WO2015190428A1 - Laminate and image display device - Google Patents

Laminate and image display device Download PDF

Info

Publication number
WO2015190428A1
WO2015190428A1 PCT/JP2015/066448 JP2015066448W WO2015190428A1 WO 2015190428 A1 WO2015190428 A1 WO 2015190428A1 JP 2015066448 W JP2015066448 W JP 2015066448W WO 2015190428 A1 WO2015190428 A1 WO 2015190428A1
Authority
WO
WIPO (PCT)
Prior art keywords
retardation
transparent conductive
layer
film
retardation layer
Prior art date
Application number
PCT/JP2015/066448
Other languages
French (fr)
Japanese (ja)
Inventor
寛 友久
祥一 松田
武本 博之
亀山 忠幸
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2015190428A1 publication Critical patent/WO2015190428A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to a laminate and an image display device.
  • a transparent conductive film obtained by forming a metal oxide layer such as ITO (indium-tin composite oxide) on a transparent resin film is frequently used as an electrode of the touch sensor. ing.
  • the transparent conductive film provided with this metal oxide layer is liable to lose its conductivity due to bending, and has a problem that it is difficult to use in applications that require flexibility such as a flexible display.
  • a transparent conductive film containing a metal nanowire or a metal mesh is known as a highly flexible transparent conductive film.
  • the transparent conductive film has a problem that external light is reflected and scattered by metal nanowires or the like.
  • a transparent conductive film is used in an image display device, there are problems that a pattern such as a metal nanowire is visually recognized, contrast is lowered, and display characteristics are inferior.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is a laminate that can be used in an image display device, and includes a metal nanowire or a metal mesh, and is capable of receiving external light. It is providing the laminated body by which reflection scattering was suppressed.
  • the laminate of the present invention includes a circularly polarizing plate and a transparent conductive film, and the circularly polarizing plate, in order from the surface opposite to the transparent conductive film, a polarizer, a first retardation layer, And the second retardation layer, wherein the first retardation layer exhibits a refractive index characteristic of nx> ny ⁇ nz, and the second retardation layer has a refractive index of nz> nx ⁇ ny.
  • the in-plane retardation Re (550) of the laminated retardation film composed of the first retardation layer and the second retardation layer is 120 nm to 160 nm and the thickness direction retardation Rth ( 550) is 40 nm to 100 nm
  • the transparent conductive film has a transparent base material, and a transparent conductive layer disposed on at least one side of the transparent base material, and an in-plane retardation of the transparent base material Re is 1 nm to 100 nm
  • the transparent conductive layer comprises metal nanowires or metal meshes.
  • the laminated retardation film does not include an optically anisotropic layer other than the first retardation layer and the second retardation layer.
  • the in-plane retardation of the first retardation layer satisfies the relationship Re (450) ⁇ Re (550).
  • the water absorption rate of the first retardation layer is 3% or less.
  • the first retardation layer is obtained by oblique stretching.
  • the transparent conductive layer is patterned.
  • the metal nanowire is composed of one or more metals selected from the group consisting of gold, platinum, silver, and copper.
  • an image display device is provided. This image display device includes the laminate and a metal reflector in order from the viewing side. In one embodiment, the diffuse reflectance is reduced by 90% or more in the laminated portion of the circularly polarizing plate and the transparent conductive film in the image display device.
  • the laminate of the present invention is a transparent film comprising a circularly polarizing plate having a first retardation layer (nx> ny ⁇ nz) and a second retardation layer (nz> nx ⁇ ny), and a metal nanowire or a metal mesh.
  • a conductive film If the laminated body of this invention is used, the emission of the reflected light which external light reflected and produced on the transparent conductive film can be suppressed. Since emission of the reflected light is suppressed, even when a transparent conductive film including metal nanowires or metal meshes is used, a conductive pattern (that is, metal nanowires or metal mesh patterns) is difficult to be recognized, and an image with high contrast is used. A display device can be obtained.
  • Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction). “Nz” is the refractive index in the thickness direction.
  • Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction). “Nz” is the refractive index in the thickness direction.
  • In-plane retardation (Re) “Re (550)” is an in-plane retardation measured with light having a wavelength of 550 nm at 23 ° C.
  • Re (450) is an in-plane retardation measured with light having a wavelength of 450 nm at 23 ° C.
  • Thickness direction retardation (Rth) is a retardation in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C.
  • Rth (450) is a retardation in the thickness direction measured with light having a wavelength of 450 nm at 23 ° C.
  • the laminate 100 includes a circularly polarizing plate 10 and a transparent conductive film 20 disposed on one side of the circularly polarizing plate 10.
  • the circularly polarizing plate 10 includes a polarizer 11, a first retardation layer 12, and a second retardation layer 13 in order from the surface opposite to the transparent conductive film 20.
  • the first retardation layer 12 exhibits a refractive index characteristic of nx> ny ⁇ nz.
  • the second retardation layer exhibits a refractive index characteristic of nz> nx ⁇ ny.
  • the transparent conductive film 20 has a transparent substrate 21 and a transparent conductive layer 22 disposed on at least one side of the transparent substrate 21.
  • the transparent conductive layer may be disposed on the circular polarizing plate 10 side of the transparent substrate, and is disposed on the opposite side of the circular polarizing plate 10. It may be.
  • the transparent conductive layer 22 is disposed on the transparent polarizing plate 21 side of the circularly polarizing plate 10.
  • the transparent conductive layer 22 includes the metal nanowire 1.
  • the transparent conductive film 20 in this embodiment is comprised from the transparent conductive layer 22 containing the metal nanowire 1, it is excellent in bending resistance, and even if it bends, it is hard to lose electroconductivity.
  • the metal nanowire 1 can be protected by a protective layer 2 as shown in FIG.
  • the transparent conductive film 20, the circularly polarizing plate 10, and the first retardation layer 12, the polarizer 11, and the second retardation layer 12 are interposed via any appropriate pressure-sensitive adhesive or adhesive. Can be pasted together (not shown).
  • the laminate of the present invention can be used as a member of an image display device (for example, an electrode of a touch panel, an electromagnetic wave shield).
  • the laminate can be arranged with the circularly polarizing plate side as the viewing side.
  • the circularly polarizing plate 10 and the transparent conductive film 20 are disposed in order from the viewing side, and the polarizer 11 and the first are sequentially disposed from the viewing side.
  • the retardation layer 12 and the second retardation layer 13 are disposed.
  • the transparent conductive layer may include a metal mesh instead of the metal nanowire or in combination with the metal nanowire. Details of the metal mesh will be described later.
  • the laminate of the present invention is provided with a circularly polarizing plate on the viewing side of the transparent conductive film, so that (i) external light (natural light) incident on the circularly polarizing plate is converted into circularly polarized light, and (ii) the Circularly polarized light is reflected by the metal nanowire or metal mesh of the transparent conductive film, the circularly polarized state is reversed in the reflected light, and (iii) the reflected light (inverted circularly polarized light) does not pass through the circularly polarizing plate ( That is, the reflected external light can be prevented from being emitted from the laminated body.
  • the circularly polarizing plate has a first retardation layer and a second retardation layer, and the presence of the second retardation layer reduces the angle dependency of the effect of absorbing the reflected light.
  • a circularly polarizing plate By using such a circularly polarizing plate, it is possible to prevent emission of reflected light reflected at various angles from the metal nanowire or the metal mesh.
  • the laminate of the present invention is applied to an image display device and the laminate is disposed on a reflector with the transparent conductive film facing down, circularly polarized light transmitted through the transparent conductive film is reflected on the reflector.
  • the transparent substrate having a small in-plane retardation Re as a transparent substrate constituting the transparent conductive film, the circularly polarized state of light transmitted through the transparent conductive film is substantially eliminated. Therefore, the emission of reflected light can be significantly suppressed. As a result of reducing external light reflection in this way, a laminate in which a conductive pattern (that is, a pattern of metal nanowires or metal mesh) is difficult to be recognized is obtained. In addition, when the laminate is used, a display device with high contrast can be obtained.
  • the circularly polarizing plate includes a polarizer, a first retardation layer, and a second retardation layer. Practically, it may have a protective film that protects the polarizer on at least one side of the polarizer.
  • the polarizer and the protective film can be laminated via any appropriate adhesive or pressure-sensitive adhesive.
  • the circularly polarizing plate has a slow axis of the circularly polarizing plate (substantially, a slow axis of a laminated retardation film composed of a first retardation layer and a second retardation layer).
  • the absorption axis of the polarizer are arranged so as to be substantially 45 ° (for example, 40 ° to 50 °).
  • Polarizer and protective film Any appropriate polarizer is used as the polarizer.
  • dichroic substances such as iodine and dichroic dyes are adsorbed on hydrophilic polymer films such as polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and ethylene / vinyl acetate copolymer partially saponified films.
  • polyene-based oriented films such as a uniaxially stretched product, a polyvinyl alcohol dehydrated product and a polyvinyl chloride dehydrochlorinated product.
  • a polarizer obtained by adsorbing a dichroic substance such as iodine on a polyvinyl alcohol film and uniaxially stretching is particularly preferable because of its high polarization dichroic ratio.
  • the thickness of the polarizer is preferably 0.5 ⁇ m to 80 ⁇ m.
  • a uniaxially stretched polarizer by adsorbing iodine to a polyvinyl alcohol film is typically produced by immersing polyvinyl alcohol in an aqueous solution of iodine and stretching it 3 to 7 times the original length.
  • the Stretching may be performed after dyeing, may be performed while dyeing, or may be performed after stretching.
  • treatments such as swelling, crosslinking, adjustment, washing with water, and drying are performed.
  • any appropriate film is used as the protective film.
  • the material that is the main component of such a film include cellulose resins such as triacetyl cellulose (TAC), (meth) acrylic, polyester, polyvinyl alcohol, polycarbonate, polyamide, and polyimide.
  • transparent resins such as polyethersulfone, polysulfone, polystyrene, polynorbornene, polyolefin, and acetate.
  • thermosetting resins such as acrylic, urethane, acrylic urethane, epoxy, and silicone, or ultraviolet curable resins are also included.
  • a glassy polymer such as a siloxane polymer is also included.
  • a polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used.
  • a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in the side chain for example, a resin composition having an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer can be mentioned.
  • the polymer film can be, for example, an extruded product of the resin composition.
  • the first retardation layer has a refractive index characteristic of nx> ny ⁇ nz.
  • the in-plane retardation Re (550) of the first retardation layer is preferably 80 nm to 200 nm, more preferably 100 nm to 180 nm, and still more preferably 110 nm to 170 nm.
  • the polarizer and the first retardation layer are laminated so that the absorption axis of the polarizer and the slow axis of the first retardation layer form a predetermined angle.
  • the angle ⁇ formed between the absorption axis of the polarizer and the slow axis of the first retardation layer preferably satisfies the relationship of 35 ° ⁇ ⁇ ⁇ 55 °, more preferably 38 ° ⁇ ⁇ ⁇ 52 °, and still more preferably Is 39 ° ⁇ ⁇ ⁇ 51 °.
  • conversion of incident light into circularly polarized light (above (i)) and absorption of reflected light (above (ii), (iii)) are effectively performed, and the reflected outside light is laminated. Can be prevented from exiting.
  • the first retardation layer exhibits the so-called reverse dispersion wavelength dependency.
  • the in-plane retardation of the first retardation layer satisfies the relationship Re (450) ⁇ Re (550).
  • Re (450) / Re (550) is preferably 0.8 or more and less than 1, and more preferably 0.8 or more and 0.95 or less.
  • the Nz coefficient of the first retardation layer is preferably 1 to 3, more preferably 1 to 2.5, still more preferably 1 to 1.5, and particularly preferably 1 to 1.3. By satisfying such a relationship, a more excellent reflection hue can be achieved.
  • the water absorption rate of the first retardation layer is preferably 3% or less, more preferably 2.5% or less, and further preferably 2% or less. By satisfying such a water absorption rate, it is possible to suppress changes in display characteristics over time. In addition, a water absorption rate can be calculated
  • the first retardation layer is preferably a stretched polymer film.
  • any appropriate resin is used as the resin for forming the polymer film.
  • resins such as cycloolefin resins such as polynorbornene, polycarbonate resins, cellulose resins, polyvinyl alcohol resins, and polysulfone resins. Of these, norbornene resins and polycarbonate resins are preferable.
  • the polynorbornene refers to a (co) polymer obtained by using a norbornene-based monomer having a norbornene ring as a part or all of a starting material (monomer).
  • polynorbornene Various products are commercially available as the polynorbornene. Specific examples include trade names “ZEONEX” and “ZEONOR” manufactured by ZEON CORPORATION, “Arton” manufactured by JSR, “TOPAS” trade name manufactured by TICONA, and trade names manufactured by Mitsui Chemicals, Inc. “APEL” may be mentioned.
  • an aromatic polycarbonate is preferably used as the polycarbonate resin.
  • the aromatic polycarbonate can be typically obtained by a reaction between a carbonate precursor and an aromatic dihydric phenol compound (dihydroxy compound).
  • Specific examples of the carbonate precursor include phosgene, bischloroformate of dihydric phenols, diphenyl carbonate, di-p-tolyl carbonate, phenyl-p-tolyl carbonate, di-p-chlorophenyl carbonate, dinaphthyl carbonate and the like. Can be mentioned. Among these, phosgene and diphenyl carbonate are preferable.
  • the polycarbonate resin includes a structural unit derived from a dihydroxy compound represented by the following general formula (1), and a structural unit derived from a dihydroxy compound represented by the following general formula (2):
  • the dihydroxy compound represented by the following general formula (3), the dihydroxy compound represented by the following general formula (4), the dihydroxy compound represented by the following general formula (5), and the following general formula (6) It includes structural units derived from one or more dihydroxy compounds selected from the group consisting of dihydroxy compounds.
  • each R 1 - R 4 are independently a hydrogen atom, a substituted or unsubstituted alkyl group having a carbon number of 1 to 20 carbon atoms, a substituted or unsubstituted C 6 to several 20 carbon atoms
  • X is a substituted or unsubstituted alkylene group having 2 to 10 carbon atoms, substituted or unsubstituted 6 carbon atoms.
  • m and n are each independently an integer of 0 to 5.
  • R 5 represents a substituted or unsubstituted monocyclic cycloalkylene group having 4 to 20 carbon atoms.
  • R 6 represents a substituted or unsubstituted monocyclic cycloalkylene group having 4 to 20 carbon atoms.
  • R 7 represents a substituted or unsubstituted alkylene group having 2 to 10 carbon atoms, and p is an integer of 2 to 100.
  • R 8 represents an alkyl group having 2 to 20 carbon atoms or a group represented by the following formula (7).
  • dihydroxy compound represented by general formula (1) Specific examples of the dihydroxy compound represented by the general formula (1) include 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 9,9-bis (4-hydroxy-3-ethylphenyl) fluorene, 9,9-bis (4-hydroxy-3-n-propylphenyl) fluorene, 9,9-bis (4-hydroxy-3-isopropylphenyl) ) Fluorene, 9,9-bis (4-hydroxy-3-n-butylphenyl) fluorene, 9,9-bis (4-hydroxy-3-sec-butylphenyl) fluorene, 9,9-bis (4-hydroxy) -3-tert-propylphenyl) fluorene, 9,9-bis (4-hydroxy-3-cyclohexylphenyl) fluorene, 9,9-bi (4-hydroxy-3-phenylphenyl) fluorene, 9,9-bis (4-bis (4-
  • dihydroxy compound represented by general formula (2) examples include isosorbide, isomannide, and isoide which are in a stereoisomeric relationship. These may be used alone or in combination of two or more.
  • isosorbide obtained by dehydrating condensation of sorbitol produced from various starches that are abundant as resources and are readily available is easy to obtain and manufacture, optical properties, moldability From the viewpoint of
  • Examples of the dihydroxy compound represented by the general formula (3) include a compound containing a monocyclic cycloalkylene group (an alicyclic dihydroxy compound). By setting it as a monocyclic structure, the toughness when the polycarbonate-type resin obtained is used as a film can be improved.
  • Representative examples of the alicyclic dihydroxy compound include compounds having a 5-membered ring structure or a 6-membered ring structure. By being a 5-membered ring structure or a 6-membered ring structure, the heat resistance of the obtained polycarbonate resin can be increased.
  • the six-membered ring structure may be fixed in a chair shape or a boat shape by a covalent bond.
  • the dihydroxy compound represented by the general formula (3) may be used alone or in combination of two or more.
  • ⁇ Dihydroxy compound represented by general formula (4) examples include a compound containing a monocyclic cycloalkylene group (an alicyclic dihydroxy compound). By setting it as a monocyclic structure, the toughness when the polycarbonate-type resin obtained is used as a film can be improved.
  • R 6 in the above general formula (4) is the following general formula (Ia) (wherein R 9 is a hydrogen atom, or substituted or unsubstituted carbon number 1 to carbon number) Represents an alkyl group of 12)).
  • Such isomers include 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol and the like. These are easily available and excellent in handleability.
  • the dihydroxy compound represented by the general formula (4) may be used alone or in combination of two or more.
  • the compound illustrated above regarding the dihydroxy compound represented by general formula (3) and (4) is an example of the alicyclic dihydroxy compound which can be used, and it is not limited to these at all.
  • dihydroxy compound represented by general formula (5) Specific examples include diethylene glycol, triethylene glycol, and polyethylene glycol (molecular weight: 150 to 2000).
  • ⁇ Dihydroxy compound represented by general formula (6) Specific examples of the dihydroxy compound represented by the general formula (6) include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, and spiroglycol represented by the following formula (8). Of these, propylene glycol, 1,4-butanediol, and spiroglycol are preferable.
  • Structural unit derived from dihydroxy compound represented by general formula (3), structural unit derived from dihydroxy compound represented by general formula (4), derived from dihydroxy compound represented by general formula (5) Among the structural units derived from the dihydroxy compound represented by the general formula (4) and / or the structural unit derived from the dihydroxy compound represented by the general formula (4) It is preferable that the structural unit derived from the dihydroxy compound represented by this is included, and it is more preferable that the structural unit derived from the dihydroxy compound represented by the said General formula (5) is included. By including the structural unit derived from the dihydroxy compound represented by the general formula (5), the stretchability can be improved.
  • the polycarbonate-based resin of the present embodiment may further contain structural units derived from other dihydroxy compounds.
  • other dihydroxy compounds include bisphenols.
  • the structural unit derived from the dihydroxy compound represented by the general formula (1) is preferably 18 mol% or more, more preferably 20 mol% or more, and further preferably 25 mol% or more. It is. If it is such a range, the 1st phase difference layer which has the wavelength dependence of reverse dispersion can be obtained.
  • the dihydroxy compound represented by the general formula (3), the dihydroxy compound represented by the general formula (4), the dihydroxy compound represented by the general formula (5) and the dihydroxy represented by the general formula (6) The structural unit derived from one or more dihydroxy compounds selected from the group consisting of compounds is preferably 25 mol% or more, more preferably 30 mol% or more, still more preferably 35 mol% in the polycarbonate-based resin. That's it. If the number of structural units is too small, the toughness of the film may be poor.
  • the glass transition temperature of the polycarbonate resin is preferably 110 ° C. or higher and 150 ° C. or lower, more preferably 120 ° C. or higher and 140 ° C. or lower. If the glass transition temperature is excessively low, the heat resistance tends to deteriorate, and there is a risk of dimensional change after film formation. If the glass transition temperature is excessively high, the molding stability at the time of film molding may be deteriorated, and the transparency of the film may be impaired.
  • the glass transition temperature is determined according to JIS K 7121 (1987).
  • the molecular weight of the polycarbonate resin can be represented by a reduced viscosity.
  • the reduced viscosity is measured using a Ubbelohde viscometer at a temperature of 20.0 ° C. ⁇ 0.1 ° C., using methylene chloride as a solvent, precisely adjusting the polycarbonate concentration to 0.6 g / dL.
  • the lower limit of the reduced viscosity is usually preferably 0.30 dL / g, more preferably 0.35 dL / g or more.
  • the upper limit of the reduced viscosity is usually preferably 1.20 dL / g, more preferably 1.00 dL / g, still more preferably 0.80 dL / g.
  • the reduced viscosity is smaller than the lower limit, there may be a problem that the mechanical strength of the molded product is reduced. On the other hand, if the reduced viscosity is larger than the above upper limit value, the fluidity during molding is lowered, which may cause a problem that productivity and moldability are lowered.
  • the first retardation layer is produced by stretching a polymer film in at least one direction as described above.
  • Any appropriate method can be adopted as a method for forming the polymer film.
  • a melt extrusion method for example, a T-die molding method
  • a cast coating method for example, a casting method
  • a calendar molding method for example, a hot press method, a co-extrusion method, a co-melting method, a multilayer extrusion method, an inflation molding method, etc. It is done.
  • a T-die molding method, a casting method, and an inflation molding method are used.
  • the thickness of the polymer film can be set to any appropriate value according to desired optical characteristics, stretching conditions described later, and the like.
  • the thickness is preferably 50 ⁇ m to 300 ⁇ m.
  • stretching temperature is preferably Tg-30 ° C to Tg + 60 ° C, more preferably Tg-10 ° C to Tg + 50 ° C, with respect to the glass transition temperature (Tg) of the polymer film.
  • the first retardation layer having the desired optical characteristics (for example, refractive index characteristics, in-plane retardation, Nz coefficient) can be obtained by appropriately selecting the stretching method and stretching conditions.
  • the first retardation layer is produced by uniaxially stretching a polymer film or uniaxially stretching a fixed end.
  • the fixed end uniaxial stretching there is a method of stretching in the width direction (lateral direction) while running the polymer film in the longitudinal direction.
  • the draw ratio is preferably 1.1 to 3.5 times.
  • the first retardation layer is produced by continuously stretching a long polymer film obliquely in the direction of an angle ⁇ with respect to the longitudinal direction.
  • a long stretched film having an orientation angle of ⁇ with respect to the longitudinal direction of the film can be obtained.
  • the manufacturing process can be simplified.
  • Examples of the stretching machine used for the oblique stretching include a tenter type stretching machine capable of adding feed forces, pulling forces, or pulling forces at different speeds in the lateral and / or longitudinal directions.
  • the tenter type stretching machine includes a horizontal uniaxial stretching machine, a simultaneous biaxial stretching machine, and the like, but any suitable stretching machine can be used as long as a long resin film can be continuously stretched obliquely.
  • the thickness of the first retardation layer is preferably 20 ⁇ m to 100 ⁇ m, more preferably 30 ⁇ m to 80 ⁇ m, and still more preferably 30 ⁇ m to 65 ⁇ m.
  • the second retardation layer exhibits a relationship in which the refractive index characteristic is nz> nx ⁇ ny. If the second retardation layer having such a refractive index characteristic is provided, the angle dependency of the effect of absorbing the reflected light is reduced, and the reflected light reflected from the metal nanowire or the metal mesh at various angles is reduced. Thus, the emission can be prevented.
  • the thickness direction retardation Rth (550) of the second retardation layer is preferably ⁇ 260 nm to ⁇ 10 nm, more preferably ⁇ 230 nm to ⁇ 15 nm, and further preferably ⁇ 215 nm to ⁇ 20 nm. If it is such a range, the said effect will become remarkable.
  • Re (550) is less than 10 nm.
  • the second retardation layer exhibits a relationship in which the refractive index is nx> ny.
  • the in-plane retardation Re (550) of the second retardation layer is preferably 10 nm to 150 nm, more preferably 10 nm to 80 nm.
  • the second retardation layer can be formed of any appropriate material.
  • a liquid crystal layer fixed in homeotropic alignment is preferable.
  • the liquid crystal material (liquid crystal compound) that can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer.
  • Specific examples of the liquid crystal compound and the method for forming the liquid crystal layer include the liquid crystal compounds and methods described in JP-A-2002-333642, [0020] to [0042].
  • the thickness is preferably 0.1 ⁇ m to 5 ⁇ m, more preferably 0.2 ⁇ m to 3 ⁇ m.
  • the second retardation layer may be a retardation film formed of a fumaric acid diester resin described in JP 2012-32784 A.
  • the thickness is preferably 5 ⁇ m to 50 ⁇ m, more preferably 10 ⁇ m to 35 ⁇ m.
  • Laminated retardation film A laminated retardation film is constituted by the first retardation layer and the second retardation layer.
  • the laminated retardation film does not include an optically anisotropic layer other than the first retardation layer and the second retardation layer.
  • the optically anisotropic layer is a layer having an in-plane retardation Re (550) exceeding 10 nm and / or a thickness direction retardation Rth (550) being less than ⁇ 10 nm or exceeding 10 nm.
  • the in-plane retardation (550) Re of the laminated retardation film composed of the first retardation layer and the second retardation layer is 120 nm to 160 nm, more preferably 130 nm to 150 nm. Preferably, it is 135 nm to 145 nm. Within such a range, conversion of incident light into circularly polarized light (above (i)) and absorption of reflected light (above (ii), (iii)) are effectively performed, and the reflected outside light is laminated. Can be prevented from exiting.
  • Thickness direction retardation Rth (550) of the laminated retardation film composed of the first retardation layer and the second retardation layer is 40 nm to 100 nm, more preferably 50 nm to 90 nm, Preferably, it is 60 nm to 80 nm. If it is such a range, it can apply to a display apparatus and can obtain the laminated body which can improve a viewing angle characteristic and can suppress the change of a display characteristic.
  • any appropriate method can be adopted.
  • the longitudinal direction of the polarizer and the polarizer having an absorption axis in the longitudinal direction and the elongated first or second retardation layer in the longitudinal direction are respectively conveyed in the longitudinal direction.
  • Laminating while aligning the longitudinal direction of the retardation layer to obtain a laminated film, and laminating the laminated film and the elongated second or first retardation layer while transporting each in the longitudinal direction And a step of laminating so that the longitudinal direction of the film and the longitudinal direction of the retardation layer are aligned.
  • a long retardation film and a long retardation film are produced by laminating a long first retardation layer and a long second retardation layer. You may manufacture by laminating
  • the angle ⁇ formed between the absorption axis of the polarizer and the slow axis of the first retardation layer preferably satisfies the relationship of 35 ° ⁇ ⁇ ⁇ 55 °, more preferably 38 ° ⁇ ⁇ ⁇ 52 °, more preferably 39 ° ⁇ ⁇ ⁇ 51 °.
  • the long first retardation layer may have a slow axis in the direction of an angle ⁇ with respect to the longitudinal direction. According to such a configuration, as described above, roll-to-roll is possible in manufacturing the polarizing plate, and the manufacturing process can be significantly shortened.
  • the transparent conductive film includes a transparent substrate and a transparent conductive layer disposed on at least one side of the transparent substrate.
  • the transparent conductive layer includes metal nanowires or metal mesh.
  • the total light transmittance of the transparent conductive film is preferably 80% or more, more preferably 85% or more, and particularly preferably 90% or more.
  • the surface resistance value of the transparent conductive film is preferably 0.1 ⁇ / ⁇ to 1000 ⁇ / ⁇ , more preferably 0.5 ⁇ / ⁇ to 500 ⁇ / ⁇ , and particularly preferably 1 ⁇ / ⁇ to 250 ⁇ / ⁇ . It is.
  • a transparent conductive layer containing metal nanowires or metal mesh By providing a transparent conductive layer containing metal nanowires or metal mesh, a transparent conductive film having a small surface resistance value can be obtained.
  • a small amount of metal nanowires can exhibit excellent conductivity with a small surface resistance, as described above. A conductive film can be obtained.
  • the in-plane retardation Re of the transparent substrate is 1 nm to 100 nm, preferably 1 nm to 50 nm, more preferably 1 nm to 10 nm, still more preferably 1 nm to 5 nm, and particularly preferably. 1 nm to 3 nm.
  • the in-plane retardation Re of the transparent substrate is preferably as small as possible. If a transparent base material having a small in-plane retardation is used, depolarization in the transparent conductive film is prevented, and emission of reflected light can be suppressed.
  • the absolute value of the thickness direction retardation Rth of the transparent substrate is preferably 100 nm or less, more preferably 75 nm or less, still more preferably 50 nm or less, particularly preferably 10 nm or less, and most preferably 5 nm or less.
  • the thickness of the transparent substrate is preferably 20 ⁇ m to 200 ⁇ m, more preferably 30 ⁇ m to 150 ⁇ m. If it is such a range, a transparent base material with a small phase difference can be obtained.
  • the total light transmittance of the transparent substrate is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more.
  • any appropriate material can be used as the material constituting the transparent substrate.
  • a polymer substrate such as a film or a plastics substrate is preferably used.
  • Excellent smoothness of transparent substrate and wettability to transparent conductive composition (metal nanowire dispersion, protective layer forming composition), and productivity can be greatly improved by continuous production using rolls. It is.
  • a material capable of expressing the in-plane retardation Re in the above range is used.
  • the material constituting the transparent base material is typically a polymer film mainly composed of a thermoplastic resin.
  • the thermoplastic resin include cycloolefin resins such as polynorbornene; acrylic resins; low retardation polycarbonate resins. Among these, a cycloolefin resin or an acrylic resin is preferable. If these resins are used, a transparent substrate having a small retardation can be obtained. Moreover, these resins are excellent in transparency, mechanical strength, thermal stability, moisture shielding properties and the like. You may use the said thermoplastic resin individually or in combination of 2 or more types.
  • polynorbornene examples are as described in the above section B-2.
  • the acrylic resin refers to a resin having a repeating unit derived from (meth) acrylic acid ester ((meth) acrylic acid ester unit) and / or a repeating unit derived from (meth) acrylic acid ((meth) acrylic acid unit). .
  • the acrylic resin may have a structural unit derived from a (meth) acrylic acid ester or a (meth) acrylic acid derivative.
  • the total content of the structural units derived from the (meth) acrylic acid ester unit, (meth) acrylic acid unit, and (meth) acrylic acid ester or (meth) acrylic acid derivative is the acrylic resin.
  • the amount is preferably 50% by weight or more, more preferably 60% by weight to 100% by weight, and particularly preferably 70% by weight to 90% by weight with respect to all the structural units constituting the resin. If it is such a range, the transparent base material of a low phase difference can be obtained.
  • the acrylic resin may have a ring structure in the main chain.
  • a ring structure By having a ring structure, it is possible to improve the glass transition temperature while suppressing an increase in retardation of the acrylic resin.
  • the ring structure include a lactone ring structure, a glutaric anhydride structure, a glutarimide structure, an N-substituted maleimide structure, and a maleic anhydride structure.
  • the acrylic resin may have other structural units.
  • other structural units include styrene, vinyl toluene, ⁇ -methyl styrene, acrylonitrile, methyl vinyl ketone, ethylene, propylene, vinyl acetate, methallyl alcohol, allyl alcohol, 2-hydroxymethyl-1-butene, ⁇ - 2- (hydroxyalkyl) acrylic acid ester such as hydroxymethylstyrene, ⁇ -hydroxyethylstyrene, methyl 2- (hydroxyethyl) acrylate, 2- (hydroxyalkyl) acrylic acid such as 2- (hydroxyethyl) acrylic acid, etc.
  • a structural unit derived from the monomer derived from the monomer.
  • acrylic resin examples include, in addition to the acrylic resins exemplified above, JP-A No. 2004-168882, JP-A No. 2007-261265, JP-A No. 2007-262399, and JP-A No. 2007-297615. Examples thereof also include acrylic resins described in JP-A-2009-039935, JP-A-2009-052021, and JP-A-2010-284840.
  • the glass transition temperature of the material constituting the transparent substrate is preferably 100 ° C. to 200 ° C., more preferably 110 ° C. to 150 ° C., and particularly preferably 110 ° C. to 140 ° C. If it is such a range, the transparent conductive film excellent in heat resistance can be obtained.
  • the transparent substrate may further contain any appropriate additive as necessary.
  • additives include plasticizers, heat stabilizers, light stabilizers, lubricants, antioxidants, ultraviolet absorbers, flame retardants, colorants, antistatic agents, compatibilizers, crosslinking agents, and thickeners. Etc. The kind and amount of the additive used can be appropriately set according to the purpose.
  • any suitable molding method is used, for example, compression molding method, transfer molding method, injection molding method, extrusion molding method, blow molding method, powder molding method, FRP molding method. , And a solvent casting method and the like can be appropriately selected.
  • an extrusion molding method or a solvent casting method is preferably used. This is because the smoothness of the obtained transparent substrate can be improved and good optical uniformity can be obtained.
  • the molding conditions can be appropriately set according to the composition and type of the resin used.
  • the transparent base material is surface-treated to hydrophilize the transparent base material surface. If the transparent substrate is hydrophilized, the processability when coating a composition for forming a transparent conductive layer (metal nanowire dispersion, composition for forming a protective layer) prepared with an aqueous solvent is excellent. Moreover, the transparent conductive film which is excellent in the adhesiveness of a transparent base material and a transparent conductive layer can be obtained.
  • the transparent conductive layer includes a metal nanowire or a metal mesh.
  • the metal nanowire is a conductive material having a metal material, a needle shape or a thread shape, and a diameter of nanometer.
  • the metal nanowire may be linear or curved. If a transparent conductive layer composed of metal nanowires is used, a transparent conductive film having excellent bending resistance can be obtained. In addition, if a transparent conductive layer composed of metal nanowires is used, the metal nanowires are formed in a mesh shape, so that a good electrical conduction path can be formed even with a small amount of metal nanowires. Can be obtained. Furthermore, when the metal wire has a mesh shape, an opening is formed in the mesh space, and a transparent conductive film having a high light transmittance can be obtained.
  • the ratio between the thickness d and the length L of the metal nanowire is preferably 10 to 100,000, more preferably 50 to 100,000, and particularly preferably 100 to 100,000. 10,000. If metal nanowires having a large aspect ratio are used in this way, the metal nanowires can cross well and high conductivity can be expressed by a small amount of metal nanowires. As a result, a transparent conductive film having a high light transmittance can be obtained.
  • the “thickness of the metal nanowire” means the diameter when the cross section of the metal nanowire is circular, and the short diameter when the cross section of the metal nanowire is elliptical. In some cases it means the longest diagonal. The thickness and length of the metal nanowire can be confirmed by a scanning electron microscope or a transmission electron microscope.
  • the thickness of the metal nanowire is preferably less than 500 nm, more preferably less than 200 nm, particularly preferably 10 nm to 100 nm, and most preferably 10 nm to 50 nm. If it is such a range, a transparent conductive layer with a high light transmittance can be formed.
  • the length of the metal nanowire is preferably 2.5 ⁇ m to 1000 ⁇ m, more preferably 10 ⁇ m to 500 ⁇ m, and particularly preferably 20 ⁇ m to 100 ⁇ m. If it is such a range, a highly conductive transparent conductive film can be obtained.
  • the metal constituting the metal nanowire any appropriate metal can be used as long as it is a highly conductive metal.
  • the metal nanowire is preferably composed of one or more metals selected from the group consisting of gold, platinum, silver and copper. Among these, silver, copper, or gold is preferable from the viewpoint of conductivity, and silver is more preferable.
  • a material obtained by performing a plating process for example, a gold plating process
  • a plating process for example, a gold plating process
  • any appropriate method can be adopted as a method for producing the metal nanowire.
  • a method of reducing silver nitrate in a solution a method in which an applied voltage or current is applied to the precursor surface from the tip of the probe, a metal nanowire is drawn out at the probe tip, and the metal nanowire is continuously formed, etc.
  • silver nanowires can be synthesized by liquid phase reduction of a silver salt such as silver nitrate in the presence of a polyol such as ethylene glycol and polyvinylpyrrolidone. Uniformly sized silver nanowires are described in, for example, Xia, Y. et al. etal. , Chem. Mater. (2002), 14, 4736-4745, Xia, Y. et al. etal. , Nano letters (2003) 3 (7), 955-960, mass production is possible.
  • the metal nanowire may be protected by a protective layer.
  • any appropriate resin can be used as a material for forming the protective layer.
  • the resin include acrylic resins; polyester resins such as polyethylene terephthalate; aromatic resins such as polystyrene, polyvinyltoluene, polyvinylxylene, polyimide, polyamide, and polyamideimide; polyurethane resins; epoxy resins; Resin; Acrylonitrile-butadiene-styrene copolymer (ABS); Cellulose; Silicon resin; Polyvinyl chloride; Polyacetate; Polynorbornene; Synthetic rubber; Preferably, polyfunctionality such as pentaerythritol triacrylate (PETA), neopentyl glycol diacrylate (NPGDA), dipentaerythritol hexaacrylate (DPHA), dipentaerythritol pentaacrylate (DPPA), trimethylolpropane triacrylate (TMPTA), etc.
  • the protective layer may be made of a conductive resin.
  • the conductive resin include poly (3,4-ethylenedioxythiophene) (PEDOT), polyaniline, polythiophene, and polydiacetylene.
  • the protective layer may be made of an inorganic material.
  • the inorganic materials for example, silica, mullite, alumina, SiC, MgO-Al 2 O 3 -SiO 2, Al 2 O 3 -SiO 2, MgO-Al 2 O 3 -SiO 2 -Li 2 O , and the like .
  • the transparent conductive layer may be formed by applying a dispersion liquid (metal nanowire dispersion liquid) obtained by dispersing the metal nanowires in a solvent on the transparent substrate, and then drying the coating layer. it can.
  • a dispersion liquid metal nanowire dispersion liquid
  • Examples of the solvent contained in the metal nanowire dispersion liquid include water, alcohol solvents, ketone solvents, ether solvents, hydrocarbon solvents, and aromatic solvents. From the viewpoint of reducing the environmental load, it is preferable to use water.
  • the dispersion concentration of the metal nanowires in the metal nanowire dispersion liquid is preferably 0.1% by weight to 1% by weight. If it is such a range, the transparent conductive layer which is excellent in electroconductivity and light transmittance can be formed.
  • the metal nanowire dispersion may further contain any appropriate additive depending on the purpose.
  • the additive include a corrosion inhibitor that prevents corrosion of the metal nanowires, and a surfactant that prevents aggregation of the metal nanowires.
  • the type, number and amount of additives used can be appropriately set according to the purpose.
  • the metal nanowire dispersion liquid may contain any appropriate binder resin as necessary as long as the effects of the present invention are obtained.
  • any appropriate method can be adopted as a method of applying the metal nanowire dispersion.
  • the coating method include spray coating, bar coating, roll coating, die coating, inkjet coating, screen coating, dip coating, slot die coating, letterpress printing method, intaglio printing method, and gravure printing method.
  • Any appropriate drying method (for example, natural drying, air drying, heat drying) can be adopted as a method for drying the coating layer.
  • the drying temperature is typically 100 ° C. to 200 ° C.
  • the drying time is typically 1 to 10 minutes.
  • the protective layer further includes the protective layer forming material or the precursor of the protective layer forming material (the resin Can be formed by applying a composition for forming a protective layer containing the monomer), followed by drying and, if necessary, curing treatment.
  • a coating method a method similar to that of the dispersion liquid can be adopted. Any appropriate drying method (for example, natural drying, air drying, heat drying) may be employed as the drying method.
  • the drying temperature is typically 100 ° C. to 200 ° C., and the drying time is typically 1 to 10 minutes.
  • the curing treatment can be performed under any appropriate condition depending on the resin constituting the protective layer.
  • the protective layer forming composition may contain a solvent.
  • the solvent contained in the protective layer forming composition include alcohol solvents, ketone solvents, tetrahydrofuran, hydrocarbon solvents, and aromatic solvents.
  • the solvent is volatile.
  • the boiling point of the solvent is preferably 200 ° C. or lower, more preferably 150 ° C. or lower, and further preferably 100 ° C. or lower.
  • composition for forming a protective layer may further contain any appropriate additive depending on the purpose.
  • the additive include a crosslinking agent, a polymerization initiator, a stabilizer, a surfactant, and a corrosion inhibitor.
  • the thickness of the transparent conductive layer is preferably 0.01 ⁇ m to 10 ⁇ m, more preferably 0.05 ⁇ m to 3 ⁇ m, and particularly preferably 0.1 ⁇ m to 1 ⁇ m. It is. If it is such a range, the transparent conductive film excellent in electroconductivity and light transmittance can be obtained.
  • the total light transmittance of the transparent conductive layer is preferably 85% or more, more preferably 90% or more, and further preferably 95% or more.
  • the content ratio of the metal nanowires in the transparent conductive layer is preferably 30% by weight to 96% by weight and more preferably 43% by weight to 88% by weight with respect to the total weight of the transparent conductive layer. If it is such a range, the transparent conductive film excellent in electroconductivity and light transmittance can be obtained.
  • the density of the transparent conductive layer is preferably 1.3 g / cm 3 to 7.4 g / cm 3 , more preferably 1.6 g / cm 3 to 4.8 g / cm 3 . If it is such a range, the transparent conductive film excellent in electroconductivity and light transmittance can be obtained.
  • the transparent conductive layer containing a metal mesh is formed by forming fine metal wires in a lattice pattern on the transparent substrate.
  • the transparent conductive layer containing a metal mesh can be formed by any appropriate method.
  • the transparent conductive layer is formed, for example, by applying a photosensitive composition (a composition for forming a transparent conductive layer) containing a silver salt on the laminate, and then performing an exposure process and a development process to form a predetermined thin metal wire. It can obtain by forming in the pattern of.
  • the transparent conductive layer can also be obtained by printing a paste containing metal fine particles (a composition for forming a transparent conductive layer) in a predetermined pattern.
  • a transparent conductive layer and a method for forming the transparent conductive layer are described in, for example, Japanese Patent Application Laid-Open No. 2012-18634, and the description thereof is incorporated herein by reference.
  • Another example of the transparent conductive layer composed of a metal mesh and a method for forming the transparent conductive layer includes a transparent conductive layer and a method for forming the transparent conductive layer described in JP-A-2003-331654.
  • the thickness of the transparent conductive layer is preferably 0.1 ⁇ m to 30 ⁇ m, more preferably 0.1 ⁇ m to 9 ⁇ m, and further preferably 1 ⁇ m to 3 ⁇ m. .
  • the transmittance of the transparent conductive layer is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more.
  • the transparent conductive layer can be patterned into a predetermined pattern.
  • the shape of the pattern of the transparent conductive layer is preferably a pattern that operates well as a touch panel (for example, a capacitive touch panel).
  • a touch panel for example, a capacitive touch panel.
  • the transparent conductive layer After the transparent conductive layer is formed on the transparent substrate, it can be patterned using a known method. In this invention, it can prevent that the pattern of the transparent conductive layer patterned in this way is visually recognized.
  • the said transparent conductive film may be equipped with arbitrary appropriate other layers as needed.
  • the other layers include a hard coat layer, an antistatic layer, an antiglare layer, an antireflection layer, and a color filter layer.
  • the hard coat layer has a function of imparting chemical resistance, scratch resistance and surface smoothness to the transparent substrate.
  • any appropriate material can be adopted as the material constituting the hard coat layer.
  • the material constituting the hard coat layer include an epoxy resin, an acrylic resin, a silicone resin, and a mixture thereof. Among these, an epoxy resin excellent in heat resistance is preferable.
  • the hard coat layer can be obtained by curing these resins with heat or active energy rays.
  • FIG. 2 is a schematic cross-sectional view showing an example of an image display device using the laminate of the present invention.
  • the image display device 200 includes a stacked body 100 and a display element 110 in order from the viewing side.
  • the laminate 100 includes the circularly polarizing plate 10 and the transparent conductive film 20 in order from the viewing side.
  • the circularly polarizing plate includes a polarizer 11, a first retardation layer 12, and a second retardation layer 13 in order from the viewing side.
  • the transparent conductive film 20 has a transparent substrate 21 and a transparent conductive layer 22 disposed on at least one side of the transparent substrate 21.
  • the transparent conductive film 20 includes the metal nanowire 1 or a metal mesh.
  • the transparent conductive film 20 can function as, for example, an electrode of a touch panel, an electromagnetic wave shield, or the like in an image display device.
  • a display element including a metal reflector is used as the display element 110.
  • a typical example of such a display element is an organic EL element including a reflective electrode (reflector). If an organic EL element is used as the display element, an image display device having excellent flexibility can be obtained.
  • the transparent conductive film 20, the circularly polarizing plate 10, and / or the display element 110 can be bonded together via arbitrary appropriate adhesives (not shown).
  • the image display device of the present invention may further include any appropriate other member depending on the application or the like.
  • the circularly polarizing plate is disposed closer to the viewing side than the transparent conductive film containing metal nanowires or metal meshes, thereby reflecting light from the reflector of the display element, And the reflected light from a metal nanowire or a metal mesh is reduced.
  • metal nanowires or metal meshes cause an increase in reflectivity. According to the present invention, even if metal nanowires or metal meshes are included, an increase in reflectivity due to the metal nanowires or metal meshes can be suppressed. .
  • the difference in light intensity between the external light reflected by the metal nanowire or metal mesh and the external light reflected by a portion other than the metal nanowire or metal mesh is reduced, and the conductive pattern (ie, the metal nanowire or metal mesh pattern) is recognized. It is possible to obtain an image display device that is difficult to perform.
  • the diffuse reflectance is reduced by 90% or more in the laminated portion of the circularly polarizing plate and the transparent conductive film in the image display device of the present invention.
  • the diffuse reflectance is reduced because the laminate composed of the circularly polarizing plate and the transparent conductive film is placed on an aluminum reflector for evaluation, and predetermined light is incident and reflected.
  • Quantitative evaluation can be made based on the relationship between the diffuse reflectance A when measured by the above and the diffuse reflectance B measured when the light is incident and reflected on the aluminum reflector.
  • the diffuse reflectance A and the diffuse reflectance B have a relationship of A ⁇ (100% ⁇ X%) ⁇ B, “the circularly polarizing plate and the transparent conductive film in the image display device” In the laminated portion, the diffuse reflectance is reduced by X% or more. ”
  • the relationship between the diffuse reflectance A and the diffuse reflectance B is preferably A ⁇ 0.1B. Further, the relationship between the diffuse reflectance A and the diffuse reflectance B is more preferably A ⁇ 0.05B, further preferably A ⁇ 0.03B, and particularly preferably A ⁇ 0.01B.
  • the diffuse reflectance is more preferably 95% or more, more preferably 97% or more, It is particularly preferable that the reduction is 99% or more.
  • the image display apparatus in which the scattering reflection is reduced can be obtained by arranging a circularly polarizing plate on the viewing side from the display element including the reflector and the transparent conductive film. A method for measuring the diffuse reflectance will be described later.
  • the difference (A ⁇ C) between the diffuse reflectance A and the diffuse reflectance C measured by placing only the circularly polarizing plate on the aluminum reflector with the polarizer facing outside is preferably 0. It is 17% or less, more preferably 0.15% or less, and still more preferably 0.01% to 0.12%.
  • a small (AC) means that an increase in reflectance due to the metal nanowire or the metal mesh is suppressed.
  • the evaluation methods in the examples are as follows.
  • the thickness was measured using a digital gauge cordless type “DG-205” manufactured by Ozaki Seisakusho Co., Ltd.
  • Retardation value A sample of 50 mm ⁇ 50 mm was cut out from each retardation layer, used as a measurement sample, and measured using Axoscan manufactured by Axometrics. The measurement wavelength was 550 nm and the measurement temperature was 23 ° C. Moreover, the average refractive index was measured using an Abbe refractometer manufactured by Atago Co., Ltd., and the refractive indexes nx, ny, and nz were calculated from the obtained retardation values. (2) Surface resistance value It measured using the product name "EC-80" made from NAPSON. The measurement temperature was 23 ° C. (3) Total light transmittance, haze Measured at 23 ° C.
  • CM-2600d manufactured by Konica Minolta
  • SCE non-regular
  • the average value of 2 repetitions was taken as the measured value.
  • the diffuse reflectance A measured by placing a laminate composed of a circularly polarizing plate and a transparent conductive film on an aluminum reflector, and the metal nanowire from the transparent conductive film of the laminate The diffuse reflectance A ′ measured after removing was measured.
  • a norbornene-based cycloolefin film (trade name “ZEONOR” manufactured by Nippon Zeon Co., Ltd.) was stretched in a uniaxial direction so that the in-plane retardation Re (550) was 140 nm to obtain a stretched film (1).
  • the thickness direction retardation Rth (550) of the film (1) was 141 nm, and the film (1) exhibited refractive index characteristics of n
  • Preparation of second retardation layer 20 parts by weight of a side chain type liquid crystal polymer represented by the following chemical formula (I) (numbers 65 and 35 in the formula indicate mol% of the monomer units and are represented by block polymer for convenience: weight average molecular weight 5000), Dissolve 80 parts by weight of a polymerizable liquid crystal exhibiting a nematic liquid crystal phase (manufactured by BASF: trade name Palicolor LC242) and 5 parts by weight of a photopolymerization initiator (trade name: Irgacure 907, manufactured by Ciba Specialty Chemicals) in 200 parts by weight of cyclopentanone.
  • a liquid crystal coating solution was prepared.
  • a liquid crystal is dried by heating at 80 degreeC for 4 minutes. Oriented.
  • the liquid crystal layer was irradiated with ultraviolet rays to cure the liquid crystal layer, thereby forming a liquid crystal solidified layer (thickness: 0.58 ⁇ m) serving as the second retardation layer on the substrate.
  • the in-plane retardation Re (550) of this layer is 0 nm
  • the thickness direction retardation Rth (550) is ⁇ 71 nm (nx: 1.5326, ny: 1.5326, nz: 1.6550), and nz>
  • the refractive index characteristic of nx ny was shown.
  • the said protective layer formation composition was apply
  • the protective layer-forming composition is cured by irradiating ultraviolet light with an integrated illuminance of 400 mJ / cm 2 with an ultraviolet light irradiation device (Fusion UV Systems) having an oxygen concentration of 100 ppm to form a protective layer, and transparent conductive Film (1) [transparent substrate / transparent conductive layer (including metal nanowires and protective layer)] was obtained.
  • This transparent conductive film (1) had a surface resistance value of 151 ⁇ / ⁇ , a total light transmittance of 91.4%, and a haze of 2.0%.
  • the transparent conductive film (1) was etched to remove metal nanowires.
  • the etching treatment was performed by immersing the transparent conductive film (1) in an etchant (product name “mixed acid Al etching solution” manufactured by Kanto Chemical Co., Inc.) heated to 40 ° C. for 15 seconds.
  • the surface resistance value of the film after the etching treatment was not less than the measurement upper limit (1,500 ⁇ / ⁇ ) of the apparatus, the total light transmittance was 92.1%, and the haze was 1.7%.
  • the circularly polarizing plate (1) and the film after the etching treatment were bonded to each other via a translucent adhesive (manufactured by Nitto Denko Corporation, trade name “CS9662”) to obtain a laminate I ′.
  • the second retardation layer of the circularly polarizing plate (1) was bonded to face the protective layer of the film after the etching treatment.
  • the laminate I ′ was placed on an aluminum reflector (diffuse reflectance B: 59.16%) so that the circularly polarizing plate was on the outer side, and the diffuse reflectance A ′ was according to the method of (4) above. Was measured. The results are shown in Table 2.
  • Example 2 (Production of circularly polarizing plate) In the same manner as in Example 1, a first retardation layer and a second retardation layer were produced, and a circularly polarizing plate was further produced.
  • a metal mesh was formed on one side of the norbornene-based cycloolefin film by a screen printing method using a silver paste (trade name “RA FS 039” manufactured by Toyochem Co., Ltd.) (line width: 8.5 ⁇ m, pitch) Sintered at 120 ° C. for 10 minutes to obtain a transparent conductive film (2) [transparent substrate / transparent conductive layer (including metal mesh)].
  • the transparent conductive film had a surface resistance value of 155 ⁇ / ⁇ , a total light transmittance of 88.1%, and a haze of 7.0%.
  • the transparent conductive film (2) was etched to remove the metal mesh.
  • the etching treatment was performed by immersing the transparent conductive film in an etchant (product name “mixed acid Al etching solution” manufactured by Kanto Chemical Co., Inc.) heated to 40 ° C. for 15 seconds.
  • the surface resistance value of the film after the etching treatment was not less than the measurement upper limit (1,500 ⁇ / ⁇ ) of the apparatus, the total light transmittance was 92.4%, and the haze was 0.7%.
  • the scattering reflectance A ′ was measured in the same manner as in Example 1 for the film after the etching treatment. The results are shown in Table 2.
  • Example 3 (Production of polycarbonate resin film) 37.5 parts by weight of isosorbide (ISB), 91.5 parts by weight of 9,9- [4- (2-hydroxyethoxy) phenyl] fluorene (BHEPF), 8.4 parts by weight of polyethylene glycol (PEG) having an average molecular weight of 400, First, 105.7 parts by weight of diphenyl carbonate (DPC) and 0.594 parts by weight of cesium carbonate (0.2% by weight aqueous solution) as a catalyst were put into a reaction vessel, respectively, and the first stage of the reaction in a nitrogen atmosphere. In this step, the temperature of the heat medium in the reaction vessel was set to 150 ° C., and the raw materials were dissolved while stirring as necessary (about 15 minutes).
  • ISB isosorbide
  • BHEPF 9,9- [4- (2-hydroxyethoxy) phenyl] fluorene
  • PEG polyethylene glycol having an average molecular weight of 400
  • DPC diphenyl carbonate
  • the pressure in the reaction vessel was changed from normal pressure to 13.3 kPa, and the generated phenol was extracted out of the reaction vessel while the temperature of the heat medium in the reaction vessel was increased to 190 ° C. over 1 hour.
  • the pressure in the reaction vessel is set to 6.67 kPa, and the heat medium temperature of the reaction vessel is increased to 230 ° C. in 15 minutes.
  • the generated phenol was extracted out of the reaction vessel. Since the stirring torque of the stirrer increased, the temperature was raised to 250 ° C. in 8 minutes, and the pressure in the reaction vessel was reduced to 0.200 kPa or less in order to remove the generated phenol.
  • the obtained polycarbonate-based resin A was vacuum-dried at 80 ° C. for 5 hours, and then a single-screw extruder (made by Isuzu Chemical Industries, screw diameter 25 mm, cylinder set temperature: 220 ° C.), T die (width 300 mm, set temperature) : 220 ° C.), a film forming apparatus equipped with a chill roll (set temperature: 120 to 130 ° C.) and a winder, a polycarbonate resin film having a length of 3 m, a width of 300 mm and a thickness of 120 ⁇ m was produced.
  • the obtained polycarbonate resin film had a water absorption rate of 1.2%.
  • the obtained polycarbonate-based resin film was cut into a length of 300 mm and a width of 300 mm, and longitudinally stretched at a temperature of 136 ° C. and a magnification of 2 times using a lab stretcher KARO IV (manufactured by Bruckner), and a stretched film (2) Got.
  • Re (550) of the obtained stretched film (2) is 141 nm
  • Rth (550) is 141 nm (nx: 1.5969, ny: 1.5942, nz: 1.5942)
  • nx> ny nz.
  • Refractive index characteristics are shown.
  • Re (450) / Re (550) of the obtained stretched film (2) was 0.89.
  • a circularly polarizing plate (2) was obtained in the same manner as in Example 1 except that the stretched film (2) was used as the first retardation layer.
  • the in-plane retardation Re (550) of the laminated retardation film composed of the first retardation layer and the second retardation layer is 141 nm, and the thickness direction retardation Rth (550) is 70 nm. there were.
  • Example 4 A circularly polarizing plate, a conductive film and a laminate were produced as in Example 2 except that the stretched film (2) produced in Example 3 was used as the first retardation layer, and diffuse reflectance A , A ′ was measured. The results are shown in Table 2.
  • Example 1 Example 1 except that a circularly polarizing plate produced without using the second retardation layer, that is, a circularly polarizing plate having only the stretched film (1) (first retardation layer) was used as the retardation layer.
  • a laminate was prepared in the same manner as described above, and the diffuse reflectances A and A ′ were measured. The results are shown in Table 2.
  • Example 2 except that a circularly polarizing plate produced without using the second retardation layer, that is, a circularly polarizing plate having only the stretched film (1) (first retardation layer) was used as the retardation layer.
  • a laminate was prepared in the same manner as described above, and the diffuse reflectances A and A ′ were measured. The results are shown in Table 2.
  • Table 1 summarizes the configurations used for the measurement of diffuse reflectance A in Examples 1 to 4 and Comparative Examples 1 and 2.
  • the diffuse reflectance A is reduced when the laminate of the present invention is used.
  • the intensity of the external light reflected on the metal nanowire is low, and the difference in light intensity between the external light reflected on the metal nanowire and the external light reflected on a portion other than the metal nanowire is small.
  • the conductive pattern is difficult to see.
  • contrast is high.

Abstract

This invention provides a laminate, in which reflective scattering of outside light is minimized despite said laminate containing metal nanowires or a metal mesh, that can be used in an image display device. Said laminate comprises a circularly-polarizing plate and a transparent electrically-conductive film. The circularly-polarizing plate comprises a polarizer, a first retardation layer, and a second retardation layer. The first retardation layer exhibits refractive-index characteristics in which nx > ny ≥ nz, the second retardation layer exhibits refractive-index characteristics in which nz > nx ≥ ny, a multilayer retardation film comprising said first and second retardation layers exhibits an in-plane retardation (Re(550)) between 120 and 160 nm and a thickness-direction retardation (Rth(550)) between 40 and 100 nm, the transparent electrically-conductive film comprises a transparent substrate and a transparent electrically-conductive layer or layers provided on one or both surfaces of said transparent substrate, said transparent substrate exhibits an in-plane retardation (Re) between 1 and 100 nm, and each transparent electrically-conductive layer contains metal nanowires or a metal mesh.

Description

積層体および画像表示装置Laminated body and image display device
 本発明は、積層体および画像表示装置に関する。 The present invention relates to a laminate and an image display device.
 従来、タッチセンサーを有する画像表示装置において、タッチセンサーの電極として、透明樹脂フィルム上にITO(インジウム・スズ複合酸化物)などの金属酸化物層を形成して得られる透明導電性フィルムが多用されている。しかし、この金属酸化物層を備える透明導電性フィルムは、屈曲により導電性が失われやすく、フレキシブルディスプレイなどの屈曲性が必要とされる用途には使用しがたいという問題がある。 Conventionally, in an image display device having a touch sensor, a transparent conductive film obtained by forming a metal oxide layer such as ITO (indium-tin composite oxide) on a transparent resin film is frequently used as an electrode of the touch sensor. ing. However, the transparent conductive film provided with this metal oxide layer is liable to lose its conductivity due to bending, and has a problem that it is difficult to use in applications that require flexibility such as a flexible display.
 一方、屈曲性の高い透明導電性フィルムとして、金属ナノワイヤまたは金属メッシュを含む透明導電性フィルムが知られている。しかし、該透明導電性フィルムは、金属ナノワイヤ等により外光が反射散乱する問題がある。このような透明導電性フィルムを画像表示装置に用いると、金属ナノワイヤ等のパターンが視認され、また、コントラストが低下し、表示特性が劣るという問題がある。 On the other hand, a transparent conductive film containing a metal nanowire or a metal mesh is known as a highly flexible transparent conductive film. However, the transparent conductive film has a problem that external light is reflected and scattered by metal nanowires or the like. When such a transparent conductive film is used in an image display device, there are problems that a pattern such as a metal nanowire is visually recognized, contrast is lowered, and display characteristics are inferior.
特開2004-349061号公報JP 2004-349061 A 特開2010-243769号公報JP 2010-243769 A 特開2012-009359号公報JP 2012-009359 A
 本発明は上記の課題を解決するためになされたものであり、その目的とするところは、画像表示装置に用いられ得る積層体であって、金属ナノワイヤまたは金属メッシュを含みながらも、外光の反射散乱が抑制された積層体を提供することにある。 The present invention has been made to solve the above-described problems, and an object of the present invention is a laminate that can be used in an image display device, and includes a metal nanowire or a metal mesh, and is capable of receiving external light. It is providing the laminated body by which reflection scattering was suppressed.
 本発明の積層体は、円偏光板と、透明導電性フィルムとを備え、該円偏光板が、透明導電性フィルムとは反対側の面から順に、偏光子と、第1の位相差層と、第2の位相差層とを有し、該第1の位相差層が、nx>ny≧nzの屈折率特性を示し、該第2の位相差層が、nz>nx≧nyの屈折率特性を示し、該第1の位相差層と該第2の位相差層とから構成される積層位相差フィルムの面内位相差Re(550)が120nm~160nmで、厚み方向の位相差Rth(550)が40nm~100nmであり、該透明導電性フィルムが、透明基材と、該透明基材の少なくとも片側に配置された透明導電性層とを有し、該透明基材の面内位相差Reが、1nm~100nmであり、該透明導電性層が、金属ナノワイヤまたは金属メッシュを含む。
 1つの実施形態においては、上記積層位相差フィルムが、第1の位相差層および第2の位相差層以外の光学異方性層を含まない。
 1つの実施形態においては、上記第1の位相差層の面内位相差が、Re(450)<Re(550)の関係を満たす。
 1つの実施形態においては、上記第1の位相差層の吸水率が、3%以下である。
 1つの実施形態においては、上記第1の位相差層が、斜め延伸により得られる。
 1つの実施形態においては、上記透明導電性層がパターン化されている。
 1つの実施形態においては、上記金属ナノワイヤが、金、白金、銀および銅からなる群より選ばれた1種以上の金属により構成される。
 本発明の別の局面によれば、画像表示装置が提供される。この画像表示装置は、視認側から順に、上記積層体と、金属製の反射体とを備える。
 1つの実施形態においては、上記画像表示装置における円偏光板および透明導電性フィルムの積層部分において、拡散反射率が90%以上低減されている。
The laminate of the present invention includes a circularly polarizing plate and a transparent conductive film, and the circularly polarizing plate, in order from the surface opposite to the transparent conductive film, a polarizer, a first retardation layer, And the second retardation layer, wherein the first retardation layer exhibits a refractive index characteristic of nx> ny ≧ nz, and the second retardation layer has a refractive index of nz> nx ≧ ny. The in-plane retardation Re (550) of the laminated retardation film composed of the first retardation layer and the second retardation layer is 120 nm to 160 nm and the thickness direction retardation Rth ( 550) is 40 nm to 100 nm, the transparent conductive film has a transparent base material, and a transparent conductive layer disposed on at least one side of the transparent base material, and an in-plane retardation of the transparent base material Re is 1 nm to 100 nm, and the transparent conductive layer comprises metal nanowires or metal meshes. No.
In one embodiment, the laminated retardation film does not include an optically anisotropic layer other than the first retardation layer and the second retardation layer.
In one embodiment, the in-plane retardation of the first retardation layer satisfies the relationship Re (450) <Re (550).
In one embodiment, the water absorption rate of the first retardation layer is 3% or less.
In one embodiment, the first retardation layer is obtained by oblique stretching.
In one embodiment, the transparent conductive layer is patterned.
In one embodiment, the metal nanowire is composed of one or more metals selected from the group consisting of gold, platinum, silver, and copper.
According to another aspect of the present invention, an image display device is provided. This image display device includes the laminate and a metal reflector in order from the viewing side.
In one embodiment, the diffuse reflectance is reduced by 90% or more in the laminated portion of the circularly polarizing plate and the transparent conductive film in the image display device.
 本発明の積層体は、第1の位相差層(nx>ny≧nz)と第2の位相差層(nz>nx≧ny)とを有する円偏光板と、金属ナノワイヤまたは金属メッシュを含む透明導電性フィルムとを備える。本発明の積層体を用いれば、外光が透明導電性フィルムに反射して生じた反射光の出射を抑制することができる。該反射光の出射が抑制されるため、金属ナノワイヤまたは金属メッシュを含む透明導電性フィルムを用いても、導電パターン(すなわち金属ナノワイヤまたは金属メッシュのパターン)が認識され難く、かつ、コントラストの高い画像表示装置を得ることができる。 The laminate of the present invention is a transparent film comprising a circularly polarizing plate having a first retardation layer (nx> ny ≧ nz) and a second retardation layer (nz> nx ≧ ny), and a metal nanowire or a metal mesh. A conductive film. If the laminated body of this invention is used, the emission of the reflected light which external light reflected and produced on the transparent conductive film can be suppressed. Since emission of the reflected light is suppressed, even when a transparent conductive film including metal nanowires or metal meshes is used, a conductive pattern (that is, metal nanowires or metal mesh patterns) is difficult to be recognized, and an image with high contrast is used. A display device can be obtained.
本発明の1つの実施形態による画像表示装置の概略断面図である。It is a schematic sectional drawing of the image display apparatus by one Embodiment of this invention. 本発明の積層体を用いた画像表示装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the image display apparatus using the laminated body of this invention.
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(550)は、層(フィルム)の厚みをd(nm)としたとき、式:Re=(nx-ny)×dによって求められる。なお、「Re(450)」は、23℃における波長450nmの光で測定した面内位相差である。
(3)厚み方向の位相差(Rth)
 「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(550)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth=(nx-nz)×dによって求められる。なお、「Rth(450)」は、23℃における波長450nmの光で測定した厚み方向の位相差である。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(Definition of terms and symbols)
The definitions of terms and symbols in this specification are as follows.
(1) Refractive index (nx, ny, nz)
“Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction). “Nz” is the refractive index in the thickness direction.
(2) In-plane retardation (Re)
“Re (550)” is an in-plane retardation measured with light having a wavelength of 550 nm at 23 ° C. Re (550) is obtained by the formula: Re = (nx−ny) × d, where d (nm) is the thickness of the layer (film). “Re (450)” is an in-plane retardation measured with light having a wavelength of 450 nm at 23 ° C.
(3) Thickness direction retardation (Rth)
“Rth (550)” is a retardation in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C. Rth (550) is obtained by the formula: Rth = (nx−nz) × d, where d (nm) is the thickness of the layer (film). “Rth (450)” is a retardation in the thickness direction measured with light having a wavelength of 450 nm at 23 ° C.
(4) Nz coefficient The Nz coefficient is obtained by Nz = Rth / Re.
A.積層体の全体構成
 図1は、本発明の好ましい実施形態による積層体の概略断面図である。この積層体100は、円偏光板10と、円偏光板10の片側に配置された透明導電性フィルム20とを備える。円偏光板10は、透明導電性フィルム20とは反対側の面から順に、偏光子11と、第1の位相差層12と、第2の位相差層13とを有する。第1の位相差層12は、nx>ny≧nzの屈折率特性を示す。第2の位相差層は、nz>nx≧nyの屈折率特性を示す。透明導電性フィルム20は、透明基材21と、透明基材21の少なくとも片側に配置された透明導電性層22とを有する。透明基材の片側に透明導電性層が配置される場合、該透明導電性層は、透明基材の円偏光板10側に配置されてもよく、円偏光板10とは反対側に配置されていてもよい。好ましくは、図1に示すように、透明導電性層22は、透明基材21の円偏光板10側に配置される。透明導電性層22は、金属ナノワイヤ1を含む。本実施形態における透明導電性フィルム20は、金属ナノワイヤ1を含む透明導電性層22から構成されるため、耐屈曲性に優れ、屈曲しても導電性が失われ難い。1つの実施形態においては、図1に示すように、金属ナノワイヤ1は保護層2により保護され得る。なお、透明導電性フィルム20と円偏光板10と、および、第1の位相差層12と偏光子11および第2の位相差層12とは、任意の適切な粘着剤または接着剤を介して貼り合わされ得る(図示せず)。本発明の積層体は、画像表示装置の部材(例えば、タッチパネルの電極、電磁波シールド)として用いられ得る。該積層体は、円偏光板側を視認側として、配置され得る。すなわち、該積層体が画像表示装置に適用される場合、視認側から順に、円偏光板10と、透明導電性フィルム20が配置され、また、視認側から順に、偏光子11と、第1の位相差層12と、第2の位相差層13とが配置される。
A. Overall configuration diagram 1 of the laminate is a schematic cross-sectional view of a laminate according to a preferred embodiment of the present invention. The laminate 100 includes a circularly polarizing plate 10 and a transparent conductive film 20 disposed on one side of the circularly polarizing plate 10. The circularly polarizing plate 10 includes a polarizer 11, a first retardation layer 12, and a second retardation layer 13 in order from the surface opposite to the transparent conductive film 20. The first retardation layer 12 exhibits a refractive index characteristic of nx> ny ≧ nz. The second retardation layer exhibits a refractive index characteristic of nz> nx ≧ ny. The transparent conductive film 20 has a transparent substrate 21 and a transparent conductive layer 22 disposed on at least one side of the transparent substrate 21. When the transparent conductive layer is disposed on one side of the transparent substrate, the transparent conductive layer may be disposed on the circular polarizing plate 10 side of the transparent substrate, and is disposed on the opposite side of the circular polarizing plate 10. It may be. Preferably, as shown in FIG. 1, the transparent conductive layer 22 is disposed on the transparent polarizing plate 21 side of the circularly polarizing plate 10. The transparent conductive layer 22 includes the metal nanowire 1. Since the transparent conductive film 20 in this embodiment is comprised from the transparent conductive layer 22 containing the metal nanowire 1, it is excellent in bending resistance, and even if it bends, it is hard to lose electroconductivity. In one embodiment, the metal nanowire 1 can be protected by a protective layer 2 as shown in FIG. In addition, the transparent conductive film 20, the circularly polarizing plate 10, and the first retardation layer 12, the polarizer 11, and the second retardation layer 12 are interposed via any appropriate pressure-sensitive adhesive or adhesive. Can be pasted together (not shown). The laminate of the present invention can be used as a member of an image display device (for example, an electrode of a touch panel, an electromagnetic wave shield). The laminate can be arranged with the circularly polarizing plate side as the viewing side. That is, when this laminated body is applied to an image display device, the circularly polarizing plate 10 and the transparent conductive film 20 are disposed in order from the viewing side, and the polarizer 11 and the first are sequentially disposed from the viewing side. The retardation layer 12 and the second retardation layer 13 are disposed.
 上記透明導電性層は、上記金属ナノワイヤに代えて、あるいは上記金属ナノワイヤと併用して、金属メッシュを含んでいてもよい。金属メッシュの詳細については後述する。 The transparent conductive layer may include a metal mesh instead of the metal nanowire or in combination with the metal nanowire. Details of the metal mesh will be described later.
 本発明の積層体は、透明導電性フィルムよりも視認側に円偏光板を備えることにより、(i)円偏光板に入射した外光(自然光)が、円偏光に変換され、(ii)該円偏光が透明導電性フィルムの金属ナノワイヤまたは金属メッシュで反射し、該反射光においては円偏光状態が反転し、(iii)該反射光(反転した円偏光)は、円偏光板を透過しない(すなわち、吸収される)ので、反射した外光が積層体から出射することを防止することができる。上記円偏光板は、第1の位相差層と第2の位相差層とを有し、該第2の位相差層の存在により、上記反射光を吸収する効果の角度依存性が低減する。このような円偏光板を用いることにより、金属ナノワイヤまたは金属メッシュから様々な角度で反射した反射光に対して、その出射を防止することができる。また、本発明の積層体を画像表示装置に適用し、透明導電性フィルムを下にして該積層体を反射体上に配置する場合には、透明導電性フィルムを透過した円偏光が該反射体で反射するが、透明導電性フィルムを構成する透明基材として、面内位相差Reが小さい透明基材を用いることにより、透明導電性フィルムを透過する光の円偏光状態が実質的に解消されず、反射光の出射が顕著に抑制され得る。このように外光反射が低減された結果、導電パターン(すなわち金属ナノワイヤまたは金属メッシュのパターン)が認識され難い積層体が得られる。また、該積層体を用いれば、コントラストの高い表示装置を得ることができる。 The laminate of the present invention is provided with a circularly polarizing plate on the viewing side of the transparent conductive film, so that (i) external light (natural light) incident on the circularly polarizing plate is converted into circularly polarized light, and (ii) the Circularly polarized light is reflected by the metal nanowire or metal mesh of the transparent conductive film, the circularly polarized state is reversed in the reflected light, and (iii) the reflected light (inverted circularly polarized light) does not pass through the circularly polarizing plate ( That is, the reflected external light can be prevented from being emitted from the laminated body. The circularly polarizing plate has a first retardation layer and a second retardation layer, and the presence of the second retardation layer reduces the angle dependency of the effect of absorbing the reflected light. By using such a circularly polarizing plate, it is possible to prevent emission of reflected light reflected at various angles from the metal nanowire or the metal mesh. In addition, when the laminate of the present invention is applied to an image display device and the laminate is disposed on a reflector with the transparent conductive film facing down, circularly polarized light transmitted through the transparent conductive film is reflected on the reflector. However, by using a transparent substrate having a small in-plane retardation Re as a transparent substrate constituting the transparent conductive film, the circularly polarized state of light transmitted through the transparent conductive film is substantially eliminated. Therefore, the emission of reflected light can be significantly suppressed. As a result of reducing external light reflection in this way, a laminate in which a conductive pattern (that is, a pattern of metal nanowires or metal mesh) is difficult to be recognized is obtained. In addition, when the laminate is used, a display device with high contrast can be obtained.
B.円偏光板
 上記円偏光板は、上記のとおり、偏光子と、第1の位相差層と、第2の位相差層とを有する。実用的には、偏光子の少なくとも片側において該偏光子を保護する保護フィルムを有し得る。偏光子と保護フィルムとは、任意の適切な接着剤または粘着剤を介して積層され得る。
B. Circularly Polarizing Plate As described above, the circularly polarizing plate includes a polarizer, a first retardation layer, and a second retardation layer. Practically, it may have a protective film that protects the polarizer on at least one side of the polarizer. The polarizer and the protective film can be laminated via any appropriate adhesive or pressure-sensitive adhesive.
 好ましくは、上記円偏光板は、該円偏光板の遅相軸(実質的には、第1の位相差層と第2の位相差層とから構成される積層位相差フィルムの遅相軸)と上記偏光子の吸収軸とのなす角度が、実質的に45°(例えば、40°~50°)となるようにして配置される。 Preferably, the circularly polarizing plate has a slow axis of the circularly polarizing plate (substantially, a slow axis of a laminated retardation film composed of a first retardation layer and a second retardation layer). And the absorption axis of the polarizer are arranged so as to be substantially 45 ° (for example, 40 ° to 50 °).
B-1.偏光子および保護フィルム
 上記偏光子としては、任意の適切な偏光子が用いられる。例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。これらの中でも、ポリビニルアルコール系フィルムにヨウ素などの二色性物質を吸着させて一軸延伸した偏光子が、偏光二色比が高く、特に好ましい。偏光子の厚みは、好ましくは、0.5μm~80μmである。
B-1. Polarizer and protective film Any appropriate polarizer is used as the polarizer. For example, dichroic substances such as iodine and dichroic dyes are adsorbed on hydrophilic polymer films such as polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and ethylene / vinyl acetate copolymer partially saponified films. And polyene-based oriented films such as a uniaxially stretched product, a polyvinyl alcohol dehydrated product and a polyvinyl chloride dehydrochlorinated product. Among these, a polarizer obtained by adsorbing a dichroic substance such as iodine on a polyvinyl alcohol film and uniaxially stretching is particularly preferable because of its high polarization dichroic ratio. The thickness of the polarizer is preferably 0.5 μm to 80 μm.
 ポリビニルアルコール系フィルムにヨウ素を吸着させて一軸延伸した偏光子は、代表的には、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3~7倍に延伸することで作製される。延伸は染色した後に行ってもよいし、染色しながら延伸してもよいし、延伸してから染色してもよい。延伸、染色以外にも、例えば、膨潤、架橋、調整、水洗、乾燥等の処理が施されて作製される。 A uniaxially stretched polarizer by adsorbing iodine to a polyvinyl alcohol film is typically produced by immersing polyvinyl alcohol in an aqueous solution of iodine and stretching it 3 to 7 times the original length. The Stretching may be performed after dyeing, may be performed while dyeing, or may be performed after stretching. In addition to stretching and dyeing, for example, treatments such as swelling, crosslinking, adjustment, washing with water, and drying are performed.
 上記保護フィルムとしては、任意の適切なフィルムが用いられる。このようなフィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、(メタ)アクリル系、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、アセテート系等の透明樹脂等が挙げられる。また、アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。上記ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。 Any appropriate film is used as the protective film. Specific examples of the material that is the main component of such a film include cellulose resins such as triacetyl cellulose (TAC), (meth) acrylic, polyester, polyvinyl alcohol, polycarbonate, polyamide, and polyimide. And transparent resins such as polyethersulfone, polysulfone, polystyrene, polynorbornene, polyolefin, and acetate. In addition, thermosetting resins such as acrylic, urethane, acrylic urethane, epoxy, and silicone, or ultraviolet curable resins are also included. In addition to this, for example, a glassy polymer such as a siloxane polymer is also included. Further, a polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used. As a material for this film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in the side chain For example, a resin composition having an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer can be mentioned. The polymer film can be, for example, an extruded product of the resin composition.
B-2.第1の位相差層
 上記第1の位相差層は、上記のとおり、屈折率特性がnx>ny≧nzの関係を示す。第1の位相差層の面内位相差Re(550)は、好ましくは80nm~200nm、より好ましくは100nm~180nm、さらに好ましくは110nm~170nmである。
B-2. First Retardation Layer As described above, the first retardation layer has a refractive index characteristic of nx> ny ≧ nz. The in-plane retardation Re (550) of the first retardation layer is preferably 80 nm to 200 nm, more preferably 100 nm to 180 nm, and still more preferably 110 nm to 170 nm.
 上記偏光子と第1の位相差層とは、偏光子の吸収軸と第1の位相差層の遅相軸とが所定の角度をなすように積層される。偏光子の吸収軸と第1の位相差層の遅相軸とのなす角度θは、好ましくは35°≦θ≦55°の関係を満たし、より好ましくは38°≦θ≦52°、さらに好ましくは39°≦θ≦51°である。このような範囲であれば、入射光の円偏光への変換(上記(i))、反射光の吸収(上記(ii)、(iii))が有効に行われ、反射した外光が積層体から出射することを防止することができる。 The polarizer and the first retardation layer are laminated so that the absorption axis of the polarizer and the slow axis of the first retardation layer form a predetermined angle. The angle θ formed between the absorption axis of the polarizer and the slow axis of the first retardation layer preferably satisfies the relationship of 35 ° ≦ θ ≦ 55 °, more preferably 38 ° ≦ θ ≦ 52 °, and still more preferably Is 39 ° ≦ θ ≦ 51 °. Within such a range, conversion of incident light into circularly polarized light (above (i)) and absorption of reflected light (above (ii), (iii)) are effectively performed, and the reflected outside light is laminated. Can be prevented from exiting.
 1つの実施形態においては、第1の位相差層は、いわゆる逆分散の波長依存性を示す。具体的には、本実施形態において第1の位相差層の面内位相差は、Re(450)<Re(550)の関係を満たす。このような関係を満たすことにより、優れた反射色相を達成することができる。Re(450)/Re(550)は、好ましくは0.8以上1未満であり、より好ましくは0.8以上0.95以下である。 In one embodiment, the first retardation layer exhibits the so-called reverse dispersion wavelength dependency. Specifically, in the present embodiment, the in-plane retardation of the first retardation layer satisfies the relationship Re (450) <Re (550). By satisfying such a relationship, an excellent reflection hue can be achieved. Re (450) / Re (550) is preferably 0.8 or more and less than 1, and more preferably 0.8 or more and 0.95 or less.
 上記第1の位相差層のNz係数は、好ましくは1~3、より好ましくは1~2.5、さらに好ましくは1~1.5、特に好ましくは1~1.3である。このような関係を満たすことにより、より優れた反射色相を達成し得る。 The Nz coefficient of the first retardation layer is preferably 1 to 3, more preferably 1 to 2.5, still more preferably 1 to 1.5, and particularly preferably 1 to 1.3. By satisfying such a relationship, a more excellent reflection hue can be achieved.
 上記第1の位相差層は、その吸水率が好ましく3%以下であり、より好ましくは2.5%以下、さらに好ましくは2%以下である。このような吸水率を満足することにより、表示特性の経時変化を抑制することができる。なお、吸水率は、JIS K 7209に準拠して求めることができる。 The water absorption rate of the first retardation layer is preferably 3% or less, more preferably 2.5% or less, and further preferably 2% or less. By satisfying such a water absorption rate, it is possible to suppress changes in display characteristics over time. In addition, a water absorption rate can be calculated | required based on JISK7209.
 上記第1の位相差層は、好ましくは、高分子フィルムの延伸フィルムである。 The first retardation layer is preferably a stretched polymer film.
 上記高分子フィルムを形成する樹脂としては、任意の適切な樹脂が用いられる。具体例としては、ポリノルボルネン等のシクロオレフィン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ポリビニルアルコール系樹脂、ポリスルホン系樹脂等の樹脂が挙げられる。中でも、ノルボルネン系樹脂、ポリカーボネート系樹脂が好ましい。 Any appropriate resin is used as the resin for forming the polymer film. Specific examples include resins such as cycloolefin resins such as polynorbornene, polycarbonate resins, cellulose resins, polyvinyl alcohol resins, and polysulfone resins. Of these, norbornene resins and polycarbonate resins are preferable.
 上記ポリノルボルネンとは、出発原料(モノマー)の一部または全部に、ノルボルネン環を有するノルボルネン系モノマーを用いて得られる(共)重合体をいう。 The polynorbornene refers to a (co) polymer obtained by using a norbornene-based monomer having a norbornene ring as a part or all of a starting material (monomer).
 上記ポリノルボルネンとしては、種々の製品が市販されている。具体例としては、日本ゼオン社製の商品名「ゼオネックス」、「ゼオノア」、JSR社製の商品名「アートン(Arton)」、TICONA社製の商品名「トーパス」、三井化学社製の商品名「APEL」が挙げられる。 Various products are commercially available as the polynorbornene. Specific examples include trade names “ZEONEX” and “ZEONOR” manufactured by ZEON CORPORATION, “Arton” manufactured by JSR, “TOPAS” trade name manufactured by TICONA, and trade names manufactured by Mitsui Chemicals, Inc. “APEL” may be mentioned.
 上記ポリカーボネート系樹脂としては、好ましくは、芳香族ポリカーボネートが用いられる。芳香族ポリカーボネートは、代表的には、カーボネート前駆物質と芳香族2価フェノール化合物(ジヒドロキシ化合物)との反応によって得ることができる。カーボネート前駆物質の具体例としては、ホスゲン、2価フェノール類のビスクロロホーメート、ジフェニルカーボネート、ジ-p-トリルカーボネート、フェニル-p-トリルカーボネート、ジ-p-クロロフェニルカーボネート、ジナフチルカーボネート等が挙げられる。これらの中でも、ホスゲン、ジフェニルカーボネートが好ましい。 As the polycarbonate resin, an aromatic polycarbonate is preferably used. The aromatic polycarbonate can be typically obtained by a reaction between a carbonate precursor and an aromatic dihydric phenol compound (dihydroxy compound). Specific examples of the carbonate precursor include phosgene, bischloroformate of dihydric phenols, diphenyl carbonate, di-p-tolyl carbonate, phenyl-p-tolyl carbonate, di-p-chlorophenyl carbonate, dinaphthyl carbonate and the like. Can be mentioned. Among these, phosgene and diphenyl carbonate are preferable.
 1つの実施形態においては、上記ポリカーボネート系樹脂は、下記一般式(1)で表されるジヒドロキシ化合物に由来する構造単位と、下記一般式(2)で表されるジヒドロキシ化合物に由来する構造単位と、下記一般式(3)で表されるジヒドロキシ化合物、下記一般式(4)で表されるジヒドロキシ化合物、下記一般式(5)で表されるジヒドロキシ化合物及び下記一般式(6)で表されるジヒドロキシ化合物からなる群より選ばれた一種以上のジヒドロキシ化合物に由来する構造単位を含む。 In one embodiment, the polycarbonate resin includes a structural unit derived from a dihydroxy compound represented by the following general formula (1), and a structural unit derived from a dihydroxy compound represented by the following general formula (2): The dihydroxy compound represented by the following general formula (3), the dihydroxy compound represented by the following general formula (4), the dihydroxy compound represented by the following general formula (5), and the following general formula (6) It includes structural units derived from one or more dihydroxy compounds selected from the group consisting of dihydroxy compounds.
Figure JPOXMLDOC01-appb-C000001
 
 上記一般式(1)中、R~Rはそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキル基、または、置換若しくは無置換の炭素数6~炭素数20のアリール基を表し、Xは置換若しくは無置換の炭素数2~炭素数10のアルキレン基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキレン基、または、置換若しくは無置換の炭素数6~炭素数20のアリーレン基を表し、m及びnはそれぞれ独立に0~5の整数である。
Figure JPOXMLDOC01-appb-C000001

In the general formula (1), each R 1 - R 4 are independently a hydrogen atom, a substituted or unsubstituted alkyl group having a carbon number of 1 to 20 carbon atoms, a substituted or unsubstituted C 6 to several 20 carbon atoms Represents a cycloalkyl group or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, and X is a substituted or unsubstituted alkylene group having 2 to 10 carbon atoms, substituted or unsubstituted 6 carbon atoms. Represents a cycloalkylene group having 20 carbon atoms, or a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, and m and n are each independently an integer of 0 to 5.
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000003
 
 上記一般式(3)中、Rは炭素数4から炭素数20の置換若しくは無置換の単環構造のシクロアルキレン基を示す。
Figure JPOXMLDOC01-appb-C000003

In the general formula (3), R 5 represents a substituted or unsubstituted monocyclic cycloalkylene group having 4 to 20 carbon atoms.
Figure JPOXMLDOC01-appb-C000004
 上記一般式(4)中、Rは炭素数4から炭素数20の置換若しくは無置換の単環構造のシクロアルキレン基を示す。
Figure JPOXMLDOC01-appb-C000004
In the general formula (4), R 6 represents a substituted or unsubstituted monocyclic cycloalkylene group having 4 to 20 carbon atoms.
Figure JPOXMLDOC01-appb-C000005
 上記一般式(5)中、Rは置換若しくは無置換の炭素数2~炭素数10のアルキレン基を示し、pは2から100の整数である。
Figure JPOXMLDOC01-appb-C000005
In the general formula (5), R 7 represents a substituted or unsubstituted alkylene group having 2 to 10 carbon atoms, and p is an integer of 2 to 100.
Figure JPOXMLDOC01-appb-C000006
 上記一般式(6)中、Rは炭素数2から炭素数20のアルキル基又は下記式(7)に示す基を表す。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000006
In the general formula (6), R 8 represents an alkyl group having 2 to 20 carbon atoms or a group represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000007
<一般式(1)で表されるジヒドロキシ化合物>
 上記一般式(1)で表されるジヒドロキシ化合物としては、具体的には、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-エチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-n-プロピルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-イソプロピルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-n-ブチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-sec-ブチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-tert-プロピルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-シクロヘキシルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-メチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-イソプロピルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-イソブチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-tert-ブチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-シクロヘキシルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3,5-ジメチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-tert-ブチル-6-メチルフェニル)フルオレン、9,9-ビス(4-(3-ヒドロキシ-2,2-ジメチルプロポキシ)フェニル)フルオレン等が例示され、好ましくは、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-メチルフェニル)フルオレンであり、特に好ましくは、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンである。
<Dihydroxy compound represented by general formula (1)>
Specific examples of the dihydroxy compound represented by the general formula (1) include 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 9,9-bis (4-hydroxy-3-ethylphenyl) fluorene, 9,9-bis (4-hydroxy-3-n-propylphenyl) fluorene, 9,9-bis (4-hydroxy-3-isopropylphenyl) ) Fluorene, 9,9-bis (4-hydroxy-3-n-butylphenyl) fluorene, 9,9-bis (4-hydroxy-3-sec-butylphenyl) fluorene, 9,9-bis (4-hydroxy) -3-tert-propylphenyl) fluorene, 9,9-bis (4-hydroxy-3-cyclohexylphenyl) fluorene, 9,9-bi (4-hydroxy-3-phenylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-methylphenyl) Fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-isopropylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-isobutylphenyl) fluorene, 9,9- Bis (4- (2-hydroxyethoxy) -3-tert-butylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-cyclohexylphenyl) fluorene, 9,9-bis (4- (2-Hydroxyethoxy) -3-phenylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3 5-dimethylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-tert-butyl-6-methylphenyl) fluorene, 9,9-bis (4- (3-hydroxy-2, 2-dimethylpropoxy) phenyl) fluorene and the like are exemplified, preferably 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene 9,9-bis (4- (2-hydroxyethoxy) -3-methylphenyl) fluorene, particularly preferably 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene.
<一般式(2)で表されるジヒドロキシ化合物>
 上記一般式(2)で表されるジヒドロキシ化合物としては、例えば、立体異性体の関係にあるイソソルビド、イソマンニド、イソイデットが挙げられる。これらは1種を単独で用いても良く、2種以上を組み合わせて用いても良い。これらのジヒドロキシ化合物のうち、資源として豊富に存在し、容易に入手可能な種々のデンプンから製造されるソルビトールを脱水縮合して得られるイソソルビドが、入手及び製造のし易さ、光学特性、成形性の面から最も好ましい。
<Dihydroxy compound represented by general formula (2)>
Examples of the dihydroxy compound represented by the general formula (2) include isosorbide, isomannide, and isoide which are in a stereoisomeric relationship. These may be used alone or in combination of two or more. Among these dihydroxy compounds, isosorbide obtained by dehydrating condensation of sorbitol produced from various starches that are abundant as resources and are readily available is easy to obtain and manufacture, optical properties, moldability From the viewpoint of
<一般式(3)で表されるジヒドロキシ化合物>
 上記一般式(3)で表されるジヒドロキシ化合物としては、単環構造のシクロアルキレン基を含む化合物(脂環式ジヒドロキシ化合物)が挙げられる。単環構造とすることにより、得られるポリカーボネート系樹脂をフィルムとしたときの靭性を改良することが出来る。脂環式ジヒドロキシ化合物の代表例としては、5員環構造又は6員環構造を含む化合物が挙げられる。5員環構造又は6員環構造であることにより、得られるポリカーボネート系樹脂の耐熱性を高くすることができる。6員環構造は共有結合によって椅子形もしくは舟形に固定されていてもよい。具体的には、1,2-シクロペンタンジオール、1,3-シクロペンタンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、2-メチル-1,4-シクロヘキサンジオール等が挙げられる。一般式(3)で表されるジヒドロキシ化合物は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<Dihydroxy compound represented by general formula (3)>
Examples of the dihydroxy compound represented by the general formula (3) include a compound containing a monocyclic cycloalkylene group (an alicyclic dihydroxy compound). By setting it as a monocyclic structure, the toughness when the polycarbonate-type resin obtained is used as a film can be improved. Representative examples of the alicyclic dihydroxy compound include compounds having a 5-membered ring structure or a 6-membered ring structure. By being a 5-membered ring structure or a 6-membered ring structure, the heat resistance of the obtained polycarbonate resin can be increased. The six-membered ring structure may be fixed in a chair shape or a boat shape by a covalent bond. Specifically, 1,2-cyclopentanediol, 1,3-cyclopentanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 2-methyl-1,4- And cyclohexanediol. The dihydroxy compound represented by the general formula (3) may be used alone or in combination of two or more.
<一般式(4)で表されるジヒドロキシ化合物>
 上記一般式(4)で表されるジヒドロキシ化合物としては、単環構造のシクロアルキレン基を含む化合物(脂環式ジヒドロキシ化合物)が挙げられる。単環構造とすることにより、得られるポリカーボネート系樹脂をフィルムとしたときの靭性を改良することが出来る。脂環式ジヒドロキシ化合物の代表例としては、上記一般式(4)におけるRが下記一般式(Ia)(式中、Rは水素原子、又は、置換若しくは無置換の炭素数1~炭素数12のアルキル基を表す。)で示される種々の異性体が挙げられる。このような異性体の好ましい具体例としては、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール等が挙げられる。これらは、入手が容易で、かつ、取扱い性に優れる。一般式(4)で表されるジヒドロキシ化合物は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<Dihydroxy compound represented by general formula (4)>
Examples of the dihydroxy compound represented by the general formula (4) include a compound containing a monocyclic cycloalkylene group (an alicyclic dihydroxy compound). By setting it as a monocyclic structure, the toughness when the polycarbonate-type resin obtained is used as a film can be improved. As a typical example of the alicyclic dihydroxy compound, R 6 in the above general formula (4) is the following general formula (Ia) (wherein R 9 is a hydrogen atom, or substituted or unsubstituted carbon number 1 to carbon number) Represents an alkyl group of 12)). Preferable specific examples of such isomers include 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol and the like. These are easily available and excellent in handleability. The dihydroxy compound represented by the general formula (4) may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000008
 
 なお、一般式(3)および(4)で表されるジヒドロキシ化合物に関して上記で例示した化合物は、使用し得る脂環式ジヒドロキシ化合物の一例であって、何らこれらに限定されるものではない。 In addition, the compound illustrated above regarding the dihydroxy compound represented by general formula (3) and (4) is an example of the alicyclic dihydroxy compound which can be used, and it is not limited to these at all.
<一般式(5)で表されるジヒドロキシ化合物>
 上記一般式(5)で表されるジヒドロキシ化合物としては、具体的にはジエチレングリコール、トリエチレングリコール、ポリエチレングリコール(分子量150~2000)などが挙げられる。
<Dihydroxy compound represented by general formula (5)>
Specific examples of the dihydroxy compound represented by the general formula (5) include diethylene glycol, triethylene glycol, and polyethylene glycol (molecular weight: 150 to 2000).
<一般式(6)で表されるジヒドロキシ化合物>
 上記一般式(6)で表されるジヒドロキシ化合物としては、具体的にはエチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール又は下記式(8)で表されるスピログリコールなどが挙げられ、その中でもプロピレングリコール、1,4-ブタンジオール、スピログリコールが好ましい。
<Dihydroxy compound represented by general formula (6)>
Specific examples of the dihydroxy compound represented by the general formula (6) include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, and spiroglycol represented by the following formula (8). Of these, propylene glycol, 1,4-butanediol, and spiroglycol are preferable.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記一般式(3)で表されるジヒドロキシ化合物に由来する構造単位、上記一般式(4)で表されるジヒドロキシ化合物に由来する構造単位、上記一般式(5)で表されるジヒドロキシ化合物に由来する構造単位及び上記一般式(6)で表されるジヒドロキシ化合物に由来する構造単位の中でも、上記一般式(4)で表されるジヒドロキシ化合物に由来する構造単位及び/又は上記一般式(5)で表されるジヒドロキシ化合物に由来する構造単位を含んでいることが好ましく、上記一般式(5)で表されるジヒドロキシ化合物に由来する構造単位を含んでいることがより好ましい。上記一般式(5)で表されるジヒドロキシ化合物に由来する構造単位を含んでいることにより、延伸性の向上が図れる。 Structural unit derived from dihydroxy compound represented by general formula (3), structural unit derived from dihydroxy compound represented by general formula (4), derived from dihydroxy compound represented by general formula (5) Among the structural units derived from the dihydroxy compound represented by the general formula (4) and / or the structural unit derived from the dihydroxy compound represented by the general formula (4) It is preferable that the structural unit derived from the dihydroxy compound represented by this is included, and it is more preferable that the structural unit derived from the dihydroxy compound represented by the said General formula (5) is included. By including the structural unit derived from the dihydroxy compound represented by the general formula (5), the stretchability can be improved.
 本実施形態のポリカーボネート系樹脂は、更にその他のジヒドロキシ化合物に由来する構造単位を含んでいてもよい。
<その他のジヒドロキシ化合物>
 その他のジヒドロキシ化合物としては、例えば、ビスフェノール類等が挙げられる。ビスフェノール類としては、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン[=ビスフェノールA]、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジエチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-(3,5-ジフェニル)フェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,4’-ジヒドロキシ-ジフェニルメタン、ビス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-5-ニトロフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、3,3-ビス(4-ヒドロキシフェニル)ペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、ビス(4-ヒドロキシフェニル)スルホン、2,4’-ジヒドロキシジフェニルスルホン、ビス(4-ヒドロキシフェニル)スルフィド、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジクロロジフェニルエーテル、4,4’-ジヒドロキシ-2,5-ジエトキシジフェニルエーテル等が挙げられる。
The polycarbonate-based resin of the present embodiment may further contain structural units derived from other dihydroxy compounds.
<Other dihydroxy compounds>
Examples of other dihydroxy compounds include bisphenols. Examples of bisphenols include 2,2-bis (4-hydroxyphenyl) propane [= bisphenol A], 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis ( 4-hydroxy-3,5-diethylphenyl) propane, 2,2-bis (4-hydroxy- (3,5-diphenyl) phenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) ) Propane, 2,2-bis (4-hydroxyphenyl) pentane, 2,4'-dihydroxy-diphenylmethane, bis (4-hydroxyphenyl) methane, bis (4-hydroxy-5-nitrophenyl) methane, 1,1 -Bis (4-hydroxyphenyl) ethane, 3,3-bis (4-hydroxyphenyl) pentane, 1,1-bis (4-hydride) Loxyphenyl) cyclohexane, bis (4-hydroxyphenyl) sulfone, 2,4′-dihydroxydiphenylsulfone, bis (4-hydroxyphenyl) sulfide, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxy-3,3 Examples include '-dichlorodiphenyl ether and 4,4'-dihydroxy-2,5-diethoxydiphenyl ether.
 上記ポリカーボネート系樹脂中、上記一般式(1)で表されるジヒドロキシ化合物に由来する構造単位は好ましくは18モル%以上であり、より好ましくは20モル%以上であり、さらに好ましくは25モル%以上である。このような範囲であれば、逆分散の波長依存性を有する第1の位相差層を得ることができる。 In the polycarbonate resin, the structural unit derived from the dihydroxy compound represented by the general formula (1) is preferably 18 mol% or more, more preferably 20 mol% or more, and further preferably 25 mol% or more. It is. If it is such a range, the 1st phase difference layer which has the wavelength dependence of reverse dispersion can be obtained.
 上記一般式(3)で表されるジヒドロキシ化合物、上記一般式(4)で表されるジヒドロキシ化合物、上記一般式(5)で表されるジヒドロキシ化合物及び上記一般式(6)で表されるジヒドロキシ化合物からなる群より選ばれた一種以上のジヒドロキシ化合物に由来する構造単位が、上記ポリカーボネート系樹脂中、25モル%以上であることが好ましく、より好ましくは30モル%以上、更に好ましくは35モル%以上である。該構造単位が過度に少ないと、フィルムとしたときの靭性が乏しくなるおそれがある。 The dihydroxy compound represented by the general formula (3), the dihydroxy compound represented by the general formula (4), the dihydroxy compound represented by the general formula (5) and the dihydroxy represented by the general formula (6) The structural unit derived from one or more dihydroxy compounds selected from the group consisting of compounds is preferably 25 mol% or more, more preferably 30 mol% or more, still more preferably 35 mol% in the polycarbonate-based resin. That's it. If the number of structural units is too small, the toughness of the film may be poor.
 上記ポリカーボネート系樹脂のガラス転移温度は、110℃以上150℃以下であることが好ましく、より好ましくは120℃以上140℃以下である。ガラス転移温度が過度に低いと耐熱性が悪くなる傾向にあり、フィルム成形後に寸法変化を起こすおそれがある。ガラス転移温度が過度に高いと、フィルム成形時の成形安定性が悪くなる場合があり、又フィルムの透明性を損なうおそれがある。なお、ガラス転移温度は、JIS K 7121(1987)に準じて求められる。 The glass transition temperature of the polycarbonate resin is preferably 110 ° C. or higher and 150 ° C. or lower, more preferably 120 ° C. or higher and 140 ° C. or lower. If the glass transition temperature is excessively low, the heat resistance tends to deteriorate, and there is a risk of dimensional change after film formation. If the glass transition temperature is excessively high, the molding stability at the time of film molding may be deteriorated, and the transparency of the film may be impaired. The glass transition temperature is determined according to JIS K 7121 (1987).
 上記ポリカーボネート系樹脂の分子量は、還元粘度で表すことができる。還元粘度は、溶媒として塩化メチレンを用い、ポリカーボネート濃度を0.6g/dLに精密に調製し、温度20.0℃±0.1℃でウベローデ粘度管を用いて測定される。還元粘度の下限は、通常0.30dL/gが好ましく、より好ましは0.35dL/g以上である。還元粘度の上限は、通常1.20dL/gが好ましく、より好ましくは1.00dL/g、更に好ましくは0.80dL/gである。還元粘度が上記下限値より小さいと成形品の機械的強度が小さくなるという問題が生じるおそれがある。一方、還元粘度が上記上限値より大きいと、成形する際の流動性が低下し、生産性や成形性が低下するという問題が生じるおそれがある。 The molecular weight of the polycarbonate resin can be represented by a reduced viscosity. The reduced viscosity is measured using a Ubbelohde viscometer at a temperature of 20.0 ° C. ± 0.1 ° C., using methylene chloride as a solvent, precisely adjusting the polycarbonate concentration to 0.6 g / dL. The lower limit of the reduced viscosity is usually preferably 0.30 dL / g, more preferably 0.35 dL / g or more. The upper limit of the reduced viscosity is usually preferably 1.20 dL / g, more preferably 1.00 dL / g, still more preferably 0.80 dL / g. If the reduced viscosity is smaller than the lower limit, there may be a problem that the mechanical strength of the molded product is reduced. On the other hand, if the reduced viscosity is larger than the above upper limit value, the fluidity during molding is lowered, which may cause a problem that productivity and moldability are lowered.
 上記第1の位相差層は、上記のとおり、高分子フィルムを少なくとも一方向に延伸することにより作製される。上記高分子フィルムの形成方法としては、任意の適切な方法が採用され得る。例えば、溶融押出し法(例えば、Tダイ成形法)、キャスト塗工法(例えば、流延法)、カレンダー成形法、熱プレス法、共押出し法、共溶融法、多層押出し、インフレーション成形法等が挙げられる。好ましくは、Tダイ成形法、流延法およびインフレーション成形法が用いられる。 The first retardation layer is produced by stretching a polymer film in at least one direction as described above. Any appropriate method can be adopted as a method for forming the polymer film. For example, a melt extrusion method (for example, a T-die molding method), a cast coating method (for example, a casting method), a calendar molding method, a hot press method, a co-extrusion method, a co-melting method, a multilayer extrusion method, an inflation molding method, etc. It is done. Preferably, a T-die molding method, a casting method, and an inflation molding method are used.
 上記高分子フィルム(未延伸フィルム)の厚みは、所望の光学特性、後述の延伸条件などに応じて、任意の適切な値に設定され得る。好ましくは50μm~300μmである。 The thickness of the polymer film (unstretched film) can be set to any appropriate value according to desired optical characteristics, stretching conditions described later, and the like. The thickness is preferably 50 μm to 300 μm.
 上記延伸は、任意の適切な延伸方法、延伸条件(例えば、延伸温度、延伸倍率、延伸方向)が採用され得る。具体的には、自由端延伸、固定端延伸、自由端収縮、固定端収縮などの様々な延伸方法を、単独で用いることも、同時もしくは逐次で用いることもできる。延伸方向に関しても、水平方向、垂直方向、厚さ方向、対角方向等、様々な方向や次元に行なうことができる。延伸の温度は、高分子フィルムのガラス転移温度(Tg)に対し、Tg-30℃~Tg+60℃であることが好ましく、より好ましくはTg-10℃~Tg+50℃である。 Any appropriate stretching method and stretching conditions (for example, stretching temperature, stretching ratio, stretching direction) may be employed for the stretching. Specifically, various stretching methods such as free end stretching, fixed end stretching, free end contraction, and fixed end contraction can be used singly or simultaneously or sequentially. The stretching direction can also be performed in various directions and dimensions such as a horizontal direction, a vertical direction, a thickness direction, and a diagonal direction. The stretching temperature is preferably Tg-30 ° C to Tg + 60 ° C, more preferably Tg-10 ° C to Tg + 50 ° C, with respect to the glass transition temperature (Tg) of the polymer film.
 上記延伸方法、延伸条件を適宜選択することにより、上記所望の光学特性(例えば、屈折率特性、面内位相差、Nz係数)を有する第1の位相差層を得ることができる。 The first retardation layer having the desired optical characteristics (for example, refractive index characteristics, in-plane retardation, Nz coefficient) can be obtained by appropriately selecting the stretching method and stretching conditions.
 1つの実施形態においては、第1の位相差層は、高分子フィルムを一軸延伸もしくは固定端一軸延伸することによりを作製される。固定端一軸延伸の具体例としては、高分子フィルムを長手方向に走行させながら、幅方向(横方向)に延伸する方法が挙げられる。延伸倍率は、好ましくは1.1倍~3.5倍である。 In one embodiment, the first retardation layer is produced by uniaxially stretching a polymer film or uniaxially stretching a fixed end. As a specific example of the fixed end uniaxial stretching, there is a method of stretching in the width direction (lateral direction) while running the polymer film in the longitudinal direction. The draw ratio is preferably 1.1 to 3.5 times.
 別の実施形態においては、第1の位相差層は、長尺状の高分子フィルムを長手方向に対して角度θの方向に連続的に斜め延伸することにより作製される。斜め延伸を採用することにより、フィルムの長手方向に対して角度θの配向角(角度θの方向に遅相軸)を有する長尺状の延伸フィルムが得られ、例えば、偏光子との積層に際してロールツーロールが可能となり、製造工程を簡略化することができる。 In another embodiment, the first retardation layer is produced by continuously stretching a long polymer film obliquely in the direction of an angle θ with respect to the longitudinal direction. By adopting oblique stretching, a long stretched film having an orientation angle of θ with respect to the longitudinal direction of the film (slow axis in the direction of angle θ) can be obtained. For example, when laminating with a polarizer Roll-to-roll is possible, and the manufacturing process can be simplified.
 斜め延伸に用いる延伸機としては、例えば、横および/または縦方向に、左右異なる速度の送り力もしくは引張り力または引き取り力を付加し得るテンター式延伸機が挙げられる。テンター式延伸機には、横一軸延伸機、同時二軸延伸機等があるが、長尺状の樹脂フィルムを連続的に斜め延伸し得る限り、任意の適切な延伸機が用いられ得る。 Examples of the stretching machine used for the oblique stretching include a tenter type stretching machine capable of adding feed forces, pulling forces, or pulling forces at different speeds in the lateral and / or longitudinal directions. The tenter type stretching machine includes a horizontal uniaxial stretching machine, a simultaneous biaxial stretching machine, and the like, but any suitable stretching machine can be used as long as a long resin film can be continuously stretched obliquely.
 上記第1の位相差層(延伸フィルム)の厚みは、好ましくは20μm~100μm、より好ましくは30μm~80μm、さらに好ましくは30μm~65μmである。 The thickness of the first retardation layer (stretched film) is preferably 20 μm to 100 μm, more preferably 30 μm to 80 μm, and still more preferably 30 μm to 65 μm.
B-3.第2の位相差層
 上記第2の位相差層は、上記のとおり、屈折率特性がnz>nx≧nyの関係を示す。このような屈折率特性を有する第2の位相差層を備えていれば、反射光を吸収する効果の角度依存性が低減し、金属ナノワイヤまたは金属メッシュから様々な角度で反射した反射光に対して、その出射を防止することができる。
B-3. Second Retardation Layer As described above, the second retardation layer exhibits a relationship in which the refractive index characteristic is nz> nx ≧ ny. If the second retardation layer having such a refractive index characteristic is provided, the angle dependency of the effect of absorbing the reflected light is reduced, and the reflected light reflected from the metal nanowire or the metal mesh at various angles is reduced. Thus, the emission can be prevented.
 上記第2の位相差層の厚み方向の位相差Rth(550)は、好ましくは-260nm~-10nm、より好ましくは-230nm~-15nm、さらに好ましくは-215nm~-20nmである。このような範囲であれば、上記効果が顕著となる。 The thickness direction retardation Rth (550) of the second retardation layer is preferably −260 nm to −10 nm, more preferably −230 nm to −15 nm, and further preferably −215 nm to −20 nm. If it is such a range, the said effect will become remarkable.
 1つの実施形態においては、第2の位相差層は、その屈折率がnx=nyの関係を示す。ここで、「nx=ny」は、nxとnyが厳密に等しい場合のみならず、nxとnyが実質的に等しい場合も包含する。具体的には、Re(550)が10nm未満であることをいう。別の実施形態においては、第2の位相差層は、その屈折率がnx>nyの関係を示す。この場合、第2の位相差層の面内位相差Re(550)は、好ましくは10nm~150nmであり、より好ましくは10nm~80nmである。 In one embodiment, the second retardation layer has a refractive index of nx = ny. Here, “nx = ny” includes not only the case where nx and ny are exactly equal, but also the case where nx and ny are substantially equal. Specifically, Re (550) is less than 10 nm. In another embodiment, the second retardation layer exhibits a relationship in which the refractive index is nx> ny. In this case, the in-plane retardation Re (550) of the second retardation layer is preferably 10 nm to 150 nm, more preferably 10 nm to 80 nm.
 上記第2の位相差層は、任意の適切な材料で形成され得る。好ましくは、ホメオトロピック配向に固定された液晶層である。ホメオトロピック配向させることができる液晶材料(液晶化合物)は、液晶モノマーであっても液晶ポリマーであってもよい。当該液晶化合物および当該液晶層の形成方法の具体例としては、特開2002-333642号公報の[0020]~[0042]に記載の液晶化合物および形成方法が挙げられる。この場合、厚みは、好ましくは0.1μm~5μm、より好ましくは0.2μm~3μmである。 The second retardation layer can be formed of any appropriate material. A liquid crystal layer fixed in homeotropic alignment is preferable. The liquid crystal material (liquid crystal compound) that can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer. Specific examples of the liquid crystal compound and the method for forming the liquid crystal layer include the liquid crystal compounds and methods described in JP-A-2002-333642, [0020] to [0042]. In this case, the thickness is preferably 0.1 μm to 5 μm, more preferably 0.2 μm to 3 μm.
 別の好ましい具体例として、第2の位相差層は、特開2012-32784号公報に記載のフマル酸ジエステル系樹脂で形成された位相差フィルムであってもよい。この場合、厚みは、好ましくは5μm~50μm、より好ましくは10μm~35μmである。 As another preferred specific example, the second retardation layer may be a retardation film formed of a fumaric acid diester resin described in JP 2012-32784 A. In this case, the thickness is preferably 5 μm to 50 μm, more preferably 10 μm to 35 μm.
B-4.積層位相差フィルム
 上記第1の位相差層および第2の位相差層により、積層位相差フィルムが構成される。好ましくは、該積層位相差フィルムは、第1の位相差層および第2の位相差層以外の光学異方性層を含まない。なお、上記光学異方性層とは、面内位相差Re(550)が10nmを超え、および/または、厚み方向の位相差Rth(550)が-10nm未満もしくは10nmを超える層をいう。
B-4. Laminated retardation film A laminated retardation film is constituted by the first retardation layer and the second retardation layer. Preferably, the laminated retardation film does not include an optically anisotropic layer other than the first retardation layer and the second retardation layer. The optically anisotropic layer is a layer having an in-plane retardation Re (550) exceeding 10 nm and / or a thickness direction retardation Rth (550) being less than −10 nm or exceeding 10 nm.
 上記第1の位相差層と第2の位相差層とから構成される積層位相差フィルムの面内位相差(550)Reは、120nm~160nmであり、より好ましくは130nm~150nmであり、さらに好ましくは135nm~145nmである。このような範囲であれば、入射光の円偏光への変換(上記(i))、反射光の吸収(上記(ii)、(iii))が有効に行われ、反射した外光が積層体から出射することを防止することができる。 The in-plane retardation (550) Re of the laminated retardation film composed of the first retardation layer and the second retardation layer is 120 nm to 160 nm, more preferably 130 nm to 150 nm. Preferably, it is 135 nm to 145 nm. Within such a range, conversion of incident light into circularly polarized light (above (i)) and absorption of reflected light (above (ii), (iii)) are effectively performed, and the reflected outside light is laminated. Can be prevented from exiting.
 上記第1の位相差層と第2の位相差層とから構成される積層位相差フィルムの厚み方向の位相差Rth(550)、40nm~100nmであり、より好ましくは50nm~90nmであり、さらに好ましくは60nm~80nmである。このような範囲であれば、表示装置に適用して、視野角特性を向上させ、表示特性の変化を抑制し得る積層体を得ることができる。 Thickness direction retardation Rth (550) of the laminated retardation film composed of the first retardation layer and the second retardation layer is 40 nm to 100 nm, more preferably 50 nm to 90 nm, Preferably, it is 60 nm to 80 nm. If it is such a range, it can apply to a display apparatus and can obtain the laminated body which can improve a viewing angle characteristic and can suppress the change of a display characteristic.
B-5.円偏光板の製造方法
 上記円偏光板の製造方法としては、任意の適切な方法が採用され得る。1つの実施形態においては、長尺状で長手方向に吸収軸を有する偏光子および長尺状の第1または第2の位相差層を、それぞれ長手方向に搬送しながら、偏光子の長手方向と位相差層の長手方向とを揃えるようにして積層して積層フィルムを得る工程と、この積層フィルムおよび長尺状の第2または第1の位相差層を、それぞれ長手方向に搬送しながら、積層フィルムの長手方向と位相差層の長手方向とを揃えるようにして積層する工程とを含む方法により製造される。なお、長尺状の第1の位相差層と長尺状の第2の位相差層とを積層して積層位相差フィルムを作製し、この積層位相差フィルムと長尺状の偏光子とを積層することにより製造してもよい。ここで、偏光子の吸収軸と第1の位相差層の遅相軸とのなす角度θは、上述のとおり、好ましくは35°≦θ≦55°の関係を満たし、より好ましくは38°≦θ≦52°、さらに好ましくは39°≦θ≦51°である。
B-5. Method for Producing Circular Polarizing Plate As a method for producing the circular polarizing plate, any appropriate method can be adopted. In one embodiment, the longitudinal direction of the polarizer and the polarizer having an absorption axis in the longitudinal direction and the elongated first or second retardation layer in the longitudinal direction are respectively conveyed in the longitudinal direction. Laminating while aligning the longitudinal direction of the retardation layer to obtain a laminated film, and laminating the laminated film and the elongated second or first retardation layer while transporting each in the longitudinal direction And a step of laminating so that the longitudinal direction of the film and the longitudinal direction of the retardation layer are aligned. A long retardation film and a long retardation film are produced by laminating a long first retardation layer and a long second retardation layer. You may manufacture by laminating | stacking. Here, the angle θ formed between the absorption axis of the polarizer and the slow axis of the first retardation layer preferably satisfies the relationship of 35 ° ≦ θ ≦ 55 °, more preferably 38 ° ≦ θ ≦ 52 °, more preferably 39 ° ≦ θ ≦ 51 °.
 上記長尺状の第1の位相差層は、その長手方向に対して角度θの方向に遅相軸を有し得る。このような構成によれば、上述のように、偏光板の製造においてロールツーロールが可能となり、製造工程を格段に短縮することができる。 The long first retardation layer may have a slow axis in the direction of an angle θ with respect to the longitudinal direction. According to such a configuration, as described above, roll-to-roll is possible in manufacturing the polarizing plate, and the manufacturing process can be significantly shortened.
C.透明導電性フィルム
 上記透明導電性フィルムは、透明基材と、該透明基材の少なくとも片側に配置された透明導電性層とを有する。透明導電性層は金属ナノワイヤまたは金属メッシュを含む。
C. Transparent conductive film The transparent conductive film includes a transparent substrate and a transparent conductive layer disposed on at least one side of the transparent substrate. The transparent conductive layer includes metal nanowires or metal mesh.
 上記透明導電性フィルムの全光線透過率は、好ましくは80%以上であり、より好ましくは85%以上であり、特に好ましくは90%以上である。金属ナノワイヤまたは金属メッシュを含む透明導電性層を備えることにより、全光線透過率の高い透明導電性フィルムを得ることができる。 The total light transmittance of the transparent conductive film is preferably 80% or more, more preferably 85% or more, and particularly preferably 90% or more. By providing a transparent conductive layer containing metal nanowires or metal mesh, a transparent conductive film having a high total light transmittance can be obtained.
 上記透明導電性フィルムの表面抵抗値は、好ましくは0.1Ω/□~1000Ω/□であり、より好ましくは0.5Ω/□~500Ω/□であり、特に好ましくは1Ω/□~250Ω/□である。金属ナノワイヤまたは金属メッシュを含む透明導電性層を備えることにより、表面抵抗値の小さい透明導電性フィルムを得ることができる。また、金属ナノワイヤを含む透明導電性層を形成する場合には、少量の金属ナノワイヤにより、上記のように表面抵抗値が小さく優れた導電性を発現させることができるので、光透過率の高い透明導電性フィルムを得ることができる。 The surface resistance value of the transparent conductive film is preferably 0.1Ω / □ to 1000Ω / □, more preferably 0.5Ω / □ to 500Ω / □, and particularly preferably 1Ω / □ to 250Ω / □. It is. By providing a transparent conductive layer containing metal nanowires or metal mesh, a transparent conductive film having a small surface resistance value can be obtained. In addition, when forming a transparent conductive layer containing metal nanowires, a small amount of metal nanowires can exhibit excellent conductivity with a small surface resistance, as described above. A conductive film can be obtained.
C-1.透明基材
 上記透明基材の面内位相差Reは、1nm~100nmであり、好ましくは1nm~50nmであり、より好ましくは1nm~10nmであり、さらに好ましくは1nm~5nmであり、特に好ましくは1nm~3nmである。上記透明基材の面内位相差Reは小さいほど好ましい。面内位相差の小さい透明基材を用いれば、透明導電性フィルムにおける偏光解消が防止され、反射光の出射を抑制することができる。
C-1. Transparent substrate The in-plane retardation Re of the transparent substrate is 1 nm to 100 nm, preferably 1 nm to 50 nm, more preferably 1 nm to 10 nm, still more preferably 1 nm to 5 nm, and particularly preferably. 1 nm to 3 nm. The in-plane retardation Re of the transparent substrate is preferably as small as possible. If a transparent base material having a small in-plane retardation is used, depolarization in the transparent conductive film is prevented, and emission of reflected light can be suppressed.
 上記透明基材の厚み方向の位相差Rthの絶対値は、好ましくは100nm以下であり、より好ましくは75nm以下であり、さらに好ましくは50nm以下であり、特に好ましくは10nm以下であり、最も好ましくは5nm以下である。 The absolute value of the thickness direction retardation Rth of the transparent substrate is preferably 100 nm or less, more preferably 75 nm or less, still more preferably 50 nm or less, particularly preferably 10 nm or less, and most preferably 5 nm or less.
 上記透明基材の厚みは、好ましくは20μm~200μmであり、より好ましくは30μm~150μmである。このような範囲であれば、位相差の小さい透明基材を得ることができる。 The thickness of the transparent substrate is preferably 20 μm to 200 μm, more preferably 30 μm to 150 μm. If it is such a range, a transparent base material with a small phase difference can be obtained.
 上記透明基材の全光線透過率は、好ましくは80%以上であり、より好ましくは85%以上であり、さらに好ましくは90%以上である。 The total light transmittance of the transparent substrate is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more.
 上記透明基材を構成する材料は、任意の適切な材料が用いられ得る。具体的には、例えば、フィルムやプラスチックス基材などの高分子基材が好ましく用いられる。透明基材の平滑性および透明導電性形成用の組成物(金属ナノワイヤ分散液、保護層形成用組成物)に対する濡れ性に優れ、また、ロールによる連続生産により生産性を大幅に向上させ得るからである。好ましくは、上記範囲の面内位相差Reを発現し得る材料が用いられる。 Any appropriate material can be used as the material constituting the transparent substrate. Specifically, for example, a polymer substrate such as a film or a plastics substrate is preferably used. Excellent smoothness of transparent substrate and wettability to transparent conductive composition (metal nanowire dispersion, protective layer forming composition), and productivity can be greatly improved by continuous production using rolls. It is. Preferably, a material capable of expressing the in-plane retardation Re in the above range is used.
 上記透明基材を構成する材料は、代表的には熱可塑性樹脂を主成分とする高分子フィルムである。熱可塑性樹脂としては、例えば、ポリノルボルネン等のシクロオレフィン系樹脂;アクリル系樹脂;低位相差ポリカーボネート系樹脂等が挙げられる。なかでも好ましくは、シクロオレフィン系樹脂またはアクリル系樹脂である。これらの樹脂を用いれば、位相差の小さい透明基材を得ることができる。また、これらの樹脂は、透明性、機械的強度、熱安定性、水分遮蔽性などに優れる。上記熱可塑性樹脂は、単独で、または2種以上組み合わせて用いてもよい。 The material constituting the transparent base material is typically a polymer film mainly composed of a thermoplastic resin. Examples of the thermoplastic resin include cycloolefin resins such as polynorbornene; acrylic resins; low retardation polycarbonate resins. Among these, a cycloolefin resin or an acrylic resin is preferable. If these resins are used, a transparent substrate having a small retardation can be obtained. Moreover, these resins are excellent in transparency, mechanical strength, thermal stability, moisture shielding properties and the like. You may use the said thermoplastic resin individually or in combination of 2 or more types.
 上記ポリノルボルネンの具体例としては、上記B-2項で説明したとおりである。 Specific examples of the polynorbornene are as described in the above section B-2.
 上記アクリル系樹脂は、(メタ)アクリル酸エステル由来の繰り返し単位((メタ)アクリル酸エステル単位)および/または(メタ)アクリル酸由来の繰り返し単位((メタ)アクリル酸単位)を有する樹脂をいう。上記アクリル系樹脂は、(メタ)アクリル酸エステルまたは(メタ)アクリル酸の誘導体に由来する構成単位を有していてもよい。 The acrylic resin refers to a resin having a repeating unit derived from (meth) acrylic acid ester ((meth) acrylic acid ester unit) and / or a repeating unit derived from (meth) acrylic acid ((meth) acrylic acid unit). . The acrylic resin may have a structural unit derived from a (meth) acrylic acid ester or a (meth) acrylic acid derivative.
 上記アクリル系樹脂において、上記(メタ)アクリル酸エステル単位、(メタ)アクリル酸単位、および(メタ)アクリル酸エステルまたは(メタ)アクリル酸の誘導体に由来する構成単位の合計含有割合は、該アクリル系樹脂を構成する全構成単位に対して、好ましくは50重量%以上であり、より好ましくは60重量%~100重量%であり、特に好ましくは70重量%~90重量%である。このような範囲であれば、低位相差の透明基材を得ることができる。 In the acrylic resin, the total content of the structural units derived from the (meth) acrylic acid ester unit, (meth) acrylic acid unit, and (meth) acrylic acid ester or (meth) acrylic acid derivative is the acrylic resin. The amount is preferably 50% by weight or more, more preferably 60% by weight to 100% by weight, and particularly preferably 70% by weight to 90% by weight with respect to all the structural units constituting the resin. If it is such a range, the transparent base material of a low phase difference can be obtained.
 上記アクリル系樹脂は、主鎖に環構造を有していてもよい。環構造を有することにより、アクリル系樹脂の位相差の上昇を抑制しつつ、ガラス転移温度を向上させることができる。環構造としては、例えば、ラクトン環構造、無水グルタル酸構造、グルタルイミド構造、N-置換マレイミド構造、無水マレイン酸構造等が挙げられる。 The acrylic resin may have a ring structure in the main chain. By having a ring structure, it is possible to improve the glass transition temperature while suppressing an increase in retardation of the acrylic resin. Examples of the ring structure include a lactone ring structure, a glutaric anhydride structure, a glutarimide structure, an N-substituted maleimide structure, and a maleic anhydride structure.
 上記アクリル系樹脂は、その他の構成単位を有し得る。その他の構成単位としては、例えば、スチレン、ビニルトルエン、α-メチルスチレン、アクリロニトリル、メチルビニルケトン、エチレン、プロピレン、酢酸ビニル、メタリルアルコール、アリルアルコール、2-ヒドロキシメチル-1-ブテン、α-ヒドロキシメチルスチレン、α-ヒドロキシエチルスチレン、2-(ヒドロキシエチル)アクリル酸メチルなどの2-(ヒドロキシアルキル)アクリル酸エステル、2-(ヒドロキシエチル)アクリル酸などの2-(ヒドロキシアルキル)アクリル酸等などの単量体に由来する構成単位が挙げられる。 The acrylic resin may have other structural units. Examples of other structural units include styrene, vinyl toluene, α-methyl styrene, acrylonitrile, methyl vinyl ketone, ethylene, propylene, vinyl acetate, methallyl alcohol, allyl alcohol, 2-hydroxymethyl-1-butene, α- 2- (hydroxyalkyl) acrylic acid ester such as hydroxymethylstyrene, α-hydroxyethylstyrene, methyl 2- (hydroxyethyl) acrylate, 2- (hydroxyalkyl) acrylic acid such as 2- (hydroxyethyl) acrylic acid, etc. And a structural unit derived from the monomer.
 上記アクリル系樹脂の具体例としては、上記で例示したアクリル系樹脂の他、特開2004-168882号公報、特開2007-261265号公報、特開2007-262399号公報、特開2007-297615号公報、特開2009-039935号公報、特開2009-052021号公報、特開2010-284840号公報に記載のアクリル系樹脂も挙げられる。 Specific examples of the acrylic resin include, in addition to the acrylic resins exemplified above, JP-A No. 2004-168882, JP-A No. 2007-261265, JP-A No. 2007-262399, and JP-A No. 2007-297615. Examples thereof also include acrylic resins described in JP-A-2009-039935, JP-A-2009-052021, and JP-A-2010-284840.
 上記透明基材を構成する材料のガラス転移温度は、好ましくは100℃~200℃であり、より好ましくは110℃~150℃であり、特に好ましくは110℃~140℃である。このような範囲であれば、耐熱性に優れる透明導電性フィルムを得ることができる。 The glass transition temperature of the material constituting the transparent substrate is preferably 100 ° C. to 200 ° C., more preferably 110 ° C. to 150 ° C., and particularly preferably 110 ° C. to 140 ° C. If it is such a range, the transparent conductive film excellent in heat resistance can be obtained.
 上記透明基材は、必要に応じて任意の適切な添加剤をさらに含み得る。添加剤の具体例としては、可塑剤、熱安定剤、光安定剤、滑剤、抗酸化剤、紫外線吸収剤、難燃剤、着色剤、帯電防止剤、相溶化剤、架橋剤、および増粘剤等が挙げられる。使用される添加剤の種類および量は、目的に応じて適宜設定され得る。 The transparent substrate may further contain any appropriate additive as necessary. Specific examples of additives include plasticizers, heat stabilizers, light stabilizers, lubricants, antioxidants, ultraviolet absorbers, flame retardants, colorants, antistatic agents, compatibilizers, crosslinking agents, and thickeners. Etc. The kind and amount of the additive used can be appropriately set according to the purpose.
 上記透明基材を得る方法としては、任意の適切な成形加工法が用いられ、例えば、圧縮成形法、トランスファー成形法、射出成形法、押出成形法、ブロー成形法、粉末成形法、FRP成形法、およびソルベントキャスティング法等から適宜、適切なものが選択され得る。これらの製法の中でも好ましくは、押出成形法またはソルベントキャスティング法が用いられる。得られる透明基材の平滑性を高め、良好な光学的均一性を得ることができるからである。成形条件は、使用される樹脂の組成や種類等に応じて適宜設定され得る。 As a method for obtaining the transparent substrate, any suitable molding method is used, for example, compression molding method, transfer molding method, injection molding method, extrusion molding method, blow molding method, powder molding method, FRP molding method. , And a solvent casting method and the like can be appropriately selected. Among these production methods, an extrusion molding method or a solvent casting method is preferably used. This is because the smoothness of the obtained transparent substrate can be improved and good optical uniformity can be obtained. The molding conditions can be appropriately set according to the composition and type of the resin used.
 必要に応じて、上記透明基材に対して各種表面処理を行ってもよい。表面処理は目的に応じて任意の適切な方法が採用される。例えば、低圧プラズマ処理、紫外線照射処理、コロナ処理、火炎処理、酸またはアルカリ処理が挙げられる。1つの実施形態においては、透明基材を表面処理して、透明基材表面を親水化させる。透明基材を親水化させれば、水系溶媒により調製された透明導電性層形成用の組成物(金属ナノワイヤ分散液、保護層形成用組成物)を塗工する際の加工性が優れる。また、透明基材と透明導電性層との密着性に優れる透明導電性フィルムを得ることができる。 If necessary, various surface treatments may be performed on the transparent substrate. As the surface treatment, any appropriate method is adopted depending on the purpose. For example, low-pressure plasma treatment, ultraviolet irradiation treatment, corona treatment, flame treatment, acid or alkali treatment may be mentioned. In one embodiment, the transparent base material is surface-treated to hydrophilize the transparent base material surface. If the transparent substrate is hydrophilized, the processability when coating a composition for forming a transparent conductive layer (metal nanowire dispersion, composition for forming a protective layer) prepared with an aqueous solvent is excellent. Moreover, the transparent conductive film which is excellent in the adhesiveness of a transparent base material and a transparent conductive layer can be obtained.
C-2.透明導電性層
 上記透明導電性層は、金属ナノワイヤまたは金属メッシュを含む。
C-2. Transparent conductive layer The transparent conductive layer includes a metal nanowire or a metal mesh.
(金属ナノワイヤ)
 上記金属ナノワイヤとは、材質が金属であり、形状が針状または糸状であり、径がナノメートルサイズの導電性物質をいう。金属ナノワイヤは直線状であってもよく、曲線状であってもよい。金属ナノワイヤで構成された透明導電性層を用いれば、耐屈曲性に優れる透明導電性フィルムを得ることができる。また、金属ナノワイヤで構成された透明導電性層を用いれば、金属ナノワイヤが網の目状となることにより、少量の金属ナノワイヤであっても良好な電気伝導経路を形成することができ、電気抵抗の小さい透明導電性フィルムを得ることができる。さらに、金属ワイヤが網の目状となることにより、網の目の隙間に開口部を形成して、光透過率の高い透明導電性フィルムを得ることができる。
(Metal nanowires)
The metal nanowire is a conductive material having a metal material, a needle shape or a thread shape, and a diameter of nanometer. The metal nanowire may be linear or curved. If a transparent conductive layer composed of metal nanowires is used, a transparent conductive film having excellent bending resistance can be obtained. In addition, if a transparent conductive layer composed of metal nanowires is used, the metal nanowires are formed in a mesh shape, so that a good electrical conduction path can be formed even with a small amount of metal nanowires. Can be obtained. Furthermore, when the metal wire has a mesh shape, an opening is formed in the mesh space, and a transparent conductive film having a high light transmittance can be obtained.
 上記金属ナノワイヤの太さdと長さLとの比(アスペクト比:L/d)は、好ましくは10~100,000であり、より好ましくは50~100,000であり、特に好ましくは100~10,000である。このようにアスペクト比の大きい金属ナノワイヤを用いれば、金属ナノワイヤが良好に交差して、少量の金属ナノワイヤにより高い導電性を発現させることができる。その結果、光透過率の高い透明導電性フィルムを得ることができる。なお、本明細書において、「金属ナノワイヤの太さ」とは、金属ナノワイヤの断面が円状である場合はその直径を意味し、楕円状である場合はその短径を意味し、多角形である場合は最も長い対角線を意味する。金属ナノワイヤの太さおよび長さは、走査型電子顕微鏡または透過型電子顕微鏡によって確認することができる。 The ratio between the thickness d and the length L of the metal nanowire (aspect ratio: L / d) is preferably 10 to 100,000, more preferably 50 to 100,000, and particularly preferably 100 to 100,000. 10,000. If metal nanowires having a large aspect ratio are used in this way, the metal nanowires can cross well and high conductivity can be expressed by a small amount of metal nanowires. As a result, a transparent conductive film having a high light transmittance can be obtained. In the present specification, the “thickness of the metal nanowire” means the diameter when the cross section of the metal nanowire is circular, and the short diameter when the cross section of the metal nanowire is elliptical. In some cases it means the longest diagonal. The thickness and length of the metal nanowire can be confirmed by a scanning electron microscope or a transmission electron microscope.
 上記金属ナノワイヤの太さは、好ましくは500nm未満であり、より好ましくは200nm未満であり、特に好ましくは10nm~100nmであり、最も好ましくは10nm~50nmである。このような範囲であれば、光透過率の高い透明導電性層を形成することができる。 The thickness of the metal nanowire is preferably less than 500 nm, more preferably less than 200 nm, particularly preferably 10 nm to 100 nm, and most preferably 10 nm to 50 nm. If it is such a range, a transparent conductive layer with a high light transmittance can be formed.
 上記金属ナノワイヤの長さは、好ましくは2.5μm~1000μmであり、より好ましくは10μm~500μmであり、特に好ましくは20μm~100μmである。このような範囲であれば、導電性の高い透明導電性フィルムを得ることができる。 The length of the metal nanowire is preferably 2.5 μm to 1000 μm, more preferably 10 μm to 500 μm, and particularly preferably 20 μm to 100 μm. If it is such a range, a highly conductive transparent conductive film can be obtained.
 上記金属ナノワイヤを構成する金属としては、導電性の高い金属である限り、任意の適切な金属が用いられ得る。上記金属ナノワイヤ、好ましくは、金、白金、銀および銅からなる群より選ばれた1種以上の金属により構成される。なかでも好ましくは、導電性の観点から、銀、銅または金であり、より好ましくは銀である。また、上記金属にメッキ処理(例えば、金メッキ処理)を行った材料を用いてもよい。 As the metal constituting the metal nanowire, any appropriate metal can be used as long as it is a highly conductive metal. The metal nanowire is preferably composed of one or more metals selected from the group consisting of gold, platinum, silver and copper. Among these, silver, copper, or gold is preferable from the viewpoint of conductivity, and silver is more preferable. Alternatively, a material obtained by performing a plating process (for example, a gold plating process) on the metal may be used.
 上記金属ナノワイヤの製造方法としては、任意の適切な方法が採用され得る。例えば溶液中で硝酸銀を還元する方法、前駆体表面にプローブの先端部から印可電圧又は電流を作用させ、プローブ先端部で金属ナノワイヤを引き出し、該金属ナノワイヤを連続的に形成する方法等が挙げられる。溶液中で硝酸銀を還元する方法においては、エチレングリコール等のポリオール、およびポリビニルピロリドンの存在下で、硝酸銀等の銀塩の液相還元することによりにより、銀ナノワイヤが合成され得る。均一サイズの銀ナノワイヤは、例えば、Xia,Y.etal.,Chem.Mater.(2002)、14、4736-4745 、Xia, Y.etal., Nano letters(2003)3(7)、955-960 に記載される方法に準じて、大量生産が可能である。 Any appropriate method can be adopted as a method for producing the metal nanowire. For example, a method of reducing silver nitrate in a solution, a method in which an applied voltage or current is applied to the precursor surface from the tip of the probe, a metal nanowire is drawn out at the probe tip, and the metal nanowire is continuously formed, etc. . In the method of reducing silver nitrate in a solution, silver nanowires can be synthesized by liquid phase reduction of a silver salt such as silver nitrate in the presence of a polyol such as ethylene glycol and polyvinylpyrrolidone. Uniformly sized silver nanowires are described in, for example, Xia, Y. et al. etal. , Chem. Mater. (2002), 14, 4736-4745, Xia, Y. et al. etal. , Nano letters (2003) 3 (7), 955-960, mass production is possible.
 透明導電性層において、上記金属ナノワイヤは、保護層により保護されていてもよい。 In the transparent conductive layer, the metal nanowire may be protected by a protective layer.
 上記保護層を形成する材料としては、任意の適切な樹脂が用いられ得る。該樹脂としては、例えば、アクリル系樹脂;ポリエチレンテレフタレート等のポリエステル系樹脂;ポリスチレン、ポリビニルトルエン、ポリビニルキシレン、ポリイミド、ポリアミド、ポリアミドイミド等の芳香族系樹脂;ポリウレタン系樹脂;エポキシ系樹脂;ポリオレフィン系樹脂;アクリロニトリル-ブタジエン-スチレン共重合体(ABS);セルロース;シリコン系樹脂;ポリ塩化ビニル;ポリアセテート;ポリノルボルネン;合成ゴム;フッ素系樹脂等が挙げられる。好ましくは、ペンタエリスリトールトリアクリレート(PETA)、ネオペンチルグリコールジアクリレート(NPGDA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、ジペンタエリスリトールペンタアクリレート(DPPA)、トリメチロールプロパントリアクリレート(TMPTA)等の多官能アクリレートから構成される硬化型樹脂(好ましくは紫外線硬化型樹脂)が用いられる。 Any appropriate resin can be used as a material for forming the protective layer. Examples of the resin include acrylic resins; polyester resins such as polyethylene terephthalate; aromatic resins such as polystyrene, polyvinyltoluene, polyvinylxylene, polyimide, polyamide, and polyamideimide; polyurethane resins; epoxy resins; Resin; Acrylonitrile-butadiene-styrene copolymer (ABS); Cellulose; Silicon resin; Polyvinyl chloride; Polyacetate; Polynorbornene; Synthetic rubber; Preferably, polyfunctionality such as pentaerythritol triacrylate (PETA), neopentyl glycol diacrylate (NPGDA), dipentaerythritol hexaacrylate (DPHA), dipentaerythritol pentaacrylate (DPPA), trimethylolpropane triacrylate (TMPTA), etc. A curable resin composed of acrylate (preferably an ultraviolet curable resin) is used.
 上記保護層は、導電性樹脂から構成されていてもよい。導電性樹脂としては、例えば、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)、ポリアニリン、ポリチオフェン、およびポリジアセチレン等が挙げられる。 The protective layer may be made of a conductive resin. Examples of the conductive resin include poly (3,4-ethylenedioxythiophene) (PEDOT), polyaniline, polythiophene, and polydiacetylene.
 上記保護層は、無機材料から構成されていてもよい。無機材料としては、例えば、シリカ、ムライト、アルミナ、SiC、MgO-Al-SiO、Al-SiO、MgO-Al-SiO-LiO等が挙げられる。 The protective layer may be made of an inorganic material. As the inorganic materials, for example, silica, mullite, alumina, SiC, MgO-Al 2 O 3 -SiO 2, Al 2 O 3 -SiO 2, MgO-Al 2 O 3 -SiO 2 -Li 2 O , and the like .
 上記透明導電性層は、上記金属ナノワイヤを溶剤に分散させて得られた分散液(金属ナノワイヤ分散液)を、上記透明基材上に塗布した後、塗布層を乾燥させて、形成することができる。 The transparent conductive layer may be formed by applying a dispersion liquid (metal nanowire dispersion liquid) obtained by dispersing the metal nanowires in a solvent on the transparent substrate, and then drying the coating layer. it can.
 上記金属ナノワイヤ分散液に含まれる溶剤としては、水、アルコール系溶剤、ケトン系溶剤、エーテル系溶剤、炭化水素系溶剤、芳香族系溶剤等が挙げられる。環境負荷低減の観点から、水を用いることが好ましい。 Examples of the solvent contained in the metal nanowire dispersion liquid include water, alcohol solvents, ketone solvents, ether solvents, hydrocarbon solvents, and aromatic solvents. From the viewpoint of reducing the environmental load, it is preferable to use water.
 上記金属ナノワイヤ分散液中の金属ナノワイヤの分散濃度は、好ましくは0.1重量%~1重量%である。このような範囲であれば、導電性および光透過性に優れる透明導電性層を形成することができる。 The dispersion concentration of the metal nanowires in the metal nanowire dispersion liquid is preferably 0.1% by weight to 1% by weight. If it is such a range, the transparent conductive layer which is excellent in electroconductivity and light transmittance can be formed.
 上記金属ナノワイヤ分散液は、目的に応じて任意の適切な添加剤をさらに含有し得る。上記添加剤としては、例えば、金属ナノワイヤの腐食を防止する腐食防止材、金属ナノワイヤの凝集を防止する界面活性剤等が挙げられる。使用される添加剤の種類、数および量は、目的に応じて適切に設定され得る。また、金属ナノワイヤ分散液は、本発明の効果が得られる限り、必要に応じて、任意の適切なバインダー樹脂を含み得る。 The metal nanowire dispersion may further contain any appropriate additive depending on the purpose. Examples of the additive include a corrosion inhibitor that prevents corrosion of the metal nanowires, and a surfactant that prevents aggregation of the metal nanowires. The type, number and amount of additives used can be appropriately set according to the purpose. In addition, the metal nanowire dispersion liquid may contain any appropriate binder resin as necessary as long as the effects of the present invention are obtained.
 上記金属ナノワイヤ分散液の塗布方法としては、任意の適切な方法が採用され得る。塗布方法としては、例えば、スプレーコート、バーコート、ロールコート、ダイコート、インクジェットコート、スクリーンコート、ディップコート、スロットダイコート、凸版印刷法、凹版印刷法、グラビア印刷法等が挙げられる。塗布層の乾燥方法としては、任意の適切な乾燥方法(例えば、自然乾燥、送風乾燥、加熱乾燥)が採用され得る。例えば、加熱乾燥の場合には、乾燥温度は代表的には100℃~200℃であり、乾燥時間は代表的には1~10分である。 Any appropriate method can be adopted as a method of applying the metal nanowire dispersion. Examples of the coating method include spray coating, bar coating, roll coating, die coating, inkjet coating, screen coating, dip coating, slot die coating, letterpress printing method, intaglio printing method, and gravure printing method. Any appropriate drying method (for example, natural drying, air drying, heat drying) can be adopted as a method for drying the coating layer. For example, in the case of heat drying, the drying temperature is typically 100 ° C. to 200 ° C., and the drying time is typically 1 to 10 minutes.
 透明導電性層が保護層を有する場合、該保護層は、例えば、上記のようにして金属ナノワイヤ部を形成した後、さらに上記保護層形成用材料または保護層形成用材料の前駆体(上記樹脂を構成する単量体)を含む保護層形成用組成物を塗布し、その後乾燥、ならびに必要に応じて硬化処理して形成させることができる。塗布方法としては、上記分散液と同様の方法が採用され得る。乾燥方法としては、任意の適切な乾燥方法(例えば、自然乾燥、送風乾燥、加熱乾燥)が採用され得る。例えば、加熱乾燥の場合には、乾燥温度は代表的には100℃~200℃であり、乾燥時間は代表的には1~10分である。硬化処理は、保護層を構成する樹脂に応じて任意の適切な条件により行われ得る。 When the transparent conductive layer has a protective layer, for example, after forming the metal nanowire portion as described above, the protective layer further includes the protective layer forming material or the precursor of the protective layer forming material (the resin Can be formed by applying a composition for forming a protective layer containing the monomer), followed by drying and, if necessary, curing treatment. As a coating method, a method similar to that of the dispersion liquid can be adopted. Any appropriate drying method (for example, natural drying, air drying, heat drying) may be employed as the drying method. For example, in the case of heat drying, the drying temperature is typically 100 ° C. to 200 ° C., and the drying time is typically 1 to 10 minutes. The curing treatment can be performed under any appropriate condition depending on the resin constituting the protective layer.
 上記保護層形成用組成物は溶剤を含み得る。上記保護層形成用組成物に含まれる溶剤としては、例えば、アルコール系溶剤、ケトン系溶剤、テトラヒドロフラン、炭化水素系溶剤、または芳香族系溶剤等が挙げられる。好ましくは、該溶剤は、揮発性である。該溶剤の沸点は、好ましくは200℃以下であり、より好ましくは150℃以下であり、さらに好ましくは100℃以下である。 The protective layer forming composition may contain a solvent. Examples of the solvent contained in the protective layer forming composition include alcohol solvents, ketone solvents, tetrahydrofuran, hydrocarbon solvents, and aromatic solvents. Preferably the solvent is volatile. The boiling point of the solvent is preferably 200 ° C. or lower, more preferably 150 ° C. or lower, and further preferably 100 ° C. or lower.
 上記保護層形成用組成物は、目的に応じて任意の適切な添加剤をさらに含有し得る。添加剤としては、例えば、架橋剤、重合開始剤、安定剤、界面活性剤、腐食防止剤等が挙げられる。 The composition for forming a protective layer may further contain any appropriate additive depending on the purpose. Examples of the additive include a crosslinking agent, a polymerization initiator, a stabilizer, a surfactant, and a corrosion inhibitor.
 上記透明導電性層が金属ナノワイヤを含む場合、上記透明導電性層の厚みは、好ましくは0.01μm~10μmであり、より好ましくは0.05μm~3μmであり、特に好ましくは0.1μm~1μmである。このような範囲であれば、導電性および光透過性に優れる透明導電性フィルムを得ることができる。 When the transparent conductive layer includes metal nanowires, the thickness of the transparent conductive layer is preferably 0.01 μm to 10 μm, more preferably 0.05 μm to 3 μm, and particularly preferably 0.1 μm to 1 μm. It is. If it is such a range, the transparent conductive film excellent in electroconductivity and light transmittance can be obtained.
 上記透明導電性層が金属ナノワイヤを含む場合、上記透明導電性層の全光線透過率は、好ましくは85%以上であり、より好ましくは90%以上であり、さらに好ましくは95%以上である。 When the transparent conductive layer contains metal nanowires, the total light transmittance of the transparent conductive layer is preferably 85% or more, more preferably 90% or more, and further preferably 95% or more.
 上記透明導電性層における金属ナノワイヤの含有割合は、透明導電性層の全重量に対して、好ましくは30重量%~96重量%であり、より好ましくは43重量%~88重量%である。このような範囲であれば、導電性および光透過性に優れる透明導電性フィルムを得ることができる。 The content ratio of the metal nanowires in the transparent conductive layer is preferably 30% by weight to 96% by weight and more preferably 43% by weight to 88% by weight with respect to the total weight of the transparent conductive layer. If it is such a range, the transparent conductive film excellent in electroconductivity and light transmittance can be obtained.
 上記金属ナノワイヤが銀ナノワイヤである場合、透明導電性層の密度は、好ましくは1.3g/cm~7.4g/cmであり、より好ましくは1.6g/cm~4.8g/cmである。このような範囲であれば、導電性および光透過性に優れる透明導電性フィルムを得ることができる。 When the metal nanowire is a silver nanowire, the density of the transparent conductive layer is preferably 1.3 g / cm 3 to 7.4 g / cm 3 , more preferably 1.6 g / cm 3 to 4.8 g / cm 3 . If it is such a range, the transparent conductive film excellent in electroconductivity and light transmittance can be obtained.
(金属メッシュ)
 金属メッシュを含む透明導電性層は、上記透明基材上に、金属細線が格子状のパターンに形成されてなる。金属メッシュを含む透明導電性層は、任意の適切な方法により形成させることができる。該透明導電性層は、例えば、銀塩を含む感光性組成物(透明導電性層形成用組成物)を上記積層体上に塗布し、その後、露光処理および現像処理を行い、金属細線を所定のパターンに形成することにより得ることができる。また、該透明導電性層は、金属微粒子を含むペースト(透明導電性層形成用組成物)を所定のパターンに印刷して得ることもできる。このような透明導電性層およびその形成方法の詳細は、例えば、特開2012-18634号公報に記載されており、その記載は本明細書に参考として援用される。また、金属メッシュから構成される透明導電性層およびその形成方法の別の例としては、特開2003-331654号公報に記載の透明導電性層およびその形成方法が挙げられる。
(Metal mesh)
The transparent conductive layer containing a metal mesh is formed by forming fine metal wires in a lattice pattern on the transparent substrate. The transparent conductive layer containing a metal mesh can be formed by any appropriate method. The transparent conductive layer is formed, for example, by applying a photosensitive composition (a composition for forming a transparent conductive layer) containing a silver salt on the laminate, and then performing an exposure process and a development process to form a predetermined thin metal wire. It can obtain by forming in the pattern of. The transparent conductive layer can also be obtained by printing a paste containing metal fine particles (a composition for forming a transparent conductive layer) in a predetermined pattern. Details of such a transparent conductive layer and a method for forming the transparent conductive layer are described in, for example, Japanese Patent Application Laid-Open No. 2012-18634, and the description thereof is incorporated herein by reference. Another example of the transparent conductive layer composed of a metal mesh and a method for forming the transparent conductive layer includes a transparent conductive layer and a method for forming the transparent conductive layer described in JP-A-2003-331654.
 上記透明導電性層が金属メッシュを含む場合、該透明導電性層の厚みは、好ましくは0.1μm~30μmであり、より好ましくは0.1μm~9μmであり、さらに好ましくは1μm~3μmである。 When the transparent conductive layer includes a metal mesh, the thickness of the transparent conductive layer is preferably 0.1 μm to 30 μm, more preferably 0.1 μm to 9 μm, and further preferably 1 μm to 3 μm. .
 上記透明導電性層が金属メッシュを含む場合、該透明導電性層の透過率は、好ましくは80%以上であり、より好ましくは85%以上であり、さらに好ましくは90%以上である。 When the transparent conductive layer contains a metal mesh, the transmittance of the transparent conductive layer is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more.
 上記透明導電性層は所定のパターンにパターン化され得る。透明導電性層のパターンの形状はタッチパネル(例えば、静電容量方式タッチパネル)として良好に動作するパターンが好ましく、例えば、特表2011-511357号公報、特開2010-164938号公報、特開2008-310550号公報、特表2003-511799号公報、特表2010-541109号公報に記載のパターンが挙げられる。透明導電性層は透明基材上に形成された後、公知の方法を用いてパターン化することができる。本発明においては、このようにパターン化された透明導電性層のパターンが視認されることを防止することができる。 The transparent conductive layer can be patterned into a predetermined pattern. The shape of the pattern of the transparent conductive layer is preferably a pattern that operates well as a touch panel (for example, a capacitive touch panel). For example, JP 2011-511357 A, JP 2010-164938 A, and JP 2008-A No. 310550, JP-T 2003-511799, JP-T 2010-541109, and the like. After the transparent conductive layer is formed on the transparent substrate, it can be patterned using a known method. In this invention, it can prevent that the pattern of the transparent conductive layer patterned in this way is visually recognized.
C-3.その他の層
 上記透明導電性フィルムは、必要に応じて、任意の適切なその他の層を備え得る。上記その他の層としては、例えば、ハードコート層、帯電防止層、アンチグレア層、反射防止層、カラーフィルター層等が挙げられる。
C-3. Other layer The said transparent conductive film may be equipped with arbitrary appropriate other layers as needed. Examples of the other layers include a hard coat layer, an antistatic layer, an antiglare layer, an antireflection layer, and a color filter layer.
 上記ハードコート層は、上記透明基材に耐薬品性、耐擦傷性および表面平滑性を付与させる機能を有する。 The hard coat layer has a function of imparting chemical resistance, scratch resistance and surface smoothness to the transparent substrate.
 上記ハードコート層を構成する材料としては、任意の適切なものを採用し得る。上記ハードコート層を構成する材料としては、例えば、エポキシ系樹脂、アクリル系樹脂、シリコーン系樹脂およびこれらの混合物が挙げられる。なかでも好ましくは、耐熱性に優れるエポキシ系樹脂である。上記ハードコート層はこれらの樹脂を熱または活性エネルギー線により硬化させて得ることができる。 Any appropriate material can be adopted as the material constituting the hard coat layer. Examples of the material constituting the hard coat layer include an epoxy resin, an acrylic resin, a silicone resin, and a mixture thereof. Among these, an epoxy resin excellent in heat resistance is preferable. The hard coat layer can be obtained by curing these resins with heat or active energy rays.
D.画像表示装置
 1つの実施形態においては、本発明の積層体を用いた画像表示装置が提供される。図2は、本発明の積層体を用いた画像表示装置の一例を示す概略断面図である。この画像表示装置200は、視認側から順に、積層体100と、表示素子110とを備える。積層体100は、上記のとおり、視認側から順に、円偏光板10と、透明導電性フィルム20とを備える。円偏光板は、視認側から順に、偏光子11と、第1の位相差層12と、第2の位相差層13とを有する。透明導電性フィルム20は、透明基材21と、透明基材21の少なくとも片側に配置された透明導電性層22とを有する。透明導電性フィルム20は、金属ナノワイヤ1または金属メッシュを含む。この透明導電性フィルム20は、画像表示装置において、例えば、タッチパネルの電極、電磁波シールド等として機能し得る。表示素子110としては、金属製の反射体を備える表示素子が用いられる。このような表示素子の代表例としては、反射電極(反射体)を備える有機EL素子が挙げられる。表示素子として有機EL素子を用いれば、屈曲性に優れる画像表示装置が得られ得る。なお、透明導電性フィルム20と、円偏光板10および/または表示素子110とは、任意の適切な粘着剤を介して貼り合わされ得る(図示せず)。また、本発明の画像表示装置は、用途等に応じて、任意の適切な他の部材をさらに含み得る。
D. In one embodiment of the image display device, an image display device using the laminate of the present invention is provided. FIG. 2 is a schematic cross-sectional view showing an example of an image display device using the laminate of the present invention. The image display device 200 includes a stacked body 100 and a display element 110 in order from the viewing side. As described above, the laminate 100 includes the circularly polarizing plate 10 and the transparent conductive film 20 in order from the viewing side. The circularly polarizing plate includes a polarizer 11, a first retardation layer 12, and a second retardation layer 13 in order from the viewing side. The transparent conductive film 20 has a transparent substrate 21 and a transparent conductive layer 22 disposed on at least one side of the transparent substrate 21. The transparent conductive film 20 includes the metal nanowire 1 or a metal mesh. The transparent conductive film 20 can function as, for example, an electrode of a touch panel, an electromagnetic wave shield, or the like in an image display device. As the display element 110, a display element including a metal reflector is used. A typical example of such a display element is an organic EL element including a reflective electrode (reflector). If an organic EL element is used as the display element, an image display device having excellent flexibility can be obtained. In addition, the transparent conductive film 20, the circularly polarizing plate 10, and / or the display element 110 can be bonded together via arbitrary appropriate adhesives (not shown). In addition, the image display device of the present invention may further include any appropriate other member depending on the application or the like.
 本発明の積層体を用いた画像表示装置においては、円偏光板を、金属ナノワイヤまたは金属メッシュを含む透明導電性フィルムよりも視認側に配置することにより、表示素子の反射体からの反射光、および、金属ナノワイヤまたは金属メッシュからの反射光が低減される。本来、金属ナノワイヤまたは金属メッシュは反射率上昇要因となるところ、本発明によれば、金属ナノワイヤまたは金属メッシュを含んでいても、該金属ナノワイヤまたは金属メッシュによる反射率の上昇を抑制することができる。その結果、金属ナノワイヤまたは金属メッシュで反射した外光と金属ナノワイヤまたは金属メッシュ以外の部分で反射した外光との光強度差が小さくなり、導電パターン(すなわち金属ナノワイヤまたは金属メッシュのパターン)が認識され難い画像表示装置を得ることができる。 In the image display device using the laminate of the present invention, the circularly polarizing plate is disposed closer to the viewing side than the transparent conductive film containing metal nanowires or metal meshes, thereby reflecting light from the reflector of the display element, And the reflected light from a metal nanowire or a metal mesh is reduced. Originally, metal nanowires or metal meshes cause an increase in reflectivity. According to the present invention, even if metal nanowires or metal meshes are included, an increase in reflectivity due to the metal nanowires or metal meshes can be suppressed. . As a result, the difference in light intensity between the external light reflected by the metal nanowire or metal mesh and the external light reflected by a portion other than the metal nanowire or metal mesh is reduced, and the conductive pattern (ie, the metal nanowire or metal mesh pattern) is recognized. It is possible to obtain an image display device that is difficult to perform.
 好ましくは、本発明の画像表示装置における円偏光板および透明導電性フィルムの積層部分において、拡散反射率が90%以上低減されている。このように、拡散反射率が低減されていることは、上記円偏光板と上記透明導電性フィルムとから構成される積層体を評価用のアルミニウム製反射板に載せ、所定の光を入反射させて測定した際の拡散反射率Aと、該アルミニウム製反射板に該光を入反射させて測定した際の拡散反射率Bとの関係により定量的に評価することができる。本明細書においては、上記拡散反射率Aと上記拡散反射率BとがA≦(100%-X%)×Bの関係を有する場合、「画像表示装置における円偏光板および透明導電性フィルムの積層部分において、拡散反射率がX%以上低減されている」といえる。上記拡散反射率Aと拡散反射率Bとの関係は、好ましくはA≦0.1Bである。また、上記拡散反射率Aと拡散反射率Bとの関係は、より好ましくはA≦0.05Bであり、さらに好ましくはA≦0.03Bであり、特に好ましくはA≦0.01Bである。すなわち、本発明の画像表示装置における円偏光板および透明導電性フィルムの積層部分において、拡散反射率が95%以上低減されていることがより好ましく、97%以上低減されていることがさらに好ましく、99%以上低減されていることが特に好ましい。このように散乱反射が低減された画像表示装置は、反射体を備える表示素子および透明導電性フィルムより視認側に円偏光板を配置することにより得ることができる。拡散反射率の測定方法は後述する。 Preferably, the diffuse reflectance is reduced by 90% or more in the laminated portion of the circularly polarizing plate and the transparent conductive film in the image display device of the present invention. Thus, the diffuse reflectance is reduced because the laminate composed of the circularly polarizing plate and the transparent conductive film is placed on an aluminum reflector for evaluation, and predetermined light is incident and reflected. Quantitative evaluation can be made based on the relationship between the diffuse reflectance A when measured by the above and the diffuse reflectance B measured when the light is incident and reflected on the aluminum reflector. In the present specification, when the diffuse reflectance A and the diffuse reflectance B have a relationship of A ≦ (100% −X%) × B, “the circularly polarizing plate and the transparent conductive film in the image display device” In the laminated portion, the diffuse reflectance is reduced by X% or more. ” The relationship between the diffuse reflectance A and the diffuse reflectance B is preferably A ≦ 0.1B. Further, the relationship between the diffuse reflectance A and the diffuse reflectance B is more preferably A ≦ 0.05B, further preferably A ≦ 0.03B, and particularly preferably A ≦ 0.01B. That is, in the laminated portion of the circularly polarizing plate and the transparent conductive film in the image display device of the present invention, the diffuse reflectance is more preferably 95% or more, more preferably 97% or more, It is particularly preferable that the reduction is 99% or more. Thus, the image display apparatus in which the scattering reflection is reduced can be obtained by arranging a circularly polarizing plate on the viewing side from the display element including the reflector and the transparent conductive film. A method for measuring the diffuse reflectance will be described later.
 上記拡散反射率Aと、上記円偏光板のみを偏光子が外側になるようにして上記アルミニウム製反射板に載せて測定した拡散反射率Cとの差(A-C)は、好ましくは0.17%以下であり、より好ましくは0.15%以下であり、さらに好ましくは0.01%~0.12%である。(A-C)が小さいということは、金属ナノワイヤまたは金属メッシュによる反射率の上昇が抑制されていることを意味する。 The difference (A−C) between the diffuse reflectance A and the diffuse reflectance C measured by placing only the circularly polarizing plate on the aluminum reflector with the polarizer facing outside is preferably 0. It is 17% or less, more preferably 0.15% or less, and still more preferably 0.01% to 0.12%. A small (AC) means that an increase in reflectance due to the metal nanowire or the metal mesh is suppressed.
 以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例になんら限定されるものではない。実施例における評価方法は以下のとおりである。なお、厚みは尾崎製作所製ピーコック精密測定機器 デジタルゲージコードレスタイプ「DG-205」を使用して測定した。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. The evaluation methods in the examples are as follows. The thickness was measured using a digital gauge cordless type “DG-205” manufactured by Ozaki Seisakusho Co., Ltd.
(1)位相差値
 各位相差層から50mm×50mmのサンプルを切り出して、測定サンプルとし、Axometrics社製のAxoscanを用いて測定した。測定波長は550nm、測定温度は23℃とした。
 また、アタゴ社製のアッベ屈折率計を用いて平均屈折率を測定し、得られた位相差値から屈折率nx、ny、nzを算出した。
(2)表面抵抗値
 NAPSON製 商品名「EC-80」を用いて測定した。測定温度は23℃とした。
(3)全光線透過率、ヘイズ
 株式会社村上色彩研究所製の商品名「HR-100」を用いて、23℃にて測定した。繰り返し回数3回の平均値を、測定値とした。
(4)拡散反射率
 コニカミノルタ製の商品名「CM-2600d」を用いて、D65光源にて、正反射を含まない(SCE)方式にて測定した。測定温度は23℃とした。繰り返し回数2回の平均値を測定値とした。
 なお、実施例および比較例において、円偏光板と透明導電性フィルムとから構成される積層体をアルミニウム製反射板に載せて測定した拡散反射率A、該積層体の透明導電性フィルムから金属ナノワイヤを除去した後に測定した拡散反射率A’を測定した。
(1) Retardation value A sample of 50 mm × 50 mm was cut out from each retardation layer, used as a measurement sample, and measured using Axoscan manufactured by Axometrics. The measurement wavelength was 550 nm and the measurement temperature was 23 ° C.
Moreover, the average refractive index was measured using an Abbe refractometer manufactured by Atago Co., Ltd., and the refractive indexes nx, ny, and nz were calculated from the obtained retardation values.
(2) Surface resistance value It measured using the product name "EC-80" made from NAPSON. The measurement temperature was 23 ° C.
(3) Total light transmittance, haze Measured at 23 ° C. using a trade name “HR-100” manufactured by Murakami Color Research Laboratory. The average value of 3 repetitions was taken as the measured value.
(4) Diffuse Reflectance Using a trade name “CM-2600d” manufactured by Konica Minolta, measurement was carried out by a D65 light source in a non-regular (SCE) method. The measurement temperature was 23 ° C. The average value of 2 repetitions was taken as the measured value.
In Examples and Comparative Examples, the diffuse reflectance A measured by placing a laminate composed of a circularly polarizing plate and a transparent conductive film on an aluminum reflector, and the metal nanowire from the transparent conductive film of the laminate The diffuse reflectance A ′ measured after removing was measured.
[実施例1]
(第1の位相差層の作製)
 第1の位相差層となる延伸フィルム(1)を以下のようにして作製した。
 ノルボルネン系シクロオレフィンフィルム(日本ゼオン株式会社製 商品名「ゼオノア」)を面内位相差Re(550)が140nmとなるように一軸方向に延伸し、延伸フィルム(1)を得た。該フィルム(1)の厚み方向の位相差Rth(550)は141nmであり、該フィルム(1)は、nx>ny=nzの屈折率特性を示した。
[Example 1]
(Preparation of first retardation layer)
A stretched film (1) to be the first retardation layer was produced as follows.
A norbornene-based cycloolefin film (trade name “ZEONOR” manufactured by Nippon Zeon Co., Ltd.) was stretched in a uniaxial direction so that the in-plane retardation Re (550) was 140 nm to obtain a stretched film (1). The thickness direction retardation Rth (550) of the film (1) was 141 nm, and the film (1) exhibited refractive index characteristics of nx> ny = nz.
(第2の位相差層の作製)
 下記化学式(I)(式中の数字65および35はモノマーユニットのモル%を示し、便宜的にブロックポリマー体で表している:重量平均分子量5000)で示される側鎖型液晶ポリマー20重量部、ネマチック液晶相を示す重合性液晶(BASF社製:商品名PaliocolorLC242)80重量部および光重合開始剤(チバスペシャリティーケミカルズ社製:商品名イルガキュア907)5重量部をシクロペンタノン200重量部に溶解して液晶塗工液を調製した。そして、基材フィルム(ノルボルネン系樹脂フィルム:日本ゼオン(株)製、商品名「ゼオネックス」)に当該塗工液をバーコーターにより塗工した後、80℃で4分間加熱乾燥することによって液晶を配向させた。この液晶層に紫外線を照射し、液晶層を硬化させることにより、基材上に第2の位相差層となる液晶固化層(厚み:0.58μm)を形成した。この層の面内位相差Re(550)は0nm、厚み方向の位相差Rth(550)は-71nmであり(nx:1.5326、ny:1.5326、nz:1.6550)、nz>nx=nyの屈折率特性を示した。
(Preparation of second retardation layer)
20 parts by weight of a side chain type liquid crystal polymer represented by the following chemical formula (I) (numbers 65 and 35 in the formula indicate mol% of the monomer units and are represented by block polymer for convenience: weight average molecular weight 5000), Dissolve 80 parts by weight of a polymerizable liquid crystal exhibiting a nematic liquid crystal phase (manufactured by BASF: trade name Palicolor LC242) and 5 parts by weight of a photopolymerization initiator (trade name: Irgacure 907, manufactured by Ciba Specialty Chemicals) in 200 parts by weight of cyclopentanone. Thus, a liquid crystal coating solution was prepared. And after apply | coating the said coating liquid to a base film (norbornene-type resin film: Nippon Zeon Co., Ltd. make, brand name "ZEONEX") with a bar coater, a liquid crystal is dried by heating at 80 degreeC for 4 minutes. Oriented. The liquid crystal layer was irradiated with ultraviolet rays to cure the liquid crystal layer, thereby forming a liquid crystal solidified layer (thickness: 0.58 μm) serving as the second retardation layer on the substrate. The in-plane retardation Re (550) of this layer is 0 nm, the thickness direction retardation Rth (550) is −71 nm (nx: 1.5326, ny: 1.5326, nz: 1.6550), and nz> The refractive index characteristic of nx = ny was shown.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(円偏光板の作製)
 上記延伸フィルム(1)(第1の位相差層)に、アクリル系粘着剤を介して、上記液晶固化層(第2の位相差層)を貼り合わせた後、上記基材フィルムを除去して、延伸フィルム(1)に液晶固化層が転写された積層位相差フィルムを得た。得られた積層位相差フィルムの面内位相差Re(550)は141nmであり、厚み方向の位相差Rth(550)は70nmであった。
 次いで、上記延伸フィルム(1)(第1の位相差層)と、粘着剤層を備える直線偏光子(日東電工社製、商品名「偏光板SEG1425」)とを貼り合わせて、円偏光板(1)を得た。延伸フィルム(1)と直線偏光子とは、延伸フィルム(1)の遅相軸が、直線偏光子の吸収軸に対して反時計回りに45°となるようにして貼り合わせた。
(Production of circularly polarizing plate)
After the liquid crystal solidified layer (second retardation layer) is bonded to the stretched film (1) (first retardation layer) via an acrylic adhesive, the base film is removed. A laminated retardation film in which the liquid crystal solidified layer was transferred to the stretched film (1) was obtained. The in-plane retardation Re (550) of the obtained laminated retardation film was 141 nm, and the thickness direction retardation Rth (550) was 70 nm.
Next, the stretched film (1) (first retardation layer) and a linear polarizer (manufactured by Nitto Denko Corporation, trade name “polarizing plate SEG1425”) having an adhesive layer are bonded together to form a circularly polarizing plate ( 1) was obtained. The stretched film (1) and the linear polarizer were bonded together so that the slow axis of the stretched film (1) was 45 ° counterclockwise with respect to the absorption axis of the linear polarizer.
(銀ナノワイヤの合成および銀ナノワイヤ分散液の調製)
 攪拌装置を備えた反応容器中、160℃下で、無水エチレングリコール5ml、PtClの無水エチレングリコール溶液(濃度:1.5×10-4mol/L)0.5mlを加えた。4分経過後、得られた溶液に、AgNOの無水エチレングリコール溶液(濃度:0.12mol/l)2.5mlと、ポリビニルピロリドン(MW:5500)の無水エチレングリコール溶液(濃度:0.36mol/l)5mlとを同時に、6分かけて滴下して、銀ナノワイヤを生成した。この滴下は、160℃下で、AgNOが完全に還元されるまで行った。次いで、上記のようにして得られた銀ナノワイヤを含む反応混合物に、該反応混合物の体積が5倍になるまでアセトンを加えた後、該反応混合物を遠心分離して(2000rpm、20分)、銀ナノワイヤを得た。
 得られた銀ナノワイヤは、短径が30nm~40nmであり、長径が30nm~50nmであり、長さは30μm~50μmであった。
 純水中に、該銀ナノワイヤ(濃度:0.2重量%)、およびドデシル-ペンタエチレングリコール(濃度:0.1重量%)を分散させ、銀ナノワイヤ分散液を調製した。
(Synthesis of silver nanowire and preparation of silver nanowire dispersion)
In a reaction vessel equipped with a stirrer, at 160 ° C., 5 ml of anhydrous ethylene glycol and 0.5 ml of an anhydrous ethylene glycol solution of PtCl 2 (concentration: 1.5 × 10 −4 mol / L) were added. After 4 minutes, the obtained solution was mixed with 2.5 ml of an anhydrous ethylene glycol solution (concentration: 0.12 mol / l) of AgNO 3 and an anhydrous ethylene glycol solution (concentration: 0.36 mol) of polyvinylpyrrolidone (MW: 5500). / L) 5 ml was dropped at the same time over 6 minutes to produce silver nanowires. This dropping was performed at 160 ° C. until AgNO 3 was completely reduced. Then, acetone is added to the reaction mixture containing silver nanowires obtained as described above until the volume of the reaction mixture becomes 5 times, and then the reaction mixture is centrifuged (2000 rpm, 20 minutes), Silver nanowires were obtained.
The obtained silver nanowires had a minor axis of 30 nm to 40 nm, a major axis of 30 nm to 50 nm, and a length of 30 μm to 50 μm.
The silver nanowire (concentration: 0.2 wt%) and dodecyl-pentaethylene glycol (concentration: 0.1 wt%) were dispersed in pure water to prepare a silver nanowire dispersion.
(保護層形成用組成物の調製)
 イソプロピルアルコール(和光純薬工業株式会社製)、ダイアセトンアルコール(和光純薬工業株式会社製)を重量比1:1で混合したものを溶媒として用いた。該溶媒に、ジペンタエリスリトールヘキサアクリレート(DPHA)(新中村化学社製、商品名「A-DPH」)3.0重量%、および光反応開始剤(チバ・ジャパン社製、製品名「イルガキュア907」)0.09重量%を投入して保護層形成用組成物を調製した。
(Preparation of protective layer forming composition)
A mixture of isopropyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) and diacetone alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) at a weight ratio of 1: 1 was used as a solvent. In the solvent, dipentaerythritol hexaacrylate (DPHA) (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name “A-DPH”) 3.0% by weight, and photoinitiator (Ciba Japan Co., Ltd., product name “Irgacure 907” )) 0.09 wt% was added to prepare a protective layer forming composition.
(透明導電性フィルム(1)の作製)
 透明基材としてノルボルネン系シクロオレフィンフィルム(日本ゼオン株式会社製、商品名「ゼオノア」、面内位相差Re=1.7nm、厚み方向の位相差Rth=1.8nm)を用いた。
 この透明基材上に、バーコーター(第一理科株式会社製 製品名「バーコーター No.10」)を用いて上記銀ナノワイヤ分散液を塗布し、120℃の送風乾燥機内で2分間乾燥させた。その後、上記保護層形成用組成物をWet膜厚4μmでスロットダイにて塗布し、120℃の送風乾燥機内で2分間乾燥させた。次いで、酸素濃度100ppmとした紫外光照射装置(Fusion UV Systems社製)で積算照度400mJ/cmの紫外光を照射して保護層形成用組成物を硬化させて保護層を形成し、透明導電性フィルム(1)[透明基材/透明導電性層(金属ナノワイヤおよび保護層を含む)]を得た。
 この透明導電性フィルム(1)の表面抵抗値は151Ω/□であり、全光線透過率は91.4%であり、ヘイズは2.0%であった。
(Preparation of transparent conductive film (1))
A norbornene-based cycloolefin film (manufactured by Nippon Zeon Co., Ltd., trade name “Zeonor”, in-plane retardation Re = 1.7 nm, thickness direction retardation Rth = 1.8 nm) was used as a transparent substrate.
On this transparent base material, the said silver nanowire dispersion liquid was apply | coated using the bar coater (the product name "Bar Coater No. 10" by Daiichi Science Co., Ltd.), and it was made to dry for 2 minutes within a 120 degreeC ventilation dryer. . Then, the said protective layer formation composition was apply | coated with the slot die by 4 micrometers of wet film thickness, and was dried for 2 minutes within the 120 degreeC ventilation drying machine. Next, the protective layer-forming composition is cured by irradiating ultraviolet light with an integrated illuminance of 400 mJ / cm 2 with an ultraviolet light irradiation device (Fusion UV Systems) having an oxygen concentration of 100 ppm to form a protective layer, and transparent conductive Film (1) [transparent substrate / transparent conductive layer (including metal nanowires and protective layer)] was obtained.
This transparent conductive film (1) had a surface resistance value of 151 Ω / □, a total light transmittance of 91.4%, and a haze of 2.0%.
(拡散反射率Aの測定)
 上記円偏光板(1)と、上記透明導電性フィルム(1)とを、透光性粘着剤(日東電工社製、商品名「CS9662」)を介して貼り合わせて積層体Iを得た。このとき、円偏光板(1)の第2の位相差層と、透明導電性フィルム(1)の透明導電性層とを対向させて貼り合わせた。さらに該積層体Iを、円偏光板が外側(外光の入射側)となるようにして、アルミニウム製反射板に載せ、上記(4)の方法に従い、拡散反射率Aを測定した。結果を表2に示す。
 なお、別途、アルミニウム製反射板単体での拡散反射率Bを、上記(4)の方法に従って測定したところ、拡散反射率Bは59.16%であった。
(Measurement of diffuse reflectance A)
The said circularly-polarizing plate (1) and the said transparent conductive film (1) were bonded together through the translucent adhesive (Nitto Denko Co., Ltd. make, brand name "CS9662"), and the laminated body I was obtained. At this time, the second retardation layer of the circularly polarizing plate (1) and the transparent conductive layer of the transparent conductive film (1) were bonded to face each other. Further, the laminate I was placed on an aluminum reflector such that the circularly polarizing plate was on the outside (incident side of external light), and the diffuse reflectance A was measured according to the method (4). The results are shown in Table 2.
Separately, when the diffuse reflectance B of the aluminum reflector alone was measured according to the method of (4) above, the diffuse reflectance B was 59.16%.
(拡散反射率A’の測定)
 上記透明導電性フィルム(1)を、エッチング処理し、金属ナノワイヤを除去した。エッチング処理は、透明導電性フィルム(1)を、40℃に熱したエッチャント(関東化学株式会社製、製品名「混酸Alエッチング液」)に15秒間浸漬させて行った。エッチング処理後のフィルムの表面抵抗値は装置の測定上限(1,500Ω/□)以上であり、全光線透過率は92.1%であり、ヘイズは1.7%であった。
 上記円偏光板(1)とエッチング処理後のフィルムとを、透光性粘着剤(日東電工社製、商品名「CS9662」)を介して貼り合わせて積層体I’を得た。このとき、円偏光板(1)の第2の位相差層を、エッチング処理後のフィルムの保護層に対向させて貼り合わせた。さらに該積層体I’を、円偏光板が外側となるようにして、アルミニウム製反射板(拡散反射率B:59.16%)に載せ、上記(4)の方法に従い、拡散反射率A’を測定した。結果を表2に示す。
(Measurement of diffuse reflectance A ′)
The transparent conductive film (1) was etched to remove metal nanowires. The etching treatment was performed by immersing the transparent conductive film (1) in an etchant (product name “mixed acid Al etching solution” manufactured by Kanto Chemical Co., Inc.) heated to 40 ° C. for 15 seconds. The surface resistance value of the film after the etching treatment was not less than the measurement upper limit (1,500Ω / □) of the apparatus, the total light transmittance was 92.1%, and the haze was 1.7%.
The circularly polarizing plate (1) and the film after the etching treatment were bonded to each other via a translucent adhesive (manufactured by Nitto Denko Corporation, trade name “CS9662”) to obtain a laminate I ′. At this time, the second retardation layer of the circularly polarizing plate (1) was bonded to face the protective layer of the film after the etching treatment. Further, the laminate I ′ was placed on an aluminum reflector (diffuse reflectance B: 59.16%) so that the circularly polarizing plate was on the outer side, and the diffuse reflectance A ′ was according to the method of (4) above. Was measured. The results are shown in Table 2.
[実施例2]
(円偏光板の作製)
 実施例1と同様にして、第1の位相差層、第2の位相差層を作製し、さらに、円偏光板を作製した。
[Example 2]
(Production of circularly polarizing plate)
In the same manner as in Example 1, a first retardation layer and a second retardation layer were produced, and a circularly polarizing plate was further produced.
(透明導電性フィルム(2)の作製)
 透明基材としてノルボルネン系シクロオレフィンフィルム(日本ゼオン株式会社製、商品名「ゼオノア」、面内位相差Re=1.7nm、厚み方向の位相差Rth=1.8nm)を用いた。該ノルボルネン系シクロオレフィンフィルム表面にコロナ処理を行い、該表面を親水化した。
 その後、該ノルボルネン系シクロオレフィンフィルムの片面に、銀ペースト(トーヨーケム株式会社製、商品名「RA FS 039」)を用いてスクリーン印刷法にて金属メッシュを形成し(線幅:8.5μm、ピッチ300μmの格子)、120℃で10分間焼結し、透明導電性フィルム(2)[透明基材/透明導電性層(金属メッシュを含む)]を得た。
 この透明導電性フィルムの表面抵抗値は155Ω/□であり、全光線透過率は88.1%であり、ヘイズは7.0%であった。
(Preparation of transparent conductive film (2))
A norbornene-based cycloolefin film (manufactured by Nippon Zeon Co., Ltd., trade name “Zeonor”, in-plane retardation Re = 1.7 nm, thickness direction retardation Rth = 1.8 nm) was used as a transparent substrate. The surface of the norbornene-based cycloolefin film was subjected to corona treatment to make the surface hydrophilic.
Thereafter, a metal mesh was formed on one side of the norbornene-based cycloolefin film by a screen printing method using a silver paste (trade name “RA FS 039” manufactured by Toyochem Co., Ltd.) (line width: 8.5 μm, pitch) Sintered at 120 ° C. for 10 minutes to obtain a transparent conductive film (2) [transparent substrate / transparent conductive layer (including metal mesh)].
The transparent conductive film had a surface resistance value of 155Ω / □, a total light transmittance of 88.1%, and a haze of 7.0%.
(拡散反射率Aの測定)
 透明導電性フィルム(1)に代えて透明導電性フィルム(2)を用いた以外は、実施例1と同様にして、積層体IIを得、該積層体IIについて拡散反射率Aを測定した。結果を表2に示す。
(Measurement of diffuse reflectance A)
A laminate II was obtained in the same manner as in Example 1 except that the transparent conductive film (2) was used instead of the transparent conductive film (1), and the diffuse reflectance A was measured for the laminate II. The results are shown in Table 2.
(拡散反射率A’の測定)
 上記透明導電性フィルム(2)を、エッチング処理し、金属メッシュを除去した。エッチング処理は、透明導電性フィルムを、40℃に熱したエッチャント(関東化学株式会社製、製品名「混酸Alエッチング液」)に15秒間浸漬させて行った。エッチング処理後のフィルムの表面抵抗値は装置の測定上限(1,500Ω/□)以上であり、全光線透過率は92.4%であり、ヘイズは0.7%であった。
 エッチング処理後のフィルムに対し、実施例1と同様にして散乱反射率A’を測定した。結果を表2に示す。
(Measurement of diffuse reflectance A ′)
The transparent conductive film (2) was etched to remove the metal mesh. The etching treatment was performed by immersing the transparent conductive film in an etchant (product name “mixed acid Al etching solution” manufactured by Kanto Chemical Co., Inc.) heated to 40 ° C. for 15 seconds. The surface resistance value of the film after the etching treatment was not less than the measurement upper limit (1,500Ω / □) of the apparatus, the total light transmittance was 92.4%, and the haze was 0.7%.
The scattering reflectance A ′ was measured in the same manner as in Example 1 for the film after the etching treatment. The results are shown in Table 2.
[実施例3]
(ポリカーボネート系樹脂フィルムの作製)
 イソソルビド(ISB)37.5重量部、9,9-[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(BHEPF)91.5重量部、平均分子量400のポリエチレングリコール(PEG)8.4重量部、ジフェニルカーボネート(DPC)105.7重量部、および、触媒として炭酸セシウム(0.2重量%水溶液)0.594重量部をそれぞれ反応容器に投入し、窒素雰囲気下にて、反応の第1段目の工程として、反応容器の熱媒温度を150℃にし、必要に応じて攪拌しながら、原料を溶解させた(約15分)。
[Example 3]
(Production of polycarbonate resin film)
37.5 parts by weight of isosorbide (ISB), 91.5 parts by weight of 9,9- [4- (2-hydroxyethoxy) phenyl] fluorene (BHEPF), 8.4 parts by weight of polyethylene glycol (PEG) having an average molecular weight of 400, First, 105.7 parts by weight of diphenyl carbonate (DPC) and 0.594 parts by weight of cesium carbonate (0.2% by weight aqueous solution) as a catalyst were put into a reaction vessel, respectively, and the first stage of the reaction in a nitrogen atmosphere. In this step, the temperature of the heat medium in the reaction vessel was set to 150 ° C., and the raw materials were dissolved while stirring as necessary (about 15 minutes).
 次いで、反応容器内の圧力を常圧から13.3kPaにし、反応容器の熱媒温度を190℃まで1時間で上昇させながら、発生するフェノールを反応容器外へ抜き出した。
 反応容器内温度を190℃で15分保持した後、第2段目の工程として、反応容器内の圧力を6.67kPaとし、反応容器の熱媒温度を230℃まで、15分で上昇させ、発生するフェノールを反応容器外へ抜き出した。攪拌機の攪拌トルクが上昇してくるので、8分で250℃まで昇温し、さらに発生するフェノールを取り除くため、反応容器内の圧力を0.200kPa以下に減圧した。所定の攪拌トルクに到達後、反応を終了し、生成した反応物を水中に押し出した後に、ペレット化を行い、BHEPF/ISB/PEG=42.9モル%/52.8モル%/4.3モル%の割合でジヒドロキシ化合物に由来する構造単位を含むポリカーボネート系樹脂Aを得た。
 得られたポリカーボネート系樹脂Aのガラス転移温度は126℃であり、還元粘度は0.372dL/gであった。
Next, the pressure in the reaction vessel was changed from normal pressure to 13.3 kPa, and the generated phenol was extracted out of the reaction vessel while the temperature of the heat medium in the reaction vessel was increased to 190 ° C. over 1 hour.
After holding the reaction vessel temperature at 190 ° C. for 15 minutes, as a second step, the pressure in the reaction vessel is set to 6.67 kPa, and the heat medium temperature of the reaction vessel is increased to 230 ° C. in 15 minutes. The generated phenol was extracted out of the reaction vessel. Since the stirring torque of the stirrer increased, the temperature was raised to 250 ° C. in 8 minutes, and the pressure in the reaction vessel was reduced to 0.200 kPa or less in order to remove the generated phenol. After reaching a predetermined stirring torque, the reaction was terminated, and the formed reaction product was extruded into water, and then pelletized to obtain BHEPF / ISB / PEG = 42.9 mol% / 52.8 mol% / 4.3. A polycarbonate-based resin A containing a structural unit derived from a dihydroxy compound at a mol% ratio was obtained.
The obtained polycarbonate resin A had a glass transition temperature of 126 ° C. and a reduced viscosity of 0.372 dL / g.
 得られたポリカーボネート系樹脂Aを80℃で5時間真空乾燥をした後、単軸押出機(いすず化工機社製、スクリュー径25mm、シリンダー設定温度:220℃)、Tダイ(幅300mm、設定温度:220℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、長さ3m、幅300mm、厚み120μmのポリカーボネート系樹脂フィルムを作製した。
 得られたポリカーボネート系樹脂フィルムの吸水率は1.2%であった。
The obtained polycarbonate-based resin A was vacuum-dried at 80 ° C. for 5 hours, and then a single-screw extruder (made by Isuzu Chemical Industries, screw diameter 25 mm, cylinder set temperature: 220 ° C.), T die (width 300 mm, set temperature) : 220 ° C.), a film forming apparatus equipped with a chill roll (set temperature: 120 to 130 ° C.) and a winder, a polycarbonate resin film having a length of 3 m, a width of 300 mm and a thickness of 120 μm was produced.
The obtained polycarbonate resin film had a water absorption rate of 1.2%.
(第1の位相差層の作製)
 得られたポリカーボネート系樹脂フィルムを、長さ300mm、幅300mmに切り出し、ラボストレッチャーKARO IV(Bruckner社製)を用いて、温度136℃、倍率2倍で縦延伸を行い、延伸フィルム(2)を得た。
 得られた延伸フィルム(2)のRe(550)は141nm、Rth(550)は141nmであり(nx:1.5969、ny:1.5942、nz:1.5942)、nx>ny=nzの屈折率特性を示した。また、得られた延伸フィルム(2)のRe(450)/Re(550)は0.89であった。
(Preparation of first retardation layer)
The obtained polycarbonate-based resin film was cut into a length of 300 mm and a width of 300 mm, and longitudinally stretched at a temperature of 136 ° C. and a magnification of 2 times using a lab stretcher KARO IV (manufactured by Bruckner), and a stretched film (2) Got.
Re (550) of the obtained stretched film (2) is 141 nm, Rth (550) is 141 nm (nx: 1.5969, ny: 1.5942, nz: 1.5942), and nx> ny = nz. Refractive index characteristics are shown. Moreover, Re (450) / Re (550) of the obtained stretched film (2) was 0.89.
(円偏光板の作製)
 第1の位相差層として、延伸フィルム(2)を用いた以外は、実施例1と同様にして円偏光板(2)を得た。なお、第1の位相差層と第2の位相差層とから構成される積層位相差フィルムの面内位相差Re(550)は141nmであり、厚み方向の位相差Rth(550)は70nmであった。
(Production of circularly polarizing plate)
A circularly polarizing plate (2) was obtained in the same manner as in Example 1 except that the stretched film (2) was used as the first retardation layer. The in-plane retardation Re (550) of the laminated retardation film composed of the first retardation layer and the second retardation layer is 141 nm, and the thickness direction retardation Rth (550) is 70 nm. there were.
(透明導電性フィルムの作製)
 実施例1と同様にして、透明導電性フィルムを得た。
(Preparation of transparent conductive film)
A transparent conductive film was obtained in the same manner as Example 1.
(拡散反射率A、A’の測定)
 円偏光板(1)に代えて、円偏光板(2)を用いた以外は、実施例1と同様にして、積層体を作製し、拡散反射率A、A’を測定した。結果を表2に示す。
(Measurement of diffuse reflectance A, A ')
A laminate was prepared in the same manner as in Example 1 except that the circularly polarizing plate (2) was used instead of the circularly polarizing plate (1), and the diffuse reflectances A and A ′ were measured. The results are shown in Table 2.
[実施例4]
 第1の位相差層として、実施例3で作製した延伸フィルム(2)を用いた以外は、実施例2と同様にして円偏光板、導電性フィルムおよび積層体を作製し、拡散反射率A、A’を測定した。結果を表2に示す。
[Example 4]
A circularly polarizing plate, a conductive film and a laminate were produced as in Example 2 except that the stretched film (2) produced in Example 3 was used as the first retardation layer, and diffuse reflectance A , A ′ was measured. The results are shown in Table 2.
[比較例1]
 第2の位相差層を用いずに作製した円偏光板、すなわち、位相差層として延伸フィルム(1)(第1の位相差層)のみを有する円偏光板を用いた以外は、実施例1と同様にして積層体を作製し、拡散反射率A、A’を測定した。結果を表2に示す。
[Comparative Example 1]
Example 1 except that a circularly polarizing plate produced without using the second retardation layer, that is, a circularly polarizing plate having only the stretched film (1) (first retardation layer) was used as the retardation layer. A laminate was prepared in the same manner as described above, and the diffuse reflectances A and A ′ were measured. The results are shown in Table 2.
[比較例2]
 第2の位相差層を用いずに作製した円偏光板、すなわち、位相差層として延伸フィルム(1)(第1の位相差層)のみを有する円偏光板を用いた以外は、実施例2と同様にして積層体を作製し、拡散反射率A、A’を測定した。結果を表2に示す。
[Comparative Example 2]
Example 2 except that a circularly polarizing plate produced without using the second retardation layer, that is, a circularly polarizing plate having only the stretched film (1) (first retardation layer) was used as the retardation layer. A laminate was prepared in the same manner as described above, and the diffuse reflectances A and A ′ were measured. The results are shown in Table 2.
 実施例1~4および比較例1、2において、拡散反射率Aの測定に供した構成を表1にまとめる。 Table 1 summarizes the configurations used for the measurement of diffuse reflectance A in Examples 1 to 4 and Comparative Examples 1 and 2.
[規則26に基づく補充 13.08.2015] 
Figure WO-DOC-TABLE-1
[Supplement under rule 26 13.08.2015]
Figure WO-DOC-TABLE-1
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表1から明らかなように、本発明の積層体を用いれば、拡散反射率Aが低減される。本発明の積層体を備える画像表示装置において、金属ナノワイヤに反射した外光は強度が弱く、金属ナノワイヤに反射した外光と金属ナノワイヤ以外の部分に反射した外光との光強度差が小さいため、導電パターンが視認されがたい。また、外光反射が少ないため、コントラストが高い。 As is apparent from Table 1, the diffuse reflectance A is reduced when the laminate of the present invention is used. In the image display device including the laminate according to the present invention, the intensity of the external light reflected on the metal nanowire is low, and the difference in light intensity between the external light reflected on the metal nanowire and the external light reflected on a portion other than the metal nanowire is small. The conductive pattern is difficult to see. Moreover, since there is little external light reflection, contrast is high.
 1      金属ナノワイヤ
 2      保護層
 10     円偏光板
 11     偏光子
 12     第1の位相差フィルム
 13     第2の位相差フィルム
 20     透明導電性フィルム
 21     透明基材
 22     透明導電性層
DESCRIPTION OF SYMBOLS 1 Metal nanowire 2 Protective layer 10 Circularly polarizing plate 11 Polarizer 12 1st phase difference film 13 2nd phase difference film 20 Transparent conductive film 21 Transparent base material 22 Transparent conductive layer

Claims (9)

  1.  円偏光板と、透明導電性フィルムとを備える積層体であって、
     該円偏光板が、透明導電性フィルムとは反対側の面から順に、偏光子と、第1の位相差層と、第2の位相差層とを有し、
      該第1の位相差層が、nx>ny≧nzの屈折率特性を示し、
      該第2の位相差層が、nz>nx≧nyの屈折率特性を示し、
      該第1の位相差層と該第2の位相差層とから構成される積層位相差フィルムの面内位相差Re(550)が120nm~160nmで、厚み方向の位相差Rth(550)が40nm~100nmであり、
     該透明導電性フィルムが、透明基材と、該透明基材の少なくとも片側に配置された透明導電性層とを有し、
      該透明基材の面内位相差Reが、1nm~100nmであり、
      該透明導電性層が、金属ナノワイヤまたは金属メッシュを含む、
     積層体。
    A laminate comprising a circularly polarizing plate and a transparent conductive film,
    The circularly polarizing plate has a polarizer, a first retardation layer, and a second retardation layer in order from the surface opposite to the transparent conductive film,
    The first retardation layer exhibits a refractive index characteristic of nx> ny ≧ nz;
    The second retardation layer exhibits a refractive index characteristic of nz> nx ≧ ny,
    The in-plane retardation Re (550) of the laminated retardation film composed of the first retardation layer and the second retardation layer is 120 nm to 160 nm, and the thickness direction retardation Rth (550) is 40 nm. ~ 100nm,
    The transparent conductive film has a transparent base material and a transparent conductive layer disposed on at least one side of the transparent base material,
    The in-plane retardation Re of the transparent substrate is 1 nm to 100 nm,
    The transparent conductive layer comprises metal nanowires or metal mesh;
    Laminated body.
  2.  前記積層位相差フィルムが、第1の位相差層および第2の位相差層以外の光学異方性層を含まない、請求項1に記載の積層体。 The laminate according to claim 1, wherein the laminated retardation film does not contain an optically anisotropic layer other than the first retardation layer and the second retardation layer.
  3.  前記第1の位相差層の面内位相差が、Re(450)<Re(550)の関係を満たす、請求項1に記載の積層体。 The laminate according to claim 1, wherein an in-plane retardation of the first retardation layer satisfies a relationship of Re (450) <Re (550).
  4.  前記第1の位相差層の吸水率が、3%以下である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the water absorption of the first retardation layer is 3% or less.
  5.  前記第1の位相差層が、斜め延伸により得られる、請求項1に記載の積層体。 The laminate according to claim 1, wherein the first retardation layer is obtained by oblique stretching.
  6.  前記透明導電性層がパターン化されている、請求項1に記載の積層体。 The laminate according to claim 1, wherein the transparent conductive layer is patterned.
  7.  前記金属ナノワイヤが、金、白金、銀および銅からなる群より選ばれた1種以上の金属により構成される、請求項1に記載の積層体。 The laminate according to claim 1, wherein the metal nanowire is composed of one or more metals selected from the group consisting of gold, platinum, silver, and copper.
  8.  視認側から順に、請求項1に記載の積層体と、金属製の反射体とを備える、画像表示装置。 An image display device comprising the laminate according to claim 1 and a metal reflector in order from the viewing side.
  9.  前記画像表示装置における円偏光板および透明導電性フィルムの積層部分において、拡散反射率が90%以上低減されている、請求項8に記載の画像表示装置。
     
    The image display device according to claim 8, wherein the diffuse reflectance is reduced by 90% or more in a laminated portion of the circularly polarizing plate and the transparent conductive film in the image display device.
PCT/JP2015/066448 2014-06-10 2015-06-08 Laminate and image display device WO2015190428A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-119701 2014-06-10
JP2014119701A JP2015232647A (en) 2014-06-10 2014-06-10 Laminate and image display device

Publications (1)

Publication Number Publication Date
WO2015190428A1 true WO2015190428A1 (en) 2015-12-17

Family

ID=54833519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066448 WO2015190428A1 (en) 2014-06-10 2015-06-08 Laminate and image display device

Country Status (3)

Country Link
JP (1) JP2015232647A (en)
TW (1) TW201602658A (en)
WO (1) WO2015190428A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172423A1 (en) * 2018-03-09 2019-09-12 大日本印刷株式会社 Electroconductive film, sensor, touch panel, and image display device
CN110554452A (en) * 2018-05-31 2019-12-10 住友化学株式会社 polarizing plate for antireflection, optical laminate, and method for producing optical laminate
CN111316145A (en) * 2017-11-10 2020-06-19 住友化学株式会社 Circular polarizing plate and display device
CN111552105A (en) * 2020-03-30 2020-08-18 武汉大学 Reflection-type color flexible display screen and preparation method thereof
CN114467043A (en) * 2019-10-02 2022-05-10 住友化学株式会社 Self-luminous image display device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6453746B2 (en) * 2015-12-02 2019-01-16 日東電工株式会社 Elongated optical laminate and image display device
JP7044468B2 (en) * 2016-02-05 2022-03-30 三菱ケミカル株式会社 An optical laminate and an image display device using the optical laminate
CN109074763B (en) * 2016-04-27 2021-06-15 日本瑞翁株式会社 Film sensor member and method for manufacturing same, circularly polarizing plate and method for manufacturing same, and image display device
JP6321107B2 (en) * 2016-10-04 2018-05-09 日東電工株式会社 Optical laminate and image display device
JP6321108B2 (en) * 2016-10-04 2018-05-09 日東電工株式会社 Optical laminate and image display device
JP7016269B2 (en) * 2018-02-02 2022-02-04 日東電工株式会社 Method for manufacturing stretched film
CN112041737A (en) * 2018-04-27 2020-12-04 日东电工株式会社 Light adjusting film and liquid crystal display device
JP7063841B2 (en) * 2018-05-31 2022-05-09 住友化学株式会社 Method for manufacturing antireflection polarizing plate, optical laminate and optical laminate
JP6815354B2 (en) * 2018-06-25 2021-01-20 住友化学株式会社 Laminate
JP2021060607A (en) * 2020-12-22 2021-04-15 住友化学株式会社 Laminate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002055780A (en) * 2000-08-11 2002-02-20 Teijin Ltd Touch panel and display device with the same
JP2013092632A (en) * 2011-10-25 2013-05-16 Konica Minolta Advanced Layers Inc Display device
JP2013200953A (en) * 2012-03-23 2013-10-03 Fujifilm Corp Conductive material, polarizer using the same, circular polarization plate, input device and display device
JP2014026266A (en) * 2012-06-21 2014-02-06 Nitto Denko Corp Polarizing plate and organic el panel
WO2014069624A1 (en) * 2012-11-02 2014-05-08 日東電工株式会社 Transparent conductive film
JP2015069351A (en) * 2013-09-27 2015-04-13 大日本印刷株式会社 Image display device, touch panel sensor with circularly polarizing plate, and touch panel sensor with optical conversion layer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008127313A2 (en) * 2006-11-17 2008-10-23 The Regents Of The University Of California Electrically conducting and optically transparent nanowire networks

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002055780A (en) * 2000-08-11 2002-02-20 Teijin Ltd Touch panel and display device with the same
JP2013092632A (en) * 2011-10-25 2013-05-16 Konica Minolta Advanced Layers Inc Display device
JP2013200953A (en) * 2012-03-23 2013-10-03 Fujifilm Corp Conductive material, polarizer using the same, circular polarization plate, input device and display device
JP2014026266A (en) * 2012-06-21 2014-02-06 Nitto Denko Corp Polarizing plate and organic el panel
WO2014069624A1 (en) * 2012-11-02 2014-05-08 日東電工株式会社 Transparent conductive film
JP2015069351A (en) * 2013-09-27 2015-04-13 大日本印刷株式会社 Image display device, touch panel sensor with circularly polarizing plate, and touch panel sensor with optical conversion layer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111316145A (en) * 2017-11-10 2020-06-19 住友化学株式会社 Circular polarizing plate and display device
CN111316145B (en) * 2017-11-10 2022-10-14 住友化学株式会社 Circular polarizing plate and display device
WO2019172423A1 (en) * 2018-03-09 2019-09-12 大日本印刷株式会社 Electroconductive film, sensor, touch panel, and image display device
US11776710B2 (en) 2018-03-09 2023-10-03 Dai Nippon Printing Co., Ltd. Electroconductive film, sensor, touch panel, and image display device
CN110554452A (en) * 2018-05-31 2019-12-10 住友化学株式会社 polarizing plate for antireflection, optical laminate, and method for producing optical laminate
CN114467043A (en) * 2019-10-02 2022-05-10 住友化学株式会社 Self-luminous image display device
CN111552105A (en) * 2020-03-30 2020-08-18 武汉大学 Reflection-type color flexible display screen and preparation method thereof

Also Published As

Publication number Publication date
JP2015232647A (en) 2015-12-24
TW201602658A (en) 2016-01-16

Similar Documents

Publication Publication Date Title
WO2015190428A1 (en) Laminate and image display device
JP6576020B2 (en) Image display device
TWI781087B (en) Optical laminate and organic electroluminescence display device using the same
CN111948742B (en) Optical laminate and organic electroluminescent display device using same
JP6920047B2 (en) Circularly polarizing plate and flexible image display device using it
JP6874760B2 (en) Film sensor member and its manufacturing method, circularly polarizing plate and its manufacturing method, and image display device
JP2005208676A (en) Method for manufacturing optical film, optical film, and image display apparatus
CN108603970B (en) Optical laminate and image display device using same
JP2016126130A (en) Laminate for organic el display device and organic el display device
KR20210071967A (en) Polarizing plate with retardation layer and image display device using same
JP2017207596A (en) Optical laminate
KR20210071998A (en) Polarizing plate with retardation layer and image display device using same
JP6695685B2 (en) Optical laminate and image display device
KR20210071966A (en) Polarizing plate with retardation layer and image display device using same
WO2017135239A1 (en) Optical laminate and image display device in which said optical laminate is used
WO2017082378A1 (en) Optical layered body
KR20210075079A (en) Polarizing plate with retardation layer and image display device using same
KR20210071970A (en) Polarizing plate with retardation layer and image display device using same
KR102435572B1 (en) Retardation film, polarizing plate comprising the same and display apparatus comprising the same
JP2020197753A (en) Retardation film and circularly polarizing plate
KR20210071965A (en) Polarizing plate with retardation layer and image display device using same
KR20210071985A (en) Polarizing plate with retardation layer and image display device using same
KR20210071984A (en) Polarizing plate with retardation layer and image display device using same
KR20200019014A (en) Retardation film, polarizing plate comprising the same and display apparatus comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15806812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15806812

Country of ref document: EP

Kind code of ref document: A1