WO2017081722A1 - Operation execution device - Google Patents

Operation execution device Download PDF

Info

Publication number
WO2017081722A1
WO2017081722A1 PCT/JP2015/081455 JP2015081455W WO2017081722A1 WO 2017081722 A1 WO2017081722 A1 WO 2017081722A1 JP 2015081455 W JP2015081455 W JP 2015081455W WO 2017081722 A1 WO2017081722 A1 WO 2017081722A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
arm
robot
motor
robot arms
Prior art date
Application number
PCT/JP2015/081455
Other languages
French (fr)
Japanese (ja)
Inventor
政利 藤田
児玉 誠吾
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to JP2017549877A priority Critical patent/JP6619817B2/en
Priority to PCT/JP2015/081455 priority patent/WO2017081722A1/en
Publication of WO2017081722A1 publication Critical patent/WO2017081722A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P21/00Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms

Definitions

  • the present invention relates to a work execution device.
  • the present invention has been made in view of such a problem, and a main object of the present invention is to provide a work execution device that can execute more work in parallel and further improve work efficiency.
  • the present invention adopts the following means in order to achieve the main object described above.
  • the work execution apparatus of the present invention includes three or more robot arms, and two or more other robot arms are disposed within a movable range of the robot arm, and three or more of the robot arms are work targets.
  • the work area of a work can be accessed.
  • two or more other robot arms are disposed within the movable range of the robot arm, and three or more of the robot arms can access the work area of the work to be worked.
  • by arranging the robot arm closer more work can be executed on the workpiece simultaneously and work efficiency can be further improved.
  • the robot arm may be disposed to face the work area.
  • work can be performed from both sides, and work efficiency is good.
  • two or more robot arms may be arranged in parallel to the workpiece transfer direction.
  • the robot arms since the robot arms are linearly arranged, it is easy to work on the workpiece.
  • all of the robot arms may be arranged so that the movable range of the robot arm is within the work area of the workpiece. In this apparatus, since a plurality of operations can be performed simultaneously, work efficiency can be further improved.
  • the robot arm performs assembly work for assembling parts, processing work for processing, coating work for applying viscous material, heating work for heating, and chemical and / or physical predetermined processing.
  • One or more of the processing work and the inspection work for performing the inspection may be performed on the workpiece.
  • Assembly work includes, for example, fastening work for fastening members such as screws, bolts and nuts, connector insertion work, wiring work work, component fitting work, member mounting work, pressing work to hold the work 1 or more of these.
  • Examples of the machining operation include one or more of a deformation operation for deforming a workpiece such as a press, a cutting operation for removing at least a part of the member, and a cutting operation.
  • Examples of the application operation include one or more of an operation of applying an adhesive as a viscous material, an operation of applying a conductive material such as a solder paste, and an operation of applying a lubricant such as grease.
  • Examples of the heating operation include one or more of an operation for thermosetting a resin and the like, an operation for heat-deforming the resin and the like, a reflow operation for melting and solidifying solder and the like, an operation for removing the organic material by heating, and the like.
  • Examples of the processing operation include one or more of a surface modification operation using laser or plasma, a surface finishing operation using polishing, a coating operation for providing a protective layer on the surface, and the like.
  • the inspection work includes, for example, work for inspecting one or more work results among assembly work, processing work, coating work, heating work, processing work, and the like.
  • the robot arm includes a tip portion that works on an object to be worked, a first motor, a ball screw having an axis disposed in the axial direction of the first motor, and the tip portion.
  • a pulley that is disposed on the pulley and includes a belt that includes the first motor and the ball screw, is connected to the ball screw, and moves in the axial direction of the first motor;
  • the first arm provided with the first drive unit, the drive force of the second motor and the second motor are orthogonally decelerated, and the drive force of the bevel gear mechanism or the second motor provided with the first arm
  • a second arm provided with a second drive part that has any of a wave gear mechanism that decelerates by differential between an ellipse and a perfect circle and that rotates the first arm.
  • the first arm on the distal end side is provided with a first drive unit that is rotationally driven by a belt including a motor and a ball screw, the first arm can be made thinner.
  • the second arm provided with the first arm is provided with a second drive unit having a bevel gear mechanism that can be reduced in the orthogonal direction and made compact in the rotation axis direction.
  • the operation accuracy can be ensured.
  • the second arm provided with the first arm is provided with a second drive unit having a wave gear mechanism that decelerates by the difference between an ellipse and a perfect circle, thereby achieving compactness and ensuring operation accuracy. can do.
  • this robot arm the distal end side working on the work target is more compact and sufficient operation accuracy can be ensured.
  • this work execution device by using such a robot arm, a plurality of robot arms can be arranged close to each other, and more work can be executed simultaneously on the work to further improve work efficiency. Can do.
  • FIG. 1 is a schematic explanatory diagram of a work execution device 100.
  • FIG. The perspective view of the work execution apparatus 100.
  • FIG. Explanatory drawing of the movable range 105 and arrangement
  • FIG. 1 is a schematic explanatory diagram of an arm robot 1.
  • FIG. Explanatory drawing of the 1st drive part 11 with which the 1st arm 10 is provided.
  • FIG. 1 is a schematic explanatory diagram of a work execution apparatus 100 which is an example of the present invention.
  • FIG. 2 is a perspective view of the work execution apparatus 100.
  • FIG. 3 is an explanatory diagram of the relationship among the movable range 105 of the robot arm 1, the position where the robot arm 1 is disposed, and the work area 106.
  • FIG. 4 is a schematic explanatory diagram of the arm robot 1.
  • FIG. 5 is an explanatory diagram of the first drive unit 11 provided in the first arm 10.
  • FIG. 6 is an explanatory diagram of the second drive unit 21 provided in the second arm 20.
  • FIG. 7 is a block diagram showing the electrical connection relationship of the arm robot 1.
  • the left and right direction (X axis), the front and rear direction (Y axis), and the up and down direction (Z axis) of the work execution apparatus 100 are as shown in FIGS. Further, since the robot arm 1 is movable in all directions, there is no specific direction to be fixed. However, for convenience of explanation, the direction shown in FIGS. ), The front-rear direction (Y-axis) and the up-down direction (Z-axis).
  • the work execution device 100 is configured as a device that performs a plurality of predetermined operations on an object (work W) to be worked.
  • the work execution apparatus 100 includes three or more robot arms 1, a base 101 on which the robot arm 1 is disposed, a transport unit 102 that transports and fixes a work W to a work area 106 where a predetermined work is performed, and the entire apparatus. And a system control unit 104 for controlling the system.
  • three robot arms 1 are arranged in parallel with the workpiece W conveyance direction (left and right direction in FIGS. 1 and 2), and the robot arm 1 faces the work area 106 therebetween.
  • FIGS. 1 and 2 An example in which six units are arranged as a whole will be described.
  • the arm robot 1 is configured as a device that performs a predetermined work on an article to be worked.
  • the article to be worked on is not particularly limited, and examples thereof include various parts such as mechanical parts, electrical parts, electronic parts, chemical parts, foods, biotechnology, biological items, and the like.
  • Examples of the predetermined work include a process of collecting, moving, and arranging from an initial position to a predetermined position, and a process of deforming, connecting, and joining a predetermined part.
  • the arm robot 1 includes a first arm 10, a second arm 20, a third support part 30, a pedestal part 40, a tip part 50, and a control part 60 (see FIG. 7).
  • the first arm 10 is a longitudinal member in which a distal end portion 50 for working on an article to be worked is disposed.
  • the first arm 10 is provided therein with a first drive unit 11 that rotationally drives the tip 50.
  • the first drive unit 11 includes a first motor 12, a shaft 13, a ball screw 14, a first pulley 15, a second pulley 16, a belt 17, and a slide 18. I have.
  • the first motor 12 is a power source that rotationally drives the distal end portion 50, and its rotation shaft is disposed in the longitudinal direction of the first arm 10 (the front-rear direction in FIGS. 4 and 5).
  • a brake unit 19 is disposed at the rear end of the first motor 12, and the rotation of the rotating shaft is fixed by the brake unit 19 even when power supply to the first motor 12 is stopped.
  • the ball screw 14 is provided with a shaft 13 in the rotation axis direction of the first motor 12, and the slide 18 moves in the front-rear direction as the shaft 13 rotates.
  • the shaft 13 is directly connected to the rotation shaft of the first motor 12.
  • the first pulley 15 in which the distal end portion 50 is disposed is disposed on the distal end side
  • the second pulley 16 is disposed on the rear end side.
  • the first pulley 15 and the second pulley 16 are pivotally supported by the housing of the first arm 10 so as to be rotatable.
  • a base portion 51 of the distal end portion 50 is disposed so as to be rotatable with respect to the first arm 10.
  • the belt 17 is stretched around the first pulley 15 and the second pulley 16.
  • the belt 17 is preferably formed of a material that does not easily expand and contract from the viewpoint of ensuring operation accuracy.
  • the belt 17 may be a carbon belt.
  • the carbon belt may have a carbon core wire inside a resin (for example, high-strength urethane or high-strength nylon).
  • a slide 18 connected to the ball screw 14 is fixed to the belt 17. In the first drive unit 11, when the shaft 13 is rotationally driven by the first motor 12, the slide 18 moves in the longitudinal direction of the shaft 13 via the ball screw 14.
  • the belt 17 slides in the front-rear direction, and the linear movement of the belt 17 is converted into a rotational motion via the first pulley 15, and the tip 50 Rotate.
  • the belt 17 encloses the first motor 12, the shaft 13, and the ball screw 14 inside the first pulley 15 and the second pulley 16. For this reason, the first arm 10 is made more compact than that in which the first motor 12 and the ball screw 14 are provided outside the belt 17.
  • the second arm 20 is a longitudinal member in which the first arm 10 is disposed, as shown in FIG.
  • the second arm 20 is provided with a second drive unit 21 that rotationally drives the first arm 10 on the distal end side thereof.
  • the second drive unit 21 includes a bevel gear mechanism 23 on which the first arm 10 is disposed.
  • the bevel gear mechanism 23 is a gear mechanism that orthogonally reduces the driving force of the second motor 22.
  • the bevel gear mechanism 23 meshes with a pinion 24 of a spiral bevel gear (spiral bevel gear), a first gear 25 on which teeth meshing with a spiral bevel of the pinion 24, and teeth provided on the shaft of the first gear 25.
  • a second gear 26 is a longitudinal member in which the first arm 10 is disposed, as shown in FIG.
  • the second arm 20 is provided with a second drive unit 21 that rotationally drives the first arm 10 on the distal end side thereof.
  • the second drive unit 21 includes a bevel gear mechanism 23 on which the first arm 10 is
  • the pinion 24 is fixed to the rotating shaft of the second motor 22 and transmits a driving force to the first gear 25 that is pivotally supported in a direction orthogonal to the rotating shaft.
  • the bevel gear mechanism 23 is a bevel gear mechanism in which the pinion 24 and the first gear 25 are offset. Since these gears are offset, it is possible to further reduce the size.
  • the first arm 10 is disposed on the second gear 26, and the first arm 10 is rotationally driven by the driving force of the first gear 25.
  • the second arm 20 includes the bevel gear mechanism 23 with the axial direction of the second motor 22 as the longitudinal direction, and thereby accommodates the second motor 22 therein.
  • the third arm 30 is provided with the second arm 20.
  • the third support part 30 is provided with a third drive part 31 for rotating the second arm 20 on the distal end side thereof.
  • the third drive unit 31 includes a bevel gear mechanism 33 provided with the second arm 20 and a third motor 32 that drives the bevel gear mechanism 33.
  • the third motor 32 has a larger rated output than the second motor 22.
  • the bevel gear mechanism 33 is assumed to be the same mechanism as the bevel gear mechanism 23, and the description thereof is omitted.
  • the pedestal portion 40 supports the third support portion 30 via a support shaft 41 formed in the vertical direction.
  • the pedestal portion 40 is provided with a motor, and the support shaft 41 is rotated by the motor.
  • the front end portion 50 is for working on an object to be worked.
  • the distal end portion 50 includes a base 51, a mounting portion 52, a sampling member 53, an imaging unit 54, and a drive portion 58.
  • the base 51 is disposed on the first pulley 15 of the first arm 10, and a flat plate-shaped disposing part 51 a is formed on the tip side thereof.
  • a mounting portion 52 and an imaging unit 54 are disposed on the lower surface of the placement portion 51a.
  • the mounting part 52 is detachably mounted with a sampling member 53 for sampling an article.
  • the sampling member 53 is configured as, for example, a mechanical chuck that has a plurality of claw portions and grips and samples an article.
  • the sampling member 53 is driven by the drive unit 58 and rotates together with the mounting unit 52, and performs a gripping operation of the article such as opening and closing of the claw portion.
  • the collection member 53 may be, for example, an adsorption nozzle that adsorbs and collects articles by pressure.
  • the base 51 may have a movable shaft that can change the direction of the arrangement portion 51a, and may be configured so that the direction of the sampling member 53 can be rotated in the vertical direction.
  • the imaging unit 54 includes an irradiation unit 55 and an imaging unit 56.
  • the irradiation unit 55 is, for example, illumination that is arranged in a circular shape on the outer periphery of the imaging unit 56, and irradiates light around the work target article and the work target.
  • the imaging unit 56 is a camera that captures an image of the work target item and the work target.
  • the imaging unit 54 outputs the captured image data to the control unit 60.
  • the control unit 60 is configured as a microprocessor centered on a CPU and controls the entire apparatus.
  • the control unit 60 outputs signals to the first motor 12, the second motor 22, the third motor 32, and the drive unit 58.
  • the control unit 60 inputs a signal from the imaging unit 54.
  • the first drive unit 11, the second drive unit 21, and the third drive unit 31 are equipped with position sensors (not shown), and the control unit 60 inputs each position information from these position sensors while driving each drive. Control the motor of the unit.
  • the control unit 60 grasps the position and direction of the article to be worked using the image captured by the imaging unit 54, and performs predetermined processing on the article. In the arm robot 1, more accurate processing (collection processing and arrangement processing) can be performed on the article.
  • the arm robot 1 is created so that the first arm 10, the second arm 20, and the third support portion 30 can be made as compact in the width direction (left-right direction) as possible.
  • the arm robot 1 employs the belt-driven first drive unit 11 to make the first arm 10 lighter and thinner.
  • the width L1 (FIG. 4) of the first arm 10 can be formed to be 60 mm or less, and can be formed to be 50 mm or less.
  • the first arm 10 may have a width excluding wiring of 50 mm or less, and may be 40 mm or less.
  • the arm robot 1 employs the second drive unit 21 and the third drive unit 31 of the bevel gear mechanism, thereby ensuring the output capable of holding the mass on the distal end side and the positional accuracy and reducing the size. It is said.
  • the width L2 of the second arm 20 may be formed to be 100 mm or less, and may be formed to be 90 mm or less.
  • the second arm 20 can be formed to have a width excluding wiring of 90 mm or less, or can be formed to 80 mm or less.
  • the width L3 of the third support part 30 can be formed to be 70 mm or less, or can be formed to be 60 mm or less.
  • the tip 50 can be formed with a width L0 of 40 mm.
  • the pedestal portion 40 can be formed with a width L4 of 150 mm or less.
  • the distal end portion 50 of the robot arm 1 is configured as a replaceable unit depending on the work content to be performed on the work W to be worked.
  • the tip portion 50 performs, for example, an assembling operation for assembling parts, a processing operation for performing processing, a coating operation for applying a viscous material, a heating operation for heating, a processing operation for performing chemical and / or physical predetermined processing, and an inspection.
  • One or more of the inspection operations may be performed on the workpiece W.
  • Assembly work includes, for example, fastening work of fastening members such as screws, bolts, nuts, connector insertion work, wiring work work, part fitting work, pressing work to hold the member mounting work, etc. 1 or more of them.
  • the tip portion 50 may be provided with a fastening work portion that performs one or more of attachment, rotation, and fixing of the fastening member when fastening work is performed.
  • the tip portion 50 may be provided with an insertion operation portion that performs one or more of attachment, insertion, and fixation of the connector when performing the insertion operation.
  • the tip portion 50 may be provided with a handling work portion that performs one or more of wiring attachment, insertion, and positioning when performing the handling work.
  • the tip portion 50 may be provided with a fitting work portion for collecting and fitting a part when performing the fitting work.
  • the tip portion 50 may be provided with a pressing work portion for pressing a component when the pressing work is performed.
  • Examples of the processing work include one or more of a deformation work for deforming the work W such as a press, a cutting work for removing at least a part of the member (work W), and a cutting work for cutting at least the member (work W).
  • the tip portion 50 may be provided with a deformation working portion that deforms the workpiece W by applying pressure when performing the deformation work.
  • the tip portion 50 may be provided with a cutting operation unit for cutting the workpiece W when performing the cutting operation.
  • the tip portion 50 may be provided with a cutting operation portion for cutting the workpiece W when performing the cutting operation.
  • Examples of the application operation include one or more of an operation of applying an adhesive as a viscous material, an operation of applying a conductive material such as a solder paste, and an operation of applying a lubricant such as grease.
  • the tip portion 50 may be provided with a supply operation portion that supplies a viscous material when performing an application operation.
  • Examples of the heating operation include one or more of an operation for thermosetting a resin and the like, an operation for heat-deforming the resin and the like, a reflow operation for melting and solidifying solder and the like, an operation for removing the organic material by heating, and the like.
  • the tip portion 50 may be provided with a heating operation portion that heats the workpiece W in a contact state or a non-contact state when performing the heating operation.
  • the processing operation include one or more of a surface modification operation using laser or plasma, a surface finishing operation using polishing, a coating operation for providing a protective layer on the surface, and the like.
  • the tip portion 50 may be provided with a surface modification working section that irradiates the workpiece W with laser and / or plasma when performing the surface modification work.
  • the tip portion 50 may be provided with a surface finishing operation portion for polishing the workpiece W using an abrasive member when performing the surface finishing operation.
  • the tip portion 50 may be provided with a covering operation portion for providing a protective material on the workpiece W when performing the covering operation.
  • the inspection work includes, for example, work for inspecting one or more work results among assembly work, processing work, coating work, heating work, processing work, and the like.
  • the tip portion 50 includes an inspection work unit that inspects one or more work results among an assembly work, a processing work, a coating work, a heating work, a processing work, and the like when the work is performed. do it.
  • the base 101 is provided to fix and fix each robot arm 1 and the transport unit 102.
  • the base 101 is provided with a transport unit 102 in the center thereof, and the robot arms 1 are arranged and fixed on both sides of the transport unit 102.
  • the transfer unit 102 is, for example, a unit that carries in and carries a workpiece W such as a substrate, fixes it in the work area 106, and carries out the workpiece W.
  • the transport unit 34 has a pair of conveyor belts provided at intervals in the front and rear direction of FIG. 1 and spanned in the left-right direction. The workpiece W is conveyed by this conveyor belt.
  • the substrate to be transported is the work W that is a work target, and the attached component also corresponds to the work W that is a work target.
  • the system control unit 104 is configured as a microprocessor centered on a CPU and controls the entire work execution apparatus 100 (see FIG. 1).
  • the system control unit 104 outputs a signal to each robot arm 1 and the transfer unit 102 to drive and control them.
  • the work execution device 100 includes three or more robot arms 1, and two or more other robot arms 1 are disposed within a movable range 105 of the robot arm 1. Further, in the work execution device 100, three or more of the robot arms 1 can access the work area 106 of the work W that is the work target. As shown in FIG. 3, the work execution device 100 is close to each other so that at least a part of the pedestal portions 40 of all the other robot arms 1 are within the movable range 105 (circle in FIG. 3) of the robot arm 1. Thus, it is arranged on the base 101. Further, in this work execution apparatus 100, the pedestal 40 of the robot arm 1 is arranged on the base 101 so that the work area 106 where the workpiece W is placed can be accessed by all the tips 50 of the robot arms 1.
  • each robot arm 1 is preferably arranged such that the overlapping range with the movable range 105 of another adjacent robot arm 1 is at least 30% or more in area ratio.
  • the overlapping range may be 40% or more, or may be 50% or more.
  • Each robot arm 1 is preferably disposed on the base 101 at a distance (for example, 240 mm or less) that is not more than three times as large as the width of the robot arm 1. If the distance between the robot arms 1 is too short, the arms of the robot arms 1 are likely to interfere with each other. If the distance between the robot arms 1 is too long, the number of operations that can be performed simultaneously is reduced. For this reason, it is preferable to set the arrangement interval of the robot arm 1 (the pedestal portion 40) within an appropriate range according to the width dimension of the robot arm 1 and the work content. As shown in FIG. 3, the area where the movable ranges 105 of all the robot arms 1 overlap is the maximum work area 108 (FIG. 3, one-dot chain line). Even if it exists, each robot arm 1 can perform each work in parallel.
  • a distance for example, 240 mm or less
  • the operation of the work execution apparatus 100 configured as described above, particularly the process of performing three or more tasks on the workpiece W arranged in the work area 106 in time parallel will be described.
  • the arm robot 1 of the work execution apparatus 100 includes a tip portion 50 that performs a screw tightening work, a component pressing work, a wiring handling work, an adhesive application work, and a heating work.
  • the system control unit 104 obtains in advance the timing and position at which each robot arm 1 does not interfere, and based on that, each robot arm 1 presses a part (work W) and collects a screw.
  • work execution device 100 is good also as what performs a series of work performed continuously, for example, performing assembly, processing, predetermined processing, and inspection.
  • each robot arm 1 includes a tip portion 50 that performs a plasma irradiation operation, an adhesive application operation, a component (work W) mounting operation, and an inspection operation for a portion where the operation has been performed.
  • the system control unit 104 may cause the robot arm 1 to sequentially perform a series of operations performed continuously. Further, in the work execution apparatus 100, a plurality of robot arms 1 may cooperate to perform one work.
  • one robot arm 1 may hold the workpiece W, one robot arm 1 may dispose the screw in the screw hole, and one robot arm 1 may perform the operation of tightening the screw.
  • one robot arm 1 holds one end side of the wire, one robot arm 1 holds the other end side of the wire, and one robot arm 1 passes the intermediate portion of the wire to the groove portion. It is good also as what performs the work to insert.
  • one robot arm 1 may fix the work W to be worked into which the part is fitted, and one robot arm 1 may perform the work of fitting the part into the work W.
  • the inspection work it is assumed that the plurality of robot arms 1 are provided with respective inspection terminals, and that each robot arm 1 simultaneously accesses the work W to be inspected and performs each inspection work. Also good.
  • the robot arm 1 of the present embodiment corresponds to a robot arm
  • the tip 50 corresponds to a tip
  • the first arm 10 corresponds to a first arm
  • the second arm 20 corresponds to a second arm.
  • three or more robot arms 1 are provided, and two or more other robot arms 1 are disposed within the movable range 105 of the robot arm 1. 3 or more of them can access the work area 106 of the work W that is the work target.
  • this work execution device 100 by placing the robot arm 1 closer, more work can be executed on the workpiece W in parallel and work efficiency can be further increased.
  • the robot arm 1 is disposed so as to face the work area 106, work can be performed on both sides of the work W from both sides, and work efficiency is good.
  • two or more robot arms 1 are linearly arranged in parallel to the workpiece W conveyance direction, it is easy to perform work on the workpiece W.
  • all of the robot arms 1 are arranged so that the movable range 105 of the robot arm 1 is within the work area 106 of the work W, a plurality of work can be performed simultaneously, and work efficiency is improved. Can be further enhanced.
  • the robot arm 1 performs an assembly operation for assembling parts, a processing operation for performing processing, a coating operation for applying a viscous material, a heating operation for heating, a processing operation for performing a chemical and / or physical predetermined processing, and an inspection.
  • One or more of the inspection operations are performed on the workpiece W.
  • the robot arm 1 can perform the above-described various works on the workpiece W.
  • the robot arm 1 is more compact at the front end side where the work is performed on the work target and can sufficiently ensure the operation accuracy due to the configuration of the first arm 10.
  • a plurality of robot arms 1 can be arranged close to each other, and more work can be performed simultaneously on the work W to improve work efficiency. Can be further enhanced.
  • all the other robot arms 1 are disposed within the movable range 105 of the robot arm 1, but two or more other robots are disposed within the movable range 105 of the robot arm 1. If the arm 1 is provided, it is not particularly limited to this.
  • the robot arm 1 is preferably arranged close to the robot arm 1 but may be arranged with a little clearance so that it is not difficult to avoid (does not interfere with) each operation.
  • all of the robot arms 1 can access the work area 106 at the same time.
  • three or more of the robot arms 1 can access the work area 106 of the work W that is the work target. If so, it is not particularly limited to this. It is preferable that more robot arms 1 can access the work area 106 at the same time.
  • the robot arm 1 may be arranged with a little clearance so that it is not difficult to avoid (does not interfere with) each operation. Good.
  • the work execution apparatus 100 includes the six robot arms 1, but is not particularly limited as long as it includes three or more robot arms 1. Further, although the robot arm 1 is disposed to face the work area 106, the robot arm 1 may not be particularly opposed. In addition, two or more robot arms 1 are arranged in parallel (on a straight line) with respect to the workpiece conveyance direction. However, the robot arm 1 is not particularly limited thereto, and may not be parallel to the conveyance direction. It does not have to be arranged on a straight line. For example, the robot arm 1 may be arranged on a circle having a work area 106 at the center.
  • the work execution apparatus 100 has been described as performing various predetermined tasks. However, the work execution device 100 may appropriately perform tasks other than those exemplified above.
  • the robot arm 1 has been described as including the pedestal portion 40.
  • the robot arm 1 is not particularly limited thereto, and a plurality of robot arms 1 may be provided on one pedestal portion 40. Good. In this case, it suffices that two or more other robot arm placement sites are within the movable range of the robot arm.
  • FIG. 8 is a schematic explanatory diagram of another arm robot 1B provided with wave gear mechanisms 23B and 33B.
  • the arm robot 1B includes a second drive unit 21B having a wave gear mechanism 23B and a third drive unit 31B having a wave gear mechanism 33B.
  • the second motor 22 is disposed in a direction orthogonal to the longitudinal direction of the second arm 20.
  • the wave gear mechanism 23B is configured as a harmonic drive (registered trademark) including a wave generator 24B, a flex spline 25B, and a circular spline 26B.
  • the wave generator 24B is a component in which a thin ball bearing is combined with the outer periphery of an elliptical cam.
  • the flex spline 25B is a thin cup-shaped metal elastic body, and is a component in which teeth are carved on the outer periphery of the opening.
  • the circular spline 26B is a rigid ring-shaped part, and has fewer teeth on the inner periphery than the flexspline 25B.
  • the explanation of the wave gear mechanism 33B is omitted because it is the same as the wave gear mechanism 23B.
  • the second arm 20 and the third support unit 30 that support the first arm 10 can sufficiently ensure the operation accuracy.
  • the arm robot 1B may include a wave gear mechanism in either the second arm 20 or the third support unit 30.
  • the bevel gear mechanism of the second drive unit 21 and the third drive unit 31 is a spiral bevel gear, but it may be a bevel gear that is not a spiral bevel.
  • the bevel gear mechanism 23 is a bevel gear mechanism in which the pinion 24 and the first gear 25 are offset, but may not be offset.
  • the distal end side that works on the work target is more compact and can sufficiently secure the operation accuracy.
  • the first arm 10 and the second arm 20 are provided.
  • the present invention is not particularly limited to this, and a third arm, a fourth arm, or the like may be provided.
  • the third arm can also be provided with a bevel gear mechanism and a wave gear mechanism.
  • the belt 17 is a carbon belt, but is not particularly limited thereto, and may be a belt formed of a material other than carbon.
  • the imaging unit 54 is provided at the distal end portion 50.
  • the imaging unit 54 is not particularly limited thereto, and the imaging unit 54 may not be provided. Also in this arm robot, the tip side working with respect to the work target is more compact, and sufficient operation accuracy can be secured.
  • the present invention can be used in the technical field of an apparatus that performs processing such as workpiece collection and arrangement.
  • 1, 1B arm robot 10 1st arm, 11 1st drive unit, 12 1st motor, 13 shaft, 14 ball screw, 15 1st pulley, 16 2nd pulley, 17 belt, 18 slide, 19 brake unit, 20th 2 arms, 21 and 21B second drive unit, 22 second motor, 23 bevel gear mechanism, 23B wave gear mechanism, 24 pinion, 24B wave generator, 25 first gear, 25B flex spline, 26 second gear, 26B circular spline , 30 3rd support part, 31 and 31B 3rd drive part, 32 3rd motor, 33 bevel gear mechanism, 33B wave gear mechanism, 40 pedestal part, 41 support shaft, 50 tip part, 51 base part, 51a arrangement part, 52 mounting part, 53 sampling member, 54 imaging unit, 55 irradiation part 56 imaging unit, 58 drive unit, 60 control unit, 100 work performing apparatus, 101 base plate, 102 transport unit, 104 a system control unit, 105 the movable range, 106 work area 108 up to the working area, W workpiece.

Abstract

Provided is an operation execution device whereby more operations can be simultaneously executed in parallel and operating efficiency can be further increased. An operation execution device (100) is provided with three or more robot arms (1), two or more other robot arms (1) are disposed in the range of movement of the robot arms (1), and three or more of the robot arms (1) can access an operation range of a work piece (W) which is an operation object. The robot arms (1) may be configured so as to perform, on the work piece (W) one or more of an assembly operation for installing a component, a processing operation for applying processing, an application operation for applying a viscous material, a heating operation for heating, a treatment operation for performing a predetermined chemical and/or physical treatment, and an inspection operation for inspecting.

Description

作業実行装置Work execution device
 本発明は、作業実行装置に関する。 The present invention relates to a work execution device.
 従来、ロボットアームを有する作業実行装置としては、例えば、双腕ロボットの一方の腕が1つの部品を組み付けている際に、他方の腕は他の部品を保持するなどして組み付け準備を行うものが提案されている(例えば、特許文献1参照)。この装置では、生産性の向上を図ることができるとしている。また、作業実行装置としては、2つのロボットアームの基端部が架台の対角の位置に固定されたものが提案されている(例えば、特許文献2参照)。この装置では、協調動作可能領域を広くすることができ、作業性がよいとしている。 Conventionally, as a work execution device having a robot arm, for example, when one arm of a double-arm robot is assembling one part, the other arm holds the other part to prepare for assembling. Has been proposed (see, for example, Patent Document 1). In this apparatus, productivity can be improved. As a work execution device, one in which the base end portions of two robot arms are fixed at diagonal positions of a gantry has been proposed (see, for example, Patent Document 2). In this apparatus, the cooperative operation possible area can be widened and the workability is good.
特開2006-35346号公報JP 2006-35346 A 特開2011-240443号公報JP 2011-240443 A
 ところで、電子機器をはじめとする工場での製品組立作業において、人が行っていた作業をロボット化する場合、ロボットアームは、その幅が広いため、狭隣接配置することが困難であった。ロボットアームは、特許文献1、2に示すように、多くても2本程度であり、作業効率が十分であるとはいえなかった。 By the way, in product assembly work in factories such as electronic equipment, when the work that humans have done is converted into a robot, it is difficult to arrange the robot arm narrowly adjacent because the robot arm is wide. As shown in Patent Documents 1 and 2, there are at most two robot arms, and it cannot be said that the working efficiency is sufficient.
 本発明は、このような課題に鑑みなされたものであり、より多くの作業を同時並行的に実行し作業効率をより高めることができる作業実行装置を提供することを主目的とする。 The present invention has been made in view of such a problem, and a main object of the present invention is to provide a work execution device that can execute more work in parallel and further improve work efficiency.
 本発明は、上述の主目的を達成するために以下の手段を採った。 The present invention adopts the following means in order to achieve the main object described above.
 本発明の作業実行装置は、3以上のロボットアームを備え、前記ロボットアームの可動範囲内に2以上の他の前記ロボットアームが配設されており、前記ロボットアームのうち3以上が作業対象であるワークの作業領域にアクセス可能であるものである。この装置は、ロボットアームの可動範囲内に2以上の他のロボットアームが配設されており、ロボットアームのうち3以上が作業対象であるワークの作業領域にアクセス可能である。この装置では、ロボットアームをより近接に配置することにより、ワークに対してより多くの作業を同時並行的に実行し作業効率をより高めることができる。 The work execution apparatus of the present invention includes three or more robot arms, and two or more other robot arms are disposed within a movable range of the robot arm, and three or more of the robot arms are work targets. The work area of a work can be accessed. In this apparatus, two or more other robot arms are disposed within the movable range of the robot arm, and three or more of the robot arms can access the work area of the work to be worked. In this apparatus, by arranging the robot arm closer, more work can be executed on the workpiece simultaneously and work efficiency can be further improved.
 本発明の作業実行装置において、前記ロボットアームは、前記作業領域を挟んで対向して配設されているものとしてもよい。この装置では、ワークに対して両側から作業を行うことができ、作業効率がよい。 In the work execution device according to the present invention, the robot arm may be disposed to face the work area. With this apparatus, work can be performed from both sides, and work efficiency is good.
 本発明の作業実行装置において、前記ロボットアームは、前記ワークの搬送方向に対して平行に2以上が配列されているものとしてもよい。この装置では、ロボットアームが直線的に配列されているため、ワークに対して作業を行いやすい。 In the work execution device of the present invention, two or more robot arms may be arranged in parallel to the workpiece transfer direction. In this apparatus, since the robot arms are linearly arranged, it is easy to work on the workpiece.
 本発明の作業実行装置において、前記ロボットアームは、そのすべてが前記ワークの作業領域内に該ロボットアームの可動範囲が入るよう配設されているものとしてもよい。この装置では、複数の作業を同時進行で行うことができるため、作業効率をより高めることができる。 In the work execution apparatus of the present invention, all of the robot arms may be arranged so that the movable range of the robot arm is within the work area of the workpiece. In this apparatus, since a plurality of operations can be performed simultaneously, work efficiency can be further improved.
 本発明の作業実行装置において、前記ロボットアームは、部品を組み付ける組立作業、加工を施す加工作業、粘性材料を塗布する塗布作業、加熱する加熱作業、化学的及び/又は物理的な所定処理を行う処理作業及び検査を行う検査作業のうち1以上を前記ワークに対して行うものとしてもよい。組付作業としては、例えば、ネジ、ボルト、ナットなどの締結部材の締結作業や、コネクタの挿入作業、配線に関する取回し作業、部品のはめ込み作業、部材の取付作業、ワークを押さえる押さえ付け作業などのうち1以上が挙げられる。加工作業としては、例えば、プレスなどワークを変形させる変形作業、少なくとも部材の一部を取り除く切断作業及び切削作業などのうち1以上が挙げられる。塗布作業としては、例えば、粘性材料としての接着剤を塗布する作業、はんだペーストなど導電材料を塗布する作業、グリスなどの潤滑剤を塗布する作業などのうち1以上が挙げられる。加熱作業としては、例えば、樹脂などを熱硬化させる作業、樹脂などを加熱変形させる作業、はんだなどを融解固化させるリフロー作業、有機材料を加熱除去する作業などのうち1以上が挙げられる。処理作業としては、例えば、レーザやプラズマなどによる表面改質作業、研磨などによる表面仕上げ作業、表面に保護層を設ける被覆作業などのうち1以上が挙げられる。検査作業としては、例えば、組立作業、加工作業、塗布作業、加熱作業及び処理作業などのうち1以上の作業結果を検査する作業などが挙げられる。 In the work execution apparatus of the present invention, the robot arm performs assembly work for assembling parts, processing work for processing, coating work for applying viscous material, heating work for heating, and chemical and / or physical predetermined processing. One or more of the processing work and the inspection work for performing the inspection may be performed on the workpiece. Assembly work includes, for example, fastening work for fastening members such as screws, bolts and nuts, connector insertion work, wiring work work, component fitting work, member mounting work, pressing work to hold the work 1 or more of these. Examples of the machining operation include one or more of a deformation operation for deforming a workpiece such as a press, a cutting operation for removing at least a part of the member, and a cutting operation. Examples of the application operation include one or more of an operation of applying an adhesive as a viscous material, an operation of applying a conductive material such as a solder paste, and an operation of applying a lubricant such as grease. Examples of the heating operation include one or more of an operation for thermosetting a resin and the like, an operation for heat-deforming the resin and the like, a reflow operation for melting and solidifying solder and the like, an operation for removing the organic material by heating, and the like. Examples of the processing operation include one or more of a surface modification operation using laser or plasma, a surface finishing operation using polishing, a coating operation for providing a protective layer on the surface, and the like. The inspection work includes, for example, work for inspecting one or more work results among assembly work, processing work, coating work, heating work, processing work, and the like.
 本発明の作業実行装置において、前記ロボットアームは、作業対象の物品に対して作業する先端部と、第1モータと前記第1モータの軸方向に軸が配設されたボールネジと前記先端部が配設されたプーリと前記プーリに掛け渡され前記第1モータ及び前記ボールネジを内包し該ボールネジに接続されて前記第1モータの軸方向に移動するベルトとを有し前記先端部を回動駆動する第1駆動部が配設された第1アームと、第2モータと前記第2モータの駆動力を直交減速し前記第1アームが配設されたかさ歯車機構又は前記第2モータの駆動力を楕円と真円との差動により減速する波動歯車機構のいずれかを有し前記第1アームを回動駆動する第2駆動部が配設された第2アームと、を備えているものとしてもよい。このロボットアームは、先端側の第1アームにはモータやボールネジが内包されたベルトにより回動駆動する第1駆動部を備えているため、第1アームをより細く形成することが可能である。また、第1アームを配設した第2アームには、直交減速すると共に、回動軸方向にコンパクト化を図ることができるかさ歯車機構を有する第2駆動部を備えているため、コンパクト化を図ると共に動作精度を確保することができる。あるいは、第1アームを配設した第2アームには、楕円と真円との差動により減速する波動歯車機構を有する第2駆動部を備えているため、コンパクト化を図ると共に動作精度を確保することができる。このため、このロボットアームでは、作業対象に対して作業する先端側はよりコンパクトで且つ動作精度を十分に確保することができる。この作業実行装置では、このようなロボットアームを用いることにより、複数のロボットアームを近接して配置可能であり、ワークに対してより多くの作業を同時並行的に実行し作業効率をより高めることができる。 In the work execution apparatus of the present invention, the robot arm includes a tip portion that works on an object to be worked, a first motor, a ball screw having an axis disposed in the axial direction of the first motor, and the tip portion. A pulley that is disposed on the pulley and includes a belt that includes the first motor and the ball screw, is connected to the ball screw, and moves in the axial direction of the first motor; The first arm provided with the first drive unit, the drive force of the second motor and the second motor are orthogonally decelerated, and the drive force of the bevel gear mechanism or the second motor provided with the first arm And a second arm provided with a second drive part that has any of a wave gear mechanism that decelerates by differential between an ellipse and a perfect circle and that rotates the first arm. Also good. In this robot arm, since the first arm on the distal end side is provided with a first drive unit that is rotationally driven by a belt including a motor and a ball screw, the first arm can be made thinner. In addition, the second arm provided with the first arm is provided with a second drive unit having a bevel gear mechanism that can be reduced in the orthogonal direction and made compact in the rotation axis direction. In addition, the operation accuracy can be ensured. Alternatively, the second arm provided with the first arm is provided with a second drive unit having a wave gear mechanism that decelerates by the difference between an ellipse and a perfect circle, thereby achieving compactness and ensuring operation accuracy. can do. For this reason, in this robot arm, the distal end side working on the work target is more compact and sufficient operation accuracy can be ensured. In this work execution device, by using such a robot arm, a plurality of robot arms can be arranged close to each other, and more work can be executed simultaneously on the work to further improve work efficiency. Can do.
作業実行装置100の概略説明図。1 is a schematic explanatory diagram of a work execution device 100. FIG. 作業実行装置100の斜視図。The perspective view of the work execution apparatus 100. FIG. ロボットアーム1の可動範囲105及び配設位置の説明図。Explanatory drawing of the movable range 105 and arrangement | positioning position of the robot arm 1. FIG. アームロボット1の概略説明図。1 is a schematic explanatory diagram of an arm robot 1. FIG. 第1アーム10が備える第1駆動部11の説明図。Explanatory drawing of the 1st drive part 11 with which the 1st arm 10 is provided. 第2アーム20が備える第2駆動部21の説明図。Explanatory drawing of the 2nd drive part 21 with which the 2nd arm 20 is provided. アームロボット1の電気的な接続関係を表すブロック図。The block diagram showing the electrical connection relation of the arm robot. 別のアームロボット1Bの概略説明図。Schematic explanatory drawing of another arm robot 1B.
 本発明の実施形態を図面を参照しながら以下に説明する。図1は、本発明の一例である作業実行装置100の概略説明図である。図2は、作業実行装置100の斜視図である。図3は、ロボットアーム1の可動範囲105とロボットアーム1の配設位置と作業領域106との関係の説明図である。図4は、アームロボット1の概略説明図である。図5は、第1アーム10が備える第1駆動部11の説明図である。図6は、第2アーム20が備える第2駆動部21の説明図である。図7は、アームロボット1の電気的な接続関係を表すブロック図である。なお、作業実行装置100の左右方向(X軸)、前後方向(Y軸)及び上下方向(Z軸)は、図1、2に示した通りとする。また、ロボットアーム1は全方位に可動するため固定される特定の方向はないが、説明の便宜のため、ロボットアーム1に対しては、図4、5に示した方向を左右方向(X軸)、前後方向(Y軸)及び上下方向(Z軸)として説明する。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic explanatory diagram of a work execution apparatus 100 which is an example of the present invention. FIG. 2 is a perspective view of the work execution apparatus 100. FIG. 3 is an explanatory diagram of the relationship among the movable range 105 of the robot arm 1, the position where the robot arm 1 is disposed, and the work area 106. FIG. 4 is a schematic explanatory diagram of the arm robot 1. FIG. 5 is an explanatory diagram of the first drive unit 11 provided in the first arm 10. FIG. 6 is an explanatory diagram of the second drive unit 21 provided in the second arm 20. FIG. 7 is a block diagram showing the electrical connection relationship of the arm robot 1. The left and right direction (X axis), the front and rear direction (Y axis), and the up and down direction (Z axis) of the work execution apparatus 100 are as shown in FIGS. Further, since the robot arm 1 is movable in all directions, there is no specific direction to be fixed. However, for convenience of explanation, the direction shown in FIGS. ), The front-rear direction (Y-axis) and the up-down direction (Z-axis).
 作業実行装置100は、作業対象の物品(ワークW)に対して複数の所定の作業を行う装置として構成されている。作業実行装置100は、3以上のロボットアーム1と、ロボットアーム1が配設される基台101と、所定の作業を行う作業領域106へワークWを搬送及び固定する搬送部102と、装置全体を制御するシステム制御部104と、を備えている。ここでは、作業実行装置100は、ロボットアーム1がワークWの搬送方向(図1、2の左右方向)に対して平行に3台が配列され、そのロボットアーム1が作業領域106を挟んで対向し、全体で6台が配設されている例を具体例として説明する。 The work execution device 100 is configured as a device that performs a plurality of predetermined operations on an object (work W) to be worked. The work execution apparatus 100 includes three or more robot arms 1, a base 101 on which the robot arm 1 is disposed, a transport unit 102 that transports and fixes a work W to a work area 106 where a predetermined work is performed, and the entire apparatus. And a system control unit 104 for controlling the system. Here, in the work execution apparatus 100, three robot arms 1 are arranged in parallel with the workpiece W conveyance direction (left and right direction in FIGS. 1 and 2), and the robot arm 1 faces the work area 106 therebetween. An example in which six units are arranged as a whole will be described.
 アームロボット1は、作業対象の物品に対して所定の作業を行う装置として構成されている。作業対象の物品は、特に限定されないが、例えば、機械部品、電気部品、電子部品、化学部品など各種の部品のほか、食品、バイオ、生物関連の物品などが挙げられる。また、所定の作業としては、例えば、初期位置から所定位置まで採取、移動、配置する処理や、所定の部位に対して変形、接続、接合させる処理などが挙げられる。 The arm robot 1 is configured as a device that performs a predetermined work on an article to be worked. The article to be worked on is not particularly limited, and examples thereof include various parts such as mechanical parts, electrical parts, electronic parts, chemical parts, foods, biotechnology, biological items, and the like. Examples of the predetermined work include a process of collecting, moving, and arranging from an initial position to a predetermined position, and a process of deforming, connecting, and joining a predetermined part.
 アームロボット1は、第1アーム10と、第2アーム20と、第3支持部30と、台座部40と、先端部50と、制御部60と(図7参照)を備えている。 The arm robot 1 includes a first arm 10, a second arm 20, a third support part 30, a pedestal part 40, a tip part 50, and a control part 60 (see FIG. 7).
 第1アーム10は、作業対象の物品に対して作業する先端部50が配設された長手部材である。第1アーム10は、その内部に、先端部50を回動駆動する第1駆動部11が配設されている。第1駆動部11は、図5、7に示すように、第1モータ12と、軸13と、ボールネジ14と、第1プーリ15と、第2プーリ16と、ベルト17と、スライド18とを備えている。第1モータ12は、先端部50を回動駆動する動力源であり、第1アーム10の長手方向(図4、5の前後方向)にその回転軸が配設されている。この第1モータ12の後端には、ブレーキ部19が配設されており、第1モータ12への電力供給が停止した状態でも、ブレーキ部19により、回転軸の回転が固定される。ボールネジ14は、第1モータ12の回転軸方向に軸13が配設されたものであり、軸13の回転に伴ってスライド18が前後方向へ移動する。軸13は、第1モータ12の回転軸と直結されている。第1アーム10は、先端部50が配設された第1プーリ15が先端側に配設され、第2プーリ16が後端側に配設されている。この第1プーリ15及び第2プーリ16は、第1アーム10の筐体に、軸回転可能に軸支されている。第1プーリ15には、先端部50の基部51が、第1アーム10に対して回動可能に配設されている。 The first arm 10 is a longitudinal member in which a distal end portion 50 for working on an article to be worked is disposed. The first arm 10 is provided therein with a first drive unit 11 that rotationally drives the tip 50. As shown in FIGS. 5 and 7, the first drive unit 11 includes a first motor 12, a shaft 13, a ball screw 14, a first pulley 15, a second pulley 16, a belt 17, and a slide 18. I have. The first motor 12 is a power source that rotationally drives the distal end portion 50, and its rotation shaft is disposed in the longitudinal direction of the first arm 10 (the front-rear direction in FIGS. 4 and 5). A brake unit 19 is disposed at the rear end of the first motor 12, and the rotation of the rotating shaft is fixed by the brake unit 19 even when power supply to the first motor 12 is stopped. The ball screw 14 is provided with a shaft 13 in the rotation axis direction of the first motor 12, and the slide 18 moves in the front-rear direction as the shaft 13 rotates. The shaft 13 is directly connected to the rotation shaft of the first motor 12. In the first arm 10, the first pulley 15 in which the distal end portion 50 is disposed is disposed on the distal end side, and the second pulley 16 is disposed on the rear end side. The first pulley 15 and the second pulley 16 are pivotally supported by the housing of the first arm 10 so as to be rotatable. In the first pulley 15, a base portion 51 of the distal end portion 50 is disposed so as to be rotatable with respect to the first arm 10.
 ベルト17は、第1プーリ15及び第2プーリ16に掛け渡されている。ベルト17は、動作精度を確保する観点から、伸び縮みしにくい材質で形成されていることが好ましい。このベルト17は、カーボンベルトであるものとしてもよい。カーボンベルトは、例えば、樹脂(例えば高強度ウレタンや高強度ナイロンなど)の内部にカーボン芯線を備えたものとしてもよい。このベルト17には、ボールネジ14に接続されたスライド18が固定されている。第1駆動部11は、第1モータ12により軸13が回転駆動されると、ボールネジ14を介してスライド18が軸13前後方向に移動する。また、第1駆動部11は、スライド18が前後方向に移動するとベルト17が前後方向に摺動し、このベルト17の直線移動が第1プーリ15を介して回転運動に変換され、先端部50を回動させる。ベルト17は、第1プーリ15と第2プーリ16とに掛け渡された内部に、第1モータ12、軸13及びボールネジ14を内包している。このため、第1アーム10は、第1モータ12やボールネジ14などをベルト17の外部に設けるものに比してコンパクト化されている。 The belt 17 is stretched around the first pulley 15 and the second pulley 16. The belt 17 is preferably formed of a material that does not easily expand and contract from the viewpoint of ensuring operation accuracy. The belt 17 may be a carbon belt. For example, the carbon belt may have a carbon core wire inside a resin (for example, high-strength urethane or high-strength nylon). A slide 18 connected to the ball screw 14 is fixed to the belt 17. In the first drive unit 11, when the shaft 13 is rotationally driven by the first motor 12, the slide 18 moves in the longitudinal direction of the shaft 13 via the ball screw 14. Further, in the first drive unit 11, when the slide 18 moves in the front-rear direction, the belt 17 slides in the front-rear direction, and the linear movement of the belt 17 is converted into a rotational motion via the first pulley 15, and the tip 50 Rotate. The belt 17 encloses the first motor 12, the shaft 13, and the ball screw 14 inside the first pulley 15 and the second pulley 16. For this reason, the first arm 10 is made more compact than that in which the first motor 12 and the ball screw 14 are provided outside the belt 17.
 第2アーム20は、図4に示すように、第1アーム10が配設された長手部材である。第2アーム20は、その先端側に第1アーム10を回動駆動する第2駆動部21が配設されている。第2駆動部21は、第1アーム10が配設されたかさ歯車機構23を備えている。かさ歯車機構23は、図6に示すように、第2モータ22の駆動力を直交減速するギア機構である。かさ歯車機構23は、まがりばかさ歯車(スパイラルベベルギア)のピニオン24と、ピニオン24のまがりばに噛み合う歯が形成された第1歯車25と、第1歯車25の軸に設けられた歯に噛み合う第2歯車26とを有している。ピニオン24は、第2モータ22の回転軸に固定されており、回転軸に直交する方向に軸支された第1歯車25へ駆動力を伝える。かさ歯車機構23は、ピニオン24と第1歯車25とがオフセットされたかさ歯車機構であることがより好ましい。これらのギアがオフセットされることにより、よりコンパクト化を図ることができる。第2歯車26には第1アーム10が配設されており、第1歯車25の駆動力により第1アーム10が回動駆動される。第2アーム20は、第2モータ22の軸方向を長手方向とし、かさ歯車機構23を備えることにより、その内部に第2モータ22を収容する。 The second arm 20 is a longitudinal member in which the first arm 10 is disposed, as shown in FIG. The second arm 20 is provided with a second drive unit 21 that rotationally drives the first arm 10 on the distal end side thereof. The second drive unit 21 includes a bevel gear mechanism 23 on which the first arm 10 is disposed. As shown in FIG. 6, the bevel gear mechanism 23 is a gear mechanism that orthogonally reduces the driving force of the second motor 22. The bevel gear mechanism 23 meshes with a pinion 24 of a spiral bevel gear (spiral bevel gear), a first gear 25 on which teeth meshing with a spiral bevel of the pinion 24, and teeth provided on the shaft of the first gear 25. And a second gear 26. The pinion 24 is fixed to the rotating shaft of the second motor 22 and transmits a driving force to the first gear 25 that is pivotally supported in a direction orthogonal to the rotating shaft. More preferably, the bevel gear mechanism 23 is a bevel gear mechanism in which the pinion 24 and the first gear 25 are offset. Since these gears are offset, it is possible to further reduce the size. The first arm 10 is disposed on the second gear 26, and the first arm 10 is rotationally driven by the driving force of the first gear 25. The second arm 20 includes the bevel gear mechanism 23 with the axial direction of the second motor 22 as the longitudinal direction, and thereby accommodates the second motor 22 therein.
 第3支持部30は、第2アーム20が配設されている。第3支持部30は、その先端側に、第2アーム20を回動駆動する第3駆動部31が配設されている。第3駆動部31は、第2アーム20が配設されたかさ歯車機構33と、かさ歯車機構33を駆動する第3モータ32とを備えている。第3モータ32は、第2モータ22に比して大きな定格出力を有するものである。かさ歯車機構33は、かさ歯車機構23と同様の機構であるものとして、その説明を割愛する。 The third arm 30 is provided with the second arm 20. The third support part 30 is provided with a third drive part 31 for rotating the second arm 20 on the distal end side thereof. The third drive unit 31 includes a bevel gear mechanism 33 provided with the second arm 20 and a third motor 32 that drives the bevel gear mechanism 33. The third motor 32 has a larger rated output than the second motor 22. The bevel gear mechanism 33 is assumed to be the same mechanism as the bevel gear mechanism 23, and the description thereof is omitted.
 台座部40は、上下方向に形成された支持軸41を介して第3支持部30を支持する。台座部40には、モータが配設されており、このモータにより、支持軸41が回転する。 The pedestal portion 40 supports the third support portion 30 via a support shaft 41 formed in the vertical direction. The pedestal portion 40 is provided with a motor, and the support shaft 41 is rotated by the motor.
 先端部50は、作業対象の物品に対して作業するものである。先端部50は、図4,5に示すように、基部51と、装着部52と、採取部材53と、撮像ユニット54と、駆動部58とを備えている。基部51は、第1アーム10の第1プーリ15に配設されており、その先端側に平板状の配設部51aが形成されている。配設部51aの下面には、装着部52と撮像ユニット54とが配設されている。装着部52は、物品を採取する採取部材53が取り外し可能に装着される。採取部材53は、例えば、複数の爪部を有し物品を把持採取するメカニカルチャックとして構成されている。採取部材53は、駆動部58により駆動され、装着部52と共に回転し、爪部の開放閉塞など物品の把持動作を行う。この採取部材53は、例えば、圧力により物品を吸着採取する吸着ノズルとしてもよい。なお、基部51は、配設部51aの方向を変更可能な可動軸を有し、採取部材53の方向を上下方向に回動可能に構成してもよい。撮像ユニット54は、照射部55と、撮像部56とを備える。照射部55は、例えば、撮像部56の外周に円状に配設された照明であり、作業対象の物品及び作業対象の周りに対して光を照射する。撮像部56は、作業対象の物品及び作業対象の周りを撮像するカメラである。撮像ユニット54は、撮像した画像データを制御部60へ出力する。 The front end portion 50 is for working on an object to be worked. As shown in FIGS. 4 and 5, the distal end portion 50 includes a base 51, a mounting portion 52, a sampling member 53, an imaging unit 54, and a drive portion 58. The base 51 is disposed on the first pulley 15 of the first arm 10, and a flat plate-shaped disposing part 51 a is formed on the tip side thereof. A mounting portion 52 and an imaging unit 54 are disposed on the lower surface of the placement portion 51a. The mounting part 52 is detachably mounted with a sampling member 53 for sampling an article. The sampling member 53 is configured as, for example, a mechanical chuck that has a plurality of claw portions and grips and samples an article. The sampling member 53 is driven by the drive unit 58 and rotates together with the mounting unit 52, and performs a gripping operation of the article such as opening and closing of the claw portion. The collection member 53 may be, for example, an adsorption nozzle that adsorbs and collects articles by pressure. The base 51 may have a movable shaft that can change the direction of the arrangement portion 51a, and may be configured so that the direction of the sampling member 53 can be rotated in the vertical direction. The imaging unit 54 includes an irradiation unit 55 and an imaging unit 56. The irradiation unit 55 is, for example, illumination that is arranged in a circular shape on the outer periphery of the imaging unit 56, and irradiates light around the work target article and the work target. The imaging unit 56 is a camera that captures an image of the work target item and the work target. The imaging unit 54 outputs the captured image data to the control unit 60.
 制御部60は、CPUを中心とするマイクロプロセッサとして構成されており、装置全体を制御する。この制御部60は、第1モータ12や第2モータ22、第3モータ32、駆動部58へ信号を出力する。また、制御部60は、撮像ユニット54からの信号を入力する。なお、第1駆動部11、第2駆動部21、第3駆動部31には図示しない位置センサが装備されており、制御部60はそれらの位置センサからの位置情報を入力しつつ、各駆動部のモータを制御する。アームロボット1では、制御部60が撮像ユニット54による撮像画像を用いて作業対象の物品の位置や方向などを把握し、この物品に対して所定の処理を行う。このアームロボット1では、物品に対してより正確な処理(採取処理や配置処理)を行うことができる。 The control unit 60 is configured as a microprocessor centered on a CPU and controls the entire apparatus. The control unit 60 outputs signals to the first motor 12, the second motor 22, the third motor 32, and the drive unit 58. In addition, the control unit 60 inputs a signal from the imaging unit 54. The first drive unit 11, the second drive unit 21, and the third drive unit 31 are equipped with position sensors (not shown), and the control unit 60 inputs each position information from these position sensors while driving each drive. Control the motor of the unit. In the arm robot 1, the control unit 60 grasps the position and direction of the article to be worked using the image captured by the imaging unit 54, and performs predetermined processing on the article. In the arm robot 1, more accurate processing (collection processing and arrangement processing) can be performed on the article.
 アームロボット1は、第1アーム10、第2アーム20及び第3支持部30ができるだけ幅方向(左右方向)のコンパクト化を図るよう作成されている。アームロボット1は、ベルト駆動方式の第1駆動部11を採用することによって、第1アーム10を軽量化すると共に、より細く形成している。例えば、第1アーム10の幅L1(図4)は、60mm以下で形成されることができ、50mm以下に形成されることもできる。第1アーム10は、配線を除く幅が50mm以下に形成されることができ、40mm以下に形成されることもできる。また、アームロボット1は、かさ歯車機構の第2駆動部21及び第3駆動部31を採用することによって、先端側の質量を保持可能な出力及び位置精度を確保し、且つコンパクト化を図るものとしている。例えば、第2アーム20の幅L2は、100mm以下で形成されることができ、90mm以下に形成されることもできる。第2アーム20は、配線を除く幅が90mm以下に形成されることができ、80mm以下に形成されることもできる。また、第3支持部30の幅L3は、70mm以下で形成されることができ、60mm以下に形成されることもできる。なお先端部50は、その幅L0が40mmで形成することができる。また、台座部40は、その幅L4が150mm以下で形成することができる。なお、アームロボットは、すべてのアームをベルト駆動方式の駆動部とすると、ベルトのたわみなどが積算され、先端での位置精度を確保しにくい。また、アームロボットは、すべてのアームを歯車機構の駆動部とすると、先端での幅が大きくなりコンパクト化を図りにくく、微細な作業を行いにくい。 The arm robot 1 is created so that the first arm 10, the second arm 20, and the third support portion 30 can be made as compact in the width direction (left-right direction) as possible. The arm robot 1 employs the belt-driven first drive unit 11 to make the first arm 10 lighter and thinner. For example, the width L1 (FIG. 4) of the first arm 10 can be formed to be 60 mm or less, and can be formed to be 50 mm or less. The first arm 10 may have a width excluding wiring of 50 mm or less, and may be 40 mm or less. Further, the arm robot 1 employs the second drive unit 21 and the third drive unit 31 of the bevel gear mechanism, thereby ensuring the output capable of holding the mass on the distal end side and the positional accuracy and reducing the size. It is said. For example, the width L2 of the second arm 20 may be formed to be 100 mm or less, and may be formed to be 90 mm or less. The second arm 20 can be formed to have a width excluding wiring of 90 mm or less, or can be formed to 80 mm or less. Further, the width L3 of the third support part 30 can be formed to be 70 mm or less, or can be formed to be 60 mm or less. The tip 50 can be formed with a width L0 of 40 mm. The pedestal portion 40 can be formed with a width L4 of 150 mm or less. In addition, if all the arms are belt drive type drive units, the arm robot accumulates belt deflection and the like, and it is difficult to ensure position accuracy at the tip. In addition, when all arm robots are used as the drive unit of the gear mechanism, the arm robot has a large width at the tip, which makes it difficult to make it compact and difficult to perform fine work.
 ここで、先端部50について説明する。ロボットアーム1の先端部50は、作業対象のワークWに対して実行する作業内容に応じて交換可能なユニットとして構成されている。先端部50は、例えば、部品を組み付ける組立作業、加工を施す加工作業、粘性材料を塗布する塗布作業、加熱する加熱作業、化学的及び/又は物理的な所定処理を行う処理作業及び検査を行う検査作業のうち1以上をワークWに対して行うものとしてもよい。組付作業としては、例えば、ネジ、ボルト、ナットなどの締結部材の締結作業や、コネクタの挿入作業、配線に関する取回し作業、部品のはめ込み作業、部材の取付作業ワークを押さえる押さえ付け作業などのうち1以上が挙げられる。先端部50は、締結作業を行う場合は、締結部材の取り付け、回転、固定のうち1以上を行う締結作業部を備えるものとすればよい。先端部50は、挿入作業を行う場合は、コネクタの取り付け、挿入、固定のうち1以上を行う挿入作業部を備えるものとすればよい。先端部50は、取回し作業を行う場合は、配線の取り付け、挿入、位置決めのうち1以上を行う取回し作業部を備えるものとすればよい。先端部50は、はめ込み作業を行う場合は、部品を採取しはめ込みを行うはめ込み作業部を備えるものとすればよい。先端部50は、押さえ付け作業を行う場合は、部品を押さえ付ける押さえ付け作業部を備えるものとすればよい。 Here, the tip 50 will be described. The distal end portion 50 of the robot arm 1 is configured as a replaceable unit depending on the work content to be performed on the work W to be worked. The tip portion 50 performs, for example, an assembling operation for assembling parts, a processing operation for performing processing, a coating operation for applying a viscous material, a heating operation for heating, a processing operation for performing chemical and / or physical predetermined processing, and an inspection. One or more of the inspection operations may be performed on the workpiece W. Assembly work includes, for example, fastening work of fastening members such as screws, bolts, nuts, connector insertion work, wiring work work, part fitting work, pressing work to hold the member mounting work, etc. 1 or more of them. The tip portion 50 may be provided with a fastening work portion that performs one or more of attachment, rotation, and fixing of the fastening member when fastening work is performed. The tip portion 50 may be provided with an insertion operation portion that performs one or more of attachment, insertion, and fixation of the connector when performing the insertion operation. The tip portion 50 may be provided with a handling work portion that performs one or more of wiring attachment, insertion, and positioning when performing the handling work. The tip portion 50 may be provided with a fitting work portion for collecting and fitting a part when performing the fitting work. The tip portion 50 may be provided with a pressing work portion for pressing a component when the pressing work is performed.
 加工作業としては、例えば、プレスなどワークWを変形させる変形作業、少なくとも部材(ワークW)の一部を取り除く切断作業及び少なくとも部材(ワークW)を切削する切削作業などのうち1以上が挙げられる。先端部50は、変形作業を行う場合は、ワークWに圧力を加えて変形させる変形作業部を備えるものとすればよい。先端部50は、切断作業を行う場合は、ワークWを切断する切断作業部を備えるものとすればよい。先端部50は、切削作業を行う場合は、ワークWを切削する切削作業部を備えるものとすればよい。塗布作業としては、例えば、粘性材料としての接着剤を塗布する作業、はんだペーストなど導電材料を塗布する作業、グリスなどの潤滑剤を塗布する作業などのうち1以上が挙げられる。先端部50は、塗布作業を行う場合は、粘性材料を供給する供給作業部を備えるものとすればよい。加熱作業としては、例えば、樹脂などを熱硬化させる作業、樹脂などを加熱変形させる作業、はんだなどを融解固化させるリフロー作業、有機材料を加熱除去する作業などのうち1以上が挙げられる。先端部50は、加熱作業を行う場合は、ワークWを接触状態又は非接触状態で加熱する加熱作業部を備えるものとすればよい。処理作業としては、例えば、レーザやプラズマなどによる表面改質作業、研磨などによる表面仕上げ作業、表面に保護層を設ける被覆作業などのうち1以上が挙げられる。先端部50は、表面改質作業を行う場合は、ワークWにレーザ及び/又はプラズマを照射する表面改質作業部を備えるものとすればよい。先端部50は、表面仕上げ作業を行う場合は、ワークWに研磨部材を用いて研磨処理する表面仕上げ作業部を備えるものとすればよい。先端部50は、被覆作業を行う場合は、ワークWに保護材を設ける被覆作業部を備えるものとすればよい。検査作業としては、例えば、組立作業、加工作業、塗布作業、加熱作業及び処理作業などのうち1以上の作業結果を検査する作業などが挙げられる。先端部50は、検査作業を行う場合は、ワークWに対して、組立作業、加工作業、塗布作業、加熱作業及び処理作業などのうち1以上の作業結果を検査する検査作業部を備えるものとすればよい。 Examples of the processing work include one or more of a deformation work for deforming the work W such as a press, a cutting work for removing at least a part of the member (work W), and a cutting work for cutting at least the member (work W). . The tip portion 50 may be provided with a deformation working portion that deforms the workpiece W by applying pressure when performing the deformation work. The tip portion 50 may be provided with a cutting operation unit for cutting the workpiece W when performing the cutting operation. The tip portion 50 may be provided with a cutting operation portion for cutting the workpiece W when performing the cutting operation. Examples of the application operation include one or more of an operation of applying an adhesive as a viscous material, an operation of applying a conductive material such as a solder paste, and an operation of applying a lubricant such as grease. The tip portion 50 may be provided with a supply operation portion that supplies a viscous material when performing an application operation. Examples of the heating operation include one or more of an operation for thermosetting a resin and the like, an operation for heat-deforming the resin and the like, a reflow operation for melting and solidifying solder and the like, an operation for removing the organic material by heating, and the like. The tip portion 50 may be provided with a heating operation portion that heats the workpiece W in a contact state or a non-contact state when performing the heating operation. Examples of the processing operation include one or more of a surface modification operation using laser or plasma, a surface finishing operation using polishing, a coating operation for providing a protective layer on the surface, and the like. The tip portion 50 may be provided with a surface modification working section that irradiates the workpiece W with laser and / or plasma when performing the surface modification work. The tip portion 50 may be provided with a surface finishing operation portion for polishing the workpiece W using an abrasive member when performing the surface finishing operation. The tip portion 50 may be provided with a covering operation portion for providing a protective material on the workpiece W when performing the covering operation. The inspection work includes, for example, work for inspecting one or more work results among assembly work, processing work, coating work, heating work, processing work, and the like. The tip portion 50 includes an inspection work unit that inspects one or more work results among an assembly work, a processing work, a coating work, a heating work, a processing work, and the like when the work is performed. do it.
 基台101は、図1、2に示すように、各ロボットアーム1や搬送部102を配設固定するものである。この基台101には、その中央に搬送部102が配設され、搬送部102の両側にロボットアーム1が配列固定されている。 As shown in FIGS. 1 and 2, the base 101 is provided to fix and fix each robot arm 1 and the transport unit 102. The base 101 is provided with a transport unit 102 in the center thereof, and the robot arms 1 are arranged and fixed on both sides of the transport unit 102.
 搬送部102は、例えば、基板などのワークWの搬入、搬送、作業領域106での固定、ワークWの搬出を行うユニットである。搬送部34は、図1の前後に間隔を開けて設けられ左右方向に架け渡された1対のコンベアベルトを有している。ワークWは、このコンベアベルトにより搬送される。なお、作業実行装置100が、基板に部品を取り付ける作業を行う場合、搬送される基板は作業対象であるワークWであり、取り付けられる部品も作業対象であるワークWに該当する。 The transfer unit 102 is, for example, a unit that carries in and carries a workpiece W such as a substrate, fixes it in the work area 106, and carries out the workpiece W. The transport unit 34 has a pair of conveyor belts provided at intervals in the front and rear direction of FIG. 1 and spanned in the left-right direction. The workpiece W is conveyed by this conveyor belt. In addition, when the work execution apparatus 100 performs a work of attaching a component to a substrate, the substrate to be transported is the work W that is a work target, and the attached component also corresponds to the work W that is a work target.
 システム制御部104は、CPUを中心とするマイクロプロセッサとして構成されており、作業実行装置100の全体を制御する(図1参照)。システム制御部104は、各ロボットアーム1や、搬送部102へ信号を出力し、これらを駆動制御させる。 The system control unit 104 is configured as a microprocessor centered on a CPU and controls the entire work execution apparatus 100 (see FIG. 1). The system control unit 104 outputs a signal to each robot arm 1 and the transfer unit 102 to drive and control them.
 作業実行装置100は、3以上のロボットアーム1を備え、ロボットアーム1の可動範囲105内に2以上の他のロボットアーム1が配設されている。また、作業実行装置100において、ロボットアーム1のうち3以上が作業対象であるワークWの作業領域106にアクセス可能であるものである。この作業実行装置100は、図3に示すように、ロボットアーム1の可動範囲105(図3の円)内に、他のすべてのロボットアーム1の台座部40の少なくとも一部が入るよう互いに近接して基台101に配設されている。また、この作業実行装置100において、ロボットアーム1の台座部40は、ワークWが配置される作業領域106に、すべてのロボットアーム1の先端部50がアクセス可能となるよう、基台101に配設されている。この作業実行装置100では、すべてのロボットアーム1がワークWにアクセス可能であるから、最大の作業を並行して行うことができる。また、作業実行装置100では、先端側の第1アーム10がより細く形成されたロボットアーム1を備えるため、ロボットアーム1を狭い範囲内に隣接配置しても、互いに干渉せずに互いの作業を並行して行うことができる。各ロボットアーム1は、隣接する他のロボットアーム1の可動範囲105との重複範囲が面積比で少なくとも30%以上となるように配設されていることが好ましい。この重複範囲は、例えば、40%以上であるものとしてもよいし、50%以上であるものとしてもよい。また、各ロボットアーム1は、隣接する他のロボットアーム1と、ロボットアーム1の幅寸法の3倍以下の間隔(例えば240mm以下など)で基台101に配設されていることが好ましい。このロボットアーム1の間隔は、短すぎると各ロボットアーム1のアームが干渉しやすくなり、長すぎると同時並行でできる作業数が少なくなる。このため、ロボットアーム1(台座部40)の配設間隔は、ロボットアーム1の幅寸法や作業内容に応じて適切な範囲で設定することが好ましい。なお、図3に示すように、すべてのロボットアーム1の可動範囲105が重なる領域は、最大作業領域108(図3一点鎖線)であり、この領域内であれば、ワークWを移動しながらであっても各ロボットアーム1がそれぞれの作業を並行して行うことができる。 The work execution device 100 includes three or more robot arms 1, and two or more other robot arms 1 are disposed within a movable range 105 of the robot arm 1. Further, in the work execution device 100, three or more of the robot arms 1 can access the work area 106 of the work W that is the work target. As shown in FIG. 3, the work execution device 100 is close to each other so that at least a part of the pedestal portions 40 of all the other robot arms 1 are within the movable range 105 (circle in FIG. 3) of the robot arm 1. Thus, it is arranged on the base 101. Further, in this work execution apparatus 100, the pedestal 40 of the robot arm 1 is arranged on the base 101 so that the work area 106 where the workpiece W is placed can be accessed by all the tips 50 of the robot arms 1. It is installed. In this work execution apparatus 100, since all robot arms 1 can access the work W, the maximum work can be performed in parallel. In addition, since the work execution apparatus 100 includes the robot arm 1 in which the first arm 10 on the distal end side is formed thinner, even if the robot arms 1 are arranged adjacent to each other within a narrow range, the work can be performed without interfering with each other. Can be performed in parallel. Each robot arm 1 is preferably arranged such that the overlapping range with the movable range 105 of another adjacent robot arm 1 is at least 30% or more in area ratio. For example, the overlapping range may be 40% or more, or may be 50% or more. Each robot arm 1 is preferably disposed on the base 101 at a distance (for example, 240 mm or less) that is not more than three times as large as the width of the robot arm 1. If the distance between the robot arms 1 is too short, the arms of the robot arms 1 are likely to interfere with each other. If the distance between the robot arms 1 is too long, the number of operations that can be performed simultaneously is reduced. For this reason, it is preferable to set the arrangement interval of the robot arm 1 (the pedestal portion 40) within an appropriate range according to the width dimension of the robot arm 1 and the work content. As shown in FIG. 3, the area where the movable ranges 105 of all the robot arms 1 overlap is the maximum work area 108 (FIG. 3, one-dot chain line). Even if it exists, each robot arm 1 can perform each work in parallel.
 次に、こうして構成された本実施形態の作業実行装置100の動作、特に、作業領域106に配置されたワークWに対して3以上の作業を時間並行的に行う処理について説明する。例えば、作業実行装置100のアームロボット1が、ネジ締め作業と、部品押さえ付け作業と、配線取り回し作業と、接着剤塗布作業と、加熱作業とをそれぞれ作業する先端部50を備えたものとする。この場合、システム制御部104は、予めそれぞれのロボットアーム1が干渉しないタイミングや位置などを求めておき、それに基づいて、各ロボットアーム1が、部品(ワークW)を押さえ付け、ネジを採取した作業部がネジ締めを行い、それと並行的に他の部位で接着剤を塗布して加熱する処理を、3以上のアームが折り重なった状態を含めて実行する。あるいは、作業実行装置100は、例えば、組み立て、加工、所定の処理、検査を施すような、連続して行われる一連の作業を実行するものとしてもよい。例えば、各ロボットアーム1は、プラズマ照射作業、接着剤塗布作業、部品(ワークW)の取付作業、作業を行った部分に対する検査作業を行う先端部50をそれぞれ備えたものとする。システム制御部104は、これらの連続して行われる一連の作業をロボットアーム1に順次行わせるものとしてもよい。また、作業実行装置100において、複数のロボットアーム1が協業して1つの作業を行うものとしてもよい。例えば、ネジ締め作業において、1つのロボットアーム1がワークWを押さえ、1つのロボットアーム1がネジをネジ穴に配置させ、1つのロボットアーム1がネジを締める作業を行うものとしてもよい。また、ワイヤーの固定作業において、1つのロボットアーム1がワイヤーの一端側を保持し、1つのロボットアーム1がワイヤーの他端側を保持し、1つのロボットアーム1がワイヤーの中間部分を溝部へはめ込む作業を行うものとしてもよい。また、部品のはめ込み作業において、1つのロボットアーム1が部品がはめ込まれる被作業対象のワークWを固定し、1つのロボットアーム1がワークWへ部品をはめ込む作業を行うものとしてもよい。また、検査作業において、複数のロボットアーム1がそれぞれの検査端子を備えたものとし、各ロボットアーム1が検査対象であるワークWに同時並行的にアクセスして、それぞれの検査作業を行うものとしてもよい。 Next, the operation of the work execution apparatus 100 according to the present embodiment configured as described above, particularly the process of performing three or more tasks on the workpiece W arranged in the work area 106 in time parallel will be described. For example, it is assumed that the arm robot 1 of the work execution apparatus 100 includes a tip portion 50 that performs a screw tightening work, a component pressing work, a wiring handling work, an adhesive application work, and a heating work. . In this case, the system control unit 104 obtains in advance the timing and position at which each robot arm 1 does not interfere, and based on that, each robot arm 1 presses a part (work W) and collects a screw. A process in which the working unit performs screw tightening and, in parallel with this, applies an adhesive at another part and heats it, including a state in which three or more arms are folded over. Or work execution device 100 is good also as what performs a series of work performed continuously, for example, performing assembly, processing, predetermined processing, and inspection. For example, it is assumed that each robot arm 1 includes a tip portion 50 that performs a plasma irradiation operation, an adhesive application operation, a component (work W) mounting operation, and an inspection operation for a portion where the operation has been performed. The system control unit 104 may cause the robot arm 1 to sequentially perform a series of operations performed continuously. Further, in the work execution apparatus 100, a plurality of robot arms 1 may cooperate to perform one work. For example, in the screw tightening operation, one robot arm 1 may hold the workpiece W, one robot arm 1 may dispose the screw in the screw hole, and one robot arm 1 may perform the operation of tightening the screw. In the wire fixing operation, one robot arm 1 holds one end side of the wire, one robot arm 1 holds the other end side of the wire, and one robot arm 1 passes the intermediate portion of the wire to the groove portion. It is good also as what performs the work to insert. In addition, in the part fitting operation, one robot arm 1 may fix the work W to be worked into which the part is fitted, and one robot arm 1 may perform the work of fitting the part into the work W. Further, in the inspection work, it is assumed that the plurality of robot arms 1 are provided with respective inspection terminals, and that each robot arm 1 simultaneously accesses the work W to be inspected and performs each inspection work. Also good.
 ここで、本実施形態の構成要素と本発明の構成要素との対応関係を明らかにする。本実施形態のロボットアーム1がロボットアームに相当し、先端部50が先端部に相当し、第1アーム10が第1アームに相当し、第2アーム20が第2アームに相当する。 Here, the correspondence between the components of the present embodiment and the components of the present invention will be clarified. The robot arm 1 of the present embodiment corresponds to a robot arm, the tip 50 corresponds to a tip, the first arm 10 corresponds to a first arm, and the second arm 20 corresponds to a second arm.
 以上説明した本実施形態の作業実行装置100では、3以上のロボットアーム1を備え、ロボットアーム1の可動範囲105内に2以上の他のロボットアーム1が配設されており、ロボットアーム1のうち3以上が作業対象であるワークWの作業領域106にアクセス可能である。この作業実行装置100では、ロボットアーム1をより近接に配置することにより、ワークWに対してより多くの作業を同時並行的に実行し作業効率をより高めることができる。また、ロボットアーム1は、作業領域106を挟んで対向して配設されているため、ワークWに対して両側から作業を行うことができ、作業効率がよい。更に、ロボットアーム1は、ワークWの搬送方向に対して平行に2以上が直線的に配列されているため、ワークWに対して作業を行いやすい。更にまた、ロボットアーム1は、そのすべてがワークWの作業領域106内にロボットアーム1の可動範囲105が入るよう配設されているため、複数の作業を同時進行で行うことができ、作業効率をより高めることができる。 In the work execution apparatus 100 of the present embodiment described above, three or more robot arms 1 are provided, and two or more other robot arms 1 are disposed within the movable range 105 of the robot arm 1. 3 or more of them can access the work area 106 of the work W that is the work target. In this work execution device 100, by placing the robot arm 1 closer, more work can be executed on the workpiece W in parallel and work efficiency can be further increased. Further, since the robot arm 1 is disposed so as to face the work area 106, work can be performed on both sides of the work W from both sides, and work efficiency is good. Furthermore, since two or more robot arms 1 are linearly arranged in parallel to the workpiece W conveyance direction, it is easy to perform work on the workpiece W. Furthermore, since all of the robot arms 1 are arranged so that the movable range 105 of the robot arm 1 is within the work area 106 of the work W, a plurality of work can be performed simultaneously, and work efficiency is improved. Can be further enhanced.
 また、ロボットアーム1は、部品を組み付ける組立作業、加工を施す加工作業、粘性材料を塗布する塗布作業、加熱する加熱作業、化学的及び/又は物理的な所定処理を行う処理作業及び検査を行う検査作業のうち1以上をワークWに対して行う。この作業実行装置100では、ロボットアーム1は、上述した様々な作業をワークWに対して行うことができる。更に、ロボットアーム1は、第1アーム10の構成により、作業対象に対して作業する先端側はよりコンパクトで且つ動作精度を十分に確保することができる。この作業実行装置100では、このようなロボットアーム1を用いることにより、複数のロボットアーム1を近接して配置可能であり、ワークWに対してより多くの作業を同時並行的に実行し作業効率をより高めることができる。 Further, the robot arm 1 performs an assembly operation for assembling parts, a processing operation for performing processing, a coating operation for applying a viscous material, a heating operation for heating, a processing operation for performing a chemical and / or physical predetermined processing, and an inspection. One or more of the inspection operations are performed on the workpiece W. In the work execution apparatus 100, the robot arm 1 can perform the above-described various works on the workpiece W. Furthermore, the robot arm 1 is more compact at the front end side where the work is performed on the work target and can sufficiently ensure the operation accuracy due to the configuration of the first arm 10. In the work execution apparatus 100, by using such a robot arm 1, a plurality of robot arms 1 can be arranged close to each other, and more work can be performed simultaneously on the work W to improve work efficiency. Can be further enhanced.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.
 例えば、上述した実施形態では、ロボットアーム1の可動範囲105内にすべての他のロボットアーム1が配設されているものとしたが、ロボットアーム1の可動範囲105内に2以上の他のロボットアーム1が配設されるものとすれば特にこれに限定されない。ロボットアーム1は、近接配置されることが好ましいが、それぞれの動作で避けにくいことの無いよう(干渉しないよう)、若干ゆとりを持って配設されるものとしてもよい。 For example, in the above-described embodiment, all the other robot arms 1 are disposed within the movable range 105 of the robot arm 1, but two or more other robots are disposed within the movable range 105 of the robot arm 1. If the arm 1 is provided, it is not particularly limited to this. The robot arm 1 is preferably arranged close to the robot arm 1 but may be arranged with a little clearance so that it is not difficult to avoid (does not interfere with) each operation.
 上述した実施形態では、ロボットアーム1のすべてが作業領域106に同時にアクセス可能であるものとしたが、ロボットアーム1のうち3以上が作業対象であるワークWの作業領域106にアクセス可能であるものとすれば、特にこれに限定されない。ロボットアーム1は、より多くが同時に作業領域106にアクセス可能であることが好ましいが、それぞれの動作で避けにくいことの無いよう(干渉しないよう)、若干ゆとりを持って配設されるものとしてもよい。 In the above-described embodiment, all of the robot arms 1 can access the work area 106 at the same time. However, three or more of the robot arms 1 can access the work area 106 of the work W that is the work target. If so, it is not particularly limited to this. It is preferable that more robot arms 1 can access the work area 106 at the same time. However, the robot arm 1 may be arranged with a little clearance so that it is not difficult to avoid (does not interfere with) each operation. Good.
 上述した実施形態では、作業実行装置100は、6台のロボットアーム1を備えたものとしたが、3台以上のロボットアーム1を備えるものとすれば、特にこれに限定されない。また、ロボットアーム1は、作業領域106を挟んで対向して配設されているものとしたが、特に対向していないものとしてもよい。また、ロボットアーム1は、ワークの搬送方向に対して平行(直線上)に2以上が配列されているものとしたが、特にこれに限定されず、搬送方向に平行でなくてもよいし、直線上に配列していなくてもよい。例えば、ロボットアーム1は、中央に作業領域106が設けられた円周上に配置されるものとしてもよい。 In the above-described embodiment, the work execution apparatus 100 includes the six robot arms 1, but is not particularly limited as long as it includes three or more robot arms 1. Further, although the robot arm 1 is disposed to face the work area 106, the robot arm 1 may not be particularly opposed. In addition, two or more robot arms 1 are arranged in parallel (on a straight line) with respect to the workpiece conveyance direction. However, the robot arm 1 is not particularly limited thereto, and may not be parallel to the conveyance direction. It does not have to be arranged on a straight line. For example, the robot arm 1 may be arranged on a circle having a work area 106 at the center.
 上述した実施形態では、作業実行装置100は、種々例示した所定の作業を行うものとして説明したが、上記例示した以外の作業を適宜行うものとしてもよい。 In the above-described embodiment, the work execution apparatus 100 has been described as performing various predetermined tasks. However, the work execution device 100 may appropriately perform tasks other than those exemplified above.
 上述した実施形態では、ロボットアーム1は、台座部40をそれぞれ備えるものとして説明したが、特にこれに限定されず、1つの台座部40に複数のロボットアーム1が配設されているものとしてもよい。この場合、ロボットアームの可動範囲内に2以上の他のロボットアームの配設部位が入るものとすればよい。 In the above-described embodiment, the robot arm 1 has been described as including the pedestal portion 40. However, the robot arm 1 is not particularly limited thereto, and a plurality of robot arms 1 may be provided on one pedestal portion 40. Good. In this case, it suffices that two or more other robot arm placement sites are within the movable range of the robot arm.
 上述した実施形態では、ロボットアーム1において、第2駆動部21や第3駆動部31は、かさ歯車機構を備えるものとしたが、これに代えて波動歯車機構を備えるものとしてもよい。図8は、波動歯車機構23B,33Bを備えた別のアームロボット1Bの概略説明図である。アームロボット1Bは、波動歯車機構23Bを有する第2駆動部21Bと、波動歯車機構33Bを有する第3駆動部31Bとを備えている。なお、波動歯車機構23Bでは、第2モータ22が第2アーム20の長手方向に直交する方向に配設される。波動歯車機構23Bは、ウェーブジェネレータ24Bと、フレクスプライン25Bと、サーキュラスプライン26Bとを備えたハーモニックドライブ(登録商標)として構成されている。ウェーブジェネレータ24Bは、楕円状カムの外周に薄肉のボールベアリングを組み合わせた部品である。フレクスプライン25Bは、薄肉カップ状の金属弾性体であり、開口部の外周に歯が刻まれている部品である。サーキュラスプライン26Bは、剛体リング状の部品であり、内周にフレクスプライン25Bよりも少ない歯が刻まれている。波動歯車機構33Bは、波動歯車機構23Bと同様の機構であるものとしてその説明を省略する。このアームロボット1Bでは、波動歯車機構を用いることにより、第1アーム10を支える第2アーム20や第3支持部30では動作精度を十分に確保することができる。なお、アームロボット1Bは、第2アーム20と第3支持部30のいずれかに波動歯車機構を備えるものとしてもよい。 In the embodiment described above, in the robot arm 1, the second drive unit 21 and the third drive unit 31 are provided with the bevel gear mechanism, but may be provided with a wave gear mechanism instead. FIG. 8 is a schematic explanatory diagram of another arm robot 1B provided with wave gear mechanisms 23B and 33B. The arm robot 1B includes a second drive unit 21B having a wave gear mechanism 23B and a third drive unit 31B having a wave gear mechanism 33B. In the wave gear mechanism 23 </ b> B, the second motor 22 is disposed in a direction orthogonal to the longitudinal direction of the second arm 20. The wave gear mechanism 23B is configured as a harmonic drive (registered trademark) including a wave generator 24B, a flex spline 25B, and a circular spline 26B. The wave generator 24B is a component in which a thin ball bearing is combined with the outer periphery of an elliptical cam. The flex spline 25B is a thin cup-shaped metal elastic body, and is a component in which teeth are carved on the outer periphery of the opening. The circular spline 26B is a rigid ring-shaped part, and has fewer teeth on the inner periphery than the flexspline 25B. The explanation of the wave gear mechanism 33B is omitted because it is the same as the wave gear mechanism 23B. In this arm robot 1B, by using the wave gear mechanism, the second arm 20 and the third support unit 30 that support the first arm 10 can sufficiently ensure the operation accuracy. The arm robot 1B may include a wave gear mechanism in either the second arm 20 or the third support unit 30.
 上述した実施形態では、第2駆動部21や第3駆動部31のかさ歯車機構は、まがりばかさ歯車としたが、まがりばでないすぐばかさ歯車としてもよい。また、かさ歯車機構23は、ピニオン24と第1歯車25とをオフセットしたかさ歯車機構としたが、オフセットしないものとしてもよい。このアームロボット1では、作業対象に対して作業する先端側はよりコンパクトで且つ動作精度を十分に確保することができる。なお、かさ歯車機構33も同様である。 In the embodiment described above, the bevel gear mechanism of the second drive unit 21 and the third drive unit 31 is a spiral bevel gear, but it may be a bevel gear that is not a spiral bevel. The bevel gear mechanism 23 is a bevel gear mechanism in which the pinion 24 and the first gear 25 are offset, but may not be offset. In this arm robot 1, the distal end side that works on the work target is more compact and can sufficiently secure the operation accuracy. The same applies to the bevel gear mechanism 33.
 上述した実施形態では、第1アーム10と第2アーム20とを備えるものとしたが、特にこれに限定されず、第3アームや第4アームなどを備えるものとしてもよい。この第3アームにおいても、かさ歯車機構や波動歯車機構を備えるものとすることができる。 In the above-described embodiment, the first arm 10 and the second arm 20 are provided. However, the present invention is not particularly limited to this, and a third arm, a fourth arm, or the like may be provided. The third arm can also be provided with a bevel gear mechanism and a wave gear mechanism.
 上述した実施形態では、ベルト17は、カーボンベルトであるものとしたが、特にこれに限定されず、カーボン以外の材質で形成したベルトとしてもよい。 In the above-described embodiment, the belt 17 is a carbon belt, but is not particularly limited thereto, and may be a belt formed of a material other than carbon.
 上述した実施形態では、先端部50に撮像ユニット54を備えるものとしたが、特にこれに限定されず、撮像ユニット54を備えないものとしてもよい。このアームロボットにおいても、作業対象に対して作業する先端側はよりコンパクトで且つ動作精度を十分に確保することができる。 In the above-described embodiment, the imaging unit 54 is provided at the distal end portion 50. However, the imaging unit 54 is not particularly limited thereto, and the imaging unit 54 may not be provided. Also in this arm robot, the tip side working with respect to the work target is more compact, and sufficient operation accuracy can be secured.
 本発明は、ワークを採取、配置などの処理を行う装置の技術分野に利用可能である。 The present invention can be used in the technical field of an apparatus that performs processing such as workpiece collection and arrangement.
1,1B アームロボット、10 第1アーム、11 第1駆動部、12 第1モータ、13 軸、14 ボールネジ、15 第1プーリ、16 第2プーリ、17 ベルト、18 スライド、19 ブレーキ部、20 第2アーム、21,21B 第2駆動部、22 第2モータ、23 かさ歯車機構、23B 波動歯車機構、24 ピニオン、24B ウェーブジェネレータ、25 第1歯車、25B フレクスプライン、26 第2歯車、26B サーキュラスプライン、30 第3支持部、31,31B 第3駆動部、32 第3モータ、33 かさ歯車機構、33B 波動歯車機構、40 台座部、41 支持軸、50 先端部、51 基部、51a 配設部、52 装着部、53 採取部材、54 撮像ユニット、55 照射部、56 撮像部、58 駆動部、60 制御部、100 作業実行装置、101 基台、102 搬送部、104 システム制御部、105 可動範囲、106 作業領域、108 最大作業領域、W ワーク。 1, 1B arm robot, 10 1st arm, 11 1st drive unit, 12 1st motor, 13 shaft, 14 ball screw, 15 1st pulley, 16 2nd pulley, 17 belt, 18 slide, 19 brake unit, 20th 2 arms, 21 and 21B second drive unit, 22 second motor, 23 bevel gear mechanism, 23B wave gear mechanism, 24 pinion, 24B wave generator, 25 first gear, 25B flex spline, 26 second gear, 26B circular spline , 30 3rd support part, 31 and 31B 3rd drive part, 32 3rd motor, 33 bevel gear mechanism, 33B wave gear mechanism, 40 pedestal part, 41 support shaft, 50 tip part, 51 base part, 51a arrangement part, 52 mounting part, 53 sampling member, 54 imaging unit, 55 irradiation part 56 imaging unit, 58 drive unit, 60 control unit, 100 work performing apparatus, 101 base plate, 102 transport unit, 104 a system control unit, 105 the movable range, 106 work area 108 up to the working area, W workpiece.

Claims (6)

  1.  3以上のロボットアームを備え、前記ロボットアームの可動範囲内に2以上の他の前記ロボットアームが配設されており、前記ロボットアームのうち3以上が作業対象であるワークの作業領域にアクセス可能である、
     作業実行装置。
    Three or more robot arms are provided, and two or more other robot arms are arranged within the movable range of the robot arm, and three or more of the robot arms can access a work area of a work to be worked. Is,
    Work execution device.
  2.  前記ロボットアームは、前記作業領域を挟んで対向して配設されている、請求項1に記載の作業実行装置。 2. The work execution device according to claim 1, wherein the robot arm is disposed opposite to the work area.
  3.  前記ロボットアームは、前記ワークの搬送方向に対して平行に2以上が配列されている、請求項1又は2に記載の作業実行装置。 The work execution device according to claim 1 or 2, wherein two or more of the robot arms are arranged in parallel to a transfer direction of the workpiece.
  4.  前記ロボットアームは、そのすべてが前記ワークの作業領域内に該ロボットアームの可動範囲が入るよう配設されている、請求項1~3のいずれか1項に記載の作業実行装置。 The work execution device according to any one of claims 1 to 3, wherein all of the robot arms are arranged so that a movable range of the robot arm is within a work area of the workpiece.
  5.  前記ロボットアームは、部品を組み付ける組立作業、加工を施す加工作業、粘性材料を塗布する塗布作業、加熱する加熱作業、化学的及び/又は物理的な所定処理を行う処理作業及び検査を行う検査作業のうち1以上を前記ワークに対して行う、請求項1~4のいずれか1項に記載の作業実行装置。 The robot arm is an assembly operation for assembling parts, a processing operation for processing, a coating operation for applying a viscous material, a heating operation for heating, a processing operation for performing chemical and / or physical predetermined processing, and an inspection operation for performing inspection. The work execution apparatus according to any one of claims 1 to 4, wherein one or more of the operations are performed on the workpiece.
  6.  前記ロボットアームは、
     作業対象の物品に対して作業する先端部と、
     第1モータと前記第1モータの軸方向に軸が配設されたボールネジと前記先端部が配設されたプーリと前記プーリに掛け渡され前記第1モータ及び前記ボールネジを内包し該ボールネジに接続されて前記第1モータの軸方向に移動するベルトとを有し前記先端部を回動駆動する第1駆動部が配設された第1アームと、
     第2モータと前記第2モータの駆動力を直交減速し前記第1アームが配設されたかさ歯車機構又は前記第2モータの駆動力を楕円と真円との差動により減速する波動歯車機構のいずれかを有し前記第1アームを回動駆動する第2駆動部が配設された第2アームと、
     を備えている、請求項1~5のいずれか1項に記載の作業実行装置。
    The robot arm is
    A tip for working on the article to be worked;
    A first motor, a ball screw having an axis disposed in the axial direction of the first motor, a pulley having the tip portion disposed thereon, and spanning the pulley, including the first motor and the ball screw, and connected to the ball screw. A first arm having a belt that is moved in the axial direction of the first motor and provided with a first drive part that rotationally drives the tip part;
    A bevel gear mechanism that orthogonally decelerates the driving force of the second motor and the second motor and decelerates the driving force of the second motor by differential between an ellipse and a perfect circle. A second arm provided with a second drive unit for rotating the first arm,
    The work execution device according to any one of claims 1 to 5, further comprising:
PCT/JP2015/081455 2015-11-09 2015-11-09 Operation execution device WO2017081722A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017549877A JP6619817B2 (en) 2015-11-09 2015-11-09 Work execution device
PCT/JP2015/081455 WO2017081722A1 (en) 2015-11-09 2015-11-09 Operation execution device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/081455 WO2017081722A1 (en) 2015-11-09 2015-11-09 Operation execution device

Publications (1)

Publication Number Publication Date
WO2017081722A1 true WO2017081722A1 (en) 2017-05-18

Family

ID=58694874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081455 WO2017081722A1 (en) 2015-11-09 2015-11-09 Operation execution device

Country Status (2)

Country Link
JP (1) JP6619817B2 (en)
WO (1) WO2017081722A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189489U (en) * 1984-11-14 1986-06-11
JPS6374581A (en) * 1986-09-17 1988-04-05 トキコ株式会社 Electric robot
JPH02298482A (en) * 1989-05-10 1990-12-10 Hitachi Ltd Vertical articulated robot
JP2002370679A (en) * 2001-06-14 2002-12-24 Ntn Corp Abnormality coping method in drive shaft assembling line
JP2003145275A (en) * 2001-11-14 2003-05-20 Honda Motor Co Ltd Vehicle body welding system
JP2009125892A (en) * 2007-11-27 2009-06-11 Yaskawa Electric Corp Robot system
JP2009190117A (en) * 2008-02-14 2009-08-27 Nsk Ltd Robot arm and robot
JP2010241319A (en) * 2009-04-08 2010-10-28 Kanto Auto Works Ltd Automobile roof installing device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189489U (en) * 1984-11-14 1986-06-11
JPS6374581A (en) * 1986-09-17 1988-04-05 トキコ株式会社 Electric robot
JPH02298482A (en) * 1989-05-10 1990-12-10 Hitachi Ltd Vertical articulated robot
JP2002370679A (en) * 2001-06-14 2002-12-24 Ntn Corp Abnormality coping method in drive shaft assembling line
JP2003145275A (en) * 2001-11-14 2003-05-20 Honda Motor Co Ltd Vehicle body welding system
JP2009125892A (en) * 2007-11-27 2009-06-11 Yaskawa Electric Corp Robot system
JP2009190117A (en) * 2008-02-14 2009-08-27 Nsk Ltd Robot arm and robot
JP2010241319A (en) * 2009-04-08 2010-10-28 Kanto Auto Works Ltd Automobile roof installing device

Also Published As

Publication number Publication date
JPWO2017081722A1 (en) 2018-08-23
JP6619817B2 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
CN107042507B (en) Multi-degree-of-freedom driving arm and double-arm robot adopting same
US10137568B2 (en) Robot system
JP6586162B2 (en) Arm robot
JP2013158876A (en) Assembly equipment and assembling method
EP2431139A1 (en) Robot hand
EP2821178A1 (en) Robotic system
JP2010105105A (en) Automatic manufacturing apparatus
WO2015075778A1 (en) Robot system
KR20170129901A (en) Substrate transfer robot and its end effector
CN110193846B (en) Robot hand, robot, and hand width adjustment method for robot hand
JP2019130646A (en) Working robot system
JP6619817B2 (en) Work execution device
JP2018089752A (en) Gripping device, robot, control method of robot, and manufacturing method of article
JP6825136B2 (en) End effector, articulated robot and work execution device
RU118579U1 (en) CAPTURE DEVICE
JP6870092B2 (en) End effector
JP2694511B2 (en) Cartesian robot wrist axis
TWI765085B (en) Robot hand, robot device, and manufacturing method of electronic machine
US8991037B2 (en) Workpiece positioning device and production system using it
CN111113026A (en) Automatic assembly equipment of small rotor type oil pump
CN216462449U (en) Welding equipment
CN216600252U (en) Processing platform
CN211136209U (en) Screw supply mechanism and robot arm applied by same
JP2011000672A (en) Robot
JP2023101387A (en) Robot hand, robot apparatus, manufacturing method for article, controlling method of robot hand, program, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908246

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017549877

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908246

Country of ref document: EP

Kind code of ref document: A1