WO2017082310A1 - Method for manufacturing tube and tube - Google Patents
Method for manufacturing tube and tube Download PDFInfo
- Publication number
- WO2017082310A1 WO2017082310A1 PCT/JP2016/083272 JP2016083272W WO2017082310A1 WO 2017082310 A1 WO2017082310 A1 WO 2017082310A1 JP 2016083272 W JP2016083272 W JP 2016083272W WO 2017082310 A1 WO2017082310 A1 WO 2017082310A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tube
- peak intensity
- resin
- axial direction
- circumferential direction
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/30—Extrusion nozzles or dies
- B29C48/32—Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
Definitions
- the present invention relates to a method for producing a tube made of a thermoplastic resin or a thermoplastic elastomer and having a large elongation at break, and the tube.
- tubes using various thermoplastic resins and thermoplastic elastomers have been provided for industrial and medical purposes.
- a method using an extrusion molding machine is generally used for tube production.
- a sizing device is added to the front surface of the extrusion head of the extrusion molding machine in order to improve the appearance and outer diameter dimensional accuracy of the tube (for example, Patent Document 1). That is, as shown in FIG. 4, in a normal extruder, the tube 101 pushed out from the nozzle 100 is passed through a sizing device 104 including a holder 102 and a vacuum water tank 103. The holder 102 is provided with a sizing die 105. Therefore, when the extruded tube is pulled by a take-up roll or the like, it is rubbed by the sizing die 105 and the resin is stretched inside and outside the tube 101, so that resin orientation occurs in the extrusion direction.
- Patent Document 1 describes that after sizing after extrusion molding as described above, in order to correct orientation distortion, only the surface of the tube is heated and melted and then cooled and solidified, so-called annealing treatment is described. ing. Patent Document 1 shows that such an annealing process improves the elongation of the tube to about 320% (see FIGS. 2 and 3). However, considering the durability of the tube, higher tensile elongation and higher tensile strength are desired. Further, the molding method of Patent Document 1 is inferior in productivity because the number of steps such as annealing treatment increases.
- An object of the present invention is to provide a tube manufacturing method and a tube which are made of a thermoplastic resin or a thermoplastic elastomer and have improved tensile properties.
- the present invention has the following configuration.
- (1) A step of extruding a thermoplastic resin or a thermoplastic elastomer vertically in a tube-like form, a step of gradually cooling the tube extruded downward in the vertical direction while suppressing heat dissipation, and a step of cooling Winding the tube at a take-up speed substantially equal to the tube extrusion speed.
- (2) The method for producing a tube according to (1), wherein the tube is extruded while air is fed into the tube, and is gradually cooled while maintaining a predetermined diameter.
- thermoplastic resin is a polyamide resin, a polyurethane resin, or a polyester resin.
- thermoplastic elastomer is a polyamide elastomer, a polyurethane elastomer or a polyester elastomer.
- thermoplastic resin or thermoplastic elastomer contains a filler.
- B—P2: 1110 cm in the circumferential direction -1 peak intensity (9) Made of polyurethane resin or polyurethane elastomer, the orientation obtained by the following formula from the peak intensity of each Raman spectrum in the axial direction and circumferential direction of the tube measured with a Raman spectrometer.
- A-P1 the peak intensity at around 1180 cm -1 in the axial direction
- A-P2 the peak intensity at around 1610 cm -1 in the axial direction
- B-P1 the peak intensity at around 1180 cm -1 in the circumferential direction
- B-P2 1610 cm in the circumferential direction -10 peak intensity (10)
- AP Peak intensity near 1727 cm ⁇ 1 in the axial direction
- AP2 Peak intensity near 1616 cm ⁇ 1 in the axial direction
- BP1 Peak intensity near 1727 cm ⁇ 1 in the circumferential direction
- BP2 1616 cm in the circumferential direction -1 peak intensity around
- (12) The tube according to (11), wherein the filler is a carbon nanotube.
- an extruder that extrudes a thermoplastic resin in a vertically downward direction in a tubular form
- a heat-dissipating shielding cylinder that is installed below the nozzle provided downward of the extruder and that is gradually cooled by inserting a tube extruded from the nozzle,
- a tube manufacturing apparatus comprising: a winding roll that winds the slowly cooled tube at a take-up speed substantially equal to the tube extrusion speed.
- the tube is solidified while maintaining a semi-molten state, so that the extrusion rate unevenness in the axial direction of the tube can be controlled. That is, since the tube obtained by the above production method has a resin orientation of 2 or less, the molecular orientation of the polymer is low, thereby increasing the tensile elongation in the axial direction of the tube. Specifically, the tube of the present invention has improved elongation at break in the axial direction.
- the tube according to the embodiment of the present invention is made of a thermoplastic resin such as a polyamide-based resin, a polyurethane-based resin, or a polyester-based resin, or a thermoplastic elastomer such as a polyamide-based elastomer, a polyurethane-based elastomer, or a polyester-based elastomer. It is characterized by the orientation obtained by the following formula from the analysis by 2 being 2 or less. The symbols in the formula are as follows.
- the peak intensity is measured separately in the axial direction and the circumferential direction of the sample tube.
- the axial direction (A direction) and the circumferential direction (B direction) of the tube shown in FIG. it can.
- a specific polarization component is detected using a polarizing lens to obtain a Raman spectrum.
- the peak (P1) near the specific wavelength (I) and the peak (P2) near the specific wavelength (II) are confirmed, and the respective peak intensities (peak heights) are obtained.
- the specific wavelength (I) and the specific wavelength (II) vary depending on the resin type.
- A-P1, A-P2, B-P1 and B-P2 are shown for some resin types.
- a-P2 the peak intensity at around 1610 cm -1 in the axial direction
- B-P1 circumferential peak intensity near 1180 cm -1 in the B-P2: the peak intensity at around 1610 cm -1 in the circumferential direction
- the peak (P1) is derived from the C—H bond in the polymer compound, it is derived from the side chain of the polymer compound.
- the peak (P2) originates from the C—C bond, C ⁇ C bond, and the like in the polymer compound, and hence from the main chain of the polymer compound.
- the orientation of the tube of the present invention determined from the above formula is 2 or less, preferably 1.6 or less.
- the orientation is preferably as close to 1 as possible. Since the orientation of the tube of the present invention in which the orientation is in the above range is suppressed in the axial direction, the tensile elongation in the axial direction becomes high.
- the tube of the present invention has a high elongation at break in the axial direction, as shown in Examples described later.
- the elongation at break varies depending on the material of the thermoplastic resin or thermoplastic elastomer used.
- the polydodecanamide (polyamide 12) tube used in the examples has a elongation at break of 350% or more, particularly 400% or more.
- the elongation at break can be measured by a tensile tester. In measurement, a tube having a predetermined length is fixed to a tensile tester and a tensile test is performed.
- thermoplastic resin forming the tube of the present invention examples include, in addition to the above-described polyamide resin, polyurethane resin, and polyester resin, polyimide resin, polystyrene resin, polycarbonate resin, polyolefin resin, and acrylic resin.
- thermoplastic resin may be used singly or in plural, and multicomponent systems such as copolymerization, addition, blending, and alloy may be used singly or in plural. More preferred are polyamide resins, polyurethane resins, and polyester resins.
- polyamide-based resin examples include polyamide 11, polyamide 12, polyamide 6, polyamide 66, polyamide 610, polyamide 612, polyamide 666, polyamide 46, polyamide 10T, polyamide 6T, aramid resin (fully aromatic polyamide), and the like. It is done.
- polyester resin examples include polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate.
- polyolefin resin examples include polyethylene and polypropylene.
- thermoplastic elastomer examples include, but are not limited to, the above-described polyamide-based thermoplastic elastomer, polyurethane-based thermoplastic elastomer, and polyester-based thermoplastic elastomer.
- the thermoplastic elastomer is a polymer composed of a hard phase (hard segment) and a soft phase (soft segment), and exhibits properties as rubber at room temperature, but exhibits thermoplasticity at high temperature.
- polyamide-based elastomer examples include a hard segment made of polyamide and a block copolymer with a soft segment.
- the polyurethane-based thermoplastic elastomer is an elastic body obtained by a reaction between a polyol and an isocyanate, and a known thermoplastic polyurethane (TPU) can be used.
- TPU thermoplastic polyurethane
- a thermoplastic polyurethane can be used individually by 1 type or in combination of 2 or more types.
- the thermoplastic polyurethane is usually obtained by reacting polyisocyanate, a long-chain polyol, a chain extender, and, if necessary, another isocyanate-reactive compound.
- the polyisocyanate is not particularly limited as long as it is a compound having at least two isocyanate groups in the molecule.
- polyisocyanate examples include aliphatic polyisocyanate, alicyclic polyisocyanate, aromatic polyisocyanate, and araliphatic polyisocyanate.
- Polyisocyanate can be used individually or in combination of 2 or more types.
- aliphatic polyisocyanate examples include 1,3-trimethylene diisocyanate, 1,4-tetramethylene diisocyanate, 1,5-pentamethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,2-propylene diisocyanate, 1, 2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate, 2-methyl-1,5-pentamethylene diisocyanate, 3-methyl-1,5-pentamethylene diisocyanate, 2,4,4- And aliphatic diisocyanates such as trimethyl-1,6-hexamethylene diisocyanate and 2,2,4-trimethyl-1,6-hexamethylene diisocyanate.
- alicyclic polyisocyanate examples include 1,3-cyclopentane diisocyanate, 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate).
- Examples include alicyclic diisocyanates such as cyclohexane and norbornane diisocyanate.
- aromatic polyisocyanates examples include m-phenylene diisocyanate, p-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthylene-1,4-diisocyanate, and naphthylene-1,5-diisoisocyanate.
- Examples of the araliphatic polyisocyanate include 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, ⁇ , ⁇ ⁇ -diisocyanate-1,4-diethylbenzene, 1,3-bis (1-isocyanate- And araliphatic diisocyanates such as 1-methylethyl) benzene, 1,4-bis (1-isocyanate-1-methylethyl) benzene, 1,3-bis ( ⁇ , ⁇ -dimethylisocyanatomethyl) benzene, and the like.
- polyisocyanates examples include 1,6-hexamethylene diisocyanate, 4,4-methylene bis (cyclohexyl isocyanate), 1,3-bis (isocyanate methyl) cyclohexane, 1,4-bis (isocyanate methyl) cyclohexane, isophorone diisocyanate, 2 , 4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4-diphenylmethane diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, norbornane diisocyanate, 1, 3-bis ( ⁇ , ⁇ -dimethylisocyanatomethyl) benzene can be preferably used.
- the polyisocyanate the exemplified aliphatic polyisocyanate, alicyclic polyisocyanate, aromatic polyisocyanate, dimer or trimer by araliphatic polyisocyanate, reaction product or polymer (for example, diphenylmethane diisocyanate). Dimers and trimers of, reaction products of trimethylolpropane and tolylene diisocyanate, reaction products of trimethylolpropane and hexamethylene diisocyanate, polymethylene polyphenyl isocyanate, polyether polyisocyanate, polyester polyisocyanate, etc. ) Etc. can also be used.
- long-chain polyol examples include polyether polyol, polyester polyol, polycarbonate polyol, polyolefin polyol, and polyacryl polyol.
- polyether polyol examples include polyalkylene ether glycols such as polyethylene ether glycol, polypropylene ether glycol, and polytetramethylene ether glycol (PTMG), and a plurality of alkylene oxides as monomer components such as an ethylene oxide-propylene oxide copolymer. And (alkylene oxide-other alkylene oxide) copolymers containing.
- polyalkylene ether glycols such as polyethylene ether glycol, polypropylene ether glycol, and polytetramethylene ether glycol (PTMG), and a plurality of alkylene oxides as monomer components such as an ethylene oxide-propylene oxide copolymer.
- PTMG polytetramethylene ether glycol
- polyester polyol examples include a condensation polymer of a polyhydric alcohol and a polyvalent carboxylic acid; a ring-opening polymer of a cyclic ester (lactone); a reaction by three kinds of components: a polyhydric alcohol, a polyvalent carboxylic acid, and a cyclic ester. Things can be used.
- the polyhydric alcohol includes, for example, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,3-propanediol, 1,3-butanediol, , 4-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 2,4- Diethyl-1,5-pentanediol, 1,9-nonanediol, 1,10-decanediol, glycerin, trimethylolpropane, trimethylolethane, cyclohexanediols (such as 1,4-cyclohexanediol), cyclohexanedimethanols (1,4-cyclohexanedimethanols (1,4-cyclohex
- Nji methanol Nji methanol
- bisphenols bisphenol A, etc.
- sugar alcohols such as xylitol or sorbitol
- polyvalent carboxylic acids include aliphatic dicarboxylic acids such as malonic acid, maleic acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid; 1,4-cyclohexane
- examples thereof include alicyclic dicarboxylic acids such as dicarboxylic acids; aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, paraphenylene dicarboxylic acid and trimellitic acid.
- examples of the cyclic ester include propiolactone, ⁇ -methyl- ⁇ -valerolactone, and ⁇ -caprolactone.
- examples of the reaction product of the three types of components those exemplified above can be used as the polyhydric alcohol, polycarboxylic acid, and cyclic ester.
- the polycarbonate polyol examples include a reaction product of a polyhydric alcohol and phosgene, chloroformate, dialkyl carbonate or diaryl carbonate; a ring-opening polymer of a cyclic carbonate (such as alkylene carbonate).
- the polyhydric alcohol includes the polyhydric alcohols exemplified above (for example, ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol).
- Neopentyl glycol 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, etc.
- examples of the alkylene carbonate include ethylene carbonate, trimethylene carbonate, tetramethylene carbonate, hexamethylene carbonate, and the like.
- the polycarbonate polyol should just be a compound which has a carbonate bond in a molecule
- polycarbonate polyols include polyhexamethylene carbonate diol, diol obtained by ring-opening addition polymerization of lactone to polyhexamethylene carbonate diol, and co-condensate of polyhexamethylene carbonate diol with polyester diol or polyether diol. Etc.
- the polyolefin polyol is a polyol having an olefin as a component of the skeleton (or main chain) of the polymer or copolymer and having at least two hydroxyl groups in the molecule (particularly at the terminal).
- the olefin may be an olefin having a carbon-carbon double bond at the terminal (for example, an ⁇ -olefin such as ethylene or propylene), or an olefin having a carbon-carbon double bond at a position other than the terminal.
- isobutene and the like and diene (for example, butadiene, isoprene and the like) may be used.
- polyolefin polyols include butadiene homopolymers, isoprene homopolymers, butadiene-styrene copolymers, butadiene-isoprene copolymers, butadiene-acrylonitrile copolymers, butadiene-2-ethylhexyl acrylate copolymers, butadiene-n-octadecyl acrylate copolymers, and the like. Or the thing which modified the terminal of an isoprene-type polymer into a hydroxyl group is mentioned.
- the polyacrylic polyol is a polyol having (meth) acrylate as a component of the polymer (or copolymer) skeleton (or main chain) and having at least two hydroxyl groups in the molecule (particularly at the terminal).
- (meth) acrylate (meth) acrylic acid alkyl ester [for example, (meth) acrylic acid C1-20 alkyl ester, etc.] is preferably used.
- any material other than those listed here can be used.
- chain extender a chain extender usually used in the production of thermoplastic polyurethane can be used, and the kind thereof is not particularly limited, but a low molecular weight polyol, polyamine or the like can be used.
- a chain extender can be used individually or in combination of 2 or more types.
- chain extenders include ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,2 -Polyols such as pentanediol, 2,3-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol (Especially diols); polyamines (particularly diamines) such as hexamethylenediamine, 3,3′-dimethyl-4,4′-diaminodicyclohexylmethane, 4,4′-methylenebis-2-chloroaniline, and the like.
- thermoplastic polyurethane A commercially available product can be used as the thermoplastic polyurethane.
- examples of commercially available products include adipate TPU having a hardness of 80, adipate TPU having a hardness of 90, a caprolactone TPU having a hardness of 90, a PTMG TPU having a hardness of 92, an adipate TPU having a hardness of 92, and the like.
- thermoplastic resins may be used alone, or two or more of them may be used in combination as long as the effects thereof are not impaired.
- Polyester resin is obtained by polycondensation of polyvalent carboxylic acid and polyalcohol.
- polyvalent carboxylic acid include terephthalic acid and 2,6-naphthalenedicarboxylic acid.
- polyalcohol include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,4-cyclohexanedimethanol and the like.
- polyester-based resin examples include polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and the like.
- the polyester elastomer can be produced by transesterification or polycondensation reaction using dimethyl terephthalate, 1,4-butanediol, and poly (oxytetramethylene) glycol as raw materials.
- additives such as glass fibers and carbon nanotubes (CNT) may be added as a reinforcing material depending on the use, so long as the effect is not impaired. Not limited.
- CNT carbon nanotubes
- the additive is usually added in a proportion of 30% by mass or less, preferably 10% by mass or less, based on the total amount of the tube.
- the carbon nanotube any of a single wall, a double wall, and a multilayer can be used.
- the orientation represented by the above formula is set as low as 2 or less.
- the tube without applying stress, it is preferable to extrude the tube vertically downward from the tip nozzle of the extruder.
- the orientation is suppressed by gradually solidifying while feeding air into the tube so as to have a predetermined diameter.
- the ambient temperature In order to gradually solidify the extruded tube, it is important to control the ambient temperature. That is, when the solidification of the tube is delayed because the temperature is too high, the tube is stretched by its own weight, and a tube having a predetermined diameter or thickness cannot be obtained. On the other hand, when the temperature is low, the tube solidifies rapidly, so that the difference between the solidified portion and the melted portion becomes large, and the influence of its own weight and internal pressure concentrates on the melted portion immediately after coming out from the tip nozzle. As a result, it extends partially, leading to variations in dimensions and wall thickness. Therefore, it is preferable to control the ambient temperature to gradually decrease so that no orientation is applied between the time when the tube is extruded and the time when the tube is solidified.
- a screw 13 is provided in a cylinder 12 provided with a hopper 11, and a die 14 having a nozzle 15 is provided at the tip of the screw 13.
- the tube 1 pushed out vertically from the base 15 a of the nozzle 15 is wound on the outer peripheral surface of the winding roll 17.
- An outer diameter measuring device 18 is installed on the upstream side of the winding roll 17.
- the extrusion molding machine 10 is not particularly limited, and may be a commercially available extrusion molding machine.
- the extrusion direction is not particularly limited as long as orientation is not applied, and may be, for example, a horizontal direction.
- a long heat radiation shielding cylinder 19 is provided on the base 15 a of the nozzle 15.
- This heat radiation shielding cylinder 19 suppresses heat radiation of the tube 1 pushed out from the base 15a, and performs temperature control until the tube 1 is solidified. That is, the heat radiation shielding cylinder 19 has a function of imparting appropriate hardness (strength) by gradually solidifying the tube 1 while maintaining the semi-molten state without being influenced by the outside air temperature. Therefore, as long as this function is exhibited, the material of the heat shielding cylinder 19 is not particularly limited, and metal, plastic, paper, or the like can be used.
- examples of the shape include a circle, an ellipse, and a polygon. In consideration of the function, a circle is preferable.
- the heat radiation shielding cylinder 19 may have a temperature control function. Moreover, you may control the temperature of the passage route of the tube 1 extruded as mentioned above.
- the temperature of the cylinder 12 and the die 14 is set in advance according to the melting temperature of the thermoplastic resin to be charged.
- the produced pellet 3 is put into a hopper 11 of an extrusion molding machine 10 and poured into a cylinder 12.
- the resin of the pellet 3 that has flowed into the cylinder 12 is melted in the cylinder 12 to become a molten resin 2.
- the molten resin 2 is discharged in the direction of the die 14 by the rotation of the screw 13.
- the molten resin 2 is pushed out by the flow path in the die 14 and pushed out to the nozzle 15.
- a nozzle 15a for molding the tube is attached to the nozzle 15, and the tube 1 is manufactured by discharging from the nozzle 15a.
- the nozzle 15 is not provided with a sizing process. Therefore, the tube 1 is discharged according to the discharge amount of the resin and passes through the heat radiation shielding cylinder 19. As the tube 1 passes through the heat radiation shielding cylinder 19, the tube 1 is solidified while being kept warm.
- the tube 1 is wound around the pulley 16, passes through the outer diameter measuring device 18, and is wound around the winding roll 17.
- a driving force is applied to the pulley 16 by a motor or the like, and a pulling force is applied to the discharged tube 1.
- the take-up speed at this time is set according to the discharge amount discharged from the die 14, and the take-up speed and the discharge speed are set to be substantially equal.
- the tube obtained by the above embodiment is as thin as 0.1 to 1.0 mm, it is important to stabilize the discharge amount and eliminate external force.
- the tube 1 is extruded downward in the vertical direction, and is pushed out while feeding air into the tube.
- the tube 1 is gradually cooled while maintaining a predetermined diameter, and deformation of the tube 1 in the radial direction can be prevented.
- the orientation of the resin in the direction of the extrusion axis can be suppressed while maintaining the molding speed.
- the tube 1 pushed out from the nozzle 15 is solidified while the resin is maintained in a semi-molten state in the process of passing through the heat radiation shielding cylinder 19.
- the extruded tube 1 is gradually solidified in the heat radiation shielding cylinder 19
- molding shrinkage can be reduced, and disturbance due to outside air or the like can be eliminated.
- the orientation of the resin can be suppressed by solidifying while maintaining a semi-molten state.
- the resin is gradually solidified, there is an advantage that a tube with high dimensional accuracy with little variation in the outer diameter can be obtained. It is considered that the outer diameter of the tube 1 is stable because an excessive stress is not applied to the resin by controlling the pulling force while the resin is maintained in a semi-molten state.
- Example 1 A commercially available pellet of polydodecanamide (nylon 12) was used as the thermoplastic resin, and this was put into an extrusion molding machine 10 shown in FIG. 3 to produce a tube 1 having an outer diameter of 1 mm and an inner diameter of 0.8 mm.
- the heat radiation shielding cylinder 19 an iron cylinder having an outer diameter of 30 mm, an inner diameter of 27 mm, and a length of 1 m was used.
- the heat radiation shielding cylinder 19 was attached to the base 15 a of the nozzle 15, the tube 1 was pushed out from the base 15 a, and a predetermined amount of air was injected into the tube 1 while passing through the heat radiation shielding cylinder 19 and solidified.
- the extrusion speed was set to 20 m / min.
- the extrusion speed shown here refers to the speed of the resin discharged from the extruder.
- a thermocouple was inserted into the cylinder through through holes provided in the heat radiation shielding cylinder 19 at predetermined intervals, and the temperature in the cylinder was measured. The results are shown in Table 1. It can be seen from Table 1 that the tube gradually cools and solidifies in the process of passing through the heat radiation shielding cylinder 19 because the temperature of the end of the heat radiation shielding cylinder 19 is lowered to a temperature close to room temperature.
- thermoplastic resin A commercially available pellet of polydodecanamide (polyamide 12) was used as the thermoplastic resin, and a tube having an outer diameter of 1 mm was produced by an extruder equipped with a sizing device 104 as shown in FIG.
- thermoplastic resin As a thermoplastic resin, a commercially available pellet of polyamide 12 is extruded in the same manner as in Example 1 except that it does not have the heat-shielding cylinder 19, and the outer diameter is 1 mm. A tube was prepared.
- the tube was first installed in a predetermined direction so that the peak intensity in the axial direction could be measured. Then, the peak intensity (A-P1) near 1440 cm ⁇ 1 and the peak intensity (A-P2) near 1110 cm ⁇ 1 in the axial direction were measured. Next, the installation direction of the tube in the apparatus is changed (that is, changed to the direction orthogonal to the installation direction in the axial direction), and the peak intensity (B-P1) near 1440 cm ⁇ 1 in the circumferential direction and 1110 cm ⁇ is changed. The peak intensity around 1 (BP2) was measured. Thereafter, the orientation was determined by the above formula. The results are shown in Table 2. The closer the orientation is to 1, the more uniform force is applied to the molded product, and the smaller the orientation, in other words, the molecular orientation of the polymer is not uniform.
- the tube obtained according to the embodiment of the present invention has improved elongation at break in the axial direction of the tube as compared with the case of using another extrusion molding machine. Moreover, it turns out that orientation is related as a factor which this breaking elongation improved. If the orientation during extrusion molding is close to 1, that is, there is no orientation in the extrusion direction and circumferential direction of the tube, a high elongation at break can be obtained.
- Example 2 Polyamide elastomer tube
- thermoplastic elastomer commercially available polyamide elastomer pellets (PEBAX (registered trademark) manufactured by Arkema Co., Ltd.) were used, and this was put into an extrusion molding machine 10 shown in FIG. 3, and the outer diameter was 1 mm and the inner diameter was 0.8 mm. Tube 1 was produced.
- the heat radiation shielding cylinder 19 the same iron cylinder as in Example 1 was used.
- the heat radiation shielding cylinder 19 is attached to the base 15a of the nozzle 15, the tube 1 is extruded from the base 15a, and a predetermined amount of air is injected into the tube 1 while passing through the heat radiation shielding cylinder 19 in the same manner as in the first embodiment.
- the solution was gradually cooled and solidified. At this time, the extrusion speed was set to 20 m / min.
- Example 3 Polyurethane elastomer tube
- a thermoplastic elastomer commercially available polyurethane elastomer pellets (Milactolan (registered trademark) manufactured by Nippon Milactolan Co., Ltd.) are used, and this is put into an extrusion molding machine 10 shown in FIG. 3, and has an outer diameter of 1 mm and an inner diameter of 0.8 mm.
- the tube 1 was prepared.
- the heat radiation shielding cylinder 19 the same iron cylinder as in Example 1 was used.
- the heat radiation shielding cylinder 19 is attached to the base 15a of the nozzle 15, the tube 1 is extruded from the base 15a, and a predetermined amount of air is injected into the tube 1 while passing through the heat radiation shielding cylinder 19 in the same manner as in the first embodiment.
- the solution was gradually cooled and solidified. At this time, the extrusion speed was set to 20 m / min.
- Example 4 Poly elastomer tube
- a commercially available polyester elastomer (Primalloy (registered trademark) manufactured by Mitsubishi Chemical Corporation) is used, and this is put into an extrusion molding machine 10 shown in FIG. 3, and has an outer diameter of 1 mm and an inner diameter of 0.8 mm.
- the tube 1 was prepared.
- the heat radiation shielding cylinder 19 the same iron cylinder as in Example 1 was used.
- the heat radiation shielding cylinder 19 is attached to the base 15a of the nozzle 15, the tube 1 is extruded from the base 15a, and a predetermined amount of air is injected into the tube 1 while passing through the heat radiation shielding cylinder 19 in the same manner as in the first embodiment.
- the solution was gradually cooled and solidified. At this time, the extrusion speed was set to 20 m / min.
- Example 3 The tubes obtained in Examples 2 to 4 were examined for elongation at break and orientation in the same manner as in Example 1. The results are shown in Table 3. Table 3 also shows the wavelengths indicating the peak intensities in the axial and circumferential directions of the tube. (Note) In P1 and P2, the upper stage indicates the axial direction of the tube, and the lower stage indicates the circumferential direction.
- PAE Polyamide elastomer
- TPU Polyurethane elastomer
- TPEE Polyester elastomer
- Example 5 Polyamide tube with carbon nanotubes added
- a tube was produced in the same manner as in Example 1 except that carbon nanotubes manufactured by Nanocyl Co. were added to a commercial pellet of polydodecanamide (nylon 12) at a ratio of 3.5% by mass with respect to the total amount. .
- the tensile yield stress and breaking elongation of the obtained tube were measured.
- the tensile yield stress and elongation at break of the tube obtained in Example 1 were measured in the same manner.
- the tensile yield stress was determined by the tensile yield stress described in JIS K7161 (Plastic-Test method for tensile properties).
- the elongation at break was determined in the same manner as in Example 1. The results are shown in Table 4.
- the tensile yield stress is improved by adding carbon nanotubes. Therefore, the tube pressure resistance related to the tensile yield stress is expected to be improved by 30%, and the breaking pressure of the tube is improved.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
Provided is a method for manufacturing a tube, the method comprising: a step of extrusion-molding a thermoplastic resin or a thermoplastic elastomer downward in a vertical direction, in a tube shape; a step of gradually cooling a tube 1 extruded downward in the vertical direction while suppressing heat radiation; and a step of winding the gradually-cooled tube 1 at a winding speed substantially the same as the extrusion speed of the tube 1.
Description
本発明は、熱可塑性樹脂または熱可塑性エラストマーからなり、破断伸びが大きいチューブの製造方法およびチューブに関する。
The present invention relates to a method for producing a tube made of a thermoplastic resin or a thermoplastic elastomer and having a large elongation at break, and the tube.
近年、種々の熱可塑性樹脂や熱可塑性エラストマーを用いたチューブが工業用や医療用に提供されている。チューブ作製には、一般に押出成型機を用いた方法が利用されている。
In recent years, tubes using various thermoplastic resins and thermoplastic elastomers have been provided for industrial and medical purposes. For tube production, a method using an extrusion molding machine is generally used.
押出成型においては、チューブの外観や外径寸法精度を向上させるために、押出成型機の押出ヘッドの前面にサイジング装置が付加される(例えば特許文献1)。すなわち、図4に示すように、通常の押出成型機では、ノズル100から押し出されたチューブ101は、ホルダー102および真空水槽103を備えたサイジング装置104に通される。ホルダー102にはサイジングダイ105が設けられている。
そのため、押出されたチューブは、巻取りロールなどによって引っ張られる際に、サイジングダイ105にこすられ、チューブ101の内外で樹脂に延伸がかかるため、押出方向に樹脂配向が生じる。 In extrusion molding, a sizing device is added to the front surface of the extrusion head of the extrusion molding machine in order to improve the appearance and outer diameter dimensional accuracy of the tube (for example, Patent Document 1). That is, as shown in FIG. 4, in a normal extruder, thetube 101 pushed out from the nozzle 100 is passed through a sizing device 104 including a holder 102 and a vacuum water tank 103. The holder 102 is provided with a sizing die 105.
Therefore, when the extruded tube is pulled by a take-up roll or the like, it is rubbed by thesizing die 105 and the resin is stretched inside and outside the tube 101, so that resin orientation occurs in the extrusion direction.
そのため、押出されたチューブは、巻取りロールなどによって引っ張られる際に、サイジングダイ105にこすられ、チューブ101の内外で樹脂に延伸がかかるため、押出方向に樹脂配向が生じる。 In extrusion molding, a sizing device is added to the front surface of the extrusion head of the extrusion molding machine in order to improve the appearance and outer diameter dimensional accuracy of the tube (for example, Patent Document 1). That is, as shown in FIG. 4, in a normal extruder, the
Therefore, when the extruded tube is pulled by a take-up roll or the like, it is rubbed by the
一方、流体を搬送するためのチューブの場合、例えば、機器との接続の際にチューブを管継手に圧入する必要があるが、拡管時にチューブに応力が作用することで、長期間使用時の寿命低下に至る。
On the other hand, in the case of a tube for transporting fluid, for example, it is necessary to press-fit the tube into a pipe joint when connecting to equipment. Leading to a decline.
特許文献1には、前記したように押出成型後にサイジングを施した後、配向歪を是正するために、チューブの表面のみを加熱溶融させ、ついで冷却固化させる、いわゆるアニーリング処理を施すことが記載されている。特許文献1には、このようなアニーリング処理によって、チューブの伸びが320%程度まで改善されことが示されている(図2、図3参照)。しかし、チューブの耐久性等を考慮すると、より高い引張伸びおよび引張強度が要望されている。また、特許文献1の成形法では、アニーリング処理などの工程数が増えるため、生産性にも劣っている。
Patent Document 1 describes that after sizing after extrusion molding as described above, in order to correct orientation distortion, only the surface of the tube is heated and melted and then cooled and solidified, so-called annealing treatment is described. ing. Patent Document 1 shows that such an annealing process improves the elongation of the tube to about 320% (see FIGS. 2 and 3). However, considering the durability of the tube, higher tensile elongation and higher tensile strength are desired. Further, the molding method of Patent Document 1 is inferior in productivity because the number of steps such as annealing treatment increases.
本発明の課題は、熱可塑性樹脂または熱可塑性エラストマーからなり、引張特性を向上させたチューブの製造方法およびチューブを提供することである。
An object of the present invention is to provide a tube manufacturing method and a tube which are made of a thermoplastic resin or a thermoplastic elastomer and have improved tensile properties.
本発明者らは、上記課題を達成するため鋭意検討を重ねた結果、本発明を完成するに至った。すなわち、本発明は以下の構成を備える。
(1)熱可塑性樹脂または熱可塑性エラストマーをチューブ状の形態で鉛直方向下向きに押出成形する工程と、 鉛直方向下向きに押し出されたチューブを、放熱を抑制しながら徐冷する工程と、徐冷されたチューブを、チューブの押出速度と実質的に等しい引取り速度で巻き取る工程とを含むことを特徴とするチューブの製造方法。
(2)チューブ内に空気を送り込みながら押出し、所定の径を保持したまま徐冷される(1)に記載のチューブの製造方法。
(3)徐冷する工程が、雰囲気温度が徐々に低下するように制御された条件下で行われる(1)または(2)に記載のチューブの製造方法。
(4)前記熱可塑性樹脂がポリアミド樹脂、ポリウレタン樹脂またはポリエステル樹脂である(1)~(3)のいずれかに記載のチューブの製造方法。
(5)前記熱可塑性エラストマーがポリアミド系エラストマー、ポリウレタン系エラストマーまたはポリエステル系エラストマーである(1)~(3)のいずれかに記載のチューブの製造方法。
(6)前記熱可塑性樹脂または熱可塑性エラストマーがフィラーを含有した(1)~(5)のいずれかに記載のチューブの製造方法。
(7)前記フィラーがカーボンナノチューブである(6)に記載のチューブの製造方法。
(8)ポリアミド樹脂またはポリアミド系エラストマーからなり、ラマン分光装置にて測定した、チューブの軸方向および周方向におけるそれぞれのラマンスペクトルのピーク強度から下記式で求められる配向性が2以下であることを特徴とするチューブ。
但し、式中の記号は以下の通りである。
A-P1:軸方向における1440cm-1付近のピーク強度
A-P2:軸方向における1110cm-1付近のピーク強度
B-P1:周方向における1440cm-1付近のピーク強度
B-P2:周方向における1110cm-1付近のピーク強度
(9)ポリウレタン樹脂またはポリウレタン系エラストマーからなり、ラマン分光装置にて測定した、チューブの軸方向および周方向におけるそれぞれのラマンスペクトルのピーク強度から下記式で求められる配向性が2以下であることを特徴とするチューブ。
但し、式中の記号は以下の通りである。
A-P1:軸方向における1180cm-1付近のピーク強度
A-P2:軸方向における1610cm-1付近のピーク強度
B-P1:周方向における1180cm-1付近のピーク強度
B-P2:周方向における1610cm-1付近のピーク強度
(10)ポリエステル樹脂またはポリエステル系エラストマーからなり、ラマン分光装置にて測定した、チューブの軸方向および周方向におけるそれぞれのラマンスペクトルのピーク強度から下記式で求められる配向性が2以下であることを特徴とするチューブ。
但し、式中の記号は以下の通りである。
A-P1:軸方向における1727cm-1付近のピーク強度
A-P2:軸方向における1616cm-1付近のピーク強度
B-P1:周方向における1727cm-1付近のピーク強度
B-P2:周方向における1616cm-1付近のピーク強度
(11)フィラーを含有した(8)~(10)のいずれかに記載のチューブ。
(12)前記フィラーがカーボンナノチューブである(11)に記載のチューブ。
(13)熱可塑性樹脂をチューブ状の形態で鉛直方向下向きに押出成形する押出機と、
この押出機の下向きに設けたノズルの下方に設置され、前記ノズルから押し出されたチューブを挿通させ徐冷する放熱遮蔽筒と、
徐冷されたチューブを、チューブの押出速度と実質的に等しい引取り速度で巻き取る巻取りロールとを備えたことを特徴とするチューブ製造装置。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have completed the present invention. That is, the present invention has the following configuration.
(1) A step of extruding a thermoplastic resin or a thermoplastic elastomer vertically in a tube-like form, a step of gradually cooling the tube extruded downward in the vertical direction while suppressing heat dissipation, and a step of cooling Winding the tube at a take-up speed substantially equal to the tube extrusion speed.
(2) The method for producing a tube according to (1), wherein the tube is extruded while air is fed into the tube, and is gradually cooled while maintaining a predetermined diameter.
(3) The method for producing a tube according to (1) or (2), wherein the step of slow cooling is performed under conditions controlled so that the ambient temperature gradually decreases.
(4) The method for producing a tube according to any one of (1) to (3), wherein the thermoplastic resin is a polyamide resin, a polyurethane resin, or a polyester resin.
(5) The method for producing a tube according to any one of (1) to (3), wherein the thermoplastic elastomer is a polyamide elastomer, a polyurethane elastomer or a polyester elastomer.
(6) The method for producing a tube according to any one of (1) to (5), wherein the thermoplastic resin or thermoplastic elastomer contains a filler.
(7) The method for producing a tube according to (6), wherein the filler is a carbon nanotube.
(8) It consists of a polyamide resin or a polyamide-based elastomer, and the orientation obtained by the following formula from the peak intensity of each Raman spectrum in the axial direction and the circumferential direction of the tube measured with a Raman spectrometer is 2 or less. Characteristic tube.
However, the symbols in the formula are as follows.
A—P1: Peak intensity around 1440 cm −1 in the axial direction A—P2: Peak intensity around 1110 cm −1 in the axial direction B—P1: Peak intensity around 1440 cm −1 in the circumferential direction B—P2: 1110 cm in the circumferential direction -1 peak intensity (9) Made of polyurethane resin or polyurethane elastomer, the orientation obtained by the following formula from the peak intensity of each Raman spectrum in the axial direction and circumferential direction of the tube measured with a Raman spectrometer. A tube characterized by being 2 or less.
However, the symbols in the formula are as follows.
A-P1: the peak intensity at around 1180 cm -1 in the axial direction A-P2: the peak intensity at around 1610 cm -1 in the axial direction B-P1: the peak intensity at around 1180 cm -1 in the circumferential direction B-P2: 1610 cm in the circumferential direction -10 peak intensity (10) Made of polyester resin or polyester elastomer, the orientation obtained by the following formula from the peak intensity of each Raman spectrum in the axial direction and the circumferential direction of the tube measured with a Raman spectroscope. A tube characterized by being 2 or less.
However, the symbols in the formula are as follows.
AP: Peak intensity near 1727 cm −1 in the axial direction AP2: Peak intensity near 1616 cm −1 in the axial direction BP1: Peak intensity near 1727 cm −1 in the circumferential direction BP2: 1616 cm in the circumferential direction -1 peak intensity around (11) The tube according to any one of (8) to (10), containing a filler.
(12) The tube according to (11), wherein the filler is a carbon nanotube.
(13) an extruder that extrudes a thermoplastic resin in a vertically downward direction in a tubular form;
A heat-dissipating shielding cylinder that is installed below the nozzle provided downward of the extruder and that is gradually cooled by inserting a tube extruded from the nozzle,
A tube manufacturing apparatus comprising: a winding roll that winds the slowly cooled tube at a take-up speed substantially equal to the tube extrusion speed.
(1)熱可塑性樹脂または熱可塑性エラストマーをチューブ状の形態で鉛直方向下向きに押出成形する工程と、 鉛直方向下向きに押し出されたチューブを、放熱を抑制しながら徐冷する工程と、徐冷されたチューブを、チューブの押出速度と実質的に等しい引取り速度で巻き取る工程とを含むことを特徴とするチューブの製造方法。
(2)チューブ内に空気を送り込みながら押出し、所定の径を保持したまま徐冷される(1)に記載のチューブの製造方法。
(3)徐冷する工程が、雰囲気温度が徐々に低下するように制御された条件下で行われる(1)または(2)に記載のチューブの製造方法。
(4)前記熱可塑性樹脂がポリアミド樹脂、ポリウレタン樹脂またはポリエステル樹脂である(1)~(3)のいずれかに記載のチューブの製造方法。
(5)前記熱可塑性エラストマーがポリアミド系エラストマー、ポリウレタン系エラストマーまたはポリエステル系エラストマーである(1)~(3)のいずれかに記載のチューブの製造方法。
(6)前記熱可塑性樹脂または熱可塑性エラストマーがフィラーを含有した(1)~(5)のいずれかに記載のチューブの製造方法。
(7)前記フィラーがカーボンナノチューブである(6)に記載のチューブの製造方法。
(8)ポリアミド樹脂またはポリアミド系エラストマーからなり、ラマン分光装置にて測定した、チューブの軸方向および周方向におけるそれぞれのラマンスペクトルのピーク強度から下記式で求められる配向性が2以下であることを特徴とするチューブ。
A-P1:軸方向における1440cm-1付近のピーク強度
A-P2:軸方向における1110cm-1付近のピーク強度
B-P1:周方向における1440cm-1付近のピーク強度
B-P2:周方向における1110cm-1付近のピーク強度
(9)ポリウレタン樹脂またはポリウレタン系エラストマーからなり、ラマン分光装置にて測定した、チューブの軸方向および周方向におけるそれぞれのラマンスペクトルのピーク強度から下記式で求められる配向性が2以下であることを特徴とするチューブ。
A-P1:軸方向における1180cm-1付近のピーク強度
A-P2:軸方向における1610cm-1付近のピーク強度
B-P1:周方向における1180cm-1付近のピーク強度
B-P2:周方向における1610cm-1付近のピーク強度
(10)ポリエステル樹脂またはポリエステル系エラストマーからなり、ラマン分光装置にて測定した、チューブの軸方向および周方向におけるそれぞれのラマンスペクトルのピーク強度から下記式で求められる配向性が2以下であることを特徴とするチューブ。
A-P1:軸方向における1727cm-1付近のピーク強度
A-P2:軸方向における1616cm-1付近のピーク強度
B-P1:周方向における1727cm-1付近のピーク強度
B-P2:周方向における1616cm-1付近のピーク強度
(11)フィラーを含有した(8)~(10)のいずれかに記載のチューブ。
(12)前記フィラーがカーボンナノチューブである(11)に記載のチューブ。
(13)熱可塑性樹脂をチューブ状の形態で鉛直方向下向きに押出成形する押出機と、
この押出機の下向きに設けたノズルの下方に設置され、前記ノズルから押し出されたチューブを挿通させ徐冷する放熱遮蔽筒と、
徐冷されたチューブを、チューブの押出速度と実質的に等しい引取り速度で巻き取る巻取りロールとを備えたことを特徴とするチューブ製造装置。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have completed the present invention. That is, the present invention has the following configuration.
(1) A step of extruding a thermoplastic resin or a thermoplastic elastomer vertically in a tube-like form, a step of gradually cooling the tube extruded downward in the vertical direction while suppressing heat dissipation, and a step of cooling Winding the tube at a take-up speed substantially equal to the tube extrusion speed.
(2) The method for producing a tube according to (1), wherein the tube is extruded while air is fed into the tube, and is gradually cooled while maintaining a predetermined diameter.
(3) The method for producing a tube according to (1) or (2), wherein the step of slow cooling is performed under conditions controlled so that the ambient temperature gradually decreases.
(4) The method for producing a tube according to any one of (1) to (3), wherein the thermoplastic resin is a polyamide resin, a polyurethane resin, or a polyester resin.
(5) The method for producing a tube according to any one of (1) to (3), wherein the thermoplastic elastomer is a polyamide elastomer, a polyurethane elastomer or a polyester elastomer.
(6) The method for producing a tube according to any one of (1) to (5), wherein the thermoplastic resin or thermoplastic elastomer contains a filler.
(7) The method for producing a tube according to (6), wherein the filler is a carbon nanotube.
(8) It consists of a polyamide resin or a polyamide-based elastomer, and the orientation obtained by the following formula from the peak intensity of each Raman spectrum in the axial direction and the circumferential direction of the tube measured with a Raman spectrometer is 2 or less. Characteristic tube.
A—P1: Peak intensity around 1440 cm −1 in the axial direction A—P2: Peak intensity around 1110 cm −1 in the axial direction B—P1: Peak intensity around 1440 cm −1 in the circumferential direction B—P2: 1110 cm in the circumferential direction -1 peak intensity (9) Made of polyurethane resin or polyurethane elastomer, the orientation obtained by the following formula from the peak intensity of each Raman spectrum in the axial direction and circumferential direction of the tube measured with a Raman spectrometer. A tube characterized by being 2 or less.
A-P1: the peak intensity at around 1180 cm -1 in the axial direction A-P2: the peak intensity at around 1610 cm -1 in the axial direction B-P1: the peak intensity at around 1180 cm -1 in the circumferential direction B-P2: 1610 cm in the circumferential direction -10 peak intensity (10) Made of polyester resin or polyester elastomer, the orientation obtained by the following formula from the peak intensity of each Raman spectrum in the axial direction and the circumferential direction of the tube measured with a Raman spectroscope. A tube characterized by being 2 or less.
AP: Peak intensity near 1727 cm −1 in the axial direction AP2: Peak intensity near 1616 cm −1 in the axial direction BP1: Peak intensity near 1727 cm −1 in the circumferential direction BP2: 1616 cm in the circumferential direction -1 peak intensity around (11) The tube according to any one of (8) to (10), containing a filler.
(12) The tube according to (11), wherein the filler is a carbon nanotube.
(13) an extruder that extrudes a thermoplastic resin in a vertically downward direction in a tubular form;
A heat-dissipating shielding cylinder that is installed below the nozzle provided downward of the extruder and that is gradually cooled by inserting a tube extruded from the nozzle,
A tube manufacturing apparatus comprising: a winding roll that winds the slowly cooled tube at a take-up speed substantially equal to the tube extrusion speed.
本発明のチューブの製造方法によれば、押し出されたチューブの放熱を抑制することで、半溶融状態を維持しながら固化させるため、チューブの軸方向の押出速度ムラを制御することができる。
すなわち、上記製造方法で得られるチューブは、樹脂の配向性が2以下であるので、高分子の分子配向が低く、これにより、チューブの軸方向への引張伸びが高くなる。
具体的には、本発明のチューブは、軸方向における破断伸びが向上する。このため、拡管時に樹脂チューブに応力が作用する場合や、使用時に強い張力が加わる場合であっても、充分な耐久性が確保され、かつチューブの長寿命化にも寄与できるようになる。
また、本発明では、従来のように、配向歪を是正するためにアニーリング処理を施す必要がないので、工程数の増加や生産性の低下等をひき起こすことがない。 According to the method for manufacturing a tube of the present invention, by suppressing the heat dissipation of the extruded tube, the tube is solidified while maintaining a semi-molten state, so that the extrusion rate unevenness in the axial direction of the tube can be controlled.
That is, since the tube obtained by the above production method has a resin orientation of 2 or less, the molecular orientation of the polymer is low, thereby increasing the tensile elongation in the axial direction of the tube.
Specifically, the tube of the present invention has improved elongation at break in the axial direction. For this reason, even when stress acts on the resin tube at the time of tube expansion or when a strong tension is applied at the time of use, sufficient durability is ensured and it is possible to contribute to extending the life of the tube.
In the present invention, since it is not necessary to perform an annealing process to correct the orientation strain as in the prior art, there is no increase in the number of processes or a decrease in productivity.
すなわち、上記製造方法で得られるチューブは、樹脂の配向性が2以下であるので、高分子の分子配向が低く、これにより、チューブの軸方向への引張伸びが高くなる。
具体的には、本発明のチューブは、軸方向における破断伸びが向上する。このため、拡管時に樹脂チューブに応力が作用する場合や、使用時に強い張力が加わる場合であっても、充分な耐久性が確保され、かつチューブの長寿命化にも寄与できるようになる。
また、本発明では、従来のように、配向歪を是正するためにアニーリング処理を施す必要がないので、工程数の増加や生産性の低下等をひき起こすことがない。 According to the method for manufacturing a tube of the present invention, by suppressing the heat dissipation of the extruded tube, the tube is solidified while maintaining a semi-molten state, so that the extrusion rate unevenness in the axial direction of the tube can be controlled.
That is, since the tube obtained by the above production method has a resin orientation of 2 or less, the molecular orientation of the polymer is low, thereby increasing the tensile elongation in the axial direction of the tube.
Specifically, the tube of the present invention has improved elongation at break in the axial direction. For this reason, even when stress acts on the resin tube at the time of tube expansion or when a strong tension is applied at the time of use, sufficient durability is ensured and it is possible to contribute to extending the life of the tube.
In the present invention, since it is not necessary to perform an annealing process to correct the orientation strain as in the prior art, there is no increase in the number of processes or a decrease in productivity.
以下、本発明の実施形態に係るチューブについて詳しく説明する。本発明の実施形態に係るチューブは、ポリアミド系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂等の熱可塑性樹脂、またはポリアミド系エラストマー、ポリウレタン系エラストマー、ポリエステル系エラストマー等の熱可塑性エラストマーからなり、ラマンスペクトル測定による解析から下記式で求められる配向性が2以下であることによって特徴づけられる。
式中の記号は以下の通りである。
A-P1:軸方向における特定波長(I)付近のピーク強度
A-P2:軸方向における特定波長(II)付近のピーク強度
B-P1:周方向における特定波長(I)付近のピーク強度
B-P2:周方向における特定波長(II)付近のピーク強度 Hereinafter, the tube which concerns on embodiment of this invention is demonstrated in detail. The tube according to the embodiment of the present invention is made of a thermoplastic resin such as a polyamide-based resin, a polyurethane-based resin, or a polyester-based resin, or a thermoplastic elastomer such as a polyamide-based elastomer, a polyurethane-based elastomer, or a polyester-based elastomer. It is characterized by the orientation obtained by the following formula from the analysis by 2 being 2 or less.
The symbols in the formula are as follows.
A—P1: Peak intensity near the specific wavelength (I) in the axial direction A—P2: Peak intensity near the specific wavelength (II) in the axial direction B—P1: Peak intensity B—in the circumferential direction near the specific wavelength (I) P2: Peak intensity near a specific wavelength (II) in the circumferential direction
A-P1:軸方向における特定波長(I)付近のピーク強度
A-P2:軸方向における特定波長(II)付近のピーク強度
B-P1:周方向における特定波長(I)付近のピーク強度
B-P2:周方向における特定波長(II)付近のピーク強度 Hereinafter, the tube which concerns on embodiment of this invention is demonstrated in detail. The tube according to the embodiment of the present invention is made of a thermoplastic resin such as a polyamide-based resin, a polyurethane-based resin, or a polyester-based resin, or a thermoplastic elastomer such as a polyamide-based elastomer, a polyurethane-based elastomer, or a polyester-based elastomer. It is characterized by the orientation obtained by the following formula from the analysis by 2 being 2 or less.
A—P1: Peak intensity near the specific wavelength (I) in the axial direction A—P2: Peak intensity near the specific wavelength (II) in the axial direction B—P1: Peak intensity B—in the circumferential direction near the specific wavelength (I) P2: Peak intensity near a specific wavelength (II) in the circumferential direction
ラマンスペクトル測定にあたっては、試料チューブの軸方向と周方向とに分けてピーク強度を測定する。例えば、ラマン分光装置内に試料チューブを設置する際に、チューブの設置向きを変えることによって、図1に示すチューブの軸方向(A方向)と周方向(B方向)とをそれぞれ測定することができる。
そして、チューブの軸方向と周方向のそれぞれについて、偏光レンズを用いて、特定の偏光成分を検出して、ラマンスペクトルを得る。このラマンスペクトルにおける特定波長(I)付近のピーク(P1)と、特定波長(II)付近のピーク(P2)とを確認し、それぞれのピーク強度(ピークの高さ)を求める。 In the Raman spectrum measurement, the peak intensity is measured separately in the axial direction and the circumferential direction of the sample tube. For example, when the sample tube is installed in the Raman spectroscopic device, the axial direction (A direction) and the circumferential direction (B direction) of the tube shown in FIG. it can.
For each of the axial direction and the circumferential direction of the tube, a specific polarization component is detected using a polarizing lens to obtain a Raman spectrum. In this Raman spectrum, the peak (P1) near the specific wavelength (I) and the peak (P2) near the specific wavelength (II) are confirmed, and the respective peak intensities (peak heights) are obtained.
そして、チューブの軸方向と周方向のそれぞれについて、偏光レンズを用いて、特定の偏光成分を検出して、ラマンスペクトルを得る。このラマンスペクトルにおける特定波長(I)付近のピーク(P1)と、特定波長(II)付近のピーク(P2)とを確認し、それぞれのピーク強度(ピークの高さ)を求める。 In the Raman spectrum measurement, the peak intensity is measured separately in the axial direction and the circumferential direction of the sample tube. For example, when the sample tube is installed in the Raman spectroscopic device, the axial direction (A direction) and the circumferential direction (B direction) of the tube shown in FIG. it can.
For each of the axial direction and the circumferential direction of the tube, a specific polarization component is detected using a polarizing lens to obtain a Raman spectrum. In this Raman spectrum, the peak (P1) near the specific wavelength (I) and the peak (P2) near the specific wavelength (II) are confirmed, and the respective peak intensities (peak heights) are obtained.
特定波長(I)および特定波長(II)は、樹脂種によって異なる。以下に、一部の樹脂種についてのA-P1、A-P2、B-P1およびB-P2を示す。
(i)ポリアミド系樹脂またはポリアミド系エラストマー、
A-P1:軸方向における1440cm-1付近のピーク強度
A-P2:軸方向における1110cm-1付近のピーク強度
B-P1:周方向における1440cm-1付近のピーク強度
B-P2:周方向における1110cm-1付近のピーク強度
(ii)ポリウレタン系樹脂またはポリウレタン系エラストマー
A-P1:軸方向における1180cm-1付近のピーク強度
A-P2:軸方向における1610cm-1付近のピーク強度
B-P1:周方向における1180cm-1付近のピーク強度
B-P2:周方向における1610cm-1付近のピーク強度
(iii)ポリエステル系樹脂またはポリエステル系エラストマー
A-P1:軸方向における1727cm-1付近のピーク強度
A-P2:軸方向における1616cm-1付近のピーク強度
B-P1:周方向における1727cm-1付近のピーク強度
B-P2:周方向における1616cm-1付近のピーク強度
図2は、ポリアミド系樹脂またはポリアミド系エラストマーのラマンスペクトルを示している。 The specific wavelength (I) and the specific wavelength (II) vary depending on the resin type. In the following, A-P1, A-P2, B-P1 and B-P2 are shown for some resin types.
(I) polyamide resin or polyamide elastomer,
A—P1: Peak intensity around 1440 cm −1 in the axial direction A—P2: Peak intensity around 1110 cm −1 in the axial direction B—P1: Peak intensity around 1440 cm −1 in the circumferential direction B—P2: 1110 cm in the circumferential direction -1 vicinity of the peak intensity (ii) polyurethane resin or polyurethane elastomer a-P1: the peak intensity at around 1180 cm -1 in the axial direction a-P2: the peak intensity at around 1610 cm -1 in the axial direction B-P1: circumferential peak intensity near 1180 cm -1 in the B-P2: the peak intensity at around 1610 cm -1 in the circumferential direction (iii) a polyester resin or polyester-based elastomer a-P1: the peak intensity at around 1727 cm -1 in the axial direction a-P2: peak intensity near 1616cm -1 in the axial direction B-P1: circumferential direction Peak intensity near 1727 cm -1 in the B-P2: the peak intensity Figure 2 in the vicinity of 1616cm -1 in the circumferential direction shows the Raman spectrum of the polyamide-based resin or a polyamide-based elastomer.
(i)ポリアミド系樹脂またはポリアミド系エラストマー、
A-P1:軸方向における1440cm-1付近のピーク強度
A-P2:軸方向における1110cm-1付近のピーク強度
B-P1:周方向における1440cm-1付近のピーク強度
B-P2:周方向における1110cm-1付近のピーク強度
(ii)ポリウレタン系樹脂またはポリウレタン系エラストマー
A-P1:軸方向における1180cm-1付近のピーク強度
A-P2:軸方向における1610cm-1付近のピーク強度
B-P1:周方向における1180cm-1付近のピーク強度
B-P2:周方向における1610cm-1付近のピーク強度
(iii)ポリエステル系樹脂またはポリエステル系エラストマー
A-P1:軸方向における1727cm-1付近のピーク強度
A-P2:軸方向における1616cm-1付近のピーク強度
B-P1:周方向における1727cm-1付近のピーク強度
B-P2:周方向における1616cm-1付近のピーク強度
図2は、ポリアミド系樹脂またはポリアミド系エラストマーのラマンスペクトルを示している。 The specific wavelength (I) and the specific wavelength (II) vary depending on the resin type. In the following, A-P1, A-P2, B-P1 and B-P2 are shown for some resin types.
(I) polyamide resin or polyamide elastomer,
A—P1: Peak intensity around 1440 cm −1 in the axial direction A—P2: Peak intensity around 1110 cm −1 in the axial direction B—P1: Peak intensity around 1440 cm −1 in the circumferential direction B—P2: 1110 cm in the circumferential direction -1 vicinity of the peak intensity (ii) polyurethane resin or polyurethane elastomer a-P1: the peak intensity at around 1180 cm -1 in the axial direction a-P2: the peak intensity at around 1610 cm -1 in the axial direction B-P1: circumferential peak intensity near 1180 cm -1 in the B-P2: the peak intensity at around 1610 cm -1 in the circumferential direction (iii) a polyester resin or polyester-based elastomer a-P1: the peak intensity at around 1727 cm -1 in the axial direction a-P2: peak intensity near 1616cm -1 in the axial direction B-P1: circumferential direction Peak intensity near 1727 cm -1 in the B-P2: the peak intensity Figure 2 in the vicinity of 1616cm -1 in the circumferential direction shows the Raman spectrum of the polyamide-based resin or a polyamide-based elastomer.
ここで、ピーク(P1)は、高分子化合物におけるC-H結合に由来するので、高分子化合物の側鎖に由来する。一方、ピーク(P2) は、高分子化合物におけるC-C結合、C=C結合等に由来するので、高分子化合物の主鎖に由来する。
Here, since the peak (P1) is derived from the C—H bond in the polymer compound, it is derived from the side chain of the polymer compound. On the other hand, the peak (P2) originates from the C—C bond, C═C bond, and the like in the polymer compound, and hence from the main chain of the polymer compound.
従って、高分子化合物の配向が高い場合は、P2/P1で示されるピーク強度の比は大きくなる。
一方、高分子化合物の配向がA方向およびB方向のどちらに強くかかっているかは、それぞれの方向におけるP2/P1を比較することにより求めることができる。従って、{(A-P2)/(A-P1)}/{(B-P2)/(B-P1)}の比が1に近いほど、配向性が少ない、すなわち高分子の分子配向が軸方向に揃っていないことを示している。
なお、ラマン分光法が、結晶性高分子の配向性に関する評価方法として有効であることは,例えば、川野道則ら、岡山工業技術センターH27-17、「レーザーラマン顕微鏡によるポリプロピレンの配向評価」、<http://www.pref/okayama.jp/sangyo/kougi//riyo/report/pdf/2014/H27-17.pdf>に報告されている。この報告では、ポリプロピレンの延伸倍率とラマンスペクトルとの関係を調べて、ラマンスペクトルに延伸による大きな変化が見られたと記載されている。 Therefore, when the orientation of the polymer compound is high, the ratio of the peak intensity indicated by P2 / P1 is large.
On the other hand, whether the orientation of the polymer compound is strongly applied in the A direction or the B direction can be determined by comparing P2 / P1 in each direction. Therefore, the closer the ratio of {(A-P2) / (A-P1)} / {(B-P2) / (B-P1)} to 1, the smaller the orientation, that is, the molecular orientation of the polymer It shows that they are not aligned.
Note that Raman spectroscopy is effective as an evaluation method for the orientation of crystalline polymers. For example, Michinori Kawano et al., Okayama Industrial Technology Center H27-17, “Evaluation of orientation of polypropylene with a laser Raman microscope”, < It is reported at http: //www.pref/okayama.jp/sangyo/kougi//riyo/report/pdf/2014/H27-17.pdf>. In this report, the relationship between the draw ratio of polypropylene and the Raman spectrum was investigated, and it was described that a large change was observed in the Raman spectrum due to stretching.
一方、高分子化合物の配向がA方向およびB方向のどちらに強くかかっているかは、それぞれの方向におけるP2/P1を比較することにより求めることができる。従って、{(A-P2)/(A-P1)}/{(B-P2)/(B-P1)}の比が1に近いほど、配向性が少ない、すなわち高分子の分子配向が軸方向に揃っていないことを示している。
なお、ラマン分光法が、結晶性高分子の配向性に関する評価方法として有効であることは,例えば、川野道則ら、岡山工業技術センターH27-17、「レーザーラマン顕微鏡によるポリプロピレンの配向評価」、<http://www.pref/okayama.jp/sangyo/kougi//riyo/report/pdf/2014/H27-17.pdf>に報告されている。この報告では、ポリプロピレンの延伸倍率とラマンスペクトルとの関係を調べて、ラマンスペクトルに延伸による大きな変化が見られたと記載されている。 Therefore, when the orientation of the polymer compound is high, the ratio of the peak intensity indicated by P2 / P1 is large.
On the other hand, whether the orientation of the polymer compound is strongly applied in the A direction or the B direction can be determined by comparing P2 / P1 in each direction. Therefore, the closer the ratio of {(A-P2) / (A-P1)} / {(B-P2) / (B-P1)} to 1, the smaller the orientation, that is, the molecular orientation of the polymer It shows that they are not aligned.
Note that Raman spectroscopy is effective as an evaluation method for the orientation of crystalline polymers. For example, Michinori Kawano et al., Okayama Industrial Technology Center H27-17, “Evaluation of orientation of polypropylene with a laser Raman microscope”, < It is reported at http: //www.pref/okayama.jp/sangyo/kougi//riyo/report/pdf/2014/H27-17.pdf>. In this report, the relationship between the draw ratio of polypropylene and the Raman spectrum was investigated, and it was described that a large change was observed in the Raman spectrum due to stretching.
本発明のチューブは、上記式から求められる配向性が2以下、好ましくは1.6以下である。配向性は、出来る限り1に近いのが好ましい。配向性が上記範囲内にある本発明のチューブは、軸方向への配向が抑制されているので、軸方向への引張伸びが高くなる。
The orientation of the tube of the present invention determined from the above formula is 2 or less, preferably 1.6 or less. The orientation is preferably as close to 1 as possible. Since the orientation of the tube of the present invention in which the orientation is in the above range is suppressed in the axial direction, the tensile elongation in the axial direction becomes high.
具体的には、本発明のチューブは、後述の実施例に示すように、軸方向において高い破断伸びを有する。破断伸びは、使用する熱可塑性樹脂や熱可塑性エラストマーの材質によって変化するが、例えば実施例で使用したポリドデカンアミド(ポリアミド12)のチューブでは、350%以上、とりわけ400%以上の破断伸びを有する。
破断伸びは、引張試験機によって測定することができる。測定にあたっては、所定長さのチューブを引張試験機に固定して引張試験を行う。 Specifically, the tube of the present invention has a high elongation at break in the axial direction, as shown in Examples described later. The elongation at break varies depending on the material of the thermoplastic resin or thermoplastic elastomer used. For example, the polydodecanamide (polyamide 12) tube used in the examples has a elongation at break of 350% or more, particularly 400% or more. .
The elongation at break can be measured by a tensile tester. In measurement, a tube having a predetermined length is fixed to a tensile tester and a tensile test is performed.
破断伸びは、引張試験機によって測定することができる。測定にあたっては、所定長さのチューブを引張試験機に固定して引張試験を行う。 Specifically, the tube of the present invention has a high elongation at break in the axial direction, as shown in Examples described later. The elongation at break varies depending on the material of the thermoplastic resin or thermoplastic elastomer used. For example, the polydodecanamide (polyamide 12) tube used in the examples has a elongation at break of 350% or more, particularly 400% or more. .
The elongation at break can be measured by a tensile tester. In measurement, a tube having a predetermined length is fixed to a tensile tester and a tensile test is performed.
本発明のチューブを形成する熱可塑性樹脂としては、例えば、前記したポリアミド系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂の他に、ポリイミド系樹脂、ポリスチレン系樹脂、ポリカーボネート系樹脂、ポリオレフィン系樹脂、アクリル系樹脂、メタクリル系樹脂、フッ素系樹脂、シリコーン系樹脂、ポリアセタール樹脂(ポリオキシメチレン)、ポリアリレート樹脂、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリサルホン、ポリエーテルサルホン、ポリエーテルエーテルケトン、塩化ビニル樹脂、ポリビニル系樹脂などが挙げられるが、これらに限定されない。また熱可塑性樹脂としては単独でも複数でもよいし、共重合、添加、ブレンド、アロイなどの多成分系を単独で用いても複数で用いてもよい。より好ましくはポリアミド樹脂、ポリウレタン系樹脂、ポリエステル系樹脂が挙げられる。
Examples of the thermoplastic resin forming the tube of the present invention include, in addition to the above-described polyamide resin, polyurethane resin, and polyester resin, polyimide resin, polystyrene resin, polycarbonate resin, polyolefin resin, and acrylic resin. Resin, methacrylic resin, fluorine resin, silicone resin, polyacetal resin (polyoxymethylene), polyarylate resin, polyphenylene ether, polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone, vinyl chloride resin, polyvinyl resin Examples include, but are not limited to, resins. In addition, the thermoplastic resin may be used singly or in plural, and multicomponent systems such as copolymerization, addition, blending, and alloy may be used singly or in plural. More preferred are polyamide resins, polyurethane resins, and polyester resins.
ポリアミド系樹脂の具体例としては、ポリアミド11、ポリアミド12、ポリアミド6、ポリアミド66、ポリアミド610、ポリアミド612、ポリアミド666、ポリアミド46、ポリアミド10T、ポリアミド6T、アラミド樹脂(全芳香族ポリアミド)等が挙げられる。ポリエステル系樹脂の具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等が挙げられる。ポリオレフィン系樹脂の具体例としては、ポリエチレン、ポリプロピレン等が挙げられる。
Specific examples of the polyamide-based resin include polyamide 11, polyamide 12, polyamide 6, polyamide 66, polyamide 610, polyamide 612, polyamide 666, polyamide 46, polyamide 10T, polyamide 6T, aramid resin (fully aromatic polyamide), and the like. It is done. Specific examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate. Specific examples of the polyolefin resin include polyethylene and polypropylene.
熱可塑性エラストマー(TPE)としては、例えば、前記したポリアミド系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマーが挙げられるが、これらに限定されない。なお熱可塑性エラストマーとは、硬質相(ハードセグメント)と軟質相(ソフトセグメント)からなり、常温でゴムとしての性質を示すが、高温で熱可塑性を示すポリマーである。
Examples of the thermoplastic elastomer (TPE) include, but are not limited to, the above-described polyamide-based thermoplastic elastomer, polyurethane-based thermoplastic elastomer, and polyester-based thermoplastic elastomer. The thermoplastic elastomer is a polymer composed of a hard phase (hard segment) and a soft phase (soft segment), and exhibits properties as rubber at room temperature, but exhibits thermoplasticity at high temperature.
ポリアミド系エラストマーとしては、例えばポリアミドからなるハードセグメントとし、ソフトセグメントとのブロックコポリマーが挙げられる。
Examples of the polyamide-based elastomer include a hard segment made of polyamide and a block copolymer with a soft segment.
ポリウレタン系熱可塑性エラストマーとしては、ポリオールとイソシアナートとの反応により得られる弾性体であり、公知の熱可塑性ポリウレタン(TPU)を使用できる。熱可塑性ポリウレタンは1種単独で又は2種以上を組み合わせて使用できる。熱可塑性ポリウレタンは、通常、ポリイシソアネートと、長鎖ポリオールと、鎖伸長剤と、必要に応じて他のイソシアネート反応性化合物とを反応させることにより得られる。
前記ポリイソシアネートとしては、分子内に少なくとも2つのイソシアネート基を有する化合物であれば特に制限されない。ポリイソシアネートには、例えば、脂肪族ポリイソシアネート、脂環式ポリイソシアネート、芳香族ポリイソシアネート、芳香脂肪族ポリイソシアネートなどが含まれる。ポリイソシアネートは単独で又は2種以上を組み合わせて使用できる。 The polyurethane-based thermoplastic elastomer is an elastic body obtained by a reaction between a polyol and an isocyanate, and a known thermoplastic polyurethane (TPU) can be used. A thermoplastic polyurethane can be used individually by 1 type or in combination of 2 or more types. The thermoplastic polyurethane is usually obtained by reacting polyisocyanate, a long-chain polyol, a chain extender, and, if necessary, another isocyanate-reactive compound.
The polyisocyanate is not particularly limited as long as it is a compound having at least two isocyanate groups in the molecule. Examples of the polyisocyanate include aliphatic polyisocyanate, alicyclic polyisocyanate, aromatic polyisocyanate, and araliphatic polyisocyanate. Polyisocyanate can be used individually or in combination of 2 or more types.
前記ポリイソシアネートとしては、分子内に少なくとも2つのイソシアネート基を有する化合物であれば特に制限されない。ポリイソシアネートには、例えば、脂肪族ポリイソシアネート、脂環式ポリイソシアネート、芳香族ポリイソシアネート、芳香脂肪族ポリイソシアネートなどが含まれる。ポリイソシアネートは単独で又は2種以上を組み合わせて使用できる。 The polyurethane-based thermoplastic elastomer is an elastic body obtained by a reaction between a polyol and an isocyanate, and a known thermoplastic polyurethane (TPU) can be used. A thermoplastic polyurethane can be used individually by 1 type or in combination of 2 or more types. The thermoplastic polyurethane is usually obtained by reacting polyisocyanate, a long-chain polyol, a chain extender, and, if necessary, another isocyanate-reactive compound.
The polyisocyanate is not particularly limited as long as it is a compound having at least two isocyanate groups in the molecule. Examples of the polyisocyanate include aliphatic polyisocyanate, alicyclic polyisocyanate, aromatic polyisocyanate, and araliphatic polyisocyanate. Polyisocyanate can be used individually or in combination of 2 or more types.
脂肪族ポリイソシアネートとしては、例えば、1,3-トリメチレンジイソシアネート、1,4-テトラメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、1,2-プロピレンジイソシアネート、1,2-ブチレンジイソシアネート、2,3-ブチレンジイソシアネート、1,3-ブチレ ンジイソシアネート、2-メチル-1,5-ペンタメチレンジイソシアネート、3-メチル-1,5-ペンタメチレンジイソシアネート、2,4,4-トリメチル-1,6-ヘキサメチレンジイソシアネート、2,2,4-トリメチル-1,6-ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネートなどが挙げられる。
Examples of the aliphatic polyisocyanate include 1,3-trimethylene diisocyanate, 1,4-tetramethylene diisocyanate, 1,5-pentamethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,2-propylene diisocyanate, 1, 2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate, 2-methyl-1,5-pentamethylene diisocyanate, 3-methyl-1,5-pentamethylene diisocyanate, 2,4,4- And aliphatic diisocyanates such as trimethyl-1,6-hexamethylene diisocyanate and 2,2,4-trimethyl-1,6-hexamethylene diisocyanate.
脂環式ポリイソシアネートとしては、例えば、1,3-シクロペンタンジイソシアネート、1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート)、4,4・-メチレンビス(シクロヘキシルイソシアネート)、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、1, 4-ビス(イソシアネートメチル)シクロヘキサン、ノルボルナンジイソシアネート等の脂環式ジイソシアネートなどが挙げられる。
Examples of the alicyclic polyisocyanate include 1,3-cyclopentane diisocyanate, 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate). 4,4-Methylenebis (cyclohexyl isocyanate), methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, 1, 4-bis (isocyanate methyl) Examples include alicyclic diisocyanates such as cyclohexane and norbornane diisocyanate.
芳香族ポリイソシアネートとしては、例えば、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジ イソシアネート、ナフチレン-1,4-ジイソシアネート、ナフチレン-1,5-ジイソ シアネート、4,4・-ジフェニルジイソシアネート、4,4・-ジフェニルメタンジイ ソシアネート、2,4・-ジフェニルメタンジイソシアネート、2,2・-ジフェニルメ タンジイソシアネート、4,4・-ジフェニルエーテルジイソシアネート、2,2・-ジ フェニルプロパン-4,4・-ジイソシアネート、3,3・-ジメチルジフェニルメタン-4,4・-ジイソシネート、4,4・-ジフェニルプロパンジイソシアネート等の芳香族ジイソシアネートなどが挙げられる。
Examples of aromatic polyisocyanates include m-phenylene diisocyanate, p-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthylene-1,4-diisocyanate, and naphthylene-1,5-diisoisocyanate. 4,4 · -diphenyl diisocyanate, 4,4 · -diphenylmethane diisocyanate, 2,4 · -diphenylmethane diisocyanate, 2,2 · -diphenylmethane diisocyanate, 4,4 · -diphenyl ether diisocyanate, 2,2 · -di Aromatic diisocyanates such as phenylpropane-4,4-diisocyanate, 3,3-dimethyldimethylphenyl-4,4-diisocyanate, 4,4-diphenylpropane diisocyanate And so on.
芳香脂肪族ポリイソシアネートとしては、例えば、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート、ω,ω・-ジイソシアネート-1,4-ジエ チルベンゼン、1,3-ビス(1-イソシアネート-1-メチルエチル)ベンゼン、1, 4-ビス(1-イソシアネート-1-メチルエチル)ベンゼン、1,3-ビス(α,α-ジメチルイソシアネートメチル)ベンゼン等の芳香脂肪族ジイソシアネートなどが挙げられる。
ポリイソシアネートとしては、1,6-ヘキサメチレンジイソシアネート、4,4・-メチレンビス(シクロヘキシルイソシアネート)、1,3-ビス(イソシアネートメチル)シクロヘキサン、1,4-ビス(イソシアネートメチル)シクロヘキサン、イソホロン ジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネ ート、4,4・-ジフェニルメタンジイソシアネート、1,3-キシリレンジイソシアネ ート、1,4-キシリレンジイソシアネート、ノルボルナンジイソシアネート、1,3-ビス(α,α-ジメチルイソシアネートメチル)ベンゼンを好適に用いることができる。 Examples of the araliphatic polyisocyanate include 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, ω, ω · -diisocyanate-1,4-diethylbenzene, 1,3-bis (1-isocyanate- And araliphatic diisocyanates such as 1-methylethyl) benzene, 1,4-bis (1-isocyanate-1-methylethyl) benzene, 1,3-bis (α, α-dimethylisocyanatomethyl) benzene, and the like.
Examples of polyisocyanates include 1,6-hexamethylene diisocyanate, 4,4-methylene bis (cyclohexyl isocyanate), 1,3-bis (isocyanate methyl) cyclohexane, 1,4-bis (isocyanate methyl) cyclohexane, isophorone diisocyanate, 2 , 4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4-diphenylmethane diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, norbornane diisocyanate, 1, 3-bis (α, α-dimethylisocyanatomethyl) benzene can be preferably used.
ポリイソシアネートとしては、1,6-ヘキサメチレンジイソシアネート、4,4・-メチレンビス(シクロヘキシルイソシアネート)、1,3-ビス(イソシアネートメチル)シクロヘキサン、1,4-ビス(イソシアネートメチル)シクロヘキサン、イソホロン ジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネ ート、4,4・-ジフェニルメタンジイソシアネート、1,3-キシリレンジイソシアネ ート、1,4-キシリレンジイソシアネート、ノルボルナンジイソシアネート、1,3-ビス(α,α-ジメチルイソシアネートメチル)ベンゼンを好適に用いることができる。 Examples of the araliphatic polyisocyanate include 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, ω, ω · -diisocyanate-1,4-diethylbenzene, 1,3-bis (1-isocyanate- And araliphatic diisocyanates such as 1-methylethyl) benzene, 1,4-bis (1-isocyanate-1-methylethyl) benzene, 1,3-bis (α, α-dimethylisocyanatomethyl) benzene, and the like.
Examples of polyisocyanates include 1,6-hexamethylene diisocyanate, 4,4-methylene bis (cyclohexyl isocyanate), 1,3-bis (isocyanate methyl) cyclohexane, 1,4-bis (isocyanate methyl) cyclohexane, isophorone diisocyanate, 2 , 4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4-diphenylmethane diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, norbornane diisocyanate, 1, 3-bis (α, α-dimethylisocyanatomethyl) benzene can be preferably used.
なお、ポリイソシアネートとして、前記例示の脂肪族ポリイソシアネート、脂環式ポリイソシアネート、芳香族ポリイソシアネート、芳香脂肪族ポリイソシアネートによる二量体や三量体、反応生成物又は重合物(例えば、ジフェニルメタンジイソシアネートの二量体や三量体、トリメチロールプロパンとトリレンジイソシアネートとの反応生成物、トリメチロールプロパンとヘキサメチレンジイソシアネートとの反応生成物、ポリメチレンポリフェニルイソシアネート、ポリエーテルポリイソシアネート、ポリエステルポリイソシアネートなど)なども用いることができる。
As the polyisocyanate, the exemplified aliphatic polyisocyanate, alicyclic polyisocyanate, aromatic polyisocyanate, dimer or trimer by araliphatic polyisocyanate, reaction product or polymer (for example, diphenylmethane diisocyanate). Dimers and trimers of, reaction products of trimethylolpropane and tolylene diisocyanate, reaction products of trimethylolpropane and hexamethylene diisocyanate, polymethylene polyphenyl isocyanate, polyether polyisocyanate, polyester polyisocyanate, etc. ) Etc. can also be used.
前記長鎖ポリオールとしては、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリオレフィンポリオール、ポリアクリルポリオールなどが挙げられる。
Examples of the long-chain polyol include polyether polyol, polyester polyol, polycarbonate polyol, polyolefin polyol, and polyacryl polyol.
ポリエーテルポリオールとしては、例えば、ポリエチレンエーテルグリコール、ポリプロピレンエーテルグリコール、ポリテトラメチレンエーテルグリコール(PTMG)などのポリアルキレンエーテルグリコールの他、エチレンオキシド-プロピレンオキシド共重合体などのモノマー成分として複数のアルキレンオキシドを含む(アルキレンオキサイド-他のアルキレンオキサイド)共重合体などが挙げられる。
Examples of the polyether polyol include polyalkylene ether glycols such as polyethylene ether glycol, polypropylene ether glycol, and polytetramethylene ether glycol (PTMG), and a plurality of alkylene oxides as monomer components such as an ethylene oxide-propylene oxide copolymer. And (alkylene oxide-other alkylene oxide) copolymers containing.
ポリエステルポリオールとしては、例えば、多価アルコールと多価カルボン酸との縮合重合物;環状エステル(ラクトン)の開環重合物;多価アルコール、多価カルボン酸及び環状エステルの3種類の成分による反応物などを用いることができる。多価アルコールと多価カルボン酸との縮合重合物において、多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、 1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,9-ノナンジオール、1,10-デカンジオール、グリセリン、トリメチロールプロパン、トリメチロールエタン、シクロヘキサンジオール類(1,4-シクロヘキサンジオールなど)、シクロヘキサンジメタノール類(1,4-シクロヘキサンジメタノールなど)、ビスフェノール類(ビスフェノールAなど)、糖アルコール類(キシリトールやソルビトールなど)などを用いることができる。一方、多価カルボン酸としては、例えば、マロン酸、マレイン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジオン酸等の脂肪族ジカルボン酸;1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸;テレフタル酸、イソフタル酸、オルトフタル酸、2,6-ナフタレンジカルボン酸、パラフェニレンジカルボン酸、トリメリット酸等の芳香族ジカルボン酸などが挙げられる。
Examples of the polyester polyol include a condensation polymer of a polyhydric alcohol and a polyvalent carboxylic acid; a ring-opening polymer of a cyclic ester (lactone); a reaction by three kinds of components: a polyhydric alcohol, a polyvalent carboxylic acid, and a cyclic ester. Things can be used. In the condensation polymer of polyhydric alcohol and polycarboxylic acid, the polyhydric alcohol includes, for example, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,3-propanediol, 1,3-butanediol, , 4-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 2,4- Diethyl-1,5-pentanediol, 1,9-nonanediol, 1,10-decanediol, glycerin, trimethylolpropane, trimethylolethane, cyclohexanediols (such as 1,4-cyclohexanediol), cyclohexanedimethanols (1,4-cyclohex Etc. Nji methanol), bisphenols (bisphenol A, etc.), such as sugar alcohols (such as xylitol or sorbitol) can be used. On the other hand, examples of polyvalent carboxylic acids include aliphatic dicarboxylic acids such as malonic acid, maleic acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid; 1,4-cyclohexane Examples thereof include alicyclic dicarboxylic acids such as dicarboxylic acids; aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, paraphenylene dicarboxylic acid and trimellitic acid.
また、環状エステルの開環重合物において、環状エステルとしては、例えば、プロピオラクトン、β-メチル-δ-バレロラクトン、ε-カプロラクトンなどが挙げられる。3種類の成分による反応物において、多価アルコール、多価カルボン酸、環状エステルとしては、前記例示のものなどを用いることができる。
In the ring-opening polymer of cyclic ester, examples of the cyclic ester include propiolactone, β-methyl-δ-valerolactone, and ε-caprolactone. In the reaction product of the three types of components, those exemplified above can be used as the polyhydric alcohol, polycarboxylic acid, and cyclic ester.
ポリカーボネートポリオールとしては、例えば、多価アルコールとホスゲン、クロロギ酸エステル、ジアルキルカーボネート又はジアリールカーボネートとの反応物;環状炭酸エステル(アルキレンカーボネートなど)の開環重合物などが挙げられる。具体的には、 多価アルコールとホスゲンとの反応物において、多価アルコールとしては、前記例示の多価アルコール(例えば、エチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール等)を用いることができる。また、環状炭酸エステルの開環重合物において、アルキレンカーボネートとしては、例えば、エチレンカーボネート、トリメチレンカーボネート、テトラメチレンカーボネート、ヘキサメチレンカーボネートなどが挙げられる。なお、ポリカーボネートポリオールは、分子内にカーボネート結合を有し、末端がヒドロキシル基である化合物であればよく、カーボネート結合とともにエステル結合を有していてもよい。ポリカーボネートポリオールの代表的な例として、ポリヘキサメチレンカーボネートジオール、ポリヘキサメチレンカーボネートジオールにラクトンを開環付加重合して得られるジオール、ポリヘキサメチレンカーボネートジオールとポリエステルジオール又はポリエーテルジオールとの共縮合物などが挙げられる。
Examples of the polycarbonate polyol include a reaction product of a polyhydric alcohol and phosgene, chloroformate, dialkyl carbonate or diaryl carbonate; a ring-opening polymer of a cyclic carbonate (such as alkylene carbonate). Specifically, in the reaction product of a polyhydric alcohol and phosgene, the polyhydric alcohol includes the polyhydric alcohols exemplified above (for example, ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol). Neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, etc.) can be used. In the ring-opening polymer of cyclic carbonate, examples of the alkylene carbonate include ethylene carbonate, trimethylene carbonate, tetramethylene carbonate, hexamethylene carbonate, and the like. In addition, the polycarbonate polyol should just be a compound which has a carbonate bond in a molecule | numerator, and the terminal is a hydroxyl group, and may have an ester bond with a carbonate bond. Representative examples of polycarbonate polyols include polyhexamethylene carbonate diol, diol obtained by ring-opening addition polymerization of lactone to polyhexamethylene carbonate diol, and co-condensate of polyhexamethylene carbonate diol with polyester diol or polyether diol. Etc.
ポリオレフィンポリオールは、オレフィンを重合体又は共重合体の骨格(又は主鎖)の成分とし且つ分子内に(特に末端に)ヒドロキシル基を少なくとも2つ有するポリオールである。前記オレフィンとしては、末端に炭素-炭素二重結合を有するオレフィン(例えば、エチレン、プロピレン等のα-オレフィンなど)であってもよく、また末端以外の部位に炭素-炭素二重結合を有するオレフィン(例えば、イソブテンなど)であってもよく、さらにはジエン(例えば、ブタジエン、イソプレンなど)であってもよい。ポリオレフィンポリオールの代表的な例として、ブタジエンホモポリマー、イソプレンホモポリマー、ブタジエン-スチレンコポリマー、ブタジエン-イソプレンコポリマー、ブタジエン-アクリロニトリルコポリマー、ブタジエン-2-エチルヘキシルアクリレートコポリマー、ブタジエン-n-オクタデシルアクリレートコポリマーなどのブタジエン若しくはイソプレン系ポリマーの末端をヒドロキシル基に変性したものが挙げられる。
ポリアクリルポリオールは、(メタ)アクリレートを重合体又は共重合体の骨格(又は主鎖)の成分とし且つ分子内に(特に末端に)ヒドロキシル基を少なくとも2つ有するポリオールである。(メタ)アクリレートとしては、(メタ)アクリル酸アルキルエステル[例えば、(メタ)アクリル酸C1-20アルキルエステルなど]が好適に用いられる。また、ポリオールに関しては、ここに挙げられたもの以外のあらゆる材料を使用することができる。 The polyolefin polyol is a polyol having an olefin as a component of the skeleton (or main chain) of the polymer or copolymer and having at least two hydroxyl groups in the molecule (particularly at the terminal). The olefin may be an olefin having a carbon-carbon double bond at the terminal (for example, an α-olefin such as ethylene or propylene), or an olefin having a carbon-carbon double bond at a position other than the terminal. (For example, isobutene and the like) and diene (for example, butadiene, isoprene and the like) may be used. Representative examples of polyolefin polyols include butadiene homopolymers, isoprene homopolymers, butadiene-styrene copolymers, butadiene-isoprene copolymers, butadiene-acrylonitrile copolymers, butadiene-2-ethylhexyl acrylate copolymers, butadiene-n-octadecyl acrylate copolymers, and the like. Or the thing which modified the terminal of an isoprene-type polymer into a hydroxyl group is mentioned.
The polyacrylic polyol is a polyol having (meth) acrylate as a component of the polymer (or copolymer) skeleton (or main chain) and having at least two hydroxyl groups in the molecule (particularly at the terminal). As the (meth) acrylate, (meth) acrylic acid alkyl ester [for example, (meth) acrylic acid C1-20 alkyl ester, etc.] is preferably used. Also, for the polyol, any material other than those listed here can be used.
ポリアクリルポリオールは、(メタ)アクリレートを重合体又は共重合体の骨格(又は主鎖)の成分とし且つ分子内に(特に末端に)ヒドロキシル基を少なくとも2つ有するポリオールである。(メタ)アクリレートとしては、(メタ)アクリル酸アルキルエステル[例えば、(メタ)アクリル酸C1-20アルキルエステルなど]が好適に用いられる。また、ポリオールに関しては、ここに挙げられたもの以外のあらゆる材料を使用することができる。 The polyolefin polyol is a polyol having an olefin as a component of the skeleton (or main chain) of the polymer or copolymer and having at least two hydroxyl groups in the molecule (particularly at the terminal). The olefin may be an olefin having a carbon-carbon double bond at the terminal (for example, an α-olefin such as ethylene or propylene), or an olefin having a carbon-carbon double bond at a position other than the terminal. (For example, isobutene and the like) and diene (for example, butadiene, isoprene and the like) may be used. Representative examples of polyolefin polyols include butadiene homopolymers, isoprene homopolymers, butadiene-styrene copolymers, butadiene-isoprene copolymers, butadiene-acrylonitrile copolymers, butadiene-2-ethylhexyl acrylate copolymers, butadiene-n-octadecyl acrylate copolymers, and the like. Or the thing which modified the terminal of an isoprene-type polymer into a hydroxyl group is mentioned.
The polyacrylic polyol is a polyol having (meth) acrylate as a component of the polymer (or copolymer) skeleton (or main chain) and having at least two hydroxyl groups in the molecule (particularly at the terminal). As the (meth) acrylate, (meth) acrylic acid alkyl ester [for example, (meth) acrylic acid C1-20 alkyl ester, etc.] is preferably used. Also, for the polyol, any material other than those listed here can be used.
前記鎖伸長剤としては、熱可塑性ポリウレタンの製造に通常用いられる鎖伸長剤を使用でき、その種類は特に制限されないが、低分子量のポリオール、ポリアミン等を用いることができる。鎖伸長剤は単独で又は2種以上を組み合わせて使用できる。
鎖伸長剤の代表的な例としては、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,2-ペンタンジオール、2,3-ペン タンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノールなどのポリオール(特に、ジオール);ヘキサメチレンジアミン、3,3′-ジメチル-4,4′-ジアミノジシクロヘキシルメタン、4,4′-メチレンビス-2-クロロアニリンなどのポリアミン(特に、ジアミン)などが挙げられる。 As the chain extender, a chain extender usually used in the production of thermoplastic polyurethane can be used, and the kind thereof is not particularly limited, but a low molecular weight polyol, polyamine or the like can be used. A chain extender can be used individually or in combination of 2 or more types.
Representative examples of chain extenders include ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,2 -Polyols such as pentanediol, 2,3-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol (Especially diols); polyamines (particularly diamines) such as hexamethylenediamine, 3,3′-dimethyl-4,4′-diaminodicyclohexylmethane, 4,4′-methylenebis-2-chloroaniline, and the like.
鎖伸長剤の代表的な例としては、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,2-ペンタンジオール、2,3-ペン タンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノールなどのポリオール(特に、ジオール);ヘキサメチレンジアミン、3,3′-ジメチル-4,4′-ジアミノジシクロヘキシルメタン、4,4′-メチレンビス-2-クロロアニリンなどのポリアミン(特に、ジアミン)などが挙げられる。 As the chain extender, a chain extender usually used in the production of thermoplastic polyurethane can be used, and the kind thereof is not particularly limited, but a low molecular weight polyol, polyamine or the like can be used. A chain extender can be used individually or in combination of 2 or more types.
Representative examples of chain extenders include ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,2 -Polyols such as pentanediol, 2,3-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol (Especially diols); polyamines (particularly diamines) such as hexamethylenediamine, 3,3′-dimethyl-4,4′-diaminodicyclohexylmethane, 4,4′-methylenebis-2-chloroaniline, and the like.
熱可塑性ポリウレタンとしては、市販品を使用できる。市販品として、例えば、硬度80のアジペート系TPU、硬度90のアジペート系TPU、硬度90のカプロラクトン系TPU、硬度92のPTMG系TPU、硬度92のアジペート系TPUなどが挙げられる。
これらの熱可塑性樹脂は、単独で用いてもよく、その効果を阻害しない範囲であれば2種以上を併用してもよい。 A commercially available product can be used as the thermoplastic polyurethane. Examples of commercially available products include adipate TPU having a hardness of 80, adipate TPU having a hardness of 90, a caprolactone TPU having a hardness of 90, a PTMG TPU having a hardness of 92, an adipate TPU having a hardness of 92, and the like.
These thermoplastic resins may be used alone, or two or more of them may be used in combination as long as the effects thereof are not impaired.
これらの熱可塑性樹脂は、単独で用いてもよく、その効果を阻害しない範囲であれば2種以上を併用してもよい。 A commercially available product can be used as the thermoplastic polyurethane. Examples of commercially available products include adipate TPU having a hardness of 80, adipate TPU having a hardness of 90, a caprolactone TPU having a hardness of 90, a PTMG TPU having a hardness of 92, an adipate TPU having a hardness of 92, and the like.
These thermoplastic resins may be used alone, or two or more of them may be used in combination as long as the effects thereof are not impaired.
ポリエステル系樹脂は、多価カルボン酸とポリアルコールとを重縮合して得られる。多価カルボン酸としては、例えばテレフタル酸、2,6-ナフタレンジカルボン酸等が挙げられる。また、ポリアルコールとしては、例えばエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール等が挙げられる。
Polyester resin is obtained by polycondensation of polyvalent carboxylic acid and polyalcohol. Examples of the polyvalent carboxylic acid include terephthalic acid and 2,6-naphthalenedicarboxylic acid. Examples of the polyalcohol include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,4-cyclohexanedimethanol and the like.
ポリエステル系樹脂の具定例としては、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等が挙げられる。
ポリエステル系エラストマーは、テレフタル酸ジメチル、1,4-ブタンジオール、ポリ(オキシテトラメチレン)グリコールを原料とし、エステル交換や重縮合反応で製造することができる。 Specific examples of the polyester-based resin include polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and the like.
The polyester elastomer can be produced by transesterification or polycondensation reaction using dimethyl terephthalate, 1,4-butanediol, and poly (oxytetramethylene) glycol as raw materials.
ポリエステル系エラストマーは、テレフタル酸ジメチル、1,4-ブタンジオール、ポリ(オキシテトラメチレン)グリコールを原料とし、エステル交換や重縮合反応で製造することができる。 Specific examples of the polyester-based resin include polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and the like.
The polyester elastomer can be produced by transesterification or polycondensation reaction using dimethyl terephthalate, 1,4-butanediol, and poly (oxytetramethylene) glycol as raw materials.
熱可塑性樹脂および熱可塑性エラストマーには、その効果を阻害しない範囲であれば、用途に応じてガラス繊維やカーボンナノチューブ(CNT)などの添加剤を補強材として添加してもよく、添加剤は特に限定しない。補強材を熱可塑性樹脂に添加することにより、得られるチューブの引張特性を損なうことなく、すなわち破断伸びを維持して、高強度化が可能となり、その結果、肉厚を薄くでき、チューブの曲げ等が容易になる。
添加剤は、通常、チューブ総量に対して30質量%以下、好ましくは10質量%以下の割合で添加するのがよい。カーボンナノチューブは、単層、二層、多層のいずれもが使用可能である。 In the thermoplastic resin and the thermoplastic elastomer, additives such as glass fibers and carbon nanotubes (CNT) may be added as a reinforcing material depending on the use, so long as the effect is not impaired. Not limited. By adding a reinforcing material to the thermoplastic resin, it is possible to increase the strength without impairing the tensile properties of the resulting tube, i.e., maintaining the elongation at break, thereby reducing the wall thickness and bending the tube. Etc. becomes easier.
The additive is usually added in a proportion of 30% by mass or less, preferably 10% by mass or less, based on the total amount of the tube. As the carbon nanotube, any of a single wall, a double wall, and a multilayer can be used.
添加剤は、通常、チューブ総量に対して30質量%以下、好ましくは10質量%以下の割合で添加するのがよい。カーボンナノチューブは、単層、二層、多層のいずれもが使用可能である。 In the thermoplastic resin and the thermoplastic elastomer, additives such as glass fibers and carbon nanotubes (CNT) may be added as a reinforcing material depending on the use, so long as the effect is not impaired. Not limited. By adding a reinforcing material to the thermoplastic resin, it is possible to increase the strength without impairing the tensile properties of the resulting tube, i.e., maintaining the elongation at break, thereby reducing the wall thickness and bending the tube. Etc. becomes easier.
The additive is usually added in a proportion of 30% by mass or less, preferably 10% by mass or less, based on the total amount of the tube. As the carbon nanotube, any of a single wall, a double wall, and a multilayer can be used.
次に、本発明のチューブの製造方法を説明する。前記したように、本発明では、チューブに高い破断伸びを付与するために、前記式で示される配向性が2以下と低く設定されている。このような本発明のチューブを得るためには、分子配向がかからないように押出成形する必要がある。そのためには、押出時にチューブにサイジングによる擦れや巻取りによる引っ張り力等を加えることなく、しかも急激に冷却されずに徐々に固化させることが重要である。
Next, a method for manufacturing the tube of the present invention will be described. As described above, in the present invention, in order to give a high elongation at break to the tube, the orientation represented by the above formula is set as low as 2 or less. In order to obtain such a tube of the present invention, it is necessary to perform extrusion molding so that molecular orientation is not applied. For this purpose, it is important that the tube is solidified gradually without being rubbed due to sizing or a pulling force due to winding, or the like without being rapidly cooled.
応力を加えることなくチューブを押出成形するには、チューブを押出機の先端ノズルから鉛直方向下向きに押し出すのが好ましい。この場合、チューブは、落下時の自重により伸びる傾向にあるため、所定の径になるようにチューブ内に空気を送り込みながら、徐々に固化させることによって、配向がかかるのを抑制する。
To extrude the tube without applying stress, it is preferable to extrude the tube vertically downward from the tip nozzle of the extruder. In this case, since the tube tends to stretch due to its own weight at the time of dropping, the orientation is suppressed by gradually solidifying while feeding air into the tube so as to have a predetermined diameter.
押し出されたチューブを徐々に固化させるには、雰囲気温度の制御が重要である。すなわち、温度が高すぎるためにチューブの固化が遅れる場合は、チューブが自重で伸びて、所定の径又は肉厚を有するチューブが得られない。一方、温度が低い場合は、チューブが急激に固化するため、固化した部分と溶融部分の差が大きくなり、先端ノズルから出た直後の溶融部分に自重や内圧の影響が集中する。結果として部分的に伸びるため、寸法や肉厚のバラツキにつながる。
従って、チューブが押し出されてから固化するまでの間に、配向がかからないように雰囲気温度が徐々に低下するように制御することが好ましい。 In order to gradually solidify the extruded tube, it is important to control the ambient temperature. That is, when the solidification of the tube is delayed because the temperature is too high, the tube is stretched by its own weight, and a tube having a predetermined diameter or thickness cannot be obtained. On the other hand, when the temperature is low, the tube solidifies rapidly, so that the difference between the solidified portion and the melted portion becomes large, and the influence of its own weight and internal pressure concentrates on the melted portion immediately after coming out from the tip nozzle. As a result, it extends partially, leading to variations in dimensions and wall thickness.
Therefore, it is preferable to control the ambient temperature to gradually decrease so that no orientation is applied between the time when the tube is extruded and the time when the tube is solidified.
従って、チューブが押し出されてから固化するまでの間に、配向がかからないように雰囲気温度が徐々に低下するように制御することが好ましい。 In order to gradually solidify the extruded tube, it is important to control the ambient temperature. That is, when the solidification of the tube is delayed because the temperature is too high, the tube is stretched by its own weight, and a tube having a predetermined diameter or thickness cannot be obtained. On the other hand, when the temperature is low, the tube solidifies rapidly, so that the difference between the solidified portion and the melted portion becomes large, and the influence of its own weight and internal pressure concentrates on the melted portion immediately after coming out from the tip nozzle. As a result, it extends partially, leading to variations in dimensions and wall thickness.
Therefore, it is preferable to control the ambient temperature to gradually decrease so that no orientation is applied between the time when the tube is extruded and the time when the tube is solidified.
以下、本発明のチューブの製造方法の一例を図3に基づいて説明する。図3に示す押出し成型機10は、ホッパー11を備えたシリンダー12内にスクリュー13が設けられ、スクリュー13の先端部にはノズル15を有するダイ14が設けられる。ノズル15の口金15aから鉛直方向下方に押し出されたチューブ1は、巻取りロール17の外周面上に巻き取られる。巻取りロール17の上流側には外径測定装置18が設置されている。
押出し成型機10は特に限定されず、通常市販されている押出成型機でよく、配向がかからない限りは、押出し方向は特に限定されず、例えば水平方向であってもよい。 Hereinafter, an example of the manufacturing method of the tube of this invention is demonstrated based on FIG. In theextrusion molding machine 10 shown in FIG. 3, a screw 13 is provided in a cylinder 12 provided with a hopper 11, and a die 14 having a nozzle 15 is provided at the tip of the screw 13. The tube 1 pushed out vertically from the base 15 a of the nozzle 15 is wound on the outer peripheral surface of the winding roll 17. An outer diameter measuring device 18 is installed on the upstream side of the winding roll 17.
Theextrusion molding machine 10 is not particularly limited, and may be a commercially available extrusion molding machine. The extrusion direction is not particularly limited as long as orientation is not applied, and may be, for example, a horizontal direction.
押出し成型機10は特に限定されず、通常市販されている押出成型機でよく、配向がかからない限りは、押出し方向は特に限定されず、例えば水平方向であってもよい。 Hereinafter, an example of the manufacturing method of the tube of this invention is demonstrated based on FIG. In the
The
ノズル15の口金15aには、長い筒状の放熱遮蔽筒19が設けられている。この放熱遮蔽筒19は、口金15aから押し出されたチューブ1の放熱を抑制し、チューブ1が固化するまでの温度制御を行うものである。すなわち、放熱遮蔽筒19は、外気温に左右されずに、チューブ1を半溶融状態を維持したまま、徐々に固化させて、適切な硬さ(強度)を付与する機能を有する。そのため、この機能を奏する限りは、放熱遮蔽筒19の材質は、特に制限されるものではなく、金属、プラスチック、紙などが使用可能である。また形状は円形、楕円形、多角形などが挙げられるが機能を考慮すると円形であることが好ましい。また、例えばチューブ1を鉛直方向下向きに吐出する場合は、溶融した樹脂を保温しながら固化させるために必要な長さを有し、例えば200mm~1m程度が好ましい。また、筒の長さは、溶融した樹脂の吐出速度に合わせて調整することが好ましい。なお、必要に応じて、放熱遮蔽筒19内に温度制御機能を有していてもよい。
また、前記したように押し出されるチューブ1の通過経路の温度を制御してもよい。 A long heatradiation shielding cylinder 19 is provided on the base 15 a of the nozzle 15. This heat radiation shielding cylinder 19 suppresses heat radiation of the tube 1 pushed out from the base 15a, and performs temperature control until the tube 1 is solidified. That is, the heat radiation shielding cylinder 19 has a function of imparting appropriate hardness (strength) by gradually solidifying the tube 1 while maintaining the semi-molten state without being influenced by the outside air temperature. Therefore, as long as this function is exhibited, the material of the heat shielding cylinder 19 is not particularly limited, and metal, plastic, paper, or the like can be used. In addition, examples of the shape include a circle, an ellipse, and a polygon. In consideration of the function, a circle is preferable. For example, when discharging the tube 1 downward in the vertical direction, it has a length necessary for solidifying the molten resin while keeping the temperature, and is preferably about 200 mm to 1 m, for example. Moreover, it is preferable to adjust the length of the cylinder in accordance with the discharge speed of the molten resin. If necessary, the heat radiation shielding cylinder 19 may have a temperature control function.
Moreover, you may control the temperature of the passage route of thetube 1 extruded as mentioned above.
また、前記したように押し出されるチューブ1の通過経路の温度を制御してもよい。 A long heat
Moreover, you may control the temperature of the passage route of the
シリンダー12およびダイ14の温度は、投入される熱可塑性樹脂の溶融温度に応じて予め設定されている。この状態で、作製されたペレット3を押出し成型機10のホッパー11に投入し、シリンダー12に流し込ませる。シリンダー12に流れ込んだペレット3の樹脂は、シリンダー12内で溶融し、溶融樹脂2になる。溶融樹脂2は、スクリュー13の回転によってダイ14の方向に吐出される。
The temperature of the cylinder 12 and the die 14 is set in advance according to the melting temperature of the thermoplastic resin to be charged. In this state, the produced pellet 3 is put into a hopper 11 of an extrusion molding machine 10 and poured into a cylinder 12. The resin of the pellet 3 that has flowed into the cylinder 12 is melted in the cylinder 12 to become a molten resin 2. The molten resin 2 is discharged in the direction of the die 14 by the rotation of the screw 13.
次いで、溶融樹脂2は、ダイ14内の流路によって押し出され、ノズル15に押し出される。ノズル15には、チューブを成型するための口金15aが装着されており、その口金15aより吐出されることで、チューブ1が作製される。ここで、ノズル15にはサイジング加工を備えていない。そのため、チューブ1は樹脂の吐出量に応じて吐出され、放熱遮蔽筒19を通過する。放熱遮蔽筒19をチューブ1が通過することで、チューブ1は保温されながら固化する。
Next, the molten resin 2 is pushed out by the flow path in the die 14 and pushed out to the nozzle 15. A nozzle 15a for molding the tube is attached to the nozzle 15, and the tube 1 is manufactured by discharging from the nozzle 15a. Here, the nozzle 15 is not provided with a sizing process. Therefore, the tube 1 is discharged according to the discharge amount of the resin and passes through the heat radiation shielding cylinder 19. As the tube 1 passes through the heat radiation shielding cylinder 19, the tube 1 is solidified while being kept warm.
次いで、チューブ1はプーリ16に巻き掛けられ、外径測定装置18を通過し、巻取りロール17に巻き取られる。プーリ16にはモーターなどにより駆動力が与えられ、吐出されたチューブ1に引取り力を与える。この時の引取り速度は、ダイ14より吐出される吐出量に応じて設定され、引取り速度と吐出速度はほぼ等しくなるように設定する。
Next, the tube 1 is wound around the pulley 16, passes through the outer diameter measuring device 18, and is wound around the winding roll 17. A driving force is applied to the pulley 16 by a motor or the like, and a pulling force is applied to the discharged tube 1. The take-up speed at this time is set according to the discharge amount discharged from the die 14, and the take-up speed and the discharge speed are set to be substantially equal. *
上記実施形態によって得られたチューブは、肉厚が0.1~1.0mmと薄いため、吐出量の安定化と外力の排除が重要になる。図3に示すように、本実施形態では、チューブ1は鉛直方向下向きに押し出され、かつチューブ内に空気を送り込みながら押出す。これにより、チューブ1には所定の内圧が加えられているので、所定の径を保持したまま徐冷され、チューブ1の径方向への変形を防止することができる。また、吐出量に応じた引取り速度に設定することで、成型されたチューブ1の軸方向に応力が作用しないようにするのが好ましい。さらに、樹脂押出し時にサイジングを行っていないため、成型速度を保持したまま、押出軸方向への樹脂の配向性を抑えることができる。
Since the tube obtained by the above embodiment is as thin as 0.1 to 1.0 mm, it is important to stabilize the discharge amount and eliminate external force. As shown in FIG. 3, in this embodiment, the tube 1 is extruded downward in the vertical direction, and is pushed out while feeding air into the tube. Thereby, since the predetermined internal pressure is applied to the tube 1, the tube 1 is gradually cooled while maintaining a predetermined diameter, and deformation of the tube 1 in the radial direction can be prevented. In addition, it is preferable to prevent stress from acting in the axial direction of the molded tube 1 by setting the take-up speed according to the discharge amount. Furthermore, since sizing is not performed during resin extrusion, the orientation of the resin in the direction of the extrusion axis can be suppressed while maintaining the molding speed.
ノズル15から押し出されたチューブ1は、放熱遮蔽筒19内を通過する過程で、樹脂が半溶融状態を維持しながら固化する。このように、押し出されたチューブ1を放熱遮蔽筒19内で徐々に固化させるため、成型収縮が低減でき、外気などによる外乱を排除できる。また、半溶融状態を維持しながら固化させることで樹脂の配向性が抑えられる。
また、徐々に樹脂が固化することにより、外径寸法のばらつきが少ない寸法精度の高いチューブを得ることができるという利点がある。樹脂が半溶融状態を維持している際に引取り力を制御することで、樹脂に余分な応力を与えることがないため、チューブ1の外径が安定するものと考えられる。 Thetube 1 pushed out from the nozzle 15 is solidified while the resin is maintained in a semi-molten state in the process of passing through the heat radiation shielding cylinder 19. Thus, since the extruded tube 1 is gradually solidified in the heat radiation shielding cylinder 19, molding shrinkage can be reduced, and disturbance due to outside air or the like can be eliminated. Moreover, the orientation of the resin can be suppressed by solidifying while maintaining a semi-molten state.
Further, since the resin is gradually solidified, there is an advantage that a tube with high dimensional accuracy with little variation in the outer diameter can be obtained. It is considered that the outer diameter of thetube 1 is stable because an excessive stress is not applied to the resin by controlling the pulling force while the resin is maintained in a semi-molten state.
また、徐々に樹脂が固化することにより、外径寸法のばらつきが少ない寸法精度の高いチューブを得ることができるという利点がある。樹脂が半溶融状態を維持している際に引取り力を制御することで、樹脂に余分な応力を与えることがないため、チューブ1の外径が安定するものと考えられる。 The
Further, since the resin is gradually solidified, there is an advantage that a tube with high dimensional accuracy with little variation in the outer diameter can be obtained. It is considered that the outer diameter of the
以下に実施例をあげ、本発明を更に具体的に説明する。なお、本発明はこれらの実施例のみに限定されるものではない。
Hereinafter, the present invention will be described more specifically with reference to examples. In addition, this invention is not limited only to these Examples.
(実施例1)
熱可塑性樹脂として、ポリドデカンアミド(ナイロン12)の市販のペレットを使用し、これを図3に示す押出成型機10に投入し、外径1mm、内径0.8mmのチューブ1を作製した。
ここで、放熱遮蔽筒19としては、外径30mm、内径27mm、長さ1mの鉄製円筒体を使用した。この放熱遮蔽筒19をノズル15の口金15aに取り付け、口金15aよりチューブ1を押出し、チューブ1内に所定量のエアーを注入しながら、放熱遮蔽筒19内を通過させ、固化させた。このとき、押出速度は20m/minに設定した。ここで示す押出速度とは、押出機から吐出された樹脂の速度のことを言う。
このとき、放熱遮蔽筒19に所定間隔で設けた貫通孔より熱電対を筒内に挿入して、筒内の温度を測定した。その結果を表1に示す。
表1から、放熱遮蔽筒19の末端ではほぼ室温に近い温度まで降下しているので、チューブは放熱遮蔽筒19を通過する過程で徐々に冷却固化することがわかる。
Example 1
A commercially available pellet of polydodecanamide (nylon 12) was used as the thermoplastic resin, and this was put into anextrusion molding machine 10 shown in FIG. 3 to produce a tube 1 having an outer diameter of 1 mm and an inner diameter of 0.8 mm.
Here, as the heatradiation shielding cylinder 19, an iron cylinder having an outer diameter of 30 mm, an inner diameter of 27 mm, and a length of 1 m was used. The heat radiation shielding cylinder 19 was attached to the base 15 a of the nozzle 15, the tube 1 was pushed out from the base 15 a, and a predetermined amount of air was injected into the tube 1 while passing through the heat radiation shielding cylinder 19 and solidified. At this time, the extrusion speed was set to 20 m / min. The extrusion speed shown here refers to the speed of the resin discharged from the extruder.
At this time, a thermocouple was inserted into the cylinder through through holes provided in the heatradiation shielding cylinder 19 at predetermined intervals, and the temperature in the cylinder was measured. The results are shown in Table 1.
It can be seen from Table 1 that the tube gradually cools and solidifies in the process of passing through the heat radiation shielding cylinder 19 because the temperature of the end of the heat radiation shielding cylinder 19 is lowered to a temperature close to room temperature.
熱可塑性樹脂として、ポリドデカンアミド(ナイロン12)の市販のペレットを使用し、これを図3に示す押出成型機10に投入し、外径1mm、内径0.8mmのチューブ1を作製した。
ここで、放熱遮蔽筒19としては、外径30mm、内径27mm、長さ1mの鉄製円筒体を使用した。この放熱遮蔽筒19をノズル15の口金15aに取り付け、口金15aよりチューブ1を押出し、チューブ1内に所定量のエアーを注入しながら、放熱遮蔽筒19内を通過させ、固化させた。このとき、押出速度は20m/minに設定した。ここで示す押出速度とは、押出機から吐出された樹脂の速度のことを言う。
このとき、放熱遮蔽筒19に所定間隔で設けた貫通孔より熱電対を筒内に挿入して、筒内の温度を測定した。その結果を表1に示す。
A commercially available pellet of polydodecanamide (nylon 12) was used as the thermoplastic resin, and this was put into an
Here, as the heat
At this time, a thermocouple was inserted into the cylinder through through holes provided in the heat
(比較例1)
熱可塑性樹脂として、ポリドデカンアミド(ポリアミド12)の市販のペレットを使用し、図4に示すようなサイジング装置104を備えた押出成型機にて外径1mmのチューブを作製した。 (Comparative Example 1)
A commercially available pellet of polydodecanamide (polyamide 12) was used as the thermoplastic resin, and a tube having an outer diameter of 1 mm was produced by an extruder equipped with asizing device 104 as shown in FIG.
熱可塑性樹脂として、ポリドデカンアミド(ポリアミド12)の市販のペレットを使用し、図4に示すようなサイジング装置104を備えた押出成型機にて外径1mmのチューブを作製した。 (Comparative Example 1)
A commercially available pellet of polydodecanamide (polyamide 12) was used as the thermoplastic resin, and a tube having an outer diameter of 1 mm was produced by an extruder equipped with a
(比較例2)
熱可塑性樹脂として、ポリアミド12の市販のペレットを、放熱遮蔽筒19を有しない他は、実施例1と同じ押出成型機を使用し、実施例1と同様にして押出成型し、外径1mmのチューブを作製した。 (Comparative Example 2)
As a thermoplastic resin, a commercially available pellet ofpolyamide 12 is extruded in the same manner as in Example 1 except that it does not have the heat-shielding cylinder 19, and the outer diameter is 1 mm. A tube was prepared.
熱可塑性樹脂として、ポリアミド12の市販のペレットを、放熱遮蔽筒19を有しない他は、実施例1と同じ押出成型機を使用し、実施例1と同様にして押出成型し、外径1mmのチューブを作製した。 (Comparative Example 2)
As a thermoplastic resin, a commercially available pellet of
<評価試験>
(破断伸び)
押出成型機で得られた所定長さのチューブを引張試験機(島津製作所社製AGS-5KNX)に固定し、引張速度100mm/minで引張試験を行い、樹脂チューブの軸方向における破断伸びを測定した。結果を表1に示す。
(配向性)
押出成型機で得られたチューブをラマン分光装置(Jasco社製 NRS-3100)に取り付けた。光源には波長532nmのレーザーを使用した。
サンプルのチューブを装置内に設置するにあたり、まず軸方向のピーク強度を測定できるように、チューブを所定方向に設置した。そして、軸方向における1440cm-1付近のピーク強度(A-P1)および1110cm-1付近のピーク強度(A-P2)を測定した。
次に、装置内のチューブの設置向きを変えて(すなわち、軸方向の設置向きに対して直交する向きに変えて)、周方向における1440cm-1付近のピーク強度(B-P1)および1110cm-1付近のピーク強度(B-P2)を測定した。
しかる後、前記式にて配向性を求めた。その結果を表2に示す。配向性が1に近いほど、成形物に均等な力がかかっており、配向が小さい、言い換えれば高分子の分子配向が揃っていないことを示している。 <Evaluation test>
(Elongation at break)
A tube of a predetermined length obtained by an extrusion molding machine is fixed to a tensile tester (AGS-5KNX manufactured by Shimadzu Corporation), a tensile test is performed at a tensile speed of 100 mm / min, and the elongation at break in the axial direction of the resin tube is measured. did. The results are shown in Table 1.
(Orientation)
The tube obtained by the extrusion molding machine was attached to a Raman spectroscope (NRS-3100 manufactured by Jasco). A laser having a wavelength of 532 nm was used as the light source.
In installing the sample tube in the apparatus, the tube was first installed in a predetermined direction so that the peak intensity in the axial direction could be measured. Then, the peak intensity (A-P1) near 1440 cm −1 and the peak intensity (A-P2) near 1110 cm −1 in the axial direction were measured.
Next, the installation direction of the tube in the apparatus is changed (that is, changed to the direction orthogonal to the installation direction in the axial direction), and the peak intensity (B-P1) near 1440 cm −1 in the circumferential direction and 1110 cm − is changed. The peak intensity around 1 (BP2) was measured.
Thereafter, the orientation was determined by the above formula. The results are shown in Table 2. The closer the orientation is to 1, the more uniform force is applied to the molded product, and the smaller the orientation, in other words, the molecular orientation of the polymer is not uniform.
(破断伸び)
押出成型機で得られた所定長さのチューブを引張試験機(島津製作所社製AGS-5KNX)に固定し、引張速度100mm/minで引張試験を行い、樹脂チューブの軸方向における破断伸びを測定した。結果を表1に示す。
(配向性)
押出成型機で得られたチューブをラマン分光装置(Jasco社製 NRS-3100)に取り付けた。光源には波長532nmのレーザーを使用した。
サンプルのチューブを装置内に設置するにあたり、まず軸方向のピーク強度を測定できるように、チューブを所定方向に設置した。そして、軸方向における1440cm-1付近のピーク強度(A-P1)および1110cm-1付近のピーク強度(A-P2)を測定した。
次に、装置内のチューブの設置向きを変えて(すなわち、軸方向の設置向きに対して直交する向きに変えて)、周方向における1440cm-1付近のピーク強度(B-P1)および1110cm-1付近のピーク強度(B-P2)を測定した。
しかる後、前記式にて配向性を求めた。その結果を表2に示す。配向性が1に近いほど、成形物に均等な力がかかっており、配向が小さい、言い換えれば高分子の分子配向が揃っていないことを示している。 <Evaluation test>
(Elongation at break)
A tube of a predetermined length obtained by an extrusion molding machine is fixed to a tensile tester (AGS-5KNX manufactured by Shimadzu Corporation), a tensile test is performed at a tensile speed of 100 mm / min, and the elongation at break in the axial direction of the resin tube is measured. did. The results are shown in Table 1.
(Orientation)
The tube obtained by the extrusion molding machine was attached to a Raman spectroscope (NRS-3100 manufactured by Jasco). A laser having a wavelength of 532 nm was used as the light source.
In installing the sample tube in the apparatus, the tube was first installed in a predetermined direction so that the peak intensity in the axial direction could be measured. Then, the peak intensity (A-P1) near 1440 cm −1 and the peak intensity (A-P2) near 1110 cm −1 in the axial direction were measured.
Next, the installation direction of the tube in the apparatus is changed (that is, changed to the direction orthogonal to the installation direction in the axial direction), and the peak intensity (B-P1) near 1440 cm −1 in the circumferential direction and 1110 cm − is changed. The peak intensity around 1 (BP2) was measured.
Thereafter, the orientation was determined by the above formula. The results are shown in Table 2. The closer the orientation is to 1, the more uniform force is applied to the molded product, and the smaller the orientation, in other words, the molecular orientation of the polymer is not uniform.
表2に示す結果から、本発明の実施形態によって得られるチューブは、他の押出成型機を用いた場合と比較して、チューブの軸方向における破断伸びが向上していることが分かる。また、この破断伸びが向上した要因として配向性が関係していることがわかる。押出成型時の配向性を1に近づける、つまりチューブの押出方向と周方向に配向性がないと高い破断伸びが得られる。
From the results shown in Table 2, it can be seen that the tube obtained according to the embodiment of the present invention has improved elongation at break in the axial direction of the tube as compared with the case of using another extrusion molding machine. Moreover, it turns out that orientation is related as a factor which this breaking elongation improved. If the orientation during extrusion molding is close to 1, that is, there is no orientation in the extrusion direction and circumferential direction of the tube, a high elongation at break can be obtained.
実施例2
(ポリアミド系エラストマーのチューブ)
熱可塑性エラストマーとして、市販のポリアミド系エラストマーのペレット(アルケマ社製のPEBAX(登録商標))を使用し、これを図3に示す押出成型機10に投入し、外径1mm、内径0.8mmのチューブ1を作製した。
ここで、放熱遮蔽筒19としては、実施例1と同じ鉄製円筒体を使用した。この放熱遮蔽筒19をノズル15の口金15aに取り付け、口金15aよりチューブ1を押出し、チューブ1内に所定量のエアーを注入しながら、実施例1と同様にして放熱遮蔽筒19内を通過させ、徐々に冷却固化させた。このとき、押出速度は20m/minに設定した。 Example 2
(Polyamide elastomer tube)
As the thermoplastic elastomer, commercially available polyamide elastomer pellets (PEBAX (registered trademark) manufactured by Arkema Co., Ltd.) were used, and this was put into anextrusion molding machine 10 shown in FIG. 3, and the outer diameter was 1 mm and the inner diameter was 0.8 mm. Tube 1 was produced.
Here, as the heatradiation shielding cylinder 19, the same iron cylinder as in Example 1 was used. The heat radiation shielding cylinder 19 is attached to the base 15a of the nozzle 15, the tube 1 is extruded from the base 15a, and a predetermined amount of air is injected into the tube 1 while passing through the heat radiation shielding cylinder 19 in the same manner as in the first embodiment. The solution was gradually cooled and solidified. At this time, the extrusion speed was set to 20 m / min.
(ポリアミド系エラストマーのチューブ)
熱可塑性エラストマーとして、市販のポリアミド系エラストマーのペレット(アルケマ社製のPEBAX(登録商標))を使用し、これを図3に示す押出成型機10に投入し、外径1mm、内径0.8mmのチューブ1を作製した。
ここで、放熱遮蔽筒19としては、実施例1と同じ鉄製円筒体を使用した。この放熱遮蔽筒19をノズル15の口金15aに取り付け、口金15aよりチューブ1を押出し、チューブ1内に所定量のエアーを注入しながら、実施例1と同様にして放熱遮蔽筒19内を通過させ、徐々に冷却固化させた。このとき、押出速度は20m/minに設定した。 Example 2
(Polyamide elastomer tube)
As the thermoplastic elastomer, commercially available polyamide elastomer pellets (PEBAX (registered trademark) manufactured by Arkema Co., Ltd.) were used, and this was put into an
Here, as the heat
実施例3
(ポリウレタン系エラストマーのチューブ)
熱可塑性エラストマーとして、市販のポリウレタン系エラストマーのペレット(日本ミラクトラン社製のミラクトラン(登録商標))を使用し、これを図3に示す押出成型機10に投入し、外径1mm、内径0.8mmのチューブ1を作製した。
ここで、放熱遮蔽筒19としては、実施例1と同じ鉄製円筒体を使用した。この放熱遮蔽筒19をノズル15の口金15aに取り付け、口金15aよりチューブ1を押出し、チューブ1内に所定量のエアーを注入しながら、実施例1と同様にして放熱遮蔽筒19内を通過させ、徐々に冷却固化させた。このとき、押出速度は20m/minに設定した。 Example 3
(Polyurethane elastomer tube)
As a thermoplastic elastomer, commercially available polyurethane elastomer pellets (Milactolan (registered trademark) manufactured by Nippon Milactolan Co., Ltd.) are used, and this is put into anextrusion molding machine 10 shown in FIG. 3, and has an outer diameter of 1 mm and an inner diameter of 0.8 mm. The tube 1 was prepared.
Here, as the heatradiation shielding cylinder 19, the same iron cylinder as in Example 1 was used. The heat radiation shielding cylinder 19 is attached to the base 15a of the nozzle 15, the tube 1 is extruded from the base 15a, and a predetermined amount of air is injected into the tube 1 while passing through the heat radiation shielding cylinder 19 in the same manner as in the first embodiment. The solution was gradually cooled and solidified. At this time, the extrusion speed was set to 20 m / min.
(ポリウレタン系エラストマーのチューブ)
熱可塑性エラストマーとして、市販のポリウレタン系エラストマーのペレット(日本ミラクトラン社製のミラクトラン(登録商標))を使用し、これを図3に示す押出成型機10に投入し、外径1mm、内径0.8mmのチューブ1を作製した。
ここで、放熱遮蔽筒19としては、実施例1と同じ鉄製円筒体を使用した。この放熱遮蔽筒19をノズル15の口金15aに取り付け、口金15aよりチューブ1を押出し、チューブ1内に所定量のエアーを注入しながら、実施例1と同様にして放熱遮蔽筒19内を通過させ、徐々に冷却固化させた。このとき、押出速度は20m/minに設定した。 Example 3
(Polyurethane elastomer tube)
As a thermoplastic elastomer, commercially available polyurethane elastomer pellets (Milactolan (registered trademark) manufactured by Nippon Milactolan Co., Ltd.) are used, and this is put into an
Here, as the heat
実施例4
(ポリエステル系エラストマーのチューブ)
熱可塑性エラストマーとして、市販のポリエステル系エラストマー(三菱化学(株)製のプリマロイ(登録商標))を使用し、これを図3に示す押出成型機10に投入し、外径1mm、内径0.8mmのチューブ1を作製した。
ここで、放熱遮蔽筒19としては、実施例1と同じ鉄製円筒体を使用した。この放熱遮蔽筒19をノズル15の口金15aに取り付け、口金15aよりチューブ1を押出し、チューブ1内に所定量のエアーを注入しながら、実施例1と同様にして放熱遮蔽筒19内を通過させ、徐々に冷却固化させた。このとき、押出速度は20m/minに設定した。 Example 4
(Polyester elastomer tube)
As the thermoplastic elastomer, a commercially available polyester elastomer (Primalloy (registered trademark) manufactured by Mitsubishi Chemical Corporation) is used, and this is put into anextrusion molding machine 10 shown in FIG. 3, and has an outer diameter of 1 mm and an inner diameter of 0.8 mm. The tube 1 was prepared.
Here, as the heatradiation shielding cylinder 19, the same iron cylinder as in Example 1 was used. The heat radiation shielding cylinder 19 is attached to the base 15a of the nozzle 15, the tube 1 is extruded from the base 15a, and a predetermined amount of air is injected into the tube 1 while passing through the heat radiation shielding cylinder 19 in the same manner as in the first embodiment. The solution was gradually cooled and solidified. At this time, the extrusion speed was set to 20 m / min.
(ポリエステル系エラストマーのチューブ)
熱可塑性エラストマーとして、市販のポリエステル系エラストマー(三菱化学(株)製のプリマロイ(登録商標))を使用し、これを図3に示す押出成型機10に投入し、外径1mm、内径0.8mmのチューブ1を作製した。
ここで、放熱遮蔽筒19としては、実施例1と同じ鉄製円筒体を使用した。この放熱遮蔽筒19をノズル15の口金15aに取り付け、口金15aよりチューブ1を押出し、チューブ1内に所定量のエアーを注入しながら、実施例1と同様にして放熱遮蔽筒19内を通過させ、徐々に冷却固化させた。このとき、押出速度は20m/minに設定した。 Example 4
(Polyester elastomer tube)
As the thermoplastic elastomer, a commercially available polyester elastomer (Primalloy (registered trademark) manufactured by Mitsubishi Chemical Corporation) is used, and this is put into an
Here, as the heat
実施例2~4で得られたチューブについて、実施例1と同様にして破断伸びおよび配向性を調べた。その結果を表3に示す。表3には、チューブの軸方向および周方向におけるピーク強度を示す波長も併せて示す。
(注)P1,P2において、上段はチューブの軸方向を示し、下段は周方向を示す。
PAE:ポリアミド系エラストマー、TPU:ポリウレタン系エラストマー、TPEE: ポリエステル系エラストマー The tubes obtained in Examples 2 to 4 were examined for elongation at break and orientation in the same manner as in Example 1. The results are shown in Table 3. Table 3 also shows the wavelengths indicating the peak intensities in the axial and circumferential directions of the tube.
(Note) In P1 and P2, the upper stage indicates the axial direction of the tube, and the lower stage indicates the circumferential direction.
PAE: Polyamide elastomer, TPU: Polyurethane elastomer, TPEE: Polyester elastomer
PAE:ポリアミド系エラストマー、TPU:ポリウレタン系エラストマー、TPEE: ポリエステル系エラストマー The tubes obtained in Examples 2 to 4 were examined for elongation at break and orientation in the same manner as in Example 1. The results are shown in Table 3. Table 3 also shows the wavelengths indicating the peak intensities in the axial and circumferential directions of the tube.
PAE: Polyamide elastomer, TPU: Polyurethane elastomer, TPEE: Polyester elastomer
表3に示す結果から、熱可塑性エラストマーにおいても、熱可塑性樹脂と同様に、押出成型時の配向性を1に近づけることができるため、チューブの軸方向における破断伸びが向上していることが分かる。
From the results shown in Table 3, it can be seen that also in the thermoplastic elastomer, the orientation at the time of extrusion molding can approach 1 as in the thermoplastic resin, so that the elongation at break in the axial direction of the tube is improved. .
実施例5
(カーボンナノチューブを添加したポリアミドチューブ)
ポリドデカンアミド(ナイロン12)の市販ペレットに、ナノシル(Nanocyl)社製のカーボンナノチューブを総量に対して3.5質量%の割合で添加した他は、実施例1と同様にしてチューブを作製した。
得られたチューブの引張降伏応力および破断伸びを測定した。比較のため、実施例1で得たチューブも同様にして引張降伏応力および破断伸びを測定した。
引張降伏応力は、JISK7161(プラスチック-引張特性の試験方法)に記載の引張降伏応力により求めた。破断伸びは実施例1と同様にして求めた。結果を表4に示す。
Example 5
(Polyamide tube with carbon nanotubes added)
A tube was produced in the same manner as in Example 1 except that carbon nanotubes manufactured by Nanocyl Co. were added to a commercial pellet of polydodecanamide (nylon 12) at a ratio of 3.5% by mass with respect to the total amount. .
The tensile yield stress and breaking elongation of the obtained tube were measured. For comparison, the tensile yield stress and elongation at break of the tube obtained in Example 1 were measured in the same manner.
The tensile yield stress was determined by the tensile yield stress described in JIS K7161 (Plastic-Test method for tensile properties). The elongation at break was determined in the same manner as in Example 1. The results are shown in Table 4.
(カーボンナノチューブを添加したポリアミドチューブ)
ポリドデカンアミド(ナイロン12)の市販ペレットに、ナノシル(Nanocyl)社製のカーボンナノチューブを総量に対して3.5質量%の割合で添加した他は、実施例1と同様にしてチューブを作製した。
得られたチューブの引張降伏応力および破断伸びを測定した。比較のため、実施例1で得たチューブも同様にして引張降伏応力および破断伸びを測定した。
引張降伏応力は、JISK7161(プラスチック-引張特性の試験方法)に記載の引張降伏応力により求めた。破断伸びは実施例1と同様にして求めた。結果を表4に示す。
(Polyamide tube with carbon nanotubes added)
A tube was produced in the same manner as in Example 1 except that carbon nanotubes manufactured by Nanocyl Co. were added to a commercial pellet of polydodecanamide (nylon 12) at a ratio of 3.5% by mass with respect to the total amount. .
The tensile yield stress and breaking elongation of the obtained tube were measured. For comparison, the tensile yield stress and elongation at break of the tube obtained in Example 1 were measured in the same manner.
The tensile yield stress was determined by the tensile yield stress described in JIS K7161 (Plastic-Test method for tensile properties). The elongation at break was determined in the same manner as in Example 1. The results are shown in Table 4.
表4に示すように、カーボンナノチューブを添加することにより、引張降伏応力が向上している。そのため、引張降伏応力が関係するチューブ耐圧は30%の向上が見込まれ、チューブの破壊圧力が向上する。
As shown in Table 4, the tensile yield stress is improved by adding carbon nanotubes. Therefore, the tube pressure resistance related to the tensile yield stress is expected to be improved by 30%, and the breaking pressure of the tube is improved.
1 チューブ
2 溶融樹脂
3 ペレット
11 ホッパー
12 シリンダー
13 スクリュー
14 ダイ
15 ノズル
15a 口金
16 プーリ
17 巻取りロール
18 外径測定装置
19 放熱遮蔽筒 DESCRIPTION OFSYMBOLS 1 Tube 2 Molten resin 3 Pellet 11 Hopper 12 Cylinder 13 Screw 14 Die 15 Nozzle 15a Base 16 Pulley 17 Winding roll 18 Outer diameter measuring device 19 Radiation shielding cylinder
2 溶融樹脂
3 ペレット
11 ホッパー
12 シリンダー
13 スクリュー
14 ダイ
15 ノズル
15a 口金
16 プーリ
17 巻取りロール
18 外径測定装置
19 放熱遮蔽筒 DESCRIPTION OF
Claims (13)
- 熱可塑性樹脂または熱可塑性エラストマーをチューブ状の形態で鉛直方向下向きに押出成形する工程と、
鉛直方向下向きに押し出されたチューブを、放熱を抑制しながら徐冷する工程と、
徐冷されたチューブを、チューブの押出速度と実質的に等しい引取り速度で巻き取る工程とを含むことを特徴とするチューブの製造方法。 A process of extruding a thermoplastic resin or thermoplastic elastomer vertically downward in a tubular form;
A step of slowly cooling the tube extruded downward in the vertical direction while suppressing heat radiation;
A step of winding the slowly cooled tube at a take-up speed substantially equal to the extrusion speed of the tube. - チューブ内に空気を送り込みながら押出し、所定の径を保持したまま徐冷される請求項1に記載のチューブの製造方法。 2. The method for producing a tube according to claim 1, wherein the tube is extruded while air is fed into the tube, and is slowly cooled while maintaining a predetermined diameter.
- 徐冷する工程が、雰囲気温度が徐々に低下するように制御された条件下で行われる請求項1または2に記載のチューブの製造方法。 The method for producing a tube according to claim 1 or 2, wherein the slow cooling step is performed under conditions controlled so that the ambient temperature gradually decreases.
- 前記熱可塑性樹脂がポリアミド樹脂、ポリウレタン樹脂またはポリエステル樹脂である請求項1~3のいずれかに記載のチューブの製造方法。 The method for producing a tube according to any one of claims 1 to 3, wherein the thermoplastic resin is a polyamide resin, a polyurethane resin or a polyester resin.
- 前記熱可塑性エラストマーがポリアミド系エラストマー、ポリウレタン系エラストマーまたはポリエステル系エラストマーである請求項1~3のいずれかに記載のチューブの製造方法。 The method for producing a tube according to any one of claims 1 to 3, wherein the thermoplastic elastomer is a polyamide-based elastomer, a polyurethane-based elastomer, or a polyester-based elastomer.
- 前記熱可塑性樹脂または熱可塑性エラストマーがフィラーを含有した請求項1~5のいずれかに記載のチューブの製造方法。 The method for producing a tube according to any one of claims 1 to 5, wherein the thermoplastic resin or thermoplastic elastomer contains a filler.
- 前記フィラーがカーボンナノチューブである請求項6に記載のチューブの製造方法。 The method for producing a tube according to claim 6, wherein the filler is a carbon nanotube.
- ポリアミド樹脂またはポリアミド系エラストマーからなり、ラマン分光装置にて測定した、チューブの軸方向および周方向におけるそれぞれのラマンスペクトルのピーク強度から下記式で求められる配向性が2以下であることを特徴とするチューブ。
A-P1:軸方向における1440cm-1付近のピーク強度
A-P2:軸方向における1110cm-1付近のピーク強度
B-P1:周方向における1440cm-1付近のピーク強度
B-P2:周方向における1110cm-1付近のピーク強度 It consists of a polyamide resin or a polyamide-based elastomer, and the orientation obtained by the following formula from the peak intensity of each Raman spectrum in the axial direction and the circumferential direction of the tube measured with a Raman spectrometer is 2 or less. tube.
A—P1: Peak intensity around 1440 cm −1 in the axial direction A—P2: Peak intensity around 1110 cm −1 in the axial direction B—P1: Peak intensity around 1440 cm −1 in the circumferential direction B—P2: 1110 cm in the circumferential direction -1 peak intensity - ポリウレタン系樹脂またはポリウレタン系エラストマーからなり、ラマン分光装置にて測定した、チューブの軸方向および周方向におけるそれぞれのラマンスペクトルのピーク強度から下記式で求められる配向性が2以下であることを特徴とするチューブ。
A-P1:軸方向における1180cm-1付近のピーク強度
A-P2:軸方向における1610cm-1付近のピーク強度
B-P1:周方向における1180cm-1付近のピーク強度
B-P2:周方向における1610cm-1付近のピーク強度 It is made of polyurethane resin or polyurethane elastomer, and the orientation obtained by the following formula from the peak intensity of each Raman spectrum in the axial direction and the circumferential direction of the tube measured with a Raman spectrometer is 2 or less. Tube.
A-P1: the peak intensity at around 1180 cm -1 in the axial direction A-P2: the peak intensity at around 1610 cm -1 in the axial direction B-P1: the peak intensity at around 1180 cm -1 in the circumferential direction B-P2: 1610 cm in the circumferential direction -1 peak intensity - ポリエステル系樹脂またはポリエステル系エラストマーからなり、ラマン分光装置にて測定した、チューブの軸方向および周方向におけるそれぞれのラマンスペクトルのピーク強度から下記式で求められる配向性が2以下であることを特徴とするチューブ。
A-P1:軸方向における1727cm-1付近のピーク強度
A-P2:軸方向における1616cm-1付近のピーク強度
B-P1:周方向における1727cm-1付近のピーク強度
B-P2:周方向における1616cm-1付近のピーク強度 It consists of a polyester-based resin or a polyester-based elastomer, and the orientation obtained by the following formula from the peak intensity of each Raman spectrum in the axial direction and circumferential direction of the tube measured with a Raman spectroscope is 2 or less, Tube.
AP: Peak intensity near 1727 cm −1 in the axial direction AP2: Peak intensity near 1616 cm −1 in the axial direction BP1: Peak intensity near 1727 cm −1 in the circumferential direction BP2: 1616 cm in the circumferential direction -1 peak intensity - フィラーを含有した請求項8~10のいずれかに記載のチューブ。 The tube according to any one of claims 8 to 10, containing a filler.
- 前記フィラーがカーボンナノチューブである請求項11に記載のチューブ。 The tube according to claim 11, wherein the filler is a carbon nanotube.
- 熱可塑性樹脂をチューブ状の形態で鉛直方向下向きに押出成形する押出機と、
この押出機の下向きに設けたノズルの下方に設置され、前記ノズルから押し出されたチューブを挿通させ徐冷する放熱遮蔽筒と、
徐冷されたチューブを、チューブの押出速度と実質的に等しい引取り速度で巻き取る巻取りロールとを備えたことを特徴とするチューブ製造装置。 An extruder for extruding a thermoplastic resin in a vertically downward direction in a tubular form;
A heat-dissipating shielding cylinder that is installed below the nozzle provided downward of the extruder and that is gradually cooled by inserting a tube extruded from the nozzle,
A tube manufacturing apparatus comprising: a winding roll that winds the slowly cooled tube at a take-up speed substantially equal to the tube extrusion speed.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-219260 | 2015-11-09 | ||
JP2015219260 | 2015-11-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017082310A1 true WO2017082310A1 (en) | 2017-05-18 |
Family
ID=58695357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/083272 WO2017082310A1 (en) | 2015-11-09 | 2016-11-09 | Method for manufacturing tube and tube |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201722683A (en) |
WO (1) | WO2017082310A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110861280A (en) * | 2019-11-24 | 2020-03-06 | 六安丰恺尼机电科技有限公司 | Booster-type plastic pipe fitting forming machine |
CN113580523A (en) * | 2021-07-30 | 2021-11-02 | 临海伟星新型建材有限公司 | Speed-up method for PE pipe production and processing |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002337210A (en) * | 2001-05-21 | 2002-11-27 | Okura Ind Co Ltd | Inner surface-treated plastic tube manufacturing apparatus and method for manufacturing inner surface- treated plastic tube using the same |
JP2004034311A (en) * | 2002-06-28 | 2004-02-05 | Canon Inc | Manufacturing method for cylindrical film and cylindrical film obtained thereby |
JP2004114359A (en) * | 2002-09-24 | 2004-04-15 | Sekisui Chem Co Ltd | Coated pipe, method for manufacturing coated pipe and coated pipe manufacturing device |
JP2009025612A (en) * | 2007-07-20 | 2009-02-05 | Canon Inc | Roller for fixing device, sleeve for fixing device, method of manufacturing roller and sleeve for fixing device |
JP2010256719A (en) * | 2009-04-27 | 2010-11-11 | Okura Ind Co Ltd | Transfer belt for image forming apparatus |
-
2016
- 2016-11-09 WO PCT/JP2016/083272 patent/WO2017082310A1/en active Application Filing
- 2016-11-09 TW TW105136747A patent/TW201722683A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002337210A (en) * | 2001-05-21 | 2002-11-27 | Okura Ind Co Ltd | Inner surface-treated plastic tube manufacturing apparatus and method for manufacturing inner surface- treated plastic tube using the same |
JP2004034311A (en) * | 2002-06-28 | 2004-02-05 | Canon Inc | Manufacturing method for cylindrical film and cylindrical film obtained thereby |
JP2004114359A (en) * | 2002-09-24 | 2004-04-15 | Sekisui Chem Co Ltd | Coated pipe, method for manufacturing coated pipe and coated pipe manufacturing device |
JP2009025612A (en) * | 2007-07-20 | 2009-02-05 | Canon Inc | Roller for fixing device, sleeve for fixing device, method of manufacturing roller and sleeve for fixing device |
JP2010256719A (en) * | 2009-04-27 | 2010-11-11 | Okura Ind Co Ltd | Transfer belt for image forming apparatus |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110861280A (en) * | 2019-11-24 | 2020-03-06 | 六安丰恺尼机电科技有限公司 | Booster-type plastic pipe fitting forming machine |
CN113580523A (en) * | 2021-07-30 | 2021-11-02 | 临海伟星新型建材有限公司 | Speed-up method for PE pipe production and processing |
Also Published As
Publication number | Publication date |
---|---|
TW201722683A (en) | 2017-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI496801B (en) | Thermoplastic polyurethane with reduced tendency to bloom | |
EP2042623B1 (en) | Melt spun TPU monofilament fiber or elastic tape | |
EP3122795B1 (en) | Tpu pneumatic tube | |
EP2139934B1 (en) | Method for the reaction of thermoplastic polyurethanes with compounds having isocyanate groups | |
EP2582757B1 (en) | Process for the production of blends of polylactides (pla) and thermoplastic polyurethanes (tpu) | |
JP7094966B2 (en) | Method of manufacturing elastic fiber, method of manufacturing elastic fiber article, elastic fiber and elastic fiber article | |
CN108699207B (en) | Process for preparing diblock copolymers | |
JP4516073B2 (en) | Take-up device for long fiber reinforced resin structure and method for producing the structure | |
WO2017082310A1 (en) | Method for manufacturing tube and tube | |
JP2018528318A (en) | Thermoplastic polyurethane | |
JP4713999B2 (en) | Synthetic fiber manufacturing method | |
CN113999514B (en) | Polyurethane composition with controllable disperse phase morphology and preparation method and application thereof | |
JPH08269811A (en) | Production of highly heat-resistant polymer filament | |
KR20220027161A (en) | Bicomponent thermoplastic polyurethane fibers and fabrics made therefrom | |
JP5459111B2 (en) | Resin composition, method for producing the resin composition, and injection-molded body | |
KR102686925B1 (en) | Filament composition for 3d printing, manufacturing method of filament for 3d printing using same, and filament for 3d printing manufactured using same | |
JP2018127746A (en) | Method for manufacturing elastic fiber, method for manufacturing elastic fiber product, elastic fiber and elastic fiber product | |
BR112019014946B1 (en) | PROCESS FOR PRODUCING AN ELASTIC FIBER | |
JP2006057672A (en) | Thermoplastic polyurethane tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16864271 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16864271 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |