WO2017082172A1 - Control device for vehicle and control method for vehicle - Google Patents

Control device for vehicle and control method for vehicle Download PDF

Info

Publication number
WO2017082172A1
WO2017082172A1 PCT/JP2016/082818 JP2016082818W WO2017082172A1 WO 2017082172 A1 WO2017082172 A1 WO 2017082172A1 JP 2016082818 W JP2016082818 W JP 2016082818W WO 2017082172 A1 WO2017082172 A1 WO 2017082172A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive source
pressure
control
clutch
engine
Prior art date
Application number
PCT/JP2016/082818
Other languages
French (fr)
Japanese (ja)
Inventor
義祐 西廣
中崎 勝啓
小林 直樹
太田 雄介
伸太郎 大塩
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Publication of WO2017082172A1 publication Critical patent/WO2017082172A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/74Inputs being a function of engine parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor

Definitions

  • the present invention relates to a vehicle control device and a vehicle control method.
  • JP2013-213557A discloses a technology corresponding to sailing stop control in which the driving source is stopped and the automatic transmission is set to the neutral state when the sailing stop condition is satisfied.
  • the drive source may rotate backward.
  • the reverse rotation of the drive source occurs, for example, when the piston is pushed back by compressed air in the combustion chamber, the piston's own weight, or the like when the engine is used as the drive source.
  • the oil pump driven by the power of the drive source also rotates in the reverse direction, so that the oil in the hydraulic control circuit is sucked out.
  • the engine is started in response to the establishment of the sailing stop cancellation condition while the influence of the oil sucked out remains, and when the oil pump is activated, the oil suddenly flows into the hydraulic control circuit. It will be.
  • the present invention has been made in view of such problems, and the forward fastening element is abruptly fastened due to the reverse rotation of the drive source that occurs during the drive source stop control during traveling including the sailing stop control. It is an object of the present invention to provide a vehicle control device and a vehicle control method that can be prevented.
  • the vehicle control device includes a drive source, an automatic transmission connected to the drive source and having a forward fastening element, and a hydraulic pressure source of hydraulic pressure supplied to the automatic transmission. And a hydraulic power source that is driven by the power of the power source, wherein the driving source is stopped and the automatic transmission is set to the neutral state when the driving source stop condition during traveling is satisfied.
  • the command pressure of the hydraulic pressure supplied to the forward fastening element is increased more than during the driving source stop control during traveling
  • a second control unit that executes driving source stop cancellation control during traveling for starting the driving source.
  • the second control unit is configured to reduce the command pressure to the forward fastening element to a predetermined value or less. Then, the drive source is started.
  • a drive source an automatic transmission having a forward fastening element connected to the drive source, and a hydraulic pressure source for supplying hydraulic pressure to the automatic transmission.
  • a hydraulic power source driven by the vehicle, wherein when the driving source stop condition during traveling is satisfied, the driving source is stopped and the automatic transmission is set in a neutral state while the driving source is stopped during traveling.
  • the drive source stop cancellation condition during travel is satisfied, the drive source is started in a state where the command pressure of the hydraulic pressure supplied to the forward fastening element is higher than that during the travel drive source stop control.
  • the driving source stop cancellation control during traveling and when executing the driving source stop cancellation control during traveling, the reverse rotation of the drive source is detected during the driving source stop control during traveling. If you have before Control method for a vehicle which performs starting of the drive source an instruction pressure to the forward engagement element in a state of being below a predetermined value is provided.
  • the drive source when reverse rotation of the drive source is detected, the drive source can be driven in a state where the oil supplied to the forward fastening element can be sufficiently drained. It is possible to prevent the forward fastening element from being suddenly fastened due to the reverse rotation of. Further, when the reverse rotation of the drive source is not detected, the command pressure of the hydraulic pressure supplied to the forward fastening element can be set higher than a predetermined value, so that the time required for complete fastening of the forward fastening element is shortened. You can also
  • release means a state in which there is no hydraulic pressure supply to the clutch and the clutch has no torque capacity.
  • Standby means a state in which hydraulic pressure is supplied to the clutch, but the clutch does not have torque capacity.
  • Slip refers to a state in which hydraulic pressure is supplied to the clutch and the clutch has a torque capacity, but the clutch has an input / output rotational difference.
  • Engagement refers to a state in which there is a hydraulic pressure supply to the clutch and the clutch has a torque capacity, but the clutch has no input / output rotation difference.
  • the state where the clutch does not have torque capacity is, in other words, the state where the clutch does not transmit power
  • the state where the clutch has torque capacity is, in other words, the state where the clutch transmits power.
  • the slip is a state where the torque capacity of the clutch is smaller than the input torque
  • the engagement refers to a state of complete engagement where the torque capacity of the clutch is larger than the input torque.
  • FIG. 1 is a schematic configuration diagram of a vehicle according to the present embodiment.
  • the vehicle includes an engine 1, a torque converter 2, a forward / reverse switching mechanism 3, a continuously variable transmission 4, a hydraulic control circuit 5, a main oil pump 6, a sub oil pump 7, an engine controller 10, Machine controller 11.
  • the rotation generated by the engine 1 as a drive source is transmitted to a wheel (not shown) via a torque converter 2, a forward / reverse switching mechanism 3, a continuously variable transmission 4, a gear set 8, and a differential gear device 9.
  • the torque converter 2 has a lock-up clutch 2a.
  • the lock-up clutch 2a When the lockup clutch 2a is engaged, the input shaft and the output shaft of the torque converter 2 are directly connected, and the input shaft and the output shaft rotate at the same speed.
  • the lock-up clutch 2a is referred to as the LU clutch 2a.
  • the forward / reverse switching mechanism 3 includes a double pinion planetary gear set as a main component, and the sun gear is coupled to the engine 1 via the torque converter 2 and the carrier is coupled to the primary pulley 4a.
  • the forward / reverse switching mechanism 3 further includes a forward clutch 3a that directly connects the sun gear and the carrier of the double pinion planetary gear set and a reverse brake 3b that fixes the ring gear.
  • the forward / reverse switching mechanism 3 transmits the input rotation from the engine 1 via the torque converter 2 to the primary pulley 4a as it is when the forward clutch 3a is engaged. Further, the forward / reverse switching mechanism 3 transmits the input rotation from the engine 1 via the torque converter 2 to the primary pulley 4a under reverse deceleration when the reverse brake 3b is engaged.
  • the forward clutch 3a constitutes a forward fastening element that interrupts transmission of power from one of the engine 1 and the drive wheels to the other.
  • the continuously variable transmission 4 is a variator and, together with the torque converter 2 and the forward / reverse switching mechanism 3, constitutes an automatic transmission 15 connected to the engine 1.
  • the automatic transmission 15 may be indirectly connected to the engine 1 through another configuration.
  • the forward / reverse switching mechanism 3 may be provided between the continuously variable transmission 4 and the gear set 8.
  • the hydraulic control circuit 5 includes a plurality of flow paths and a plurality of hydraulic control valves.
  • the hydraulic pressure control circuit 5 controls a plurality of hydraulic pressure control valves based on a shift control signal from the transmission controller 11 to switch the hydraulic pressure supply path and is necessary from the hydraulic pressure generated by the oil discharged from the main oil pump 6. Hydraulic pressure is prepared and supplied to each part of the continuously variable transmission 4, the forward / reverse switching mechanism 3, and the torque converter 2.
  • the shift control signal includes the command pressure of the hydraulic pressure supplied to the LU clutch 2a, the command pressure of the clutch pressure that is the hydraulic pressure supplied to the forward clutch 3a, and the line pressure that constitutes the original pressure of the hydraulic pressure supplied to the automatic transmission 15.
  • the command pressure, the command pressure of the primary pulley pressure Ppri, and the command pressure of the secondary pulley pressure Psec are included.
  • the actual clutch pressure is referred to as clutch actual pressure Pc
  • the clutch pressure command pressure is referred to as clutch command pressure Pci.
  • the actual line pressure is referred to as a line actual pressure PL
  • the line pressure command pressure is referred to as a line command pressure PLi.
  • the main oil pump 6 constitutes a first hydraulic power source that is driven by using a part of the power of the engine 1 when the rotation of the engine 1 is inputted.
  • the oil discharged from the main oil pump 6 is supplied to the hydraulic control circuit 5 by driving the main oil pump 6.
  • the main oil pump 6 constitutes a hydraulic pressure source of the hydraulic pressure supplied to the automatic transmission 15.
  • the sub oil pump 7 is an electric oil pump and constitutes a second hydraulic pressure source that can operate even when the engine 1 is stopped.
  • the capacity of the sub oil pump 7 is set smaller than the capacity of the main oil pump 6.
  • the oil discharged from the sub oil pump 7 is also supplied to the hydraulic pressure control circuit 5 in the same manner as the main oil pump 6. For this reason, the automatic transmission 15 is controlled based on the hydraulic pressure supplied from at least one of the main oil pump 6 and the sub oil pump 7.
  • the transmission controller 11 includes a CPU, a ROM, a RAM, and the like. In the transmission controller 11, the function of the transmission controller 11 is exhibited by the CPU reading and executing a program stored in the ROM.
  • the transmission controller 11 includes a signal from the engine rotation speed sensor 20 that detects the rotation speed Ne of the engine 1, a signal from the primary pulley pressure sensor 21 that detects the primary pulley pressure Ppri, and a secondary pulley that detects the secondary pulley pressure Psec.
  • a signal relating to the engine torque Te from the controller 10 is input.
  • the transmission controller 11 includes a signal from the inhibitor switch 25 that detects the operation position of the transmission lever, a signal from the PRI rotation speed sensor 26 that detects the rotation speed Npri of the PRI pulley 4a, and the rotation of the SEC pulley 4b.
  • a signal from the SEC rotation speed sensor 27 for detecting the speed Nsec is input.
  • the transmission controller 11 can detect the vehicle speed Vsp based on the signal from the SEC rotation speed sensor 27.
  • the transmission controller 11 constitutes a controller 12 together with the engine controller 10.
  • the controller 12 is configured as a control module that controls the engine 1 and the automatic transmission 15.
  • the main body 52 houses a spool 53 and a spring 54.
  • the spring 54 biases the spool 53 toward the port 57 side.
  • the ports 55 to 58 communicate with the inside and outside of the main body 52.
  • the port 55 is an inlet port and is connected to the line pressure oil passage 59.
  • the port 56 is an outlet port and is connected to a circulation system or the like.
  • the port 57 is a feedback port, and the line actual pressure PL is inputted to the port 57 as a feedback pressure through an orifice or the like.
  • the port 58 is a pilot port, and a control pressure Ps corresponding to the line command pressure PLi is input to the port 58 by a solenoid valve (not shown).
  • the spool 53 moves to a position where the force acting on the spool 53, specifically, the acting force according to the feedback pressure, the urging force of the spring 54, and the acting force according to the control pressure Ps are balanced.
  • the line actual pressure PL is controlled to be the line command pressure PLi.
  • the main oil pump 6 supplies oil to the clutch system 30 and the transmission system 40 via a line pressure oil passage 59 provided with a line pressure control valve 51.
  • the sub oil pump 7 is connected to the line pressure oil passage 59 in parallel with the main oil pump 6 via a check valve or the like.
  • the clutch system 30 includes a clutch pressure control valve that controls the clutch pressure in addition to the forward / reverse switching mechanism 3.
  • transmission system 40 includes a primary pulley pressure control valve that controls primary pulley pressure Ppri and a secondary pulley pressure control valve that controls secondary pulley pressure Psec.
  • a control valve having a feedback port or the like can be applied to each of these control valves, similarly to the line pressure control valve 51.
  • the clutch system 30 is provided downstream of the line pressure control valve 51 together with the transmission system 40.
  • sailing stop control is performed on the vehicle.
  • the sailing stop is simply referred to as SS.
  • the SS control when the SS condition is satisfied, the engine 1 is stopped and the automatic transmission 15 is set to the neutral state.
  • the fuel consumption of the engine 1 can be improved by stopping the engine 1 and extending the inertia traveling distance.
  • the SS condition includes that the vehicle speed Vsp is higher than the set vehicle speed, the accelerator pedal is not depressed, the brake pedal is not depressed, and the forward range is selected by the automatic transmission 15.
  • the set vehicle speed is set so as to distinguish between low speed and medium / high speed.
  • the set vehicle speed can be set in advance through experiments or the like.
  • the engine 1 When the engine 1 is stopped by SS control, the engine 1 may rotate in the reverse direction.
  • the reverse rotation of the engine 1 occurs, for example, when the piston is pushed back by compressed air in the combustion chamber, the piston's own weight, or the like.
  • the main oil pump 6 driven by the power of the engine 1 also rotates in the reverse direction, so that the oil in the hydraulic control circuit 5 is sucked out.
  • the engine 1 is started in response to the establishment of the SS release condition while the influence of the oil sucked out remains, and when the main oil pump 6 is activated, the oil suddenly enters the hydraulic control circuit 5. Will flow. As a result, there is a possibility that an overshoot of the line pressure where the line actual pressure PL exceeds the line command pressure PLi may occur.
  • the overshoot of the line pressure occurs as follows. That is, when the engine 1 is started, the discharge amount of the main oil pump 6 increases as the rotational speed Ne increases, and the spool 53 moves to the port 58 side. Then, when the oil on the port 58 side is compressed and the control pressure Ps increases, the line command pressure PLi is set to increase the line actual pressure PL, so that the line actual pressure PL further increases. become. By such an action, an overshoot of the line pressure occurs until the force acting on the spool 53 is balanced.
  • FIG. 3 is a flowchart illustrating an example of the control performed by the controller 12.
  • the controller 12 repeatedly executes the processing of this flowchart, for example, every minute time.
  • step S1 the controller 12 determines whether or not the SS condition is satisfied. If a negative determination is made in step S1, the processing of this flowchart is temporarily terminated. If the determination is affirmative in step S1, the process proceeds to step S2.
  • step S2 the controller 12 executes SS preparation control.
  • the SS preparation control includes, for example, lowering the line pressure, lowering the hydraulic pressure supplied to the LU clutch 2a, changing the gear ratio of the continuously variable transmission 4 to a target gear ratio such as a minimum gear ratio, Including preparing the sub-oil pump 7 to operate.
  • step S3 the controller 12 executes SS control. For this reason, in step S3, the engine 1 is stopped and the automatic transmission 15 is set to the neutral state. Specifically, the automatic transmission 15 is brought into the neutral state by releasing the forward clutch 3a of the forward / reverse switching mechanism 3. In step S3, the release of the LU clutch 2a and the driving of the sub oil pump 7 are also started.
  • the SS control may be control further including SS preparation control.
  • step S5 the controller 12 determines whether or not the rotational speed Ne is lower than zero. In step S5, it is determined whether or not the engine 1 is rotating in reverse. For example, the controller 12 may determine whether or not the rotational speed Ne is lower than a predetermined rotational speed that is greater than zero in order to provide a sufficient margin for the determination. If the determination in step S5 is affirmative, the reverse rotation of the engine 1 has been detected, and the process proceeds to step S6.
  • step S6 the controller 12 sets the clutch command pressure Pci to a predetermined value ⁇ or less.
  • the predetermined value ⁇ is a value for bringing the forward clutch 3a into a released state.
  • the controller 12 maintains the clutch command pressure Pci as it is during SS control, thereby setting the clutch command pressure Pci to a predetermined value ⁇ or less. For this reason, the forward clutch 3a remains in a released state.
  • the controller 12 sets the set value ⁇ to the first value ⁇ 1 in step S6.
  • the set value ⁇ is a value for pre-reading, in other words, predicting the synchronization completion timing of the forward clutch 3a.
  • the first value ⁇ 1 is a value applied to the set value ⁇ when reverse rotation of the engine 1 is detected.
  • the first value ⁇ 1 can be set in advance by experiments or the like.
  • step S8 the controller 12 starts the engine 1.
  • step S9 the controller 12 determines whether or not the engine 1 has been started. Whether or not the engine 1 has been started may be determined by an appropriate technique in addition to a known technique. If a negative determination is made in step S9, the process of step S9 is repeatedly executed until the start of the engine 1 is completed. If the determination is affirmative in step S9, the process proceeds to step S10.
  • step S10 the controller 12 performs synchronous control of the forward clutch 3a. Specifically, the synchronization control is performed by controlling the engine 1 so that the input side rotational speed InREV of the forward clutch 3a is matched with the output side rotational speed OutREV of the forward clutch 3a. In step S10, the supply hydraulic pressure to the LU clutch 2a is also increased, and the LU clutch 2a is set to a standby state or a slip state.
  • step S12 the controller 12 fastens the forward clutch 3a.
  • the first value ⁇ 1 is set as the set value ⁇ . Therefore, in this case, the forward clutch 3a is engaged according to the first value ⁇ 1.
  • the controller 12 sets the set value ⁇ to the second value ⁇ 2 in step S7.
  • the second value ⁇ 2 is a value applied to the set value ⁇ when the reverse rotation of the engine 1 is not detected, and is set to be smaller than the first value ⁇ 1.
  • the second value ⁇ 2 can be set in advance by experiments or the like.
  • step S11 it is determined whether or not the absolute value of the rotational speed difference DREV is smaller than the set value ⁇ . If the determination is affirmative in step S11, the forward clutch 3a is engaged in step S12. . In this case, since the second value ⁇ 2 is set as the set value ⁇ , the forward clutch 3a is engaged according to the second value ⁇ 2.
  • the controller 12 is a vehicle control device, and functions as a first control unit by performing the process of step S3. In addition, the controller 12 functions as a second control unit by performing the processes of step S6, step S7, step S8, and step S12.
  • the controller 12 has a first control unit and a second control unit by functioning as a first control unit and a second control unit. It may be understood that the vehicle control device further includes the above-described various sensors and switches such as the hydraulic control circuit 5 and the engine rotation speed sensor 20.
  • FIG. 4 is a diagram illustrating an example of a timing chart corresponding to the control performed by the controller 12.
  • FIG. 4 shows changes in various parameters after the SS condition is satisfied.
  • a change in the clutch command pressure Pci when the engine 1 does not rotate reversely during SS control is also shown by a two-dot broken line.
  • the case of the comparative example is also shown with a broken line.
  • the line command pressure PLi is reduced.
  • the line actual pressure PL also decreases accordingly.
  • the line command pressure PLi is reduced to the command value of the oil pressure required during the SS control.
  • the actual transmission ratio of the continuously variable transmission 4 is changed to the target transmission ratio.
  • the target gear ratio is, for example, the minimum gear ratio.
  • the forward clutch 3a is engaged and the engine 1 is also in operation. For this reason, the degree of decrease in the vehicle acceleration G is increased.
  • the sub oil pump 7 is stopped.
  • the forward clutch 3a is also released by lowering the clutch command pressure Pci. For this reason, the degree of decrease in the vehicle acceleration G is greatly reduced.
  • the driving of the sub oil pump 7 is also started.
  • the sub oil pump 7 secures the amount of oil necessary for maintaining the actual gear ratio of the continuously variable transmission 4 at the target gear ratio during SS control and the amount of oil necessary for putting the forward clutch 3a in the standby state. Is done.
  • the indicated value of the oil pressure required during the SS control is a value that ensures at least the amount of oil.
  • the SS release condition is satisfied.
  • the clutch command pressure Pci is maintained as it is at the timing T3, so that the clutch command pressure Pci is set to a predetermined value ⁇ or less.
  • the engine 1 rotates in reverse.
  • the engine 1 is started. For this reason, from the timing T4, the rotational speed Ne changes according to the start of the engine 1.
  • the engine 1 is completely started after cranking. Further, the sub oil pump 7 is stopped. From timing T5, synchronous control for achieving rotational synchronization in the forward clutch 3a is performed. For this reason, the rotational speed Ne further increases from the timing T5, and the input side rotational speed InREV of the forward clutch 3a also increases accordingly.
  • the rotational speed Ne has not yet increased to a level sufficient to control the line actual pressure PL to the line command pressure PLi.
  • the actual line pressure PL that has risen temporarily in response to the start of the engine 1 tends to stabilize after the start of the engine 1 is completed. For this reason, the line actual pressure PL that has temporarily increased suddenly in response to the start of the engine 1 decreases after the timing T5.
  • the absolute value of the rotational speed difference DREV becomes smaller than the first value ⁇ 1. Therefore, in response to this, the clutch command pressure Pci is increased for the forward clutch 3a in the released state, and the engagement of the forward clutch 3a is started.
  • the rotation synchronization in the forward clutch 3a is completed, and the line command pressure PLi is increased.
  • the target speed ratio is set to be larger than the minimum speed ratio, and the actual speed ratio starts to change accordingly. Since the vehicle is driven by the engine 1 from the timing T6, the vehicle acceleration G increases.
  • the clutch command pressure Pci is set to a standby pressure larger than the predetermined value ⁇ at timing T3, as indicated by a two-dot broken line. For this reason, in this case, at timing T4, the engine 1 is started in a state where the clutch command pressure Pci is higher than during SS control. In this case, after the timing T6 ′ and before the timing T6, the absolute value of the rotational speed difference DREV becomes smaller than the second value ⁇ 2 (not shown). In response to this, the clutch command pressure Pci is increased for the forward clutch 3a in the standby state, and the engagement of the forward clutch 3a is started.
  • the SS release condition is satisfied at the timing T3 when the engine 1 is rotating in reverse, and the engine is discharged at timing T4 immediately after the oil sucked out by the reverse rotation of the engine 1 is refilled in the hydraulic control circuit 5. 1 is started.
  • the main oil pump 6 operates while the influence of sucking out the oil remains, and the oil suddenly flows into the hydraulic control circuit 5.
  • an overshoot of the line pressure occurs at the timing T4 ′ where the line actual pressure PL exceeds the line command pressure PLi.
  • the controller 12 which is a vehicle control device having the engine 1, the automatic transmission 15, and the main oil pump 6, indicates that the engine 1 And the SS control for bringing the automatic transmission 15 into the neutral state is executed. Further, as can be seen from the timing T3, the timing T4, and the change in the clutch command pressure Pci indicated by the two-dot broken line, when the SS release condition is satisfied, the controller 12 increases the clutch command pressure Pci more than during the SS control. Then, SS release control for starting the engine 1 is executed. Further, as can be understood from the timing T2, the timing T3, and the timing T4, the controller 12 performs a clutch instruction when the reverse rotation of the engine 1 is detected when the SS control is released. The engine 1 is started in a state where the pressure Pci is set to a predetermined value ⁇ or less.
  • the controller 12 having such a configuration, when the reverse rotation of the engine 1 is detected, the engine 1 can be driven in a state where the oil supplied to the forward clutch 3a can be sufficiently drained. For this reason, it is possible to prevent the forward clutch 3a from being suddenly engaged due to the reverse rotation of the engine 1. Further, when reverse rotation of the engine 1 is not detected, the clutch command pressure Pci can be set higher than a predetermined value ⁇ such as a standby pressure, so that the time required for complete engagement of the forward clutch 3a can be shortened. it can.
  • a predetermined value ⁇ such as a standby pressure
  • the controller 12 engages the forward clutch 3a.
  • the controller 12 sets the set value ⁇ to a larger value than when the reverse rotation of the engine 1 is not detected during the SS control. .
  • the controller 12 sets the set value ⁇ to a first value ⁇ 1 that is larger than the second value ⁇ 2.
  • the clutch synchronization pressure Pci is increased by prefetching the rotation synchronization timing based on the rotation speed difference DREV, and the forward clutch 3a is engaged. For this reason, since the clutch command pressure Pci can be increased without feedback of the actual clutch pressure Pc, erroneous engagement of the forward clutch 3a due to variations in the actual clutch pressure Pc can be prevented.
  • the clutch command pressure Pci can be maintained at, for example, the standby pressure during the rotation synchronization, so that the rotation synchronization timing is prefetched. After that, the forward clutch 3a can be fully fastened quickly. When reverse rotation of the engine 1 is detected, the forward clutch 3a can be completely engaged at an appropriate timing by correcting the set value ⁇ .
  • the SS is a drive source stop during traveling.
  • the driving source stop during traveling may be, for example, a coast stop.
  • the controller 12 may perform coast stop control that is executed when the next coast stop condition is satisfied and is canceled when the next coast stop release condition is satisfied.
  • the coast stop condition includes that the vehicle speed Vsp is less than a predetermined vehicle speed, that the accelerator pedal is not depressed, that the brake pedal is depressed, and that the forward range is selected by the automatic transmission 15.
  • the predetermined vehicle speed is, for example, a vehicle speed at which the lockup clutch 2a is released.
  • the coast stop cancellation condition is, for example, that any of these constituent conditions constituting the coast stop condition is not satisfied.
  • the automatic transmission 15 includes the continuously variable transmission 4
  • the automatic transmission 15 may be configured to include, for example, a stepped automatic transmission, that is, a so-called automatic transmission.
  • the continuously variable transmission 4 may be, for example, a toroidal continuously variable transmission instead of a belt-type continuously variable transmission.
  • the automatic transmission 15 has the forward clutch 3a of the forward / reverse switching mechanism 3 as the forward fastening element.
  • the automatic transmission 15 may have, for example, a sub-transmission mechanism and a forward fastening element of the sub-transmission mechanism as the forward fastening element.
  • a subtransmission mechanism can be included in the clutch system 30 instead of the forward / reverse switching mechanism 3 because the gear stage is established by clutch engagement of the forward engagement element or the like.
  • the drive source may be, for example, the motor, the engine 1, and the motor.
  • controller 12 includes the engine controller 10 and the transmission controller 11 has been described.
  • the controller 12 may be configured to have another controller, for example, or may be a single controller.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

A controller that executes sailing stop (SS) control if SS conditions are met. The controller also executes SS release control whereby the engine is started in a state in which the clutch indicated pressure has been increased to greater than during SS control, when SS release conditions have been fulfilled. In addition, when executing SS release control, the controller starts the engine in a state in which the clutch indicated pressure is no more than a prescribed value, if reverse rotation by the engine is detected during release of SS control.

Description

車両の制御装置及び車両の制御方法Vehicle control apparatus and vehicle control method
 本発明は、車両の制御装置及び車両の制御方法に関する。 The present invention relates to a vehicle control device and a vehicle control method.
 セーリングストップ条件が成立すると、駆動源を停止すると共に自動変速機をニュートラル状態にするセーリングストップ制御に対応する技術がJP2013-213557Aに開示されている。 JP2013-213557A discloses a technology corresponding to sailing stop control in which the driving source is stopped and the automatic transmission is set to the neutral state when the sailing stop condition is satisfied.
 セーリングストップ制御によって駆動源が停止する際、駆動源が逆回転することがある。駆動源の逆回転は、例えばエンジンを駆動源とする場合、燃焼室内の圧縮空気やピストン自重等によってピストンが押し戻されることで発生する。駆動源が逆回転すると、駆動源の動力で駆動するオイルポンプも逆回転するので、油圧制御回路内の油が吸い出されてしまう。そして、このような状態を含め、油が吸い出された影響が残るうちにセーリングストップ解除条件の成立に応じてエンジンを始動し、オイルポンプが作動すると、油圧制御回路内に油が急に流れ込むことになる。 際 When the drive source is stopped by sailing stop control, the drive source may rotate backward. The reverse rotation of the drive source occurs, for example, when the piston is pushed back by compressed air in the combustion chamber, the piston's own weight, or the like when the engine is used as the drive source. When the drive source rotates in the reverse direction, the oil pump driven by the power of the drive source also rotates in the reverse direction, so that the oil in the hydraulic control circuit is sucked out. Including such a state, the engine is started in response to the establishment of the sailing stop cancellation condition while the influence of the oil sucked out remains, and when the oil pump is activated, the oil suddenly flows into the hydraulic control circuit. It will be.
 このためこの場合には、油圧制御回路で調整されるライン圧の実圧が、ライン圧の指示圧を上回るオーバーシュートが発生する虞がある。そして、ライン圧のオーバーシュートが発生すると、その影響が前進用締結要素に接続する油路に及ぶ結果、前進用締結要素への供給油圧もオーバーシュートする虞がある。このため、前進用締結要素が急締結して締結ショックが発生する虞がある。 Therefore, in this case, there is a possibility that an overshoot occurs in which the actual pressure of the line pressure adjusted by the hydraulic control circuit exceeds the indicated pressure of the line pressure. When an overshoot of the line pressure occurs, as a result of the influence reaching the oil passage connected to the forward fastening element, the hydraulic pressure supplied to the forward fastening element may also overshoot. For this reason, there is a possibility that the forward fastening element may be fastened and a fastening shock may occur.
 本発明はこのような課題に鑑みてなされたもので、セーリングストップ制御を含む走行中駆動源停止制御中に発生する駆動源の逆回転に起因して、前進用締結要素が急締結することを防止可能な車両の制御装置及び車両の制御方法を提供することを目的とする。 The present invention has been made in view of such problems, and the forward fastening element is abruptly fastened due to the reverse rotation of the drive source that occurs during the drive source stop control during traveling including the sailing stop control. It is an object of the present invention to provide a vehicle control device and a vehicle control method that can be prevented.
 本発明のある態様の車両の制御装置は、駆動源と、前記駆動源に接続され、前進用締結要素を有する自動変速機と、前記自動変速機への供給油圧の油圧源であって前記駆動源の動力で駆動する油圧源と、を有する車両の制御装置であって、走行中駆動源停止条件が成立すると、前記駆動源を停止するとともに、前記自動変速機をニュートラル状態にする走行中駆動源停止制御を実行する第1制御部と、走行中駆動源停止解除条件が成立すると、前記前進用締結要素への供給油圧の指示圧を前記走行中駆動源停止制御中よりも上昇させた状態で前記駆動源の始動を行う走行中駆動源停止解除制御を実行する第2制御部と、を有する。前記第2制御部は、前記走行中駆動源停止制御の解除の際に前記駆動源の逆回転が検知されている場合には、前記前進用締結要素への指示圧を所定値以下にした状態で前記駆動源の始動を行う。 The vehicle control device according to an aspect of the present invention includes a drive source, an automatic transmission connected to the drive source and having a forward fastening element, and a hydraulic pressure source of hydraulic pressure supplied to the automatic transmission. And a hydraulic power source that is driven by the power of the power source, wherein the driving source is stopped and the automatic transmission is set to the neutral state when the driving source stop condition during traveling is satisfied. When the first control unit that executes the source stop control and the driving source stop cancellation condition during traveling are satisfied, the command pressure of the hydraulic pressure supplied to the forward fastening element is increased more than during the driving source stop control during traveling And a second control unit that executes driving source stop cancellation control during traveling for starting the driving source. When the reverse rotation of the drive source is detected when the drive source stop control during traveling is canceled, the second control unit is configured to reduce the command pressure to the forward fastening element to a predetermined value or less. Then, the drive source is started.
 本発明の別の態様によれば、駆動源と、前記駆動源に接続され前進用締結要素を有する自動変速機と、前記自動変速機への供給油圧の油圧源であって前記駆動源の動力で駆動する油圧源と、を有する車両の制御方法であって、走行中駆動源停止条件が成立すると、前記駆動源を停止するとともに、前記自動変速機をニュートラル状態にする走行中駆動源停止制御を実行することと、走行中駆動源停止解除条件が成立すると、前記前進用締結要素への供給油圧の指示圧を前記走行中駆動源停止制御中よりも上昇させた状態で前記駆動源の始動を行う走行中駆動源停止解除制御を実行することと、を含み、前記走行中駆動源停止解除制御を実行するにあたり、前記走行中駆動源停止制御の際に前記駆動源の逆回転が検知されている場合には、前記前進用締結要素への指示圧を所定値以下にした状態で前記駆動源の始動を行う車両の制御方法が提供される。 According to another aspect of the present invention, there is provided a drive source, an automatic transmission having a forward fastening element connected to the drive source, and a hydraulic pressure source for supplying hydraulic pressure to the automatic transmission. And a hydraulic power source driven by the vehicle, wherein when the driving source stop condition during traveling is satisfied, the driving source is stopped and the automatic transmission is set in a neutral state while the driving source is stopped during traveling. And when the drive source stop cancellation condition during travel is satisfied, the drive source is started in a state where the command pressure of the hydraulic pressure supplied to the forward fastening element is higher than that during the travel drive source stop control. Performing the driving source stop cancellation control during traveling, and when executing the driving source stop cancellation control during traveling, the reverse rotation of the drive source is detected during the driving source stop control during traveling. If you have before Control method for a vehicle which performs starting of the drive source an instruction pressure to the forward engagement element in a state of being below a predetermined value is provided.
 これらの態様によれば、駆動源の逆回転が検知された場合には、前進用締結要素に供給される油を十分にドレーン可能な状態で駆動源の駆動を行うことができるので、駆動源の逆回転に起因して、前進用締結要素が急締結することを防止することができる。また、駆動源の逆回転が検知されない場合には、前進用締結要素への供給油圧の指示圧を所定値よりも高く設定することができるので、前進用締結要素の完全締結に要する時間を短くすることもできる。 According to these aspects, when reverse rotation of the drive source is detected, the drive source can be driven in a state where the oil supplied to the forward fastening element can be sufficiently drained. It is possible to prevent the forward fastening element from being suddenly fastened due to the reverse rotation of. Further, when the reverse rotation of the drive source is not detected, the command pressure of the hydraulic pressure supplied to the forward fastening element can be set higher than a predetermined value, so that the time required for complete fastening of the forward fastening element is shortened. You can also
図1は、本実施形態の車両の概略構成図である。FIG. 1 is a schematic configuration diagram of a vehicle according to the present embodiment. 図2は、ライン圧制御弁の一例を示す図である。FIG. 2 is a diagram illustrating an example of a line pressure control valve. 図3は、本実施形態の制御の一例をフローチャートで示す図である。FIG. 3 is a flowchart illustrating an example of the control according to the present embodiment. 図4は、本実施形態の制御に対応するタイミングチャートの一例を示す図である。FIG. 4 is a diagram illustrating an example of a timing chart corresponding to the control of the present embodiment.
 以下、添付図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 クラッチの状態に関し、本明細書では、解放、待機、スリップ、締結の語を次の意味で適宜用いる。解放とは、クラッチへの油圧供給がなく、クラッチがトルク容量を持たない状態を指す。待機とは、クラッチへの油圧供給はあるが、クラッチがトルク容量を持たない状態を指す。スリップとは、クラッチへの油圧供給があり、クラッチがトルク容量を持つが、クラッチに入出力回転差がある状態を指す。締結とは、クラッチへの油圧供給があり、クラッチがトルク容量を持つが、クラッチに入出力回転差がない状態を指す。 Regarding the state of the clutch, in this specification, the terms “release”, “standby”, “slip”, and “engaged” are appropriately used in the following meaning. Release means a state in which there is no hydraulic pressure supply to the clutch and the clutch has no torque capacity. Standby means a state in which hydraulic pressure is supplied to the clutch, but the clutch does not have torque capacity. Slip refers to a state in which hydraulic pressure is supplied to the clutch and the clutch has a torque capacity, but the clutch has an input / output rotational difference. Engagement refers to a state in which there is a hydraulic pressure supply to the clutch and the clutch has a torque capacity, but the clutch has no input / output rotation difference.
 クラッチがトルク容量を持たない状態とは、換言すればクラッチが動力を伝達しない状態であり、クラッチがトルク容量を持つ状態とは、換言すればクラッチが動力を伝達する状態である。スリップとは、換言すればクラッチが持つトルク容量が入力トルクよりも小さい状態であり、締結とは、換言すればクラッチが持つトルク容量が入力トルクよりも大きい完全締結の状態を指す。 The state where the clutch does not have torque capacity is, in other words, the state where the clutch does not transmit power, and the state where the clutch has torque capacity is, in other words, the state where the clutch transmits power. In other words, the slip is a state where the torque capacity of the clutch is smaller than the input torque, and the engagement refers to a state of complete engagement where the torque capacity of the clutch is larger than the input torque.
 図1は、本実施形態の車両の概略構成図である。車両は、エンジン1と、トルクコンバータ2と、前後進切替機構3と、無段変速機4と、油圧制御回路5と、メインオイルポンプ6と、サブオイルポンプ7と、エンジンコントローラ10と、変速機コントローラ11とを備える。車両においては、駆動源であるエンジン1で発生した回転が、トルクコンバータ2、前後進切替機構3、無段変速機4、歯車組8、ディファレンシャルギヤ装置9を経て図示しない車輪に伝達される。 FIG. 1 is a schematic configuration diagram of a vehicle according to the present embodiment. The vehicle includes an engine 1, a torque converter 2, a forward / reverse switching mechanism 3, a continuously variable transmission 4, a hydraulic control circuit 5, a main oil pump 6, a sub oil pump 7, an engine controller 10, Machine controller 11. In the vehicle, the rotation generated by the engine 1 as a drive source is transmitted to a wheel (not shown) via a torque converter 2, a forward / reverse switching mechanism 3, a continuously variable transmission 4, a gear set 8, and a differential gear device 9.
 トルクコンバータ2は、ロックアップクラッチ2aを有している。ロックアップクラッチ2aが締結されると、トルクコンバータ2の入力軸と出力軸とが直結し、入力軸と出力軸とが同速回転する。以下では、ロックアップクラッチ2aをLUクラッチ2aと称す。 The torque converter 2 has a lock-up clutch 2a. When the lockup clutch 2a is engaged, the input shaft and the output shaft of the torque converter 2 are directly connected, and the input shaft and the output shaft rotate at the same speed. Hereinafter, the lock-up clutch 2a is referred to as the LU clutch 2a.
 前後進切替機構3は、ダブルピニオン遊星歯車組を主たる構成要素とし、そのサンギヤをトルクコンバータ2を介してエンジン1に結合し、キャリアをプライマリプーリ4aに結合する。前後進切替機構3は更に、ダブルピニオン遊星歯車組のサンギヤおよびキャリア間を直結する前進クラッチ3aと、リングギヤを固定する後進ブレーキ3bを備える。 The forward / reverse switching mechanism 3 includes a double pinion planetary gear set as a main component, and the sun gear is coupled to the engine 1 via the torque converter 2 and the carrier is coupled to the primary pulley 4a. The forward / reverse switching mechanism 3 further includes a forward clutch 3a that directly connects the sun gear and the carrier of the double pinion planetary gear set and a reverse brake 3b that fixes the ring gear.
 前後進切替機構3は、前進クラッチ3aの締結時にエンジン1からトルクコンバータ2を経由した入力回転をそのままプライマリプーリ4aに伝達する。また、前後進切替機構3は、後進ブレーキ3bの締結時にエンジン1からトルクコンバータ2を経由した入力回転を逆転減速下にプライマリプーリ4aへ伝達する。前進クラッチ3aは、エンジン1及び駆動輪の一方から他方への動力の伝達を断続する前進用締結要素を構成する。 The forward / reverse switching mechanism 3 transmits the input rotation from the engine 1 via the torque converter 2 to the primary pulley 4a as it is when the forward clutch 3a is engaged. Further, the forward / reverse switching mechanism 3 transmits the input rotation from the engine 1 via the torque converter 2 to the primary pulley 4a under reverse deceleration when the reverse brake 3b is engaged. The forward clutch 3a constitutes a forward fastening element that interrupts transmission of power from one of the engine 1 and the drive wheels to the other.
 無段変速機4は、プライマリプーリ4aと、セカンダリプーリ4bと、ベルト4cとを備える。無段変速機4では、プライマリプーリ4aに供給される油圧と、セカンダリプーリ4bに供給される油圧とが制御されることで、各プーリ4a、4bとベルト4cとの接触半径が変更され、変速比が変更される。 The continuously variable transmission 4 includes a primary pulley 4a, a secondary pulley 4b, and a belt 4c. In the continuously variable transmission 4, by controlling the hydraulic pressure supplied to the primary pulley 4a and the hydraulic pressure supplied to the secondary pulley 4b, the contact radii between the pulleys 4a, 4b and the belt 4c are changed. The ratio is changed.
 無段変速機4は、バリエータであり、トルクコンバータ2及び前後進切替機構3とともに、エンジン1に接続される自動変速機15を構成する。自動変速機15は、他の構成を介してエンジン1に間接的に接続されてもよい。前後進切替機構3は例えば、無段変速機4及び歯車組8間に設けられてもよい。 The continuously variable transmission 4 is a variator and, together with the torque converter 2 and the forward / reverse switching mechanism 3, constitutes an automatic transmission 15 connected to the engine 1. The automatic transmission 15 may be indirectly connected to the engine 1 through another configuration. For example, the forward / reverse switching mechanism 3 may be provided between the continuously variable transmission 4 and the gear set 8.
 油圧制御回路5は、複数の流路、複数の油圧制御弁で構成される。油圧制御回路5は、変速機コントローラ11からの変速制御信号に基づき、複数の油圧制御弁を制御して油圧の供給経路を切り換えるとともにメインオイルポンプ6から吐出された油によって発生した油圧から必要な油圧を調製し、これを無段変速機4、前後進切替機構3、トルクコンバータ2の各部位に供給する。 The hydraulic control circuit 5 includes a plurality of flow paths and a plurality of hydraulic control valves. The hydraulic pressure control circuit 5 controls a plurality of hydraulic pressure control valves based on a shift control signal from the transmission controller 11 to switch the hydraulic pressure supply path and is necessary from the hydraulic pressure generated by the oil discharged from the main oil pump 6. Hydraulic pressure is prepared and supplied to each part of the continuously variable transmission 4, the forward / reverse switching mechanism 3, and the torque converter 2.
 変速制御信号は、LUクラッチ2aへの供給油圧の指示圧や、前進クラッチ3aへの供給油圧であるクラッチ圧の指示圧や、自動変速機15への供給油圧の元圧を構成するライン圧の指示圧や、プライマリプーリ圧Ppriの指示圧や、セカンダリプーリ圧Psecの指示圧を含む。以下では、クラッチ圧の実圧をクラッチ実圧Pcと称し、クラッチ圧の指示圧をクラッチ指示圧Pciと称す。また、ライン圧の実圧をライン実圧PLと称し、ライン圧の指示圧をライン指示圧PLiと称す。 The shift control signal includes the command pressure of the hydraulic pressure supplied to the LU clutch 2a, the command pressure of the clutch pressure that is the hydraulic pressure supplied to the forward clutch 3a, and the line pressure that constitutes the original pressure of the hydraulic pressure supplied to the automatic transmission 15. The command pressure, the command pressure of the primary pulley pressure Ppri, and the command pressure of the secondary pulley pressure Psec are included. Hereinafter, the actual clutch pressure is referred to as clutch actual pressure Pc, and the clutch pressure command pressure is referred to as clutch command pressure Pci. Further, the actual line pressure is referred to as a line actual pressure PL, and the line pressure command pressure is referred to as a line command pressure PLi.
 メインオイルポンプ6は、エンジン1の回転が入力されエンジン1の動力の一部を利用して駆動される第1油圧源を構成する。メインオイルポンプ6の駆動により、メインオイルポンプ6から吐出された油は、油圧制御回路5に供給される。このため、メインオイルポンプ6は、自動変速機15への供給油圧の油圧源を構成する。エンジン1が停止している場合、メインオイルポンプ6は駆動されず、油は吐出されない。 The main oil pump 6 constitutes a first hydraulic power source that is driven by using a part of the power of the engine 1 when the rotation of the engine 1 is inputted. The oil discharged from the main oil pump 6 is supplied to the hydraulic control circuit 5 by driving the main oil pump 6. For this reason, the main oil pump 6 constitutes a hydraulic pressure source of the hydraulic pressure supplied to the automatic transmission 15. When the engine 1 is stopped, the main oil pump 6 is not driven and oil is not discharged.
 サブオイルポンプ7は、電動オイルポンプであり、エンジン1が停止している場合でも、作動可能な第2油圧源を構成する。サブオイルポンプ7の容量は、メインオイルポンプ6の容量よりも小さく設定される。サブオイルポンプ7から吐出された油も、メインオイルポンプ6と同様、油圧制御回路5に供給される。このため、自動変速機15は、メインオイルポンプ6及びサブオイルポンプ7のうち少なくともいずれかからの供給油圧に基づき制御される。 The sub oil pump 7 is an electric oil pump and constitutes a second hydraulic pressure source that can operate even when the engine 1 is stopped. The capacity of the sub oil pump 7 is set smaller than the capacity of the main oil pump 6. The oil discharged from the sub oil pump 7 is also supplied to the hydraulic pressure control circuit 5 in the same manner as the main oil pump 6. For this reason, the automatic transmission 15 is controlled based on the hydraulic pressure supplied from at least one of the main oil pump 6 and the sub oil pump 7.
 変速機コントローラ11は、CPU、ROM、RAMなどから構成される。変速機コントローラ11では、CPUがROMに記憶されたプログラムを読み出して実行することで、変速機コントローラ11の機能が発揮される。 The transmission controller 11 includes a CPU, a ROM, a RAM, and the like. In the transmission controller 11, the function of the transmission controller 11 is exhibited by the CPU reading and executing a program stored in the ROM.
 変速機コントローラ11には、エンジン1の回転速度Neを検出するエンジン回転速度センサ20からの信号、プライマリプーリ圧Ppriを検出するプライマリプーリ圧センサ21からの信号、セカンダリプーリ圧Psecを検出するセカンダリプーリ圧センサ22からの信号、アクセル開度APOを検出するアクセル開度センサ23からの信号、ブレーキペダルの踏み込み量BRPに基づくブレーキ踏力を検出するブレーキセンサ24からの信号、エンジン1の制御を司るエンジンコントローラ10からのエンジントルクTeに関した信号などが入力される。 The transmission controller 11 includes a signal from the engine rotation speed sensor 20 that detects the rotation speed Ne of the engine 1, a signal from the primary pulley pressure sensor 21 that detects the primary pulley pressure Ppri, and a secondary pulley that detects the secondary pulley pressure Psec. A signal from the pressure sensor 22, a signal from the accelerator opening sensor 23 for detecting the accelerator opening APO, a signal from the brake sensor 24 for detecting the brake depression force based on the depression amount BRP of the brake pedal, an engine for controlling the engine 1 A signal relating to the engine torque Te from the controller 10 is input.
 変速機コントローラ11にはこのほか、変速レバーの操作位置を検出するインヒビタスイッチ25からの信号や、PRIプーリ4aの回転速度Npriを検出するPRI回転速度センサ26からの信号や、SECプーリ4bの回転速度Nsecを検出するSEC回転速度センサ27からの信号などが入力される。変速機コントローラ11は、SEC回転速度センサ27からの信号に基づき、車速Vspを検出することができる。 In addition to this, the transmission controller 11 includes a signal from the inhibitor switch 25 that detects the operation position of the transmission lever, a signal from the PRI rotation speed sensor 26 that detects the rotation speed Npri of the PRI pulley 4a, and the rotation of the SEC pulley 4b. A signal from the SEC rotation speed sensor 27 for detecting the speed Nsec is input. The transmission controller 11 can detect the vehicle speed Vsp based on the signal from the SEC rotation speed sensor 27.
 変速機コントローラ11は、エンジンコントローラ10とともにコントローラ12を構成する。コントローラ12は、エンジン1及び自動変速機15を制御する制御モジュールとして構成される。 The transmission controller 11 constitutes a controller 12 together with the engine controller 10. The controller 12 is configured as a control module that controls the engine 1 and the automatic transmission 15.
 図2は、ライン圧制御弁51の一例を示す図である。図2では、メインオイルポンプ6や、後述するクラッチ系30及び変速系40についても併せて示す。油圧制御回路5は、図2に示すライン圧制御弁51を備える。ライン圧制御弁51は、本体52と、スプール53と、スプリング54と、を備える。ライン圧制御弁51は、ポート55からポート58を有する。ライン圧制御弁51は、ライン圧油路59に設けられる。 FIG. 2 is a diagram illustrating an example of the line pressure control valve 51. FIG. 2 also shows the main oil pump 6 and a clutch system 30 and a transmission system 40 described later. The hydraulic control circuit 5 includes a line pressure control valve 51 shown in FIG. The line pressure control valve 51 includes a main body 52, a spool 53, and a spring 54. The line pressure control valve 51 has a port 55 to a port 58. The line pressure control valve 51 is provided in the line pressure oil passage 59.
 本体52は、スプール53及びスプリング54を収容する。スプリング54は、スプール53をポート57側に付勢する。ポート55からポート58は、本体52の内外を連通する。ポート55は入口ポートであり、ライン圧油路59に接続される。ポート56は出口ポートであり、循環系等に接続される。ポート57はフィードバックポートであり、ポート57にはライン実圧PLがフィードバック圧としてオリフィス等を介して入力される。ポート58はパイロットポートであり、ポート58には図示しないソレノイド弁によってライン指示圧PLiに応じた制御圧Psが入力される。 The main body 52 houses a spool 53 and a spring 54. The spring 54 biases the spool 53 toward the port 57 side. The ports 55 to 58 communicate with the inside and outside of the main body 52. The port 55 is an inlet port and is connected to the line pressure oil passage 59. The port 56 is an outlet port and is connected to a circulation system or the like. The port 57 is a feedback port, and the line actual pressure PL is inputted to the port 57 as a feedback pressure through an orifice or the like. The port 58 is a pilot port, and a control pressure Ps corresponding to the line command pressure PLi is input to the port 58 by a solenoid valve (not shown).
 ライン圧制御弁51では、スプール53に作用する力、具体的にはフィードバック圧に応じた作用力、スプリング54の付勢力及び制御圧Psに応じた作用力がバランスする位置にスプール53が移動することで、ライン実圧PLがライン指示圧PLiになるように制御される。 In the line pressure control valve 51, the spool 53 moves to a position where the force acting on the spool 53, specifically, the acting force according to the feedback pressure, the urging force of the spring 54, and the acting force according to the control pressure Ps are balanced. Thus, the line actual pressure PL is controlled to be the line command pressure PLi.
 メインオイルポンプ6は、ライン圧制御弁51が設けられたライン圧油路59を介してクラッチ系30や変速系40に油を供給する。なお、図示省略しているが、サブオイルポンプ7は、ライン圧油路59に対し、チェック弁等を介してメインオイルポンプ6と並列に接続される。 The main oil pump 6 supplies oil to the clutch system 30 and the transmission system 40 via a line pressure oil passage 59 provided with a line pressure control valve 51. Although not shown, the sub oil pump 7 is connected to the line pressure oil passage 59 in parallel with the main oil pump 6 via a check valve or the like.
 クラッチ系30は、前後進切替機構3のほかクラッチ圧を制御するクラッチ圧制御弁を含む。変速系40は、無段変速機4のほかプライマリプーリ圧Ppriを制御するプライマリプーリ圧制御弁や、セカンダリプーリ圧Psecを制御するセカンダリプーリ圧制御弁を含む。これらの各制御弁には、ライン圧制御弁51と同様、フィードバックポート等を有する制御弁を適用することができる。クラッチ系30は、変速系40とともにライン圧制御弁51の下流に設けられる。 The clutch system 30 includes a clutch pressure control valve that controls the clutch pressure in addition to the forward / reverse switching mechanism 3. In addition to continuously variable transmission 4, transmission system 40 includes a primary pulley pressure control valve that controls primary pulley pressure Ppri and a secondary pulley pressure control valve that controls secondary pulley pressure Psec. A control valve having a feedback port or the like can be applied to each of these control valves, similarly to the line pressure control valve 51. The clutch system 30 is provided downstream of the line pressure control valve 51 together with the transmission system 40.
 ところで、車両では、セーリングストップ制御が行われる。以下では、セーリングストップを単にSSと称す。SS制御は、SS条件が成立すると、エンジン1を停止するとともに、自動変速機15をニュートラル状態にする。SS制御では、エンジン1の停止及び惰性走行距離の延長によって、エンジン1の燃費を向上させることができる。 By the way, sailing stop control is performed on the vehicle. Hereinafter, the sailing stop is simply referred to as SS. In the SS control, when the SS condition is satisfied, the engine 1 is stopped and the automatic transmission 15 is set to the neutral state. In the SS control, the fuel consumption of the engine 1 can be improved by stopping the engine 1 and extending the inertia traveling distance.
 SS条件は、車速Vspが設定車速よりも高いこと、アクセルペダルの踏み込みがないこと、ブレーキペダルの踏み込みがないこと、及び自動変速機15で前進レンジが選択されていること、を含む。当該設定車速は、低速と中高速とを区分するように設定される。当該設定車速は、実験等により予め設定することができる。 The SS condition includes that the vehicle speed Vsp is higher than the set vehicle speed, the accelerator pedal is not depressed, the brake pedal is not depressed, and the forward range is selected by the automatic transmission 15. The set vehicle speed is set so as to distinguish between low speed and medium / high speed. The set vehicle speed can be set in advance through experiments or the like.
 SS制御によってエンジン1が停止する際、エンジン1が逆回転することがある。エンジン1の逆回転は例えば、燃焼室内の圧縮空気やピストン自重等によってピストンが押し戻されることで発生する。エンジン1が逆回転すると、エンジン1の動力で駆動するメインオイルポンプ6も逆回転するので、油圧制御回路5内の油が吸い出されてしまう。 When the engine 1 is stopped by SS control, the engine 1 may rotate in the reverse direction. The reverse rotation of the engine 1 occurs, for example, when the piston is pushed back by compressed air in the combustion chamber, the piston's own weight, or the like. When the engine 1 rotates in the reverse direction, the main oil pump 6 driven by the power of the engine 1 also rotates in the reverse direction, so that the oil in the hydraulic control circuit 5 is sucked out.
 このような状態を含め、油が吸い出された影響が残るうちにSS解除条件の成立に応じてエンジン1を始動し、メインオイルポンプ6が作動すると、油圧制御回路5内に油が急に流れ込むことになる。結果、ライン実圧PLがライン指示圧PLiを上回るライン圧のオーバーシュートが発生する可能性がある。 Including such a state, the engine 1 is started in response to the establishment of the SS release condition while the influence of the oil sucked out remains, and when the main oil pump 6 is activated, the oil suddenly enters the hydraulic control circuit 5. Will flow. As a result, there is a possibility that an overshoot of the line pressure where the line actual pressure PL exceeds the line command pressure PLi may occur.
 ライン圧のオーバーシュートは具体的には、次のようにして発生する。すなわち、エンジン1が始動すると、回転速度Neの上昇に応じてメインオイルポンプ6の吐出量が増加し、スプール53がポート58側へ移動する。そして、ポート58側の油が圧縮され制御圧Psが上昇すると、ライン実圧PLを上昇させるようにライン指示圧PLiが設定されたのと同様になるので、ライン実圧PLがさらに上昇することになる。そして、このような作用によって、スプール53に作用する力がバランスするまでの間に、ライン圧のオーバーシュートが発生することになる。 More specifically, the overshoot of the line pressure occurs as follows. That is, when the engine 1 is started, the discharge amount of the main oil pump 6 increases as the rotational speed Ne increases, and the spool 53 moves to the port 58 side. Then, when the oil on the port 58 side is compressed and the control pressure Ps increases, the line command pressure PLi is set to increase the line actual pressure PL, so that the line actual pressure PL further increases. become. By such an action, an overshoot of the line pressure occurs until the force acting on the spool 53 is balanced.
 ライン圧のオーバーシュートが発生すると、その影響が前進クラッチ3aに接続する油路に及ぶ結果、クラッチ実圧Pcがクラッチ指示圧Pciを上回るクラッチ圧のオーバーシュートも発生し得る。そして、クラッチ圧のオーバーシュートが発生すると、前進クラッチ3aが急締結して締結ショックが発生し得る。 When the overshoot of the line pressure occurs, the influence reaches the oil passage connected to the forward clutch 3a. As a result, an overshoot of the clutch pressure in which the actual clutch pressure Pc exceeds the clutch command pressure Pci can also occur. When the clutch pressure overshoot occurs, the forward clutch 3a can be suddenly engaged and an engagement shock can occur.
 このため、本実施形態ではコントローラ12が次に説明するように制御を行う。 Therefore, in this embodiment, the controller 12 performs control as described below.
 図3は、コントローラ12が行う制御の一例をフローチャートで示す図である。コントローラ12は、本フローチャートの処理を例えば微小時間毎に繰り返し実行する。 FIG. 3 is a flowchart illustrating an example of the control performed by the controller 12. The controller 12 repeatedly executes the processing of this flowchart, for example, every minute time.
 ステップS1で、コントローラ12は、SS条件が成立したか否かを判定する。ステップS1で否定判定であれば、本フローチャートの処理は一旦終了する。ステップS1で肯定判定であれば、処理はステップS2に進む。 In step S1, the controller 12 determines whether or not the SS condition is satisfied. If a negative determination is made in step S1, the processing of this flowchart is temporarily terminated. If the determination is affirmative in step S1, the process proceeds to step S2.
 ステップS2で、コントローラ12は、SS準備制御を実行する。SS準備制御は例えば、ライン圧を低下させることや、LUクラッチ2aへの供給油圧を低下させることや、無段変速機4の変速比を最小変速比などの目標変速比に変更することや、サブオイルポンプ7の作動準備を行うことを含む。 In step S2, the controller 12 executes SS preparation control. The SS preparation control includes, for example, lowering the line pressure, lowering the hydraulic pressure supplied to the LU clutch 2a, changing the gear ratio of the continuously variable transmission 4 to a target gear ratio such as a minimum gear ratio, Including preparing the sub-oil pump 7 to operate.
 ステップS3で、コントローラ12はSS制御を実行する。このため、ステップS3では、エンジン1が停止されるとともに自動変速機15がニュートラル状態とされる。自動変速機15は具体的には、前後進切替機構3の前進クラッチ3aを解放することでニュートラル状態とされる。ステップS3ではさらに、LUクラッチ2aの解放やサブオイルポンプ7の駆動も開始される。SS制御はSS準備制御をさらに含む制御とされてもよい。 In step S3, the controller 12 executes SS control. For this reason, in step S3, the engine 1 is stopped and the automatic transmission 15 is set to the neutral state. Specifically, the automatic transmission 15 is brought into the neutral state by releasing the forward clutch 3a of the forward / reverse switching mechanism 3. In step S3, the release of the LU clutch 2a and the driving of the sub oil pump 7 are also started. The SS control may be control further including SS preparation control.
 ステップS4で、コントローラ12は、SS解除条件が成立したか否かを判定する。SS解除条件は例えば、SS条件が不成立になったこと、とすることができる。SS解除条件には、その他の条件が適用されてもよい。ステップS4で否定判定であれば、処理はステップS3に戻る。ステップS4で肯定判定であれば、処理はステップS5に進む。 In step S4, the controller 12 determines whether or not the SS cancellation condition is satisfied. The SS cancellation condition can be, for example, that the SS condition is not satisfied. Other conditions may be applied to the SS release condition. If a negative determination is made in step S4, the process returns to step S3. If the determination is affirmative in step S4, the process proceeds to step S5.
 ステップS5で、コントローラ12は回転速度Neがゼロよりも低いか否かを判定する。ステップS5で、エンジン1が逆回転しているか否かが判定される。コントローラ12は、判定に余裕を持たせるために例えば、回転速度Neがゼロより大きい所定回転速度よりも低いか否かを判定してもよい。ステップS5で肯定判定であれば、エンジン1の逆回転が検知されたことになり、処理はステップS6に進む。 In step S5, the controller 12 determines whether or not the rotational speed Ne is lower than zero. In step S5, it is determined whether or not the engine 1 is rotating in reverse. For example, the controller 12 may determine whether or not the rotational speed Ne is lower than a predetermined rotational speed that is greater than zero in order to provide a sufficient margin for the determination. If the determination in step S5 is affirmative, the reverse rotation of the engine 1 has been detected, and the process proceeds to step S6.
 ステップS6で、コントローラ12は、クラッチ指示圧Pciを所定値α以下に設定する。所定値αは、前進クラッチ3aを解放状態にする値である。コントローラ12は具体的には、クラッチ指示圧PciをSS制御中の値にそのまま維持することで、クラッチ指示圧Pciを所定値α以下に設定する。このため、前進クラッチ3aは、解放状態のままになる。 In step S6, the controller 12 sets the clutch command pressure Pci to a predetermined value α or less. The predetermined value α is a value for bringing the forward clutch 3a into a released state. Specifically, the controller 12 maintains the clutch command pressure Pci as it is during SS control, thereby setting the clutch command pressure Pci to a predetermined value α or less. For this reason, the forward clutch 3a remains in a released state.
 また、コントローラ12は、ステップS6で設定値βを第1の値β1に設定する。設定値βは、前進クラッチ3aの同期完了タイミングを先読み、換言すれば予測するための値である。第1の値β1は、エンジン1の逆回転が検知された場合に設定値βに適用される値である。第1の値β1は、実験等により予め設定することができる。ステップS6の後には、処理はステップS8に進む。 In addition, the controller 12 sets the set value β to the first value β1 in step S6. The set value β is a value for pre-reading, in other words, predicting the synchronization completion timing of the forward clutch 3a. The first value β1 is a value applied to the set value β when reverse rotation of the engine 1 is detected. The first value β1 can be set in advance by experiments or the like. After step S6, the process proceeds to step S8.
 ステップS8で、コントローラ12は、エンジン1を始動させる。また、ステップS9で、コントローラ12は、エンジン1の始動が完了したか否かを判定する。エンジン1が始動したか否かは公知技術のほか適宜の技術で判定されてよい。ステップS9で否定判定であれば、エンジン1の始動が完了するまでの間、ステップS9の処理が繰り返し実行される。ステップS9で肯定判定であれば、処理はステップS10に進む。 In step S8, the controller 12 starts the engine 1. In step S9, the controller 12 determines whether or not the engine 1 has been started. Whether or not the engine 1 has been started may be determined by an appropriate technique in addition to a known technique. If a negative determination is made in step S9, the process of step S9 is repeatedly executed until the start of the engine 1 is completed. If the determination is affirmative in step S9, the process proceeds to step S10.
 ステップS10で、コントローラ12は、前進クラッチ3aの同期制御を行う。同期制御は具体的には、前進クラッチ3aの入力側回転速度InREVを前進クラッチ3aの出力側回転速度OutREVに合わせるようにエンジン1を制御することで行われる。ステップS10では、LUクラッチ2aへの供給油圧の増加も行われ、LUクラッチ2aが待機状態やスリップ状態とされる。 In step S10, the controller 12 performs synchronous control of the forward clutch 3a. Specifically, the synchronization control is performed by controlling the engine 1 so that the input side rotational speed InREV of the forward clutch 3a is matched with the output side rotational speed OutREV of the forward clutch 3a. In step S10, the supply hydraulic pressure to the LU clutch 2a is also increased, and the LU clutch 2a is set to a standby state or a slip state.
 ステップS11で、コントローラ12は、入力側回転速度InREVと出力側回転速度OutREVとの回転速度差DREVの絶対値が設定値βよりも小さいか否かを判定する。ステップS11で否定判定であれば、ステップS10に戻る。ステップS11で肯定判定であれば、処理はステップS12に進む。 In step S11, the controller 12 determines whether or not the absolute value of the rotational speed difference DREV between the input side rotational speed InREV and the output side rotational speed OutREV is smaller than the set value β. If a negative determination is made in step S11, the process returns to step S10. If the determination in step S11 is affirmative, the process proceeds to step S12.
 ステップS12で、コントローラ12は、前進クラッチ3aを締結させる。ステップS6を経てステップS11で肯定判定された場合、設定値βには第1の値β1が設定されている。このためこの場合には、第1の値β1に応じて前進クラッチ3aが締結される。ステップS12の後には、本フローチャートの処理は一旦終了する。 In step S12, the controller 12 fastens the forward clutch 3a. When an affirmative determination is made in step S11 via step S6, the first value β1 is set as the set value β. Therefore, in this case, the forward clutch 3a is engaged according to the first value β1. After step S12, the process of this flowchart is once ended.
 ステップS5で否定判定であった場合、処理はステップS7に進む。ステップS7で、コントローラ12は、クラッチ指示圧Pciを所定値αよりも大きく設定する。クラッチ指示圧Pciは具体的には、前進クラッチ3aを待機させる待機圧に設定される。これにより、前進クラッチ3aにはクラッチ実圧Pcとして待機圧が供給され、前進クラッチ3aが待機状態になる。 If the determination in step S5 is negative, the process proceeds to step S7. In step S7, the controller 12 sets the clutch command pressure Pci to be larger than the predetermined value α. Specifically, the clutch command pressure Pci is set to a standby pressure for waiting the forward clutch 3a. As a result, the standby pressure is supplied to the forward clutch 3a as the actual clutch pressure Pc, and the forward clutch 3a enters the standby state.
 また、コントローラ12は、ステップS7で設定値βを第2の値β2に設定する。第2の値β2は、エンジン1の逆回転が検知されなかった場合に設定値βに適用される値であり、第1の値β1よりも小さく設定される。第2の値β2は、実験等により予め設定することができる。ステップS7の後には、処理はステップS8に進む。 Further, the controller 12 sets the set value β to the second value β2 in step S7. The second value β2 is a value applied to the set value β when the reverse rotation of the engine 1 is not detected, and is set to be smaller than the first value β1. The second value β2 can be set in advance by experiments or the like. After step S7, the process proceeds to step S8.
 その後、処理がステップS11まで進むと、回転速度差DREVの絶対値が設定値βよりも小さいか否かが判定され、ステップS11で肯定判定であれば、ステップS12で前進クラッチ3aが締結される。この場合、設定値βに第2の値β2が設定されているので、第2の値β2に応じて前進クラッチ3aが締結される。 Thereafter, when the process proceeds to step S11, it is determined whether or not the absolute value of the rotational speed difference DREV is smaller than the set value β. If the determination is affirmative in step S11, the forward clutch 3a is engaged in step S12. . In this case, since the second value β2 is set as the set value β, the forward clutch 3a is engaged according to the second value β2.
 コントローラ12は、車両の制御装置であり、ステップS3の処理を行うことで第1制御部として機能する。また、コントローラ12は、ステップS6やステップS7やステップS8やステップS12の処理を行うことで第2制御部として機能する。 The controller 12 is a vehicle control device, and functions as a first control unit by performing the process of step S3. In addition, the controller 12 functions as a second control unit by performing the processes of step S6, step S7, step S8, and step S12.
 コントローラ12は、第1制御部や第2制御部として機能することで、第1制御部や第2制御部を有する。車両の制御装置は、さらに油圧制御回路5やエンジン回転速度センサ20等の上述した各種センサ・スイッチ類を有して構成されていると把握されてもよい。 The controller 12 has a first control unit and a second control unit by functioning as a first control unit and a second control unit. It may be understood that the vehicle control device further includes the above-described various sensors and switches such as the hydraulic control circuit 5 and the engine rotation speed sensor 20.
 次に、コントローラ12の主な作用効果について説明する。 Next, the main effects of the controller 12 will be described.
 図4は、コントローラ12が行う制御に対応するタイミングチャートの一例を示す図である。図4では、SS条件成立後の各種パラメータの変化を示す。図4では、SS制御中にエンジン1が逆回転しなかった場合のクラッチ指示圧Pciの変化を二点破線で併せて示す。また、比較例の場合についても破線で併せて示す。 FIG. 4 is a diagram illustrating an example of a timing chart corresponding to the control performed by the controller 12. FIG. 4 shows changes in various parameters after the SS condition is satisfied. In FIG. 4, a change in the clutch command pressure Pci when the engine 1 does not rotate reversely during SS control is also shown by a two-dot broken line. The case of the comparative example is also shown with a broken line.
 タイミングT1前は、SS準備制御の段階であり、ライン指示圧PLiの低下が行われる。結果、これに応じてライン実圧PLも低下する。ライン指示圧PLiは、SS制御中に必要とされる油圧の指示値まで低下される。SS準備制御の段階では、無段変速機4の実変速比は目標変速比に変更される。目標変速比は例えば、最小変速比である。 Before the timing T1, it is the stage of SS preparation control, and the line command pressure PLi is reduced. As a result, the line actual pressure PL also decreases accordingly. The line command pressure PLi is reduced to the command value of the oil pressure required during the SS control. In the SS preparation control stage, the actual transmission ratio of the continuously variable transmission 4 is changed to the target transmission ratio. The target gear ratio is, for example, the minimum gear ratio.
 SS準備制御の段階では、前進クラッチ3aは締結されており、エンジン1も運転中である。このため、車両加速度Gの低下度合いは大きくなっている。SS準備制御の段階では、サブオイルポンプ7は停止されている。 At the stage of SS preparation control, the forward clutch 3a is engaged and the engine 1 is also in operation. For this reason, the degree of decrease in the vehicle acceleration G is increased. At the stage of SS preparation control, the sub oil pump 7 is stopped.
 タイミングT1では、SS準備制御が完了し、SS制御が開始される。このため、エンジン1が停止され、回転速度Neが低下し始める。また、回転速度Neの低下に応じて、前進クラッチ3aの入力側回転速度InREVも低下し始める。 At timing T1, SS preparation control is completed and SS control is started. For this reason, the engine 1 is stopped and the rotational speed Ne begins to decrease. Further, the input side rotational speed InREV of the forward clutch 3a starts to decrease in accordance with the decrease in the rotational speed Ne.
 タイミングT1では、クラッチ指示圧Pciを低下させることで、前進クラッチ3aの解放も行われる。このため、車両加速度Gの低下度合いは大幅に減少する。タイミングT1からは、サブオイルポンプ7の駆動も開始される。サブオイルポンプ7によって、SS制御中に無段変速機4の実変速比を目標変速比に維持するために必要な油量、及び前進クラッチ3aを待機状態にするのに必要な油量が確保される。SS制御中に必要とされる油圧の指示値は具体的には、少なくともこれらの油量が確保される値とされる。 At timing T1, the forward clutch 3a is also released by lowering the clutch command pressure Pci. For this reason, the degree of decrease in the vehicle acceleration G is greatly reduced. From timing T1, the driving of the sub oil pump 7 is also started. The sub oil pump 7 secures the amount of oil necessary for maintaining the actual gear ratio of the continuously variable transmission 4 at the target gear ratio during SS control and the amount of oil necessary for putting the forward clutch 3a in the standby state. Is done. Specifically, the indicated value of the oil pressure required during the SS control is a value that ensures at least the amount of oil.
 タイミングT1後でも、回転速度Neが高いうちは、ライン実圧PLはライン指示圧PLiに、クラッチ実圧Pcはクラッチ指示圧Pciにそれぞれ制御される。但し、回転速度Neがある程度低下すると、ライン実圧PLをライン指示圧PLiに制御することができなくなり、ライン実圧PLが低下し始める。 Even after the timing T1, while the rotational speed Ne is high, the line actual pressure PL is controlled to the line command pressure PLi and the clutch actual pressure Pc is controlled to the clutch command pressure Pci. However, when the rotational speed Ne decreases to some extent, the line actual pressure PL cannot be controlled to the line command pressure PLi, and the line actual pressure PL starts to decrease.
 タイミングT2では、回転速度Neがゼロ付近まで低下する。回転速度Neは、タイミングT2後も低下し続け、ゼロよりも小さくなる。結果、エンジン1が逆回転する。この例では、タイミングT2でエンジン1の逆回転が検知される。 At timing T2, the rotational speed Ne decreases to near zero. The rotational speed Ne continues to decrease after the timing T2, and becomes smaller than zero. As a result, the engine 1 rotates in the reverse direction. In this example, reverse rotation of the engine 1 is detected at timing T2.
 エンジン1が逆回転すると、油圧制御回路5からの油の吸出しが発生する。このため、ライン実圧PLはさらに低下する。また、このように油の吸出しによってライン実圧PLが低下すると、クラッチ実圧Pcもクラッチ指示圧Pciに制御することができなくなり、クラッチ実圧Pcが低下する。回転速度Neは、ゼロに収束しようとする。このため、回転速度Neの変化は後に下降から上昇に転じ、これに応じて油が再充填される結果、ライン実圧PLやクラッチ実圧Pcも上昇する。 When the engine 1 rotates in reverse, oil is sucked out from the hydraulic control circuit 5. For this reason, the line actual pressure PL further decreases. In addition, when the line actual pressure PL is reduced due to the suction of oil in this way, the clutch actual pressure Pc cannot be controlled to the clutch command pressure Pci, and the clutch actual pressure Pc is reduced. The rotational speed Ne tends to converge to zero. For this reason, the change in the rotational speed Ne later changes from falling to rising, and as a result of refilling with oil, the line actual pressure PL and the clutch actual pressure Pc also increase.
 タイミングT3では、SS解除条件が成立する。この例では、タイミングT3でクラッチ指示圧Pciをそのまま維持することで、クラッチ指示圧Pciが所定値α以下に設定される。タイミングT3では、エンジン1は逆回転している。タイミングT4では、エンジン1が始動される。このため、タイミングT4からは、エンジン1の始動に応じて回転速度Neが変化する。 At timing T3, the SS release condition is satisfied. In this example, the clutch command pressure Pci is maintained as it is at the timing T3, so that the clutch command pressure Pci is set to a predetermined value α or less. At timing T3, the engine 1 rotates in reverse. At timing T4, the engine 1 is started. For this reason, from the timing T4, the rotational speed Ne changes according to the start of the engine 1.
 タイミングT5では、クランキングを経てエンジン1の始動が完了する。また、サブオイルポンプ7が停止される。タイミングT5からは、前進クラッチ3aにおける回転同期を図るための同期制御が行われる。このため、タイミングT5からは、回転速度Neはさらに上昇し、これに応じて前進クラッチ3aの入力側回転速度InREVも上昇する。 At timing T5, the engine 1 is completely started after cranking. Further, the sub oil pump 7 is stopped. From timing T5, synchronous control for achieving rotational synchronization in the forward clutch 3a is performed. For this reason, the rotational speed Ne further increases from the timing T5, and the input side rotational speed InREV of the forward clutch 3a also increases accordingly.
 タイミングT5では、回転速度Neは未だライン実圧PLをライン指示圧PLiに制御するのに十分な程度に高まっていない。その一方で、エンジン1の始動に応じて一時的に急上昇したライン実圧PLは、エンジン1始動完了後には安定しようとする。このため、エンジン1の始動に応じて一時的に急上昇したライン実圧PLは、タイミングT5後に低下する。 At timing T5, the rotational speed Ne has not yet increased to a level sufficient to control the line actual pressure PL to the line command pressure PLi. On the other hand, the actual line pressure PL that has risen temporarily in response to the start of the engine 1 tends to stabilize after the start of the engine 1 is completed. For this reason, the line actual pressure PL that has temporarily increased suddenly in response to the start of the engine 1 decreases after the timing T5.
 タイミングT6´では、回転速度差DREVの絶対値が第1の値β1よりも小さくなる。このため、これに応じて、解放状態にある前進クラッチ3aに対しクラッチ指示圧Pciが高められ、前進クラッチ3aの締結が開始される。 At the timing T6 ′, the absolute value of the rotational speed difference DREV becomes smaller than the first value β1. Therefore, in response to this, the clutch command pressure Pci is increased for the forward clutch 3a in the released state, and the engagement of the forward clutch 3a is started.
 タイミングT6では、前進クラッチ3aにおける回転同期が完了し、ライン指示圧PLiが高められる。タイミングT6では、目標変速比は最小変速比よりも大きく設定され、これに応じて実変速比が変化し始める。タイミングT6からは、エンジン1によって車両が駆動されるので、車両加速度Gが高まる。 At timing T6, the rotation synchronization in the forward clutch 3a is completed, and the line command pressure PLi is increased. At timing T6, the target speed ratio is set to be larger than the minimum speed ratio, and the actual speed ratio starts to change accordingly. Since the vehicle is driven by the engine 1 from the timing T6, the vehicle acceleration G increases.
 SS制御中にエンジン1が逆回転しなかった場合、クラッチ指示圧Pciは、二点破線で示すように、タイミングT3で所定値αよりも大きい待機圧に設定される。このためこの場合には、タイミングT4で、クラッチ指示圧PciをSS制御中よりも上昇させた状態でエンジン1が始動される。またこの場合には、タイミングT6´後且つタイミングT6前に、回転速度差DREVの絶対値が図示省略した第2の値β2よりも小さくなる。そして、これに応じて、待機状態にある前進クラッチ3aに対しクラッチ指示圧Pciが高められ、前進クラッチ3aの締結が開始される。 When the engine 1 does not reversely rotate during SS control, the clutch command pressure Pci is set to a standby pressure larger than the predetermined value α at timing T3, as indicated by a two-dot broken line. For this reason, in this case, at timing T4, the engine 1 is started in a state where the clutch command pressure Pci is higher than during SS control. In this case, after the timing T6 ′ and before the timing T6, the absolute value of the rotational speed difference DREV becomes smaller than the second value β2 (not shown). In response to this, the clutch command pressure Pci is increased for the forward clutch 3a in the standby state, and the engagement of the forward clutch 3a is started.
 ところでこの例では、エンジン1が逆回転中のタイミングT3でSS解除条件が成立し、エンジン1の逆回転によって吸い出された油が油圧制御回路5内に再充填された直後のタイミングT4でエンジン1が始動される。このため、油が吸い出された影響が残るうちにメインオイルポンプ6が作動し、油圧制御回路5内に油が急に流れ込む。結果、タイミングT4´でライン実圧PLがライン指示圧PLiを上回るライン圧のオーバーシュートが発生する。 By the way, in this example, the SS release condition is satisfied at the timing T3 when the engine 1 is rotating in reverse, and the engine is discharged at timing T4 immediately after the oil sucked out by the reverse rotation of the engine 1 is refilled in the hydraulic control circuit 5. 1 is started. For this reason, the main oil pump 6 operates while the influence of sucking out the oil remains, and the oil suddenly flows into the hydraulic control circuit 5. As a result, an overshoot of the line pressure occurs at the timing T4 ′ where the line actual pressure PL exceeds the line command pressure PLi.
 このような状況において、比較例の場合には、タイミングT3でエンジン1を始動するとともに、クラッチ指示圧Pci´を待機圧に設定する。このため、前進クラッチ3aに接続する油路は、前進クラッチ3aへの供給油量をある程度受け入れる状態になっている。したがって、ライン圧のオーバーシュートが前進クラッチ3aに接続する油路に影響し、クラッチ実圧Pc´がクラッチ指示圧Pciを上回るクラッチ圧のオーバーシュートも発生する。結果、タイミングT4´からタイミングT5付近にかけての出力側回転速度OutREV´の変化からわかるように、前進クラッチ3aが急締結する。このため、車両加速度GがタイミングT4´付近から破線で示すように減少することからわかるように、締結ショックが発生する。 In such a situation, in the case of the comparative example, the engine 1 is started at the timing T3 and the clutch command pressure Pci ′ is set to the standby pressure. For this reason, the oil passage connected to the forward clutch 3a is in a state of receiving a certain amount of oil supplied to the forward clutch 3a. Accordingly, the overshoot of the line pressure affects the oil passage connected to the forward clutch 3a, and the clutch pressure overshoot in which the actual clutch pressure Pc ′ exceeds the clutch command pressure Pci also occurs. As a result, as can be seen from the change in the output side rotational speed OutREV ′ from the timing T4 ′ to the vicinity of the timing T5, the forward clutch 3a is suddenly engaged. For this reason, as can be seen from the fact that the vehicle acceleration G decreases from the vicinity of the timing T4 ′ as indicated by the broken line, a fastening shock occurs.
 このような事情に鑑み、エンジン1と、自動変速機15と、メインオイルポンプ6と、を有する車両の制御装置であるコントローラ12は、SS条件が成立すると、タイミングT1からわかるように、エンジン1を停止するとともに、自動変速機15をニュートラル状態にするSS制御を実行する。また、コントローラ12は、タイミングT3、タイミングT4及び二点破線で示すクラッチ指示圧Pciの変化からわかるように、SS解除条件が成立すると、クラッチ指示圧PciをSS制御中よりも上昇させた状態で、エンジン1の始動を行うSS解除制御を実行する。また、コントローラ12は、タイミングT2、タイミングT3及びタイミングT4からわかるように、SS解除制御を実行するにあたり、SS制御の解除の際にエンジン1の逆回転が検知されている場合には、クラッチ指示圧Pciを所定値α以下にした状態でエンジン1の始動を行う。 In view of such circumstances, the controller 12, which is a vehicle control device having the engine 1, the automatic transmission 15, and the main oil pump 6, indicates that the engine 1 And the SS control for bringing the automatic transmission 15 into the neutral state is executed. Further, as can be seen from the timing T3, the timing T4, and the change in the clutch command pressure Pci indicated by the two-dot broken line, when the SS release condition is satisfied, the controller 12 increases the clutch command pressure Pci more than during the SS control. Then, SS release control for starting the engine 1 is executed. Further, as can be understood from the timing T2, the timing T3, and the timing T4, the controller 12 performs a clutch instruction when the reverse rotation of the engine 1 is detected when the SS control is released. The engine 1 is started in a state where the pressure Pci is set to a predetermined value α or less.
 このような構成のコントローラ12によれば、エンジン1の逆回転が検知された場合には、前進クラッチ3aに供給される油を十分にドレーン可能な状態でエンジン1の駆動を行うことができる。このため、エンジン1の逆回転に起因して、前進クラッチ3aが急締結することを防止することができる。また、エンジン1の逆回転が検知されない場合には、クラッチ指示圧Pciを待機圧など、所定値αよりも高く設定することができるので、前進クラッチ3aの完全締結に要する時間を短くすることもできる。 According to the controller 12 having such a configuration, when the reverse rotation of the engine 1 is detected, the engine 1 can be driven in a state where the oil supplied to the forward clutch 3a can be sufficiently drained. For this reason, it is possible to prevent the forward clutch 3a from being suddenly engaged due to the reverse rotation of the engine 1. Further, when reverse rotation of the engine 1 is not detected, the clutch command pressure Pci can be set higher than a predetermined value α such as a standby pressure, so that the time required for complete engagement of the forward clutch 3a can be shortened. it can.
 コントローラ12は、SS解除条件が成立した後に、回転速度差DREVの絶対値が設定値βよりも小さくなると、前進クラッチ3aを締結する。また、コントローラ12は、SS制御中にエンジン1の逆回転が検知された場合には、SS制御中にエンジン1の逆回転が検知されない場合と比較して、設定値βの値を大きく設定する。具体的にはコントローラ12は、SS制御中にエンジン1の逆回転が検知されると、設定値βを第2の値β2よりも大きい第1の値β1に設定する。 When the absolute value of the rotational speed difference DREV becomes smaller than the set value β after the SS release condition is satisfied, the controller 12 engages the forward clutch 3a. In addition, when the reverse rotation of the engine 1 is detected during the SS control, the controller 12 sets the set value β to a larger value than when the reverse rotation of the engine 1 is not detected during the SS control. . Specifically, when reverse rotation of the engine 1 is detected during SS control, the controller 12 sets the set value β to a first value β1 that is larger than the second value β2.
 このような構成のコントローラ12によれば、回転速度差DREVに基づき回転同期タイミングを先読みしてクラッチ指示圧Pciの上昇を行い、前進クラッチ3aを締結する。このため、クラッチ実圧Pcのフィードバックを行わずにクラッチ指示圧Pciの上昇を行えるので、クラッチ実圧Pcのばらつきに起因する前進クラッチ3aの誤締結を防止することができる。 According to the controller 12 having such a configuration, the clutch synchronization pressure Pci is increased by prefetching the rotation synchronization timing based on the rotation speed difference DREV, and the forward clutch 3a is engaged. For this reason, since the clutch command pressure Pci can be increased without feedback of the actual clutch pressure Pc, erroneous engagement of the forward clutch 3a due to variations in the actual clutch pressure Pc can be prevented.
 また、このような構成のコントローラ12によれば、エンジン1の逆回転が検知されない場合には、回転同期中にクラッチ指示圧Pciを例えば待機圧に保持することができるので、回転同期タイミングを先読みした後に素早く前進クラッチ3aを完全締結させることができる。また、エンジン1の逆回転が検知された場合には、設定値βを補正することで、適切なタイミングで前進クラッチ3aを完全締結させることができる。 Further, according to the controller 12 having such a configuration, when the reverse rotation of the engine 1 is not detected, the clutch command pressure Pci can be maintained at, for example, the standby pressure during the rotation synchronization, so that the rotation synchronization timing is prefetched. After that, the forward clutch 3a can be fully fastened quickly. When reverse rotation of the engine 1 is detected, the forward clutch 3a can be completely engaged at an appropriate timing by correcting the set value β.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 上述した実施形態では、SSが走行中駆動源停止である場合について説明した。しかしながら、走行中駆動源停止は例えば、コーストストップであってもよい。具体的に言えば、コントローラ12は、SS制御の代わりに例えば、次のコーストストップ条件が成立すると実行され、次のコーストストップ解除条件が成立すると解除されるコーストストップ制御を行ってもよい。 In the above-described embodiment, the case has been described in which the SS is a drive source stop during traveling. However, the driving source stop during traveling may be, for example, a coast stop. Specifically, instead of the SS control, for example, the controller 12 may perform coast stop control that is executed when the next coast stop condition is satisfied and is canceled when the next coast stop release condition is satisfied.
 コーストストップ条件は、車速Vspが所定車速未満であること、アクセルペダルの踏み込みがないこと、ブレーキペダルの踏み込みがあること、及び自動変速機15で前進レンジが選択されていること、を含む。所定車速は例えば、ロックアップクラッチ2aが解放される車速である。コーストストップ解除条件は例えば、コーストストップ条件を構成するこれらの構成条件のいずれかが不成立になること、とされる。 The coast stop condition includes that the vehicle speed Vsp is less than a predetermined vehicle speed, that the accelerator pedal is not depressed, that the brake pedal is depressed, and that the forward range is selected by the automatic transmission 15. The predetermined vehicle speed is, for example, a vehicle speed at which the lockup clutch 2a is released. The coast stop cancellation condition is, for example, that any of these constituent conditions constituting the coast stop condition is not satisfied.
 上述した実施形態では、自動変速機15が、無段変速機4を有して構成される場合について説明した。しかしながら、自動変速機15は例えば、有段の自動変速機すなわち所謂オートマチックトランスミッションを有して構成されてもよい。また、無段変速機4は例えば、ベルト式の無段変速機でなくトロイダル型の無段変速機であってもよい。 In the embodiment described above, the case where the automatic transmission 15 includes the continuously variable transmission 4 has been described. However, the automatic transmission 15 may be configured to include, for example, a stepped automatic transmission, that is, a so-called automatic transmission. The continuously variable transmission 4 may be, for example, a toroidal continuously variable transmission instead of a belt-type continuously variable transmission.
 上述した実施形態では、自動変速機15が、前進用締結要素として前後進切替機構3の前進クラッチ3aを有する場合について説明した。しかしながら、自動変速機15は例えば、副変速機構を有するとともに、前進用締結要素として副変速機構の前進用締結要素を有して構成されてもよい。このような副変速機構は、前進用締結要素等のクラッチ締結によってギヤ段を成立させるので、前後進切替機構3の代わりにクラッチ系30に含むことができる。 In the above-described embodiment, the case where the automatic transmission 15 has the forward clutch 3a of the forward / reverse switching mechanism 3 as the forward fastening element has been described. However, the automatic transmission 15 may have, for example, a sub-transmission mechanism and a forward fastening element of the sub-transmission mechanism as the forward fastening element. Such a subtransmission mechanism can be included in the clutch system 30 instead of the forward / reverse switching mechanism 3 because the gear stage is established by clutch engagement of the forward engagement element or the like.
 上述した実施形態では、エンジン1が駆動源である場合について説明した。しかしながら、駆動源は例えば、モータやエンジン1及びモータであってもよい。 In the above-described embodiment, the case where the engine 1 is a drive source has been described. However, the drive source may be, for example, the motor, the engine 1, and the motor.
 上述した実施形態では、コントローラ12が、エンジンコントローラ10と変速機コントローラ11で構成される場合について説明した。しかしながら、コントローラ12は例えば、他のコントローラをさらに有して構成されてもよく、単一のコントローラとされてもよい。 In the above-described embodiment, the case where the controller 12 includes the engine controller 10 and the transmission controller 11 has been described. However, the controller 12 may be configured to have another controller, for example, or may be a single controller.
 本願は2015年11月10日に日本国特許庁に出願された特願2015-220257に基づく優先権を主張し、この出願のすべての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2015-220257 filed with the Japan Patent Office on November 10, 2015, the entire contents of which are incorporated herein by reference.

Claims (3)

  1.  駆動源と、
     前記駆動源に接続され、前進用締結要素を有する自動変速機と、
     前記自動変速機への供給油圧の油圧源であって前記駆動源の動力で駆動する油圧源と、
    を有する車両の制御装置であって、
     走行中駆動源停止条件が成立すると、前記駆動源を停止するとともに、前記自動変速機をニュートラル状態にする走行中駆動源停止制御を実行する第1制御部と、
     走行中駆動源停止解除条件が成立すると、前記前進用締結要素への供給油圧の指示圧を前記走行中駆動源停止制御中よりも上昇させた状態で前記駆動源の始動を行う走行中駆動源停止解除制御を実行する第2制御部と、を有し、
     前記第2制御部は、前記走行中駆動源停止制御の解除の際に前記駆動源の逆回転が検知されている場合には、前記前進用締結要素への指示圧を所定値以下にした状態で前記駆動源の始動を行う、
    車両の制御装置。
    A driving source;
    An automatic transmission connected to the drive source and having a forward fastening element;
    A hydraulic pressure source for supplying hydraulic pressure to the automatic transmission and driven by power of the driving source;
    A vehicle control device comprising:
    A first control unit that executes driving source stop control during traveling to stop the driving source and bring the automatic transmission into a neutral state when a driving source stop condition during traveling is satisfied;
    When the drive source stop cancellation condition during travel is satisfied, the drive source that starts the drive source in a state where the command pressure of the hydraulic pressure supplied to the forward fastening element is higher than during the drive source stop control during travel A second control unit that executes stop cancellation control,
    When the reverse rotation of the drive source is detected when the drive source stop control during traveling is canceled, the second control unit is configured to reduce the command pressure to the forward fastening element to a predetermined value or less. To start the drive source,
    Vehicle control device.
  2.  請求項1に記載の車両の制御装置であって、
     前記第2制御部は、
      前記走行中駆動源停止制御解除条件が成立した後に、前記前進用締結要素の入出力回転速度差の絶対値が設定値よりも小さくなると、前記前進用締結要素を締結し、
      前記走行中駆動源停止制御中に前記駆動源の逆回転が検知された場合には、前記走行中駆動源停止制御中に前記駆動源の逆回転が検知されない場合と比較して、前記設定値の値を大きく設定する、
    車両の制御装置。
    The vehicle control device according to claim 1,
    The second controller is
    When the absolute value of the input / output rotational speed difference of the forward fastening element becomes smaller than a set value after the traveling drive source stop control release condition is satisfied, the forward fastening element is fastened,
    When the reverse rotation of the driving source is detected during the driving source stop control during traveling, the set value is compared with the case where the reverse rotation of the driving source is not detected during the driving source stop control during traveling. Increase the value of
    Vehicle control device.
  3.  駆動源と、前記駆動源に接続され前進用締結要素を有する自動変速機と、前記自動変速機への供給油圧の油圧源であって前記駆動源の動力で駆動する油圧源と、を有する車両の制御方法であって、
     走行中駆動源停止条件が成立すると、前記駆動源を停止するとともに、前記自動変速機をニュートラル状態にする走行中駆動源停止制御を実行することと、
     走行中駆動源停止解除条件が成立すると、前記前進用締結要素への供給油圧の指示圧を前記走行中駆動源停止制御中よりも上昇させた状態で前記駆動源の始動を行う走行中駆動源停止解除制御を実行することと、を含み、
     前記走行中駆動源停止解除制御を実行するにあたり、前記走行中駆動源停止制御の解除の際に前記駆動源の逆回転が検知されている場合には、前記前進用締結要素への指示圧を所定値以下にした状態で前記駆動源の始動を行う、
    車両の制御方法。
    A vehicle having a drive source, an automatic transmission having a forward fastening element connected to the drive source, and a hydraulic pressure source for supplying hydraulic pressure to the automatic transmission and driven by the power of the drive source Control method,
    When the driving source stop condition during traveling is satisfied, the driving source is stopped and the driving source stop control during traveling is performed to bring the automatic transmission into a neutral state;
    When the drive source stop cancellation condition during travel is satisfied, the drive source that starts the drive source in a state where the command pressure of the hydraulic pressure supplied to the forward fastening element is higher than during the drive source stop control during travel Executing stop cancellation control, and
    In executing the driving source stop cancellation control during traveling, if reverse rotation of the driving source is detected at the time of cancellation of the driving source stop control during traveling, the command pressure to the forward fastening element is set. Starting the drive source in a state of a predetermined value or less,
    Vehicle control method.
PCT/JP2016/082818 2015-11-10 2016-11-04 Control device for vehicle and control method for vehicle WO2017082172A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015220257A JP6666693B2 (en) 2015-11-10 2015-11-10 Vehicle control device and vehicle control method
JP2015-220257 2015-11-10

Publications (1)

Publication Number Publication Date
WO2017082172A1 true WO2017082172A1 (en) 2017-05-18

Family

ID=58695128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082818 WO2017082172A1 (en) 2015-11-10 2016-11-04 Control device for vehicle and control method for vehicle

Country Status (2)

Country Link
JP (1) JP6666693B2 (en)
WO (1) WO2017082172A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027287A1 (en) * 2011-08-24 2013-02-28 トヨタ自動車株式会社 Vehicle control apparatus
WO2013114623A1 (en) * 2012-02-03 2013-08-08 トヨタ自動車株式会社 Vehicle control device
JP2015010710A (en) * 2013-07-02 2015-01-19 ジヤトコ株式会社 Control device of coast stop vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027287A1 (en) * 2011-08-24 2013-02-28 トヨタ自動車株式会社 Vehicle control apparatus
WO2013114623A1 (en) * 2012-02-03 2013-08-08 トヨタ自動車株式会社 Vehicle control device
JP2015010710A (en) * 2013-07-02 2015-01-19 ジヤトコ株式会社 Control device of coast stop vehicle

Also Published As

Publication number Publication date
JP2017087959A (en) 2017-05-25
JP6666693B2 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
US10507832B2 (en) Vehicle drive control device and control method for vehicle drive control device
JP6584892B2 (en) Vehicle sailing stop control method and control apparatus
JP6446122B2 (en) Transmission control device and transmission control method
JP6708307B2 (en) Power transmission device and control method thereof
US10612656B2 (en) Control device for vehicle and control method of the same
US10690239B2 (en) Control device for vehicle and control method for vehicle
US10724627B2 (en) Control device for vehicle and control method for vehicle
JP2010276084A (en) Neutral control device of continuously variable transmission
WO2017082172A1 (en) Control device for vehicle and control method for vehicle
WO2017057367A1 (en) Control device for vehicle and control method for vehicle
JP7219339B2 (en) VEHICLE CONTROL DEVICE AND VEHICLE CONTROL METHOD
WO2017082171A1 (en) Control device for vehicle and control method for vehicle
JP6560758B2 (en) Vehicle control apparatus and vehicle control method
JP4129161B2 (en) Automatic transmission lockup control device
JP2015102190A (en) Vehicle control device
JP6313854B2 (en) Hydraulic control device for automatic transmission and control method thereof
KR20190022716A (en) Vehicle control device and vehicle control method
WO2020261918A1 (en) Vehicle control device and vehicle control method
JP7058909B2 (en) Belt type continuously variable transmission control device
JP6594150B2 (en) Control device for automatic transmission and control method for automatic transmission
JP6268107B2 (en) Control device and control method for idle stop vehicle
JP6578173B2 (en) Control device for automatic transmission and control method for automatic transmission
JP2005172012A (en) Shift control device for continuously variable transmission
JP5515973B2 (en) Power transmission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16864134

Country of ref document: EP

Kind code of ref document: A1