WO2017081781A1 - Exhaust heat recovery heat pump device - Google Patents

Exhaust heat recovery heat pump device Download PDF

Info

Publication number
WO2017081781A1
WO2017081781A1 PCT/JP2015/081798 JP2015081798W WO2017081781A1 WO 2017081781 A1 WO2017081781 A1 WO 2017081781A1 JP 2015081798 W JP2015081798 W JP 2015081798W WO 2017081781 A1 WO2017081781 A1 WO 2017081781A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
stage compression
control valve
temperature sensor
gas
Prior art date
Application number
PCT/JP2015/081798
Other languages
French (fr)
Japanese (ja)
Inventor
中村 淳
賢哲 安嶋
修平 柴田
宏幸 寺脇
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to PCT/JP2015/081798 priority Critical patent/WO2017081781A1/en
Priority to JP2017549926A priority patent/JP6680300B2/en
Publication of WO2017081781A1 publication Critical patent/WO2017081781A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the present invention relates to an exhaust heat recovery heat pump device that can reliably avoid liquid compression of a side compressor.
  • Some heat pump devices use a two-stage compression type in which two compressors, a low-pressure compressor and a high-pressure compressor, are provided on the heat pump cycle.
  • the 1st decompression device which decompresses the refrigerant
  • a heat pump heating device including a passage and a control unit that controls a pressure reduction ratio of the refrigerant
  • the amount of pressure reduction by the low-pressure side (low-stage side) expansion valve (second decompression device) is controlled to control the high-pressure side (high-stage side) compressor. Liquid compression is prevented.
  • the low-stage side refrigerant flow is reduced by controlling the low-stage side expansion valve, and the low-stage compressor discharge temperature is increased to increase the suction of the high-stage compressor. This realizes an overheated state of the refrigerant. Therefore, the overheated state cannot always be maintained depending on the amount of liquid refrigerant mixed into the intermediate pipe (injection pipe line).
  • the condensed refrigerant is stored in the gas-liquid separator, and the liquid refrigerant may flow out from the intermediate pipe when the apparatus is activated. large.
  • the present invention has been made in view of the above, and the high-stage compressor of the two-stage compressor mixes the intermediate-pressure refrigerant from the gas-liquid separator and the intermediate-pressure refrigerant from the low-stage compressor.
  • An object of the present invention is to provide an exhaust heat recovery heat pump device that can reliably avoid liquid compression of a high-stage compressor when the refrigerant operates as an intake refrigerant.
  • an exhaust heat recovery heat pump device compresses an evaporator that evaporates the refrigerant with heat recovered from an external heat source, and the refrigerant evaporated in the evaporator
  • a low-stage compression mechanism a high-stage compression mechanism that compresses the refrigerant compressed by the low-stage compression mechanism, a condenser that condenses the refrigerant compressed by the high-stage compression mechanism and heats heated water, and A high-stage expansion mechanism that decompresses and expands the refrigerant condensed by the condenser, a gas-liquid separator that separates the refrigerant introduced from the high-stage expansion mechanism, and a liquid-side outlet of the gas-liquid separator.
  • a low-stage expansion mechanism that expands the refrigerant further under reduced pressure and introduces the refrigerant into the evaporator; and a refrigerant discharged from a gas-side outlet of the gas-liquid separator, and a discharge port of the low-stage compression mechanism and a high-stage compression mechanism
  • the present invention is characterized in that a refrigerant adjusting mechanism to be introduced into the suction port is provided.
  • the refrigerant adjustment mechanism is provided in the gas-liquid separator, and is provided in a level sensor for detecting a liquid level position and in the intermediate pipe.
  • the refrigerant adjustment mechanism includes a high-stage compression suction temperature sensor that detects a refrigerant temperature sucked into the high-stage compression mechanism, and the high-stage compression. Based on detection values of a high-stage compression suction pressure sensor that detects a refrigerant pressure sucked into the mechanism, a flow control valve provided in the intermediate pipe, the high-stage compression suction temperature sensor, and the high-stage compression suction pressure sensor And a controller for controlling the flow rate control valve.
  • the control unit is a saturated refrigerant calculated from a detection value of the high-stage compression suction temperature sensor and a detection value of the high-stage compression suction pressure sensor.
  • the opening degree of the flow control valve is adjusted so that the temperature difference from the temperature is greater than or equal to a predetermined value.
  • the refrigerant adjustment mechanism includes a high-stage compression suction temperature sensor that detects a refrigerant temperature sucked into the high-stage compression mechanism, and the high-stage expansion.
  • a high-stage expansion / discharge pressure sensor for detecting the pressure of refrigerant decompressed and expanded by the mechanism, a flow control valve provided in the intermediate pipe, detection values of the high-stage compression / intake temperature sensor and the high-stage expansion / discharge pressure sensor And a control unit for controlling the flow rate control valve based on the above.
  • the control unit is a saturated refrigerant calculated from a detection value of the high stage compression suction temperature sensor and a detection value of the high stage expansion discharge pressure sensor.
  • the opening degree of the flow control valve is adjusted so that the temperature difference from the temperature is greater than or equal to a predetermined value.
  • the refrigerant adjustment mechanism includes a high-stage compression suction temperature sensor that detects a refrigerant temperature sucked into the high-stage compression mechanism, and the high-stage expansion.
  • a high-stage expansion / discharge temperature sensor for detecting the temperature of the refrigerant decompressed and expanded by the mechanism, a flow control valve provided in the intermediate pipe, detection values of the high-stage compression / intake temperature sensor and the high-stage expansion / discharge temperature sensor And a control unit for controlling the flow rate control valve based on the above.
  • the control unit predetermines a temperature difference between a detection value of the high stage compression suction temperature sensor and a detection value of the high stage expansion discharge temperature sensor.
  • the opening degree of the flow control valve is adjusted so as to be equal to or greater than the value.
  • the exhaust heat recovery heat pump device is characterized in that, in the above invention, the intermediate pipe is provided with heating means for heating the refrigerant discharged from the gas side outlet of the gas-liquid separator.
  • the refrigerant adjustment mechanism is provided in the intermediate pipe, and heating means for heating the refrigerant derived from the gas-liquid separator; and the intermediate pipe
  • a heating refrigerant temperature sensor for detecting a refrigerant temperature at the outlet side of the heating means, a high stage compression suction pressure sensor for detecting a refrigerant pressure sucked into the high stage compression mechanism, and a flow control valve provided in the intermediate pipe
  • a control unit that controls the flow rate control valve based on detection values of the heating refrigerant temperature sensor and the high-stage compression suction pressure sensor.
  • the control unit includes a saturated refrigerant temperature calculated from a detection value of the heating refrigerant temperature sensor and a detection value of the high-stage compression suction pressure sensor.
  • the opening degree of the flow control valve is adjusted so that the temperature difference between the two is equal to or greater than a predetermined value.
  • the refrigerant adjustment mechanism is provided in the intermediate pipe, and heating means for heating the refrigerant derived from the gas-liquid separator; and the intermediate pipe
  • a heating refrigerant temperature sensor for detecting the refrigerant temperature at the outlet side of the heating means, a high stage expansion discharge pressure sensor for detecting the pressure of the refrigerant decompressed and expanded by the high stage expansion mechanism, and a flow rate provided in the intermediate pipe
  • a control unit that controls the flow rate control valve based on detection values of the high stage expansion discharge pressure sensor and the heating refrigerant temperature sensor.
  • the control unit includes a saturated refrigerant temperature calculated from a detection value of the heating refrigerant temperature sensor and a detection value of the high stage expansion discharge pressure sensor.
  • the opening degree of the flow control valve is adjusted so that the temperature difference between the two is equal to or greater than a predetermined value.
  • the refrigerant adjustment mechanism is provided in the intermediate pipe, and heating means for heating the refrigerant derived from the gas-liquid separator; and the intermediate pipe
  • a heating refrigerant temperature sensor for detecting the refrigerant temperature on the outlet side of the heating means, a high stage expansion discharge temperature sensor for detecting the temperature of the refrigerant decompressed and expanded by the high stage expansion mechanism, and a flow rate provided in the intermediate pipe
  • a control unit that controls the flow rate control valve based on detection values of the high stage expansion discharge temperature sensor and the heating refrigerant temperature sensor.
  • the control unit sets a temperature difference between a detection value of the heating refrigerant temperature sensor and a detection value of the high stage expansion discharge temperature sensor to a predetermined value or more.
  • the opening degree of the flow control valve is adjusted so that
  • the heating means is an internal heat exchanger that performs heat exchange between the refrigerant discharged from the condenser and the refrigerant flowing through the intermediate pipe. It is characterized by being.
  • the exhaust heat recovery heat pump device is the above invention, wherein the refrigerant has an intersection or contact of two or more saturated gas lines and isentropic lines in the superheated region on the Ph diagram. It has the characteristic which has.
  • the mixed refrigerant of the refrigerant discharged from the gas side outlet of the gas-liquid separator and the refrigerant compressed by the low-stage compression mechanism is used as a gas refrigerant having a superheat degree equal to or higher than a predetermined value. Since the refrigerant adjustment mechanism to be introduced into the suction port is provided, it is possible to reliably avoid liquid compression of the high stage compressor.
  • FIG. 1 is an overall configuration diagram of an exhaust heat recovery heat pump device according to Embodiment 1 of the present invention. It is a Ph diagram of R245fa including a saturated gas line and an isentropic line.
  • 2 is a configuration diagram of a refrigerant adjustment mechanism in a heat pump unit in Embodiment 1.
  • FIG. 3 is a schematic diagram showing an internal configuration of a gas-liquid separator 4.
  • FIG. 6 is a configuration diagram of a heat pump unit including a refrigerant adjustment mechanism according to Embodiment 2.
  • FIG. 6 is a configuration diagram of a heat pump unit including a refrigerant adjustment mechanism according to Embodiment 3.
  • FIG. FIG. 6 is a configuration diagram of a heat pump unit including a refrigerant adjustment mechanism in a fourth embodiment.
  • FIG. 6 is a configuration diagram of a heat pump unit including a refrigerant adjustment mechanism provided with heating means in Embodiment 2.
  • FIG. FIG. 10 is a configuration diagram of a heat pump unit including a refrigerant adjustment mechanism in a fifth embodiment.
  • FIG. 10 is a configuration diagram of a heat pump unit including a refrigerant adjustment mechanism in a sixth embodiment.
  • FIG. 10 is a configuration diagram of a heat pump unit including a refrigerant adjustment mechanism in a seventh embodiment. It is a block diagram of the heat pump part containing the refrigerant
  • FIG. 1 is an overall configuration diagram of an exhaust heat recovery heat pump apparatus 10 according to Embodiment 1 of the present invention.
  • the exhaust heat recovery heat pump device 10 is a system that recovers exhaust heat from warm water such as factory waste water and generates steam using the recovered exhaust heat.
  • the generated steam is external steam such as a drying device or a sterilizer. Sent to the use facility.
  • a high-stage compression mechanism 1b that compresses the refrigerant, a condenser 2 that condenses the refrigerant compressed by the high-stage compression mechanism and heats the water to be heated, and a high-stage expansion that decompresses and expands the refrigerant condensed by the condenser 2
  • a low-stage expansion mechanism 5 to be introduced an intermediate pipe L1 for introducing refrigerant discharged from the gas side outlet of the gas-liquid separator 4 between the discharge port of the low-stage compression mechanism and the suction port of the high-stage compression mechanism; And an open / close control valve 7 provided in the intermediate pipe L1.
  • the heater 2 a is connected between the outlet side of the condenser 2 and the high stage expansion mechanism 3.
  • the high stage expansion mechanism 3 and the low stage expansion mechanism 5 are, for example, electronic expansion valves.
  • the open / close control valve 7 is, for example, an electric valve.
  • the refrigerant flowing in the heat pump cycle of the heat pump unit 16 has an isentropic line L11 on the Ph diagram in the superheated region on the low pressure side and an isentropic line with the saturated gas line L12 on the high pressure side.
  • L11 is a refrigerant having the characteristic of having two or more intersections or contact points.
  • This refrigerant is, for example, 1,1,1,3,3-pentafluoropropane (structural formula: CHF 2 CH 2 CF 3 , R245fa).
  • FIG. 2 shows a Ph diagram of R245fa, where the saturated gas line L12 and the isentropic line L11 intersect at two points PP1 and PP2.
  • the refrigerant that has been compressed by the high-stage compression mechanism 1b to a high temperature and high pressure is cooled and condensed by exchanging heat with water circulating in the steam generation unit 12 in the condenser 2.
  • the refrigerant exiting the condenser 2 is preheated with water heated in the water supply path 30 by the heater 2 a and further cooled, and then decompressed and expanded by the high stage expansion mechanism 3 and introduced into the gas-liquid separator 4.
  • the refrigerant discharged from the liquid-side outlet of the gas-liquid separator 4 is further decompressed and expanded by the low-stage expansion mechanism 5, and is evaporated by absorbing heat from the heat source hot water flowing through the hot water path 32 of the hot water supply unit 14 in the evaporator 6.
  • the refrigerant discharged from the gas side outlet of the gas-liquid separator 4 passes through the intermediate pipe L1 provided with the open / close control valve 7 and the discharge port of the low stage compression mechanism 1a and the suction port of the high stage compression mechanism 1b.
  • the refrigerant is mixed with the refrigerant discharged from the low-stage compression mechanism 1a and introduced into the suction port of the high-stage compression mechanism 1b.
  • the steam generating unit 12 uses the refrigerant circulating in the heat pump unit 16 as a heat source to evaporate water to generate steam, and the vapor-liquid two-phase flow including water and steam generated by the condenser 2 is converted into steam.
  • a water vapor separator 42 that separates into water
  • a steam supply path 44 that supplies the steam separated by the water vapor separator 42 to an external steam utilization facility, and water that is separated by the water vapor separator 42 is supplied from the water supply path 30.
  • a water circulation path 46 that joins the water to be led from the condenser 2 to the water vapor separator 42.
  • the water vapor separator 42 is formed of a cylindrical container along the vertical direction, and stores water inside the container by supplying water from the water supply path 30 connected to the water circulation path 46 connected to the lower end wall. .
  • water water supply
  • a water pipe or a water tank (not shown) is introduced to the water circulation path 46 through the heater 2 a by the water supply pump 48.
  • the feed water pump 48 is operated at its rotational speed via an inverter (INV) 52 based on a detection value (water level) of a water level sensor 50 that measures the water level of water stored in the water vapor separator 42. Is controlled.
  • a pressure relief valve 54 Connected to the water vapor separator 42 is a pressure relief valve 54 that is opened when the internal vapor pressure exceeds a predetermined pressure.
  • the water circulation path 46 includes a liquid pipe 46 a that communicates from the lower end wall of the steam separator 42 to the condenser 2, and a steam pipe 46 b that communicates from the condenser 2 to the upper side wall of the steam separator 42. Water flows through the liquid pipe 46a, and a gas-liquid two-phase flow containing water and steam flows through the steam pipe 46b.
  • a circulation pump 56 is provided in the liquid pipe 46a. The operation speed of the circulation pump 56 is controlled through an inverter (INV) 58 under the control of the control unit 20.
  • the steam supply path 44 is a path that is connected to the upper end wall of the water vapor separator 42 and is supplied into the water vapor separator 42 from the steam pipe 46b, where the steam after the water is separated is sent out to the outside.
  • the steam supply path 44 is provided with a pressure adjustment valve (steam pressure adjusting means) 60 for adjusting the pressure of the flowing steam.
  • the opening degree of the pressure regulating valve 60 is adjusted based on the steam pressure in the steam separator 42 measured by the pressure sensor 62 under the control of the control unit 20. By appropriately adjusting the opening degree of the pressure regulating valve 60, the flow rate and pressure of the steam sent out from the exhaust heat recovery heat pump device 10 can be controlled.
  • a steam compressor that compresses steam instead of or together with the pressure adjusting valve 60 may be used.
  • the control unit 20 controls the operating rotational speeds of the low-stage compression mechanism 1a and the high-stage compression mechanism 1b through inverters (INV).
  • the control unit 20 controls the heating output of the heat pump unit 16 based on detection values of a sensor (not shown) that detects the pressure and temperature on the heat pump cycle.
  • the low-stage compression mechanism 1a and the high-stage compression mechanism 1b may be, for example, a single two-stage scroll compressor that shares a rotating shaft.
  • the control unit 20 may further perform opening control of the high stage expansion mechanism 3 and the low stage expansion mechanism 5.
  • control unit 20 may further control the water supply pump 48, the circulation pump 56, and the pressure regulating valve 60, but the steam generation unit 12 side may be controlled by another control unit (not shown). Good.
  • FIG. 3 is a configuration diagram of the refrigerant adjustment mechanism in the heat pump unit 16 according to the first embodiment.
  • FIG. 4 is a schematic diagram showing the internal configuration of the gas-liquid separator 4. Note that the condenser 2 shown in FIG. 3 may include a heater 2a, or may be configured without the heater 2a. As shown in FIG. 3, the gas-liquid separator 4 is provided with a level sensor 21 that detects the liquid level position.
  • the gas-liquid separator 4 includes a connection pipe 4a connected to the intermediate pipe L1 through the gas side communication port 4V, and a connection pipe 4b connected to the pipe to the low stage expansion mechanism 5 through the liquid side communication port 4L.
  • the control unit 20 opens and closes when the liquid level position detected by the level sensor 21 reaches a predetermined position between the liquid level position hb of the liquid side communication port 4L and the liquid level position ha of the gas side communication port 4V. Control to close the control valve 7 is performed. That is, the control unit 20 opens the opening / closing control valve 7 when the liquid level position detected by the level sensor 21 is less than the predetermined position, and closes the opening / closing control valve 7 when the level is equal to or greater than the predetermined position.
  • the predetermined position detected by the level sensor 21 may be at least less than the liquid level position ha.
  • the level sensor 21 may be a switch type that detects one point at a predetermined position, or may detect a liquid level position within a predetermined range including the predetermined position. Also, different values may be set for the predetermined value for opening and closing the open / close control valve 7 and the predetermined value for closing.
  • the liquid refrigerant in the gas-liquid separator 4 is connected to the discharge port of the low-stage compression mechanism 1a and the high-stage via the gas side communication port 4V and the intermediate pipe L1. It is possible to prevent introduction into the intermediate connection point PT between the compression mechanism 1b and the suction port. As a result, liquid refrigerant is not introduced into the suction port of the high-stage compression mechanism 1b, and liquid compression of the high-stage compression mechanism 1b can be prevented.
  • FIG. 5 is a configuration diagram of the heat pump unit 16 including the refrigerant adjustment mechanism in the second embodiment. As shown in FIG. 5, the refrigerant adjustment mechanism of the second embodiment is provided between the intermediate connection point PT and the high stage compression mechanism 1b, and detects the refrigerant temperature sucked into the high stage compression mechanism 1b.
  • the flow control valve 17 provided in L1 and the control part 20 which controls the flow control valve 17 based on the detected value of the high stage compression suction temperature sensor 22 and the high stage compression suction pressure sensor 23 are provided.
  • the control unit 20 determines that the temperature difference ⁇ T between the high stage compression suction temperature T1 detected by the high stage compression suction temperature sensor 22 and the saturation temperature Tsat1 at the high stage compression suction pressure P1 detected by the high stage compression suction pressure sensor 23 is
  • the opening degree of the flow control valve 17 is controlled so as to be equal to or greater than a predetermined value.
  • the control unit 20 sets the predetermined value of the temperature difference ⁇ T to 3K in order to reliably prevent liquid compression. Or about 5K to provide a margin for preventing liquid compression.
  • control unit 20 increases the opening degree of the flow control valve 17 when the temperature difference ⁇ T is equal to or greater than the upper limit value, and decreases the opening degree of the flow control valve 17 when the temperature difference ⁇ T is less than the lower limit value.
  • the control unit 20 may perform linear opening degree control based on the absolute value of the temperature difference ⁇ T. Further, the control unit 20 may perform opening degree control by PID control that brings the temperature difference ⁇ T closer to a predetermined value.
  • FIG. 6 is a configuration diagram of the heat pump unit 16 including the refrigerant adjustment mechanism in the third embodiment.
  • the refrigerant adjustment mechanism of the third embodiment is provided between the intermediate connection point PT and the high stage compression mechanism 1b, and detects the refrigerant temperature sucked into the high stage compression mechanism 1b.
  • a high-stage expansion suction pressure sensor 24 provided between the high-stage expansion mechanism 3 and the gas-liquid separator 4 to detect the pressure of the refrigerant decompressed and expanded by the high-stage expansion mechanism 3;
  • the flow control valve 17 provided in the intermediate pipe L1 and the control unit 20 that controls the flow control valve 17 based on the detection values of the high stage compression suction temperature sensor 22 and the high stage expansion discharge pressure sensor 24 are provided.
  • the control unit 20 determines that the temperature difference ⁇ T between the high stage compression suction temperature T1 detected by the high stage compression suction temperature sensor 22 and the saturation temperature Tsat2 at the high stage expansion discharge pressure P2 detected by the high stage expansion discharge pressure sensor 24 is
  • the opening degree of the flow control valve 17 is controlled so as to be equal to or greater than a predetermined value.
  • the control unit 20 sets the predetermined value of the temperature difference ⁇ T to 3K in order to reliably prevent liquid compression. Or about 5K to provide a margin for preventing liquid compression.
  • control unit 20 increases the opening degree of the flow control valve 17 when the temperature difference ⁇ T is equal to or greater than the upper limit value, and decreases the opening degree of the flow control valve 17 when the temperature difference ⁇ T is less than the lower limit value.
  • the control unit 20 may perform linear opening degree control based on the absolute value of the temperature difference ⁇ T. Further, the control unit 20 may perform opening degree control by PID control that brings the temperature difference ⁇ T closer to a predetermined value.
  • the high-stage expansion / discharge pressure sensor 24 may be a high-stage expansion / discharge pressure sensor 24 a that detects the pressure in the gas state in the gas-liquid separator 4, or between the gas-liquid separator 4 and the flow control valve 17. It is good also as the high stage expansion discharge pressure sensor 24b which detects the pressure in the intermediate pipe L1. In the third embodiment, it is preferable to apply when the pressure loss of the flow control valve 17 is small.
  • FIG. 7 is a configuration diagram of the heat pump unit 16 including the refrigerant adjustment mechanism in the fourth embodiment.
  • the refrigerant adjustment mechanism of the fourth embodiment is provided between the intermediate connection point PT and the high-stage compression mechanism 1b, and detects the refrigerant temperature sucked into the high-stage compression mechanism 1b.
  • the flow control valve 17 provided in the intermediate pipe L1 and the control unit 20 that controls the flow control valve 17 based on the detection values of the high stage compression suction temperature sensor 22 and the high stage expansion / discharge temperature sensor 25 are provided.
  • the temperature difference ⁇ T between the high-stage compression suction temperature T1 detected by the high-stage compression suction temperature sensor 22 and the saturation temperature Tsat3 (T2) detected by the high-stage expansion / discharge temperature sensor 25 becomes a predetermined value or more.
  • the opening degree of the flow control valve 17 is controlled.
  • the temperature detected by the high stage expansion discharge temperature sensor 25 is regarded as the saturation temperature Tsat3.
  • control unit 20 increases the opening degree of the flow control valve 17 when the temperature difference ⁇ T is equal to or greater than the upper limit value, and decreases the opening degree of the flow control valve 17 when the temperature difference ⁇ T is less than the lower limit value.
  • the control unit 20 may perform linear opening degree control based on the absolute value of the temperature difference ⁇ T. Further, the control unit 20 may perform opening degree control by PID control that brings the temperature difference ⁇ T closer to a predetermined value.
  • the high-stage expansion / discharge temperature sensor 25 may be a high-stage expansion / discharge temperature sensor 25 a that detects the temperature of the gas state in the gas-liquid separator 4 or between the gas-liquid separator 4 and the flow control valve 17. It is good also as the high stage expansion discharge temperature sensor 25b which detects the temperature in the intermediate pipe L1. Moreover, in this Embodiment 4, it is preferable to apply when the pressure loss of the flow control valve 17 is small.
  • an internal heat exchanger 8 is provided between the gas-liquid separator 4 and the flow rate control valve 17 as a heating means.
  • the internal heat exchanger 8 is connected to the condenser 2 and the high stage expansion mechanism 3 and uses the heat of the refrigerant derived from the condenser 2 to derive the refrigerant derived from the gas side outlet of the gas-liquid separator 4. Heat.
  • the heating means may heat the refrigerant led out from the gas side outlet of the gas-liquid separator 4 using an external heat source such as a heater in addition to the internal heat exchanger 8 described above.
  • FIG. 9 is a configuration diagram of the heat pump unit 16 including the refrigerant adjustment mechanism in the fifth embodiment.
  • the refrigerant adjustment mechanism of the fifth embodiment is provided between the flow rate control valve 17 and the intermediate connection point PT, and is on the outlet side of the internal heat exchanger 8 (heating means) of the intermediate pipe L1.
  • the flow control valve 17 is controlled based on the detected values of the heating refrigerant temperature sensor 26 that detects the refrigerant temperature, the flow control valve 17 provided in the intermediate pipe L1, the heating refrigerant temperature sensor 26, and the high-stage compression suction pressure sensor 23.
  • a control unit 20 is controlled based on the detected values of the heating refrigerant temperature sensor 26 that detects the refrigerant temperature, the flow control valve 17 provided in the intermediate pipe L1, the heating refrigerant temperature sensor 26, and the high-stage compression suction pressure sensor 23.
  • the control unit 20 determines that the temperature difference ⁇ T between the heating refrigerant temperature T3 detected by the heating refrigerant temperature sensor 26 and the saturation temperature Tsat1 at the high stage compression suction pressure P1 detected by the high stage compression suction pressure sensor 23 is a predetermined value or more. Thus, the opening degree of the flow control valve 17 is controlled. By controlling the opening degree of the flow control valve 17 by the controller 20, the liquid refrigerant is prevented from being introduced into the high-stage compression mechanism 1b.
  • control unit 20 increases the opening degree of the flow control valve 17 when the temperature difference ⁇ T is equal to or greater than the upper limit value, and decreases the opening degree of the flow control valve 17 when the temperature difference ⁇ T is less than the lower limit value.
  • the control unit 20 may perform linear opening degree control based on the absolute value of the temperature difference ⁇ T. Further, the control unit 20 may perform opening degree control by PID control that brings the temperature difference ⁇ T closer to a predetermined value.
  • the sixth embodiment prevents liquid compression of the high-stage compression mechanism 1b when the heating means shown in the modifications of the second to fourth embodiments is provided in the configuration of the heat pump unit 16 of the third embodiment. It is.
  • the controller 20 determines that the temperature difference ⁇ T between the heating refrigerant temperature T3 detected by the heating refrigerant temperature sensor 26 and the saturation temperature Tsat2 at the high stage expansion discharge pressure P2 detected by the high stage expansion discharge pressure sensor 24 is equal to or greater than a predetermined value.
  • the opening degree of the flow control valve 17 is controlled.
  • the liquid refrigerant is prevented from being introduced into the high-stage compression mechanism 1b.
  • control unit 20 increases the opening degree of the flow control valve 17 when the temperature difference ⁇ T is equal to or greater than the upper limit value, and decreases the opening degree of the flow control valve 17 when the temperature difference ⁇ T is less than the lower limit value.
  • the control unit 20 may perform linear opening degree control based on the absolute value of the temperature difference ⁇ T. Further, the control unit 20 may perform opening degree control by PID control that brings the temperature difference ⁇ T closer to a predetermined value.
  • the seventh embodiment prevents liquid compression of the high-stage compression mechanism 1b when the heating means shown in the modification examples of the second to fourth embodiments is provided in the configuration of the heat pump unit 16 of the fourth embodiment. It is.
  • FIG. 11 is a configuration diagram of the heat pump unit 16 including the refrigerant adjustment mechanism in the seventh embodiment.
  • the refrigerant adjustment mechanism of the seventh embodiment is provided between the flow rate control valve 17 and the intermediate connection point PT, and is on the outlet side of the internal heat exchanger 8 (heating means) of the intermediate pipe L1.
  • a heating refrigerant temperature sensor 26 that detects the refrigerant temperature, and a high stage expansion discharge that is provided between the high stage expansion mechanism 3 and the gas-liquid separator 4 and detects the temperature of the refrigerant decompressed and expanded by the high stage expansion mechanism 3. It has a temperature sensor 25, a flow rate control valve 17 provided in the intermediate pipe L1, and a control unit 20 that controls the flow rate control valve 17 based on detected values of the heating refrigerant temperature sensor 26 and the high stage expansion discharge temperature sensor 25.
  • the control unit 20 controls the flow rate so that the temperature difference ⁇ T between the heating refrigerant temperature T3 detected by the heating refrigerant temperature sensor 26 and the saturation temperature Tsat3 (T2) detected by the high stage expansion discharge temperature sensor 25 becomes a predetermined value or more.
  • the opening degree of the valve 17 is controlled. By controlling the opening degree of the flow control valve 17 by the controller 20, the liquid refrigerant is prevented from being introduced into the high-stage compression mechanism 1b.
  • the temperature difference ⁇ T is positive, it can be seen that the refrigerant joined from the intermediate pipe L1 is in an overheated state, so the liquid of the high-stage compression mechanism 1b can be obtained without providing a margin for the temperature difference ⁇ T. Compression can be prevented.
  • control unit 20 increases the opening degree of the flow control valve 17 when the temperature difference ⁇ T is equal to or greater than the upper limit value, and decreases the opening degree of the flow control valve 17 when the temperature difference ⁇ T is less than the lower limit value.
  • the control unit 20 may perform linear opening degree control based on the absolute value of the temperature difference ⁇ T. Further, the control unit 20 may perform opening degree control by PID control that brings the temperature difference ⁇ T closer to a predetermined value.
  • the high-stage expansion / discharge temperature sensor 25 may be a high-stage expansion / discharge temperature sensor 25 a that detects the temperature of the gas state in the gas-liquid separator 4, or the gas-liquid separator 4 and the internal heat exchanger 8.
  • a high-stage expansion / discharge temperature sensor 25b that detects the temperature in the intermediate pipe L1 may be used.
  • the heating refrigerant temperature sensor 26 may be a heating refrigerant temperature sensor 26 a provided between the outlet of the internal heat exchanger 8 and the flow rate control valve 17. In addition, in this Embodiment 7, it is preferable to apply when the pressure loss of the flow control valve 17 and the internal heat exchanger 8 is small.
  • the flow control valve 17 is provided on the upstream side (gas-liquid separator 4 side) of the internal heat exchanger 8.
  • the high stage expansion discharge temperature sensor 25 is provided between the internal heat exchanger 8 and the intermediate connection point PT, so that the fifth embodiment It is possible to obtain the same effects as those of .about.7.

Abstract

The purpose of the present invention is to provide an exhaust heat recovery heat pump device such that the liquid compression of the high-stage compressor of a two-stage compressor can be reliably avoided when the high-stage compressor operates using, as a suction refrigerant, a mixed refrigerant of the intermediate-pressure refrigerant from a gas-liquid separator with the intermediate-pressure refrigerant from the low-stage compressor. This exhaust heat recovery heat pump device is equipped with a refrigerant adjustment mechanism which introduces a mixed refrigerant of the refrigerant discharged from the gas-side outlet of a gas-liquid separator 4 with the refrigerant compressed by a low-stage compression mechanism 1a into the suction opening of a high-stage compression mechanism 1b, the mixed refrigerant serving as a gas refrigerant having the degree of superheat that is a predetermined value or more. The refrigerant adjustment mechanism is equipped with: a level sensor 21 which is provided to the gas-liquid separator 4 so as to detect the liquid level; an opening and closing control valve 7 which is provided to an intermediate pipe L1; and a control unit 20 which controls the opening and closing control valve 7 to a closed position if the liquid level detected by the level sensor 21 reaches a predetermined position based on a gas-side communication port to the intermediate pipe L1.

Description

排熱回収ヒートポンプ装置Waste heat recovery heat pump device
 本発明は、2段圧縮機の高段側圧縮機が、気液分離器からの中間圧冷媒と低段側圧縮機からの中間圧冷媒との混合冷媒を吸入冷媒として動作する場合、高段側圧縮機の液圧縮を確実に回避することができる排熱回収ヒートポンプ装置に関する。 When the high-stage compressor of the two-stage compressor operates using a mixed refrigerant of the intermediate-pressure refrigerant from the gas-liquid separator and the intermediate-pressure refrigerant from the low-stage compressor as the suction refrigerant, The present invention relates to an exhaust heat recovery heat pump device that can reliably avoid liquid compression of a side compressor.
 ヒートポンプ装置には、ヒートポンプサイクル上に低圧側圧縮機と高圧側圧縮機との2つの圧縮機を設けた2段圧縮式を用いるものがある。特許文献1では、室内側熱交換器と、低圧側圧縮機と、高圧側圧縮機と、室内側熱交換器とから送られた冷媒を減圧する第1減圧装置と、第1減圧装置から送られた冷媒を気液分離する気液分離器と、気液分離器の液相側に接続され、気液分離器から送られた冷媒を減圧し、減圧した冷媒を室外側熱交換器に向けて送る第2減圧装置と、気液分離器の気相側に接続され、気液分離器から送られた冷媒を、低圧側圧縮機と高圧側圧縮機との間の管路上に導くインジェクション管路と、高圧側圧縮機に流入する冷媒を加熱ガス状態または飽和蒸気状態とするために、第2減圧装置における冷媒の減圧比を制御する制御部とを備えたヒートポンプ式加熱装置が記載されている。 Some heat pump devices use a two-stage compression type in which two compressors, a low-pressure compressor and a high-pressure compressor, are provided on the heat pump cycle. In patent document 1, the 1st decompression device which decompresses the refrigerant | coolant sent from the indoor side heat exchanger, the low pressure side compressor, the high pressure side compressor, and the indoor side heat exchanger, A gas-liquid separator for gas-liquid separation of the generated refrigerant and a liquid phase side of the gas-liquid separator, depressurizing the refrigerant sent from the gas-liquid separator, and directing the depressurized refrigerant to the outdoor heat exchanger A second pressure reducing device to be sent and an injection pipe connected to the gas phase side of the gas-liquid separator and guiding the refrigerant sent from the gas-liquid separator onto a pipe line between the low-pressure side compressor and the high-pressure side compressor There is described a heat pump heating device including a passage and a control unit that controls a pressure reduction ratio of the refrigerant in the second pressure reducing device in order to change the refrigerant flowing into the high pressure side compressor into a heated gas state or a saturated vapor state. Yes.
特開2014-119157号公報JP 2014-119157 A
 ところで、上述した特許文献1に記載されたヒートポンプ式加熱装置では、低圧側(低段側)膨張弁(第2減圧装置)による減圧量を制御することで高圧側(高段側)圧縮機の液圧縮を防止している。しかしながら、特許文献1に記載されたものは、低段側膨張弁の制御によって低段側の冷媒流量を減少させ、低段側圧縮機吐出温度を高温化することで高段側圧縮機の吸入冷媒の過熱状態を実現するものである。したがって、中間配管(インジェクション管路)への液冷媒混入量によっては必ずしも過熱状態を維持できるものではない。 By the way, in the heat pump type heating device described in Patent Document 1 described above, the amount of pressure reduction by the low-pressure side (low-stage side) expansion valve (second decompression device) is controlled to control the high-pressure side (high-stage side) compressor. Liquid compression is prevented. However, what is described in Patent Document 1 is that the low-stage side refrigerant flow is reduced by controlling the low-stage side expansion valve, and the low-stage compressor discharge temperature is increased to increase the suction of the high-stage compressor. This realizes an overheated state of the refrigerant. Therefore, the overheated state cannot always be maintained depending on the amount of liquid refrigerant mixed into the intermediate pipe (injection pipe line).
 特に、作動冷媒として高沸点の冷媒を用いた場合、装置停止後の周囲温度によっては、気液分離器内に凝縮した冷媒が貯留され、装置起動時に中間配管から液冷媒が流出する可能性が大きい。 In particular, when a high-boiling point refrigerant is used as the working refrigerant, depending on the ambient temperature after the apparatus is stopped, the condensed refrigerant is stored in the gas-liquid separator, and the liquid refrigerant may flow out from the intermediate pipe when the apparatus is activated. large.
 本発明は、上記に鑑みてなされたものであって、2段圧縮機の高段側圧縮機が、気液分離器からの中間圧冷媒と低段側圧縮機からの中間圧冷媒との混合冷媒を吸入冷媒として動作する場合、高段側圧縮機の液圧縮を確実に回避することができる排熱回収ヒートポンプ装置を提供することを目的とする。 The present invention has been made in view of the above, and the high-stage compressor of the two-stage compressor mixes the intermediate-pressure refrigerant from the gas-liquid separator and the intermediate-pressure refrigerant from the low-stage compressor. An object of the present invention is to provide an exhaust heat recovery heat pump device that can reliably avoid liquid compression of a high-stage compressor when the refrigerant operates as an intake refrigerant.
 上述した課題を解決し、目的を達成するために、本発明にかかる排熱回収ヒートポンプ装置は、外部熱源から回収した熱で冷媒を蒸発させる蒸発器と、前記蒸発器で蒸発された冷媒を圧縮する低段圧縮機構と、前記低段圧縮機構で圧縮された冷媒を圧縮する高段圧縮機構と、前記高段圧縮機構で圧縮された冷媒を凝縮させ被加熱水を加熱する凝縮器と、前記凝縮器によって凝縮された冷媒を減圧膨張する高段膨張機構と、前記高段膨張機構から導入された冷媒を気液分離する気液分離器と、前記気液分離器の液側出口から吐出された冷媒をさらに減圧膨張して前記蒸発器に導入する低段膨張機構と、前記気液分離器の気体側出口から吐出された冷媒を前記低段圧縮機構の吐出口と前記高段圧縮機構の吸入口との間に導入する中間配管と、を備えた排熱回収ヒートポンプ装置において、前記気体側出口から吐出された冷媒と前記低段圧縮機構で圧縮された冷媒との混合冷媒を所定値以上の過熱度を有する気体冷媒として前記高段圧縮機構の吸入口に導入する冷媒調整機構を設けたことを特徴とする。 In order to solve the above-described problems and achieve the object, an exhaust heat recovery heat pump device according to the present invention compresses an evaporator that evaporates the refrigerant with heat recovered from an external heat source, and the refrigerant evaporated in the evaporator A low-stage compression mechanism, a high-stage compression mechanism that compresses the refrigerant compressed by the low-stage compression mechanism, a condenser that condenses the refrigerant compressed by the high-stage compression mechanism and heats heated water, and A high-stage expansion mechanism that decompresses and expands the refrigerant condensed by the condenser, a gas-liquid separator that separates the refrigerant introduced from the high-stage expansion mechanism, and a liquid-side outlet of the gas-liquid separator. A low-stage expansion mechanism that expands the refrigerant further under reduced pressure and introduces the refrigerant into the evaporator; and a refrigerant discharged from a gas-side outlet of the gas-liquid separator, and a discharge port of the low-stage compression mechanism and a high-stage compression mechanism An intermediate pipe to be introduced between the suction port and In the exhaust heat recovery heat pump apparatus, the mixed refrigerant of the refrigerant discharged from the gas side outlet and the refrigerant compressed by the low-stage compression mechanism is used as a gas refrigerant having a degree of superheat greater than a predetermined value. The present invention is characterized in that a refrigerant adjusting mechanism to be introduced into the suction port is provided.
 また、本発明にかかる排熱回収ヒートポンプ装置は、上記の発明において、前記冷媒調整機構は、前記気液分離器に設けられ、液面位置を検出するレベルセンサと、前記中間配管に設けられた開閉制御弁と、前記レベルセンサにより前記液面位置が前記中間配管への気体側連通口に基づいた所定の位置に達した場合に、前記開閉制御弁を閉制御する制御部と、を備えたことを特徴とする。 In the exhaust heat recovery heat pump device according to the present invention, in the above invention, the refrigerant adjustment mechanism is provided in the gas-liquid separator, and is provided in a level sensor for detecting a liquid level position and in the intermediate pipe. An open / close control valve, and a control unit that controls the open / close control valve to close when the liquid level position reaches a predetermined position based on the gas side communication port to the intermediate pipe by the level sensor. It is characterized by that.
 また、本発明にかかる排熱回収ヒートポンプ装置は、上記の発明において、前記冷媒調整機構は、前記高段圧縮機構に吸入される冷媒温度を検出する高段圧縮吸入温度センサと、前記高段圧縮機構に吸入される冷媒圧力を検出する高段圧縮吸入圧力センサと、前記中間配管に設けられた流量制御弁と、前記高段圧縮吸入温度センサおよび前記高段圧縮吸入圧力センサの検出値に基づき前記流量制御弁を制御する制御部と、を備えたことを特徴とする。 In the exhaust heat recovery heat pump device according to the present invention, in the above invention, the refrigerant adjustment mechanism includes a high-stage compression suction temperature sensor that detects a refrigerant temperature sucked into the high-stage compression mechanism, and the high-stage compression. Based on detection values of a high-stage compression suction pressure sensor that detects a refrigerant pressure sucked into the mechanism, a flow control valve provided in the intermediate pipe, the high-stage compression suction temperature sensor, and the high-stage compression suction pressure sensor And a controller for controlling the flow rate control valve.
 また、本発明にかかる排熱回収ヒートポンプ装置は、上記の発明において、前記制御部は、前記高段圧縮吸入温度センサの検出値と前記高段圧縮吸入圧力センサの検出値から算出された飽和冷媒温度との温度差を所定値以上とするよう、前記流量制御弁の開度を調整することを特徴とする。 In the exhaust heat recovery heat pump device according to the present invention, in the above invention, the control unit is a saturated refrigerant calculated from a detection value of the high-stage compression suction temperature sensor and a detection value of the high-stage compression suction pressure sensor. The opening degree of the flow control valve is adjusted so that the temperature difference from the temperature is greater than or equal to a predetermined value.
 また、本発明にかかる排熱回収ヒートポンプ装置は、上記の発明において、前記冷媒調整機構は、前記高段圧縮機構に吸入される冷媒温度を検出する高段圧縮吸入温度センサと、前記高段膨張機構で減圧膨張された冷媒の圧力を検出する高段膨張吐出圧力センサと、前記中間配管に設けられた流量制御弁と、前記高段圧縮吸入温度センサおよび前記高段膨張吐出圧力センサの検出値に基づき前記流量制御弁を制御する制御部と、を備えたことを特徴とする。 In the exhaust heat recovery heat pump device according to the present invention, in the above invention, the refrigerant adjustment mechanism includes a high-stage compression suction temperature sensor that detects a refrigerant temperature sucked into the high-stage compression mechanism, and the high-stage expansion. A high-stage expansion / discharge pressure sensor for detecting the pressure of refrigerant decompressed and expanded by the mechanism, a flow control valve provided in the intermediate pipe, detection values of the high-stage compression / intake temperature sensor and the high-stage expansion / discharge pressure sensor And a control unit for controlling the flow rate control valve based on the above.
 また、本発明にかかる排熱回収ヒートポンプ装置は、上記の発明において、前記制御部は、前記高段圧縮吸入温度センサの検出値と前記高段膨張吐出圧力センサの検出値から算出された飽和冷媒温度との温度差を所定値以上とするよう、前記流量制御弁の開度を調整することを特徴とする。 In the exhaust heat recovery heat pump device according to the present invention, in the above invention, the control unit is a saturated refrigerant calculated from a detection value of the high stage compression suction temperature sensor and a detection value of the high stage expansion discharge pressure sensor. The opening degree of the flow control valve is adjusted so that the temperature difference from the temperature is greater than or equal to a predetermined value.
 また、本発明にかかる排熱回収ヒートポンプ装置は、上記の発明において、前記冷媒調整機構は、前記高段圧縮機構に吸入される冷媒温度を検出する高段圧縮吸入温度センサと、前記高段膨張機構で減圧膨張された冷媒の温度を検出する高段膨張吐出温度センサと、前記中間配管に設けられた流量制御弁と、前記高段圧縮吸入温度センサおよび前記高段膨張吐出温度センサの検出値に基づき前記流量制御弁を制御する制御部と、を備えたことを特徴とする。 In the exhaust heat recovery heat pump device according to the present invention, in the above invention, the refrigerant adjustment mechanism includes a high-stage compression suction temperature sensor that detects a refrigerant temperature sucked into the high-stage compression mechanism, and the high-stage expansion. A high-stage expansion / discharge temperature sensor for detecting the temperature of the refrigerant decompressed and expanded by the mechanism, a flow control valve provided in the intermediate pipe, detection values of the high-stage compression / intake temperature sensor and the high-stage expansion / discharge temperature sensor And a control unit for controlling the flow rate control valve based on the above.
 また、本発明にかかる排熱回収ヒートポンプ装置は、上記の発明において、前記制御部は、前記高段圧縮吸入温度センサの検出値と前記高段膨張吐出温度センサの検出値との温度差を所定値以上とするよう、前記流量制御弁の開度を調整することを特徴とする。 Further, in the exhaust heat recovery heat pump device according to the present invention, in the above invention, the control unit predetermines a temperature difference between a detection value of the high stage compression suction temperature sensor and a detection value of the high stage expansion discharge temperature sensor. The opening degree of the flow control valve is adjusted so as to be equal to or greater than the value.
 また、本発明にかかる排熱回収ヒートポンプ装置は、上記の発明において、前記中間配管には、前記気液分離器の気体側出口から吐出された冷媒を加熱する加熱手段が設けられたことを特徴とする。 The exhaust heat recovery heat pump device according to the present invention is characterized in that, in the above invention, the intermediate pipe is provided with heating means for heating the refrigerant discharged from the gas side outlet of the gas-liquid separator. And
 また、本発明にかかる排熱回収ヒートポンプ装置は、上記の発明において、前記冷媒調整機構は、前記中間配管に設けられ、気液分離器から導出された冷媒を加熱する加熱手段と、前記中間配管の前記加熱手段出口側における冷媒温度を検出する加熱冷媒温度センサと、前記高段圧縮機構に吸入される冷媒圧力を検出する高段圧縮吸入圧力センサと、前記中間配管に設けられた流量制御弁と、前記加熱冷媒温度センサおよび前記高段圧縮吸入圧力センサの検出値に基づき前記流量制御弁を制御する制御部と、を備えたことを特徴とする。 In the exhaust heat recovery heat pump device according to the present invention, in the above invention, the refrigerant adjustment mechanism is provided in the intermediate pipe, and heating means for heating the refrigerant derived from the gas-liquid separator; and the intermediate pipe A heating refrigerant temperature sensor for detecting a refrigerant temperature at the outlet side of the heating means, a high stage compression suction pressure sensor for detecting a refrigerant pressure sucked into the high stage compression mechanism, and a flow control valve provided in the intermediate pipe And a control unit that controls the flow rate control valve based on detection values of the heating refrigerant temperature sensor and the high-stage compression suction pressure sensor.
 また、本発明にかかる排熱回収ヒートポンプ装置は、上記の発明において、前記制御部は、前記加熱冷媒温度センサの検出値と前記高段圧縮吸入圧力センサの検出値から算出された飽和冷媒温度との温度差を所定値以上とするよう、前記流量制御弁の開度を調整することを特徴とする。 In the exhaust heat recovery heat pump device according to the present invention, in the above invention, the control unit includes a saturated refrigerant temperature calculated from a detection value of the heating refrigerant temperature sensor and a detection value of the high-stage compression suction pressure sensor. The opening degree of the flow control valve is adjusted so that the temperature difference between the two is equal to or greater than a predetermined value.
 また、本発明にかかる排熱回収ヒートポンプ装置は、上記の発明において、前記冷媒調整機構は、前記中間配管に設けられ、気液分離器から導出された冷媒を加熱する加熱手段と、前記中間配管の前記加熱手段出口側における冷媒温度を検出する加熱冷媒温度センサと、前記高段膨張機構で減圧膨張された冷媒の圧力を検出する高段膨張吐出圧力センサと、前記中間配管に設けられた流量制御弁と、前記高段膨張吐出圧力センサおよび前記加熱冷媒温度センサの検出値に基づき前記流量制御弁を制御する制御部と、を備えたことを特徴とする。 In the exhaust heat recovery heat pump device according to the present invention, in the above invention, the refrigerant adjustment mechanism is provided in the intermediate pipe, and heating means for heating the refrigerant derived from the gas-liquid separator; and the intermediate pipe A heating refrigerant temperature sensor for detecting the refrigerant temperature at the outlet side of the heating means, a high stage expansion discharge pressure sensor for detecting the pressure of the refrigerant decompressed and expanded by the high stage expansion mechanism, and a flow rate provided in the intermediate pipe And a control unit that controls the flow rate control valve based on detection values of the high stage expansion discharge pressure sensor and the heating refrigerant temperature sensor.
 また、本発明にかかる排熱回収ヒートポンプ装置は、上記の発明において、前記制御部は、前記加熱冷媒温度センサの検出値と前記高段膨張吐出圧力センサの検出値から算出された飽和冷媒温度との温度差を所定値以上とするよう、前記流量制御弁の開度を調整することを特徴とする。 In the exhaust heat recovery heat pump device according to the present invention, in the above invention, the control unit includes a saturated refrigerant temperature calculated from a detection value of the heating refrigerant temperature sensor and a detection value of the high stage expansion discharge pressure sensor. The opening degree of the flow control valve is adjusted so that the temperature difference between the two is equal to or greater than a predetermined value.
 また、本発明にかかる排熱回収ヒートポンプ装置は、上記の発明において、前記冷媒調整機構は、前記中間配管に設けられ、気液分離器から導出された冷媒を加熱する加熱手段と、前記中間配管の前記加熱手段出口側における冷媒温度を検出する加熱冷媒温度センサと、前記高段膨張機構で減圧膨張された冷媒の温度を検出する高段膨張吐出温度センサと、前記中間配管に設けられた流量制御弁と、前記高段膨張吐出温度センサおよび前記加熱冷媒温度センサの検出値に基づき前記流量制御弁を制御する制御部と、を備えたことを特徴とする。 In the exhaust heat recovery heat pump device according to the present invention, in the above invention, the refrigerant adjustment mechanism is provided in the intermediate pipe, and heating means for heating the refrigerant derived from the gas-liquid separator; and the intermediate pipe A heating refrigerant temperature sensor for detecting the refrigerant temperature on the outlet side of the heating means, a high stage expansion discharge temperature sensor for detecting the temperature of the refrigerant decompressed and expanded by the high stage expansion mechanism, and a flow rate provided in the intermediate pipe And a control unit that controls the flow rate control valve based on detection values of the high stage expansion discharge temperature sensor and the heating refrigerant temperature sensor.
 また、本発明にかかる排熱回収ヒートポンプ装置は、上記の発明において、前記制御部は、前記加熱冷媒温度センサの検出値と前記高段膨張吐出温度センサの検出値との温度差を所定値以上とするよう、前記流量制御弁の開度を調整することを特徴とする。 In the exhaust heat recovery heat pump device according to the present invention, in the above invention, the control unit sets a temperature difference between a detection value of the heating refrigerant temperature sensor and a detection value of the high stage expansion discharge temperature sensor to a predetermined value or more. The opening degree of the flow control valve is adjusted so that
 また、本発明にかかる排熱回収ヒートポンプ装置は、上記の発明において、前記加熱手段は、前記凝縮器から吐出された冷媒と前記中間配管を流通する冷媒との熱交換を行う内部熱交換器であることを特徴とする。 In the exhaust heat recovery heat pump device according to the present invention, in the above invention, the heating means is an internal heat exchanger that performs heat exchange between the refrigerant discharged from the condenser and the refrigerant flowing through the intermediate pipe. It is characterized by being.
 また、本発明にかかる排熱回収ヒートポンプ装置は、上記の発明において、前記冷媒は、P-h線図上での過熱域において飽和ガス線と等エントロピー線とが2点以上の交点もしくは接点を有する特性を持つことを特徴とする。 Further, the exhaust heat recovery heat pump device according to the present invention is the above invention, wherein the refrigerant has an intersection or contact of two or more saturated gas lines and isentropic lines in the superheated region on the Ph diagram. It has the characteristic which has.
 本発明によれば、気液分離器の気体側出口から吐出された冷媒と低段圧縮機構で圧縮された冷媒との混合冷媒を所定値以上の過熱度を有する気体冷媒として高段圧縮機構の吸入口に導入する冷媒調整機構を設けているので、高段側圧縮機の液圧縮を確実に回避することができる。 According to the present invention, the mixed refrigerant of the refrigerant discharged from the gas side outlet of the gas-liquid separator and the refrigerant compressed by the low-stage compression mechanism is used as a gas refrigerant having a superheat degree equal to or higher than a predetermined value. Since the refrigerant adjustment mechanism to be introduced into the suction port is provided, it is possible to reliably avoid liquid compression of the high stage compressor.
本発明の実施の形態1に係る排熱回収ヒートポンプ装置の全体構成図である。1 is an overall configuration diagram of an exhaust heat recovery heat pump device according to Embodiment 1 of the present invention. 飽和ガス線と等エントロピー線とを含むR245faのP-h線図である。It is a Ph diagram of R245fa including a saturated gas line and an isentropic line. 実施の形態1におけるヒートポンプ部内の冷媒調整機構の構成図である。2 is a configuration diagram of a refrigerant adjustment mechanism in a heat pump unit in Embodiment 1. FIG. 気液分離器4の内部構成を示す模式図である。3 is a schematic diagram showing an internal configuration of a gas-liquid separator 4. FIG. 実施の形態2における冷媒調整機構を含むヒートポンプ部の構成図である。6 is a configuration diagram of a heat pump unit including a refrigerant adjustment mechanism according to Embodiment 2. FIG. 実施の形態3における冷媒調整機構を含むヒートポンプ部の構成図である。6 is a configuration diagram of a heat pump unit including a refrigerant adjustment mechanism according to Embodiment 3. FIG. 実施の形態4における冷媒調整機構を含むヒートポンプ部の構成図である。FIG. 6 is a configuration diagram of a heat pump unit including a refrigerant adjustment mechanism in a fourth embodiment. 実施の形態2に加熱手段を設けた冷媒調整機構を含むヒートポンプ部の構成図である。6 is a configuration diagram of a heat pump unit including a refrigerant adjustment mechanism provided with heating means in Embodiment 2. FIG. 実施の形態5における冷媒調整機構を含むヒートポンプ部の構成図である。FIG. 10 is a configuration diagram of a heat pump unit including a refrigerant adjustment mechanism in a fifth embodiment. 実施の形態6における冷媒調整機構を含むヒートポンプ部の構成図である。FIG. 10 is a configuration diagram of a heat pump unit including a refrigerant adjustment mechanism in a sixth embodiment. 実施の形態7における冷媒調整機構を含むヒートポンプ部の構成図である。FIG. 10 is a configuration diagram of a heat pump unit including a refrigerant adjustment mechanism in a seventh embodiment. 実施の形態5の流量制御弁と内部熱交換器との配置を逆にした冷媒調整機構を含むヒートポンプ部の構成図である。It is a block diagram of the heat pump part containing the refrigerant | coolant adjustment mechanism which reversed arrangement | positioning of the flow control valve and internal heat exchanger of Embodiment 5.
 以下、添付図面を参照してこの発明を実施するための形態について説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.
(実施の形態1)
[全体構成]
 図1は、本発明の実施の形態1に係る排熱回収ヒートポンプ装置10の全体構成図である。排熱回収ヒートポンプ装置10は、工場排水等の温水から排熱を回収し、回収した排熱を利用して水蒸気を生成するシステムであり、生成した水蒸気は乾燥装置や殺菌装置等の外部の蒸気利用設備に送られる。
(Embodiment 1)
[overall structure]
FIG. 1 is an overall configuration diagram of an exhaust heat recovery heat pump apparatus 10 according to Embodiment 1 of the present invention. The exhaust heat recovery heat pump device 10 is a system that recovers exhaust heat from warm water such as factory waste water and generates steam using the recovered exhaust heat. The generated steam is external steam such as a drying device or a sterilizer. Sent to the use facility.
 図1に示すように、排熱回収ヒートポンプ装置10は、水を蒸発させて水蒸気を生成し、外部へと送り出す蒸気生成部12と、温水供給部14によって供給される温水(熱源温水)から熱を回収し、この熱を蒸気生成部12での蒸気生成のための熱源として供給するヒートポンプ部16と、制御部20とを備える。 As shown in FIG. 1, the exhaust heat recovery heat pump device 10 generates heat by evaporating water to generate water vapor, and heat is generated from the hot water (heat source hot water) supplied by the hot water supply unit 14 and the hot water supply unit 14. The heat pump unit 16 that supplies the heat as a heat source for generating steam in the steam generation unit 12 and the control unit 20 are provided.
 ヒートポンプ部16は、外部熱源である熱源温水から回収した熱で冷媒を蒸発させる蒸発器6と、蒸発器で蒸発された冷媒を圧縮する低段圧縮機構1aと、低段圧縮機構1aで圧縮された冷媒を圧縮する高段圧縮機構1bと、高段圧縮機構で圧縮された冷媒を凝縮させ被加熱水を加熱する凝縮器2と、凝縮器2によって凝縮された冷媒を減圧膨張する高段膨張機構3と、高段膨張機構3から導入された冷媒を気液分離する気液分離器4と、気液分離器4の液側出口から吐出された冷媒をさらに減圧膨張して蒸発器6に導入する低段膨張機構5と、気液分離器4の気体側出口から吐出された冷媒を低段圧縮機構の吐出口と高段圧縮機構の吸入口との間に導入する中間配管L1と、中間配管L1に設けられた開閉制御弁7とを有する。本実施の形態1では、凝縮器2の出口側と高段膨張機構3との間に加熱器2aを接続している。高段膨張機構3および低段膨張機構5は、例えば電子膨張弁である。また、開閉制御弁7は、例えば電動弁である。 The heat pump unit 16 is compressed by the evaporator 6 that evaporates the refrigerant with heat recovered from the heat source hot water that is an external heat source, the low-stage compression mechanism 1a that compresses the refrigerant evaporated by the evaporator, and the low-stage compression mechanism 1a. A high-stage compression mechanism 1b that compresses the refrigerant, a condenser 2 that condenses the refrigerant compressed by the high-stage compression mechanism and heats the water to be heated, and a high-stage expansion that decompresses and expands the refrigerant condensed by the condenser 2 The mechanism 3, the gas-liquid separator 4 that gas-liquid separates the refrigerant introduced from the high-stage expansion mechanism 3, and the refrigerant discharged from the liquid side outlet of the gas-liquid separator 4 is further decompressed and expanded to the evaporator 6. A low-stage expansion mechanism 5 to be introduced, an intermediate pipe L1 for introducing refrigerant discharged from the gas side outlet of the gas-liquid separator 4 between the discharge port of the low-stage compression mechanism and the suction port of the high-stage compression mechanism; And an open / close control valve 7 provided in the intermediate pipe L1. In the first embodiment, the heater 2 a is connected between the outlet side of the condenser 2 and the high stage expansion mechanism 3. The high stage expansion mechanism 3 and the low stage expansion mechanism 5 are, for example, electronic expansion valves. The open / close control valve 7 is, for example, an electric valve.
 ヒートポンプ部16のヒートポンプサイクルに流れる冷媒は、図2に示すように、P-h線図上での等エントロピー線L11が低圧側で過熱域にあり、高圧側で飽和ガス線L12と等エントロピー線L11とが2点以上の交点もしくは接点を有する特性を持つ冷媒である。この冷媒は、例えば、1,1,1,3,3-ペンタフルオロプロパン(構造式:CHFCHCF、R245fa)である。図2は、R245faのP-h線図を示しており、飽和ガス線L12と等エントロピー線L11とが交点PP1,PP2の2点で交わっている。 As shown in FIG. 2, the refrigerant flowing in the heat pump cycle of the heat pump unit 16 has an isentropic line L11 on the Ph diagram in the superheated region on the low pressure side and an isentropic line with the saturated gas line L12 on the high pressure side. L11 is a refrigerant having the characteristic of having two or more intersections or contact points. This refrigerant is, for example, 1,1,1,3,3-pentafluoropropane (structural formula: CHF 2 CH 2 CF 3 , R245fa). FIG. 2 shows a Ph diagram of R245fa, where the saturated gas line L12 and the isentropic line L11 intersect at two points PP1 and PP2.
 高段圧縮機構1bで圧縮されて高温高圧となった冷媒は、凝縮器2で蒸気生成部12を循環する水と熱交換して冷却され凝縮する。凝縮器2を出た冷媒は、加熱器2aで給水経路30を流れる水を予熱してさらに冷却された後、高段膨張機構3で減圧膨張され、気液分離器4に導入される。気液分離器4の液側出口から吐出された冷媒は、さらに低段膨張機構5で減圧膨張され、蒸発器6で温水供給部14の温水経路32を流れる熱源温水から吸熱して蒸発して低段圧縮機構1aの吸入口に導入される。一方、気液分離器4の気体側出口から吐出された冷媒は、開閉制御弁7が設けられた中間配管L1を介して低段圧縮機構1aの吐出口と高段圧縮機構1bの吸入口との間に導入され、低段圧縮機構1aから吐出された冷媒と混合されて高段圧縮機構1bの吸入口に導入される。 The refrigerant that has been compressed by the high-stage compression mechanism 1b to a high temperature and high pressure is cooled and condensed by exchanging heat with water circulating in the steam generation unit 12 in the condenser 2. The refrigerant exiting the condenser 2 is preheated with water heated in the water supply path 30 by the heater 2 a and further cooled, and then decompressed and expanded by the high stage expansion mechanism 3 and introduced into the gas-liquid separator 4. The refrigerant discharged from the liquid-side outlet of the gas-liquid separator 4 is further decompressed and expanded by the low-stage expansion mechanism 5, and is evaporated by absorbing heat from the heat source hot water flowing through the hot water path 32 of the hot water supply unit 14 in the evaporator 6. It is introduced into the suction port of the low-stage compression mechanism 1a. On the other hand, the refrigerant discharged from the gas side outlet of the gas-liquid separator 4 passes through the intermediate pipe L1 provided with the open / close control valve 7 and the discharge port of the low stage compression mechanism 1a and the suction port of the high stage compression mechanism 1b. The refrigerant is mixed with the refrigerant discharged from the low-stage compression mechanism 1a and introduced into the suction port of the high-stage compression mechanism 1b.
 蒸気生成部12は、ヒートポンプ部16を循環する冷媒を熱源として水を蒸発させて蒸気を生成する凝縮器2と、凝縮器2で生成される水と蒸気を含む気液二相流を蒸気と水とに分離する水蒸気分離器42と、水蒸気分離器42で分離された蒸気を外部の蒸気利用設備に供給する蒸気供給経路44と、水蒸気分離器42で分離された水を給水経路30から供給される水と合流させて凝縮器2から水蒸気分離器42へと導く水循環経路46とを有する。 The steam generating unit 12 uses the refrigerant circulating in the heat pump unit 16 as a heat source to evaporate water to generate steam, and the vapor-liquid two-phase flow including water and steam generated by the condenser 2 is converted into steam. A water vapor separator 42 that separates into water, a steam supply path 44 that supplies the steam separated by the water vapor separator 42 to an external steam utilization facility, and water that is separated by the water vapor separator 42 is supplied from the water supply path 30. And a water circulation path 46 that joins the water to be led from the condenser 2 to the water vapor separator 42.
 水蒸気分離器42は、鉛直方向に沿った円筒状容器で構成され、下端壁に接続された水循環経路46に接続された給水経路30から水が給水補給されることで容器内部に水を貯留する。給水経路30は、図示しない水道管や水タンクからの水(給水)を給水ポンプ48によって加熱器2aを経て水循環経路46まで導入する。給水ポンプ48は制御部20の制御下に、水蒸気分離器42内に貯留された水の水位を測定する水位センサ50の検出値(水位)に基づきインバータ(INV)52を介してその運転回転数が制御される。水蒸気分離器42には、内部の蒸気圧が所定圧力以上になった際に開放される圧力逃がし弁54が接続されている。 The water vapor separator 42 is formed of a cylindrical container along the vertical direction, and stores water inside the container by supplying water from the water supply path 30 connected to the water circulation path 46 connected to the lower end wall. . In the water supply path 30, water (water supply) from a water pipe or a water tank (not shown) is introduced to the water circulation path 46 through the heater 2 a by the water supply pump 48. Under the control of the control unit 20, the feed water pump 48 is operated at its rotational speed via an inverter (INV) 52 based on a detection value (water level) of a water level sensor 50 that measures the water level of water stored in the water vapor separator 42. Is controlled. Connected to the water vapor separator 42 is a pressure relief valve 54 that is opened when the internal vapor pressure exceeds a predetermined pressure.
 水循環経路46は、水蒸気分離器42の下端壁から凝縮器2までを連通する液管46aと、凝縮器2から水蒸気分離器42の上部側壁までを連通する蒸気管46bとから構成されている。液管46aには水が流通し、蒸気管46bには水及び蒸気を含む気液二相流が流通する。液管46aには循環ポンプ56が設けられている。循環ポンプ56は制御部20の制御下に、インバータ(INV)58を介してその運転回転数が制御される。 The water circulation path 46 includes a liquid pipe 46 a that communicates from the lower end wall of the steam separator 42 to the condenser 2, and a steam pipe 46 b that communicates from the condenser 2 to the upper side wall of the steam separator 42. Water flows through the liquid pipe 46a, and a gas-liquid two-phase flow containing water and steam flows through the steam pipe 46b. A circulation pump 56 is provided in the liquid pipe 46a. The operation speed of the circulation pump 56 is controlled through an inverter (INV) 58 under the control of the control unit 20.
 蒸気供給経路44は、水蒸気分離器42の上端壁に接続され、蒸気管46bから当該水蒸気分離器42内に供給され、ここで水が分離された後の蒸気を外部に送り出す経路である。蒸気供給経路44には、流れる蒸気の圧力を調整する圧力調整弁(蒸気圧力調整手段)60が設置されている。圧力調整弁60は、制御部20の制御下に、圧力センサ62で測定される水蒸気分離器42内の蒸気圧力に基づきその開度が調整される。圧力調整弁60の開度を適宜調整することにより、排熱回収ヒートポンプ装置10から外部に送り出される蒸気の流量や圧力を制御できる。蒸気供給経路44を流れる蒸気の圧力を調整する蒸気圧力調整手段としては、圧力調整弁60に代えて又はこれと共に蒸気を圧縮する蒸気圧縮機を用いてもよい。 The steam supply path 44 is a path that is connected to the upper end wall of the water vapor separator 42 and is supplied into the water vapor separator 42 from the steam pipe 46b, where the steam after the water is separated is sent out to the outside. The steam supply path 44 is provided with a pressure adjustment valve (steam pressure adjusting means) 60 for adjusting the pressure of the flowing steam. The opening degree of the pressure regulating valve 60 is adjusted based on the steam pressure in the steam separator 42 measured by the pressure sensor 62 under the control of the control unit 20. By appropriately adjusting the opening degree of the pressure regulating valve 60, the flow rate and pressure of the steam sent out from the exhaust heat recovery heat pump device 10 can be controlled. As the steam pressure adjusting means for adjusting the pressure of the steam flowing through the steam supply path 44, a steam compressor that compresses steam instead of or together with the pressure adjusting valve 60 may be used.
 制御部20は、それぞれインバータ(INV)を介して低段圧縮機構1aおよび高段圧縮機構1bの運転回転数を制御する。制御部20は、ヒートポンプサイクル上の圧力および温度を検出する図示しないセンサの検出値をもとに、ヒートポンプ部16の加熱出力を制御する。なお、低段圧縮機構1aおよび高段圧縮機構1bは、回転軸を共有した、例えば1台の2段スクロール圧縮機であってもよい。なお、制御部20は、高段膨張機構3及び低段膨張機構5の開度制御をさらに行うものであってもよい。 The control unit 20 controls the operating rotational speeds of the low-stage compression mechanism 1a and the high-stage compression mechanism 1b through inverters (INV). The control unit 20 controls the heating output of the heat pump unit 16 based on detection values of a sensor (not shown) that detects the pressure and temperature on the heat pump cycle. The low-stage compression mechanism 1a and the high-stage compression mechanism 1b may be, for example, a single two-stage scroll compressor that shares a rotating shaft. The control unit 20 may further perform opening control of the high stage expansion mechanism 3 and the low stage expansion mechanism 5.
 また、制御部20は、さらに給水ポンプ48、循環ポンプ56及び圧力調整弁60の制御を行うものであってもよいが、これら蒸気生成部12側は図示しない別の制御部によって制御してもよい。 Further, the control unit 20 may further control the water supply pump 48, the circulation pump 56, and the pressure regulating valve 60, but the steam generation unit 12 side may be controlled by another control unit (not shown). Good.
[冷媒調整機構]
 つぎに、気液分離器4の気体側出口から吐出された冷媒と低段圧縮機構1aで圧縮された冷媒との混合冷媒を所定値以上の過熱度を有する気体冷媒として高段圧縮機構1bの吸入口に導入する冷媒調整機構について説明する。
[Refrigerant adjustment mechanism]
Next, the mixed refrigerant of the refrigerant discharged from the gas side outlet of the gas-liquid separator 4 and the refrigerant compressed by the low-stage compression mechanism 1a is used as a gas refrigerant having a degree of superheat above a predetermined value. A refrigerant adjustment mechanism introduced into the suction port will be described.
 図3は、実施の形態1におけるヒートポンプ部16内の冷媒調整機構の構成図である。また、図4は、気液分離器4の内部構成を示す模式図である。なお、図3に示した凝縮器2は、加熱器2aを含んでもよく、加熱器2aを省略した構成としてもよい。図3に示すように、気液分離器4には、液面位置を検出するレベルセンサ21が設けられる。気液分離器4内は、気体側連通口4Vを介して中間配管L1に接続する接続配管4aと、液側連通口4Lを介して低段膨張機構5への配管に接続する接続配管4bとを有する。 FIG. 3 is a configuration diagram of the refrigerant adjustment mechanism in the heat pump unit 16 according to the first embodiment. FIG. 4 is a schematic diagram showing the internal configuration of the gas-liquid separator 4. Note that the condenser 2 shown in FIG. 3 may include a heater 2a, or may be configured without the heater 2a. As shown in FIG. 3, the gas-liquid separator 4 is provided with a level sensor 21 that detects the liquid level position. The gas-liquid separator 4 includes a connection pipe 4a connected to the intermediate pipe L1 through the gas side communication port 4V, and a connection pipe 4b connected to the pipe to the low stage expansion mechanism 5 through the liquid side communication port 4L. Have
 制御部20は、レベルセンサ21が検出する液面位置が、液側連通口4Lの液面位置hbから気体側連通口4Vの液面位置haまでの間の所定位置に達した場合に、開閉制御弁7を閉にする制御を行う。すなわち、制御部20は、レベルセンサ21が検出する液面位置が所定位置未満である場合、開閉制御弁7を開にし、所定位置以上となった場合、開閉制御弁7を閉にする。レベルセンサ21が検出する所定位置は、少なくとも液面位置ha未満であればよい。また、レベルセンサ21は、所定位置の1点を検出するスイッチ式であってもよいし、所定位置を含む所定範囲の液面位置を検出するものであってもよい。また、開閉制御弁7を開にする所定値と閉にする所定値は異なる値を設定してもよい。 The control unit 20 opens and closes when the liquid level position detected by the level sensor 21 reaches a predetermined position between the liquid level position hb of the liquid side communication port 4L and the liquid level position ha of the gas side communication port 4V. Control to close the control valve 7 is performed. That is, the control unit 20 opens the opening / closing control valve 7 when the liquid level position detected by the level sensor 21 is less than the predetermined position, and closes the opening / closing control valve 7 when the level is equal to or greater than the predetermined position. The predetermined position detected by the level sensor 21 may be at least less than the liquid level position ha. Further, the level sensor 21 may be a switch type that detects one point at a predetermined position, or may detect a liquid level position within a predetermined range including the predetermined position. Also, different values may be set for the predetermined value for opening and closing the open / close control valve 7 and the predetermined value for closing.
 制御部20が開閉制御弁7の閉制御を行った場合、気液分離器4内の液冷媒が気体側連通口4Vおよび中間配管L1を介して、低段圧縮機構1aの吐出口と高段圧縮機構1bの吸入口との間の中間接続点PTに導入されることを防止することができる。これによって、高段圧縮機構1bの吸入口に液冷媒が導入されることがなくなり、高段圧縮機構1bの液圧縮を防止することができる。なお、レベルセンサ21、開閉制御弁7、および、制御部20は、気体側連通口4Vから吐出された冷媒と低段圧縮機構1aで圧縮された冷媒との混合冷媒を所定値以上の過熱度を有する気体冷媒として高段圧縮機構1bの吸入口に導入する冷媒調整機構を形成する。 When the control unit 20 performs the closing control of the opening / closing control valve 7, the liquid refrigerant in the gas-liquid separator 4 is connected to the discharge port of the low-stage compression mechanism 1a and the high-stage via the gas side communication port 4V and the intermediate pipe L1. It is possible to prevent introduction into the intermediate connection point PT between the compression mechanism 1b and the suction port. As a result, liquid refrigerant is not introduced into the suction port of the high-stage compression mechanism 1b, and liquid compression of the high-stage compression mechanism 1b can be prevented. Note that the level sensor 21, the on-off control valve 7, and the control unit 20 have a degree of superheat of a mixed refrigerant of the refrigerant discharged from the gas side communication port 4V and the refrigerant compressed by the low-stage compression mechanism 1a over a predetermined value. A refrigerant adjustment mechanism is formed which is introduced into the suction port of the high-stage compression mechanism 1b as a gaseous refrigerant having
(実施の形態2)
 図5は、実施の形態2における冷媒調整機構を含むヒートポンプ部16の構成図である。図5に示すように、本実施の形態2の冷媒調整機構は、中間接続点PTと高段圧縮機構1bとの間に設けられ、高段圧縮機構1bに吸入される冷媒温度を検出する高段圧縮吸入温度センサ22と、中間接続点PTと高段圧縮機構1bとの間に設けられ、高段圧縮機構1bに吸入される冷媒圧力を検出する高段圧縮吸入圧力センサ23と、中間配管L1に設けられた流量制御弁17と、高段圧縮吸入温度センサ22および高段圧縮吸入圧力センサ23の検出値に基づき流量制御弁17を制御する制御部20とを有する。
(Embodiment 2)
FIG. 5 is a configuration diagram of the heat pump unit 16 including the refrigerant adjustment mechanism in the second embodiment. As shown in FIG. 5, the refrigerant adjustment mechanism of the second embodiment is provided between the intermediate connection point PT and the high stage compression mechanism 1b, and detects the refrigerant temperature sucked into the high stage compression mechanism 1b. A high-stage compression suction temperature sensor 22, a high-stage compression suction pressure sensor 23 provided between the intermediate connection point PT and the high-stage compression mechanism 1b for detecting the refrigerant pressure sucked into the high-stage compression mechanism 1b, and an intermediate pipe The flow control valve 17 provided in L1 and the control part 20 which controls the flow control valve 17 based on the detected value of the high stage compression suction temperature sensor 22 and the high stage compression suction pressure sensor 23 are provided.
 制御部20は、高段圧縮吸入温度センサ22が検出する高段圧縮吸入温度T1と、高段圧縮吸入圧力センサ23が検出する高段圧縮吸入圧力P1での飽和温度Tsat1との温度差ΔTが所定値以上となるように流量制御弁17の開度制御を行う。この制御部20による流量制御弁17の開度制御によって、高段圧縮機構1bに液冷媒が導入されることが防止される。ここで、温度差ΔTが0K以上であれば高段圧縮機構1bの液圧縮の可能性は低くなるが、制御部20は、液圧縮を確実に防止するため、温度差ΔTの所定値を3Kや5K程度にして液圧縮防止の余裕を持たせている。 The control unit 20 determines that the temperature difference ΔT between the high stage compression suction temperature T1 detected by the high stage compression suction temperature sensor 22 and the saturation temperature Tsat1 at the high stage compression suction pressure P1 detected by the high stage compression suction pressure sensor 23 is The opening degree of the flow control valve 17 is controlled so as to be equal to or greater than a predetermined value. By controlling the opening degree of the flow control valve 17 by the controller 20, the liquid refrigerant is prevented from being introduced into the high-stage compression mechanism 1b. Here, if the temperature difference ΔT is equal to or greater than 0K, the possibility of liquid compression of the high-stage compression mechanism 1b decreases, but the control unit 20 sets the predetermined value of the temperature difference ΔT to 3K in order to reliably prevent liquid compression. Or about 5K to provide a margin for preventing liquid compression.
 具体的に、制御部20は、温度差ΔTが上限値以上の場合に流量制御弁17の開度を増加させ、下限値未満の場合に流量制御弁17の開度を減少させる。なお、制御部20は、温度差ΔTの絶対値に基づいたリニアな開度制御を行ってもよい。また、制御部20は、温度差ΔTを所定値に近づけるPID制御による開度制御を行ってもよい。 Specifically, the control unit 20 increases the opening degree of the flow control valve 17 when the temperature difference ΔT is equal to or greater than the upper limit value, and decreases the opening degree of the flow control valve 17 when the temperature difference ΔT is less than the lower limit value. The control unit 20 may perform linear opening degree control based on the absolute value of the temperature difference ΔT. Further, the control unit 20 may perform opening degree control by PID control that brings the temperature difference ΔT closer to a predetermined value.
 なお、高段圧縮吸入圧力センサ23は、中間接続点PTと低段圧縮機構1aとの間に設けた高段圧縮吸入圧力センサ23aとしてもよいし、流量制御弁17と中間接続点PTとの間に設けられた高段圧縮吸入圧力センサ23bとしてもよい。 The high-stage compression suction pressure sensor 23 may be a high-stage compression suction pressure sensor 23a provided between the intermediate connection point PT and the low-stage compression mechanism 1a, or between the flow control valve 17 and the intermediate connection point PT. A high-stage compression suction pressure sensor 23b provided therebetween may be used.
(実施の形態3)
 図6は、実施の形態3における冷媒調整機構を含むヒートポンプ部16の構成図である。図6に示すように、本実施の形態3の冷媒調整機構は、中間接続点PTと高段圧縮機構1bとの間に設けられ、高段圧縮機構1bに吸入される冷媒温度を検出する高段圧縮吸入温度センサ22と、高段膨張機構3と気液分離器4との間に設けられ、高段膨張機構3で減圧膨張された冷媒の圧力を検出する高段膨張吐出圧力センサ24と、中間配管L1に設けられた流量制御弁17と、高段圧縮吸入温度センサ22および高段膨張吐出圧力センサ24の検出値に基づき流量制御弁17を制御する制御部20とを有する。
(Embodiment 3)
FIG. 6 is a configuration diagram of the heat pump unit 16 including the refrigerant adjustment mechanism in the third embodiment. As shown in FIG. 6, the refrigerant adjustment mechanism of the third embodiment is provided between the intermediate connection point PT and the high stage compression mechanism 1b, and detects the refrigerant temperature sucked into the high stage compression mechanism 1b. A high-stage expansion suction pressure sensor 24 provided between the high-stage expansion mechanism 3 and the gas-liquid separator 4 to detect the pressure of the refrigerant decompressed and expanded by the high-stage expansion mechanism 3; The flow control valve 17 provided in the intermediate pipe L1 and the control unit 20 that controls the flow control valve 17 based on the detection values of the high stage compression suction temperature sensor 22 and the high stage expansion discharge pressure sensor 24 are provided.
 制御部20は、高段圧縮吸入温度センサ22が検出する高段圧縮吸入温度T1と、高段膨張吐出圧力センサ24が検出する高段膨張吐出圧力P2での飽和温度Tsat2との温度差ΔTが所定値以上となるように流量制御弁17の開度制御を行う。この制御部20による流量制御弁17の開度制御によって、高段圧縮機構1bに液冷媒が導入されることが防止される。ここで、温度差ΔTが0K以上であれば高段圧縮機構1bの液圧縮の可能性は低くなるが、制御部20は、液圧縮を確実に防止するため、温度差ΔTの所定値を3Kや5K程度にして液圧縮防止の余裕を持たせている。 The control unit 20 determines that the temperature difference ΔT between the high stage compression suction temperature T1 detected by the high stage compression suction temperature sensor 22 and the saturation temperature Tsat2 at the high stage expansion discharge pressure P2 detected by the high stage expansion discharge pressure sensor 24 is The opening degree of the flow control valve 17 is controlled so as to be equal to or greater than a predetermined value. By controlling the opening degree of the flow control valve 17 by the controller 20, the liquid refrigerant is prevented from being introduced into the high-stage compression mechanism 1b. Here, if the temperature difference ΔT is equal to or greater than 0K, the possibility of liquid compression of the high-stage compression mechanism 1b decreases, but the control unit 20 sets the predetermined value of the temperature difference ΔT to 3K in order to reliably prevent liquid compression. Or about 5K to provide a margin for preventing liquid compression.
 具体的に、制御部20は、温度差ΔTが上限値以上の場合に流量制御弁17の開度を増加させ、下限値未満の場合に流量制御弁17の開度を減少させる。なお、制御部20は、温度差ΔTの絶対値に基づいたリニアな開度制御を行ってもよい。また、制御部20は、温度差ΔTを所定値に近づけるPID制御による開度制御を行ってもよい。 Specifically, the control unit 20 increases the opening degree of the flow control valve 17 when the temperature difference ΔT is equal to or greater than the upper limit value, and decreases the opening degree of the flow control valve 17 when the temperature difference ΔT is less than the lower limit value. The control unit 20 may perform linear opening degree control based on the absolute value of the temperature difference ΔT. Further, the control unit 20 may perform opening degree control by PID control that brings the temperature difference ΔT closer to a predetermined value.
 なお、高段膨張吐出圧力センサ24は、気液分離器4内の気体状態の圧力を検出する高段膨張吐出圧力センサ24aとしてもよいし、気液分離器4と流量制御弁17との間の中間配管L1内の圧力を検出する高段膨張吐出圧力センサ24bとしてもよい。なお、本実施の形態3では、流量制御弁17の圧損が小さい場合に適用するのが好ましい。 The high-stage expansion / discharge pressure sensor 24 may be a high-stage expansion / discharge pressure sensor 24 a that detects the pressure in the gas state in the gas-liquid separator 4, or between the gas-liquid separator 4 and the flow control valve 17. It is good also as the high stage expansion discharge pressure sensor 24b which detects the pressure in the intermediate pipe L1. In the third embodiment, it is preferable to apply when the pressure loss of the flow control valve 17 is small.
(実施の形態4)
 図7は、実施の形態4における冷媒調整機構を含むヒートポンプ部16の構成図である。図7に示すように、本実施の形態4の冷媒調整機構は、中間接続点PTと高段圧縮機構1bとの間に設けられ、高段圧縮機構1bに吸入される冷媒温度を検出する高段圧縮吸入温度センサ22と、高段膨張機構3と気液分離器4との間に設けられ、高段膨張機構3で減圧膨張された冷媒の温度を検出する高段膨張吐出温度センサ25と、中間配管L1に設けられた流量制御弁17と、高段圧縮吸入温度センサ22および高段膨張吐出温度センサ25の検出値に基づき流量制御弁17を制御する制御部20とを有する。
(Embodiment 4)
FIG. 7 is a configuration diagram of the heat pump unit 16 including the refrigerant adjustment mechanism in the fourth embodiment. As shown in FIG. 7, the refrigerant adjustment mechanism of the fourth embodiment is provided between the intermediate connection point PT and the high-stage compression mechanism 1b, and detects the refrigerant temperature sucked into the high-stage compression mechanism 1b. A high-stage expansion suction temperature sensor 22, a high-stage expansion discharge temperature sensor 25 that is provided between the high-stage expansion mechanism 3 and the gas-liquid separator 4 and detects the temperature of the refrigerant decompressed and expanded by the high-stage expansion mechanism 3; The flow control valve 17 provided in the intermediate pipe L1 and the control unit 20 that controls the flow control valve 17 based on the detection values of the high stage compression suction temperature sensor 22 and the high stage expansion / discharge temperature sensor 25 are provided.
 制御部20は、高段圧縮吸入温度センサ22が検出する高段圧縮吸入温度T1と、高段膨張吐出温度センサ25が検出する飽和温度Tsat3(T2)との温度差ΔTが所定値以上となるように流量制御弁17の開度制御を行う。なお、高段膨張吐出温度センサ25が検出する温度を飽和温度Tsat3とみなしている。この制御部20による流量制御弁17の開度制御によって、高段圧縮機構1bに液冷媒が導入されることが防止される。ここで、温度差ΔTが0K以上であれば高段圧縮機構1bの液圧縮の可能性は低くなるが、制御部20は、液圧縮を確実に防止するため、温度差ΔTの所定値を3Kや5K程度にして液圧縮防止の余裕を持たせている。 In the control unit 20, the temperature difference ΔT between the high-stage compression suction temperature T1 detected by the high-stage compression suction temperature sensor 22 and the saturation temperature Tsat3 (T2) detected by the high-stage expansion / discharge temperature sensor 25 becomes a predetermined value or more. In this way, the opening degree of the flow control valve 17 is controlled. Note that the temperature detected by the high stage expansion discharge temperature sensor 25 is regarded as the saturation temperature Tsat3. By controlling the opening degree of the flow control valve 17 by the controller 20, the liquid refrigerant is prevented from being introduced into the high-stage compression mechanism 1b. Here, if the temperature difference ΔT is equal to or greater than 0K, the possibility of liquid compression of the high-stage compression mechanism 1b decreases, but the control unit 20 sets the predetermined value of the temperature difference ΔT to 3K in order to reliably prevent liquid compression. Or about 5K to provide a margin for preventing liquid compression.
 具体的に、制御部20は、温度差ΔTが上限値以上の場合に流量制御弁17の開度を増加させ、下限値未満の場合に流量制御弁17の開度を減少させる。なお、制御部20は、温度差ΔTの絶対値に基づいたリニアな開度制御を行ってもよい。また、制御部20は、温度差ΔTを所定値に近づけるPID制御による開度制御を行ってもよい。 Specifically, the control unit 20 increases the opening degree of the flow control valve 17 when the temperature difference ΔT is equal to or greater than the upper limit value, and decreases the opening degree of the flow control valve 17 when the temperature difference ΔT is less than the lower limit value. The control unit 20 may perform linear opening degree control based on the absolute value of the temperature difference ΔT. Further, the control unit 20 may perform opening degree control by PID control that brings the temperature difference ΔT closer to a predetermined value.
 なお、高段膨張吐出温度センサ25は、気液分離器4内の気体状態の温度を検出する高段膨張吐出温度センサ25aとしてもよいし、気液分離器4と流量制御弁17との間の中間配管L1内の温度を検出する高段膨張吐出温度センサ25bとしてもよい。また、本実施の形態4では、流量制御弁17の圧損が小さい場合に適用するのが好ましい。 The high-stage expansion / discharge temperature sensor 25 may be a high-stage expansion / discharge temperature sensor 25 a that detects the temperature of the gas state in the gas-liquid separator 4 or between the gas-liquid separator 4 and the flow control valve 17. It is good also as the high stage expansion discharge temperature sensor 25b which detects the temperature in the intermediate pipe L1. Moreover, in this Embodiment 4, it is preferable to apply when the pressure loss of the flow control valve 17 is small.
(実施の形態2~4の変形例)
 実施の形態2~4の変形例は、上述した実施の形態2~4において、気液分離器4と流量制御弁17との間の中間配管L1上に、気液分離器4の気体側出口から吐出された冷媒を加熱する加熱手段を設けて冷媒の気化を促進するようにしたものである。
(Modifications of Embodiments 2 to 4)
The modifications of the second to fourth embodiments are different from the second to fourth embodiments described above in that the gas-side outlet of the gas-liquid separator 4 is disposed on the intermediate pipe L1 between the gas-liquid separator 4 and the flow rate control valve 17. A heating means for heating the refrigerant discharged from is provided to promote the vaporization of the refrigerant.
 例えば、図8に示すように、実施の形態2の構成において、加熱手段として、気液分離器4と流量制御弁17との間に内部熱交換器8を設ける。内部熱交換器8は、凝縮器2と高段膨張機構3とに接続され、凝縮器2から導出された冷媒の熱を用いて、気液分離器4の気体側出口からの導出された冷媒を加熱する。 For example, as shown in FIG. 8, in the configuration of the second embodiment, an internal heat exchanger 8 is provided between the gas-liquid separator 4 and the flow rate control valve 17 as a heating means. The internal heat exchanger 8 is connected to the condenser 2 and the high stage expansion mechanism 3 and uses the heat of the refrigerant derived from the condenser 2 to derive the refrigerant derived from the gas side outlet of the gas-liquid separator 4. Heat.
 なお、加熱手段を実施の形態3,4に適用する場合、高段膨張吐出圧力センサ24bあるいは高段膨張吐出温度センサ25bの配置は、気液分離器4と、加熱手段である内部熱交換器8との間に設ける。 When the heating means is applied to the third and fourth embodiments, the arrangement of the high stage expansion discharge pressure sensor 24b or the high stage expansion discharge temperature sensor 25b includes the gas-liquid separator 4 and the internal heat exchanger that is the heating means. 8 is provided.
 なお、加熱手段は、上述した内部熱交換器8の他に、ヒータなどの外部熱源を用いて気液分離器4の気体側出口からの導出された冷媒を加熱するようにしてもよい。 The heating means may heat the refrigerant led out from the gas side outlet of the gas-liquid separator 4 using an external heat source such as a heater in addition to the internal heat exchanger 8 described above.
(実施の形態5)
 本実施の形態5は、実施の形態2のヒートポンプ部16の構成に、実施の形態2~4の変形例に示した加熱手段を設けた場合に高段圧縮機構1bの液圧縮を防止するものである。
(Embodiment 5)
The fifth embodiment prevents liquid compression of the high-stage compression mechanism 1b when the heating means shown in the modifications of the second to fourth embodiments is provided in the configuration of the heat pump unit 16 of the second embodiment. It is.
 図9は、実施の形態5における冷媒調整機構を含むヒートポンプ部16の構成図である。図9に示すように、本実施の形態5の冷媒調整機構は、流量制御弁17と中間接続点PTとの間に設けられ、中間配管L1の内部熱交換器8(加熱手段)出口側における冷媒温度を検出する加熱冷媒温度センサ26と、中間配管L1に設けられた流量制御弁17と、加熱冷媒温度センサ26および高段圧縮吸入圧力センサ23の検出値に基づき流量制御弁17を制御する制御部20とを有する。 FIG. 9 is a configuration diagram of the heat pump unit 16 including the refrigerant adjustment mechanism in the fifth embodiment. As shown in FIG. 9, the refrigerant adjustment mechanism of the fifth embodiment is provided between the flow rate control valve 17 and the intermediate connection point PT, and is on the outlet side of the internal heat exchanger 8 (heating means) of the intermediate pipe L1. The flow control valve 17 is controlled based on the detected values of the heating refrigerant temperature sensor 26 that detects the refrigerant temperature, the flow control valve 17 provided in the intermediate pipe L1, the heating refrigerant temperature sensor 26, and the high-stage compression suction pressure sensor 23. And a control unit 20.
 制御部20は、加熱冷媒温度センサ26が検出する加熱冷媒温度T3と、高段圧縮吸入圧力センサ23が検出する高段圧縮吸入圧力P1での飽和温度Tsat1との温度差ΔTが所定値以上となるように流量制御弁17の開度制御を行う。この制御部20による流量制御弁17の開度制御によって、高段圧縮機構1bに液冷媒が導入されることが防止される。この実施形態の場合、温度差ΔTがプラスとなっていれば中間配管L1から合流される冷媒が過熱状態であることが分かるため、温度差ΔTに余裕を設けずとも高段圧縮機構1bの液圧縮を防止することができる。 The control unit 20 determines that the temperature difference ΔT between the heating refrigerant temperature T3 detected by the heating refrigerant temperature sensor 26 and the saturation temperature Tsat1 at the high stage compression suction pressure P1 detected by the high stage compression suction pressure sensor 23 is a predetermined value or more. Thus, the opening degree of the flow control valve 17 is controlled. By controlling the opening degree of the flow control valve 17 by the controller 20, the liquid refrigerant is prevented from being introduced into the high-stage compression mechanism 1b. In the case of this embodiment, if the temperature difference ΔT is positive, it can be seen that the refrigerant joined from the intermediate pipe L1 is in an overheated state, so the liquid of the high-stage compression mechanism 1b can be obtained without providing a margin for the temperature difference ΔT. Compression can be prevented.
 具体的に、制御部20は、温度差ΔTが上限値以上の場合に流量制御弁17の開度を増加させ、下限値未満の場合に流量制御弁17の開度を減少させる。なお、制御部20は、温度差ΔTの絶対値に基づいたリニアな開度制御を行ってもよい。また、制御部20は、温度差ΔTを所定値に近づけるPID制御による開度制御を行ってもよい。 Specifically, the control unit 20 increases the opening degree of the flow control valve 17 when the temperature difference ΔT is equal to or greater than the upper limit value, and decreases the opening degree of the flow control valve 17 when the temperature difference ΔT is less than the lower limit value. The control unit 20 may perform linear opening degree control based on the absolute value of the temperature difference ΔT. Further, the control unit 20 may perform opening degree control by PID control that brings the temperature difference ΔT closer to a predetermined value.
 なお、加熱冷媒温度センサ26は、内部熱交換器8出口と流量制御弁17との間に設けた加熱冷媒温度センサ26aとしてもよい。 The heating refrigerant temperature sensor 26 may be a heating refrigerant temperature sensor 26 a provided between the outlet of the internal heat exchanger 8 and the flow rate control valve 17.
(実施の形態6)
 本実施の形態6は、実施の形態3のヒートポンプ部16の構成に、実施の形態2~4の変形例に示した加熱手段を設けた場合に高段圧縮機構1bの液圧縮を防止するものである。
(Embodiment 6)
The sixth embodiment prevents liquid compression of the high-stage compression mechanism 1b when the heating means shown in the modifications of the second to fourth embodiments is provided in the configuration of the heat pump unit 16 of the third embodiment. It is.
 図10は、実施の形態6における冷媒調整機構を含むヒートポンプ部16の構成図である。図10に示すように、本実施の形態6の冷媒調整機構は、流量制御弁17と中間接続点PTとの間に設けられ、中間配管L1の内部熱交換器8(加熱手段)出口側における冷媒温度を検出する加熱冷媒温度センサ26と、高段膨張機構3と気液分離器4との間に設けられ、高段膨張機構3で減圧膨張された冷媒の圧力を検出する高段膨張吐出圧力センサ24と、中間配管L1に設けられた流量制御弁17と、加熱冷媒温度センサ26および高段膨張吐出圧力センサ24の検出値に基づき流量制御弁17を制御する制御部20とを有する。 FIG. 10 is a configuration diagram of the heat pump unit 16 including the refrigerant adjustment mechanism in the sixth embodiment. As shown in FIG. 10, the refrigerant adjustment mechanism of the sixth embodiment is provided between the flow rate control valve 17 and the intermediate connection point PT, and is on the outlet side of the internal heat exchanger 8 (heating means) of the intermediate pipe L1. A heating refrigerant temperature sensor 26 that detects the refrigerant temperature, a high stage expansion discharge that is provided between the high stage expansion mechanism 3 and the gas-liquid separator 4 and detects the pressure of the refrigerant decompressed and expanded by the high stage expansion mechanism 3. A pressure sensor 24, a flow control valve 17 provided in the intermediate pipe L1, and a control unit 20 that controls the flow control valve 17 based on detection values of the heating refrigerant temperature sensor 26 and the high stage expansion discharge pressure sensor 24 are provided.
 制御部20は、加熱冷媒温度センサ26が検出する加熱冷媒温度T3と、高段膨張吐出圧力センサ24が検出する高段膨張吐出圧力P2での飽和温度Tsat2との温度差ΔTが所定値以上となるように流量制御弁17の開度制御を行う。この制御部20による流量制御弁17の開度制御によって、高段圧縮機構1bに液冷媒が導入されることが防止される。この実施形態の場合、温度差ΔTがプラスとなっていれば中間配管L1から合流される冷媒が過熱状態であることが分かるため、温度差ΔTに余裕を設けずとも高段圧縮機構1bの液圧縮を防止することができる。 The controller 20 determines that the temperature difference ΔT between the heating refrigerant temperature T3 detected by the heating refrigerant temperature sensor 26 and the saturation temperature Tsat2 at the high stage expansion discharge pressure P2 detected by the high stage expansion discharge pressure sensor 24 is equal to or greater than a predetermined value. Thus, the opening degree of the flow control valve 17 is controlled. By controlling the opening degree of the flow control valve 17 by the controller 20, the liquid refrigerant is prevented from being introduced into the high-stage compression mechanism 1b. In the case of this embodiment, if the temperature difference ΔT is positive, it can be seen that the refrigerant joined from the intermediate pipe L1 is in an overheated state, so the liquid of the high-stage compression mechanism 1b can be obtained without providing a margin for the temperature difference ΔT. Compression can be prevented.
 具体的に、制御部20は、温度差ΔTが上限値以上の場合に流量制御弁17の開度を増加させ、下限値未満の場合に流量制御弁17の開度を減少させる。なお、制御部20は、温度差ΔTの絶対値に基づいたリニアな開度制御を行ってもよい。また、制御部20は、温度差ΔTを所定値に近づけるPID制御による開度制御を行ってもよい。 Specifically, the control unit 20 increases the opening degree of the flow control valve 17 when the temperature difference ΔT is equal to or greater than the upper limit value, and decreases the opening degree of the flow control valve 17 when the temperature difference ΔT is less than the lower limit value. The control unit 20 may perform linear opening degree control based on the absolute value of the temperature difference ΔT. Further, the control unit 20 may perform opening degree control by PID control that brings the temperature difference ΔT closer to a predetermined value.
 なお、高段膨張吐出圧力センサ24は、気液分離器4内の気体状態の圧力を検出する高段膨張吐出圧力センサ24aとしてもよいし、気液分離器4と内部熱交換器8との間の中間配管L1内の圧力を検出する高段膨張吐出圧力センサ24bとしてもよい。また、加熱冷媒温度センサ26は、内部熱交換器8出口と流量制御弁17との間に設けた加熱冷媒温度センサ26aとしてもよい。なお、本実施の形態6では、流量制御弁17および内部熱交換器8の圧損が小さい場合に適用するのが好ましい。 The high-stage expansion / discharge pressure sensor 24 may be a high-stage expansion / discharge pressure sensor 24 a that detects the gas pressure in the gas-liquid separator 4, or the gas-liquid separator 4 and the internal heat exchanger 8. A high-stage expansion / discharge pressure sensor 24b for detecting the pressure in the intermediate pipe L1 may be used. The heating refrigerant temperature sensor 26 may be a heating refrigerant temperature sensor 26 a provided between the outlet of the internal heat exchanger 8 and the flow rate control valve 17. In addition, in this Embodiment 6, it is preferable to apply when the pressure loss of the flow control valve 17 and the internal heat exchanger 8 is small.
(実施の形態7)
 本実施の形態7は、実施の形態4のヒートポンプ部16の構成に、実施の形態2~4の変形例に示した加熱手段を設けた場合に高段圧縮機構1bの液圧縮を防止するものである。
(Embodiment 7)
The seventh embodiment prevents liquid compression of the high-stage compression mechanism 1b when the heating means shown in the modification examples of the second to fourth embodiments is provided in the configuration of the heat pump unit 16 of the fourth embodiment. It is.
 図11は、実施の形態7における冷媒調整機構を含むヒートポンプ部16の構成図である。図11に示すように、本実施の形態7の冷媒調整機構は、流量制御弁17と中間接続点PTとの間に設けられ、中間配管L1の内部熱交換器8(加熱手段)出口側における冷媒温度を検出する加熱冷媒温度センサ26と、高段膨張機構3と気液分離器4との間に設けられ、高段膨張機構3で減圧膨張された冷媒の温度を検出する高段膨張吐出温度センサ25と、中間配管L1に設けられた流量制御弁17と、加熱冷媒温度センサ26および高段膨張吐出温度センサ25の検出値に基づき流量制御弁17を制御する制御部20とを有する。 FIG. 11 is a configuration diagram of the heat pump unit 16 including the refrigerant adjustment mechanism in the seventh embodiment. As shown in FIG. 11, the refrigerant adjustment mechanism of the seventh embodiment is provided between the flow rate control valve 17 and the intermediate connection point PT, and is on the outlet side of the internal heat exchanger 8 (heating means) of the intermediate pipe L1. A heating refrigerant temperature sensor 26 that detects the refrigerant temperature, and a high stage expansion discharge that is provided between the high stage expansion mechanism 3 and the gas-liquid separator 4 and detects the temperature of the refrigerant decompressed and expanded by the high stage expansion mechanism 3. It has a temperature sensor 25, a flow rate control valve 17 provided in the intermediate pipe L1, and a control unit 20 that controls the flow rate control valve 17 based on detected values of the heating refrigerant temperature sensor 26 and the high stage expansion discharge temperature sensor 25.
 制御部20は、加熱冷媒温度センサ26が検出する加熱冷媒温度T3と、高段膨張吐出温度センサ25が検出する飽和温度Tsat3(T2)との温度差ΔTが所定値以上となるように流量制御弁17の開度制御を行う。この制御部20による流量制御弁17の開度制御によって、高段圧縮機構1bに液冷媒が導入されることが防止される。この実施形態の場合、温度差ΔTがプラスとなっていれば中間配管L1から合流される冷媒が過熱状態であることが分かるため、温度差ΔTに余裕を設けずとも高段圧縮機構1bの液圧縮を防止することができる。 The control unit 20 controls the flow rate so that the temperature difference ΔT between the heating refrigerant temperature T3 detected by the heating refrigerant temperature sensor 26 and the saturation temperature Tsat3 (T2) detected by the high stage expansion discharge temperature sensor 25 becomes a predetermined value or more. The opening degree of the valve 17 is controlled. By controlling the opening degree of the flow control valve 17 by the controller 20, the liquid refrigerant is prevented from being introduced into the high-stage compression mechanism 1b. In the case of this embodiment, if the temperature difference ΔT is positive, it can be seen that the refrigerant joined from the intermediate pipe L1 is in an overheated state, so the liquid of the high-stage compression mechanism 1b can be obtained without providing a margin for the temperature difference ΔT. Compression can be prevented.
 具体的に、制御部20は、温度差ΔTが上限値以上の場合に流量制御弁17の開度を増加させ、下限値未満の場合に流量制御弁17の開度を減少させる。なお、制御部20は、温度差ΔTの絶対値に基づいたリニアな開度制御を行ってもよい。また、制御部20は、温度差ΔTを所定値に近づけるPID制御による開度制御を行ってもよい。 Specifically, the control unit 20 increases the opening degree of the flow control valve 17 when the temperature difference ΔT is equal to or greater than the upper limit value, and decreases the opening degree of the flow control valve 17 when the temperature difference ΔT is less than the lower limit value. The control unit 20 may perform linear opening degree control based on the absolute value of the temperature difference ΔT. Further, the control unit 20 may perform opening degree control by PID control that brings the temperature difference ΔT closer to a predetermined value.
 なお、高段膨張吐出温度センサ25は、気液分離器4内の気体状態の温度を検出する高段膨張吐出温度センサ25aとしてもよいし、気液分離器4と内部熱交換器8との間の中間配管L1内の温度を検出する高段膨張吐出温度センサ25bとしてもよい。また、加熱冷媒温度センサ26は、内部熱交換器8出口と流量制御弁17との間に設けた加熱冷媒温度センサ26aとしてもよい。なお、本実施の形態7では、流量制御弁17および内部熱交換器8の圧損が小さい場合に適用するのが好ましい。 The high-stage expansion / discharge temperature sensor 25 may be a high-stage expansion / discharge temperature sensor 25 a that detects the temperature of the gas state in the gas-liquid separator 4, or the gas-liquid separator 4 and the internal heat exchanger 8. A high-stage expansion / discharge temperature sensor 25b that detects the temperature in the intermediate pipe L1 may be used. The heating refrigerant temperature sensor 26 may be a heating refrigerant temperature sensor 26 a provided between the outlet of the internal heat exchanger 8 and the flow rate control valve 17. In addition, in this Embodiment 7, it is preferable to apply when the pressure loss of the flow control valve 17 and the internal heat exchanger 8 is small.
(実施の形態5~7の変形例)
 実施の形態5~7の変形例は、上述した実施の形態5~7において、加熱手段である内部熱交換器8と流量制御弁17との配置を逆にしたものである。
(Modifications of Embodiments 5 to 7)
The modified examples of the fifth to seventh embodiments are obtained by reversing the arrangement of the internal heat exchanger 8 as the heating means and the flow rate control valve 17 in the above-described fifth to seventh embodiments.
 例えば、図12に示すように、実施の形態5の構成において、流量制御弁17を内部熱交換器8の上流側(気液分離器4側)に設ける。 For example, as shown in FIG. 12, in the configuration of the fifth embodiment, the flow control valve 17 is provided on the upstream side (gas-liquid separator 4 side) of the internal heat exchanger 8.
 なお、図12に示すように、実施の形態5~7の変形例では、高段膨張吐出温度センサ25は内部熱交換器8と中間接続点PTとの間に設けることで、実施の形態5~7と同様の効果を得ることができる。 As shown in FIG. 12, in the modifications of the fifth to seventh embodiments, the high stage expansion discharge temperature sensor 25 is provided between the internal heat exchanger 8 and the intermediate connection point PT, so that the fifth embodiment It is possible to obtain the same effects as those of .about.7.
 1 圧縮機構
 1a 低段圧縮機構
 1b 高段圧縮機構
 2 凝縮器
 2a 加熱器
 3 高段膨張機構
 4 気液分離器
 4L 液側連通口
 4V 気体側連通口
 5 低段膨張機構
 6 蒸発器
 7 開閉制御弁
 8 内部熱交換器
 10 排熱回収ヒートポンプ装置
 12 蒸気生成部
 14 温水供給部
 16 ヒートポンプ部
 17 流量制御弁
 20 制御部
 21 レベルセンサ
 22 高段圧縮吸入温度センサ
 23,23a,23b 高段圧縮吸入圧力センサ
 24,24a,24b 高段膨張吐出圧力センサ
 25,25a,25b 高段膨張吐出温度センサ
 26,26a 加熱冷媒温度センサ
 29 熱源温水温度センサ
 30 給水経路
 32 温水経路
 42 水蒸気分離器
 44 蒸気供給経路
 46 水循環経路
 52,58 インバータ
 ha,hb 液面位置
 L1 中間配管
DESCRIPTION OF SYMBOLS 1 Compression mechanism 1a Low stage compression mechanism 1b High stage compression mechanism 2 Condenser 2a Heater 3 High stage expansion mechanism 4 Gas-liquid separator 4L Liquid side communication port 4V Gas side communication port 5 Low stage expansion mechanism 6 Evaporator 7 Open / close control Valve 8 Internal heat exchanger 10 Waste heat recovery heat pump device 12 Steam generation unit 14 Hot water supply unit 16 Heat pump unit 17 Flow control valve 20 Control unit 21 Level sensor 22 High-stage compression suction temperature sensor 23, 23a, 23b High-stage compression suction pressure Sensors 24, 24a, 24b High stage expansion discharge pressure sensors 25, 25a, 25b High stage expansion discharge temperature sensors 26, 26a Heated refrigerant temperature sensor 29 Heat source hot water temperature sensor 30 Water supply path 32 Hot water path 42 Steam separator 44 Steam supply path 46 Water circulation path 52, 58 Inverter ha, hb Liquid level position L1 Intermediate piping

Claims (17)

  1.  外部熱源から回収した熱で冷媒を蒸発させる蒸発器と、前記蒸発器で蒸発された冷媒を圧縮する低段圧縮機構と、前記低段圧縮機構で圧縮された冷媒を圧縮する高段圧縮機構と、前記高段圧縮機構で圧縮された冷媒を凝縮させ被加熱水を加熱する凝縮器と、前記凝縮器によって凝縮された冷媒を減圧膨張する高段膨張機構と、前記高段膨張機構から導入された冷媒を気液分離する気液分離器と、前記気液分離器の液側出口から吐出された冷媒をさらに減圧膨張して前記蒸発器に導入する低段膨張機構と、前記気液分離器の気体側出口から吐出された冷媒を前記低段圧縮機構の吐出口と前記高段圧縮機構の吸入口との間に導入する中間配管と、を備えた排熱回収ヒートポンプ装置において、
     前記気体側出口から吐出された冷媒と前記低段圧縮機構で圧縮された冷媒との混合冷媒を所定値以上の過熱度を有する気体冷媒として前記高段圧縮機構の吸入口に導入する冷媒調整機構を設けたことを特徴とする排熱回収ヒートポンプ装置。
    An evaporator that evaporates the refrigerant with heat recovered from an external heat source; a low-stage compression mechanism that compresses the refrigerant evaporated by the evaporator; and a high-stage compression mechanism that compresses the refrigerant compressed by the low-stage compression mechanism; A condenser that condenses the refrigerant compressed by the high-stage compression mechanism and heats the water to be heated; a high-stage expansion mechanism that decompresses and expands the refrigerant condensed by the condenser; and the high-stage expansion mechanism. A gas-liquid separator that separates the refrigerant from the liquid, a low-stage expansion mechanism that further expands the refrigerant discharged from the liquid-side outlet of the gas-liquid separator under reduced pressure, and introduces the refrigerant into the evaporator; and the gas-liquid separator In the exhaust heat recovery heat pump device comprising: an intermediate pipe for introducing the refrigerant discharged from the gas side outlet between the discharge port of the low-stage compression mechanism and the suction port of the high-stage compression mechanism,
    A refrigerant adjustment mechanism that introduces a mixed refrigerant of the refrigerant discharged from the gas side outlet and the refrigerant compressed by the low-stage compression mechanism into the suction port of the high-stage compression mechanism as a gas refrigerant having a degree of superheat above a predetermined value. An exhaust heat recovery heat pump device characterized by comprising:
  2.  前記冷媒調整機構は、
     前記気液分離器に設けられ、液面位置を検出するレベルセンサと、
     前記中間配管に設けられた開閉制御弁と、
     前記レベルセンサにより前記液面位置が前記中間配管への気体側連通口に基づいた所定の位置に達した場合に、前記開閉制御弁を閉制御する制御部と、
     を備えたことを特徴とする請求項1に記載の排熱回収ヒートポンプ装置。
    The refrigerant adjustment mechanism is
    A level sensor that is provided in the gas-liquid separator and detects a liquid surface position;
    An open / close control valve provided in the intermediate pipe;
    A control unit that controls to close the open / close control valve when the level sensor reaches a predetermined position based on a gas side communication port to the intermediate pipe;
    The exhaust heat recovery heat pump device according to claim 1, comprising:
  3.  前記冷媒調整機構は、
     前記高段圧縮機構に吸入される冷媒温度を検出する高段圧縮吸入温度センサと、
     前記高段圧縮機構に吸入される冷媒圧力を検出する高段圧縮吸入圧力センサと、
     前記中間配管に設けられた流量制御弁と、
     前記高段圧縮吸入温度センサおよび前記高段圧縮吸入圧力センサの検出値に基づき前記流量制御弁を制御する制御部と、
     を備えたことを特徴とする請求項1に記載の排熱回収ヒートポンプ装置。
    The refrigerant adjustment mechanism is
    A high-stage compression suction temperature sensor for detecting a refrigerant temperature sucked into the high-stage compression mechanism;
    A high-stage compression suction pressure sensor for detecting a refrigerant pressure sucked into the high-stage compression mechanism;
    A flow control valve provided in the intermediate pipe;
    A control unit that controls the flow rate control valve based on detection values of the high-stage compression suction temperature sensor and the high-stage compression suction pressure sensor;
    The exhaust heat recovery heat pump device according to claim 1, comprising:
  4.  前記制御部は、前記高段圧縮吸入温度センサの検出値と前記高段圧縮吸入圧力センサの検出値から算出された飽和冷媒温度との温度差を所定値以上とするよう、前記流量制御弁の開度を調整することを特徴とする請求項3に記載の排熱回収ヒートポンプ装置。 The controller controls the flow rate control valve so that a temperature difference between a detected value of the high-stage compression suction temperature sensor and a saturated refrigerant temperature calculated from a detection value of the high-stage compression suction pressure sensor is equal to or greater than a predetermined value. The exhaust heat recovery heat pump device according to claim 3, wherein the opening degree is adjusted.
  5.  前記冷媒調整機構は、
     前記高段圧縮機構に吸入される冷媒温度を検出する高段圧縮吸入温度センサと、
     前記高段膨張機構で減圧膨張された冷媒の圧力を検出する高段膨張吐出圧力センサと、
     前記中間配管に設けられた流量制御弁と、
     前記高段圧縮吸入温度センサおよび前記高段膨張吐出圧力センサの検出値に基づき前記流量制御弁を制御する制御部と、
     を備えたことを特徴とする請求項1に記載の排熱回収ヒートポンプ装置。
    The refrigerant adjustment mechanism is
    A high-stage compression suction temperature sensor for detecting a refrigerant temperature sucked into the high-stage compression mechanism;
    A high stage expansion discharge pressure sensor that detects the pressure of the refrigerant decompressed and expanded by the high stage expansion mechanism;
    A flow control valve provided in the intermediate pipe;
    A control unit for controlling the flow rate control valve based on detection values of the high stage compression suction temperature sensor and the high stage expansion discharge pressure sensor;
    The exhaust heat recovery heat pump device according to claim 1, comprising:
  6.  前記制御部は、前記高段圧縮吸入温度センサの検出値と前記高段膨張吐出圧力センサの検出値から算出された飽和冷媒温度との温度差を所定値以上とするよう、前記流量制御弁の開度を調整することを特徴とする請求項5に記載の排熱回収ヒートポンプ装置。 The controller controls the flow rate control valve so that a temperature difference between a detected value of the high stage compression suction temperature sensor and a saturated refrigerant temperature calculated from a detected value of the high stage expansion discharge pressure sensor is equal to or greater than a predetermined value. The exhaust heat recovery heat pump device according to claim 5, wherein the opening degree is adjusted.
  7.  前記冷媒調整機構は、
     前記高段圧縮機構に吸入される冷媒温度を検出する高段圧縮吸入温度センサと、
     前記高段膨張機構で減圧膨張された冷媒の温度を検出する高段膨張吐出温度センサと、
     前記中間配管に設けられた流量制御弁と、
     前記高段圧縮吸入温度センサおよび前記高段膨張吐出温度センサの検出値に基づき前記流量制御弁を制御する制御部と、
     を備えたことを特徴とする請求項1に記載の排熱回収ヒートポンプ装置。
    The refrigerant adjustment mechanism is
    A high-stage compression suction temperature sensor for detecting a refrigerant temperature sucked into the high-stage compression mechanism;
    A high stage expansion discharge temperature sensor for detecting the temperature of the refrigerant decompressed and expanded by the high stage expansion mechanism;
    A flow control valve provided in the intermediate pipe;
    A control unit that controls the flow rate control valve based on detection values of the high-stage compression suction temperature sensor and the high-stage expansion / discharge temperature sensor;
    The exhaust heat recovery heat pump device according to claim 1, comprising:
  8.  前記制御部は、前記高段圧縮吸入温度センサの検出値と前記高段膨張吐出温度センサの検出値との温度差を所定値以上とするよう、前記流量制御弁の開度を調整することを特徴とする請求項7に記載の排熱回収ヒートポンプ装置。 The control unit adjusts the opening of the flow control valve so that a temperature difference between a detection value of the high-stage compression suction temperature sensor and a detection value of the high-stage expansion / discharge temperature sensor is equal to or greater than a predetermined value. The exhaust heat recovery heat pump device according to claim 7,
  9.  前記中間配管には、前記気液分離器の気体側出口から吐出された冷媒を加熱する加熱手段が設けられたことを特徴とする請求項3~8のいずれか1項に記載の排熱回収ヒートポンプ装置。 The exhaust heat recovery according to any one of claims 3 to 8, wherein the intermediate pipe is provided with heating means for heating the refrigerant discharged from the gas side outlet of the gas-liquid separator. Heat pump device.
  10.  前記冷媒調整機構は、
     前記中間配管に設けられ、気液分離器から導出された冷媒を加熱する加熱手段と、
     前記中間配管の前記加熱手段出口側における冷媒温度を検出する加熱冷媒温度センサと、
     前記高段圧縮機構に吸入される冷媒圧力を検出する高段圧縮吸入圧力センサと、
     前記中間配管に設けられた流量制御弁と、
     前記加熱冷媒温度センサおよび前記高段圧縮吸入圧力センサの検出値に基づき前記流量制御弁を制御する制御部と、
     を備えたことを特徴とする請求項1に記載の排熱回収ヒートポンプ装置。
    The refrigerant adjustment mechanism is
    A heating means provided in the intermediate pipe for heating the refrigerant led out from the gas-liquid separator;
    A heating refrigerant temperature sensor for detecting a refrigerant temperature on the heating means outlet side of the intermediate pipe;
    A high-stage compression suction pressure sensor for detecting a refrigerant pressure sucked into the high-stage compression mechanism;
    A flow control valve provided in the intermediate pipe;
    A control unit that controls the flow rate control valve based on detection values of the heating refrigerant temperature sensor and the high-stage compression suction pressure sensor;
    The exhaust heat recovery heat pump device according to claim 1, comprising:
  11.  前記制御部は、前記加熱冷媒温度センサの検出値と前記高段圧縮吸入圧力センサの検出値から算出された飽和冷媒温度との温度差を所定値以上とするよう、前記流量制御弁の開度を調整することを特徴とする請求項10に記載の排熱回収ヒートポンプ装置。 The control unit opens the flow rate control valve so that a temperature difference between a detected value of the heating refrigerant temperature sensor and a saturated refrigerant temperature calculated from a detected value of the high-stage compression suction pressure sensor is equal to or greater than a predetermined value. The exhaust heat recovery heat pump apparatus according to claim 10, wherein the exhaust heat recovery heat pump apparatus is adjusted.
  12.  前記冷媒調整機構は、
     前記中間配管に設けられ、気液分離器から導出された冷媒を加熱する加熱手段と、
     前記中間配管の前記加熱手段出口側における冷媒温度を検出する加熱冷媒温度センサと、
     前記高段膨張機構で減圧膨張された冷媒の圧力を検出する高段膨張吐出圧力センサと、
     前記中間配管に設けられた流量制御弁と、
     前記高段膨張吐出圧力センサおよび前記加熱冷媒温度センサの検出値に基づき前記流量制御弁を制御する制御部と、
     を備えたことを特徴とする請求項1に記載の排熱回収ヒートポンプ装置。
    The refrigerant adjustment mechanism is
    A heating means provided in the intermediate pipe for heating the refrigerant led out from the gas-liquid separator;
    A heating refrigerant temperature sensor for detecting a refrigerant temperature on the heating means outlet side of the intermediate pipe;
    A high stage expansion discharge pressure sensor that detects the pressure of the refrigerant decompressed and expanded by the high stage expansion mechanism;
    A flow control valve provided in the intermediate pipe;
    A control unit that controls the flow rate control valve based on detection values of the high stage expansion discharge pressure sensor and the heating refrigerant temperature sensor;
    The exhaust heat recovery heat pump device according to claim 1, comprising:
  13.  前記制御部は、前記加熱冷媒温度センサの検出値と前記高段膨張吐出圧力センサの検出値から算出された飽和冷媒温度との温度差を所定値以上とするよう、前記流量制御弁の開度を調整することを特徴とする請求項12に記載の排熱回収ヒートポンプ装置。 The control unit opens the flow rate control valve so that a temperature difference between a detected value of the heating refrigerant temperature sensor and a saturated refrigerant temperature calculated from a detected value of the high stage expansion discharge pressure sensor is equal to or greater than a predetermined value. The exhaust heat recovery heat pump device according to claim 12, wherein the exhaust heat recovery heat pump device is adjusted.
  14.  前記冷媒調整機構は、
     前記中間配管に設けられ、気液分離器から導出された冷媒を加熱する加熱手段と、
     前記中間配管の前記加熱手段出口側における冷媒温度を検出する加熱冷媒温度センサと、
     前記高段膨張機構で減圧膨張された冷媒の温度を検出する高段膨張吐出温度センサと、
     前記中間配管に設けられた流量制御弁と、
     前記高段膨張吐出温度センサおよび前記加熱冷媒温度センサの検出値に基づき前記流量制御弁を制御する制御部と、
     を備えたことを特徴とする請求項1に記載の排熱回収ヒートポンプ装置。
    The refrigerant adjustment mechanism is
    A heating means provided in the intermediate pipe for heating the refrigerant led out from the gas-liquid separator;
    A heating refrigerant temperature sensor for detecting a refrigerant temperature on the heating means outlet side of the intermediate pipe;
    A high stage expansion discharge temperature sensor for detecting the temperature of the refrigerant decompressed and expanded by the high stage expansion mechanism;
    A flow control valve provided in the intermediate pipe;
    A control unit that controls the flow rate control valve based on detection values of the high-stage expansion discharge temperature sensor and the heating refrigerant temperature sensor;
    The exhaust heat recovery heat pump device according to claim 1, comprising:
  15.  前記制御部は、前記加熱冷媒温度センサの検出値と前記高段膨張吐出温度センサの検出値との温度差を所定値以上とするよう、前記流量制御弁の開度を調整することを特徴とする請求項14に記載の排熱回収ヒートポンプ装置。 The control unit adjusts the opening of the flow control valve so that a temperature difference between a detection value of the heating refrigerant temperature sensor and a detection value of the high stage expansion discharge temperature sensor is equal to or greater than a predetermined value. The exhaust heat recovery heat pump device according to claim 14.
  16.  前記加熱手段は、前記凝縮器から吐出された冷媒と前記中間配管を流通する冷媒との熱交換を行う内部熱交換器であることを特徴とする請求項9~15のいずれか1項に記載の排熱回収ヒートポンプ装置。 The heating means is an internal heat exchanger that exchanges heat between the refrigerant discharged from the condenser and the refrigerant flowing through the intermediate pipe. Exhaust heat recovery heat pump device.
  17.  前記冷媒は、P-h線図上での過熱域において飽和ガス線と等エントロピー線とが2点以上の交点もしくは接点を有する特性を持つことを特徴とする請求項1~16のいずれか1項に記載の排熱回収ヒートポンプ装置。 The refrigerant according to any one of claims 1 to 16, wherein the refrigerant has a characteristic that a saturated gas line and an isentropic line have two or more intersections or contact points in a superheated region on a Ph diagram. The exhaust heat recovery heat pump device according to Item.
PCT/JP2015/081798 2015-11-11 2015-11-11 Exhaust heat recovery heat pump device WO2017081781A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/081798 WO2017081781A1 (en) 2015-11-11 2015-11-11 Exhaust heat recovery heat pump device
JP2017549926A JP6680300B2 (en) 2015-11-11 2015-11-11 Exhaust heat recovery heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/081798 WO2017081781A1 (en) 2015-11-11 2015-11-11 Exhaust heat recovery heat pump device

Publications (1)

Publication Number Publication Date
WO2017081781A1 true WO2017081781A1 (en) 2017-05-18

Family

ID=58695951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081798 WO2017081781A1 (en) 2015-11-11 2015-11-11 Exhaust heat recovery heat pump device

Country Status (2)

Country Link
JP (1) JP6680300B2 (en)
WO (1) WO2017081781A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109579347A (en) * 2018-12-04 2019-04-05 南京天加环境科技有限公司 A kind of multi-line system and its control method that can be avoided compressor and return liquid
JP2020024046A (en) * 2018-08-06 2020-02-13 富士電機株式会社 Heat pump device
CN111023508A (en) * 2019-12-20 2020-04-17 Tcl空调器(中山)有限公司 Air conditioner control method, storage medium and air conditioner
EP4145061A1 (en) 2021-09-06 2023-03-08 Mitsubishi Heavy Industries Thermal Systems, Ltd. Refrigerating apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142001A (en) * 1997-11-06 1999-05-28 Daikin Ind Ltd Air conditioner
JP2006177597A (en) * 2004-12-22 2006-07-06 Hitachi Home & Life Solutions Inc Freezing equipment, and air conditioner using it
JP2010216687A (en) * 2009-03-13 2010-09-30 Daikin Ind Ltd Heat pump system
JP2014016079A (en) * 2012-07-06 2014-01-30 Daikin Ind Ltd Heat pump
JP2014119157A (en) * 2012-12-14 2014-06-30 Sharp Corp Heat pump type heating device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062966A (en) * 1992-06-16 1994-01-11 Matsushita Electric Ind Co Ltd Two-stage compression heat pump system
JP2001133058A (en) * 1999-11-05 2001-05-18 Matsushita Electric Ind Co Ltd Refrigeration cycle
JP2006138525A (en) * 2004-11-11 2006-06-01 Hitachi Home & Life Solutions Inc Freezing device, and air conditioner
JP4989507B2 (en) * 2008-02-15 2012-08-01 三菱電機株式会社 Refrigeration equipment
JP5681549B2 (en) * 2011-04-13 2015-03-11 高砂熱学工業株式会社 Refrigeration cycle method
WO2017081782A1 (en) * 2015-11-11 2017-05-18 富士電機株式会社 Exhaust heat recovery heat pump device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142001A (en) * 1997-11-06 1999-05-28 Daikin Ind Ltd Air conditioner
JP2006177597A (en) * 2004-12-22 2006-07-06 Hitachi Home & Life Solutions Inc Freezing equipment, and air conditioner using it
JP2010216687A (en) * 2009-03-13 2010-09-30 Daikin Ind Ltd Heat pump system
JP2014016079A (en) * 2012-07-06 2014-01-30 Daikin Ind Ltd Heat pump
JP2014119157A (en) * 2012-12-14 2014-06-30 Sharp Corp Heat pump type heating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020024046A (en) * 2018-08-06 2020-02-13 富士電機株式会社 Heat pump device
CN109579347A (en) * 2018-12-04 2019-04-05 南京天加环境科技有限公司 A kind of multi-line system and its control method that can be avoided compressor and return liquid
CN111023508A (en) * 2019-12-20 2020-04-17 Tcl空调器(中山)有限公司 Air conditioner control method, storage medium and air conditioner
EP4145061A1 (en) 2021-09-06 2023-03-08 Mitsubishi Heavy Industries Thermal Systems, Ltd. Refrigerating apparatus

Also Published As

Publication number Publication date
JP6680300B2 (en) 2020-04-15
JPWO2017081781A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
US10527330B2 (en) Refrigeration cycle device
JP5068966B2 (en) Heat pump heat recovery device
WO2017081781A1 (en) Exhaust heat recovery heat pump device
US11384965B2 (en) Refrigeration cycle apparatus performing a refrigerant circulation operation using a liquid pump
JP5278451B2 (en) Refrigeration cycle apparatus and hot water heater using the same
JP2002081767A (en) Air conditioner
JP2011080633A (en) Refrigerating cycle device and hot-water heating device
EP2770276B1 (en) Heat pump
JP2017044454A (en) Refrigeration cycle device and control method for the same
WO2013004233A1 (en) A method for controlling operation of a vapour compression system in a subcritical and a supercritical mode
JP6465218B2 (en) Waste heat recovery heat pump device
JP6119895B1 (en) Heat pump equipment
JP2000028208A (en) Controller for refrigerating apparatus
WO2014017345A1 (en) Heat pump
JP6406583B2 (en) Rankine cycle equipment
JP2006132875A (en) Heat pump type heating device
JP2017161105A (en) Heat pump type steam generator
JP2004286266A (en) Refrigeration device and heat pump type cooling and heating machine
JP4715852B2 (en) Heat pump water heater
JP6250428B2 (en) Refrigeration cycle equipment
JP6996208B2 (en) Rankine cycle system and its control method
JP6766239B2 (en) Refrigeration cycle equipment
JP4530056B2 (en) Heat pump type heating device
JP7243300B2 (en) heat pump system
JP4407756B2 (en) Heat pump type heating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908301

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017549926

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908301

Country of ref document: EP

Kind code of ref document: A1