JP4407756B2 - Heat pump type heating device - Google Patents

Heat pump type heating device Download PDF

Info

Publication number
JP4407756B2
JP4407756B2 JP2008029841A JP2008029841A JP4407756B2 JP 4407756 B2 JP4407756 B2 JP 4407756B2 JP 2008029841 A JP2008029841 A JP 2008029841A JP 2008029841 A JP2008029841 A JP 2008029841A JP 4407756 B2 JP4407756 B2 JP 4407756B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
pressure
discharge
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008029841A
Other languages
Japanese (ja)
Other versions
JP2008134052A (en
Inventor
進 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008029841A priority Critical patent/JP4407756B2/en
Publication of JP2008134052A publication Critical patent/JP2008134052A/en
Application granted granted Critical
Publication of JP4407756B2 publication Critical patent/JP4407756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、低温側の熱を高温側に移動させて流体を加熱する蒸気圧縮式のヒートポンプサイクルを用いた加熱装置に関するものであり、給湯装置や暖房装置などヒートポンプ式加熱装置で発生する温熱を利用する装置に適用して有効である。   TECHNICAL FIELD The present invention relates to a heating device using a vapor compression heat pump cycle that heats a fluid by moving heat on a low temperature side to a high temperature side, and heat generated by a heat pump heating device such as a hot water supply device or a heating device. It is effective when applied to the device to be used.

図6は、従来の技術に係るヒートポンプ式加熱装置の模式図であり、給湯装置や暖房装置など主に温熱を利用する一般的な装置の熱源機として利用されている。このヒートポンプ式加熱装置の一般的な冷媒回路は、冷媒を圧縮する圧縮機10、圧縮機10からの冷媒と被加熱流体とを熱交換させて冷媒を凝縮させる凝縮器20、冷媒を膨張させる膨張弁80、冷媒と機外空気とを熱交換させて冷媒を蒸発させる蒸発器30などを備えている。   FIG. 6 is a schematic diagram of a heat pump type heating device according to the prior art, which is used as a heat source device of a general device that mainly uses warm heat, such as a hot water supply device or a heating device. A general refrigerant circuit of this heat pump type heating device includes a compressor 10 that compresses refrigerant, a condenser 20 that condenses the refrigerant by exchanging heat between the refrigerant from the compressor 10 and the fluid to be heated, and an expansion that expands the refrigerant. A valve 80, an evaporator 30 for evaporating the refrigerant by exchanging heat between the refrigerant and outside air, and the like are provided.

このような構成で、冷媒は圧縮機10で圧縮され高温高圧になって凝縮器20に供給される。凝縮器20には被加熱流体が循環しているので、冷媒の熱はこの被加熱流体を加熱するために用いられる。被加熱流体を加熱して熱を失った冷媒は凝縮して膨張弁80で絞られ、蒸発器30で機外空気と熱交換し蒸発して圧縮機10に戻るようになる。このとき、冷媒は機外空気から熱を汲み上げるため、ガスや電気ヒータなどによる加熱装置に比べてエネルギー効率が高くなっている。   With such a configuration, the refrigerant is compressed by the compressor 10, becomes a high temperature and a high pressure, and is supplied to the condenser 20. Since the heated fluid circulates in the condenser 20, the heat of the refrigerant is used to heat the heated fluid. The refrigerant that has lost the heat by heating the fluid to be heated is condensed and throttled by the expansion valve 80, and is exchanged with the outside air by the evaporator 30 to evaporate and return to the compressor 10. At this time, since the refrigerant draws heat from the outside air, the energy efficiency is higher than that of a heating device such as a gas or an electric heater.

このような冷媒回路では、冷媒は凝縮器20で殆ど凝縮し、また蒸発器30で殆ど蒸発し、且つ、その際の過冷却度および過熱度は小さいので、例えば蒸発器30の蒸発温度や凝縮機20の凝縮温度を配管にサーミスタを取付けて管壁面温度を検出することにより概略的なサイクル過程を知ることができる。そして、所定のサイクル効率を達成するために蒸発器30の蒸発温度などを検出して、圧縮機10の運転周波数などを制御している。また、この種のヒートポンプ給湯機における従来技術として、特許文献1に示す技術がある。   In such a refrigerant circuit, the refrigerant is almost condensed in the condenser 20 and almost evaporated in the evaporator 30 and the degree of supercooling and superheat at that time is small. An approximate cycle process can be known by detecting the tube wall surface temperature by attaching a thermistor to the piping of the condensation temperature of the machine 20. And in order to achieve predetermined | prescribed cycle efficiency, the evaporating temperature of the evaporator 30 etc. are detected and the operating frequency etc. of the compressor 10 are controlled. Moreover, there exists a technique shown in patent document 1 as a prior art in this kind of heat pump water heater.

これは、図6のようなヒートポンプサイクルにおいて、蒸発器30の温度を検出する蒸発器温度検出器33と、圧縮機10の吸気側温度を検出する吸気側温度検出器12と、圧縮機10の吐出側温度を検出する吐出側温度検出器13と、蒸発器温度検出器33、吸気側温度検出器12および吐出側温度検出器13からの測定値に基づきサイクル効率が最適になるように圧縮機10の運転周波数を演算して圧縮機10を制御する演算制御部70と設けて、簡単、且つ、安価な構成でサイクル効率の最適化が図れるように圧縮機10を運転制御するものである。尚、図6中の符号は、後述する実施形態と対応するものである。
特開2002−139257号公報
This is because, in the heat pump cycle as shown in FIG. 6, the evaporator temperature detector 33 that detects the temperature of the evaporator 30, the intake side temperature detector 12 that detects the intake side temperature of the compressor 10, and the compressor 10. A compressor that optimizes cycle efficiency based on measured values from a discharge side temperature detector 13 that detects a discharge side temperature, an evaporator temperature detector 33, an intake side temperature detector 12, and a discharge side temperature detector 13. The operation control unit 70 that calculates the operation frequency of 10 and controls the compressor 10 is provided to control the operation of the compressor 10 so that the cycle efficiency can be optimized with a simple and inexpensive configuration. In addition, the code | symbol in FIG. 6 respond | corresponds to embodiment mentioned later.
JP 2002-139257 A

ヒートポンプ式加熱装置の基本機能は、加熱能力の確保であり、そのためには圧縮機と減圧手段とによって適正に圧力調整するとともに、必要な冷媒流量となるように制御することが重要である。特に、圧縮機の回転数を外気温度に応じても制御している場合で、高い加熱温度を目標とした運転を行う場合などは、圧縮機からの吐出圧力や吐出温度が所定値を超えないようにして装置を破損から保護する制御が必要となる。また、凝縮器に被加熱流体を循環させる循環ポンプにおいて、能力を超えて運転しないような保護制御を入れる場合もある。   The basic function of the heat pump type heating device is to ensure the heating capacity. For this purpose, it is important to adjust the pressure appropriately by the compressor and the pressure reducing means and to control the flow rate of the necessary refrigerant. In particular, when the rotation speed of the compressor is controlled according to the outside air temperature and the operation is performed with a high heating temperature as a target, the discharge pressure and discharge temperature from the compressor do not exceed predetermined values. Thus, it is necessary to control the device from damage. In some cases, the circulation pump that circulates the fluid to be heated in the condenser may include protection control that prevents operation beyond the capacity.

しかしながら、高外気温時などに、これらの保護的な制御が入ることによって加熱能力が不足する場合があるという問題がある。本発明は、この従来の問題に鑑みて成されたものであり、その目的は、保護的な制御を生かしつつ所定の加熱能力を確保することのできるヒートポンプ式加熱装置を提供することにある。   However, there is a problem that the heating capacity may be insufficient due to the entry of these protective controls at high outside temperatures. The present invention has been made in view of this conventional problem, and an object of the present invention is to provide a heat pump type heating apparatus capable of ensuring a predetermined heating capacity while making use of protective control.

本発明は上記目的を達成するために、下記の技術的手段を採用する The present invention, in order to achieve the above object, employing the technical means described below.

すなわち、請求項に記載の発明では、低温側の熱を高温側に移動させて流体を加熱する蒸気圧縮式のヒートポンプサイクルを用いた加熱装置であり、冷媒を吸入圧縮する圧縮機(10)と、圧縮機(10)が吐出する高温高圧の冷媒と被加熱流体とを熱交換させる高圧側熱交換器(20)と、高圧側熱交換器(20)から流出した冷媒を等エンタルピ的に減圧膨脹させるとともに、その絞り開度を可変できる可変式減圧手段(40、80)と、低温低圧の冷媒と空気とを熱交換させて冷媒を蒸発させる低圧側熱交換器(30)と、圧縮機(10)からの吐出温度(Th)を検出する吐出温度検出手段(13)、もしくは圧縮機(10)からの吐出圧力(Ph)を検出する吐出圧力検出手段(14)と、高圧側熱交換器(20)へ流入する被加熱流体の温度と高圧側熱交換器(20)から流出する冷媒の温度との温度差(Δt)を検出する温度差検出手段(15、16)と、上記各機器の作動を制御する制御手段(70)とを有し、
制御手段(70)は、吐出温度検出手段(13)にて検出される吐出温度(Th)が所定温度(Ts)よりも高くなるか、もしくは吐出圧力検出手段(14)にて検出される吐出圧力(Ph)が所定圧力(Ps)よりも高くなった場合、可変式減圧手段(40、80)での絞り開度を開くとともに、温度差検出手段(15、16)にて検出される温度差(Δt)に対する制御手段(70)で吐出温度(Th)、吐出圧力(Ph)、高圧側熱交換器(20)の冷媒出口の熱交換後温度(To)、高圧側熱交換器(20)の流体入口の入口水温(Ti)および外気温度のうち少なくともいずれか一つに基づいて算出される目標温度差(Δtt)の比率に応じて制御手段(70)で算出する圧縮機(10)の目標回転数(N)を補正回転数(N´)に増速補正して運転することを特徴としている。
That is , according to the first aspect of the present invention, there is provided a heating device using a vapor compression heat pump cycle that heats the fluid by moving the heat on the low temperature side to the high temperature side, and the compressor (10) that sucks and compresses the refrigerant. And the high-pressure side heat exchanger (20) for exchanging heat between the high-temperature and high-pressure refrigerant discharged from the compressor (10) and the fluid to be heated, and the refrigerant flowing out of the high-pressure side heat exchanger (20) in an enthalpy manner Variable pressure reducing means (40, 80) that can expand and reduce the throttle opening, a low-pressure heat exchanger (30) that evaporates the refrigerant by exchanging heat between low-temperature and low-pressure refrigerant and air, and compression Discharge temperature detection means (13) for detecting the discharge temperature (Th) from the compressor (10), or discharge pressure detection means (14) for detecting the discharge pressure (Ph) from the compressor (10), and high-pressure side heat Cover flowing into the exchanger (20) Temperature difference detection means (15, 16) for detecting the temperature difference (Δt) between the temperature of the thermal fluid and the temperature of the refrigerant flowing out from the high pressure side heat exchanger (20), and control means for controlling the operation of each of the above devices (70)
The control means (70) detects whether the discharge temperature (Th) detected by the discharge temperature detecting means (13) is higher than a predetermined temperature (Ts) or detected by the discharge pressure detecting means (14). When the pressure (Ph) is higher than the predetermined pressure (Ps), the throttle opening degree of the variable pressure reducing means (40, 80) is opened and the temperature detected by the temperature difference detecting means (15, 16). With respect to the difference (Δt), the discharge temperature (Th), the discharge pressure (Ph), the temperature after the heat exchange at the refrigerant outlet of the high pressure side heat exchanger (20) (To), the high pressure side heat exchanger ( depending on the ratio of the target temperature difference that will be calculated based on at least one of the fluid inlet of the inlet water temperature (Ti) and outside air temperature ([Delta] TT) of 20), a compressor for calculating the control unit (70) ( 10) The target rotational speed (N) is corrected to the corrected rotational speed (N ′ It is characterized by operating with increased speed correction.

請求項1に記載の発明によれば、圧縮機(10)からの吐出圧力(Ph)や吐出温度(Th)が所定圧力(Ps)や所定温度(Ts)を超えないように可変式減圧手段(40、80)での絞り開度を開いて装置を破損から保護する保護的な制御を行いつつ、絞り開度を開いたことによって所定の加熱能力より不足する分だけ圧縮機(10)の目標回転数(N)を補正回転数(N´)に増速補正して冷媒流量を増加させることにより、所定の加熱能力を確保することができる。 According to the invention described in claim 1 of this variable as the discharge pressure from the compressors (10) (Ph) and the discharge temperature (Th) is not greater than a predetermined pressure (Ps) and a predetermined temperature (Ts) The compressor (40, 80) opens the throttle opening to protect the device from breakage, while the compressor ( By increasing the target rotational speed (N) of 10) to the corrected rotational speed (N ′) and increasing the refrigerant flow rate, a predetermined heating capacity can be ensured.

これにより、例えば本加熱装置を給湯装置に用いた場合であれば、所定の時間内で所定の沸き上げ温度に沸き上げることができる。このように、本発明は特に、各種保護制御が働いて吐出圧力(Ph)吐出温度(Th)を維持できない場合に有効である Thereby, for example, if this heating device is used in a hot water supply device, it can be heated to a predetermined boiling temperature within a predetermined time. As described above, the present invention is particularly effective when various protection control functions and the discharge pressure (Ph) and the discharge temperature (Th ) cannot be maintained .

また、請求項に記載の発明では、請求項1に記載のヒートポンプ式加熱装置において、高圧側の冷媒圧力が冷媒の臨界圧力以上となる超臨界ヒートポンプサイクルを用いたことを特徴としている。この請求項に記載の発明によれば、超臨界ヒートポンプサイクルでは、温度差(Δt)制御や高圧(Ph)制御によって効率的な運転が可能なため、適正な補正回転数(N´)に合わせることでより運転効率を上げることが可能となる。 The invention according to claim 2 is characterized in that, in the heat pump heating apparatus according to claim 1, a supercritical heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant is used. According to the second aspect of the present invention, in the supercritical heat pump cycle, since efficient operation is possible by temperature difference (Δt) control and high pressure (Ph) control, an appropriate correction rotational speed (N ′) is achieved. By combining them, it becomes possible to increase the driving efficiency.

また、請求項に記載の発明では、請求項1または2に記載のヒートポンプ式加熱装置において、可変式減圧手段(40)は、高圧冷媒を減圧膨張させるノズル(41)を有し、ノズル(41)から噴射する高い速度の冷媒流により低圧側熱交換器(30)にて蒸発した気相冷媒を吸引すると共に、膨張エネルギーを圧力エネルギーに変換して圧縮機(10)の吸入圧を上昇させるエジェクタ(40)であることを特徴としている。 According to a third aspect of the present invention, in the heat pump heating apparatus according to the first or second aspect , the variable pressure reducing means (40) includes a nozzle (41) for decompressing and expanding the high-pressure refrigerant, 41) The gas-phase refrigerant evaporated in the low-pressure heat exchanger (30) is sucked by the high-speed refrigerant flow injected from 41), and the suction pressure of the compressor (10) is increased by converting the expansion energy into pressure energy. It is characterized by the ejector (40) to be made.

この請求項に記載の発明によれば、減圧手段にエジェクタを用いたエジェクタサイクルでは冷媒流量を増加させることで圧縮機(10)の吸入圧力(Pl)が上昇し、冷媒密度(D)がより大きくなり、補正回転数(N´)への増速が少なくて済むため、より効果的である。 According to the third aspect of the present invention, in the ejector cycle in which an ejector is used as the decompression means, the suction pressure (Pl) of the compressor (10) is increased by increasing the refrigerant flow rate, and the refrigerant density (D) is increased. This is more effective because it becomes larger and the speed increase to the correction rotational speed (N ′) is small.

また、請求項に記載の発明では、請求項1または2に記載のヒートポンプ式加熱装置において、可変式減圧手段(80)は、膨張弁(80)であることを特徴としている。この請求項に記載の発明によれば、減圧手段に膨張弁を用いた膨張弁サイクルにおいても同様の効果を得ることができる。ちなみに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。 According to a fourth aspect of the present invention, in the heat pump heating device according to the first or second aspect , the variable pressure reducing means (80) is an expansion valve (80). According to the fourth aspect of the present invention, the same effect can be obtained even in an expansion valve cycle in which an expansion valve is used as the pressure reducing means. Incidentally, the reference numerals in parentheses of the above means are examples showing the correspondence with the specific means described in the embodiments described later.

(第1実施形態)
以下、本発明の実施の形態について図面を用いて詳細に説明する。図1は、本発明の実施形態に係るエジェクタサイクルを用いたヒートポンプ式加熱装置の全体構成模式図である。本実施形態のヒートポンプ式加熱装置は、超臨界ヒートポンプサイクルを用いて給湯用水を高温(本実施形態での最大目標沸き上げ温度は90℃)に加熱して貯湯タンク1に貯湯しながら給湯を行うヒートポンプ式給湯装置に適用したものである。
(First embodiment)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram of the overall configuration of a heat pump heating apparatus using an ejector cycle according to an embodiment of the present invention. The heat pump type heating device of the present embodiment heats hot water supply water to a high temperature (the maximum target boiling temperature in this embodiment is 90 ° C.) using a supercritical heat pump cycle, and supplies hot water while storing hot water in the hot water storage tank 1. This is applied to a heat pump type hot water supply apparatus.

尚、超臨界ヒートポンプサイクルとは、高圧側の冷媒圧力が冷媒の臨界圧力以上となるヒートポンプサイクルを言い、例えば二酸化炭素・エチレン・エタン・酸化窒素などを冷媒とするヒートポンプサイクルである。ヒートポンプ式給湯装置は大きく分けて、主に後述する冷凍サイクル機器が収納されたヒートポンプユニットと、主に貯湯タンク1が収納されたタンクユニットとより成っている。   The supercritical heat pump cycle refers to a heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant. For example, the heat pump cycle uses carbon dioxide, ethylene, ethane, nitrogen oxide or the like as the refrigerant. The heat pump type hot water supply apparatus is roughly divided into a heat pump unit that mainly stores a refrigeration cycle apparatus, which will be described later, and a tank unit that mainly stores a hot water storage tank 1.

また、ヒートポンプユニット内は、大きく分けてヒートポンプサイクルの冷媒回路と、給湯関係の給湯用水加熱回路とで構成されている。先ず冷媒回路は、冷媒を圧縮する圧縮機10と、給湯用水の加熱手段である冷媒水熱交換器(本発明の高圧側熱交換器に相当)20と、冷媒を減圧するエジェクタ(本発明の可変式減圧手段に相当)40と、大気から吸熱するための冷媒空気熱交換器(本発明の低圧側熱交換器に相当)30とを図1に示すような冷媒配管経路で接続して構成され、冷媒として臨界温度の低い二酸化炭素(以下、COと略す)冷媒が封入されている。 The heat pump unit is roughly composed of a refrigerant circuit of a heat pump cycle and a hot water supply water heating circuit related to hot water supply. First, the refrigerant circuit includes a compressor 10 that compresses refrigerant, a refrigerant water heat exchanger (corresponding to the high-pressure side heat exchanger of the present invention) 20 that is a heating means for hot water, and an ejector that decompresses the refrigerant (of the present invention). A variable pressure reducing means) 40 and a refrigerant air heat exchanger (corresponding to the low pressure side heat exchanger of the present invention) 30 for absorbing heat from the atmosphere are connected by a refrigerant piping path as shown in FIG. As a refrigerant, carbon dioxide (hereinafter abbreviated as CO 2 ) refrigerant having a low critical temperature is enclosed.

尚、冷媒回路に接続されている60は、冷媒水熱交換器20から流出した高圧冷媒(エジェクタ40にて減圧される前の冷媒)と、後述する気液分離器50から流出して圧縮機10に吸入される低圧冷媒とを熱交換する内部熱交換器である。圧縮機10は、内蔵する駆動モータと、吸引したガス冷媒を臨界圧力以上の高圧にまで昇圧して吐出する高圧圧縮部とで構成しており、これらが密閉容器内に収納されている。   Note that reference numeral 60 connected to the refrigerant circuit denotes a high-pressure refrigerant (refrigerant before being depressurized by the ejector 40) that has flowed out from the refrigerant water heat exchanger 20, and a compressor that flows out from the gas-liquid separator 50 described later. 10 is an internal heat exchanger for exchanging heat with the low-pressure refrigerant sucked into 10. The compressor 10 includes a built-in drive motor and a high-pressure compressor that discharges the sucked gas refrigerant to a high pressure equal to or higher than the critical pressure, and these are housed in a sealed container.

そして、装置全体の制御手段である制御装置(本発明の制御手段に相当)70により通電制御される。尚、圧縮機10は冷媒水熱交換器20の加熱能力を大きくするときには圧縮機10の回転数を増大させて、圧縮機10から吐出する冷媒流量を増大させ、一方、加熱能力を小さくするときには圧縮機10の回転数を低下させ、圧縮機10から吐出する冷媒流量を減少させる。   Then, energization control is performed by a control device 70 (corresponding to the control means of the present invention) which is control means for the entire apparatus. The compressor 10 increases the rotation speed of the compressor 10 when increasing the heating capacity of the refrigerant water heat exchanger 20 and increases the flow rate of refrigerant discharged from the compressor 10, while reducing the heating capacity. The rotational speed of the compressor 10 is reduced, and the refrigerant flow rate discharged from the compressor 10 is reduced.

冷媒水熱交換器20は、高圧圧縮部で昇圧された高温高圧のガス冷媒と給湯用水とを熱交換して給湯用水を加熱するもので、高圧冷媒通路に隣接して給湯水通路が設けられ、その高圧冷媒通路を流れる冷媒の流れ方向と給湯水通路を流れる給湯用水の流れ方向とが対向するように構成されている。   The refrigerant water heat exchanger 20 heats hot water by exchanging heat between the high-temperature and high-pressure gas refrigerant boosted by the high-pressure compressor and hot water, and a hot water passage is provided adjacent to the high-pressure refrigerant passage. The flow direction of the refrigerant flowing through the high-pressure refrigerant passage and the flow direction of hot-water supply water flowing through the hot-water supply water passage are opposed to each other.

ちなみに、本実施形態では、冷媒としてCOを用いているので、冷媒水熱交換器20内の冷媒圧力は冷媒の臨界圧力以上となり、且つ、冷媒水熱交換器20内で冷媒が凝縮することなく、冷媒入口側から冷媒出口側に向かうほど冷媒温度が低下するような温度分布を有する。 Incidentally, in this embodiment, since CO 2 is used as the refrigerant, the refrigerant pressure in the refrigerant water heat exchanger 20 is equal to or higher than the critical pressure of the refrigerant, and the refrigerant is condensed in the refrigerant water heat exchanger 20. The temperature distribution is such that the refrigerant temperature decreases from the refrigerant inlet side toward the refrigerant outlet side.

冷媒空気熱交換器30は、屋外空気と液相冷媒とを熱交換させ、液相冷媒を蒸発させることにより屋外空気から吸熱する熱交換器である。また、外気ファン30aは、冷媒空気熱交換器30へ外気を供給する送風手段であり、制御装置70により通電制御される。エジェクタ40は冷媒を減圧膨張させて冷媒空気熱交換器30にて蒸発した気相冷媒を吸引すると共に、膨張エネルギーを圧力エネルギーに変換して圧縮機10の吸入圧を上昇させるものである。尚、エジェクタ40の詳細は、後述する。   The refrigerant air heat exchanger 30 is a heat exchanger that absorbs heat from outdoor air by exchanging heat between outdoor air and liquid refrigerant and evaporating the liquid refrigerant. The outside air fan 30 a is a blowing unit that supplies outside air to the refrigerant air heat exchanger 30, and is energized and controlled by the control device 70. The ejector 40 expands the refrigerant under reduced pressure and sucks the gas-phase refrigerant evaporated in the refrigerant air heat exchanger 30, and converts the expansion energy into pressure energy to increase the suction pressure of the compressor 10. Details of the ejector 40 will be described later.

気液分離器50は、エジェクタ40から流出した冷媒が流入するとともに、その流入した冷媒を気相冷媒と液相冷媒とに分離して液冷媒を蓄えるものであり、気液分離器50の気相冷媒流出口は圧縮機10の吸引側に接続され、液相冷媒流出口は冷媒空気熱交換器30の流入側に接続される。   The gas-liquid separator 50 receives the refrigerant flowing out from the ejector 40 and stores the liquid refrigerant by separating the flowing refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant. The phase refrigerant outlet is connected to the suction side of the compressor 10, and the liquid phase refrigerant outlet is connected to the inlet side of the refrigerant air heat exchanger 30.

ここで、エジェクタ40の構造について図2を用いて説明する。エジェクタ40は、流入する高圧冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を減圧膨張させるノズル41、ノズル41から噴射する高い速度の冷媒流により冷媒空気熱交換器30にて蒸発した気相冷媒を吸引しながらノズル41から噴射する冷媒流と混合する混合部42、およびノズル41から噴射する冷媒と冷媒空気熱交換器30から吸引した冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させるディフューザ43などからなるものである。   Here, the structure of the ejector 40 will be described with reference to FIG. The ejector 40 converts the pressure energy of the inflowing high-pressure refrigerant into velocity energy, a nozzle 41 that decompresses and expands the refrigerant, and a gas-phase refrigerant evaporated in the refrigerant air heat exchanger 30 by a high-speed refrigerant flow injected from the nozzle 41 The mixing unit 42 that mixes with the refrigerant flow injected from the nozzle 41 while sucking the refrigerant, and the velocity energy is converted into pressure energy while mixing the refrigerant injected from the nozzle 41 and the refrigerant sucked from the refrigerant air heat exchanger 30. It consists of a diffuser 43 and the like for increasing the pressure of the refrigerant.

尚、混合部42においては、ノズル41から噴射する冷媒流の運動量と、冷媒空気熱交換器30からエジェクタ40に吸引される冷媒流の運動量との和が保存されるように混合するので、混合部42においても冷媒の静圧が上昇する。一方、ディフューザ43においては、通路断面積を徐々に拡大することにより、冷媒の動圧を静圧に変換するので、エジェクタ40においては、混合部42およびディフューザ43の両者にて冷媒圧力を昇圧する。そこで、混合部42とディフューザ43とを総称して昇圧部と呼ぶ。   In the mixing unit 42, mixing is performed so that the sum of the momentum of the refrigerant flow injected from the nozzle 41 and the momentum of the refrigerant flow sucked into the ejector 40 from the refrigerant air heat exchanger 30 is preserved. The static pressure of the refrigerant also increases at the portion 42. On the other hand, in the diffuser 43, the dynamic pressure of the refrigerant is converted into a static pressure by gradually increasing the passage cross-sectional area. Therefore, in the ejector 40, the refrigerant pressure is increased by both the mixing unit 42 and the diffuser 43. . Therefore, the mixing unit 42 and the diffuser 43 are collectively referred to as a boosting unit.

つまり、理想的なエジェクタ40においては、混合部42で2種類の冷媒流の、運動量の和が保存されるように冷媒圧力が増大し、ディフューザ43でエネルギーが保存されるように冷媒圧力が増大することが望ましい。ちなみに、ノズル41の周りには、ボディ44により形成された吸引室45が形成されており、冷媒空気熱交換器30から吸引された気相冷媒は、吸引室45を経由して混合部42に流れる。また、本実施形態のエジェクタ40には、絞り径(ノズル出口部径)を変更する可変絞り機構40aが一体的に設けられており、制御装置70により通電制御される。   That is, in the ideal ejector 40, the refrigerant pressure increases so that the sum of the momentum of the two types of refrigerant flows is stored in the mixing unit 42, and the refrigerant pressure increases so that energy is stored in the diffuser 43. It is desirable to do. Incidentally, a suction chamber 45 formed by the body 44 is formed around the nozzle 41, and the gas-phase refrigerant sucked from the refrigerant air heat exchanger 30 passes through the suction chamber 45 to the mixing unit 42. Flowing. In addition, the ejector 40 of the present embodiment is integrally provided with a variable throttle mechanism 40 a that changes the throttle diameter (nozzle outlet portion diameter), and is energized and controlled by the control device 70.

給湯関係の給湯用水加熱回路は、給湯用水の加熱手段である上記冷媒水熱交換器20の給湯水通路と、給湯用水を循環させるウォーターポンプ2と、給湯用水を貯留する貯湯タンク1とを環状に接続して構成される。ウォーターポンプ2は、図1に示すように、貯湯タンク1内の下部に設けられた低温水流出部から冷水を冷媒水熱交換器20の給湯水通路を通して貯湯タンク1の上部に設けられた高温水流入部から還流する様に水流を発生させる。また、このウォーターポンプ2は内蔵するモータの回転数に応じて流水量を調節することができ、制御装置70により通電制御される。   A hot water supply water heating circuit related to hot water supply has an annular shape of a hot water supply passage of the refrigerant water heat exchanger 20 that is a heating means for hot water supply, a water pump 2 that circulates hot water, and a hot water storage tank 1 that stores hot water. Connected to and configured. As shown in FIG. 1, the water pump 2 has a high temperature provided in the upper part of the hot water storage tank 1 through the hot water passage of the refrigerant water heat exchanger 20 from the low temperature water outflow part provided in the lower part of the hot water storage tank 1. A water flow is generated so as to return from the water inflow portion. Further, the water pump 2 can adjust the amount of flowing water in accordance with the number of rotations of a built-in motor, and is energized and controlled by the control device 70.

貯湯タンク1は、耐蝕性に優れた金属製(例えばステンレス製)で断熱構造を有し、高温の給湯用水を長時間にわたって保温することができる。貯湯タンク1に貯留された給湯用水は、出湯時に低温水混合手段である図示しない給湯混合弁で、貯湯タンク1上部の高温水流出部からの高温水と水道からの冷水とを混合して温度調節した後、主に台所や風呂などに給湯される。尚、給湯混合弁も制御装置70により通電制御される。   The hot water storage tank 1 is made of metal (for example, made of stainless steel) excellent in corrosion resistance and has a heat insulating structure, and can keep hot hot water supply water for a long time. Hot water stored in the hot water storage tank 1 is mixed with hot water from a hot water outlet at the upper part of the hot water tank 1 and cold water from a water supply by a hot water mixing valve (not shown) which is a low temperature water mixing means at the time of hot water. After adjustment, hot water is supplied mainly to kitchens and baths. The hot water mixing valve is also energized and controlled by the control device 70.

そして、制御装置70は、上述したヒートポンプサイクルの各冷凍機器を制御する制御手段であり、CPU・ROM・RAM・I/Oポートなどの機能を含んで構成され、それ自体は周知の構造を持つマイクロコンピュータを内蔵している。   And the control apparatus 70 is a control means which controls each refrigeration apparatus of the heat pump cycle mentioned above, and is comprised including functions, such as CPU, ROM, RAM, and I / O port, and has a well-known structure in itself. Built-in microcomputer.

尚、本発明に関係するセンサー群として、圧縮機10の吸入圧力Pl・吸入温度Tlを検出する吸入圧力センサー(本発明の吸入圧力検出手段に相当)11・吸入温度センサー(本発明の吸入温度検出手段に相当)12、圧縮機10の吐出温度Th・吐出圧力Phを検出する吐出温度センサー(本発明の吐出温度検出手段に相当)13、吐出圧力センサー(本発明の吐出圧力検出手段に相当)14、冷媒水熱交換器20の冷媒出口の熱交換後温度Toを検出する出口冷媒温センサー(本発明の温度差検出手段、熱交換後温度検出手段に相当)15、冷媒水熱交換器20の給水入口の入口水温Tiを検出する入口水温センサー(本発明の温度差検出手段に相当)16などがある。   As a group of sensors related to the present invention, a suction pressure sensor (corresponding to the suction pressure detecting means of the present invention) 11 for detecting the suction pressure Pl / suction temperature Tl of the compressor 10 and a suction temperature sensor (suction temperature of the present invention) (Corresponding to detection means) 12, discharge temperature sensor (corresponding to discharge temperature detection means of the present invention) 13 for detecting discharge temperature Th / discharge pressure Ph of the compressor 10, discharge pressure sensor (corresponding to discharge pressure detection means of the present invention) ) 14, outlet refrigerant temperature sensor (corresponding to temperature difference detection means of the present invention, temperature detection means after heat exchange) 15 for detecting the temperature To after the heat exchange at the refrigerant outlet of the refrigerant water heat exchanger 20, refrigerant water heat exchanger There is an inlet water temperature sensor 16 (corresponding to the temperature difference detecting means of the present invention) 16 for detecting the inlet water temperature Ti of the 20 water supply inlets.

また、本ヒートポンプサイクルの他のセンサー群として、冷媒空気熱交換器30の入口圧力・出口圧力・入口冷媒温度を検出する蒸発器入口圧力センサー31・蒸発器出口圧力センサー32・蒸発器入口温度センサー33、外気温度を検出する外気温度センサー34、エジェクタ40の出口圧力・出口温度を検出するエジェクタ出口圧力センサー46・エジェクタ出口温度センサー47などがある。   Moreover, as another sensor group of this heat pump cycle, an evaporator inlet pressure sensor 31, an evaporator outlet pressure sensor 32, and an evaporator inlet temperature sensor for detecting the inlet pressure / outlet pressure / inlet refrigerant temperature of the refrigerant air heat exchanger 30. 33, an outside air temperature sensor 34 for detecting the outside air temperature, an ejector outlet pressure sensor 46 for detecting the outlet pressure / outlet temperature of the ejector 40, an ejector outlet temperature sensor 47, and the like.

これらセンサー群からのセンサー信号は、図示しない入力回路(A/D変換回路)によってA/D変換された後に、制御装置70に入力されるように構成されているとともに、制御装置70からはウォーターポンプ2・圧縮機10・外気ファン30a・可変絞り機構40aなどに制御出力を出すように構成されている。   The sensor signals from these sensor groups are configured to be input to the control device 70 after being A / D converted by an input circuit (A / D conversion circuit) (not shown). The control output is output to the pump 2, the compressor 10, the outside air fan 30a, the variable throttle mechanism 40a, and the like.

次に、本発明の要部である制御装置70での制御概要を説明する。図3は、本発明の第1実施形態におけるヒートポンプ式加熱装置の制御のフローチャートである。本制御がスタートすると先ず、ステップS11にて、吐出温度センサー13で検出される吐出温度Thが所定温度Ts以上であるか否かの判定を行う。そして、ステップS11での判定結果がNOで、吐出温度Thは所定温度Ts以下であると判定されるときにはステップS12へと進み、通常運転を行いつつステップS11の判定を繰り返すものである。   Next, an outline of control in the control device 70 which is a main part of the present invention will be described. FIG. 3 is a flowchart of the control of the heat pump type heating device in the first embodiment of the present invention. When this control starts, first, in step S11, it is determined whether or not the discharge temperature Th detected by the discharge temperature sensor 13 is equal to or higher than a predetermined temperature Ts. When the determination result in step S11 is NO and it is determined that the discharge temperature Th is equal to or lower than the predetermined temperature Ts, the process proceeds to step S12, and the determination in step S11 is repeated while performing normal operation.

しかし、ステップS11での判定結果がYESとなって、吐出温度Thが所定温度Ts以上であると判定されるときにはステップS13へと進み、エジェクタ40の可変絞り機構40aを開く方向に可変するとともに、ステップS14では、制御装置70で通常に算出する圧縮機10の目標回転数Nを補正回転数N´に増速補正して運転するものであり、その補正のパターンとしては、以下の4つがある。尚、○No.は、請求項との対応を示すものである。   However, when the determination result in step S11 is YES and it is determined that the discharge temperature Th is equal to or higher than the predetermined temperature Ts, the process proceeds to step S13, and the variable throttle mechanism 40a of the ejector 40 is changed in the opening direction. In step S14, the controller 70 is operated with the target rotational speed N of the compressor 10 that is normally calculated by the controller 70 corrected to the corrected rotational speed N ′, and there are the following four correction patterns. . In addition, ○ No. Indicates correspondence with the claims.

(1):N´=N×(Pt/Ph)として、吐出圧力センサー14にて検出される吐出圧力Phに対する制御装置70で算出する目標吐出圧力Ptの比率に応じて制御装置70で算出する圧縮機10の目標回転数Nを補正回転数N´に増速補正する。   (1): N ′ = N × (Pt / Ph) is calculated by the control device 70 according to the ratio of the target discharge pressure Pt calculated by the control device 70 to the discharge pressure Ph detected by the discharge pressure sensor 14. The target rotational speed N of the compressor 10 is increased and corrected to the corrected rotational speed N ′.

(3):N´=N×(Δtt/Δt)として、出口冷媒温センサー15と入口水温センサー16とによって検出される温度差Δtに対する制御装置70で算出する目標温度差Δttの比率に応じて制御装置70で算出する圧縮機10の目標回転数Nを補正回転数N´に増速補正する。   (3): As N ′ = N × (Δtt / Δt), according to the ratio of the target temperature difference Δtt calculated by the control device 70 to the temperature difference Δt detected by the outlet refrigerant temperature sensor 15 and the inlet water temperature sensor 16. The target rotational speed N of the compressor 10 calculated by the control device 70 is speed-up corrected to the corrected rotational speed N ′.

(4):N´=N×(Δit/Δi)として、吐出温度センサー13にて検出される吐出温度Thと吐出圧力センサー14にて検出される吐出圧力Phと出口冷媒温センサー15にて検出される熱交換後温度Toとから算出されるエンタルピー差Δiに対する制御装置70で算出する目標エンタルピー差Δitの比率に応じて制御装置70で算出する圧縮機10の目標回転数Nを補正回転数N´に増速補正する。   (4): N ′ = N × (Δit / Δi), detected by the discharge temperature Th detected by the discharge temperature sensor 13, the discharge pressure Ph detected by the discharge pressure sensor 14, and the outlet refrigerant temperature sensor 15. The target rotational speed N of the compressor 10 calculated by the control device 70 is corrected to the corrected rotational speed N according to the ratio of the target enthalpy difference Δit calculated by the control device 70 to the enthalpy difference Δi calculated from the post-heat exchange temperature To. The speed is corrected to ´.

(5):N´=N×(Qt/Q)、尚、Q=D× Δi×係数として、吸入圧力センサー11にて検出される吸入圧力Plと吸入温度センサー12にて検出される吸入温度Tlとから導出される冷媒密度Dと、吐出温度センサー13にて検出される吐出温度Thと吐出圧力センサー14にて検出される吐出圧力Phと出口冷媒温センサー15にて検出される熱交換後温度Toとから算出されるエンタルピー差Δiとを用いて算出される加熱能力Qに対する制御装置70で算出する目標加熱能力Qtの比率に応じて制御装置70で算出する圧縮機10の目標回転数Nを補正回転数N´に増速補正する。尚、冷媒密度Dは、予めインプットされている冷媒物性計算表に基づき、検出した吸入圧力Plと吸入温度Tlとから導出されることとなる。   (5): N ′ = N × (Qt / Q), where Q = D × Δi × coefficient, the suction pressure Pl detected by the suction pressure sensor 11 and the suction temperature detected by the suction temperature sensor 12 After the heat exchange detected by the refrigerant density D derived from Tl, the discharge temperature Th detected by the discharge temperature sensor 13, the discharge pressure Ph detected by the discharge pressure sensor 14, and the outlet refrigerant temperature sensor 15. The target rotational speed N of the compressor 10 calculated by the controller 70 according to the ratio of the target heating capacity Qt calculated by the controller 70 to the heating capacity Q calculated using the enthalpy difference Δi calculated from the temperature To. Is corrected to a corrected rotational speed N ′. The refrigerant density D is derived from the detected suction pressure Pl and suction temperature Tl based on a refrigerant physical property calculation table input in advance.

次に、本実施形態での特徴と、その効果について述べる。先ず、冷媒を吸入圧縮する圧縮機10と、圧縮機10が吐出する高温高圧の冷媒と給湯用水とを熱交換させる冷媒水熱交換器20と、冷媒水熱交換器20から流出した冷媒を等エンタルピ的に減圧膨脹させるとともに、その絞り開度を可変できるエジェクタ40と、低温低圧の冷媒と空気とを熱交換させて冷媒を蒸発させる冷媒空気熱交換器30と、圧縮機10からの吐出温度Thを検出する吐出温度センサー13と、圧縮機10からの吐出圧力Phを検出する吐出圧力センサー14と、上記各機器の作動を制御する制御装置70とを有している。   Next, features and effects of this embodiment will be described. First, the compressor 10 for sucking and compressing refrigerant, the refrigerant water heat exchanger 20 for exchanging heat between the high-temperature and high-pressure refrigerant discharged from the compressor 10 and the hot water supply water, the refrigerant flowing out of the refrigerant water heat exchanger 20 and the like An ejector 40 that can be enthalpyly decompressed and expanded, the refrigerant air heat exchanger 30 that evaporates the refrigerant by exchanging heat between the low-temperature and low-pressure refrigerant and the air, and the discharge temperature from the compressor 10 It has a discharge temperature sensor 13 for detecting Th, a discharge pressure sensor 14 for detecting the discharge pressure Ph from the compressor 10, and a control device 70 for controlling the operation of each of the above devices.

そして、制御装置70は、吐出温度センサー13にて検出される吐出温度Thが所定温度Tsよりも高くなった場合、エジェクタ40での絞り開度を開くとともに、吐出圧力センサー14にて検出される吐出圧力Phに対する制御装置70で算出する目標吐出圧力Ptの比率に応じて制御装置70で算出する圧縮機10の目標回転数Nを補正回転数N´に増速補正して運転するようにしている。   When the discharge temperature Th detected by the discharge temperature sensor 13 is higher than the predetermined temperature Ts, the control device 70 opens the throttle opening degree at the ejector 40 and is detected by the discharge pressure sensor 14. The compressor 10 is operated by correcting the target rotational speed N of the compressor 10 calculated by the control device 70 to the corrected rotational speed N ′ in accordance with the ratio of the target discharge pressure Pt calculated by the control device 70 to the discharge pressure Ph. Yes.

もしくは、冷媒を吸入圧縮する圧縮機10と、圧縮機10が吐出する高温高圧の冷媒と給湯用水とを熱交換させる冷媒水熱交換器20と、冷媒水熱交換器20から流出した冷媒を等エンタルピ的に減圧膨脹させるとともに、その絞り開度を可変できるエジェクタ40と、低温低圧の冷媒と空気とを熱交換させて冷媒を蒸発させる冷媒空気熱交換器30と、圧縮機10からの吐出温度Thを検出する吐出温度センサー13と、冷媒水熱交換器20へ流入する給湯用水の温度と冷媒水熱交換器20から流出する冷媒の温度との温度差Δtを検出する出口冷媒温センサー15・入口水温センサー16と、上記各機器の作動を制御する制御装置70とを有している。   Alternatively, the compressor 10 that sucks and compresses the refrigerant, the refrigerant water heat exchanger 20 that exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 10 and the hot water supply water, the refrigerant that flows out of the refrigerant water heat exchanger 20, etc. An ejector 40 that can be enthalpyly decompressed and expanded, the refrigerant air heat exchanger 30 that evaporates the refrigerant by exchanging heat between the low-temperature and low-pressure refrigerant and the air, and the discharge temperature from the compressor 10 A discharge temperature sensor 13 for detecting Th; an outlet refrigerant temperature sensor 15 for detecting a temperature difference Δt between the temperature of hot water flowing into the refrigerant water heat exchanger 20 and the temperature of the refrigerant flowing out of the refrigerant water heat exchanger 20; It has the inlet water temperature sensor 16 and the control apparatus 70 which controls the operation | movement of said each apparatus.

そして、制御装置70は、吐出温度センサー13にて検出される吐出温度Thが所定温度Tsよりも高くなった場合、エジェクタ40での絞り開度を開くとともに、出口冷媒温センサー15・入口水温センサー16にて検出される温度差Δtに対する制御装置70で算出する目標温度差Δttの比率に応じて制御装置70で算出する圧縮機10の目標回転数Nを補正回転数N´に増速補正して運転するようにしている。   Then, when the discharge temperature Th detected by the discharge temperature sensor 13 becomes higher than the predetermined temperature Ts, the control device 70 opens the throttle opening degree of the ejector 40, and the outlet refrigerant temperature sensor 15 / inlet water temperature sensor. In accordance with the ratio of the target temperature difference Δtt calculated by the control device 70 to the temperature difference Δt detected at 16, the target rotational speed N of the compressor 10 calculated by the control device 70 is speed-up corrected to the corrected rotational speed N ′. To drive.

もしくは、冷媒を吸入圧縮する圧縮機10と、圧縮機10が吐出する高温高圧の冷媒と給湯用水とを熱交換させる冷媒水熱交換器20と、冷媒水熱交換器20から流出した冷媒を等エンタルピ的に減圧膨脹させるとともに、その絞り開度を可変できるエジェクタ40と、低温低圧の冷媒と空気とを熱交換させて冷媒を蒸発させる冷媒空気熱交換器30と、圧縮機10からの吐出温度Thを検出する吐出温度センサー13と、圧縮機10からの吐出圧力Phを検出する吐出圧力センサー14と、冷媒水熱交換器20から流出する熱交換後温度Toを検出する出口冷媒温センサー15と、上記各機器の作動を制御する制御装置70とを有している。   Alternatively, the compressor 10 that sucks and compresses the refrigerant, the refrigerant water heat exchanger 20 that exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 10 and the hot water supply water, the refrigerant that flows out of the refrigerant water heat exchanger 20, etc. An ejector 40 that can be enthalpyly decompressed and expanded, the refrigerant air heat exchanger 30 that evaporates the refrigerant by exchanging heat between the low-temperature and low-pressure refrigerant and the air, and the discharge temperature from the compressor 10 A discharge temperature sensor 13 for detecting Th, a discharge pressure sensor 14 for detecting a discharge pressure Ph from the compressor 10, an outlet refrigerant temperature sensor 15 for detecting a post-heat exchange temperature To flowing out of the refrigerant water heat exchanger 20, and And a control device 70 for controlling the operation of each device.

そして、制御装置70は、吐出温度センサー13にて検出される吐出温度Thが所定温度Tsよりも高くなった場合、エジェクタ40での絞り開度を開くとともに、吐出温度センサー13にて検出される吐出温度Thと吐出圧力センサー14にて検出される吐出圧力Phと出口冷媒温センサー15にて検出される熱交換後温度Toとから算出されるエンタルピー差Δiに対する制御装置70で算出する目標エンタルピー差Δitの比率に応じて制御装置70で算出する圧縮機10の目標回転数Nを補正回転数N´に増速補正して運転するようにしている。   When the discharge temperature Th detected by the discharge temperature sensor 13 is higher than the predetermined temperature Ts, the control device 70 opens the throttle opening degree at the ejector 40 and is detected by the discharge temperature sensor 13. Target enthalpy difference calculated by the controller 70 with respect to the enthalpy difference Δi calculated from the discharge temperature Th, the discharge pressure Ph detected by the discharge pressure sensor 14 and the post-heat exchange temperature To detected by the outlet refrigerant temperature sensor 15. Operation is performed with the target rotational speed N of the compressor 10 calculated by the control device 70 according to the ratio of Δit increased to the corrected rotational speed N ′.

もしくは、冷媒を吸入圧縮する圧縮機10と、圧縮機10が吐出する高温高圧の冷媒と給湯用水とを熱交換させる冷媒水熱交換器20と、冷媒水熱交換器20から流出した冷媒を等エンタルピ的に減圧膨脹させるとともに、その絞り開度を可変できるエジェクタ40と、低温低圧の冷媒と空気とを熱交換させて冷媒を蒸発させる冷媒空気熱交換器30と、圧縮機10への吸入圧力Plを検出する吸入圧力センサー11と、圧縮機10への吸入温度Tlを検出する吸入温度センサー12と、圧縮機10からの吐出温度Thを検出する吐出温度センサー13と、圧縮機10からの吐出圧力Phを検出する吐出圧力センサー14と、冷媒水熱交換器20から流出する熱交換後温度Toを検出する出口冷媒温センサー15と、上記各機器の作動を制御する制御装置70とを有している。   Alternatively, the compressor 10 that sucks and compresses the refrigerant, the refrigerant water heat exchanger 20 that exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 10 and the hot water supply water, the refrigerant that flows out of the refrigerant water heat exchanger 20, etc. An enthalpy decompression expansion and an ejector 40 capable of varying the throttle opening, a refrigerant air heat exchanger 30 for evaporating the refrigerant by exchanging heat between the low-temperature and low-pressure refrigerant and the air, and the suction pressure to the compressor 10 A suction pressure sensor 11 that detects Pl, a suction temperature sensor 12 that detects a suction temperature Tl to the compressor 10, a discharge temperature sensor 13 that detects a discharge temperature Th from the compressor 10, and a discharge from the compressor 10 The discharge pressure sensor 14 for detecting the pressure Ph, the outlet refrigerant temperature sensor 15 for detecting the post-heat exchange temperature To flowing out from the refrigerant water heat exchanger 20, and the operation of each of the above devices are controlled. And a that the control device 70.

そして、制御装置70は、吐出温度センサー13にて検出される吐出温度Thが所定温度Tsよりも高くなった場合、エジェクタ40での絞り開度を開くとともに、吸入圧力センサー11にて検出される吸入圧力Plと吸入温度センサー12にて検出される吸入温度Tlとから導出される冷媒密度Dと、吐出温度センサー13にて検出される吐出温度Thと吐出圧力センサー14にて検出される吐出圧力Phと出口冷媒温センサー15にて検出される熱交換後温度Toとから算出されるエンタルピー差Δiとを用いて算出される加熱能力Qに対する制御装置70で算出する目標加熱能力Qtの比率に応じて制御装置70で算出する圧縮機10の目標回転数Nを補正回転数N´に増速補正して運転するようにしている。   When the discharge temperature Th detected by the discharge temperature sensor 13 is higher than the predetermined temperature Ts, the control device 70 opens the throttle opening degree at the ejector 40 and is detected by the suction pressure sensor 11. The refrigerant density D derived from the suction pressure Pl and the suction temperature Tl detected by the suction temperature sensor 12, the discharge temperature Th detected by the discharge temperature sensor 13 and the discharge pressure detected by the discharge pressure sensor 14. According to the ratio of the target heating capacity Qt calculated by the control device 70 to the heating capacity Q calculated using the enthalpy difference Δi calculated from Ph and the post-heat exchange temperature To detected by the outlet refrigerant temperature sensor 15 Thus, the target rotational speed N of the compressor 10 calculated by the control device 70 is increased to the corrected rotational speed N ′ and the speed is corrected for operation.

これらによれば、いずれも圧縮機10からの吐出温度Thが所定温度Tsを超えないようにエジェクタ40での絞り開度を開いて装置を破損から保護する保護的な制御を行いつつ、絞り開度を開いたことによって所定の加熱能力より不足する分だけ圧縮機10の目標回転数Nを補正回転数N´に増速補正して冷媒流量を増加させることにより、所定の加熱能力を確保することができる。   According to these, in either case, the throttle opening degree is opened while the throttle opening degree in the ejector 40 is opened to protect the apparatus from damage so that the discharge temperature Th from the compressor 10 does not exceed the predetermined temperature Ts. The predetermined heating capacity is ensured by increasing the refrigerant flow rate by increasing the target rotational speed N of the compressor 10 to the corrected rotational speed N ′ by an amount that is less than the predetermined heating capacity due to opening the degree. be able to.

これにより、本実施形態のように本加熱装置を給湯装置に用いた場合であれば、所定の時間内で所定の沸き上げ温度に沸き上げることができる。このように、本発明は特に、各種保護制御が働いて吐出圧力Ph・吐出温度Th・温度差Δt・エンタルピー差Δiを維持できない場合に有効である。また、特に、補正パターン(5)では、目標加熱能力Qtに対して、より適正な補正回転数N´を算出することができる。   Thereby, if this heating apparatus is used for a hot-water supply apparatus like this embodiment, it can be heated up to predetermined boiling temperature within predetermined time. As described above, the present invention is particularly effective when various protection control functions and the discharge pressure Ph, the discharge temperature Th, the temperature difference Δt, and the enthalpy difference Δi cannot be maintained. In particular, in the correction pattern (5), a more appropriate correction rotational speed N ′ can be calculated for the target heating capacity Qt.

また、高圧側の冷媒圧力が冷媒の臨界圧力以上となる超臨界ヒートポンプサイクルを用いている。これによれば、超臨界ヒートポンプサイクルでは、温度差(Δt)制御や高圧(Ph)制御によって効率的な運転が可能なため、適正な補正回転数N´に合わせることでより運転効率を上げることが可能となる。   In addition, a supercritical heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant is used. According to this, in the supercritical heat pump cycle, since efficient operation is possible by temperature difference (Δt) control and high pressure (Ph) control, the operation efficiency can be further increased by adjusting to an appropriate correction rotational speed N ′. Is possible.

また、可変式減圧手段40は、高圧冷媒を減圧膨張させるノズル41を有し、ノズル41から噴射する高い速度の冷媒流により冷媒空気熱交換器30にて蒸発した気相冷媒を吸引すると共に、膨張エネルギーを圧力エネルギーに変換して圧縮機10の吸入圧を上昇させるエジェクタ40である。これによれば、減圧手段にエジェクタを用いたエジェクタサイクルでは冷媒流量を増加させることで圧縮機10の吸入圧力Plが上昇し、冷媒密度Dがより大きくなり、補正回転数N´への増速が少なくて済むため、より効果的である。   The variable decompression means 40 has a nozzle 41 that decompresses and expands the high-pressure refrigerant, sucks the gas-phase refrigerant evaporated in the refrigerant air heat exchanger 30 by the high-speed refrigerant flow injected from the nozzle 41, and The ejector 40 converts the expansion energy into pressure energy to increase the suction pressure of the compressor 10. According to this, in the ejector cycle using the ejector as the decompression means, the suction pressure Pl of the compressor 10 increases by increasing the refrigerant flow rate, the refrigerant density D increases, and the speed increases to the corrected rotation speed N ′. This is more effective because it requires less.

参考例
図4は、本発明の参考例におけるヒートポンプ式加熱装置の制御のフローチャートである。上述した第1実施形態でのフローチャートと異なる特徴は、通常運転もしくは保護制御とそれによる補正を行うか否かを、吐出温度Thではなく吐出圧力Phで行う点である。
( Reference example )
FIG. 4 is a flowchart of the control of the heat pump type heating device in the reference example of the present invention. A feature different from the flowchart in the first embodiment described above is that whether or not normal operation or protection control and correction by the normal operation or protection control are performed is performed by the discharge pressure Ph instead of the discharge temperature Th.

本制御がスタートすると先ず、ステップS21にて、吐出圧力センサー14で検出される吐出圧力Phが所定圧力Ps以上であるか否かの判定を行う。そして、ステップS21での判定結果がNOで、吐出圧力Phは所定圧力Ps以下であると判定されるときにはステップS22へと進み、通常運転を行いつつステップS21の判定を繰り返すものである。   When this control starts, first, in step S21, it is determined whether or not the discharge pressure Ph detected by the discharge pressure sensor 14 is equal to or higher than a predetermined pressure Ps. When the determination result in step S21 is NO and it is determined that the discharge pressure Ph is equal to or lower than the predetermined pressure Ps, the process proceeds to step S22, and the determination in step S21 is repeated while performing normal operation.

しかし、ステップS21での判定結果がYESとなって、吐出圧力Phが所定圧力Ps以上であると判定されるときにはステップS23へと進み、エジェクタ40の可変絞り機構40aを開く方向に可変するとともに、ステップS24では、制御装置70で通常に算出する圧縮機10の目標回転数Nを補正回転数N´に増速補正して運転するものであり、その補正のパターンとしては、以下の4つがある。尚、○No.は、請求項との対応を示すものである。   However, when the determination result in step S21 is YES and it is determined that the discharge pressure Ph is equal to or higher than the predetermined pressure Ps, the process proceeds to step S23, and the variable throttle mechanism 40a of the ejector 40 is changed in the opening direction. In step S24, the controller 70 is operated by increasing the target rotational speed N of the compressor 10 that is normally calculated by the control device 70 to the corrected rotational speed N ′, and there are the following four correction patterns. . In addition, ○ No. Indicates correspondence with the claims.

(2):N´=N×(Tt/Th)として、吐出温度センサー13にて検出される吐出温度Thに対する制御装置70で算出する目標吐出温度Ttの比率に応じて制御装置70で算出する圧縮機10の目標回転数Nを補正回転数N´に増速補正する。   (2): N ′ = N × (Tt / Th) is calculated by the control device 70 according to the ratio of the target discharge temperature Tt calculated by the control device 70 to the discharge temperature Th detected by the discharge temperature sensor 13. The target rotational speed N of the compressor 10 is increased and corrected to the corrected rotational speed N ′.

(3):N´=N×(Δtt/Δt)として、出口冷媒温センサー15と入口水温センサー16とによって検出される温度差Δtに対する制御装置70で算出する目標温度差Δttの比率に応じて制御装置70で算出する圧縮機10の目標回転数Nを補正回転数N´に増速補正する。   (3): As N ′ = N × (Δtt / Δt), according to the ratio of the target temperature difference Δtt calculated by the control device 70 to the temperature difference Δt detected by the outlet refrigerant temperature sensor 15 and the inlet water temperature sensor 16. The target rotational speed N of the compressor 10 calculated by the control device 70 is speed-up corrected to the corrected rotational speed N ′.

(4):N´=N×(Δit/Δi)として、吐出温度センサー13にて検出される吐出温度Thと吐出圧力センサー14にて検出される吐出圧力Phと出口冷媒温センサー15にて検出される熱交換後温度Toとから算出されるエンタルピー差Δiに対する制御装置70で算出する目標エンタルピー差Δitの比率に応じて制御装置70で算出する圧縮機10の目標回転数Nを補正回転数N´に増速補正する。   (4): N ′ = N × (Δit / Δi), detected by the discharge temperature Th detected by the discharge temperature sensor 13, the discharge pressure Ph detected by the discharge pressure sensor 14, and the outlet refrigerant temperature sensor 15. The target rotational speed N of the compressor 10 calculated by the control device 70 is corrected to the corrected rotational speed N according to the ratio of the target enthalpy difference Δit calculated by the control device 70 to the enthalpy difference Δi calculated from the post-heat exchange temperature To. The speed is corrected to ´.

(5):N´=N×(Qt/Q)、尚、Q=D× Δi×係数として、吸入圧力センサー11にて検出される吸入圧力Plと吸入温度センサー12にて検出される吸入温度Tlとから導出される冷媒密度Dと、吐出温度センサー13にて検出される吐出温度Thと吐出圧力センサー14にて検出される吐出圧力Phと出口冷媒温センサー15にて検出される熱交換後温度Toとから算出されるエンタルピー差Δiとを用いて算出される加熱能力Qに対する制御装置70で算出する目標加熱能力Qtの比率に応じて制御装置70で算出する圧縮機10の目標回転数Nを補正回転数N´に増速補正する。尚、冷媒密度Dは、予めインプットされている冷媒物性計算表に基づき、検出した吸入圧力Plと吸入温度Tlとから導出されることとなる。   (5): N ′ = N × (Qt / Q), where Q = D × Δi × coefficient, the suction pressure Pl detected by the suction pressure sensor 11 and the suction temperature detected by the suction temperature sensor 12 After the heat exchange detected by the refrigerant density D derived from Tl, the discharge temperature Th detected by the discharge temperature sensor 13, the discharge pressure Ph detected by the discharge pressure sensor 14, and the outlet refrigerant temperature sensor 15. The target rotational speed N of the compressor 10 calculated by the controller 70 according to the ratio of the target heating capacity Qt calculated by the controller 70 to the heating capacity Q calculated using the enthalpy difference Δi calculated from the temperature To. Is corrected to a corrected rotational speed N ′. The refrigerant density D is derived from the detected suction pressure Pl and suction temperature Tl based on a refrigerant physical property calculation table input in advance.

次に、本実施形態での特徴と、その効果について述べる。先ず、冷媒を吸入圧縮する圧縮機10と、圧縮機10が吐出する高温高圧の冷媒と給湯用水とを熱交換させる冷媒水熱交換器20と、冷媒水熱交換器20から流出した冷媒を等エンタルピ的に減圧膨脹させるとともに、その絞り開度を可変できるエジェクタ40と、低温低圧の冷媒と空気とを熱交換させて冷媒を蒸発させる冷媒空気熱交換器30と、圧縮機10からの吐出温度Thを検出する吐出温度センサー13と、圧縮機10からの吐出圧力Phを検出する吐出圧力センサー14と、上記各機器の作動を制御する制御装置70とを有している。   Next, features and effects of this embodiment will be described. First, the compressor 10 for sucking and compressing refrigerant, the refrigerant water heat exchanger 20 for exchanging heat between the high-temperature and high-pressure refrigerant discharged from the compressor 10 and the hot water supply water, the refrigerant flowing out of the refrigerant water heat exchanger 20 and the like An ejector 40 that can be enthalpyly decompressed and expanded, the refrigerant air heat exchanger 30 that evaporates the refrigerant by exchanging heat between the low-temperature and low-pressure refrigerant and the air, and the discharge temperature from the compressor 10 It has a discharge temperature sensor 13 for detecting Th, a discharge pressure sensor 14 for detecting the discharge pressure Ph from the compressor 10, and a control device 70 for controlling the operation of each of the above devices.

そして、制御装置70は、吐出圧力センサー14にて検出される吐出圧力Phが所定圧力Psよりも高くなった場合、エジェクタ40での絞り開度を開くとともに、吐出温度センサー13にて検出される吐出温度Thに対する制御装置70で算出する目標吐出温度Ttの比率に応じて制御装置70で算出する圧縮機10の目標回転数Nを補正回転数N´に増速補正して運転するようにしている。   When the discharge pressure Ph detected by the discharge pressure sensor 14 is higher than the predetermined pressure Ps, the control device 70 opens the throttle opening degree at the ejector 40 and is detected by the discharge temperature sensor 13. Operation is performed with the target rotational speed N of the compressor 10 calculated by the control device 70 increased to the corrected rotational speed N ′ and corrected to increase according to the ratio of the target discharge temperature Tt calculated by the control device 70 to the discharge temperature Th. Yes.

もしくは、冷媒を吸入圧縮する圧縮機10と、圧縮機10が吐出する高温高圧の冷媒と給湯用水とを熱交換させる冷媒水熱交換器20と、冷媒水熱交換器20から流出した冷媒を等エンタルピ的に減圧膨脹させるとともに、その絞り開度を可変できるエジェクタ40と、低温低圧の冷媒と空気とを熱交換させて冷媒を蒸発させる冷媒空気熱交換器30と、圧縮機10からの吐出圧力Phを検出する吐出圧力センサー14と、冷媒水熱交換器20へ流入する給湯用水の温度と冷媒水熱交換器20から流出する冷媒の温度との温度差Δtを検出する出口冷媒温センサー15・入口水温センサー16と、上記各機器の作動を制御する制御装置70とを有している。   Alternatively, the compressor 10 that sucks and compresses the refrigerant, the refrigerant water heat exchanger 20 that exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 10 and the hot water supply water, the refrigerant that flows out of the refrigerant water heat exchanger 20, etc. The ejector 40 that can be enthalpyly decompressed and expanded, the refrigerant air heat exchanger 30 that evaporates the refrigerant by exchanging heat between the low-temperature and low-pressure refrigerant and the air, and the discharge pressure from the compressor 10 A discharge pressure sensor 14 that detects Ph, and an outlet refrigerant temperature sensor 15 that detects a temperature difference Δt between the temperature of hot water flowing into the refrigerant water heat exchanger 20 and the temperature of refrigerant flowing out of the refrigerant water heat exchanger 20. It has the inlet water temperature sensor 16 and the control apparatus 70 which controls the operation | movement of said each apparatus.

そして、制御装置70は、吐出圧力センサー14にて検出される吐出圧力Phが所定圧力Psよりも高くなった場合、エジェクタ40での絞り開度を開くとともに、出口冷媒温センサー15・入口水温センサー16にて検出される温度差Δtに対する制御装置70で算出する目標温度差Δttの比率に応じて制御装置70で算出する圧縮機10の目標回転数Nを補正回転数N´に増速補正して運転するようにしている。   Then, when the discharge pressure Ph detected by the discharge pressure sensor 14 becomes higher than the predetermined pressure Ps, the control device 70 opens the throttle opening degree of the ejector 40, and the outlet refrigerant temperature sensor 15 / inlet water temperature sensor. In accordance with the ratio of the target temperature difference Δtt calculated by the control device 70 to the temperature difference Δt detected at 16, the target rotational speed N of the compressor 10 calculated by the control device 70 is speed-up corrected to the corrected rotational speed N ′. To drive.

もしくは、冷媒を吸入圧縮する圧縮機10と、圧縮機10が吐出する高温高圧の冷媒と給湯用水とを熱交換させる冷媒水熱交換器20と、冷媒水熱交換器20から流出した冷媒を等エンタルピ的に減圧膨脹させるとともに、その絞り開度を可変できるエジェクタ40と、低温低圧の冷媒と空気とを熱交換させて冷媒を蒸発させる冷媒空気熱交換器30と、圧縮機10からの吐出温度Thを検出する吐出温度センサー13と、圧縮機10からの吐出圧力Phを検出する吐出圧力センサー14と、冷媒水熱交換器20から流出する熱交換後温度Toを検出する出口冷媒温センサー15と、上記各機器の作動を制御する制御装置70とを有している。   Alternatively, the compressor 10 that sucks and compresses the refrigerant, the refrigerant water heat exchanger 20 that exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 10 and the hot water supply water, the refrigerant that flows out of the refrigerant water heat exchanger 20, etc. An ejector 40 that can be enthalpyly decompressed and expanded, the refrigerant air heat exchanger 30 that evaporates the refrigerant by exchanging heat between the low-temperature and low-pressure refrigerant and the air, and the discharge temperature from the compressor 10 A discharge temperature sensor 13 for detecting Th, a discharge pressure sensor 14 for detecting a discharge pressure Ph from the compressor 10, an outlet refrigerant temperature sensor 15 for detecting a post-heat exchange temperature To flowing out of the refrigerant water heat exchanger 20, and And a control device 70 for controlling the operation of each device.

そして、制御装置70は、吐出圧力センサー14にて検出される吐出圧力Phが所定圧力Psよりも高くなった場合、エジェクタ40での絞り開度を開くとともに、吐出温度センサー13にて検出される吐出温度Thと吐出圧力センサー14にて検出される吐出圧力Phと出口冷媒温センサー15にて検出される熱交換後温度Toとから算出されるエンタルピー差Δiに対する制御装置70で算出する目標エンタルピー差Δitの比率に応じて制御装置70で算出する圧縮機10の目標回転数Nを補正回転数N´に増速補正して運転するようにしている。   When the discharge pressure Ph detected by the discharge pressure sensor 14 is higher than the predetermined pressure Ps, the control device 70 opens the throttle opening degree at the ejector 40 and is detected by the discharge temperature sensor 13. Target enthalpy difference calculated by the controller 70 with respect to the enthalpy difference Δi calculated from the discharge temperature Th, the discharge pressure Ph detected by the discharge pressure sensor 14 and the post-heat exchange temperature To detected by the outlet refrigerant temperature sensor 15. Operation is performed with the target rotational speed N of the compressor 10 calculated by the control device 70 according to the ratio of Δit increased to the corrected rotational speed N ′.

もしくは、冷媒を吸入圧縮する圧縮機10と、圧縮機10が吐出する高温高圧の冷媒と給湯用水とを熱交換させる冷媒水熱交換器20と、冷媒水熱交換器20から流出した冷媒を等エンタルピ的に減圧膨脹させるとともに、その絞り開度を可変できるエジェクタ40と、低温低圧の冷媒と空気とを熱交換させて冷媒を蒸発させる冷媒空気熱交換器30と、圧縮機10への吸入圧力Plを検出する吸入圧力センサー11と、圧縮機10への吸入温度Tlを検出する吸入温度センサー12と、圧縮機10からの吐出温度Thを検出する吐出温度センサー13と、圧縮機10からの吐出圧力Phを検出する吐出圧力センサー14と、冷媒水熱交換器20から流出する熱交換後温度Toを検出する出口冷媒温センサー15と、上記各機器の作動を制御する制御装置70とを有している。   Alternatively, the compressor 10 that sucks and compresses the refrigerant, the refrigerant water heat exchanger 20 that exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 10 and the hot water supply water, the refrigerant that flows out of the refrigerant water heat exchanger 20, etc. An enthalpy decompression expansion and an ejector 40 capable of varying the throttle opening, a refrigerant air heat exchanger 30 for evaporating the refrigerant by exchanging heat between the low-temperature and low-pressure refrigerant and the air, and the suction pressure to the compressor 10 A suction pressure sensor 11 that detects Pl, a suction temperature sensor 12 that detects a suction temperature Tl to the compressor 10, a discharge temperature sensor 13 that detects a discharge temperature Th from the compressor 10, and a discharge from the compressor 10 The discharge pressure sensor 14 for detecting the pressure Ph, the outlet refrigerant temperature sensor 15 for detecting the post-heat exchange temperature To flowing out from the refrigerant water heat exchanger 20, and the operation of each of the above devices are controlled. And a that the control device 70.

そして、制御装置70は、吐出圧力センサー14にて検出される吐出圧力Phが所定圧力Psよりも高くなった場合、エジェクタ40での絞り開度を開くとともに、吸入圧力センサー11にて検出される吸入圧力Plと吸入温度センサー12にて検出される吸入温度Tlとから導出される冷媒密度Dと、吐出温度センサー13にて検出される吐出温度Thと吐出圧力センサー14にて検出される吐出圧力Phと出口冷媒温センサー15にて検出される熱交換後温度Toとから算出されるエンタルピー差Δiとを用いて算出される加熱能力Qに対する制御装置70で算出する目標加熱能力Qtの比率に応じて制御装置70で算出する圧縮機10の目標回転数Nを補正回転数N´に増速補正して運転するようにしている。   When the discharge pressure Ph detected by the discharge pressure sensor 14 is higher than the predetermined pressure Ps, the control device 70 opens the throttle opening degree at the ejector 40 and is detected by the suction pressure sensor 11. The refrigerant density D derived from the suction pressure Pl and the suction temperature Tl detected by the suction temperature sensor 12, the discharge temperature Th detected by the discharge temperature sensor 13 and the discharge pressure detected by the discharge pressure sensor 14. According to the ratio of the target heating capacity Qt calculated by the control device 70 to the heating capacity Q calculated using the enthalpy difference Δi calculated from Ph and the post-heat exchange temperature To detected by the outlet refrigerant temperature sensor 15 Thus, the target rotational speed N of the compressor 10 calculated by the control device 70 is increased to the corrected rotational speed N ′ and the speed is corrected for operation.

これらによれば、いずれも圧縮機10からの吐出圧力Phが所定圧力Psを超えないようにエジェクタ40での絞り開度を開いて装置を破損から保護する保護的な制御を行いつつ、絞り開度を開いたことによって所定の加熱能力より不足する分だけ圧縮機10の目標回転数Nを補正回転数N´に増速補正して冷媒流量を増加させることにより、所定の加熱能力を確保することができる。   According to these, in either case, the opening of the throttle is opened while the throttle opening at the ejector 40 is opened to protect the device from damage so that the discharge pressure Ph from the compressor 10 does not exceed the predetermined pressure Ps. The predetermined heating capacity is ensured by increasing the refrigerant flow rate by increasing the target rotational speed N of the compressor 10 to the corrected rotational speed N ′ by an amount that is less than the predetermined heating capacity due to opening the degree. be able to.

これにより、本実施形態のように本加熱装置を給湯装置に用いた場合であれば、所定の時間内で所定の沸き上げ温度に沸き上げることができる。このように、本発明は特に、各種保護制御が働いて吐出圧力Ph・吐出温度Th・温度差Δt・エンタルピー差Δiを維持できない場合に有効である。   Thereby, if this heating apparatus is used for a hot-water supply apparatus like this embodiment, it can be heated up to predetermined boiling temperature within predetermined time. As described above, the present invention is particularly effective when various protection control functions and the discharge pressure Ph, the discharge temperature Th, the temperature difference Δt, and the enthalpy difference Δi cannot be maintained.

(第実施形態)
図5は、本発明の第実施形態に係る膨張弁サイクルを用いたヒートポンプ式加熱装置の全体構成模式図である。上述した実施形態と異なる特徴は、可変式減圧手段80は、膨張弁80である。可変式の膨脹弁80は、冷媒水熱交換器20から流出した冷媒を等エンタルピ的に減圧膨脹させるとともに、その絞り開度を可変できる可変式減圧手段であり、本実施形態では、制御装置70により通常は高圧側冷媒の圧力が所定範囲となるように膨脹弁80の絞り開度が可変制御されている。これによれば、減圧手段に膨張弁80を用いた膨張弁サイクルにおいても同様の効果を得ることができる。
( Second Embodiment)
FIG. 5 is a schematic diagram of the overall configuration of a heat pump heating device using an expansion valve cycle according to the second embodiment of the present invention. A feature different from the embodiment described above is that the variable pressure reducing means 80 is an expansion valve 80. The variable expansion valve 80 is a variable pressure-reducing means capable of decompressing and expanding the refrigerant flowing out from the refrigerant water heat exchanger 20 in an enthalpy manner and varying the throttle opening. In the present embodiment, the control device 70 Thus, normally, the throttle opening of the expansion valve 80 is variably controlled so that the pressure of the high-pressure side refrigerant falls within a predetermined range. According to this, the same effect can be obtained also in the expansion valve cycle using the expansion valve 80 as the pressure reducing means.

(その他の実施形態)
上述の実施形態では、冷媒をCOとして高圧側圧力を臨界圧力以上としたが、本発明は上述の実施形態に限定されるものではなく、CO以外の冷媒で有っても良いし、高圧側圧力も臨界圧力以下であっても良い。また、上述の実施形態では、貯湯式の給湯装置を例に本発明を説明したが、本発明はこの実施形態に限定されるものではなく、貯湯式でなくても良いし、ブラインを加熱してその温熱を利用する床暖房装置・浴室乾燥装置・パネルヒータなどに用いても良い。
(Other embodiments)
In the above-described embodiment, the refrigerant is CO 2 and the high-pressure side pressure is not less than the critical pressure. However, the present invention is not limited to the above-described embodiment, and may be a refrigerant other than CO 2 . The high pressure side pressure may also be lower than the critical pressure. In the above-described embodiment, the present invention has been described by taking a hot water storage type hot water supply apparatus as an example. However, the present invention is not limited to this embodiment, and may not be a hot water storage type, or may heat a brine. It may be used for a floor heating device, a bathroom drying device, a panel heater, etc. that use the warm heat.

また、各検出手段は、圧力と温度との個別機能で設けているが、圧力と温度との複合機能の検出手段で構成しても良い。また、上述の実施形態では、通常運転もしくは保護制御とそれによる補正を行うか否かを、吐出温度Thか吐出圧力Phかのいずれかだけで行っているが、もちろんこの両方で行うものであっても良い。また、上述の実施形態では、圧縮機10はモータ駆動であったが、エンジン駆動であっても良い。また、給湯用水を循環させるウォーターポンプ2の位置も限定するものではない。また、内部熱交換器60が無いサイクルであっても良い。   Each detection means is provided with an individual function of pressure and temperature, but may be constituted by a detection function of a combined function of pressure and temperature. In the above-described embodiment, whether or not to perform normal operation or protection control and the correction based on the normal operation or the protection control is performed only by either the discharge temperature Th or the discharge pressure Ph. May be. Moreover, in the above-mentioned embodiment, although the compressor 10 was motor drive, it may be engine drive. Further, the position of the water pump 2 for circulating the hot water supply water is not limited. Moreover, the cycle without the internal heat exchanger 60 may be sufficient.

本発明の実施形態に係るエジェクタサイクルを用いたヒートポンプ式加熱装置の全体構成模式図である。It is a whole schematic diagram of a heat pump type heating device using an ejector cycle concerning an embodiment of the present invention. 本発明の実施形態に係るエジェクタ40の断面模式図である。It is a cross-sectional schematic diagram of the ejector 40 which concerns on embodiment of this invention. 本発明の第1実施形態におけるヒートポンプ式加熱装置の制御のフローチャートである。It is a flowchart of control of the heat pump type heating apparatus in 1st Embodiment of this invention. 本発明の参考例におけるヒートポンプ式加熱装置の制御のフローチャートである。It is a flowchart of control of the heat pump type heating apparatus in the reference example of this invention. 本発明の第実施形態に係る膨張弁サイクルを用いたヒートポンプ式加熱装置の全体構成模式図である。It is a whole schematic diagram of a heat pump type heating device using an expansion valve cycle concerning a 2nd embodiment of the present invention. 従来の技術に係るヒートポンプ式加熱装置の模式図である。It is a schematic diagram of the heat pump type heating apparatus which concerns on a prior art.

符号の説明Explanation of symbols

10…圧縮機
11…吸入圧力センサー(吸入圧力検出手段)
12…吸入温度センサー(吸入温度検出手段)
13…吐出温度センサー(吐出温度検出手段)
14…吐出圧力センサー(吐出圧力検出手段)
15…出口冷媒温センサー(温度差検出手段、熱交換後温度検出手段)
16…入口水温センサー(温度差検出手段)
20…冷媒水熱交換器(高圧側熱交換器)
30…冷媒空気熱交換器(低圧側熱交換器)
40…エジェクタ(可変式減圧手段)
41…ノズル
70…制御装置(制御手段)
80…膨張弁(可変式減圧手段)
D…冷媒密度
N…目標回転数
N´…補正回転数
Ph…吐出圧力
Pl…吸入圧力
Ps…所定圧力
Pt…目標吐出圧力
Q…加熱能力
Qt…目標加熱能力
Th…吐出温度
Tl…吸入温度
To…熱交換後温度
Ts…所定温度
Tt…目標吐出温度
Δi…エンタルピー差
Δit…目標エンタルピー差
Δt…温度差
Δtt…目標温度差
10 ... Compressor 11 ... Suction pressure sensor (suction pressure detection means)
12 ... Suction temperature sensor (suction temperature detection means)
13. Discharge temperature sensor (discharge temperature detection means)
14: Discharge pressure sensor (discharge pressure detection means)
15 ... Outlet refrigerant temperature sensor (temperature difference detection means, temperature detection means after heat exchange)
16 ... Inlet water temperature sensor (temperature difference detection means)
20 ... Refrigerant water heat exchanger (high-pressure side heat exchanger)
30 ... Refrigerant air heat exchanger (low pressure side heat exchanger)
40 ... Ejector (variable decompression means)
41 ... Nozzle 70 ... Control device (control means)
80 ... Expansion valve (variable pressure reducing means)
D: Refrigerant density N: Target rotational speed N ': Corrected rotational speed Ph ... Discharge pressure Pl ... Suction pressure Ps ... Predetermined pressure Pt ... Target discharge pressure Q ... Heating capacity Qt ... Target heating capacity Th ... Discharge temperature Tl ... Suction temperature To ... Temperature after heat exchange Ts ... Predetermined temperature Tt ... Target discharge temperature Δi ... Enthalpy difference Δit ... Target enthalpy difference Δt ... Temperature difference Δtt ... Target temperature difference

Claims (4)

低温側の熱を高温側に移動させて流体を加熱する蒸気圧縮式のヒートポンプサイクルを用いた加熱装置であり、
冷媒を吸入圧縮する圧縮機(10)と、
前記圧縮機(10)が吐出する高温高圧の冷媒と被加熱流体とを熱交換させる高圧側熱交換器(20)と、
前記高圧側熱交換器(20)から流出した冷媒を等エンタルピ的に減圧膨脹させるとともに、その絞り開度を可変できる可変式減圧手段(40、80)と、
低温低圧の冷媒と空気とを熱交換させて冷媒を蒸発させる低圧側熱交換器(30)と、
前記圧縮機(10)からの吐出温度(Th)を検出する吐出温度検出手段(13)、もしくは前記圧縮機(10)からの吐出圧力(Ph)を検出する吐出圧力検出手段(14)と、
前記高圧側熱交換器(20)へ流入する被加熱流体の温度と前記高圧側熱交換器(20)から流出する冷媒の温度との温度差(Δt)を検出する温度差検出手段(15、16)と、
上記各機器の作動を制御する制御手段(70)とを有し、
前記制御手段(70)は、前記吐出温度検出手段(13)にて検出される前記吐出温度(Th)が所定温度(Ts)よりも高くなるか、もしくは前記吐出圧力検出手段(14)にて検出される前記吐出圧力(Ph)が所定圧力(Ps)よりも高くなった場合、
前記可変式減圧手段(40、80)での絞り開度を開くとともに、
前記温度差検出手段(15、16)にて検出される前記温度差(Δt)に対する前記制御手段(70)で前記吐出温度(Th)、前記吐出圧力(Ph)、前記高圧側熱交換器(20)の冷媒出口の熱交換後温度(To)、前記高圧側熱交換器(20)の流体入口の入口水温(Ti)および外気温度のうち少なくともいずれか一つに基づいて算出される目標温度差(Δtt)の比率に応じて前記制御手段(70)で算出する前記圧縮機(10)の目標回転数(N)を補正回転数(N´)に増速補正して運転することを特徴とするヒートポンプ式加熱装置。
It is a heating device using a vapor compression heat pump cycle that heats the fluid by moving the heat on the low temperature side to the high temperature side,
A compressor (10) for sucking and compressing refrigerant;
A high-pressure side heat exchanger (20) for exchanging heat between the high-temperature and high-pressure refrigerant discharged from the compressor (10) and the heated fluid;
Variable decompression means (40, 80) capable of decompressing and expanding the refrigerant flowing out of the high-pressure side heat exchanger (20) in an enthalpy manner and varying the throttle opening;
A low-pressure heat exchanger (30) for evaporating the refrigerant by exchanging heat between the low-temperature and low-pressure refrigerant and air;
A discharge temperature detecting means (13) for detecting a discharge temperature (Th) from the compressor (10), or a discharge pressure detecting means (14) for detecting a discharge pressure (Ph) from the compressor (10);
Temperature difference detection means (15, 15) for detecting a temperature difference (Δt) between the temperature of the heated fluid flowing into the high pressure side heat exchanger (20) and the temperature of the refrigerant flowing out of the high pressure side heat exchanger (20). 16)
Control means (70) for controlling the operation of each device,
The control means (70) detects whether the discharge temperature (Th) detected by the discharge temperature detection means (13) is higher than a predetermined temperature (Ts) or by the discharge pressure detection means (14). When the detected discharge pressure (Ph) is higher than a predetermined pressure (Ps),
While opening the throttle opening in the variable pressure reducing means (40, 80),
The discharge temperature (Th), the discharge pressure (Ph), the high-pressure side heat exchanger at the said temperature difference detected by temperature difference detecting means (15, 16) for (Delta] t), wherein said control means (70) (20) heat exchanger after the temperature of the refrigerant outlet of (the to), the target that will be calculated based on at least one of the fluid inlet of the inlet water temperature (Ti) and outside air temperature of the high-pressure side heat exchanger (20) depending on the ratio of the temperature difference ([Delta] TT), the correction rotation speed target speed (N) is of the compressor calculated by said control means (70) (10) (N' ) to be operated by accelerated corrected A heat pump type heating device.
高圧側の冷媒圧力が冷媒の臨界圧力以上となる超臨界ヒートポンプサイクルを用いたことを特徴とする請求項1に記載のヒートポンプ式加熱装置。 The heat pump heating apparatus according to claim 1, wherein a supercritical heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant is used. 前記可変式減圧手段(40)は、高圧冷媒を減圧膨張させるノズル(41)を有し、前記ノズル(41)から噴射する高い速度の冷媒流により前記低圧側熱交換器(30)にて蒸発した気相冷媒を吸引すると共に、膨張エネルギーを圧力エネルギーに変換して前記圧縮機(10)の吸入圧を上昇させるエジェクタ(40)であることを特徴とする請求項1または2に記載のヒートポンプ式加熱装置。 The variable pressure reducing means (40) has a nozzle (41) for decompressing and expanding high-pressure refrigerant, and evaporates in the low-pressure side heat exchanger (30) by a high-speed refrigerant flow injected from the nozzle (41). The heat pump according to claim 1 or 2 , wherein the heat pump is an ejector (40) that sucks the vapor-phase refrigerant and converts the expansion energy into pressure energy to increase the suction pressure of the compressor (10). Type heating device. 前記可変式減圧手段(80)は、膨張弁(80)であることを特徴とする請求項1または2に記載のヒートポンプ式加熱装置。 The heat pump heating device according to claim 1 or 2 , wherein the variable pressure reducing means (80) is an expansion valve (80).
JP2008029841A 2008-02-11 2008-02-11 Heat pump type heating device Expired - Fee Related JP4407756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008029841A JP4407756B2 (en) 2008-02-11 2008-02-11 Heat pump type heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008029841A JP4407756B2 (en) 2008-02-11 2008-02-11 Heat pump type heating device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004324070A Division JP4123220B2 (en) 2004-11-08 2004-11-08 Heat pump type heating device

Publications (2)

Publication Number Publication Date
JP2008134052A JP2008134052A (en) 2008-06-12
JP4407756B2 true JP4407756B2 (en) 2010-02-03

Family

ID=39559016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008029841A Expired - Fee Related JP4407756B2 (en) 2008-02-11 2008-02-11 Heat pump type heating device

Country Status (1)

Country Link
JP (1) JP4407756B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4361528B2 (en) 2003-01-30 2009-11-11 帝人ファーマ株式会社 Vitamin D3 lactone derivative

Also Published As

Publication number Publication date
JP2008134052A (en) 2008-06-12

Similar Documents

Publication Publication Date Title
JP5011713B2 (en) Heat pump type water heater
JP4059616B2 (en) Heat pump water heater
JP3227651B2 (en) Water heater
JP4337880B2 (en) Heat pump water heater
JP4123220B2 (en) Heat pump type heating device
JP3659197B2 (en) Heat pump water heater
JP5659560B2 (en) Refrigeration cycle equipment
JP4858399B2 (en) Refrigeration cycle
JP4715852B2 (en) Heat pump water heater
JP3740380B2 (en) Heat pump water heater
JP2002228282A (en) Refrigerating device
JP4407756B2 (en) Heat pump type heating device
JP4530056B2 (en) Heat pump type heating device
JP5052631B2 (en) Heat pump type hot water supply device
JP2007057186A (en) Ejector type refrigerating cycle
JP4124195B2 (en) Heat pump type heating device
JP2004309027A (en) Control method for heat pump device
JP2009250537A (en) Heat pump type water heater
JP2006194537A (en) Heat pump device
JP4285374B2 (en) Heat pump water heater
JP2000346447A (en) Heat pump hot-water supplier
JP4465986B2 (en) Heat pump type water heater
JP2000346447A5 (en)
JP2002081771A (en) Heat pump
JP5703849B2 (en) Heat pump type water heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees