的尾端与所述充电座对接成功;如果根据接收到的红外信号判断所述扫地机器人位于所述中间近场区域,所述回充电控制装置控制所述扫地机器人的尾端对准并靠近所述充电座,直至所述扫地机器人的尾端与所述充电座对接成功;如果根据接收到的红外信号判断所述扫地机器人位于所述中间远场区域,所述回充电控制装置控制所述扫地机器人向所述中间近场区域行走,并在所述扫地机器人位于所述中间近场区域时控制所述扫地机器人的尾端对准并靠近所述充电座,直至所述扫地机器人的尾端与所述充电座对接成功。
根据本发明的另一个实施例,当所述第五和第六红外接收管以前后中心轴对称的方式设置在所述扫地机器人的前端时,其中,如果根据接收到的红外信号判断所述扫地机器人位于所述左远场区域或所述右远场区域,所述回充电控制装置控制所述扫地机器人向所述左近场区域或所述右近场区域行走,并在所述扫地机器人位于所述左近场区域或所述右近场区域时控制所述扫地机器人向所述中间近场区域行走,以及在所述扫地机器人位于所述中间近场区域时控制所述扫地机器人的前端对准并靠近所述充电座,直至所述扫地机器人的前端与所述充电座对接成功;如果根据接收到的红外信号判断所述扫地机器人位于所述左近场区域或所述右近场区域,所述回充电控制装置控制所述扫地机器人向所述中间近场区域行走,并在所述扫地机器人位于所述中间近场区域时控制所述扫地机器人的前端对准并靠近所述充电座,直至所述扫地机器人的前端与所述充电座对接成功;如果根据接收到
的红外信号判断所述扫地机器人位于所述中间近场区域,所述回充电控制装置控制所述扫地机器人的前端对准并靠近所述充电座,直至所述扫地机器人的前端与所述充电座对接成功;如果根据接收到的红外信号判断所述扫地机器人位于所述中间远场区域,所述回充电控制装置控制所述扫地机器人向所述中间近场区域行走,并在所述扫地机器人位于所述中间近场区域时控制所述扫地机器人的前端对准并靠近所述充电座,直至所述扫地机器人的前端与所述充电座对接成功。
为实现上述目的,本发明另一方面实施例提出了一种扫地机器人回充电系统的回充控制方法,所述扫地机器人回充电系统包括充电座和设置在扫地机器人上的六个红外接收管,所述充电座用于发射多组不同编码的红外信号以将所述充电座的前方区域划分为六个不同信号区域,其中,所述六个不同信号区域包括左近场区域、中间近场区域、右近场区域和左远场区域、中间远场区域、右远场区域,所述六个红外接收管中的第一至第四红外接收管以前后、左右对称的方式设置在所述扫地机器人的四个端角处,所述六个红外接收管中的第五和第六红外接收管以前后中心轴对称的方式设置在所述扫地机器人的前端或尾端,所述回充控制方法包括以下步骤:在所述扫地机器人需要充电时控制所述六个红外接收管开启;如果所述六个红外接收管中的任意一个红外接收管接收到所述充电座发射的红外信号时控制所述扫地机器人向所述中间近场区域行走;在所述第五和第六红外接收管接收到中间近场红外信号时,控制所述扫地机器人继续行走直至所述扫地机器人与所述充电座对接成功。
根据本发明实施例的扫地机器人回充电系统的回充控制方法,当设置在扫地机器人上的六个红外接收管中的任意一个红外接收管接收到充电座发射的红外信号时,控制扫地机器人向中间近场区域行走,并在第五和第六红外接收管接收到中间近场红外信号时,控制扫地机器人继续行走直至扫地机器人与充电座对接成功。因此,本发明实施例的回充控制方法能够控制扫地机器人快速返回至充电座,从而有效缩短扫地机器人的充电回航时间,并控制扫地机器人与充电座实现快速准确对接,有效避免了对接过程中采用左右边刷刷动充电座造成的对接不稳定的问题,且能够适用于复杂环境。
根据本发明的一个实施例,所述第一至第四红外接收管中的第一红外接收管和第二红外接收管的接收面夹角为90°,所述第一至第四红外接收管中的第一红外接收管和第三红外接收管的接收面夹角为90°,所述第一至第四红外接收管中的第二红外接收管和第四红外接收管的接收面夹角为90°,所述第一至第四红外接收管中的第三红外接收管和第四红外接收管的接收面夹角为90°,所述第五和第六红外接收管的接收面夹角为90°。
根据本发明的一个实施例,当所述第五和第六红外接收管以前后中心轴对称的方式设置在所述扫地机器人的尾端时,其中,如果根据接收到的红外信号判断所述扫地机器人位
于所述左远场区域或所述右远场区域,控制所述扫地机器人向所述左近场区域或所述右近场区域行走,并在所述扫地机器人位于所述左近场区域或所述右近场区域时控制所述扫地机器人向所述中间近场区域行走,以及在所述扫地机器人位于所述中间近场区域时控制所述扫地机器人的尾端对准并靠近所述充电座,直至所述扫地机器人的尾端与所述充电座对接成功;如果根据接收到的红外信号判断所述扫地机器人位于所述左近场区域或所述右近场区域,控制所述扫地机器人向所述中间近场区域行走,并在所述扫地机器人位于所述中间近场区域时控制所述扫地机器人的尾端对准并靠近所述充电座,直至所述扫地机器人的尾端与所述充电座对接成功;如果根据接收到的红外信号判断所述扫地机器人位于所述中间近场区域,控制所述扫地机器人的尾端对准并靠近所述充电座,直至所述扫地机器人的尾端与所述充电座对接成功;如果根据接收到的红外信号判断所述扫地机器人位于所述中间远场区域,控制所述扫地机器人向所述中间近场区域行走,并在所述扫地机器人位于所述中间近场区域时控制所述扫地机器人的尾端对准并靠近所述充电座,直至所述扫地机器人的尾端与所述充电座对接成功。
根据本发明的另一个实施例,当所述第五和第六红外接收管以前后中心轴对称的方式设置在所述扫地机器人的前端时,其中,如果根据接收到的红外信号判断所述扫地机器人位于所述左远场区域或所述右远场区域,控制所述扫地机器人向所述左近场区域或所述右近场区域行走,并在所述扫地机器人位于所述左近场区域或所述右近场区域时控制所述扫地机器人向所述中间近场区域行走,以及在所述扫地机器人位于所述中间近场区域时控制所述扫地机器人的前端对准并靠近所述充电座,直至所述扫地机器人的前端与所述充电座对接成功;如果根据接收到的红外信号判断所述扫地机器人位于所述左近场区域或所述右近场区域,控制所述扫地机器人向所述中间近场区域行走,并在所述扫地机器人位于所述中间近场区域时控制所述扫地机器人的前端对准并靠近所述充电座,直至所述扫地机器人的前端与所述充电座对接成功;如果根据接收到的红外信号判断所述扫地机器人位于所述中间近场区域,控制所述扫地机器人的前端对准并靠近所述充电座,直至所述扫地机器人的前端与所述充电座对接成功;如果根据接收到的红外信号判断所述扫地机器人位于所述中间远场区域,控制所述扫地机器人向所述中间近场区域行走,并在所述扫地机器人位于所述中间近场区域时控制所述扫地机器人的前端对准并靠近所述充电座,直至所述扫地机器人的前端与所述充电座对接成功。
图1是根据本发明一个实施例的扫地机器人回充电系统的示意图。
图2是根据本发明一个实施例的六个红外接收管的设置位置图。
图3是根据本发明另一个实施例的六个红外接收管的设置位置图。
图4是根据本发明一个实施例的六个红外接收管形成的接收区域示意图。
图5是根据本发明一个实施例的扫地机器人向左近场区域行走的示意图。
图6是根据本发明一个实施例的扫地机器人从左近场区域向中间近场区域行走的示意图。
图7是根据本发明一个实施例的扫地机器人到达中间近场区域时的示意图。
图8是根据本发明一个实施例的扫地机器人调整自身位置的示意图。
图9是根据本发明一个实施例的扫地机器人回充电系统的回充控制流程图。
图10是根据本发明实施例的扫地机器人回充电系统的回充控制方法的流程图。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考附图来描述本发明实施例提出的扫地机器人回充电系统以及扫地机器人回充电系统的回充控制方法。
图1是根据本发明一个实施例的扫地机器人回充电系统的示意图。如图1所示,该扫地机器人回充电系统包括:充电座100、设置在扫地机器人上的六个红外接收管和回充电控制装置(图中未具体示出)。
其中,充电座100用于发射多组不同编码的红外信号以将充电座100的前方区域划分为六个不同信号区域,其中,六个不同信号区域包括左近场区域S1、中间近场区域S2、右近场区域S3和左远场区域S4、中间远场区域S5、右远场区域S6。六个红外接收管分别为第一红外接收管P1、第二红外接收管P2、第三红外接收管P3、第四红外接收管P4、第五红外接收管P5和第六红外接收管P6,六个红外接收管中的第一至第四红外接收管以前后、左右对称的方式设置在扫地机器人的四个端角处,六个红外接收管中的第五和第六红外接收管以前后中心轴对称的方式设置在扫地机器人的前端或尾端。回充电控制装置用于在判断扫地机器人需要充电时控制六个红外接收管开启,并在六个红外接收管中的任意一个红外接收管接收到充电座100发射的红外信号时控制扫地机器人向中间近场区域S2行走,直至第五和第六红外接收管接收到中间近场红外信号时,回充电控制装置控制扫地机器人继续行走直至扫地机器人与充电座100对接成功。
具体地,如图2和图3所示,第一红外接收管P1和第二红外接收管P2关于中心轴A-A’对称设置,第三红外接收管P3和第四红外接收管P4关于中心轴A-A’对称设置,并且,
第一红外接收管P1和第三红外接收管P3关于中心轴B-B’对称,第二红外接收管P2和第四红外接收管P4关于中心轴B-B’对称。如图2所示,第五红外接收管P5和第六红外接收管P6关于中心轴A-A’对称设置在扫地机器人的尾端。如图3所示,第五红外接收管P5和第六红外接收管P6关于中心轴A-A’对称设置在扫地机器人的前端。这样,在扫地机器人前进或者后退时,可以以第一红外接收管P1和第二红外接收管P2或者第五红外接收管P5和第六红外接收管P6作为参照寻找充电座100发射的多组不同编码的红外信号;在扫地机器人横向(左右)行走时,可以以第一红外接收管P1和第三红外接收管P3或者第二红外接收管P2和第四红外接收管P4为参照寻找充电座100发射的多组不同编码的红外信号。
在扫地机器人工作过程中,如果扫地机器人需要充电,则扫地机器人的回充电控制装置将控制六个红外接收管开启。当六个红外接收管中的任意一个红外接收管接收到充电座100发射的红外信号时,回充电控制装置控制扫地机器人从左远场区域S4、中间远场区域S5、右远场区域S6、左近场区域S1和右近场区域S3中的任意一个区域向中间近场区域S2行走,直至第五和第六红外接收管接收到中间近场红外信号,即第五和第六红外接收管处于中间近场区域S2。然后回充电控制装置调整扫地机器人的前端或后端方向,以使扫地机器人的充电口与充电座100对准,并控制扫地机器人按照直线行走,直至扫地机器人与充电座100对接成功。
因此,本发明实施例的扫地机器人回充电系统,能够根据六个红外接收管接收到的充电座发射的红外信号控制扫地机器人快速到达中间近场区域,并在中间近场区域通过调整扫地机器人以使扫地机器人的充电口与充电座对准,从而使扫地机器人与充电座精准对接,有效降低了扫地机器人的充电回航时间,且有效避免了对接过程中采用左右边刷刷动充电座造成的对接不稳定的问题,而且该系统适用于复杂环境。
根据本发明的一个实施例,如图4所示,第一至第四红外接收管中的第一红外接收管P1和第二红外接收管P2的接收面夹角为90°,第一至第四红外接收管中的第一红外接收管P1和第三红外接收管P3的接收面夹角为90°,第一至第四红外接收管中的第二红外接收管P2和第四红外接收管P4的接收面夹角为90°,第一至第四红外接收管中的第三红外接收管P3和第四红外接收管P4的接收面夹角为90°,第五和第六红外接收管的接收面夹角为90°。
具体地,第一至第六红外接收管均可以为90度红外传感器。由于第一和第二红外接收管的接收面夹角为90°,第三和第四红外接收管的接收面夹角为90°,第五和第六红外接收管的接收面夹角为90°,因此可以使扫地机器人左右调整时的精度达到很高,从而实现扫地机器人的充电口与充电座100的快速精准对接,同时可以提高扫地机器人在前进或者
后退时的精度。另外,由于第一和第三红外接收管的接收面夹角为90°,第二和第四红外接收管的接收面夹角为90°,因此可以使扫地机器人在横向行走时的精度达到很高。此外,采用上述设置方式,还能够有效减小红外信号接收盲区,从而使得扫地机器人可以在任意位置接收到充电座发射的红外信号。
根据本发明的一个实施例,当第五和第六红外接收管以前后中心轴对称的方式设置在扫地机器人的尾端时,其中,如果根据接收到的红外信号判断扫地机器人位于左远场区域S4或右远场区域S6,回充电控制装置控制扫地机器人向左近场区域S1或右近场区域S3行走,并在扫地机器人位于左近场区域S1或右近场区域S3时控制扫地机器人向中间近场区域S2行走,以及在扫地机器人位于中间近场区域S2时控制扫地机器人的尾端对准并靠近充电座100,直至扫地机器人的尾端与充电座100对接成功;如果根据接收到的红外信号判断扫地机器人位于左近场区域S1或右近场区域S3,回充电控制装置控制扫地机器人向中间近场区域S2行走,并在扫地机器人位于中间近场区域S2时控制扫地机器人的尾端对准并靠近充电座100,直至扫地机器人的尾端与充电座100对接成功;如果根据接收到的红外信号判断扫地机器人位于中间近场区域S2,回充电控制装置控制扫地机器人的尾端对准并靠近充电座100,直至扫地机器人的尾端与充电座100对接成功;如果根据接收到的红外信号判断扫地机器人位于中间远场区域S5,回充电控制装置控制扫地机器人向中间近场区域S2行走,并在扫地机器人位于中间近场区域S2时控制扫地机器人的尾端对准并靠近充电座100,直至扫地机器人的尾端与充电座100对接成功。在该实施例中,扫地机器人的充电口设置在扫地机器人的尾端。
具体地,如图5所示,当扫地机器人接收到左远场红外信号时,即扫地机器人进入左远场区域S4时,回充电控制装置调整扫地机器人的前进方向,并控制扫地机器人以第一预设速度(如0.35m/s)向左近场区域S1行走,直到扫地机器人接收到左近场红外信号。然后回充电控制装置控制扫地机器人旋转一定的角度,如图6所示,并控制扫地机器人以半径为R的轨迹向中间近场区域S2靠近,直到六个红外接收管中的任意一个红外接收管接收到中间近场红外信号,如图7所示。然后回充电控制装置控制扫地机器人原地旋转,直到第五和第六红外接收管接收到中间近场红外信号,即控制扫地机器人的尾端对准充电座100,如图8所示。最后,回充电控制装置控制扫地机器人向充电座100靠近,直至扫地机器人的尾端与充电座100对接成功,从而实现扫地机器人与充电座的快速精准对接。可以理解的是,当扫地机器人的充电口设置在尾端时,可以缓解因前端设置有清洁部件而引起的前端装配困难以及结构设计复杂的问题。其他情况下的回充电过程这里就不再赘述。
根据本发明的另一个实施例,当第五和第六红外接收管以前后中心轴对称的方式设置在扫地机器人的前端时,其中,如果根据接收到的红外信号判断扫地机器人位于左远场区
域S4或右远场区域S6,回充电控制装置控制扫地机器人向左近场区域S1或右近场区域S2行走,并在扫地机器人位于左近场区域S1或右近场区域S3时控制扫地机器人向中间近场区域S2行走,以及在扫地机器人位于中间近场区域S2时控制扫地机器人的前端对准并靠近充电座100,直至扫地机器人的前端与充电座100对接成功;如果根据接收到的红外信号判断扫地机器人位于左近场区域S1或右近场区域S3,回充电控制装置控制扫地机器人向中间近场区域S2行走,并在扫地机器人位于中间近场区域S2时控制扫地机器人的前端对准并靠近充电座100,直至扫地机器人的前端与充电座100对接成功;如果根据接收到的红外信号判断扫地机器人位于中间近场区域S2,回充电控制装置控制扫地机器人的前端对准并靠近充电座100,直至扫地机器人的前端与充电座100对接成功;如果根据接收到的红外信号判断扫地机器人位于中间远场区域S2,回充电控制装置控制扫地机器人向中间近场区域S2行走,并在扫地机器人位于中间近场区域S2时控制扫地机器人的前端对准并靠近充电座100,直至扫地机器人的前端与充电座100对接成功。在该实施例中,扫地机器人的充电口设置在扫地机器人的前端,具体回充电过程这里就不再赘述。
本发明实施例的扫地机器人回充电系统,通过扫地机器人的前端或尾端与充电座进行对接,有效避免了对接过程中采用左右边刷刷动充电座造成的对接不稳定的问题。
图9是根据本发明一个实施例的扫地机器人回充电系统的回充控制流程图。如图9所示,扫地机器人回充电过程可以包括以下步骤:
S101,判断红外接收管是否接收到红外信号。如果六个红外接收管中有一个红外接收管接收到充电座发射的红外信号,则执行步骤S102;如果否,返回步骤S101。
S102,屏蔽尾端的红外接收管,通过前端的红外接收管接收到的红外信号控制扫地机器人以第一预设速度(如0.35m/s)行走。
具体而言,当第五和第六红外接收管设置在扫地机器人的尾端时,回充电控制装置屏蔽第三至第六红外接收管接收到的红外信号,并根据第一和第二红外接收管接收到的红外信号控制扫地机器人以0.35m/s的速度行走;当第五和第六红外接收管设置在扫地机器人的前端时,回充电控制装置屏蔽第三和第四红外接收管接收的信号,并根据第一和第二红外接收管或者第五和第六红外接收管接收到的红外信号控制扫地机器人以0.35m/s的速度行走,可以理解的是,也可以屏蔽第五和第六红外接收管接收到的红外信号。
S103,判断前端的红外接收管是否接收到近场红外信号,即判断第一和第二红外接收管是否接收到左近场红外信号、右近场红外信号和中间近场红外信号中的一种。如果是,执行步骤S104;如果否,返回步骤S102。
S104,判断近场红外信号是否为中间近场红外信号。如果是,执行步骤S109;如果否,执行步骤S105。
S105,根据接收到的左/右近场红外信号控制扫地机器人向右/左旋转90°。具体而言,当第一和第二红外接收管接收到左近场红外信号时,控制扫地机器人向右旋转90°;当第一和第二红外接收管接收到右近场红外信号时,控制扫地机器人向左旋转90°。
S106,控制扫地机器人以第二预设速度(如0.1-0.2m/s)向中间近场区域行走。
S107,判断是否有红外接收管接收到中间近场红外信号。如果是,执行步骤S108;如果否,返回步骤S106。
S108,控制扫地机器人旋转,直到扫地机器人尾端/前端的红外接收管能够接收到中间近场红外信号。也就是说,当扫地机器人的充电口设置在尾端时,控制扫地机器人的尾端对准充电座;当扫地机器人的充电口设置在前端时,控制扫地机器人的前端对准充电座。
S109,控制扫地机器人以第二预设速度前进一定的距离后,关闭所有红外接收管,继续前进直到对接成功。
具体而言,当扫地机器人的充电口与充电座对准时,控制扫地机器人以第二预设速度前进至距离充电座前挡板很近时,关闭所有红外接收管,并控制扫地机器人与充电座进行对接。
根据本发明实施例的扫地机器人回充电系统,通过设置在扫地机器人上的六个红外接收管接收到的充电座发射的红外信号来控制扫地机器人快速返回至充电座,从而有效缩短扫地机器人的充电回航时间,且适用于复杂环境。同时,通过设置在扫地机器人的前端或者尾端的红外接收管来控制扫地机器人与充电座的快速准确对接,有效避免了对接过程中采用左右边刷刷动充电座造成的对接不稳定的问题。
图10是根据本发明实施例的扫地机器人回充电系统的回充控制方法的流程图。其中,扫地机器人回充电系统包括充电座和设置在扫地机器人上的六个红外接收管,充电座用于发射多组不同编码的红外信号以将充电座的前方区域划分为六个不同信号区域,其中,六个不同信号区域包括左近场区域、中间近场区域、右近场区域和左远场区域、中间远场区域、右远场区域,六个红外接收管中的第一至第四红外接收管以前后、左右对称的方式设置在扫地机器人的四个端角处,六个红外接收管中的第五和第六红外接收管以前后中心轴对称的方式设置在扫地机器人的前端或尾端。具体如图1-图3所示,这里不再赘述。
根据本发明的一个实施例,如图4所示,第一至第四红外接收管中的第一红外接收管和第二红外接收管的接收面夹角为90°,第一至第四红外接收管中的第一红外接收管和第三红外接收管的接收面夹角为90°,第一至第四红外接收管中的第二红外接收管和第四红外接收管的接收面夹角为90°,第一至第四红外接收管中的第三红外接收管和第四红外接收管的接收面夹角为90°,第五和第六红外接收管的接收面夹角为90°。
具体地,第一至第六红外接收管均可以为90度红外传感器。由于第一和第二红外接收
管的接收面夹角为90°,第三和第四红外接收管的接收面夹角为90°,第五和第六红外接收管的接收面夹角为90°,因此可以使扫地机器人左右调整时的精度达到很高,从而实现扫地机器人的充电口与充电座的快速精准对接,同时可以提高扫地机器人在前进或者后退时的精度。另外,由于第一和第三红外接收管的接收面夹角为90°,第二和第四红外接收管的接收面夹角为90°,因此可以使扫地机器人在横向行走时的精度达到很高。此外,采用上述设置方式,还能够有效减小红外信号接收盲区,从而使得扫地机器人可以在任意位置接收到充电座发射的红外信号。
如图10所示,该扫地机器人回充电系统的回充控制方法包括以下步骤:
S1,在扫地机器人需要充电时控制六个红外接收管开启。
S2,如果六个红外接收管中的任意一个红外接收管接收到充电座发射的红外信号时控制扫地机器人向中间近场区域行走。
S3,在第五和第六红外接收管接收到中间近场红外信号时,控制扫地机器人继续行走直至扫地机器人与充电座对接成功。
具体地,在扫地机器人工作过程中,如果扫地机器人需要充电,则控制六个红外接收管开启。当六个红外接收管中的任意一个红外接收管接收到充电座发射的红外信号时,控制扫地机器人从左远场区域、中间远场区域、右远场区域、左近场区域和右近场区域中的任意一个区域向中间近场区域行走,直至第五和第六红外接收管接收到中间近场红外信号,即第五和第六红外接收管处于中间近场区域。然后回充电控制装置调整扫地机器人的前端或后端方向,以使扫地机器人的充电口与充电座对准,并控制扫地机器人按照直线行走,直至扫地机器人与充电座对接成功。
根据本发明的一个实施例,当第五和第六红外接收管以前后中心轴对称的方式设置在扫地机器人的尾端时,其中,如果根据接收到的红外信号判断扫地机器人位于左远场区域或右远场区域,控制扫地机器人向左近场区域或右近场区域行走,并在扫地机器人位于左近场区域或右近场区域时控制扫地机器人向中间近场区域行走,以及在扫地机器人位于中间近场区域时控制扫地机器人的尾端对准并靠近充电座,直至扫地机器人的尾端与充电座对接成功;如果根据接收到的红外信号判断扫地机器人位于左近场区域或右近场区域,控制扫地机器人向中间近场区域行走,并在扫地机器人位于中间近场区域时控制扫地机器人的尾端对准并靠近充电座,直至扫地机器人的尾端与充电座对接成功;如果根据接收到的红外信号判断扫地机器人位于中间近场区域,控制扫地机器人的尾端对准并靠近充电座,直至扫地机器人的尾端与充电座对接成功;如果根据接收到的红外信号判断扫地机器人位于中间远场区域,控制扫地机器人向中间近场区域行走,并在扫地机器人位于中间近场区域时控制扫地机器人的尾端对准并靠近充电座,直至扫地机器人的尾端与充电座对接成功。
具体地,如图5所示,当扫地机器人接收到左远场红外信号时,即扫地机器人进入左远场区域时,调整扫地机器人的前进方向,并控制扫地机器人以第一预设速度(如0.35m/s)向左近场区域行走,直到扫地机器人接收到左近场红外信号。然后控制扫地机器人旋转一定的角度,如图6所示,并控制扫地机器人以半径为R的轨迹向中间近场区域靠近,直到六个红外接收管中的任意一个红外接收管接收到中间近场红外信号,如图7所示。然后控制扫地机器人原地旋转,直到第五和第六红外接收管接收到中间近场红外信号,即控制扫地机器人的尾端对准充电座,如图8所示。最后控制扫地机器人向充电座靠近,直至扫地机器人的尾端与充电座对接成功,从而实现扫地机器人与充电座的快速精准对接。可以理解的是,当扫地机器人的充电口设置在尾端时,可以缓解因前端设置有清洁部件而引起的前端装配困难以及结构设计复杂的问题。其他情况下的回充电过程这里就不再赘述。
根据本发明的另一个实施例,当第五和第六红外接收管以前后中心轴对称的方式设置在扫地机器人的前端时,其中,如果根据接收到的红外信号判断扫地机器人位于左远场区域或右远场区域,控制扫地机器人向左近场区域或右近场区域行走,并在扫地机器人位于左近场区域或右近场区域时控制扫地机器人向中间近场区域行走,以及在扫地机器人位于中间近场区域时控制扫地机器人的前端对准并靠近充电座,直至扫地机器人的前端与充电座对接成功;如果根据接收到的红外信号判断扫地机器人位于左近场区域或右近场区域,控制扫地机器人向中间近场区域行走,并在扫地机器人位于中间近场区域时控制扫地机器人的前端对准并靠近充电座,直至扫地机器人的前端与充电座对接成功;如果根据接收到的红外信号判断扫地机器人位于中间近场区域,控制扫地机器人的前端对准并靠近充电座,直至扫地机器人的前端与充电座对接成功;如果根据接收到的红外信号判断扫地机器人位于中间远场区域,控制扫地机器人向中间近场区域行走,并在扫地机器人位于中间近场区域时控制扫地机器人的前端对准并靠近充电座,直至扫地机器人的前端与充电座对接成功。在该实施例中,扫地机器人的充电口设置在扫地机器人的前端,具体回充电过程这里就不再赘述。
根据本发明实施例的扫地机器人回充电系统的回充控制方法,当设置在扫地机器人上的六个红外接收管中的任意一个红外接收管接收到充电座发射的红外信号时,控制扫地机器人向中间近场区域行走,并在第五和第六红外接收管接收到中间近场红外信号时,控制扫地机器人继续行走直至扫地机器人与充电座对接成功。因此,本发明实施例的回充控制方法能够控制扫地机器人快速返回至充电座,从而有效缩短扫地机器人的充电回航时间,并控制扫地机器人与充电座实现快速准确对接,有效避免了对接过程中采用左右边刷刷动充电座造成的对接不稳定的问题,且能够适用于复杂环境。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能
理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
Claims (8)
- 一种扫地机器人回充电系统,其特征在于,包括:充电座,所述充电座用于发射多组不同编码的红外信号以将所述充电座的前方区域划分为六个不同信号区域,其中,所述六个不同信号区域包括左近场区域、中间近场区域、右近场区域和左远场区域、中间远场区域、右远场区域;设置在扫地机器人上的六个红外接收管,所述六个红外接收管中的第一至第四红外接收管以前后、左右对称的方式设置在所述扫地机器人的四个端角处,所述六个红外接收管中的第五和第六红外接收管以前后中心轴对称的方式设置在所述扫地机器人的前端或尾端;回充电控制装置,所述回充电控制装置用于在判断所述扫地机器人需要充电时控制所述六个红外接收管开启,并在所述六个红外接收管中的任意一个红外接收管接收到所述充电座发射的红外信号时控制所述扫地机器人向所述中间近场区域行走,直至所述第五和第六红外接收管接收到中间近场红外信号时,所述回充电控制装置控制所述扫地机器人继续行走直至所述扫地机器人与所述充电座对接成功。
- 根据权利要求1所述的扫地机器人回充电系统,其特征在于,所述第一至第四红外接收管中的第一红外接收管和第二红外接收管的接收面夹角为90°,所述第一至第四红外接收管中的第一红外接收管和第三红外接收管的接收面夹角为90°,所述第一至第四红外接收管中的第二红外接收管和第四红外接收管的接收面夹角为90°,所述第一至第四红外接收管中的第三红外接收管和第四红外接收管的接收面夹角为90°,所述第五和第六红外接收管的接收面夹角为90°。
- 根据权利要求1或2所述的扫地机器人回充电系统,其特征在于,当所述第五和第六红外接收管以前后中心轴对称的方式设置在所述扫地机器人的尾端时,其中,如果根据接收到的红外信号判断所述扫地机器人位于所述左远场区域或所述右远场区域,所述回充电控制装置控制所述扫地机器人向所述左近场区域或所述右近场区域行走,并在所述扫地机器人位于所述左近场区域或所述右近场区域时控制所述扫地机器人向所述中间近场区域行走,以及在所述扫地机器人位于所述中间近场区域时控制所述扫地机器人的尾端对准并靠近所述充电座,直至所述扫地机器人的尾端与所述充电座对接成功;如果根据接收到的红外信号判断所述扫地机器人位于所述左近场区域或所述右近场区域,所述回充电控制装置控制所述扫地机器人向所述中间近场区域行走,并在所述扫地机器人位于所述中间近场区域时控制所述扫地机器人的尾端对准并靠近所述充电座,直至所述扫地机器人的尾端与所述充电座对接成功;如果根据接收到的红外信号判断所述扫地机器人位于所述中间近场区域,所述回充电控制装置控制所述扫地机器人的尾端对准并靠近所述充电座,直至所述扫地机器人的尾端与所述充电座对接成功;如果根据接收到的红外信号判断所述扫地机器人位于所述中间远场区域,所述回充电控制装置控制所述扫地机器人向所述中间近场区域行走,并在所述扫地机器人位于所述中间近场区域时控制所述扫地机器人的尾端对准并靠近所述充电座,直至所述扫地机器人的尾端与所述充电座对接成功。
- 根据权利要求1或2所述的扫地机器人回充电系统,其特征在于,当所述第五和第六红外接收管以前后中心轴对称的方式设置在所述扫地机器人的前端时,其中,如果根据接收到的红外信号判断所述扫地机器人位于所述左远场区域或所述右远场区域,所述回充电控制装置控制所述扫地机器人向所述左近场区域或所述右近场区域行走,并在所述扫地机器人位于所述左近场区域或所述右近场区域时控制所述扫地机器人向所述中间近场区域行走,以及在所述扫地机器人位于所述中间近场区域时控制所述扫地机器人的前端对准并靠近所述充电座,直至所述扫地机器人的前端与所述充电座对接成功;如果根据接收到的红外信号判断所述扫地机器人位于所述左近场区域或所述右近场区域,所述回充电控制装置控制所述扫地机器人向所述中间近场区域行走,并在所述扫地机器人位于所述中间近场区域时控制所述扫地机器人的前端对准并靠近所述充电座,直至所述扫地机器人的前端与所述充电座对接成功;如果根据接收到的红外信号判断所述扫地机器人位于所述中间近场区域,所述回充电控制装置控制所述扫地机器人的前端对准并靠近所述充电座,直至所述扫地机器人的前端与所述充电座对接成功;如果根据接收到的红外信号判断所述扫地机器人位于所述中间远场区域,所述回充电控制装置控制所述扫地机器人向所述中间近场区域行走,并在所述扫地机器人位于所述中间近场区域时控制所述扫地机器人的前端对准并靠近所述充电座,直至所述扫地机器人的前端与所述充电座对接成功。
- 一种扫地机器人回充电系统的回充控制方法,其特征在于,所述扫地机器人回充电系统包括充电座和设置在扫地机器人上的六个红外接收管,所述充电座用于发射多组不同编码的红外信号以将所述充电座的前方区域划分为六个不同信号区域,其中,所述六个不同信号区域包括左近场区域、中间近场区域、右近场区域和左远场区域、中间远场区域、右远场区域,所述六个红外接收管中的第一至第四红外接收管以前后、左右对称的方式设置在所述扫地机器人的四个端角处,所述六个红外接收管中的第五和第六红外接收管以前后中心轴对称的方式设置在所述扫地机器人的前端或尾端,所述回充控制方法包括以下步 骤:在所述扫地机器人需要充电时控制所述六个红外接收管开启;如果所述六个红外接收管中的任意一个红外接收管接收到所述充电座发射的红外信号时控制所述扫地机器人向所述中间近场区域行走;在所述第五和第六红外接收管接收到中间近场红外信号时,控制所述扫地机器人继续行走直至所述扫地机器人与所述充电座对接成功。
- 根据权利要求5所述的扫地机器人回充电系统的回充控制方法,其特征在于,所述第一至第四红外接收管中的第一红外接收管和第二红外接收管的接收面夹角为90°,所述第一至第四红外接收管中的第一红外接收管和第三红外接收管的接收面夹角为90°,所述第一至第四红外接收管中的第二红外接收管和第四红外接收管的接收面夹角为90°,所述第一至第四红外接收管中的第三红外接收管和第四红外接收管的接收面夹角为90°,所述第五和第六红外接收管的接收面夹角为90°。
- 根据权利要求5或6所述的扫地机器人回充电系统的回充控制方法,其特征在于,当所述第五和第六红外接收管以前后中心轴对称的方式设置在所述扫地机器人的尾端时,其中,如果根据接收到的红外信号判断所述扫地机器人位于所述左远场区域或所述右远场区域,控制所述扫地机器人向所述左近场区域或所述右近场区域行走,并在所述扫地机器人位于所述左近场区域或所述右近场区域时控制所述扫地机器人向所述中间近场区域行走,以及在所述扫地机器人位于所述中间近场区域时控制所述扫地机器人的尾端对准并靠近所述充电座,直至所述扫地机器人的尾端与所述充电座对接成功;如果根据接收到的红外信号判断所述扫地机器人位于所述左近场区域或所述右近场区域,控制所述扫地机器人向所述中间近场区域行走,并在所述扫地机器人位于所述中间近场区域时控制所述扫地机器人的尾端对准并靠近所述充电座,直至所述扫地机器人的尾端与所述充电座对接成功;如果根据接收到的红外信号判断所述扫地机器人位于所述中间近场区域,控制所述扫地机器人的尾端对准并靠近所述充电座,直至所述扫地机器人的尾端与所述充电座对接成功;如果根据接收到的红外信号判断所述扫地机器人位于所述中间远场区域,控制所述扫地机器人向所述中间近场区域行走,并在所述扫地机器人位于所述中间近场区域时控制所述扫地机器人的尾端对准并靠近所述充电座,直至所述扫地机器人的尾端与所述充电座对接成功。
- 根据权利要求5或6所述的扫地机器人回充电系统的回充控制方法,其特征在于, 当所述第五和第六红外接收管以前后中心轴对称的方式设置在所述扫地机器人的前端时,其中,如果根据接收到的红外信号判断所述扫地机器人位于所述左远场区域或所述右远场区域,控制所述扫地机器人向所述左近场区域或所述右近场区域行走,并在所述扫地机器人位于所述左近场区域或所述右近场区域时控制所述扫地机器人向所述中间近场区域行走,以及在所述扫地机器人位于所述中间近场区域时控制所述扫地机器人的前端对准并靠近所述充电座,直至所述扫地机器人的前端与所述充电座对接成功;如果根据接收到的红外信号判断所述扫地机器人位于所述左近场区域或所述右近场区域,控制所述扫地机器人向所述中间近场区域行走,并在所述扫地机器人位于所述中间近场区域时控制所述扫地机器人的前端对准并靠近所述充电座,直至所述扫地机器人的前端与所述充电座对接成功;如果根据接收到的红外信号判断所述扫地机器人位于所述中间近场区域,控制所述扫地机器人的前端对准并靠近所述充电座,直至所述扫地机器人的前端与所述充电座对接成功;如果根据接收到的红外信号判断所述扫地机器人位于所述中间远场区域,控制所述扫地机器人向所述中间近场区域行走,并在所述扫地机器人位于所述中间近场区域时控制所述扫地机器人的前端对准并靠近所述充电座,直至所述扫地机器人的前端与所述充电座对接成功。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2971236A CA2971236A1 (en) | 2015-11-20 | 2016-08-11 | Going back and charging system for sweeping robot and method for controlling the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510810284.5 | 2015-11-20 | ||
CN201520933595.6U CN205158132U (zh) | 2015-11-20 | 2015-11-20 | 扫地机器人回充电系统 |
CN201520933595.6 | 2015-11-20 | ||
CN201510810284.5A CN105242674B (zh) | 2015-11-20 | 2015-11-20 | 扫地机器人回充电系统及其回充控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017084395A1 true WO2017084395A1 (zh) | 2017-05-26 |
Family
ID=57189725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/094697 WO2017084395A1 (zh) | 2015-11-20 | 2016-08-11 | 扫地机器人回充电系统及其回充控制方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9989968B2 (zh) |
EP (1) | EP3170436B1 (zh) |
CA (1) | CA2971236A1 (zh) |
WO (1) | WO2017084395A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114762579A (zh) * | 2021-01-11 | 2022-07-19 | 宁波方太厨具有限公司 | 一种清洁机器人返回基站控制方法及系统 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10698411B1 (en) * | 2016-12-13 | 2020-06-30 | AI Incorporated | Recharge station for mobile robot |
KR102329614B1 (ko) * | 2017-03-23 | 2021-11-22 | 엘지전자 주식회사 | 청소기 및 그 제어방법 |
CN108988403B (zh) * | 2017-05-31 | 2024-09-20 | 北京小米移动软件有限公司 | 自主充电系统、自主移动设备以及充电桩 |
CN107601194B (zh) * | 2017-09-30 | 2023-10-31 | 樱花电梯(中山)有限公司 | 一种电梯装置、机电控制模组及电梯自动清扫系统 |
CN109991983B (zh) * | 2019-04-10 | 2020-12-01 | 拉扎斯网络科技(上海)有限公司 | 机器人导航方法、装置、系统、电子设备及存储介质 |
CN112214011B (zh) * | 2019-07-11 | 2022-05-10 | 珠海一微半导体股份有限公司 | 自移动机器人定位充电座的系统和方法 |
CN112020041B (zh) * | 2020-08-27 | 2024-03-15 | 尚科宁家(中国)科技有限公司 | 一种清洁机器人与基站的通信系统 |
US20220083075A1 (en) * | 2020-09-15 | 2022-03-17 | Infineon Technologies Ag | Robot Guiding System and Method |
CN113749566A (zh) * | 2021-09-28 | 2021-12-07 | 安克创新科技股份有限公司 | 清洁机、基站及清洁机对位系统 |
CN114545937A (zh) * | 2022-02-17 | 2022-05-27 | 浙江工业大学 | 一种agv自动回充装置及方法 |
CN115067841A (zh) * | 2022-07-14 | 2022-09-20 | 杭州萤石软件有限公司 | 清洁机器人的控制方法及控制装置和清洁机器人系统 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4679152A (en) * | 1985-02-20 | 1987-07-07 | Heath Company | Navigation system and method for a mobile robot |
US20070096675A1 (en) * | 2005-10-27 | 2007-05-03 | Lg Electronics Inc. | Mobile robot charge station return system |
US20080065266A1 (en) * | 2006-09-11 | 2008-03-13 | Lg Electronics Inc. | Mobile robot and operating method thereof |
CN101972129A (zh) * | 2009-06-19 | 2011-02-16 | 三星电子株式会社 | 机器人清洁器及其控制方法、对接站、包括该机器人清洁器和该对接站的机器人清洁器系统 |
CN103948354A (zh) * | 2014-05-05 | 2014-07-30 | 苏州爱普电器有限公司 | 一种地面清洁机器人及其控制方法 |
CN204203769U (zh) * | 2014-10-23 | 2015-03-11 | 江苏美的春花电器股份有限公司 | 清扫机器人的充电座及清扫机器人 |
CN105242674A (zh) * | 2015-11-20 | 2016-01-13 | 江苏美的清洁电器股份有限公司 | 扫地机器人回充电系统及其回充控制方法 |
CN205158132U (zh) * | 2015-11-20 | 2016-04-13 | 江苏美的清洁电器股份有限公司 | 扫地机器人回充电系统 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100492590B1 (ko) | 2003-03-14 | 2005-06-03 | 엘지전자 주식회사 | 로봇의 자동충전 시스템 및 복귀방법 |
US7332890B2 (en) * | 2004-01-21 | 2008-02-19 | Irobot Corporation | Autonomous robot auto-docking and energy management systems and methods |
KR100645381B1 (ko) | 2005-08-31 | 2006-11-14 | 삼성광주전자 주식회사 | 로봇청소기의 외부충전 복귀장치 및 복귀방법 |
KR100766439B1 (ko) * | 2006-03-29 | 2007-10-12 | 엘지전자 주식회사 | 이동로봇의 충전대 복귀 시스템 |
KR20080051936A (ko) | 2006-12-07 | 2008-06-11 | 삼성광주전자 주식회사 | 로봇의 자동 도킹 유도장치 |
CN103948358B (zh) | 2009-06-19 | 2017-04-26 | 三星电子株式会社 | 用于机器人清洁器的对接站 |
CN102262407B (zh) | 2010-05-31 | 2016-08-03 | 恩斯迈电子(深圳)有限公司 | 引导装置及操作系统 |
CN201996471U (zh) | 2011-04-21 | 2011-10-05 | 深圳市银星智能电器有限公司 | 扫地机器人用充电系统 |
TWI635303B (zh) | 2014-04-09 | 2018-09-11 | 燕成祥 | Guided cleaning device and guided cleaning group |
-
2016
- 2016-08-11 CA CA2971236A patent/CA2971236A1/en not_active Abandoned
- 2016-08-11 WO PCT/CN2016/094697 patent/WO2017084395A1/zh active Application Filing
- 2016-08-12 US US15/235,731 patent/US9989968B2/en active Active
- 2016-08-12 EP EP16183998.0A patent/EP3170436B1/en not_active Not-in-force
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4679152A (en) * | 1985-02-20 | 1987-07-07 | Heath Company | Navigation system and method for a mobile robot |
US20070096675A1 (en) * | 2005-10-27 | 2007-05-03 | Lg Electronics Inc. | Mobile robot charge station return system |
US20080065266A1 (en) * | 2006-09-11 | 2008-03-13 | Lg Electronics Inc. | Mobile robot and operating method thereof |
CN101972129A (zh) * | 2009-06-19 | 2011-02-16 | 三星电子株式会社 | 机器人清洁器及其控制方法、对接站、包括该机器人清洁器和该对接站的机器人清洁器系统 |
CN103948354A (zh) * | 2014-05-05 | 2014-07-30 | 苏州爱普电器有限公司 | 一种地面清洁机器人及其控制方法 |
CN204203769U (zh) * | 2014-10-23 | 2015-03-11 | 江苏美的春花电器股份有限公司 | 清扫机器人的充电座及清扫机器人 |
CN105242674A (zh) * | 2015-11-20 | 2016-01-13 | 江苏美的清洁电器股份有限公司 | 扫地机器人回充电系统及其回充控制方法 |
CN205158132U (zh) * | 2015-11-20 | 2016-04-13 | 江苏美的清洁电器股份有限公司 | 扫地机器人回充电系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114762579A (zh) * | 2021-01-11 | 2022-07-19 | 宁波方太厨具有限公司 | 一种清洁机器人返回基站控制方法及系统 |
CN114762579B (zh) * | 2021-01-11 | 2023-07-25 | 宁波方太厨具有限公司 | 一种清洁机器人返回基站控制方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
EP3170436B1 (en) | 2018-10-31 |
US9989968B2 (en) | 2018-06-05 |
US20170147001A1 (en) | 2017-05-25 |
EP3170436A1 (en) | 2017-05-24 |
CA2971236A1 (en) | 2017-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017084395A1 (zh) | 扫地机器人回充电系统及其回充控制方法 | |
CN108037759B (zh) | 扫地机器人回充系统及回充路径规划方法 | |
CN103066645B (zh) | 一种机器人及其自动充电系统和方法 | |
US9280158B2 (en) | System and method for guiding a robot cleaner along a path | |
CN105242674B (zh) | 扫地机器人回充电系统及其回充控制方法 | |
CN104298234B (zh) | 一种双引导式机器人自主充电方法 | |
WO2019233222A1 (zh) | 用于桥隧结构病害无损检测诊断的自动爬墙式雷达光电机器人系统 | |
CN108173308B (zh) | 一种机器人充电方法及其装置 | |
WO2018045875A1 (zh) | 一种实现机器人自主充电的方法及系统 | |
EP2312412B1 (en) | Docking station for a cleaning robot with spatially coded guiding signals | |
CN206489450U (zh) | 清洁机器人自动导引充电系统 | |
US20160170412A1 (en) | Autonomous mobile device and method for controlling same | |
CN105958578B (zh) | 一种机器人的充电座和自动充电系统和方法 | |
US9333870B2 (en) | Non-contact charging system | |
WO2019113877A1 (zh) | 一种无人车控制方法及无人割草车 | |
CN205158132U (zh) | 扫地机器人回充电系统 | |
CN105581728B (zh) | 吸尘器 | |
CN106406316A (zh) | 家庭智能陪护机器人的自主充电系统及其充电方法 | |
JPH0782385B2 (ja) | 移動体の誘導装置 | |
CN207433310U (zh) | 自动充电对接控制系统、充电站及汽车 | |
CN109283544A (zh) | 一种基于激光测距的机器人自主充电对准方法 | |
CN109144071A (zh) | 一种狭窄车道内agv行车控制方法 | |
CN112904845B (zh) | 基于无线测距传感器的机器人卡住检测方法、系统及芯片 | |
CN210016300U (zh) | 自移动设备和充电对接系统 | |
CN110829513A (zh) | 自移动设备、充电对接系统和充电对接方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2971236 Country of ref document: CA |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16865573 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16865573 Country of ref document: EP Kind code of ref document: A1 |