WO2017082378A1 - Optical layered body - Google Patents

Optical layered body Download PDF

Info

Publication number
WO2017082378A1
WO2017082378A1 PCT/JP2016/083473 JP2016083473W WO2017082378A1 WO 2017082378 A1 WO2017082378 A1 WO 2017082378A1 JP 2016083473 W JP2016083473 W JP 2016083473W WO 2017082378 A1 WO2017082378 A1 WO 2017082378A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
film
layer
transparent film
brightness enhancement
Prior art date
Application number
PCT/JP2016/083473
Other languages
French (fr)
Japanese (ja)
Inventor
一正 岡田
祥一 松田
梅本 清司
小石 直樹
徹 梅本
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2017082378A1 publication Critical patent/WO2017082378A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to an optical laminate.
  • Patent Document 1 discloses a liquid crystal display device in which a shield electrode is disposed on the side of the insulating substrate on which the liquid crystal layer is formed. In such a configuration, the pixel electrode and the common electrode are arranged at close positions, and the structure becomes very complicated.
  • a method using an optical functional film (for example, a brightness enhancement film) on which a conductive layer is formed can be considered.
  • heat treatment is required when forming the conductive layer, which may impair the optical function of the optical functional film.
  • electroconductivity of a conductive layer may become inadequate.
  • the present invention has been made in order to solve the above-described problems, and an object of the present invention is an optical laminate including a brightness enhancement film and a conductive layer, the function of the brightness enhancement film and the conductivity of the conductive layer.
  • An object of the present invention is to provide an optical layered body that is configured without any deterioration in properties.
  • the optical layered body of the present invention includes a polarizing plate, a brightness enhancement film, an adhesive layer, a transparent film, and a conductive layer in this order.
  • the transparent film is a film having a function of a ⁇ / 4 plate.
  • the transparent film contains a polycarbonate resin, a cycloolefin resin, a cellulose resin, an ester resin, a polyimide resin, or an acrylic resin.
  • the transparent film includes a cured layer or a solidified layer of a liquid crystal material.
  • the conductive layer includes metal nanowires.
  • the conductive layer includes a metal mesh.
  • the conductive layer includes a metal oxide.
  • the manufacturing method of an optical laminated body includes laminating a laminate A including a polarizing plate and a brightness enhancement film and a laminate B including a transparent film and a conductive layer via an adhesive layer.
  • the adhesive layer is disposed between the conductive layer and the brightness enhancement film, an optical laminate in which the brightness enhancement film is formed without being heated can be obtained.
  • This optical layered body is configured without any decrease in the function of the brightness enhancement film and the conductivity of the conductive layer.
  • the optical stack is a schematic sectional view of an optical laminate according to one embodiment of the present invention.
  • the optical laminate 100 includes a polarizing plate 10, a brightness enhancement film 20, an adhesive layer 30, a transparent film 40, and a conductive layer 50 in this order.
  • the adhesive layer 30 means a layer containing an adhesive or a pressure-sensitive adhesive.
  • the optical stack may include any other suitable member.
  • the optical layered body of the present invention can be obtained by bonding the conductive layer 50 disposed on the transparent film 40 to the brightness enhancement film 20 via the adhesive layer 30. Therefore, the above optical laminate can be obtained without heating the brightness enhancement film, and as a result, the brightness enhancement film fully performs its function and reduces defects such as wrinkles generated in the brightness enhancement film. Is done.
  • the conductive layer is formed on the transparent film and then bonded to the brightness enhancement film, it can be formed with good conductivity by heating at a desired temperature without considering damage to the brightness enhancement film. it can.
  • the polarizing plate 10 has a function of transmitting one polarization component (polarization component in the transmission axis direction) of two orthogonal polarization components.
  • the brightness enhancement film separates incident light into two orthogonal polarization components, transmits one polarization component (polarization component in the transmission axis direction), and transmits the other polarization component (polarization component in the reflection axis direction).
  • the transmission axis of the polarizing plate and the transmission axis of the brightness enhancement film are preferably parallel.
  • the term “parallel” includes a case where they are substantially parallel, that is, includes a case where an angle formed by two straight lines is 0 ° ⁇ 10 °, and preferably 0 ° ⁇ 5. °, more preferably 0 ° ⁇ 1 °.
  • the total light transmittance of the optical layered body is preferably 30 to 70%, more preferably 35% to 70%.
  • the optical laminated body comprised without impairing the light transmittance of a brightness enhancement film can be obtained, and the said optical laminated body is excellent in light transmittance.
  • an optical laminate having a particularly high light transmittance can be obtained.
  • the polarizing plate typically includes a polarizer and a protective film for protecting the polarizer.
  • any appropriate polarizer is used as the polarizer.
  • dichroic substances such as iodine and dichroic dyes are adsorbed on hydrophilic polymer films such as polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and ethylene / vinyl acetate copolymer partially saponified films.
  • polyene-based oriented films such as a uniaxially stretched product, a polyvinyl alcohol dehydrated product and a polyvinyl chloride dehydrochlorinated product.
  • a polarizer obtained by adsorbing a dichroic substance such as iodine on a polyvinyl alcohol film and uniaxially stretching is particularly preferable because of its high polarization dichroic ratio.
  • the thickness of the polarizer is preferably 0.5 ⁇ m to 80 ⁇ m.
  • a uniaxially stretched polarizer by adsorbing iodine to a polyvinyl alcohol film is typically produced by immersing polyvinyl alcohol in an aqueous solution of iodine and stretching it 3 to 7 times the original length.
  • the Stretching may be performed after dyeing, may be performed while dyeing, or may be performed after stretching.
  • treatments such as swelling, crosslinking, adjustment, washing with water, and drying are performed.
  • any appropriate film is used as the protective film.
  • the material that is the main component of such a film include cellulose resins such as triacetyl cellulose (TAC), (meth) acrylic, polyester, polyvinyl alcohol, polycarbonate, polyamide, and polyimide.
  • transparent resins such as polyethersulfone, polysulfone, polystyrene, polynorbornene, polyolefin, and acetate.
  • thermosetting resins such as acrylic, urethane, acrylic urethane, epoxy, and silicone, or ultraviolet curable resins are also included.
  • a glassy polymer such as a siloxane polymer is also included.
  • a polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used.
  • a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in the side chain for example, a resin composition having an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer can be mentioned.
  • the polymer film may be an extruded product of the resin composition, for example.
  • the brightness enhancement film separates incident light into two orthogonal polarization components, transmits one polarization component (polarization component in the transmission axis direction), and transmits the other polarization component (reflection axis direction).
  • the polarization component The polarized light component reflected by the brightness enhancement film is reflected on another reflector (for example, a reflector provided in the backlight) to depolarize, and is incident on the brightness enhancement film again, and is polarized in the transmission axis direction. Penetrates the brightness enhancement film. By such an action, the light utilization efficiency is increased, and a brightness improvement effect is obtained.
  • FIG. 2 is a schematic perspective view showing an example of the brightness enhancement film.
  • the brightness enhancement film is a multilayer laminate in which layers A having birefringence and layers B having substantially no birefringence are alternately laminated.
  • the refractive index n (x) in the x-axis direction of the A layer is larger than the refractive index n (y) in the y-axis direction
  • the refractive index n (x) in the x-axis direction of the B layer and the y-axis direction Is substantially the same as the refractive index n (y). Accordingly, the difference in refractive index between the A layer and the B layer is large in the x-axis direction and is substantially zero in the y-axis direction.
  • the x-axis direction becomes the reflection axis
  • the y-axis direction becomes the transmission axis.
  • the refractive index difference in the x-axis direction between the A layer and the B layer is preferably 0.2 to 0.3.
  • the A layer is preferably made of a material that develops birefringence by stretching.
  • Representative examples of such materials include naphthalene dicarboxylic acid polyesters (for example, polyethylene naphthalate), polycarbonates, and acrylic resins (for example, polymethyl methacrylate). Of these, polyethylene naphthalate or polycarbonate is preferable from the viewpoint of low moisture permeability.
  • the B layer is preferably made of a material that does not substantially exhibit birefringence even when stretched.
  • a typical example of such a material is a copolyester of naphthalenedicarboxylic acid and terephthalic acid.
  • the brightness enhancement film transmits light having a first polarization direction (for example, p-wave) at the interface between the A layer and the B layer, and has a second polarization direction orthogonal to the first polarization direction. Reflects light (eg, s-wave). The reflected light is partially transmitted as light having the first polarization direction and partially reflected as light having the second polarization direction at the interface between the A layer and the B layer.
  • the light utilization efficiency can be increased by repeating such reflection and transmission many times inside the brightness enhancement film.
  • the brightness enhancement film includes a reflective layer R as an outermost layer, as shown in FIG.
  • a reflective layer R as an outermost layer, as shown in FIG.
  • the overall thickness of the brightness enhancement film can be appropriately set according to the purpose, the total number of layers included in the brightness enhancement film, and the like.
  • the total thickness of the brightness enhancement film is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, further preferably 10 ⁇ m to 40 ⁇ m, and further preferably 20 ⁇ m to 40 ⁇ m.
  • the brightness enhancement film for example, a film described in JP-T-9-507308 can be used.
  • the adhesive layer comprises any suitable adhesive or adhesive.
  • the resin constituting the pressure-sensitive adhesive or the adhesive include acrylic resins, acrylic urethane resins, urethane resins, and silicone resins. Among these, an acrylic pressure-sensitive adhesive or acrylic adhesive containing an acrylic resin is preferable.
  • the adhesive layer may further contain any appropriate additive as required.
  • the additive include a crosslinking agent, a tackifier, a plasticizer, a pigment, a dye, a filler, an anti-aging agent, a conductive material, an ultraviolet absorber, a light stabilizer, a release modifier, a softener, and a surfactant. , Flame retardants, antioxidants and the like.
  • crosslinking agent isocyanate crosslinking agent, epoxy crosslinking agent, peroxide crosslinking agent, melamine crosslinking agent, urea crosslinking agent, metal alkoxide crosslinking agent, metal chelate crosslinking agent, metal salt crosslinking agent, A carbodiimide type crosslinking agent, an oxazoline type crosslinking agent, an aziridine type crosslinking agent, an amine type crosslinking agent, etc. are mentioned.
  • the thickness of the adhesive layer is preferably 5 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 50 ⁇ m.
  • the transparent film can function as a support when the conductive layer is formed. Any appropriate material can be used as the material constituting the transparent film. In one embodiment, a thermoplastic resin is used as a material constituting the transparent film. Excellent smoothness of the transparent film and wettability to the composition used to form the conductive layer (composition for forming conductive layer (described later)), and productivity can be greatly improved by continuous production using a roll. is there.
  • a resin having excellent heat resistance is used as a material constituting the transparent film.
  • resins include polycarbonate resins, cycloolefin resins, cellulose resins, ester resins, polyimide resins, and acrylic resins.
  • the transparent film is a cured or solidified layer of liquid crystal material.
  • a transparent film composed of a cured layer or a solidified layer of a liquid crystal material can have an appropriate retardation (for example, a retardation that can function as a ⁇ / 4 plate) and can be formed thin.
  • Any appropriate liquid crystal monomer can be adopted as the liquid crystal material.
  • the polymerizable mesogenic compounds described in JP-T-2002-533742 WO00 / 37585
  • EP358208 US521118)
  • EP66137 US4388453
  • WO93 / 22397 EP0266172, DE195504224, DE44081171, and GB2280445
  • Specific examples of such a polymerizable mesogenic compound include, for example, trade name LC242 of BASF, trade name E7 of Merck, and trade name LC-Silicon-CC3767 of Wacker-Chem.
  • a transparent film composed of a cured layer or a solidified layer of a liquid crystal material can be obtained, for example, by aligning a liquid crystal material and solidifying or curing the alignment state in a fixed state.
  • a liquid crystalline composition containing a liquid crystal material is applied onto a long alignment substrate to align the liquid crystal material, and the aligned liquid crystal material is subjected to polymerization treatment and / or crosslinking treatment. And can be formed by forming a liquid crystal cured layer.
  • the liquid crystal material can be aligned according to the alignment processing direction of the substrate, the slow axis of the retardation layer can be expressed in the same direction as the alignment processing direction of the substrate.
  • the thickness of the transparent film composed of the cured layer or solidified layer of the liquid crystal material is preferably 0.5 ⁇ m to 1.8 ⁇ m, more preferably 1 ⁇ m to 1.6 ⁇ m.
  • the heat resistant temperature of the material constituting the transparent film is preferably 90 ° C. or higher, more preferably 100 ° C. or higher, and further preferably 120 ° C. or higher.
  • a conductive layer can be formed at a high temperature, and a conductive layer having excellent conductivity can be formed.
  • the heat-resistant temperature is a temperature at which thermal deformation does not occur and the conductive layer can be formed without any trouble.
  • a ⁇ / 4 plate is used as the transparent film.
  • the ⁇ / 4 plate can convert linearly polarized light having a specific wavelength into circularly polarized light (or circularly polarized light into linearly polarized light).
  • the ⁇ / 4 plate has an in-plane retardation Re of preferably 95 nm to 180 nm, more preferably 110 nm to 160 nm.
  • the ⁇ / 4 plate preferably has a refractive index ellipsoid of nx> ny ⁇ nz.
  • the in-plane retardation Re is an in-plane retardation value at 23 ° C. and a wavelength of 590 nm.
  • Re represents the refractive index in the direction in which the in-plane refractive index is maximum (that is, the slow axis direction) as nx, and the refractive index in the direction orthogonal to the slow axis in the plane (that is, the fast axis direction).
  • the ⁇ / 4 plate is preferably a stretched polymer film.
  • a ⁇ / 4 plate can be obtained by appropriately selecting the type of polymer and the stretching treatment (for example, stretching method, stretching temperature, stretching ratio, stretching direction).
  • Any appropriate resin is used as the resin for forming the polymer film.
  • resins constituting positive birefringent films such as cycloolefin resins such as polynorbornene, polycarbonate resins, cellulose resins, polyvinyl alcohol resins, polysulfone resins, and the like. Of these, norbornene resins and polycarbonate resins are preferable.
  • the polynorbornene is a (co) polymer obtained by using a norbornene-based monomer having a norbornene ring as a part or all of a starting material (monomer).
  • Examples of the norbornene-based monomer include norbornene and alkyl and / or alkylidene substituted products thereof such as 5-methyl-2-norbornene, 5-dimethyl-2-norbornene, 5-ethyl-2-norbornene, and 5-butyl.
  • polar group-substituted products such as halogens; dicyclopentadiene, 2,3-dihydrodicyclopentadiene, etc .; dimethanooctahydronaphthalene, its alkyl and / or alkylidene Substituents and polar group substituents such as halogen such as 6-methyl-1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6- Ethyl-1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-oct Hydronaphthalene, 6-ethylidene-1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-chloro-1,4: 5,8-dimethan
  • the polycarbonate-based resin is an aromatic polycarbonate.
  • the aromatic polycarbonate can be typically obtained by a reaction between a carbonate precursor and an aromatic dihydric phenol compound.
  • the carbonate precursor include phosgene, bischloroformate of dihydric phenols, diphenyl carbonate, di-p-tolyl carbonate, phenyl-p-tolyl carbonate, di-p-chlorophenyl carbonate, dinaphthyl carbonate and the like. Can be mentioned. Among these, phosgene and diphenyl carbonate are preferable.
  • aromatic dihydric phenol compounds include 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, and bis (4-hydroxyphenyl).
  • Methane 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) butane, 2, 2-bis (4-hydroxy-3,5-dipropylphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethyl And cyclohexane. You may use these individually or in combination of 2 or more types.
  • 2,2-bis (4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane are used.
  • 2,2-bis (4-hydroxyphenyl) propane and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane are used.
  • cocoon stretching method examples include lateral uniaxial stretching, fixed-end biaxial stretching, and sequential biaxial stretching.
  • a specific example of the fixed-end biaxial stretching includes a method of stretching a polymer film in the short direction (lateral direction) while running in the longitudinal direction. This method can be apparently lateral uniaxial stretching.
  • oblique stretching can be employed. By adopting oblique stretching, a long stretched film having an orientation axis (slow axis) at a predetermined angle with respect to the width direction can be obtained.
  • the thickness of the stretched film is typically 5 to 80 ⁇ m, preferably 15 to 60 ⁇ m, and more preferably 25 to 45 ⁇ m.
  • a transparent film composed of a cured layer or a solidified layer of the above liquid crystal material may be a ⁇ / 4 plate.
  • the angle formed between the absorption axis of the polarizing plate and the slow axis of the ⁇ / 4 plate is 40 ° to 50 ° (preferably 42 ° to 48 °, more preferably 44 °. (46 °, more preferably 45 °). If it does in this way, the brightness improvement effect by the said brightness improvement film will become more remarkable. More specifically, the polarized light component (linearly polarized light) reflected by the brightness enhancement film is converted into clockwise or counterclockwise circularly polarized light by passing through the ⁇ / 4 plate, and the circularly polarized light is Reflecting with a reflecting plate (for example, a reflecting plate of a backlight) reverses the polarization direction.
  • a reflecting plate for example, a reflecting plate of a backlight
  • the reverse circularly polarized light generated by being reflected by the reflecting plate becomes polarized light that can be transmitted through the brightness enhancement film by transmitting through the ⁇ / 4 plate.
  • polarized light that can be transmitted through the brightness enhancement film can be efficiently generated, and the brightness enhancement effect by the brightness enhancement film becomes more remarkable.
  • the transparent film functioning as a ⁇ / 4 plate functions as a support for the conductive layer (that is, heating to the brightness enhancement film can be avoided by the presence of the transparent film). It can also serve an increase function. Furthermore, when a transparent film functioning as a ⁇ / 4 plate is used to form a conductive layer containing metal nanowires, which will be described later, coupled with the high light transmittance of the conductive layer, the brightness enhancement effect becomes remarkable and the light transmittance is high. A laminate can be obtained.
  • the thickness of the conductive layer is preferably 10 nm to 5000 nm, more preferably 20 nm to 300 nm. When the conductive layer includes a polymer matrix, the thickness of the conductive layer corresponds to the thickness of the polymer matrix.
  • the surface resistance value of the conductive layer is preferably 0.1 ⁇ / ⁇ to 1000 ⁇ / ⁇ , more preferably 0.5 ⁇ / ⁇ to 300 ⁇ / ⁇ , and particularly preferably 1 ⁇ / ⁇ to 200 ⁇ / ⁇ . .
  • the total light transmittance of the conductive layer is preferably 85% or more, more preferably 90% or more, and further preferably 95% or more.
  • the conductive layer is patterned. Any appropriate method can be adopted as a patterning method depending on the form of the conductive layer.
  • the shape of the pattern of the conductive layer may be any appropriate shape depending on the application. For example, the patterns described in JP-T-2011-511357, JP-A-2010-164938, JP-A-2008-310550, JP-T-2003-511799, and JP-T-2010-541109 are exemplified.
  • Conductive layer comprising metal nanowires or metal mesh
  • the conductive layer comprises metal nanowires or metal mesh. If a conductive layer containing metal nanowires or metal meshes is formed, an optical laminate having excellent flexibility and excellent light transmittance can be obtained.
  • the conductive layer further comprises a polymer matrix.
  • the metal nanowire or the metal mesh is protected by the polymer matrix. As a result, corrosion of the metal nanowire or metal mesh is prevented, and an optical laminate that is more excellent in durability can be obtained.
  • a metal nanowire is a conductive material having a metal material, a needle shape or a thread shape, and a diameter of nanometer.
  • the metal nanowire may be linear or curved.
  • the metal nanowires can be formed into a mesh shape, so that a good electrical conduction path can be formed even with a small amount of metal nanowires. Can be formed.
  • an opening can be formed in the mesh space to form a conductive layer having a high light transmittance.
  • the ratio between the thickness d and the length L of the metal nanowire is preferably 10 to 100,000, more preferably 50 to 100,000, and particularly preferably 100 to 100,000. 10,000. If metal nanowires having a large aspect ratio are used in this way, the metal nanowires can cross well and high conductivity can be expressed by a small amount of metal nanowires. As a result, a conductive layer with high light transmittance can be formed.
  • the “thickness of the metal nanowire” means the diameter when the cross section of the metal nanowire is circular, and the short diameter when the cross section of the metal nanowire is elliptical. In some cases it means the longest diagonal. The thickness and length of the metal nanowire can be confirmed by a scanning electron microscope or a transmission electron microscope.
  • the thickness of the metal nanowire is preferably less than 500 nm, more preferably less than 200 nm, particularly preferably 10 nm to 100 nm, and most preferably 10 nm to 50 nm. If it is such a range, a conductive layer with high light transmittance can be formed.
  • the length of the metal nanowire is preferably 1 ⁇ m to 1000 ⁇ m, more preferably 10 ⁇ m to 500 ⁇ m, and particularly preferably 20 ⁇ m to 100 ⁇ m. Within such a range, a conductive layer having high conductivity can be obtained.
  • any appropriate metal can be used as long as it is a highly conductive metal.
  • a metal which comprises the said metal nanowire silver, gold
  • the metal nanowire is preferably composed of one or more metals selected from the group consisting of silver, gold, platinum, and copper. Of these, silver is preferable.
  • any appropriate method can be adopted as a method for producing the metal nanowire.
  • a method of reducing silver nitrate in a solution a method in which an applied voltage or current is applied to the precursor surface from the tip of the probe, a metal nanowire is drawn out at the probe tip, and the metal nanowire is continuously formed, etc.
  • silver nanowires can be synthesized by liquid phase reduction of a silver salt such as silver nitrate in the presence of a polyol such as ethylene glycol and polyvinylpyrrolidone. Uniform sized silver nanowires are described in, for example, Xia, Y. et al. etal. , Chem. Mater. (2002), 14, 4736-4745, Xia, Y. et al. etal. , Nano letters (2003) 3 (7), 955-960, mass production is possible.
  • the conductive layer containing the metal nanowires can be formed by applying a dispersion obtained by dispersing the metal nanowires in a solvent on the transparent film, and then drying the applied layer.
  • the solvent examples include water, alcohol solvents, ketone solvents, ether solvents, hydrocarbon solvents, aromatic solvents and the like. From the viewpoint of reducing the environmental load, it is preferable to use water.
  • the dispersion concentration of the metal nanowires in the metal nanowire dispersion liquid is preferably 0.1% by weight to 1% by weight. If it is such a range, the conductive layer excellent in electroconductivity and light transmittance can be formed.
  • the metal nanowire dispersion may further contain any appropriate additive depending on the purpose.
  • the additive include a corrosion inhibitor that prevents corrosion of the metal nanowires, and a surfactant that prevents aggregation of the metal nanowires.
  • the type, number and amount of additives used can be appropriately set according to the purpose.
  • any appropriate method can be adopted as a method of applying the metal nanowire dispersion.
  • the coating method include spray coating, bar coating, roll coating, die coating, inkjet coating, screen coating, dip coating, letterpress printing method, intaglio printing method, and gravure printing method.
  • Any appropriate drying method (for example, natural drying, air drying, heat drying) can be adopted as a method for drying the coating layer.
  • the drying temperature is typically 50 to 200 ° C., and the drying time is typically 1 to 10 minutes. The said drying temperature becomes like this.
  • it is 90 degreeC or more, More preferably, it is 100 degreeC or more, More preferably, it is 120 degreeC or more.
  • the optical laminated body of this invention is formed by laminating
  • the content ratio of the metal nanowires in the conductive layer is preferably 30% by weight to 90% by weight, and more preferably 45% by weight to 80% by weight with respect to the total weight of the conductive layer. If it is such a range, the conductive layer excellent in electroconductivity and light transmittance can be obtained.
  • the density of the conductive layer is preferably 1.3 g / cm 3 to 10.5 g / cm 3 , more preferably 1.5 g / cm 3 to 3.0 g / cm 3. It is. If it is such a range, the conductive layer excellent in electroconductivity and light transmittance can be obtained.
  • the conductive layer including a metal mesh is formed by forming fine metal wires in a lattice pattern on the transparent film. Any appropriate metal can be used as the metal constituting the metal mesh as long as it is a highly conductive metal.
  • a metal which comprises the said metal mesh silver, gold
  • the metal mesh is preferably composed of one or more metals selected from the group consisting of gold, platinum, silver and copper.
  • the conductive layer including the metal mesh can be formed by any appropriate method.
  • the conductive layer is formed, for example, by applying a photosensitive composition containing silver salt (composition for forming a conductive layer) onto the transparent film, and then performing an exposure process and a development process to form a thin metal wire in a predetermined pattern. Can be obtained.
  • the conductive layer can also be obtained by printing a paste containing metal fine particles in a predetermined pattern. Details of such a conductive layer and a method for forming the same are described in, for example, Japanese Patent Application Laid-Open No. 2012-18634, the description of which is incorporated herein by reference.
  • Another example of the conductive layer formed of a metal mesh and a method for forming the conductive layer includes a conductive layer and a method for forming the conductive layer described in JP-A-2003-331654.
  • Polymer matrix Any appropriate polymer can be used as the polymer constituting the polymer matrix.
  • the polymer include acrylic polymers; polyester polymers such as polyethylene terephthalate; aromatic polymers such as polystyrene, polyvinyl toluene, polyvinyl xylene, polyimide, polyamide, and polyamide imide; polyurethane polymers; epoxy polymers;
  • the polymer include acrylonitrile-butadiene-styrene copolymer (ABS); cellulose; silicon-based polymer; polyvinyl chloride; polyacetate; polynorbornene; synthetic rubber;
  • polyfunctionality such as pentaerythritol triacrylate (PETA), neopentyl glycol diacrylate (NPGDA), dipentaerythritol hexaacrylate (DPHA), dipentaerythritol pentaacrylate (DPPA), trimethylolpropane triacrylate (TMPTA
  • the polymer matrix is formed by forming a layer made of metal nanowires or metal mesh on a transparent film, applying a polymer solution on the layer, and then drying or curing the coating layer. obtain. By this operation, a conductive layer having metal nanowires or metal meshes in the polymer matrix is formed.
  • the polymer solution contains a polymer constituting the polymer matrix or a precursor of the polymer (a monomer constituting the polymer).
  • the polymer solution may contain a solvent.
  • the solvent contained in the polymer solution include alcohol solvents, ketone solvents, tetrahydrofuran, hydrocarbon solvents, aromatic solvents, and the like.
  • the solvent is volatile.
  • the boiling point of the solvent is preferably 200 ° C. or lower, more preferably 150 ° C. or lower, and further preferably 100 ° C. or lower.
  • the conductive layer is composed of a metal oxide.
  • a conductive layer made of a metal oxide is formed on the transparent film by any appropriate film formation method (for example, vacuum deposition method, sputtering method, CVD method, ion plating method, spray method). It can be formed by depositing a physical film.
  • metal oxide examples include indium oxide, tin oxide, zinc oxide, indium-tin composite oxide, tin-antimony composite oxide, zinc-aluminum composite oxide, and indium-zinc composite oxide. Of these, indium-tin composite oxide (ITO) is preferable.
  • ITO indium-tin composite oxide
  • Manufacturing method of optical laminated body It includes bonding the laminated body A containing a polarizing plate and a brightness enhancement film, and the laminated body B containing a transparent film and a conductive layer through an adhesive layer.
  • the polarizing plate As the polarizing plate, the polarizing plate described in the above section B can be used. Further, as the brightness enhancement film, the brightness enhancement film described in the above section C can be used.
  • the polarizing plate and the brightness enhancement film can be laminated by any appropriate method. For example, it can laminate
  • the transparent film described in the above section E can be used.
  • the conductive layer the conductive layer described in the above section F can be formed.
  • the manufacturing method of the laminated body B that is, the method of forming the conductive layer is as described in the section F.
  • the layered product B may include other members.
  • the laminate A and the laminate B are bonded together through an adhesive layer.
  • a conductive layer is formed by high-temperature treatment (for example, drying) before the bonding, and by bonding such a laminated body B to the laminated body A including the brightness enhancement film, An optical laminate comprising a conductive layer can be obtained without heating the brightness enhancement film. According to such a manufacturing method, it is possible to prevent a function deterioration of the brightness enhancement film and to prevent appearance defects (for example, wrinkles) generated in the brightness enhancement film.
  • the adhesive layer for bonding the laminate A and the laminate B the adhesive layer described in the above section D can be used. Any appropriate method can be adopted as a method of forming the adhesive layer.
  • the thickness was measured by using a scanning electron microscope “S-4800” manufactured by Hitachi High-Technologies Corporation by forming a cross section by cutting with an ultramicrotome after embedding with an epoxy resin.
  • the surface resistance value was measured by an eddy current method using a non-contact surface resistance meter trade name “EC-80” manufactured by Napson Corporation. The measurement temperature was 23 ° C.
  • Retardation value The in-plane retardation value of the transparent film was measured using a trade name “KOBRA-WPR” manufactured by Oji Scientific Instruments. The measurement temperature was 23 ° C. and the measurement wavelength was 590 nm.
  • the reaction mixture containing silver nanowires obtained as described above was added to the reaction mixture containing silver nanowires obtained as described above until the volume of the reaction mixture became 5 times, and then the reaction mixture was centrifuged (2000 rpm, 20 minutes). This operation was repeated several times to obtain silver nanowires.
  • the obtained silver nanowires had a diameter of 10 nm to 60 nm and a length of 1 ⁇ m to 50 ⁇ m.
  • the size of the silver nanowires was measured using a scanning electron microscope “S-4800” manufactured by Hitachi High-Technologies Corporation, and the length and diameter were measured by observing 30 metal nanowires randomly extracted by the microscope. .
  • the silver nanowire (concentration: 0.2% by weight) and pentaethylene glycol monododecyl ether (concentration: 0.1% by weight) were dispersed in pure water to prepare a silver nanowire dispersion.
  • Laminate B1 Transparent Film / Conductive Layer
  • a transparent film a uniaxially stretched film (in-plane retardation: 140 nm) of a polycarbonate (PC) film (trade name “Carbo Glass” manufactured by Asahi Glass Co., Ltd.) ) was used.
  • the silver nanowire dispersion liquid prepared in Production Example 1 was applied using a bar coater (product name “Bar Coater No. 15”, manufactured by Daiichi Kagaku Co., Ltd.), and it was placed in an air dryer at 120 ° C. for 2 minutes. Dried.
  • the polymer solution prepared in Production Example 2 was applied with a slot die at a wet film thickness of 6 ⁇ m, and dried for 2 minutes in an air blow dryer at 80 ° C.
  • the polymer solution is cured by irradiating ultraviolet light with an integrated illuminance of 210 mJ / cm 2 with an ultraviolet light irradiation device (Fusion UV Systems) made with an oxygen concentration of 100 ppm to form a conductive layer on the transparent film, A layered product B1 was obtained.
  • the surface resistance value of the conductive layer was 49 ⁇ / ⁇ .
  • ⁇ Manufacture example 8 Manufacture of laminated body B6 (transparent film / conductive layer)
  • COP norbornene-type polymer
  • Zeonor The Nippon Zeon company make, brand name "Zeonor”
  • the obtained ITO film (conductive layer) had a surface resistance of 70 ⁇ / ⁇ .
  • ⁇ Manufacture example 9 Manufacture of laminated body B7 (transparent film / conductive layer) It replaces with a norbornene-type polymer film (The Nippon Zeon company make, brand name "ZEONOR”), and a norbornene-type polymer film (Nippon Zeon company make, brand name " A laminate B7 was obtained in the same manner as in Production Example 8 except that a uniaxially stretched film (Zeonor ”) (in-plane retardation: 135 nm) was used.
  • Zeonor uniaxially stretched film
  • Example 1 A laminate A was obtained by using a polarizing plate (manufactured by Nitto Denko Corporation, trade name “SEG1425DU”) and a brightness enhancement film (manufactured by 3M, trade name “APF-v3”) through an optical adhesive.
  • the laminate and the laminate B1 obtained in Production Example 3 are bonded together through an adhesive layer containing an optical pressure-sensitive adhesive, and a polarizing plate, a brightness enhancement film, an adhesive layer, a transparent film, and a conductive layer are combined.
  • the optical laminated body provided with this order was obtained.
  • the optical pressure-sensitive adhesive is obtained by blending 100 parts of an acrylic copolymer having a weight ratio of butyl acrylate, acrylic acid, and vinyl acetate of 100: 2: 5 with 1 part of an isocyanate-based crosslinking agent. A transparent adhesive having a coefficient of 10 N / cm 2 was used. The obtained optical laminate was subjected to the above evaluations (3) and (4). The results are shown in Table 1.
  • Example 2 An optical laminate was obtained in the same manner as in Example 1 except that the laminate B2 obtained in Production Example 4 was used instead of the laminate B1 obtained in Production Example 3. The obtained optical laminate was subjected to the above evaluations (3) and (4). The results are shown in Table 1.
  • Example 3 An optical laminate was obtained in the same manner as in Example 1 except that the laminate B3 obtained in Production Example 5 was used instead of the laminate B1 obtained in Production Example 3. The obtained optical laminate was subjected to the above evaluations (3) and (4). The results are shown in Table 1.
  • Example 4 An optical laminate was obtained in the same manner as in Example 1 except that the laminate B4 obtained in Production Example 6 was used instead of the laminate B1 obtained in Production Example 3. The obtained optical laminate was subjected to the above evaluations (3) and (4). The results are shown in Table 1.
  • Example 5 An optical laminate was obtained in the same manner as in Example 1 except that the laminate B5 obtained in Production Example 7 was used instead of the laminate B1 obtained in Production Example 3. The obtained optical laminate was subjected to the above evaluations (3) and (4). The results are shown in Table 1.
  • Example 6 An optical laminate was obtained in the same manner as in Example 1 except that the laminate B6 obtained in Production Example 8 was used instead of the laminate B1 obtained in Production Example 3. The obtained optical laminate was subjected to the above evaluations (3) and (4). The results are shown in Table 1.
  • Example 7 An optical laminate was obtained in the same manner as in Example 1 except that the laminate B7 obtained in Production Example 9 was used instead of the laminate B1 obtained in Production Example 3. The obtained optical laminate was subjected to the above evaluations (3) and (4). The results are shown in Table 1.
  • the polymer solution was cured by irradiating ultraviolet light with an integrated illuminance of 210 mJ / cm 2 with an ultraviolet light irradiation device (Fusion UV Systems) with an oxygen concentration of 100 ppm, to obtain a brightness enhancement film with a conductive layer.
  • the surface resistance value of the conductive layer was 49 ⁇ / ⁇ .
  • the brightness enhancement film side of this brightness enhancement film with a conductive layer and the polarizing plate were bonded together via an optical adhesive to obtain an optical laminate.
  • the obtained optical laminate was subjected to the above evaluations (3) and (4). The results are shown in Table 1.
  • the optical laminate of the present invention is excellent in appearance. Furthermore, if a 4 / ⁇ plate is used as the transparent film, an optical laminate having a high luminance improvement rate can be obtained (Examples 1 and 3).

Abstract

Provided is an optical layered body provided with a luminance enhancing film and an electroconductive layer, the optical layered body being configured without reduction of function of the luminance enhancing layer and electrical conductivity of the electroconductive layer. This optical layered body is provided with a polarizing plate, a luminance enhancing film, an adhesive layer, a transparent film, and an electroconductive layer, in this order. In one embodiment of the present invention, the transparent film is a film having a λ/4 plate function.

Description

光学積層体Optical laminate
 本発明は、光学積層体に関する。 The present invention relates to an optical laminate.
 近年、ディスプレイ装置の構成は複雑化が進んでおり、複数の電子機器が搭載されることが多く、各電子機器の間で不要な電磁波ノイズが発生している。これら電磁波ノイズの影響を低減するため電磁波シールド特性を発現する導電性シートが用いられている。例えば、特許文献1では、絶縁基板の液晶層が形成される側にシールド電極を配置する液晶表示装置が開示されている。このような構成では画素電極や共通電極を近い位置で配置することになり、構造が非常に複雑となる。 In recent years, the configuration of display devices has become more complex, and a plurality of electronic devices are often mounted, and unnecessary electromagnetic noise is generated between the electronic devices. In order to reduce the influence of these electromagnetic noises, a conductive sheet that exhibits electromagnetic shielding characteristics is used. For example, Patent Document 1 discloses a liquid crystal display device in which a shield electrode is disposed on the side of the insulating substrate on which the liquid crystal layer is formed. In such a configuration, the pixel electrode and the common electrode are arranged at close positions, and the structure becomes very complicated.
 液晶表示装置の構造の単純化を図るには、例えば、導電層が形成された光学機能フィルム(例えば、輝度向上フィルム)を用いる方法が考えられる。しかしながら、このような方法によると、導電層を形成する際に加熱処理が必要となり、光学機能フィルムの光学機能を損なうおそれがある。また、光学機能フィルムの特性を維持し得る程度の温度で加熱した場合には、導電層の導電性が不十分となるおそれがある。 In order to simplify the structure of the liquid crystal display device, for example, a method using an optical functional film (for example, a brightness enhancement film) on which a conductive layer is formed can be considered. However, according to such a method, heat treatment is required when forming the conductive layer, which may impair the optical function of the optical functional film. Moreover, when it heats at the temperature which can maintain the characteristic of an optical function film, there exists a possibility that the electroconductivity of a conductive layer may become inadequate.
特表2013-15766号公報JP 2013-15766 Gazette 特開2007-4174号公報JP 2007-4174 A
 本発明は上記の課題を解決するためになされたものであり、その目的とするところは、輝度向上フィルムと導電層とを備える光学積層体であって、輝度向上フィルムの機能および導電層の導電性のいずれもが低下することなく構成された光学積層体を提供することにある。 The present invention has been made in order to solve the above-described problems, and an object of the present invention is an optical laminate including a brightness enhancement film and a conductive layer, the function of the brightness enhancement film and the conductivity of the conductive layer. An object of the present invention is to provide an optical layered body that is configured without any deterioration in properties.
 本発明の光学積層体は、偏光板と、輝度向上フィルムと、接着層と、透明フィルムと、導電層とをこの順に備える。
 1つの実施形態においては、上記透明フィルムが、λ/4板の機能を有するフィルムである。
 1つの実施形態においては、上記透明フィルムが、ポリカーボネート系樹脂、シクロオレフィン系樹脂、セルロース系樹脂、エステル系樹脂、ポリイミド系樹脂またはアクリル系樹脂を含む。
 1つの実施形態においては、上記透明フィルムが、液晶材料の硬化層または固化層を含む。
 1つの実施形態においては、上記導電層が、金属ナノワイヤを含む。
 1つの実施形態においては、上記導電層が、金属メッシュを含む。
 1つの実施形態においては、上記導電層が、金属酸化物を含む。
 本発明の別の局面によれば、光学積層体の製造方法が提供される。この製造方法は、偏光板と輝度向上フィルムとを含む積層体Aと、透明フィルムと導電層とを含む積層体Bとを、接着層を介して貼り合せることを含む。
The optical layered body of the present invention includes a polarizing plate, a brightness enhancement film, an adhesive layer, a transparent film, and a conductive layer in this order.
In one embodiment, the transparent film is a film having a function of a λ / 4 plate.
In one embodiment, the transparent film contains a polycarbonate resin, a cycloolefin resin, a cellulose resin, an ester resin, a polyimide resin, or an acrylic resin.
In one embodiment, the transparent film includes a cured layer or a solidified layer of a liquid crystal material.
In one embodiment, the conductive layer includes metal nanowires.
In one embodiment, the conductive layer includes a metal mesh.
In one embodiment, the conductive layer includes a metal oxide.
According to another situation of this invention, the manufacturing method of an optical laminated body is provided. This manufacturing method includes laminating a laminate A including a polarizing plate and a brightness enhancement film and a laminate B including a transparent film and a conductive layer via an adhesive layer.
 本発明によれば、導電層と輝度向上フィルムとの間に、接着層が配置された構成であることにより、輝度向上フィルムが加熱されることなく形成された光学積層体を得ることができる。この光学積層体は、輝度向上フィルムの機能および導電層の導電性のいずれもが低下することなく構成される。 According to the present invention, since the adhesive layer is disposed between the conductive layer and the brightness enhancement film, an optical laminate in which the brightness enhancement film is formed without being heated can be obtained. This optical layered body is configured without any decrease in the function of the brightness enhancement film and the conductivity of the conductive layer.
本発明の1つの実施形態による光学積層体の概略断面図である。It is a schematic sectional drawing of the optical laminated body by one Embodiment of this invention. 輝度向上フィルムの一例を示す概略斜視図である。It is a schematic perspective view which shows an example of a brightness enhancement film.
A.光学積層体の全体構成
 図1は、本発明の1つの実施形態による光学積層体の概略断面図である。光学積層体100は、偏光板10と、輝度向上フィルム20と、接着層30と、透明フィルム40と、導電層50とをこの順に備える。なお、接着層30とは、接着剤または粘着剤を含む層を意味する。図示していないが、光学積層体は、任意の適切な他の部材を含み得る。
A. Overall configuration diagram 1 of the optical stack is a schematic sectional view of an optical laminate according to one embodiment of the present invention. The optical laminate 100 includes a polarizing plate 10, a brightness enhancement film 20, an adhesive layer 30, a transparent film 40, and a conductive layer 50 in this order. The adhesive layer 30 means a layer containing an adhesive or a pressure-sensitive adhesive. Although not shown, the optical stack may include any other suitable member.
 本発明の光学積層体は、透明フィルム40上に配置された導電層50を、接着層30を介して、輝度向上フィルム20に貼り合せて得ることができる。そのため、輝度向上フィルムを加熱することなく、上記光学積層体を得ることができ、その結果、輝度向上フィルムはその機能を十分に発揮し、輝度向上フィルムに生じるシワ等の外観上の欠点も低減される。また、導電層は、透明フィルム上で形成された後に輝度向上フィルムに貼り合わされるため、輝度向上フィルムへのダメージを考慮することなく、所望の温度で加熱して、導電性よく形成することができる。 The optical layered body of the present invention can be obtained by bonding the conductive layer 50 disposed on the transparent film 40 to the brightness enhancement film 20 via the adhesive layer 30. Therefore, the above optical laminate can be obtained without heating the brightness enhancement film, and as a result, the brightness enhancement film fully performs its function and reduces defects such as wrinkles generated in the brightness enhancement film. Is done. In addition, since the conductive layer is formed on the transparent film and then bonded to the brightness enhancement film, it can be formed with good conductivity by heating at a desired temperature without considering damage to the brightness enhancement film. it can.
 偏光板10は、直交する2つの偏光成分について、一方の偏光成分(透過軸方向の偏光成分)を透過させる機能を有する。また、輝度向上フィルムは、入射する光を直交する2つの偏光成分に分離し、一方の偏光成分(透過軸方向の偏光成分)を透過させ、他方の偏光成分(反射軸方向の偏光成分)を反射させる機能を有する。偏光板の透過軸と、輝度向上フィルムの透過軸とは平行であることが好ましい。なお、本明細書において、「平行」とは、実質的に平行である場合も含み、すなわち、2直線のなす角度が、0°±10°である場合を包含し、好ましくは0°±5°であり、より好ましくは0°±1°である。 The polarizing plate 10 has a function of transmitting one polarization component (polarization component in the transmission axis direction) of two orthogonal polarization components. The brightness enhancement film separates incident light into two orthogonal polarization components, transmits one polarization component (polarization component in the transmission axis direction), and transmits the other polarization component (polarization component in the reflection axis direction). Has the function of reflecting. The transmission axis of the polarizing plate and the transmission axis of the brightness enhancement film are preferably parallel. In the present specification, the term “parallel” includes a case where they are substantially parallel, that is, includes a case where an angle formed by two straight lines is 0 ° ± 10 °, and preferably 0 ° ± 5. °, more preferably 0 ° ± 1 °.
 上記光学積層体の全光線透過率は、好ましくは30~70%であり、より好ましくは35%~70%である。本発明においては、輝度向上フィルムの光透過性を損なうことなく構成された光学積層体を得ることができ、当該光学積層体は光透過性に優れる。また、導電層として、金属ナノワイヤを含む導電層を形成することにより、特に光透過性の高い光学積層体が得られ得る。 The total light transmittance of the optical layered body is preferably 30 to 70%, more preferably 35% to 70%. In this invention, the optical laminated body comprised without impairing the light transmittance of a brightness enhancement film can be obtained, and the said optical laminated body is excellent in light transmittance. Further, by forming a conductive layer containing metal nanowires as the conductive layer, an optical laminate having a particularly high light transmittance can be obtained.
B.偏光板
 上記偏光板は、代表的には、偏光子と該偏光子を保護する保護フィルムを含む。
B. Polarizing plate The polarizing plate typically includes a polarizer and a protective film for protecting the polarizer.
 上記偏光子としては、任意の適切な偏光子が用いられる。例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。これらの中でも、ポリビニルアルコール系フィルムにヨウ素などの二色性物質を吸着させて一軸延伸した偏光子が、偏光二色比が高く、特に好ましい。偏光子の厚みは、好ましくは、0.5μm~80μmである。 Any appropriate polarizer is used as the polarizer. For example, dichroic substances such as iodine and dichroic dyes are adsorbed on hydrophilic polymer films such as polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and ethylene / vinyl acetate copolymer partially saponified films. And polyene-based oriented films such as a uniaxially stretched product, a polyvinyl alcohol dehydrated product and a polyvinyl chloride dehydrochlorinated product. Among these, a polarizer obtained by adsorbing a dichroic substance such as iodine on a polyvinyl alcohol film and uniaxially stretching is particularly preferable because of its high polarization dichroic ratio. The thickness of the polarizer is preferably 0.5 μm to 80 μm.
  ポリビニルアルコール系フィルムにヨウ素を吸着させて一軸延伸した偏光子は、代表的には、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3~7倍に延伸することで作製される。延伸は染色した後に行ってもよいし、染色しながら延伸してもよいし、延伸してから染色してもよい。延伸、染色以外にも、例えば、膨潤、架橋、調整、水洗、乾燥等の処理が施されて作製される。 A uniaxially stretched polarizer by adsorbing iodine to a polyvinyl alcohol film is typically produced by immersing polyvinyl alcohol in an aqueous solution of iodine and stretching it 3 to 7 times the original length. The Stretching may be performed after dyeing, may be performed while dyeing, or may be performed after stretching. In addition to stretching and dyeing, for example, treatments such as swelling, crosslinking, adjustment, washing with water, and drying are performed.
  上記保護フィルムとしては、任意の適切なフィルムが用いられる。このようなフィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、(メタ)アクリル系、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、アセテート系等の透明樹脂等が挙げられる。また、アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。上記ポリマーフィルムは、例えば、前記樹脂組成物の押出成形物であり得る。 任意 Any appropriate film is used as the protective film. Specific examples of the material that is the main component of such a film include cellulose resins such as triacetyl cellulose (TAC), (meth) acrylic, polyester, polyvinyl alcohol, polycarbonate, polyamide, and polyimide. And transparent resins such as polyethersulfone, polysulfone, polystyrene, polynorbornene, polyolefin, and acetate. In addition, thermosetting resins such as acrylic, urethane, acrylic urethane, epoxy, and silicone, or ultraviolet curable resins are also included. In addition to this, for example, a glassy polymer such as a siloxane polymer is also included. Further, a polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used. As a material for this film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in the side chain For example, a resin composition having an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer can be mentioned. The polymer film may be an extruded product of the resin composition, for example.
C.輝度向上フィルム
 上記のとおり、輝度向上フィルムは、入射する光を直交する2つの偏光成分に分離し、一方の偏光成分(透過軸方向の偏光成分)を透過させ、他方の偏光成分(反射軸方向の偏光成分)を反射させる機能を有する。輝度向上フィルムで反射した偏光成分は、別部材の反射板(例えば、バックライトに備えられた反射板)に反射して偏光解消し、再度、輝度向上フィルムに入射し、透過軸方向の偏光成分が輝度向上フィルムを透過する。このような作用により、光の利用効率が高まり、輝度向上効果が得られる。図2は、輝度向上フィルムの一例を示す概略斜視図である。好ましくは、輝度向上フィルムは、複屈折性を有する層Aと複屈折性を実質的に有さない層Bとが交互に積層された多層積層体である。例えば、図示例では、A層のx軸方向の屈折率n(x)がy軸方向の屈折率n(y)より大きく、B層のx軸方向の屈折率n(x)とy軸方向の屈折率n(y)とは実質的に同一である。したがって、A層とB層との屈折率差は、x軸方向において大きく、y軸方向においては実質的にゼロである。その結果、x軸方向が反射軸となり、y軸方向が透過軸となる。A層とB層とのx軸方向における屈折率差は、好ましくは0.2~0.3である。
C. As described above, the brightness enhancement film separates incident light into two orthogonal polarization components, transmits one polarization component (polarization component in the transmission axis direction), and transmits the other polarization component (reflection axis direction). The polarization component). The polarized light component reflected by the brightness enhancement film is reflected on another reflector (for example, a reflector provided in the backlight) to depolarize, and is incident on the brightness enhancement film again, and is polarized in the transmission axis direction. Penetrates the brightness enhancement film. By such an action, the light utilization efficiency is increased, and a brightness improvement effect is obtained. FIG. 2 is a schematic perspective view showing an example of the brightness enhancement film. Preferably, the brightness enhancement film is a multilayer laminate in which layers A having birefringence and layers B having substantially no birefringence are alternately laminated. For example, in the illustrated example, the refractive index n (x) in the x-axis direction of the A layer is larger than the refractive index n (y) in the y-axis direction, and the refractive index n (x) in the x-axis direction of the B layer and the y-axis direction. Is substantially the same as the refractive index n (y). Accordingly, the difference in refractive index between the A layer and the B layer is large in the x-axis direction and is substantially zero in the y-axis direction. As a result, the x-axis direction becomes the reflection axis, and the y-axis direction becomes the transmission axis. The refractive index difference in the x-axis direction between the A layer and the B layer is preferably 0.2 to 0.3.
 上記A層は、好ましくは、延伸により複屈折性を発現する材料で構成される。このような材料の代表例としては、ナフタレンジカルボン酸ポリエステル(例えば、ポリエチレンナフタレート)、ポリカーボネートおよびアクリル系樹脂(例えば、ポリメチルメタクリレート)が挙げられる。なかでも、低透湿性の点から、ポリエチレンナフタレートまたはポリカーボネートが好ましい。上記B層は、好ましくは、延伸しても複屈折性を実質的に発現しない材料で構成される。このような材料の代表例としては、ナフタレンジカルボン酸とテレフタル酸とのコポリエステルが挙げられる。 The A layer is preferably made of a material that develops birefringence by stretching. Representative examples of such materials include naphthalene dicarboxylic acid polyesters (for example, polyethylene naphthalate), polycarbonates, and acrylic resins (for example, polymethyl methacrylate). Of these, polyethylene naphthalate or polycarbonate is preferable from the viewpoint of low moisture permeability. The B layer is preferably made of a material that does not substantially exhibit birefringence even when stretched. A typical example of such a material is a copolyester of naphthalenedicarboxylic acid and terephthalic acid.
 上記輝度向上フィルムは、A層とB層との界面において、第1の偏光方向を有する光(例えば、p波)を透過し、第1の偏光方向とは直交する第2の偏光方向を有する光(例えば、s波)を反射する。反射した光は、A層とB層との界面において、一部が第1の偏光方向を有する光として透過し、一部が第2の偏光方向を有する光として反射する。輝度向上フィルムの内部において、このような反射および透過が多数繰り返されることにより、光の利用効率を高めることができる。 The brightness enhancement film transmits light having a first polarization direction (for example, p-wave) at the interface between the A layer and the B layer, and has a second polarization direction orthogonal to the first polarization direction. Reflects light (eg, s-wave). The reflected light is partially transmitted as light having the first polarization direction and partially reflected as light having the second polarization direction at the interface between the A layer and the B layer. The light utilization efficiency can be increased by repeating such reflection and transmission many times inside the brightness enhancement film.
 好ましくは、輝度向上フィルムは、図2に示すように、最外層として反射層Rを含む。反射層Rを設けることにより、最終的に利用されずに輝度向上フィルムの最外部に戻ってきた光をさらに利用することができるので、光の利用効率をさらに高めることができる。反射層Rは、代表的には、ポリエステル樹脂層の多層構造により反射機能を発現する。 Preferably, the brightness enhancement film includes a reflective layer R as an outermost layer, as shown in FIG. By providing the reflective layer R, it is possible to further use the light that has not been finally used and has returned to the outermost part of the brightness enhancement film, so that the light use efficiency can be further increased. The reflective layer R typically exhibits a reflective function due to the multilayer structure of the polyester resin layer.
 上記輝度向上フィルムの全体厚みは、目的、輝度向上フィルムに含まれる層の合計数等に応じて適切に設定され得る。輝度向上フィルムの全体厚みは、好ましくは50μm以下であり、より好ましくは40μm以下であり、さらに好ましくは10μm~40μmであり、さらに好ましくは20μm~40μmである。 The overall thickness of the brightness enhancement film can be appropriately set according to the purpose, the total number of layers included in the brightness enhancement film, and the like. The total thickness of the brightness enhancement film is preferably 50 μm or less, more preferably 40 μm or less, further preferably 10 μm to 40 μm, and further preferably 20 μm to 40 μm.
 上記輝度向上フィルムとしては、例えば、特表平9-507308号公報に記載のものが使用され得る。 As the brightness enhancement film, for example, a film described in JP-T-9-507308 can be used.
D.接着層
 上記接着層は、任意の適切な粘着剤または接着剤を含む。粘着剤または接着剤を構成する樹脂としては、例えば、アクリル系樹脂、アクリルウレタン系樹脂、ウレタン系樹脂、シリコーン系樹脂等が挙げられる。なかでも好ましくは、アクリル系樹脂を含むアクリル系粘着剤またはアクリル系接着剤である。
D. Adhesive layer The adhesive layer comprises any suitable adhesive or adhesive. Examples of the resin constituting the pressure-sensitive adhesive or the adhesive include acrylic resins, acrylic urethane resins, urethane resins, and silicone resins. Among these, an acrylic pressure-sensitive adhesive or acrylic adhesive containing an acrylic resin is preferable.
  上記接着層は、必要に応じて、任意の適切な添加剤をさらに含み得る。該添加剤としては、例えば、架橋剤、粘着付与剤、可塑剤、顔料、染料、充填剤、老化防止剤、導電材、紫外線吸収剤、光安定剤、剥離調整剤、軟化剤、界面活性剤、難燃剤、酸化防止剤等が挙げられる。架橋剤としては、イソシアネート系架橋剤、エポキシ系架橋剤、過酸化物系架橋剤、メラミン系架橋剤、尿素系架橋剤、金属アルコキシド系架橋剤、金属キレート系架橋剤、金属塩系架橋剤、カルボジイミド系架橋剤、オキサゾリン系架橋剤、アジリジン系架橋剤、アミン系架橋剤等が挙げられる。 The adhesive layer may further contain any appropriate additive as required. Examples of the additive include a crosslinking agent, a tackifier, a plasticizer, a pigment, a dye, a filler, an anti-aging agent, a conductive material, an ultraviolet absorber, a light stabilizer, a release modifier, a softener, and a surfactant. , Flame retardants, antioxidants and the like. As the crosslinking agent, isocyanate crosslinking agent, epoxy crosslinking agent, peroxide crosslinking agent, melamine crosslinking agent, urea crosslinking agent, metal alkoxide crosslinking agent, metal chelate crosslinking agent, metal salt crosslinking agent, A carbodiimide type crosslinking agent, an oxazoline type crosslinking agent, an aziridine type crosslinking agent, an amine type crosslinking agent, etc. are mentioned.
  上記接着層の厚みは、好ましくは5μm~100μmであり、より好ましくは10μm~50μmである。 厚 み The thickness of the adhesive layer is preferably 5 μm to 100 μm, more preferably 10 μm to 50 μm.
E.透明フィルム
 上記透明フィルムは、導電層形成時の支持体として機能し得る。上記透明フィルムを構成する材料としては、任意の適切な材料が用いられ得る。1つの実施形態においては、透明フィルムを構成する材料として熱可塑性樹脂が用いられる。透明フィルムの平滑性および導電層を形成する際に用いる組成物(導電層形成用組成物(後述))に対する濡れ性に優れ、また、ロールによる連続生産により生産性を大幅に向上させ得るからである。
E. Transparent film The transparent film can function as a support when the conductive layer is formed. Any appropriate material can be used as the material constituting the transparent film. In one embodiment, a thermoplastic resin is used as a material constituting the transparent film. Excellent smoothness of the transparent film and wettability to the composition used to form the conductive layer (composition for forming conductive layer (described later)), and productivity can be greatly improved by continuous production using a roll. is there.
 好ましくは、上記透明フィルムを構成する材料として耐熱性に優れる樹脂が用いられる。このような樹脂としては、例えば、ポリカーボネート系樹脂、シクロオレフィン系樹脂、セルロース系樹脂、エステル系樹脂、ポリイミド系樹脂またはアクリル系樹脂等が挙げられる。 Preferably, a resin having excellent heat resistance is used as a material constituting the transparent film. Examples of such resins include polycarbonate resins, cycloolefin resins, cellulose resins, ester resins, polyimide resins, and acrylic resins.
 1つの実施形態においては、透明フィルムは、液晶材料の硬化層または固化層である。液晶材料の硬化層または固化層から構成される透明フィルムは、適切な位相差(例えば、λ/4板として機能し得る位相差)を有し得、かつ、薄く形成され得る。液晶材料としては、任意の適切な液晶モノマーが採用され得る。例えば、特表2002-533742(WO00/37585)、EP358208(US5211877)、EP66137(US4388453)、WO93/22397、EP0261712、DE19504224、DE4408171、およびGB2280445等に記載の重合性メソゲン化合物等が使用できる。このような重合性メソゲン化合物の具体例としては、例えば、BASF社の商品名LC242、Merck社の商品名E7、Wacker-Chem社の商品名LC-Sillicon-CC3767が挙げられる。 In one embodiment, the transparent film is a cured or solidified layer of liquid crystal material. A transparent film composed of a cured layer or a solidified layer of a liquid crystal material can have an appropriate retardation (for example, a retardation that can function as a λ / 4 plate) and can be formed thin. Any appropriate liquid crystal monomer can be adopted as the liquid crystal material. For example, the polymerizable mesogenic compounds described in JP-T-2002-533742 (WO00 / 37585), EP358208 (US521118), EP66137 (US4388453), WO93 / 22397, EP0266172, DE195504224, DE44081171, and GB2280445 can be used. Specific examples of such a polymerizable mesogenic compound include, for example, trade name LC242 of BASF, trade name E7 of Merck, and trade name LC-Silicon-CC3767 of Wacker-Chem.
 液晶材料の硬化層または固化層から構成される透明フィルムは、例えば、液晶材料を配向させ、当該配向状態を固定したまま固化または硬化させることにより得られ得る。具体的には、長尺状の配向基材上に、液晶材料を含む液晶性組成物を塗布して、液晶材料を配向させること、および、配向した液晶材料に重合処理および/または架橋処理を施して、液晶硬化層を形成することにより形成され得る。ここで、液晶材料は、基板の配向処理方向に応じて配向し得るので、基板の配向処理方向と実質的に同一な方向に位相差層の遅相軸を発現させ得る。位相差層の形成方法の具体例としては、特開2006-178389号公報に記載の形成方法が挙げられる。液晶材料の硬化層または固化層から構成される透明フィルムの厚みは、好ましくは0.5μm~1.8μmであり、より好ましくは1μm~1.6μmである。 A transparent film composed of a cured layer or a solidified layer of a liquid crystal material can be obtained, for example, by aligning a liquid crystal material and solidifying or curing the alignment state in a fixed state. Specifically, a liquid crystalline composition containing a liquid crystal material is applied onto a long alignment substrate to align the liquid crystal material, and the aligned liquid crystal material is subjected to polymerization treatment and / or crosslinking treatment. And can be formed by forming a liquid crystal cured layer. Here, since the liquid crystal material can be aligned according to the alignment processing direction of the substrate, the slow axis of the retardation layer can be expressed in the same direction as the alignment processing direction of the substrate. Specific examples of the method for forming the retardation layer include the method described in JP-A-2006-178389. The thickness of the transparent film composed of the cured layer or solidified layer of the liquid crystal material is preferably 0.5 μm to 1.8 μm, more preferably 1 μm to 1.6 μm.
 上記透明フィルムを構成する材料の耐熱温度は、好ましくは90℃以上であり、より好ましくは100℃以上であり、さらに好ましくは120℃以上である。このような材料を用いれば、高温による導電層形成が可能となり、導電性に優れる導電層を形成することが可能となる。なお、耐熱温度とは、熱変形が生じず、導電層形成が不具合なく実施できる温度である。 The heat resistant temperature of the material constituting the transparent film is preferably 90 ° C. or higher, more preferably 100 ° C. or higher, and further preferably 120 ° C. or higher. When such a material is used, a conductive layer can be formed at a high temperature, and a conductive layer having excellent conductivity can be formed. The heat-resistant temperature is a temperature at which thermal deformation does not occur and the conductive layer can be formed without any trouble.
 1つの実施形態においては、透明フィルムとして、λ/4板が用いられる。λ/4板は、ある特定の波長の直線偏光を円偏光に(または、円偏光を直線偏光に)変換し得る。 In one embodiment, a λ / 4 plate is used as the transparent film. The λ / 4 plate can convert linearly polarized light having a specific wavelength into circularly polarized light (or circularly polarized light into linearly polarized light).
 上記λ/4板は、その面内位相差Reが、好ましくは95nm~180nm、さらに好ましくは110nm~160nmである。λ/4板は、好ましくは、nx>ny≧nzの屈折率楕円体を有する。なお、本明細書において面内位相差Reは23℃、波長590nmにおける面内位相差値をいう。Reは、面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率をnxとし、面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率をnyとし、フィルムの厚みをd(nm)としたとき、Re=(nx-ny)×dによって求められる。また、本明細書において、「ny=nz」は、nyとnzが厳密に等しい場合のみならず、nyとnzが実質的に等しい場合も包含する。 The λ / 4 plate has an in-plane retardation Re of preferably 95 nm to 180 nm, more preferably 110 nm to 160 nm. The λ / 4 plate preferably has a refractive index ellipsoid of nx> ny ≧ nz. In the present specification, the in-plane retardation Re is an in-plane retardation value at 23 ° C. and a wavelength of 590 nm. Re represents the refractive index in the direction in which the in-plane refractive index is maximum (that is, the slow axis direction) as nx, and the refractive index in the direction orthogonal to the slow axis in the plane (that is, the fast axis direction). It is determined by Re = (nx−ny) × d, where ny is the film thickness d (nm). In the present specification, “ny = nz” includes not only the case where ny and nz are exactly equal, but also the case where ny and nz are substantially equal.
  上記λ/4板は、好ましくは、高分子フィルムの延伸フィルムである。具体的には、ポリマーの種類、延伸処理(例えば、延伸方法、延伸温度、延伸倍率、延伸方向)を適切に選択することにより、λ/4板が得られる。 The λ / 4 plate is preferably a stretched polymer film. Specifically, a λ / 4 plate can be obtained by appropriately selecting the type of polymer and the stretching treatment (for example, stretching method, stretching temperature, stretching ratio, stretching direction).
  上記高分子フィルムを形成する樹脂としては、任意の適切な樹脂が用いられる。具体例としては、ポリノルボルネン等のシクロオレフィン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ポリビニルアルコール系樹脂、ポリスルホン系樹脂等の正の複屈折フィルムを構成する樹脂が挙げられる。中でも、ノルボルネン系樹脂、ポリカーボネート系樹脂が好ましい。 任意 Any appropriate resin is used as the resin for forming the polymer film. Specific examples include resins constituting positive birefringent films such as cycloolefin resins such as polynorbornene, polycarbonate resins, cellulose resins, polyvinyl alcohol resins, polysulfone resins, and the like. Of these, norbornene resins and polycarbonate resins are preferable.
  上記ポリノルボルネンとは、出発原料(モノマー)の一部または全部に、ノルボルネン環を有するノルボルネン系モノマーを用いて得られる(共)重合体をいう。当該ノルボルネン系モノマーとしては、例えば、ノルボルネン、およびそのアルキルおよび/またはアルキリデン置換体、例えば、5-メチル-2-ノルボルネン、5-ジメチル-2-ノルボルネン、5-エチル-2-ノルボルネン、5-ブチル-2-ノルボルネン、5-エチリデン-2-ノルボルネン等、これらのハロゲン等の極性基置換体;ジシクロペンタジエン、2,3-ジヒドロジシクロペンタジエン等;ジメタノオクタヒドロナフタレン、そのアルキルおよび/またはアルキリデン置換体、およびハロゲン等の極性基置換体、例えば、6-メチル-1,4:5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、6-エチル-1,4:5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、6-エチリデン-1,4:5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、6-クロロ-1,4:5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、6-シアノ-1,4:5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、6-ピリジル-1,4:5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、6-メトキシカルボニル-1,4:5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン等;シクロペンタジエンの3~4量体、例えば、4,9:5,8-ジメタノ-3a,4,4a,5,8,8a,9,9a-オクタヒドロ-1H-ベンゾインデン、4,11:5,10:6,9-トリメタノ-3a,4,4a,5,5a,6,9,9a,10,10a,11,11a-ドデカヒドロ-1H-シクロペンタアントラセン等が挙げられる。 The polynorbornene is a (co) polymer obtained by using a norbornene-based monomer having a norbornene ring as a part or all of a starting material (monomer). Examples of the norbornene-based monomer include norbornene and alkyl and / or alkylidene substituted products thereof such as 5-methyl-2-norbornene, 5-dimethyl-2-norbornene, 5-ethyl-2-norbornene, and 5-butyl. -2-norbornene, 5-ethylidene-2-norbornene, etc., polar group-substituted products such as halogens; dicyclopentadiene, 2,3-dihydrodicyclopentadiene, etc .; dimethanooctahydronaphthalene, its alkyl and / or alkylidene Substituents and polar group substituents such as halogen such as 6-methyl-1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6- Ethyl-1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-oct Hydronaphthalene, 6-ethylidene-1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-chloro-1,4: 5,8-dimethano -1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-cyano-1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a -Octahydronaphthalene, 6-pyridyl-1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-methoxycarbonyl-1,4: 5 8-Dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene and the like; Tripentamers of cyclopentadiene such as 4,9: 5,8-dimethano-3a, 4 4a, 5,8,8a, 9,9a-Octahydro-1H-benzoin 4,11: 5,10: 6,9-trimethano-3a, 4,4a, 5,5a, 6,9,9a, 10,10a, 11,11a-dodecahydro-1H-cyclopentanthracene and the like It is done.
  上記ポリノルボルネンとしては、種々の製品が市販されている。具体例としては、日本ゼオン社製の商品名「ゼオネックス」、「ゼオノア」、JSR社製の商品名「アートン(Arton)」、TICONA社製の商品名「トーパス」、三井化学社製の商品名「APEL」が挙げられる。 種 々 Various products are commercially available as the polynorbornene. Specific examples include trade names “ZEONEX” and “ZEONOR” manufactured by ZEON CORPORATION, “Arton” manufactured by JSR, “TOPAS” trade name manufactured by TICONA, and trade names manufactured by Mitsui Chemicals, Inc. “APEL” may be mentioned.
  上記ポリカーボネート系樹脂としては、好ましくは、芳香族ポリカーボネートが用いられる。芳香族ポリカーボネートは、代表的には、カーボネート前駆物質と芳香族2価フェノール化合物との反応によって得ることができる。カーボネート前駆物質の具体例としては、ホスゲン、2価フェノール類のビスクロロホーメート、ジフェニルカーボネート、ジ-p-トリルカーボネート、フェニル-p-トリルカーボネート、ジ-p-クロロフェニルカーボネート、ジナフチルカーボネート等が挙げられる。これらの中でも、ホスゲン、ジフェニルカーボネートが好ましい。芳香族2価フェノール化合物の具体例としては、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)ブタン、2,2-ビス(4-ヒドロキシ-3,5-ジプロピルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン等が挙げられる。これらは単独で、または2種以上組み合わせて用いてもよい。好ましくは、2,2-ビス(4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサンが用いられる。特に、2,2-ビス(4-ヒドロキシフェニル)プロパンと1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサンとを共に使用することが好ましい。 芳香 Preferably, the polycarbonate-based resin is an aromatic polycarbonate. The aromatic polycarbonate can be typically obtained by a reaction between a carbonate precursor and an aromatic dihydric phenol compound. Specific examples of the carbonate precursor include phosgene, bischloroformate of dihydric phenols, diphenyl carbonate, di-p-tolyl carbonate, phenyl-p-tolyl carbonate, di-p-chlorophenyl carbonate, dinaphthyl carbonate and the like. Can be mentioned. Among these, phosgene and diphenyl carbonate are preferable. Specific examples of aromatic dihydric phenol compounds include 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, and bis (4-hydroxyphenyl). ) Methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) butane, 2, 2-bis (4-hydroxy-3,5-dipropylphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethyl And cyclohexane. You may use these individually or in combination of 2 or more types. Preferably, 2,2-bis (4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane are used. Used. In particular, it is preferable to use both 2,2-bis (4-hydroxyphenyl) propane and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane.
  延伸方法としては、例えば、横一軸延伸、固定端二軸延伸、逐次二軸延伸が挙げられる。固定端二軸延伸の具体例としては、高分子フィルムを長手方向に走行させながら、短手方向(横方向)に延伸させる方法が挙げられる。この方法は、見かけ上は横一軸延伸であり得る。また、斜め延伸も採用することができる。斜め延伸を採用することにより、幅方向に対して所定の角度の配向軸(遅相軸)を有する長尺状の延伸フィルムを得ることができる。 Examples of the cocoon stretching method include lateral uniaxial stretching, fixed-end biaxial stretching, and sequential biaxial stretching. A specific example of the fixed-end biaxial stretching includes a method of stretching a polymer film in the short direction (lateral direction) while running in the longitudinal direction. This method can be apparently lateral uniaxial stretching. Also, oblique stretching can be employed. By adopting oblique stretching, a long stretched film having an orientation axis (slow axis) at a predetermined angle with respect to the width direction can be obtained.
  上記延伸フィルムの厚みは、代表的には5μm~80μm、好ましくは15μm~60μm、さらに好ましくは25μm~45μmである。 厚 み The thickness of the stretched film is typically 5 to 80 μm, preferably 15 to 60 μm, and more preferably 25 to 45 μm.
 また、上記液晶材料の硬化層または固化層から構成される透明フィルムをλ/4板としてもよい。 Further, a transparent film composed of a cured layer or a solidified layer of the above liquid crystal material may be a λ / 4 plate.
 好ましくは、λ/4板は、上記偏光板の吸収軸と該λ/4板の遅相軸とのなす角度が、40°~50°(好ましくは42°~48°、より好ましくは44°~46°、さらに好ましくは45°)となるように、配置される。このようにすれば、上記輝度向上フィルムによる輝度向上効果がより顕著となる。より詳細には、輝度向上フィルムで反射した偏光成分(直線偏光)が、λ/4板を透過することにより、右回りまたは左周りの円偏光に変換され、該円偏光は、他の部材の反射板(例えば、バックライトの反射板)で反射することにより、偏光方向が逆回りとなる。そして、反射板で反射して生成された逆回りの円偏光は、λ/4板を透過することにより、輝度向上フィルムを透過し得る偏光となる。このような作用により、輝度向上フィルムを透過し得る偏光を効率よく生成することができ、輝度向上フィルムによる輝度向上効果がより顕著となる。 Preferably, in the λ / 4 plate, the angle formed between the absorption axis of the polarizing plate and the slow axis of the λ / 4 plate is 40 ° to 50 ° (preferably 42 ° to 48 °, more preferably 44 °. (46 °, more preferably 45 °). If it does in this way, the brightness improvement effect by the said brightness improvement film will become more remarkable. More specifically, the polarized light component (linearly polarized light) reflected by the brightness enhancement film is converted into clockwise or counterclockwise circularly polarized light by passing through the λ / 4 plate, and the circularly polarized light is Reflecting with a reflecting plate (for example, a reflecting plate of a backlight) reverses the polarization direction. Then, the reverse circularly polarized light generated by being reflected by the reflecting plate becomes polarized light that can be transmitted through the brightness enhancement film by transmitting through the λ / 4 plate. By such an action, polarized light that can be transmitted through the brightness enhancement film can be efficiently generated, and the brightness enhancement effect by the brightness enhancement film becomes more remarkable.
 λ/4板として機能する透明フィルムは、導電層の支持体として機能する(すなわち、透明フィルムの存在により、輝度向上フィルムへの加熱が回避できる)ことに加え、上記のように、輝度向上効果増大の機能も果たし得る。さらに、λ/4板として機能する透明フィルムを用い、後述する金属ナノワイヤを含む導電層を形成する場合、該導電層の高光透過性とも相まって、輝度向上効果が顕著となり、光透過率が高い光学積層体を得ることができる。 The transparent film functioning as a λ / 4 plate functions as a support for the conductive layer (that is, heating to the brightness enhancement film can be avoided by the presence of the transparent film). It can also serve an increase function. Furthermore, when a transparent film functioning as a λ / 4 plate is used to form a conductive layer containing metal nanowires, which will be described later, coupled with the high light transmittance of the conductive layer, the brightness enhancement effect becomes remarkable and the light transmittance is high. A laminate can be obtained.
F.導電層
 上記導電層の厚みは、好ましくは10nm~5000nmであり、より好ましくは20nm~300nmである。なお、導電層がポリマーマトリックスを含む場合は、該導電層の厚みはポリマーマトリックスの厚みに相当する。
F. Conductive layer The thickness of the conductive layer is preferably 10 nm to 5000 nm, more preferably 20 nm to 300 nm. When the conductive layer includes a polymer matrix, the thickness of the conductive layer corresponds to the thickness of the polymer matrix.
 上記導電層の表面抵抗値は、好ましくは0.1Ω/□~1000Ω/□であり、より好ましくは0.5Ω/□~300Ω/□であり、特に好ましくは1Ω/□~200Ω/□である。 The surface resistance value of the conductive layer is preferably 0.1Ω / □ to 1000Ω / □, more preferably 0.5Ω / □ to 300Ω / □, and particularly preferably 1Ω / □ to 200Ω / □. .
 上記導電層の全光線透過率は、好ましくは85%以上であり、より好ましくは90%以上であり、さらに好ましくは95%以上である。 The total light transmittance of the conductive layer is preferably 85% or more, more preferably 90% or more, and further preferably 95% or more.
 1つの実施形態においては、上記導電層はパターン化されている。パターン化の方法としては、導電層の形態に応じて、任意の適切な方法が採用され得る。導電層のパターンの形状は、用途に応じて任意の適切な形状であり得る。例えば、特表2011-511357号公報、特開2010-164938号公報、特開2008-310550号公報、特表2003-511799号公報、特表2010-541109号公報に記載のパターンが挙げられる。 In one embodiment, the conductive layer is patterned. Any appropriate method can be adopted as a patterning method depending on the form of the conductive layer. The shape of the pattern of the conductive layer may be any appropriate shape depending on the application. For example, the patterns described in JP-T-2011-511357, JP-A-2010-164938, JP-A-2008-310550, JP-T-2003-511799, and JP-T-2010-541109 are exemplified.
F-1.金属ナノワイヤまたは金属メッシュを含む導電層
 1つの実施形態においては、上記導電層は、金属ナノワイヤまたは金属メッシュを含む。金属ナノワイヤまたは金属メッシュを含む導電層を形成すれば、屈曲性に優れ、かつ、光透過率に優れる光学積層体を得ることができる。
F-1. Conductive layer comprising metal nanowires or metal mesh In one embodiment, the conductive layer comprises metal nanowires or metal mesh. If a conductive layer containing metal nanowires or metal meshes is formed, an optical laminate having excellent flexibility and excellent light transmittance can be obtained.
 1つの実施形態においては、導電層は、ポリマーマトリックスをさらに含む。この実施形態においては、ポリマーマトリックス中に、金属ナノワイヤまたは金属メッシュが存在する。ポリマーマトリックスから構成される導電層においては、ポリマーマトリックスにより金属ナノワイヤまたは金属メッシュが保護される。その結果、金属ナノワイヤまたは金属メッシュの腐食が防止され、耐久性により優れる光学積層体を得ることができる。 In one embodiment, the conductive layer further comprises a polymer matrix. In this embodiment, there are metal nanowires or metal meshes in the polymer matrix. In the conductive layer composed of the polymer matrix, the metal nanowire or the metal mesh is protected by the polymer matrix. As a result, corrosion of the metal nanowire or metal mesh is prevented, and an optical laminate that is more excellent in durability can be obtained.
(金属ナノワイヤを含む導電層)
 金属ナノワイヤとは、材質が金属であり、形状が針状または糸状であり、径がナノメートルサイズの導電性物質をいう。金属ナノワイヤは直線状であってもよく、曲線状であってもよい。金属ナノワイヤで構成された導電層を用いれば、金属ナノワイヤが網の目状となることにより、少量の金属ナノワイヤであっても良好な電気伝導経路を形成することができ、電気抵抗の小さい導電層を形成することができる。さらに、金属ナノワイヤが網の目状となることにより、網の目の隙間に開口部を形成して、光透過率の高い導電層を形成することができる。
(Conductive layer containing metal nanowires)
A metal nanowire is a conductive material having a metal material, a needle shape or a thread shape, and a diameter of nanometer. The metal nanowire may be linear or curved. When a conductive layer composed of metal nanowires is used, the metal nanowires can be formed into a mesh shape, so that a good electrical conduction path can be formed even with a small amount of metal nanowires. Can be formed. Furthermore, when the metal nanowire has a mesh shape, an opening can be formed in the mesh space to form a conductive layer having a high light transmittance.
 上記金属ナノワイヤの太さdと長さLとの比(アスペクト比:L/d)は、好ましくは10~100,000であり、より好ましくは50~100,000であり、特に好ましくは100~10,000である。このようにアスペクト比の大きい金属ナノワイヤを用いれば、金属ナノワイヤが良好に交差して、少量の金属ナノワイヤにより高い導電性を発現させることができる。その結果、光透過率の高い導電層を形成することができる。なお、本明細書において、「金属ナノワイヤの太さ」とは、金属ナノワイヤの断面が円状である場合はその直径を意味し、楕円状である場合はその短径を意味し、多角形である場合は最も長い対角線を意味する。金属ナノワイヤの太さおよび長さは、走査型電子顕微鏡または透過型電子顕微鏡によって確認することができる。 The ratio between the thickness d and the length L of the metal nanowire (aspect ratio: L / d) is preferably 10 to 100,000, more preferably 50 to 100,000, and particularly preferably 100 to 100,000. 10,000. If metal nanowires having a large aspect ratio are used in this way, the metal nanowires can cross well and high conductivity can be expressed by a small amount of metal nanowires. As a result, a conductive layer with high light transmittance can be formed. In the present specification, the “thickness of the metal nanowire” means the diameter when the cross section of the metal nanowire is circular, and the short diameter when the cross section of the metal nanowire is elliptical. In some cases it means the longest diagonal. The thickness and length of the metal nanowire can be confirmed by a scanning electron microscope or a transmission electron microscope.
 上記金属ナノワイヤの太さは、好ましくは500nm未満であり、より好ましくは200nm未満であり、特に好ましくは10nm~100nmであり、最も好ましくは10nm~50nmである。このような範囲であれば、光透過率の高い導電層を形成することができる。 The thickness of the metal nanowire is preferably less than 500 nm, more preferably less than 200 nm, particularly preferably 10 nm to 100 nm, and most preferably 10 nm to 50 nm. If it is such a range, a conductive layer with high light transmittance can be formed.
 上記金属ナノワイヤの長さは、好ましくは1μm~1000μmであり、より好ましくは10μm~500μmであり、特に好ましくは20μm~100μmである。このような範囲であれば、導電性の高い導電層を得ることができる。 The length of the metal nanowire is preferably 1 μm to 1000 μm, more preferably 10 μm to 500 μm, and particularly preferably 20 μm to 100 μm. Within such a range, a conductive layer having high conductivity can be obtained.
 上記金属ナノワイヤを構成する金属としては、導電性の高い金属である限り、任意の適切な金属が用いられ得る。上記金属ナノワイヤを構成する金属としては、例えば、銀、金、白金、パラジウム、銅、ニッケル等が挙げられる。また、これらの金属にメッキ処理(例えば、金メッキ処理)を行った材料を用いてもよい。金属ナノワイヤは、銀、金、白金、および銅からなる群より選ばれた1種以上の金属により構成されることが好ましい。なかでも好ましくは銀である。 As the metal constituting the metal nanowire, any appropriate metal can be used as long as it is a highly conductive metal. As a metal which comprises the said metal nanowire, silver, gold | metal | money, platinum, palladium, copper, nickel etc. are mentioned, for example. Moreover, you may use the material which performed the plating process (for example, gold plating process) to these metals. The metal nanowire is preferably composed of one or more metals selected from the group consisting of silver, gold, platinum, and copper. Of these, silver is preferable.
 上記金属ナノワイヤの製造方法としては、任意の適切な方法が採用され得る。例えば溶液中で硝酸銀を還元する方法、前駆体表面にプローブの先端部から印可電圧又は電流を作用させ、プローブ先端部で金属ナノワイヤを引き出し、該金属ナノワイヤを連続的に形成する方法等が挙げられる。溶液中で硝酸銀を還元する方法においては、エチレングリコール等のポリオール、およびポリビニルピロリドンの存在下で、硝酸銀等の銀塩を液相還元することにより、銀ナノワイヤが合成され得る。均一サイズの銀ナノワイヤは、例えば、Xia,Y.etal.,Chem.Mater.(2002)、14、4736-4745 、Xia, Y.etal., Nano letters(2003)3(7)、955-960 に記載される方法に準じて、大量生産が可能である。 Any appropriate method can be adopted as a method for producing the metal nanowire. For example, a method of reducing silver nitrate in a solution, a method in which an applied voltage or current is applied to the precursor surface from the tip of the probe, a metal nanowire is drawn out at the probe tip, and the metal nanowire is continuously formed, etc. . In the method of reducing silver nitrate in a solution, silver nanowires can be synthesized by liquid phase reduction of a silver salt such as silver nitrate in the presence of a polyol such as ethylene glycol and polyvinylpyrrolidone. Uniform sized silver nanowires are described in, for example, Xia, Y. et al. etal. , Chem. Mater. (2002), 14, 4736-4745, Xia, Y. et al. etal. , Nano letters (2003) 3 (7), 955-960, mass production is possible.
 上記金属ナノワイヤを含む導電層は、溶媒中に上記金属ナノワイヤを分散させた分散液を、上記透明フィルム上に塗布した後、塗布層を乾燥させて、形成することができる。 The conductive layer containing the metal nanowires can be formed by applying a dispersion obtained by dispersing the metal nanowires in a solvent on the transparent film, and then drying the applied layer.
 上記溶媒としては、水、アルコール系溶媒、ケトン系溶媒、エーテル系溶媒、炭化水素系溶媒、芳香族系溶媒等が挙げられる。環境負荷低減の観点から、水を用いることが好ましい。 Examples of the solvent include water, alcohol solvents, ketone solvents, ether solvents, hydrocarbon solvents, aromatic solvents and the like. From the viewpoint of reducing the environmental load, it is preferable to use water.
 上記金属ナノワイヤ分散液中の金属ナノワイヤの分散濃度は、好ましくは0.1重量%~1重量%である。このような範囲であれば、導電性および光透過性に優れる導電層を形成することができる。 The dispersion concentration of the metal nanowires in the metal nanowire dispersion liquid is preferably 0.1% by weight to 1% by weight. If it is such a range, the conductive layer excellent in electroconductivity and light transmittance can be formed.
 上記金属ナノワイヤ分散液は、目的に応じて任意の適切な添加剤をさらに含有し得る。上記添加剤としては、例えば、金属ナノワイヤの腐食を防止する腐食防止材、金属ナノワイヤの凝集を防止する界面活性剤等が挙げられる。使用される添加剤の種類、数および量は、目的に応じて適切に設定され得る。 The metal nanowire dispersion may further contain any appropriate additive depending on the purpose. Examples of the additive include a corrosion inhibitor that prevents corrosion of the metal nanowires, and a surfactant that prevents aggregation of the metal nanowires. The type, number and amount of additives used can be appropriately set according to the purpose.
 上記金属ナノワイヤ分散液の塗布方法としては、任意の適切な方法が採用され得る。塗布方法としては、例えば、スプレーコート、バーコート、ロールコート、ダイコート、インクジェットコート、スクリーンコート、ディップコート、凸版印刷法、凹版印刷法、グラビア印刷法等が挙げられる。塗布層の乾燥方法としては、任意の適切な乾燥方法(例えば、自然乾燥、送風乾燥、加熱乾燥)が採用され得る。例えば、加熱乾燥の場合には、乾燥温度は代表的には50℃~200℃であり、乾燥時間は代表的には1~10分である。上記乾燥温度は、好ましくは90℃以上であり、より好ましくは100℃以上であり、さらに好ましくは120℃以上である。このような温度であれば、導電性に優れる導電層を得ることができる。また、本発明の光学積層体は、透明フィルムに形成された導電層を輝度向上フィルムに積層して形成されるため、導電層形成時の加熱温度を高くすることができる。 Any appropriate method can be adopted as a method of applying the metal nanowire dispersion. Examples of the coating method include spray coating, bar coating, roll coating, die coating, inkjet coating, screen coating, dip coating, letterpress printing method, intaglio printing method, and gravure printing method. Any appropriate drying method (for example, natural drying, air drying, heat drying) can be adopted as a method for drying the coating layer. For example, in the case of heat drying, the drying temperature is typically 50 to 200 ° C., and the drying time is typically 1 to 10 minutes. The said drying temperature becomes like this. Preferably it is 90 degreeC or more, More preferably, it is 100 degreeC or more, More preferably, it is 120 degreeC or more. If it is such temperature, the conductive layer excellent in electroconductivity can be obtained. Moreover, since the optical laminated body of this invention is formed by laminating | stacking the electroconductive layer formed in the transparent film on a brightness improvement film, it can make the heating temperature at the time of electroconductive layer formation high.
 上記導電層における金属ナノワイヤの含有割合は、導電層の全重量に対して、好ましくは30重量%~90重量%であり、より好ましくは45重量%~80重量%である。このような範囲であれば、導電性および光透過性に優れる導電層を得ることができる。 The content ratio of the metal nanowires in the conductive layer is preferably 30% by weight to 90% by weight, and more preferably 45% by weight to 80% by weight with respect to the total weight of the conductive layer. If it is such a range, the conductive layer excellent in electroconductivity and light transmittance can be obtained.
 上記金属ナノワイヤが銀ナノワイヤである場合、導電層の密度は、好ましくは1.3g/cm~10.5g/cmであり、より好ましくは1.5g/cm~3.0g/cmである。このような範囲であれば、導電性および光透過性に優れる導電層を得ることができる。 When the metal nanowire is a silver nanowire, the density of the conductive layer is preferably 1.3 g / cm 3 to 10.5 g / cm 3 , more preferably 1.5 g / cm 3 to 3.0 g / cm 3. It is. If it is such a range, the conductive layer excellent in electroconductivity and light transmittance can be obtained.
(金属メッシュを含む導電層)
 金属メッシュを含む導電層は、上記透明フィルム上に、金属細線が格子状のパターンに形成されてなる。金属メッシュを構成する金属としては、導電性の高い金属である限り、任意の適切な金属が用いられ得る。上記金属メッシュを構成する金属としては、例えば、銀、金、銅、ニッケル等が挙げられる。また、これらの金属にメッキ処理(例えば、金メッキ処理)を行った材料を用いてもよい。金属メッシュは、金、白金、銀および銅からなる群より選ばれた1種以上の金属により構成されることが好ましい。
(Conductive layer including metal mesh)
The conductive layer including a metal mesh is formed by forming fine metal wires in a lattice pattern on the transparent film. Any appropriate metal can be used as the metal constituting the metal mesh as long as it is a highly conductive metal. As a metal which comprises the said metal mesh, silver, gold | metal | money, copper, nickel etc. are mentioned, for example. Moreover, you may use the material which performed the plating process (for example, gold plating process) to these metals. The metal mesh is preferably composed of one or more metals selected from the group consisting of gold, platinum, silver and copper.
 金属メッシュを含む導電層は、任意の適切な方法により形成させることができる。該導電層は、例えば、銀塩を含む感光性組成物(導電層形成用組成物)を上記透明フィルム上に塗布し、その後、露光処理および現像処理を行い、金属細線を所定のパターンに形成することにより得ることができる。また、該導電層は、金属微粒子を含むペーストを所定のパターンに印刷して得ることもできる。このような導電層およびその形成方法の詳細は、例えば、特開2012-18634号公報に記載されており、その記載は本明細書に参考として援用される。また、金属メッシュから構成される導電層およびその形成方法の別の例としては、特開2003-331654号公報に記載の導電層およびその形成方法が挙げられる。 The conductive layer including the metal mesh can be formed by any appropriate method. The conductive layer is formed, for example, by applying a photosensitive composition containing silver salt (composition for forming a conductive layer) onto the transparent film, and then performing an exposure process and a development process to form a thin metal wire in a predetermined pattern. Can be obtained. The conductive layer can also be obtained by printing a paste containing metal fine particles in a predetermined pattern. Details of such a conductive layer and a method for forming the same are described in, for example, Japanese Patent Application Laid-Open No. 2012-18634, the description of which is incorporated herein by reference. Another example of the conductive layer formed of a metal mesh and a method for forming the conductive layer includes a conductive layer and a method for forming the conductive layer described in JP-A-2003-331654.
(ポリマーマトリックス)
 上記ポリマーマトリックスを構成するポリマーとしては、任意の適切なポリマーが用いられ得る。該ポリマーとしては、例えば、アクリル系ポリマー;ポリエチレンテレフタレート等のポリエステル系ポリマー;ポリスチレン、ポリビニルトルエン、ポリビニルキシレン、ポリイミド、ポリアミド、ポリアミドイミド等の芳香族系ポリマー;ポリウレタン系ポリマー;エポキシ系ポリマー;ポリオレフィン系ポリマー;アクリロニトリル-ブタジエン-スチレン共重合体(ABS);セルロース;シリコン系ポリマー;ポリ塩化ビニル;ポリアセテート;ポリノルボルネン;合成ゴム;フッ素系ポリマー等が挙げられる。好ましくは、ペンタエリスリトールトリアクリレート(PETA)、ネオペンチルグリコールジアクリレート(NPGDA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、ジペンタエリスリトールペンタアクリレート(DPPA)、トリメチロールプロパントリアクリレート(TMPTA)等の多官能アクリレートから構成される硬化型樹脂(好ましくは紫外線硬化型樹脂)が用いられる。
(Polymer matrix)
Any appropriate polymer can be used as the polymer constituting the polymer matrix. Examples of the polymer include acrylic polymers; polyester polymers such as polyethylene terephthalate; aromatic polymers such as polystyrene, polyvinyl toluene, polyvinyl xylene, polyimide, polyamide, and polyamide imide; polyurethane polymers; epoxy polymers; Examples of the polymer include acrylonitrile-butadiene-styrene copolymer (ABS); cellulose; silicon-based polymer; polyvinyl chloride; polyacetate; polynorbornene; synthetic rubber; Preferably, polyfunctionality such as pentaerythritol triacrylate (PETA), neopentyl glycol diacrylate (NPGDA), dipentaerythritol hexaacrylate (DPHA), dipentaerythritol pentaacrylate (DPPA), trimethylolpropane triacrylate (TMPTA), etc. A curable resin composed of acrylate (preferably an ultraviolet curable resin) is used.
 上記ポリマーマトリックスは、上記のとおり、透明フィルム上に金属ナノワイヤまたは金属メッシュからなる層を形成した後、該層上に、ポリマー溶液を塗布し、その後、塗布層を乾燥または硬化させて、形成され得る。この操作により、ポリマーマトリックス中に金属ナノワイヤまたは金属メッシュが存在した導電層が形成される。 As described above, the polymer matrix is formed by forming a layer made of metal nanowires or metal mesh on a transparent film, applying a polymer solution on the layer, and then drying or curing the coating layer. obtain. By this operation, a conductive layer having metal nanowires or metal meshes in the polymer matrix is formed.
 上記ポリマー溶液は、上記ポリマーマトリックスを構成するポリマー、または該ポリマーの前駆体(該ポリマーを構成するモノマー)を含む。 The polymer solution contains a polymer constituting the polymer matrix or a precursor of the polymer (a monomer constituting the polymer).
 上記ポリマー溶液は溶剤を含み得る。上記ポリマー溶液に含まれる溶剤としては、例えば、アルコール系溶剤、ケトン系溶剤、テトラヒドロフラン、炭化水素系溶剤、または芳香族系溶剤等が挙げられる。好ましくは、該溶剤は、揮発性である。該溶剤の沸点は、好ましくは200℃以下であり、より好ましくは150℃以下であり、さらに好ましくは100℃以下である。 The polymer solution may contain a solvent. Examples of the solvent contained in the polymer solution include alcohol solvents, ketone solvents, tetrahydrofuran, hydrocarbon solvents, aromatic solvents, and the like. Preferably the solvent is volatile. The boiling point of the solvent is preferably 200 ° C. or lower, more preferably 150 ° C. or lower, and further preferably 100 ° C. or lower.
F-2.金属酸化物から構成される導電層
 1つの実施形態においては、上記導電層は、金属酸化物から構成される。金属酸化物から構成される導電層は、任意の適切な成膜方法(例えば、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、スプレー法等)により、上記透明フィルム上に、金属酸化物膜を成膜して形成され得る。
F-2. Conductive layer composed of metal oxide In one embodiment, the conductive layer is composed of a metal oxide. A conductive layer made of a metal oxide is formed on the transparent film by any appropriate film formation method (for example, vacuum deposition method, sputtering method, CVD method, ion plating method, spray method). It can be formed by depositing a physical film.
 金属酸化物としては、例えば、酸化インジウム、酸化スズ、酸化亜鉛、インジウム-スズ複合酸化物、スズ-アンチモン複合酸化物、亜鉛-アルミニウム複合酸化物、インジウム-亜鉛複合酸化物などが挙げられる。なかでも好ましくは、インジウム-スズ複合酸化物(ITO)である。 Examples of the metal oxide include indium oxide, tin oxide, zinc oxide, indium-tin composite oxide, tin-antimony composite oxide, zinc-aluminum composite oxide, and indium-zinc composite oxide. Of these, indium-tin composite oxide (ITO) is preferable.
G.光学積層体の製造方法
 偏光板と輝度向上フィルムとを含む積層体Aと、透明フィルムと導電層とを含む積層体Bとを、接着層を介して貼り合せることを含む。
G. Manufacturing method of optical laminated body It includes bonding the laminated body A containing a polarizing plate and a brightness enhancement film, and the laminated body B containing a transparent film and a conductive layer through an adhesive layer.
 偏光板としては、上記B項で説明した偏光板が用いられ得る。また、輝度向上フィルムとしては、上記C項で説明した輝度向上フィルムが用いられ得る。偏光板と輝度向上フィルムとは、任意の適切な方法で積層することができる。例えば、粘着剤または接着剤を介して積層することができる。また、積層体Aは、他の部材を備えていてもよい。 As the polarizing plate, the polarizing plate described in the above section B can be used. Further, as the brightness enhancement film, the brightness enhancement film described in the above section C can be used. The polarizing plate and the brightness enhancement film can be laminated by any appropriate method. For example, it can laminate | stack through an adhesive or an adhesive agent. Moreover, the laminated body A may be provided with another member.
 透明フィルムとしては、上記E項で説明した透明フィルムが用いられ得る。また、導電層としては、上記F項で説明した導電層が形成され得る。積層体Bの製造方法、すなわち、導電層の形成方法は、F項で説明したとおりである。積層体Bは、他の部材を備えていてもよい。 As the transparent film, the transparent film described in the above section E can be used. As the conductive layer, the conductive layer described in the above section F can be formed. The manufacturing method of the laminated body B, that is, the method of forming the conductive layer is as described in the section F. The layered product B may include other members.
 本発明の製造方法においては、上記のとおり、上記積層体Aと積層体Bとを接着層を介して貼り合せることを特徴とする。積層体Bにおいては、当該貼り合せの前に、高温処理(例えば、乾燥)により導電層が形成されており、このような積層体Bを輝度向上フィルムが含まれる積層体Aに貼り合せることにより、輝度向上フィルムを加熱することなく、導電層を備える光学積層体を得ることができる。このような製造方法によれば、輝度向上フィルムの機能低下を防ぐことができ、また、輝度向上フィルムに生じる外観不良(例えば、シワ)を防ぐことができる。積層体Aと積層体Bとを貼り合せる接着層としては、上記D項で説明した接着層が用いられ得る。接着層を形成する方法としては、任意の適切な方法が採用され得る。 In the production method of the present invention, as described above, the laminate A and the laminate B are bonded together through an adhesive layer. In the laminated body B, a conductive layer is formed by high-temperature treatment (for example, drying) before the bonding, and by bonding such a laminated body B to the laminated body A including the brightness enhancement film, An optical laminate comprising a conductive layer can be obtained without heating the brightness enhancement film. According to such a manufacturing method, it is possible to prevent a function deterioration of the brightness enhancement film and to prevent appearance defects (for example, wrinkles) generated in the brightness enhancement film. As the adhesive layer for bonding the laminate A and the laminate B, the adhesive layer described in the above section D can be used. Any appropriate method can be adopted as a method of forming the adhesive layer.
 以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例になんら限定されるものではない。実施例における評価方法は以下のとおりである。なお、厚みは、エポキシ樹脂にて包埋処理後ウルトラマイクロトームで切削することで断面を形成し、日立ハイテクノロジーズ社製の走査型電子顕微鏡「S-4800」を使用して測定した。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. The evaluation methods in the examples are as follows. The thickness was measured by using a scanning electron microscope “S-4800” manufactured by Hitachi High-Technologies Corporation by forming a cross section by cutting with an ultramicrotome after embedding with an epoxy resin.
(1)表面抵抗値
 表面抵抗値は、ナプソン株式会社製の非接触表面抵抗計 商品名「EC-80」を用いて、渦電流法により測定した。測定温度は23℃とした。
(2)位相差値
 透明フィルムの面内位相差値を、王子計測機器社製の商品名「KOBRA-WPR」を用いて、測定した。測定温度は23℃、測定波長は590nmとした。
(3)輝度向上率測定
 実施例および比較例で得られた光学積層体を偏光板が上側になるようにバックライトユニット上に配置し輝度測定した結果(結果1)と、バックライトユニット上に偏光板のみ配置して測定した結果(結果2)から、結果1を結果2で除した値(結果1/結果2)で輝度向上率を算出した。輝度測定は、繰り返し4回測定し平均値を測定値とした。
 輝度測定は、TOPCON社製の分光放射計(商品名「SR-UL1R」)を用いた。バックライトユニットは、HAKUBA社製の商品名「ライトビュアー 7000 PRO」を用いた。
(4)外観
 実施例および比較例で得られた光学積層体に含まれる輝度向上フィルムの外観を目視にて確認した。
(1) Surface Resistance Value The surface resistance value was measured by an eddy current method using a non-contact surface resistance meter trade name “EC-80” manufactured by Napson Corporation. The measurement temperature was 23 ° C.
(2) Retardation value The in-plane retardation value of the transparent film was measured using a trade name “KOBRA-WPR” manufactured by Oji Scientific Instruments. The measurement temperature was 23 ° C. and the measurement wavelength was 590 nm.
(3) Luminance improvement rate measurement Results (Result 1) of measuring the luminance by placing the optical laminates obtained in Examples and Comparative Examples on the backlight unit so that the polarizing plate is on the upper side, and on the backlight unit The brightness improvement rate was calculated from the result obtained by dividing only the polarizing plate (result 2) and the result obtained by dividing result 1 by result 2 (result 1 / result 2). The luminance measurement was repeated four times and the average value was taken as the measured value.
For the luminance measurement, a spectroradiometer (trade name “SR-UL1R”) manufactured by TOPCON was used. As the backlight unit, a trade name “Light Viewer 7000 PRO” manufactured by HAKUBA was used.
(4) Appearance The appearance of the brightness enhancement film included in the optical laminates obtained in the examples and comparative examples was visually confirmed.
<製造例1>銀ナノワイヤの合成および銀ナノワイヤ分散液の調製
 硝酸銀1.5g、形態調整剤としてのポリビニルピロリドンK-90(ナカライテスク社製、平均分子量:360,000)5.8g、食塩(NaCl)0.04g及びエチレングリコール(180ml)を、環流器及び攪拌機が付いたフラスコに添加し、攪拌しつつ溶解した後、温度をエチレングリコールの沸点近傍である170℃まで昇温し、60分間反応させた。反応終了後、室温下で放置して冷却した。次いで、上記のようにして得られた銀ナノワイヤを含む反応混合物に、該反応混合物の体積が5倍になるまでアセトンを加えた後、該反応混合物を遠心分離した(2000rpm、20分)。この作業を数回繰返し、銀ナノワイヤを得た。得られた銀ナノワイヤは、直径が10nm~60nmであり、長さは1μm~50μmであった。なお、銀ナノワイヤのサイズは、日立ハイテクノロジーズ社製の走査型電子顕微鏡「S-4800」を用い、該顕微鏡により無作為に抽出した30個の金属ナノワイヤを観察して長さおよび直径を測定した。純水中に、該銀ナノワイヤ(濃度:0.2重量%)、およびペンタエチレングリコールモノドデシルエーテル(濃度:0.1重量%)を分散させ、銀ナノワイヤ分散液を調製した。
<Production Example 1> Synthesis of Silver Nanowire and Preparation of Silver Nanowire Dispersion 1.5 g of silver nitrate, 5.8 g of polyvinylpyrrolidone K-90 (manufactured by Nacalai Tesque, average molecular weight: 360,000) as a form modifier, salt ( (NaCl) 0.04 g and ethylene glycol (180 ml) were added to a flask equipped with a reflux condenser and a stirrer, dissolved while stirring, and then the temperature was raised to 170 ° C., which is near the boiling point of ethylene glycol, for 60 minutes. Reacted. After completion of the reaction, it was allowed to cool at room temperature. Next, acetone was added to the reaction mixture containing silver nanowires obtained as described above until the volume of the reaction mixture became 5 times, and then the reaction mixture was centrifuged (2000 rpm, 20 minutes). This operation was repeated several times to obtain silver nanowires. The obtained silver nanowires had a diameter of 10 nm to 60 nm and a length of 1 μm to 50 μm. The size of the silver nanowires was measured using a scanning electron microscope “S-4800” manufactured by Hitachi High-Technologies Corporation, and the length and diameter were measured by observing 30 metal nanowires randomly extracted by the microscope. . The silver nanowire (concentration: 0.2% by weight) and pentaethylene glycol monododecyl ether (concentration: 0.1% by weight) were dispersed in pure water to prepare a silver nanowire dispersion.
<製造例2>ポリマーマトリックス形成用ポリマー溶液の調製
 シクロペンタノン100重量部に、ペンタエリスリトールトリアクリレート(PETA)(大阪有機化学工業社製、商品名「ビスコート#300」)3.0重量部、および光反応開始剤(チバ・ジャパン社製、製品名「イルガキュア907」)が0.09重量部を投入してポリマーマトリックス形成用ポリマー溶液を調製した。
<Production Example 2> Preparation of polymer solution for polymer matrix formation To 100 parts by weight of cyclopentanone, 3.0 parts by weight of pentaerythritol triacrylate (PETA) (trade name “Biscoat # 300” manufactured by Osaka Organic Chemical Industry Co., Ltd.) Then, 0.09 part by weight of a photoreaction initiator (manufactured by Ciba Japan, product name “Irgacure 907”) was added to prepare a polymer solution for forming a polymer matrix.
<製造例3>積層体B1(透明フィルム/導電層)の製造
 透明フィルムとして、ポリカーボネート(PC)フィルム(旭硝子社製、商品名「カーボグラス」)の1軸延伸フィルム(面内位相差:140nm)を用いた。この透明フィルム上にバーコーター(第一理科社製、製品名「バーコーター No.15」)を用いて製造例1で調整した銀ナノワイヤ分散液を塗布し、120℃の送風乾燥機内で2分間乾燥させた。その後、製造例2で調整したポリマー溶液をWet膜厚6μmでスロットダイにて塗布し、80℃の送風乾燥機内で2分間乾燥させた。次いで、酸素濃度100ppm環境とした紫外光照射装置(Fusion UV Systems社製)で積算照度210mJ/cmの紫外光を照射して上記ポリマー溶液を硬化させ、透明フィルム上に導電層を形成し、積層体B1を得た。導電層の表面抵抗値は49Ω/□であった。
<Production Example 3> Production of Laminate B1 (Transparent Film / Conductive Layer) As a transparent film, a uniaxially stretched film (in-plane retardation: 140 nm) of a polycarbonate (PC) film (trade name “Carbo Glass” manufactured by Asahi Glass Co., Ltd.) ) Was used. On this transparent film, the silver nanowire dispersion liquid prepared in Production Example 1 was applied using a bar coater (product name “Bar Coater No. 15”, manufactured by Daiichi Kagaku Co., Ltd.), and it was placed in an air dryer at 120 ° C. for 2 minutes. Dried. Thereafter, the polymer solution prepared in Production Example 2 was applied with a slot die at a wet film thickness of 6 μm, and dried for 2 minutes in an air blow dryer at 80 ° C. Next, the polymer solution is cured by irradiating ultraviolet light with an integrated illuminance of 210 mJ / cm 2 with an ultraviolet light irradiation device (Fusion UV Systems) made with an oxygen concentration of 100 ppm to form a conductive layer on the transparent film, A layered product B1 was obtained. The surface resistance value of the conductive layer was 49Ω / □.
<製造例4>積層体B2(透明フィルム/導電層)の製造
 ポリカーボネートフィルムの1軸延伸フィルムに代えて、ノルボルネン系ポリマー(COP)フィルム(日本ゼオン社製、商品名「ゼオノア」)を用いたこと以外は、製造例3と同様にして、積層体B2を得た。
<Manufacture example 4> Manufacture of laminated body B2 (transparent film / conductive layer) It replaced with the uniaxially stretched film of the polycarbonate film, and used the norbornene-type polymer (COP) film (The Nippon Zeon company make, brand name "Zeonor"). Except for this, a laminate B2 was obtained in the same manner as in Production Example 3.
<製造例5>積層体B3(透明フィルム/導電層)の製造
 ポリカーボネートフィルムの1軸延伸フィルムに代えて、ノルボルネン系ポリマーフィルム(日本ゼオン社製、商品名「ゼオノア」)の1軸延伸フィルム(面内位相差:135nm)を用いたこと以外は、製造例3と同様にして、積層体B3を得た。
<Manufacture example 5> Manufacture of laminated body B3 (transparent film / conductive layer) It replaces with the uniaxially stretched film of a polycarbonate film, and the uniaxially stretched film of the norbornene-type polymer film (The Nippon Zeon company make, brand name "ZEONOR") ( A laminate B3 was obtained in the same manner as in Production Example 3 except that the in-plane retardation: 135 nm) was used.
<製造例6>積層体B4(透明フィルム/導電層)の製造
 ポリカーボネートフィルムの1軸延伸フィルムに代えて、PETフィルム(三菱樹脂製、商品名「T100」)の1軸延伸フィルム(面内位相差:3208nm)を用いたこと以外は、製造例3と同様にして、積層体B4を得た。
<Manufacture example 6> Manufacture of laminated body B4 (transparent film / conductive layer) It replaces with the uniaxially stretched film of a polycarbonate film, and the uniaxially stretched film (in-plane position of the product name "T100" by Mitsubishi resin) A laminate B4 was obtained in the same manner as in Production Example 3 except that the phase difference: 3208 nm) was used.
<製造例7>積層体B5(透明フィルム/導電層)の製造
 ノルボルネン系ポリマーフィルム(日本ゼオン社製、商品名「ゼオノア」)に特開2003-331654の方法に基づいた方法で金属メッシュを形成し、積層体B5を得た。積層体B5に形成された導電層の表面抵抗値は30Ω/□であった。
<Production Example 7> Production of laminate B5 (transparent film / conductive layer) A metal mesh was formed on a norbornene-based polymer film (manufactured by Nippon Zeon Co., Ltd., trade name “Zeonor”) by a method based on the method of Japanese Patent Application Laid-Open No. 2003-331654. As a result, a laminate B5 was obtained. The surface resistance value of the conductive layer formed in the laminate B5 was 30Ω / □.
<製造例8>積層体B6(透明フィルム/導電層)の製造
 透明フィルムとして、ノルボルネン系ポリマー(COP)フィルム(日本ゼオン社製、商品名「ゼオノア」)を用いた。平行平板型の巻取式マグネトロンスパッタ装置に酸化インジウムと酸化スズとを90:10及び96.7:3.3の重量比で含有する焼結体ターゲットを装着し、透明フィルムを搬送しながら、真空排気により、水の分圧が5×10-5Paとなるまで真空排気を行った。その後、アルゴンガスおよび酸素ガスの導入量を調整し、搬送速度10m/分、搬送張力200~350Nで透明フィルムを搬送しながら、DCスパッタリングにより成膜を行い、厚み30nmのITO膜(導電層)を形成した。得られたITO膜(導電層)の表面抵抗値は70Ω/□であった。
<Manufacture example 8> Manufacture of laminated body B6 (transparent film / conductive layer) As a transparent film, the norbornene-type polymer (COP) film (The Nippon Zeon company make, brand name "Zeonor") was used. While mounting a sintered compact target containing indium oxide and tin oxide in a weight ratio of 90:10 and 96.7: 3.3 on a parallel plate type wind-up magnetron sputtering apparatus, while transporting a transparent film, Vacuum evacuation was performed until the partial pressure of water became 5 × 10 −5 Pa. Thereafter, the amount of argon gas and oxygen gas introduced is adjusted, and a film is formed by DC sputtering while carrying a transparent film with a carrying speed of 10 m / min and a carrying tension of 200 to 350 N, and a 30 nm thick ITO film (conductive layer) Formed. The obtained ITO film (conductive layer) had a surface resistance of 70Ω / □.
<製造例9>積層体B7(透明フィルム/導電層)の製造
 ノルボルネン系ポリマーフィルム(日本ゼオン社製、商品名「ゼオノア」)に代えて、ノルボルネン系ポリマーフィルム(日本ゼオン社製、商品名「ゼオノア」)の1軸延伸フィルム(面内位相差:135nm)を用いたこと以外は、製造例8と同様にして、積層体B7を得た。
<Manufacture example 9> Manufacture of laminated body B7 (transparent film / conductive layer) It replaces with a norbornene-type polymer film (The Nippon Zeon company make, brand name "ZEONOR"), and a norbornene-type polymer film (Nippon Zeon company make, brand name " A laminate B7 was obtained in the same manner as in Production Example 8 except that a uniaxially stretched film (Zeonor ") (in-plane retardation: 135 nm) was used.
[実施例1]
 偏光板(日東電工社製、商品名「SEG1425DU」)と輝度向上フィルム(3M社製、商品名「APF-v3」)とを光学用粘着剤を介して積層体Aを得た。この積層体と、製造例3で得られた積層体B1とを、光学用粘着剤を含む接着層を介して貼り合せて、偏光板と輝度向上フィルムと接着層と透明フィルムと導電層とをこの順に備える光学積層体を得た。
 光学粘着剤は、アクリル酸ブチルとアクリル酸と酢酸ビニルとの重量比が100:2:5のアクリル系共重合体100部に、イソシアネート系架橋剤を1部配合してなるものであり、弾性係数10N/cmの透明な粘着剤を用いた。
 得られた光学積層体を上記評価(3)および(4)に供した。結果を表1に示す。
[Example 1]
A laminate A was obtained by using a polarizing plate (manufactured by Nitto Denko Corporation, trade name “SEG1425DU”) and a brightness enhancement film (manufactured by 3M, trade name “APF-v3”) through an optical adhesive. The laminate and the laminate B1 obtained in Production Example 3 are bonded together through an adhesive layer containing an optical pressure-sensitive adhesive, and a polarizing plate, a brightness enhancement film, an adhesive layer, a transparent film, and a conductive layer are combined. The optical laminated body provided with this order was obtained.
The optical pressure-sensitive adhesive is obtained by blending 100 parts of an acrylic copolymer having a weight ratio of butyl acrylate, acrylic acid, and vinyl acetate of 100: 2: 5 with 1 part of an isocyanate-based crosslinking agent. A transparent adhesive having a coefficient of 10 N / cm 2 was used.
The obtained optical laminate was subjected to the above evaluations (3) and (4). The results are shown in Table 1.
[実施例2]
 製造例3で得られた積層体B1に代えて、製造例4で得られた積層体B2を用いたこと以外は、実施例1と同様にして光学積層体を得た。
 得られた光学積層体を上記評価(3)および(4)に供した。結果を表1に示す。
[Example 2]
An optical laminate was obtained in the same manner as in Example 1 except that the laminate B2 obtained in Production Example 4 was used instead of the laminate B1 obtained in Production Example 3.
The obtained optical laminate was subjected to the above evaluations (3) and (4). The results are shown in Table 1.
[実施例3]
 製造例3で得られた積層体B1に代えて、製造例5で得られた積層体B3を用いたこと以外は、実施例1と同様にして光学積層体を得た。
 得られた光学積層体を上記評価(3)および(4)に供した。結果を表1に示す。
[Example 3]
An optical laminate was obtained in the same manner as in Example 1 except that the laminate B3 obtained in Production Example 5 was used instead of the laminate B1 obtained in Production Example 3.
The obtained optical laminate was subjected to the above evaluations (3) and (4). The results are shown in Table 1.
[実施例4]
 製造例3で得られた積層体B1に代えて、製造例6で得られた積層体B4を用いたこと以外は、実施例1と同様にして光学積層体を得た。
 得られた光学積層体を上記評価(3)および(4)に供した。結果を表1に示す。
[Example 4]
An optical laminate was obtained in the same manner as in Example 1 except that the laminate B4 obtained in Production Example 6 was used instead of the laminate B1 obtained in Production Example 3.
The obtained optical laminate was subjected to the above evaluations (3) and (4). The results are shown in Table 1.
[実施例5]
 製造例3で得られた積層体B1に代えて、製造例7で得られた積層体B5を用いたこと以外は、実施例1と同様にして光学積層体を得た。
 得られた光学積層体を上記評価(3)および(4)に供した。結果を表1に示す。
[Example 5]
An optical laminate was obtained in the same manner as in Example 1 except that the laminate B5 obtained in Production Example 7 was used instead of the laminate B1 obtained in Production Example 3.
The obtained optical laminate was subjected to the above evaluations (3) and (4). The results are shown in Table 1.
[実施例6]
 製造例3で得られた積層体B1に代えて、製造例8で得られた積層体B6を用いたこと以外は、実施例1と同様にして光学積層体を得た。
 得られた光学積層体を上記評価(3)および(4)に供した。結果を表1に示す。
[Example 6]
An optical laminate was obtained in the same manner as in Example 1 except that the laminate B6 obtained in Production Example 8 was used instead of the laminate B1 obtained in Production Example 3.
The obtained optical laminate was subjected to the above evaluations (3) and (4). The results are shown in Table 1.
[実施例7]
 製造例3で得られた積層体B1に代えて、製造例9で得られた積層体B7を用いたこと以外は、実施例1と同様にして光学積層体を得た。
 得られた光学積層体を上記評価(3)および(4)に供した。結果を表1に示す。
[Example 7]
An optical laminate was obtained in the same manner as in Example 1 except that the laminate B7 obtained in Production Example 9 was used instead of the laminate B1 obtained in Production Example 3.
The obtained optical laminate was subjected to the above evaluations (3) and (4). The results are shown in Table 1.
[比較例1]
 輝度向上フィルム(3M社製、商品名「APF-v3」)に、バーコーター(第一理科社製、製品名「バーコーター No.10」)を用いて製造例1で調整した銀ナノワイヤ分散液を塗布し、120℃の送風乾燥機内で2分間乾燥させた。その後、製造例2で調整したポリマー溶液をWet膜厚6μmでスロットダイにて塗布し、80℃の送風乾燥機内で2分間乾燥させた。次いで、酸素濃度100ppm環境とした紫外光照射装置(Fusion UV Systems社製)で積算照度210mJ/cmの紫外光を照射して上記ポリマー溶液を硬化させ、導電層付輝度向上フィルムを得た。導電層の表面抵抗値は49Ω/□であった。
 この導電層付輝度向上フィルムの輝度向上フィルム側と偏光板とを光学用粘着剤を介して貼り合わせ、光学積層体を得た。
 得られた光学積層体を上記評価(3)および(4)に供した。結果を表1に示す。
[Comparative Example 1]
A silver nanowire dispersion liquid prepared in Production Example 1 using a bar coater (product name “Bar Coater No. 10” manufactured by Daiichi Rika Co., Ltd.) on a brightness enhancement film (product name “APF-v3” manufactured by 3M) And dried for 2 minutes in a blast dryer at 120 ° C. Thereafter, the polymer solution prepared in Production Example 2 was applied with a slot die at a wet film thickness of 6 μm, and dried for 2 minutes in an air blow dryer at 80 ° C. Next, the polymer solution was cured by irradiating ultraviolet light with an integrated illuminance of 210 mJ / cm 2 with an ultraviolet light irradiation device (Fusion UV Systems) with an oxygen concentration of 100 ppm, to obtain a brightness enhancement film with a conductive layer. The surface resistance value of the conductive layer was 49Ω / □.
The brightness enhancement film side of this brightness enhancement film with a conductive layer and the polarizing plate were bonded together via an optical adhesive to obtain an optical laminate.
The obtained optical laminate was subjected to the above evaluations (3) and (4). The results are shown in Table 1.
[参考例1]
 銀ナノワイヤ分散液の乾燥温度を120℃から70℃に変更した以外は、比較例1と同様にして、光学積層体を得た。得られた光学積層体を上記評価(3)および(4)に供した。結果を表1に示す。
[Reference Example 1]
An optical laminate was obtained in the same manner as in Comparative Example 1 except that the drying temperature of the silver nanowire dispersion liquid was changed from 120 ° C to 70 ° C. The obtained optical laminate was subjected to the above evaluations (3) and (4). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1から明らかなように、本願発明の光学積層体は、外観に優れる。さらに、透明フィルムとして、4/λ板を用いれば、輝度向上率が高い光学積層体を得ることができる(実施例1、3)。 As is apparent from Table 1, the optical laminate of the present invention is excellent in appearance. Furthermore, if a 4 / λ plate is used as the transparent film, an optical laminate having a high luminance improvement rate can be obtained (Examples 1 and 3).
 10     偏光板
 20     輝度向上フィルム
 30     接着層
 40     透明フィルム
 50     導電層
 100    光学積層体
DESCRIPTION OF SYMBOLS 10 Polarizing plate 20 Brightness improvement film 30 Adhesive layer 40 Transparent film 50 Conductive layer 100 Optical laminated body

Claims (8)

  1.  偏光板と、輝度向上フィルムと、接着層と、透明フィルムと、導電層とをこの順に備える、光学積層体。 An optical laminate comprising a polarizing plate, a brightness enhancement film, an adhesive layer, a transparent film, and a conductive layer in this order.
  2.  前記透明フィルムが、λ/4板の機能を有するフィルムである、請求項1に記載の光学積層体。 The optical laminated body according to claim 1, wherein the transparent film is a film having a function of a λ / 4 plate.
  3.  前記透明フィルムが、ポリカーボネート系樹脂、シクロオレフィン系樹脂、セルロース系樹脂、エステル系樹脂、ポリイミド系樹脂またはアクリル系樹脂を含む、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the transparent film contains a polycarbonate resin, a cycloolefin resin, a cellulose resin, an ester resin, a polyimide resin, or an acrylic resin.
  4.  前記透明フィルムが、液晶材料の硬化層または固化層を含む、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the transparent film includes a cured layer or a solidified layer of a liquid crystal material.
  5.  前記導電層が、金属ナノワイヤを含む、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the conductive layer includes a metal nanowire.
  6.  前記導電層が、金属メッシュを含む、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the conductive layer includes a metal mesh.
  7.  前記導電層が、金属酸化物を含む、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the conductive layer contains a metal oxide.
  8.  偏光板と輝度向上フィルムとを含む積層体Aと、透明フィルムと導電層とを含む積層体Bとを、接着層を介して貼り合せることを含む、光学積層体の製造方法。
     
     
    The manufacturing method of an optical laminated body including bonding the laminated body A containing a polarizing plate and a brightness enhancement film, and the laminated body B containing a transparent film and a conductive layer through an adhesive layer.

PCT/JP2016/083473 2015-11-13 2016-11-11 Optical layered body WO2017082378A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-222835 2015-11-13
JP2015222835A JP2017090756A (en) 2015-11-13 2015-11-13 Optical layered body

Publications (1)

Publication Number Publication Date
WO2017082378A1 true WO2017082378A1 (en) 2017-05-18

Family

ID=58695524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083473 WO2017082378A1 (en) 2015-11-13 2016-11-11 Optical layered body

Country Status (2)

Country Link
JP (1) JP2017090756A (en)
WO (1) WO2017082378A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113311618A (en) * 2021-06-15 2021-08-27 武汉华星光电技术有限公司 Backlight module, manufacturing method of backlight module and display module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6600914B2 (en) * 2016-02-15 2019-11-06 サイデン化学株式会社 Adhesive composition for polarizing plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029505A (en) * 2002-06-27 2004-01-29 Nitto Denko Corp Polarizing plate, optical element and image display device
JP2005122040A (en) * 2003-10-20 2005-05-12 Nitto Denko Corp Linearly polarized light separation film, linearly polarized light separation laminated film, backlight system and liquid crystal display device
JP2006163169A (en) * 2004-12-09 2006-06-22 Nitto Denko Corp Optical film, backlight system, and liquid crystal display device
JP2014219667A (en) * 2013-04-04 2014-11-20 日東電工株式会社 Conducive film and image display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029505A (en) * 2002-06-27 2004-01-29 Nitto Denko Corp Polarizing plate, optical element and image display device
JP2005122040A (en) * 2003-10-20 2005-05-12 Nitto Denko Corp Linearly polarized light separation film, linearly polarized light separation laminated film, backlight system and liquid crystal display device
JP2006163169A (en) * 2004-12-09 2006-06-22 Nitto Denko Corp Optical film, backlight system, and liquid crystal display device
JP2014219667A (en) * 2013-04-04 2014-11-20 日東電工株式会社 Conducive film and image display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113311618A (en) * 2021-06-15 2021-08-27 武汉华星光电技术有限公司 Backlight module, manufacturing method of backlight module and display module
CN113311618B (en) * 2021-06-15 2023-03-24 武汉华星光电技术有限公司 Backlight module, manufacturing method of backlight module and display module

Also Published As

Publication number Publication date
JP2017090756A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP6576020B2 (en) Image display device
WO2015190428A1 (en) Laminate and image display device
WO2014163068A1 (en) Conductive film and image display device
JP3735366B2 (en) Birefringent material for optical film
JP6877945B2 (en) Polarizing plate with retardation layer and image display device
WO2017086338A1 (en) Optical laminated body and organic electroluminescence display device using same
WO2014126003A1 (en) Image display device
WO2018062183A1 (en) Organic el display device
JP2004271846A (en) High luminance polarizing plate, liquid crystal panel using same, and image display device
KR20150115815A (en) Image display device
WO2017188160A1 (en) Film sensor member and method for manufacturing same, circularly polarizing plate and method for manufacturing same, and image display device
KR102523068B1 (en) liquid crystal display
KR20200130370A (en) Conductive film, sensor, touch panel and image display device
JP2017207596A (en) Optical laminate
JP2017142492A (en) Optical laminate and image display device using the optical laminate
WO2017082378A1 (en) Optical layered body
TWI547726B (en) Image display device
KR20140134227A (en) Touch sensing electrode combined with complex polarization plate
JP6971558B2 (en) Transparent conductive film and display device with touch function
WO2017094530A1 (en) Phase difference layer-provided polarizing plate and image display device
JP2019091091A (en) Circularly polarizing plate and bendable display device
KR102577330B1 (en) Polarizing Plate
WO2017135239A1 (en) Optical laminate and image display device in which said optical laminate is used
JP2019144558A (en) Image display device
KR102565008B1 (en) Liquid crystal display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16864339

Country of ref document: EP

Kind code of ref document: A1