WO2017080502A1 - 活性炭法烟气净化装置及烟气净化方法 - Google Patents

活性炭法烟气净化装置及烟气净化方法 Download PDF

Info

Publication number
WO2017080502A1
WO2017080502A1 PCT/CN2016/105451 CN2016105451W WO2017080502A1 WO 2017080502 A1 WO2017080502 A1 WO 2017080502A1 CN 2016105451 W CN2016105451 W CN 2016105451W WO 2017080502 A1 WO2017080502 A1 WO 2017080502A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
flue gas
chamber
chambers
adsorption tower
Prior art date
Application number
PCT/CN2016/105451
Other languages
English (en)
French (fr)
Inventor
叶恒棣
魏进超
刘昌齐
Original Assignee
中冶长天国际工程有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中冶长天国际工程有限责任公司 filed Critical 中冶长天国际工程有限责任公司
Priority to MYPI2018701431A priority Critical patent/MY192747A/en
Priority to KR1020187013588A priority patent/KR102053559B1/ko
Priority to RU2018117492A priority patent/RU2697688C1/ru
Priority to BR112018009430-7A priority patent/BR112018009430B1/pt
Publication of WO2017080502A1 publication Critical patent/WO2017080502A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0423Beds in columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0036Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions by adsorption or absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602

Definitions

  • the invention relates to an activated carbon method flue gas purifying device and a flue gas purifying method, and the device belongs to an activated carbon flue gas purifying device suitable for air pollution control, and relates to the field of environmental protection.
  • a desulfurization and denitration device and a process including an activated carbon adsorption tower and an analytical column In a desulfurization and denitration device including an activated carbon adsorption tower and an analytical tower (or a regeneration tower), an activated carbon adsorption tower is used for adsorbing sulfur oxides and nitrogen from sintering flue gas or exhaust gas (especially sintering flue gas of a sintering machine of the steel industry). Contaminants such as oxides and dioxins, and analytical towers for thermal regeneration of activated carbon.
  • Activated carbon desulfurization has the advantages of high desulfurization rate, simultaneous denitrification, deodorization, dust removal, and no waste water residue. It is a promising method for flue gas purification. Activated carbon can be regenerated at high temperatures. At temperatures above 350 °C, pollutants such as sulfur oxides, nitrogen oxides, and dioxins adsorbed on activated carbon are rapidly resolved or decomposed (sulphur dioxide is analyzed, nitrogen oxides and dioxins). English is broken down). And as the temperature increases, the regeneration rate of the activated carbon is further accelerated, and the regeneration time is shortened. It is preferred that the activated carbon regeneration temperature in the general control analytical column is approximately equal to 430 ° C. Therefore, the ideal resolution temperature (or regeneration temperature) is, for example, at 390. -450 ° C range, more preferably in the range of 400-440 ° C.
  • the function of the analytical tower is to release the SO 2 adsorbed by the activated carbon.
  • the dioxins can be decomposed by more than 80%, and the activated carbon is re-used after being cooled and sieved.
  • the released SO 2 can be made into sulfuric acid or the like, and the analyzed activated carbon is sent to the adsorption tower through a transfer device to be used for adsorbing SO 2 and NO X .
  • the activated carbon method is used for purifying the flue gas, and in order to improve the purifying effect, the flue gas can be passed through the multi-layer activated carbon bed.
  • the multi-layer activated carbon bed layout is mainly divided into upper and lower structures and front and rear structures, as shown in FIG. 2 .
  • the activated carbon bed in the tower is a whole, and the activated carbon is uniformly moved downward by gravity.
  • the activated carbon in contact with the flue gas first adsorbs more pollutants in the flue gas, and is discharged together with the activated carbon, which will cause the activated carbon to be discharged into the tower without being adsorbed and saturated, or the activated carbon is saturated in the front. There is no smoke purification effect inside the tower.
  • the prior art adopts an adsorption tower with a series structure in front and rear, as shown in FIG. 3, but an additional activated carbon conveying device is required, which not only increases investment and operating costs, but also increases additional equipment maintenance workload.
  • An object of the present invention is to provide an activated carbon method flue gas purification apparatus comprising an activated carbon adsorption tower comprising a lower activated carbon bed portion (A), an upper activated carbon bed portion (B) and two a transition zone (C) between the sections, and the activated carbon adsorption tower includes a feed bin (3) located above or at the top of the adsorption tower, a flue gas inlet (1) located at a lower portion of the adsorption tower, and an upper portion located at the adsorption tower a flue gas outlet (2), wherein the flue gas outlet end (G2) of the lower activated carbon bed portion (A) and the flue gas inlet end (G3) of the upper activated carbon bed portion (B) pass through the flue gas passage (5)
  • the lower activated carbon bed portion (A) has 2-7 (preferably 3-5) activated carbon chambers separated by a porous separator (4)
  • the upper activated carbon bed portion (B) has a porous partition. 2-7 (preferably 3-5) activate
  • the present invention provides an activated carbon method flue gas purification device including an activated carbon adsorption tower (ie, a desulfurization and denitration device including an activated carbon adsorption tower and an analytical column or adsorption of activated carbon)
  • An activated carbon method flue gas purification device for a tower and an analytical column the activated carbon adsorption tower comprising a lower activated carbon bed portion (A), an upper activated carbon bed portion (B), and a transition region between the two portions (C) (or referred to as intermediate zone (C)), and the activated carbon adsorption column comprises a feed bin (3) located above or at the top of the adsorption column, a flue gas inlet (1) located at the lower part of the adsorption tower, and located at the adsorption a flue gas outlet (2) at the upper portion of the tower, wherein the flue gas outlet end (G2) of the lower activated carbon bed portion (A) and the flue gas inlet end (G3) of the upper activated carbon
  • activated carbon chambers for example, when there are 7, numbered a1, a2, a3, a4, a5, a6, a7, etc.
  • the thickness of the activated carbon chambers located at the lower portion is sequentially thickened or any two adjacent activities in the lower portion of the lower first activated carbon chamber (a1) along the flow direction of the flue gas.
  • the thickness of the latter activated carbon chamber (eg, a3 or a4, for example, a2 and a3, or a3 and a4) is greater than or equal to the thickness of the previous activated carbon chamber (eg, a2 or, for example, a3), the upper portion
  • the activated carbon bed portion (B) has 2-7 (preferably 3-5, for example 3, 4, 5, 6 or 7) activated carbon chambers isolated (or isolated) by a porous separator (4) ( For example, when there are seven, they are sequentially numbered b1, b2, b3, b4, b5, b6, b7; and so on) and along the flow direction of the flue gas (in this order) the thickness of these activated carbon chambers located at the upper portion
  • One of the two adjacent activated carbon chambers (eg, b2 and b3, or b3 and b4) in the upper portion of the first activated carbon chamber (b1) after thickening or along the flow direction of the flue gas
  • the 2-7 (for example, 3) activated carbon chambers located in the lower portion or the 2-7 (for example, 3) activated carbon chambers located at the upper portion are in the order of the flow direction of the flue gas
  • the thickness of the two chambers (a2 or b2) is 1-9 times (e.g., 1.5-7 times, such as 2, 3, 4, 5 or 6 times) the thickness of the first chamber (a1 or b1).
  • the thickness of the third chamber (a3 or b3) is 1-2.5 times (preferably 1.2-2 times) the thickness of the second chamber (a2 or b2), For example, 1.3 times, 1.5 times, or 1.8 times).
  • the lower part has three activated carbon chambers, in the order of the flow direction of the flue gas, first
  • the thickness of the chamber (a1) i.e., the front chamber
  • the second chamber (a2) i.e., the middle chamber
  • the third chamber (a3) i.e., the rear chamber
  • 90-250 mm preferably 100-230 mm, such as 120, 150, 200 or 220 mm
  • 360-1000 mm preferably 400-950 mm, such as 450, 600, 700, 800 or 900 mm
  • 432-1200 mm preferably 450-1150 mm, such as 500, 600, 700, 800, 900, 1000 or 1100mm.
  • the flue gas inlet (1) at the lower portion of the adsorption column and the flue gas outlet (2) at the upper portion of the adsorption column are on the same side of the adsorption column.
  • a roller feeder (6) is provided at the bottom of each of the lower activated carbon bed portions (A).
  • the bottom compartment of the adsorption column has one or more blowdown rotary valves (7).
  • the upper 2-7 (preferably 3-5, for example 3, 4, 5, 6 or 7) activated carbon chambers are connected via respective activated carbon channels (10) to the corresponding 2-7 of the lower part ( Preferably, 3-5, for example 3, 4, 5, 6 or 7) activated carbon chambers are used.
  • the sum of the cross-sectional areas of all the activated carbon channels (10) is less than or equal to the sum of the cross-sectional areas of all the activated carbon chambers of the upper portion or the entire activated carbon chambers of the lower portion.
  • the sum of the cross-sectional areas is preferably from 20% to 60%, preferably from 20% to 50%, more preferably from 22% to 35%, of the latter.
  • the height of the transition zone (C) of the adsorption column or the transition zone (C) of the adsorption column in the vertical direction is 1-5 m, preferably 1.2-4 m, more preferably 1.5-3 m.
  • each of the upper activated carbon chambers is provided with a roller feeder (6), preferably these roller feeders (6) are located in the transition zone (C) of the adsorption tower and these roller feeds There is a gap or vertical distance between the machine (6) and the activated carbon layer of each of the lower activated carbon chambers (i.e., the rolls of the roller feeder (6) are not in contact with the activated carbon layer of each of the lower activated carbon chambers).
  • the height of the main structure of the adsorption column is 6 to 60 m (meter), preferably 8 to 55 m (meter), preferably 10 to 50 m, preferably 15 to 45 m, 18 to 40 m, preferably 20 to 35 m, preferably 22 to 30 m.
  • the height of the main structure of the adsorption tower refers to the height from the inlet to the outlet of the adsorption tower (main structure).
  • the solid adsorption medium or solid adsorbent (such as activated carbon) in the lower activated carbon bed portion (A) is filled with the solid adsorption medium or solid adsorbent (such as activated carbon) in the upper activated carbon bed portion (B).
  • the ratio of the filling (filling) height is 3:1 to 1:3, preferably 2:1 to 1:2, preferably 1.8:1 to 1:1.8, more preferably 1.5:1 to 1:1.5, more preferably 1.2 :1-1:1.2, such as 1:1.
  • the flue gas includes in a broad sense: conventional industrial flue gas or industrial exhaust gas.
  • the respective moving downward moving speed or the blanking speed or the activated carbon residence time of each of the upper activated carbon bed and each of the lower activated carbon beds can be controlled individually or separately.
  • the total amount of activated carbon underfill in the upper portion of the activated carbon bed and the lower portion of the activated carbon bed in the unit time is equal.
  • it may be controlled by a roller feeder only in the lower activated carbon bed portion A (i.e., the A bed). Regardless of which feed speed control method is employed, the moving speed of the solid medium in the front chamber is greater than or equal to the moving speed of the solid medium in the rear chamber.
  • flue gas flue gas or sintering flue gas (hereinafter, collectively referred to as flue gas) is sent to an activated carbon adsorption tower comprising a desulfurization and denitration device of the above-mentioned activated carbon adsorption tower and (conventional) analytical tower, the flue gas Flowing through the lower activated carbon bed portion (A) and the upper activated carbon bed portion (B) in sequence and contacting the activated carbon input into the two portions (A) and (B) from the top of the adsorption tower to include Contaminants such as sulfur oxides, nitrogen oxides and dioxins are adsorbed by activated carbon;
  • Td activated carbon analysis temperature
  • the activated carbon that has been analyzed and regenerated in the heating zone at the upper part of the analytical tower enters the cooling zone at the lower part of the analytical tower via an intermediate buffer, ie, the intermediate section, while the ambient air is cooled by the cooling fan (as cooling air or cooling) Air) is passed from the cold air inlet of the cooling zone of the analytical tower to the cooling zone of the analytical tower, and indirectly exchanges heat with the activated carbon moving downward in the cooling zone to cool the activated carbon;
  • the activated carbon regeneration temperature Td is in the range of 390 to 500 ° C, preferably 400 to 470 ° C, more preferably 405 to 450 ° C, still more preferably 410 to 440 ° C, still more preferably 410 to 430 ° C.
  • the hot air entering the heating zone of the analytical column has a temperature of from 400 to 500 ° C, preferably from 410 to 480 ° C, more preferably from 415 to 470 ° C, more preferably from 420 to 460 ° C, further preferably from 420 to 450 ° C.
  • the respective moving downward moving speed or the blanking speed or the activated carbon residence time of each of the upper activated carbon bed and each of the lower activated carbon beds can be controlled individually or separately.
  • the total amount of activated carbon underfill in the upper part of the activated carbon bed and the lower part of the activated carbon bed in the unit time is equal.
  • the analytical column of the present invention is an analytical column or a regeneration column in a dry desulfurization and denitration apparatus for exhaust gas treatment in the steel industry, and generally has a tower height of 10 to 45 meters, preferably 15 to 40 meters, more preferably 20 to 35 meters.
  • the desorption column typically has a cross-sectional area of the body of from 6 to 100 m 2 , preferably from 8 to 50 m 2 , more preferably from 10 to 30 m 2 , further preferably from 15 to 20 m 2 .
  • the (desulfurization, denitration) adsorption column (or reaction column) in the desulfurization and denitration device usually has a larger size, for example, the adsorption tower has a column height of 6-60 m (meter), preferably 8-55 m (meter), preferably 10- 50 m, preferably 15-45 m, 18-40 m, preferably 20-35 m, preferably 22-30 m.
  • the tower height of the adsorption tower refers to the height from the activated carbon outlet at the bottom of the adsorption tower to the activated carbon inlet at the top of the adsorption tower, that is, the height of the main structure of the tower.
  • the analytical column is a shell-type vertical analytical column in which activated carbon is input from the top of the column, flows downward through the tube, and then reaches the bottom of the column, while the heated gas flows through the shell side, and the heated gas enters from one side of the column. It is cooled by heat exchange with activated carbon flowing through the tube and then output from the other side of the column.
  • the analytical column is a vertical analytical column of a shell-and-shell type (or shell-and-tube type) or a tubular type, in which activated carbon is input from the top of the tower, flows downward through the tube section of the upper heating zone, and then reaches an upper heating zone. a buffer space between the lower cooling zone and then flowing through the tube section of the lower cooling zone, and then to the bottom of the tower, while the heated gas (or high-temperature hot air) flows through the shell side of the heating zone to heat the gas (400-500 ° C) From the side of the heating zone of the analytical column, indirect heat exchange with the activated carbon flowing through the heating zone to cool down, and then output from the other side of the heating zone of the column.
  • a buffer space between the lower cooling zone and then flowing through the tube section of the lower cooling zone, and then to the bottom of the tower while the heated gas (or high-temperature hot air) flows through the shell side of the heating zone to heat the gas (400-500 ° C)
  • the heated gas or high-temperature
  • the cooling air enters from one side of the cooling zone of the analytical column and is indirectly heat exchanged with the resolved, regenerated activated carbon flowing through the cooling zone. After indirect heat exchange, the cooling air is warmed to 120 ⁇ 20 ° C, such as about 120 ° C.
  • JP3217627B2 JPH08155299A discloses an analytical tower (ie, a desorption tower) which uses a double sealing valve and is sealed by an inert gas. Screening, water cooling (see Figure 3 in this patent).
  • JP 3485453 B2 JPH 11104457 A discloses a regeneration column (see Figs. 23 and 24) which can be used in a preheating section, a double sealing valve, an inert gas, air cooling or water cooling.
  • JPS59142824A discloses a gas from a cooling section for preheating activated carbon.
  • 201210050541.6 (Shanghai Keshi Company) discloses a scheme for energy reuse of a regeneration tower in which a dryer 2 is used.
  • JPS 4918355 B discloses the use of blast furnace gas to regenerate activated carbon.
  • JPH08323144A discloses a regeneration tower employing fuel (heavy or light oil) using an air heating furnace (see Figure 2 of the patent, 11-hot blast stove, 12-fuel supply).
  • Chinese utility model 201320075942.7 relates to heating equipment An exhaust gas treatment device (burning coal, air heating) equipped with the heating device is disposed, see Fig. 2 of the utility model patent.
  • the analytical tower of the present invention is air cooled.
  • the thickness of the activated carbon chamber refers to the distance or spacing between the two porous separators of the activated carbon chamber.
  • the equipment is compact and easy to maintain.
  • FIG. 1 is a schematic diagram of a prior art desulfurization and denitration apparatus including an activated carbon adsorption tower and an activated carbon regeneration tower.
  • FIG. 2 is a schematic view of a prior art adsorption column.
  • Figure 3 is a schematic illustration of another adsorption column of the prior art.
  • Figure 6 is a schematic illustration of a third adsorption column of the present invention.
  • A the lower part of the activated carbon bed, B, the upper part of the activated carbon bed, C, the transition zone in the middle of the adsorption tower, 1, the flue gas inlet, 2, the flue gas outlet, 3, the feed bin, 4, the porous compartment Plate, 4', porous baffle or blinds, 5, flue gas passage, 6, roller feeder, 7, rotary valve, 8, conveyor, 9, non-porous partition or made of non-porous plate Cylinder or cone, 10, activated carbon channel in transition zone (C).
  • A1 a lower first activated carbon chamber, a2, a lower second activated carbon chamber, a3, a lower third activated carbon chamber, b1, an upper first activated carbon chamber, b2, an upper second activated carbon chamber, B3.
  • the upper third activated carbon chamber a lower first activated carbon chamber, a2, a lower second activated carbon chamber, a3, a lower third activated carbon chamber, b1, an upper first activated carbon chamber, b2, an upper second activated carbon chamber, B3.
  • the desulfurization and denitration apparatus used in the examples includes an activated carbon adsorption tower and an analytical column.
  • the activated carbon analytical column has an upper heating zone and a lower cooling zone and an intermediate buffer zone therebetween.
  • the sintering flue gas that needs to be treated in the examples is the sintering machine flue gas from the steel industry.
  • the size of the analytical column is: the tower height is 20 meters and the body cross-sectional area is 15 m 2 .
  • An activated carbon method flue gas purification device comprising an activated carbon adsorption tower, that is, a desulfurization and denitration device including an activated carbon adsorption tower and an analytical tower, or an activated carbon method flue gas purification device including an activated carbon adsorption tower and an analytical tower, the activated carbon
  • the adsorption column includes a lower activated carbon bed portion A, an upper activated carbon bed portion B, and a transition region C or intermediate portion C between the two portions, and the activated carbon adsorption column includes a top or a top of the adsorption tower.
  • a feed bin 3 a flue gas inlet 1 at a lower portion of the adsorption tower, and a flue gas outlet 2 at an upper portion of the adsorption tower, wherein the flue gas outlet end G2 of the lower activated carbon bed portion A and the upper activated carbon bed portion B
  • the flue gas inlet end G3 is connected through the flue gas passage 5, and the lower activated carbon bed portion A has 2-7 (preferably 3-5, for example, 3, 4, 5) separated or isolated by the porous partition 4. , 6 or 7) active Charcoal chambers (for example, when there are seven, numbered a1, a2, a3, a4, a5, a6, a7, etc.
  • the thickness of the chamber is sequentially thickened or in the flow direction of the flue gas after any two adjacent activated carbon chambers (for example, a2 and a3, or a3 and a4) in the lower portion of the lower first activated carbon chamber a1
  • the thickness of an activated carbon chamber e.g., a3 or e.g., a4 is greater than or equal to the thickness of the previous activated carbon chamber (e.g., a2 or, for example, a3), and the upper portion of the activated carbon bed portion B is isolated or isolated by the porous separator 4.
  • activated carbon chambers for example, when there are seven, numbered b1, b2, b3, b4, b5, b6, b7 And so on
  • the thickness of the activated carbon chambers located at the upper portion is sequentially thickened or along the flow direction of the flue gas after the first activated carbon chamber b1 at the upper portion
  • the thickness of the latter activated carbon chamber in any two adjacent activated carbon chambers eg b2 and b3, or b3 and b4
  • the thickness of e.g. b3 or b4) is greater than or equal to the front chamber a activated carbon (e.g., b2 or b3, for example) is.
  • the 2-7 (for example, 3) activated carbon chambers located in the lower portion or the 2-7 (for example, 3) activated carbon chambers located at the upper portion are in the order of the flow direction of the flue gas
  • the thickness of the two chambers a2 or b2 is 1-9 times the thickness of the first chamber a1 or b1, for example 1.5-7 times, such as 2, 3, 4, 5 or 6 times.
  • the thickness of the third chamber a3 or b3 is 1-2.5 times, preferably 1.2-2 times, for example 1.3 times, 1.5 times the thickness of the second chamber a2 or b2. , or 1.8 times.
  • the upper portion has three activated carbon chambers, and the thickness of the first chamber b1, that is, the front chamber is 90-250 mm, preferably 100-230 mm, such as 120, 150, 200 or 220 mm, in the order of the flow direction of the flue gas;
  • the thickness of the two chambers b2, ie the middle chamber is 360-1000 mm, preferably 400-950 mm, such as 450, 600, 700, 800 or 900 mm;
  • the thickness of the third chamber b3, ie the back chamber is 432-1200 mm, preferably 450- 1150mm, such as 500, 600, 700, 800, 900, 1000 or 1100mm.
  • the flue gas inlet 1 located at the lower portion of the adsorption tower and the flue gas outlet 2 located at the upper portion of the adsorption tower are on the same side of the adsorption tower.
  • a roller feeder 6 is provided at the bottom of each of the lower activated carbon bed portions A.
  • activated carbon channels 10 there are a plurality of, for example 2-7, such as 3, 4, 5, 6 activated carbon channels 10 in the transition zone C.
  • these activated carbon passages 10 are constituted by a partition wall 9 and a tower wall of the adsorption tower, or a cylinder 9 or a cone 9 having a circular cross section, or a tube or cylinder 9 having an elliptical cross section. Or a polygon, such as a triangular or rectangular or pentagonal or hexagonal cross-section of tube or barrel 9.
  • the partition 9 or the cylinder 9 or the cone 9 is a non-porous plate or a cylinder or cone made of a non-porous plate.
  • the tube or barrel 9 is a tube or barrel made of a non-porous plate.
  • 2-7 preferably 3-5, for example 3, 4, 5, 6 or 7 activated carbon chambers of the upper portion are communicated via respective activated carbon channels 10 to the corresponding 2-7 of the lower portion, preferably 3- 5, for example 3, 4, 5, 6 or 7 activated carbon chambers.
  • the sum of the cross-sectional areas of all the activated carbon channels 10 is less than or equal to the sum of the cross-sectional areas of all the activated carbon chambers of the upper portion or the cross-sectional area of all the activated carbon chambers of the lower portion.
  • the former is 20% to 60%, preferably 20-50% of the latter.
  • the height of the transition zone C of the adsorption column or the transition zone C of the adsorption column in the vertical direction is 1-5 m, preferably 1.2-4 m, more preferably 1.5-3 m.
  • each of the upper activated carbon chambers is provided with a roller feeder 6, preferably these roller feeders 6 are located in the transition zone C of the adsorption tower and each of the roller feeders 6 and the lower portions There is a gap or vertical distance between the activated carbon layers of the activated carbon chamber, i.e., the rolls of the roller feeder 6 are not in contact with the activated carbon layer of each of the lower activated carbon chambers.
  • the height of the main structure of the adsorption column is 6 to 60 m (meter), preferably 8 to 55 m (meter), preferably 10 to 50 m, preferably 15 to 45 m, 18 to 40 m, preferably 20 to 35 m, preferably 22 to 30 m.
  • a flue gas purification or sintering flue gas desulfurization and denitration method using the above apparatus comprising:
  • flue gas (contaminant-containing) flue gas or sintering flue gas (hereinafter, collectively referred to as flue gas) is sent to an activated carbon adsorption tower comprising a desulfurization and denitration device of the above activated carbon adsorption tower and (conventional) analytical tower.
  • the flue gas sequentially flows through the lower activated carbon bed portion A and the upper activated carbon bed portion B and is brought into contact with the activated carbon input into the two portions A and B from the top of the adsorption tower so as to include sulfur oxides, Contaminants such as nitrogen oxides and dioxins are adsorbed by activated carbon;
  • the activated carbon regeneration temperature Td is in the range of 390 to 500 ° C, preferably 400 to 470 ° C, more preferably 405 to 450 ° C, still more preferably 410 to 440 ° C, still more preferably 410 to 430 ° C.
  • the hot air entering the heating zone of the analytical column has a temperature of from 400 to 500 ° C, preferably from 410 to 480 ° C, more preferably from 415 to 470 ° C, more preferably from 420 to 460 ° C, further preferably from 420 to 450 ° C.
  • the adsorption tower is shown in Figure 4.
  • the desulfurization and denitration device includes an activated carbon adsorption tower (tower height 30 m, cross-sectional area 120 m 2 ) and an analytical tower (tower height 20 m, cross-sectional area 15 m 2 ).
  • the lower activated carbon bed portion A has three activated carbon chambers a1, a2 and a3 and the upper activated carbon bed portion B has three activated carbon chambers b1, b2 and b3.
  • the layers are defined as the lower front chamber, the middle chamber and the rear chamber; the upper front chamber, the middle chamber and the rear chamber.
  • the thickness of the front, middle and back chambers of the lower layer are 150mm, 450mm and 900mm respectively, and the total thickness is 1500mm; the front, middle and back chamber thickness of the upper layer
  • the degrees are 150mm, 450mm, 900mm, and the total thickness is 1500mm; thus, the residence time of the activated carbon in the front, middle and back of the upper and lower layers can be controlled, for example, 40h, 120h, 240h.
  • the upper and lower discharges can be adjusted.
  • the apparatus of the present embodiment divides the adsorption tower into two upper and lower layers, and each layer of activated carbon is divided into a plurality of chambers by using a porous partition, and a roller feeder is used under each chamber to control the flow speed (or residence time) of each activated carbon in each chamber.
  • the sum of the cross-sectional areas of all the activated carbon channels 10 is 55% of the sum of the cross-sectional areas of all the activated carbon chambers of the upper portion or the cross-sectional area of all the activated carbon chambers of the lower portion. about.
  • the height of the transition zone C of the adsorption tower or the transition zone C of the adsorption tower in the vertical direction is 2 m.
  • the upper activated carbon is discharged through a roller feeder and placed at the top of the lower activated carbon chamber for temporary storage.
  • the lower part of the roller of the roller feeder is not in contact with the activated carbon to prevent the round roller from rubbing against the activated carbon to generate high temperature or spark.
  • the adsorption tower is shown in Figure 5.
  • the roller feeder of the upper layer can be eliminated, and the residence time of the materials in each layer can be realized by controlling the width of each chamber of the upper and lower layers.
  • the height of the transition zone C of the adsorption tower or the transition zone C of the adsorption tower in the vertical direction is 3 m.
  • the layers are defined as the lower front chamber, the middle chamber and the rear chamber; the upper front chamber, the middle chamber and the rear chamber.
  • the thickness of the front, middle and back chambers of the lower layer are 150mm, 450mm and 900mm respectively, and the total thickness is 1500mm;
  • the thickness of the front, middle and back chambers of the upper layer are 150mm, 450mm and 900mm respectively, and the total thickness is 1500mm; thus, the upper and lower layers can be controlled before, during and after.
  • the post-indoor activated carbon residence time is, for example, 40 h, 120 h, 240 h.
  • the adsorption tower is shown in Figure 6.
  • the length of the activated carbon channel in the middle of the upper and lower layers can be reduced.
  • the layers are defined as the lower front chamber, the middle chamber and the rear chamber; the upper front chamber, the middle chamber and the rear chamber.
  • the thickness of the front, middle and back chambers of the lower layer are 150mm, 450mm and 900mm respectively, and the total thickness is 1500mm;
  • the thickness of the front, middle and back chambers of the upper layer are 150mm, 450mm and 900mm respectively, and the total thickness is 1500mm; thus, the upper and lower layers can be controlled before, during and after.
  • the post-indoor activated carbon residence time is, for example, 40 h, 120 h, 240 h.
  • the intermediate activated carbon channel 10 is an ineffective area, so the height or length and the total cross-sectional area of the (activated carbon channel) should be reduced as much as possible while ensuring the speed of the activated carbon (low resistance).
  • the sum of the cross-sectional areas of all the activated carbon channels 10 is 22% of the sum of the cross-sectional areas of all the activated carbon chambers of the upper portion or the cross-sectional areas of all the activated carbon chambers of the lower portion.
  • the height of the transition zone C of the adsorption tower or the transition zone C of the adsorption tower in the vertical direction is 1.8 m.

Abstract

一种包括活性炭吸附塔的活性炭法烟气净化装置,该活性炭吸附塔包括下部的活性炭床层部分(A)、上部的活性炭床层部分(B)和位于这两个部分之间的过渡区(C),并且该活性炭吸附塔包括位于吸附塔的上方或顶部的进料仓(3)、位于吸附塔的下部的烟气入口(1)和位于吸附塔的上部的烟气出口(2),其中下部的活性炭床层部分(A)的烟气流出端(G2)与上部的活性炭床层部分(B)的烟气进入端(G3)通过烟气通道(5)相连通,下部的活性炭床层部分(A)具有被多孔隔板(4)隔离而成的2-7个活性炭腔室并且位于下部的这些活性炭腔室的厚度沿着烟气的流动方向依次变厚,上部的活性炭床层部分(B)具有被多孔隔板(4)隔离而成的2-7个活性炭腔室并且位于上部的这些活性炭腔室的厚度沿着烟气的流动方向依次变厚。

Description

活性炭法烟气净化装置及烟气净化方法
本申请要求于2015年11月13日提交中国专利局、申请号为201510780033.7、发明名称为“活性炭法烟气净化装置及烟气净化方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及活性炭法烟气净化装置及烟气净化方法,该装置属于一种适用于大气污染治理的活性炭法烟气净化装置,涉及环境保护领域。
背景技术
对于工业烟气、尤其钢铁工业的烧结机烟气而言,采用包括活性炭吸附塔和解析塔的脱硫、脱硝装置和工艺是比较理想的。在包括活性炭吸附塔和解析塔(或再生塔)的脱硫、脱硝装置中,活性炭吸附塔用于从烧结烟气或废气(尤其钢铁工业的烧结机的烧结烟气)吸附包括硫氧化物、氮氧化物和二恶英在内的污染物,而解析塔用于活性炭的热再生。
活性炭法脱硫具有脱硫率高、可同时实现脱硝、脱二噁英、除尘、不产生废水废渣等优点,是极有前景的烟气净化方法。活性炭可以在高温下再生,在温度高于350℃时,吸附在活性炭上的硫氧化物、氮氧化物、二恶英等污染物发生快速解析或分解(二氧化硫被解析,氮氧化物和二噁英被分解)。并且随着温度的升高,活性炭的再生速度进一步加快,再生时间缩短,优选的是一般控制解析塔中活性炭再生温度约等于430℃,因此,理想的解析温度(或再生温度)是例如在390-450℃范围、更优选在400-440℃范围。
传统的活性炭脱硫工艺如图1中所示。烟气由增压风机引入吸附塔,在入塔口喷入氨气和空气的混合气体,以提高NOX的脱除效率,净化后的烟气进入烧结主烟囱排放。活性炭由塔顶加入到吸附塔中,并在重力和塔底出料装置的作用下向下移动。解析塔出来的活性炭由2#活性炭输送机输送至吸附塔,吸附塔吸附污染物饱和后的活性炭由底部排出,排出的活性炭由1#活性炭输送机输送至解析塔,进行活性炭再生。
解析塔的作用是将活性炭吸附的SO2释放出来,同时在400℃以上的温 度和一定的停留时间下,二噁英可分解80%以上,活性炭经冷却、筛分后重新再利用。释放出来的SO2可制硫酸等,解析后的活性炭经传送装置送往吸附塔重新用来吸附SO2和NOX等。
在吸附塔与解析塔中NOX与氨发生SCR、SNCR等反应,从而去除NOX。粉尘在通过吸附塔时被活性炭吸附,在解析塔底端的振动筛被分离,筛下的为活性炭粉末送去灰仓,然后可送往高炉或烧结作为燃料使用。
采用活性炭法进行烟气净化,为了提高净化效果,可使烟气通过多层活性炭床层。多层活性炭床层布置主要分为上下结构和前后结构,如图2中所示。塔内活性炭床层为一整体,活性炭利用重力均匀下移。顺着烟气的流动方向,首先与烟气接触的活性炭吸附了烟气中更多污染物,与后面活性炭一起排出,会导致后面活性炭未吸附饱和就排出塔内或者前面活性炭吸附饱和了仍在塔内未起到烟气净化效果。
现有技术采取前后串联结构的吸附塔,如图3中所示,但是需增加一套活性炭输送装置,不仅增加了投资及运行费用,还增加额外设备维护工作量。
因此,为了节约投资及运行费用以及提高净化效果,需采用更合理的活性炭净化装置。
发明内容
本发明的目的是提供了包括活性炭吸附塔的一种活性炭法烟气净化装置,该活性炭吸附塔包括下部的活性炭床层部分(A)、上部的活性炭床层部分(B)和位于这两个部分之间的过渡区(C),并且该活性炭吸附塔包括位于吸附塔的上方或顶部的进料仓(3)、位于吸附塔的下部的烟气入口(1)和位于吸附塔的上部的烟气出口(2),其中下部的活性炭床层部分(A)的烟气流出端(G2)与上部的活性炭床层部分(B)的烟气进入端(G3)通过烟气通道(5)相连通,下部的活性炭床层部分(A)具有被多孔隔板(4)隔离的2-7个(优选3-5个)活性炭腔室,上部的活性炭床层部分(B)具有被多孔隔板(4)隔离的2-7个(优选3-5个)活性炭腔室。
优选,本发明提供了包括活性炭吸附塔的一种活性炭法烟气净化装置(即,包括活性炭吸附塔和解析塔的一种脱硫、脱硝装置或包括活性炭吸附 塔和解析塔的一种活性炭法烟气净化装置),该活性炭吸附塔包括下部的活性炭床层部分(A)、上部的活性炭床层部分(B)和位于这两个部分之间的过渡区(C)(或称作中间区(C)),并且该活性炭吸附塔包括位于吸附塔的上方或顶部的进料仓(3)、位于吸附塔的下部的烟气入口(1)和位于吸附塔的上部的烟气出口(2),其中下部的活性炭床层部分(A)的烟气流出端(G2)与上部的活性炭床层部分(B)的烟气进入端(G3)通过烟气通道(5)相连通,下部的活性炭床层部分(A)具有被多孔隔板(4)隔离(或隔离而成)的2-7个(优选3-5个,例如3,4,5,6或7个)活性炭腔室(例如当有7个时,依次编号为a1,a2,a3,a4,a5,a6,a7;以此类推)并且沿着烟气的流动方向(按照此顺序)位于下部的这些活性炭腔室的厚度依次变厚或沿着烟气的流动方向在下部的第一个活性炭腔室(a1)之后的下部任何两个相邻的活性炭腔室(例如a2和a3,或a3和a4)当中后一个活性炭腔室(例如a3或例如a4)的厚度大于或等于前一个活性炭腔室(例如a2或例如a3)的厚度,上部的活性炭床层部分(B)具有被多孔隔板(4)隔离(或隔离而成)的2-7个(优选3-5个,例如3,4,5,6或7个)活性炭腔室(例如当有7个时,依次编号为b1,b2,b3,b4,b5,b6,b7;以此类推)并且沿着烟气的流动方向(按照此顺序)位于上部的这些活性炭腔室的厚度依次变厚或沿着烟气的流动方向在上部的第一个活性炭腔室(b1)之后的上部任何两个相邻的活性炭腔室(例如b2和b3,或b3和b4)当中后一个活性炭腔室的厚度(例如b3或例如b4)大于或等于前一个活性炭腔室(例如b2或例如b3)的厚度。
优选,位于下部的所述2-7个(例如3个)活性炭腔室当中或位于上部的所述2-7个(例如3个)活性炭腔室当中,按照烟气的流动方向的顺序,第二腔室(a2或b2)的厚度是第一腔室(a1或b1)的厚度的1-9倍(例如1.5-7倍,如2、3、4、5或6倍)。此外,当有第三腔室(a3或b3)时,第三腔室(a3或b3)的厚度是第二腔室(a2或b2)的厚度的1-2.5倍(优选1.2-2倍,例如1.3倍,1.5倍,或1.8倍)。本申请中通过采用上述结构设计,前面腔室的固体吸附介质(或称作固体介质,如活性炭或活性焦)移动速度大于或等于后面腔室的固体吸附介质(或称作固体介质)的移动速度。
一般,下部具有3个活性炭腔室,按照烟气的流动方向的顺序,第一 腔室(a1)(即前室)、第二腔室(a2)(即中室)和第三腔室(a3)(即后室)的厚度分别是90-250mm(优选100-230mm,如120、150、200或220mm)、360-1000mm(优选400-950mm,如450、600、700、800或900mm)和432-1200mm(优选450-1150mm,如500、600、700、800、900、1000或1100mm)。
一般,上部具有3个活性炭腔室,按照烟气的流动方向的顺序,第一腔室(b1)(即前室)、第二腔室(b2)(即中室)和第三腔室(b3)(即后室)的厚度分别是90-250mm(优选100-230mm,如120、150、200或220mm)、360-1000mm(优选400-950mm,如450、600、700、800或900mm)和432-1200mm(优选450-1150mm,如500、600、700、800、900、1000或1100mm)。
优选,位于吸附塔的下部的烟气入口(1)和位于吸附塔的上部的烟气出口(2)处于吸附塔的同一侧。
优选,在下部的活性炭床层部分(A)的每一个腔室的底部具有一个辊式给料机(6)。
优选,在吸附塔的底仓具有一个或多个泄料旋转阀(7)。
一般,在过渡区(C)中具有多个(例如2-7个,如3,4,5,6个)活性炭通道(10)。优选的是,这些活性炭通道(10)由隔板(9)与吸附塔的塔壁所构成,或由圆形横截面的圆筒(9)或锥筒(9)所构成,或由椭圆形横截面的管或筒体(9)或多边形(例如三角形或矩形或五边形或六边形)横截面的管或筒体(9)所组成。更优选的是,隔板(9)或圆筒(9)或锥筒(9)是无孔的板或是由无孔板制成的圆筒或锥筒。更优选的是,管或筒体(9)是由无孔板制成的管或筒体。
优选,上部的2-7个(优选3-5个,例如3,4,5,6或7个)活性炭腔室经由各自的活性炭通道(10)连通至下部的相对应的2-7个(优选3-5个,例如3,4,5,6或7个)活性炭腔室。
优选,在过渡区(C)的垂直方向的中部位置,全部活性炭通道(10)的横截面积之和小于或等于上部的全部活性炭腔室的横截面积之和或下部的全部活性炭腔室的横截面积之和,优选的是,前者是后者的20%-60%,优选是20%-50%,更优选是22%-35%。
吸附塔的过渡区(C)的高度或吸附塔的过渡区(C)在垂直方向的长度是1-5m,优选1.2-4m,更优选1.5-3m。
优选,上部的各个活性炭腔室的底部装有辊式给料机(6),优选的是,这些辊式给料机(6)位于吸附塔的过渡区(C)中并且这些辊式给料机(6)与下部的各个活性炭腔室的活性炭层之间保持有间隙或垂直距离(即,辊式给料机(6)的辊子不与下部的各个活性炭腔室的活性炭层接触)。
一般,吸附塔的主体结构的高度是6-60m(米),优选8-55m(米),优选10-50m,优选15-45m,18-40m,优选20-35m,优选22-30m。吸附塔的主体结构的高度是指从吸附塔(主体结构)的进口到出口之间的高度。
在下部的活性炭床层部分(A)中的固体吸附介质或固体吸附剂(如活性炭)的填装高度与在上部的活性炭床层部分(B)中的固体吸附介质或固体吸附剂(如活性炭)的填装(填充)高度之比为3:1-1:3,优选2:1-1:2,优选1.8:1-1:1.8,更优选1.5:1-1:1.5,更优选1.2:1-1:1.2,如1:1。
在本申请中,活性炭是指广义的活性炭,它包括:常规的活性炭,活性焦,碳基吸附介质,碳基催化剂,等等。另外,固体吸附剂或固体吸附介质也可替代上述广义的活性炭,应该属于本申请中所要保护的范围。
另外,在本申请中,烟气在广义上包括:常规的工业烟气或工业废气。
借助于上述结构设计,使得在吸附塔中,上部的每一个活性炭床层和下部的每一个活性炭床层各自的活性炭向下移动速度或下料速度或活性炭停留时间能够单独或分别控制。另外,使得能够确保:在平稳运行时,在单位时间内上部的全部活性炭床层与下部的全部活性炭床层的活性炭下料总量相等。另外,也可以由只由下部的活性炭床层部分A(即A床层)中的辊式给料机控制。无论采用哪种的下料速度控制方式,均遵从前面腔室的固体介质移动速度大于或等于后面腔室的固体介质的移动速度。
根据本发明的第二个实施方案,提供一种采用上述装置的烟气净化方法(或一种采用上述装置的烟气或烧结烟气的脱硫、脱硝方法),该方法包括:
1)烟气或烧结烟气(下面,两者都统称烟气)被输送到包括上述活性炭吸附塔和(常规)解析塔的一种脱硫、脱硝装置的活性炭吸附塔中,该烟气 依次流过下部的活性炭床层部分(A)和上部的活性炭床层部分(B)并且与从吸附塔的顶部输入到这两个部分(A)和(B)中的活性炭进行接触,使得包括硫氧化物、氮氧化物和二恶英在内的污染物被活性炭吸附;
2)将在脱硫、脱硝装置的活性炭吸附塔中从烟气或烧结烟气中吸附了污染物的活性炭从吸附塔的底部转移到具有上部的加热区和下部的冷却区的一种活性炭解析塔的加热区中,活性炭与作为加热气体的热风进行间接热交换而被加热或升温至活性炭解析温度Td(例如Td=390-450℃),导致活性炭在该Td温度下进行解析、再生;和
3)在解析塔上部的加热区中已进行解析、再生的活性炭经由一个中间的缓冲区即中间区段进入到解析塔下部的冷却区中,同时由冷却风机将常温空气(作为冷却风或冷却空气)从解析塔冷却区的冷风入口通入到解析塔的冷却区中,与在冷却区中向下移动的活性炭进行间接热交换来冷却活性炭;和
4)将从解析塔底部排出的冷却的活性炭(例如经过筛分除去灰分之后)转移到以上步骤(1)的活性炭吸附塔的顶部(例如顶部进料仓)中。
一般,活性炭再生温度Td是在390-500℃,优选400-470℃,更优选405-450℃,更优选在410-440℃,更优选410-430℃的范围。
通常,输入解析塔的加热区内的热风具有400-500℃,优选410-480℃,更优选415-470℃,更优选420-460℃,进一步优选420-450℃的温度。
在上述方法中,在吸附塔中,上部的每一个活性炭床层和下部的每一个活性炭床层各自的活性炭向下移动速度或下料速度或活性炭停留时间能够单独或分别控制。在平稳运行时,在单位时间内上部的全部活性炭床层与下部的全部活性炭床层的活性炭下料总量相等。
本发明的解析塔是用于钢铁工业的废气处理的干法脱硫、脱硝装置中的解析塔或再生塔,通常具有10-45米、优选15-40米、更优选20-35米的塔高。解吸塔通常具有6-100米2、优选8-50米2、更优选10-30米2、进一步优选15-20米2的主体横截面积。而脱硫脱硝装置中的(脱硫、脱硝)吸附塔(或反应塔)通常具有更大的尺寸,例如吸附塔的塔高为6-60m(米),优选8-55m(米),优选10-50m,优选15-45m,18-40m,优选20-35m,优选 22-30m。吸附塔的塔高是指从吸附塔底部活性炭出口到吸附塔顶部活性炭入口的高度,即塔的主体结构的高度。
对于烟气(或废气)吸附塔的设计及其吸附工艺,现有技术中已经有很多文献进行了披露,参见例如US5932179,JP2004209332A,和JP3581090B2(JP2002095930A)和JP3351658B2(JPH08332347A),JP2005313035A。本申请不再进行详细描述。
在本发明中,对于解析塔没有特别的要求,现有技术的解析塔都可用于本发明中。优选的是,解析塔是管壳型的立式解析塔,其中活性炭从塔顶输入,向下流经管程,然后到达塔底,而加热气体则流经壳程,加热气体从塔的一侧进入,与流经管程的活性炭进行热交换而降温,然后从塔的另一侧输出。优选的是,解析塔是管壳型(或壳管型)或列管型的立式解析塔,其中活性炭从塔顶输入,向下流经上部加热区的管程,然后到达一个处于上部加热区与下部冷却区之间的一个缓冲空间,然后流经下部冷却区的管程,然后到达塔底,而加热气体(或高温热风)则流经加热区的壳程,加热气体(400-500℃)从解析塔的加热区的一侧进入,与流经加热区管程的活性炭进行间接热交换而降温,然后从塔的加热区的另一侧输出。冷却风从解析塔的冷却区的一侧进入,与流经冷却区管程的已解析、再生的活性炭进行间接热交换。在间接热交换之后,冷却风升温至120±20℃,如约120℃。
对于活性炭解析塔的设计及活性炭再生方法,现有技术中已经有很多文献进行了披露,JP3217627B2(JPH08155299A)公开了一种解析塔(即解吸塔),它采用双密封阀,通惰气密封,筛分,水冷(参见该专利中的图3)。JP3485453B2(JPH11104457A)公开了再生塔(参见图23和24),可采用预热段,双密封阀,通惰气,空气冷却或水冷。JPS59142824A公开了来自冷却段的气体用于预热活性炭。中国专利申请201210050541.6(上海克硫公司)公开了再生塔的能量再利用的方案,其中使用了干燥器2。JPS4918355B公开了采用高炉煤气(blast furnace gas)来再生活性炭。JPH08323144A公开了采用燃料(重油或轻油)的再生塔,使用空气加热炉(参见该专利的图2,11-热风炉,12-燃料供给装置)。中国实用新型201320075942.7涉及加热装 置及具备该加热装置的废气处理装置(燃煤、空气加热),参见该实用新型专利中的图2。
本发明的解析塔采用风冷。
对于解析塔解析能力为每小时10t活性炭的情形,传统工艺保持解析塔内的温度在420℃所需焦炉煤气约为400Nm3/h,助燃空气约为2200Nm3/h,外排热风约为2500Nm3/h;所需冷却空气30000Nm3/h,冷却后活性炭温度为140℃。
在本申请中“任选的”表示有或没有,“任选地”表示进行或不进行。解析塔与再生塔可互换使用。再生与解析可互换使用。另外,解析与解吸是相同的概念。“加热段”与“加热区”是相同的概念。“冷却段”与“冷却区”是相同的概念。
活性炭腔室的厚度是指该活性炭腔室的两个多孔隔板之间的距离或间距。
本发明的优点或有益技术效果:
1、本发明的吸附塔设备,一方面显著提高了烟气处理量,另一方面,降低了设备制造和运行、维修成本,节省电能和热能。
2、工艺更容易控制,避免出现气流的死角。
3、设备紧凑,维修方便。
4、吸附塔内各部分中活性炭的停留时间与活性炭的吸附量非常匹配,活性炭利用率高。
5、减少活性炭初次填装量,降低投资成本,同时减少未与烟气接触的活性炭在塔内的停留时间。
附图说明
图1是现有技术的包括活性炭吸附塔和活性炭再生塔的脱硫脱硝装置及工艺流程示意图。
图2是现有技术的吸附塔的示意图。
图3是现有技术的另一种吸附塔的示意图。
图4是本发明第一种吸附塔的示意图;
图5是本发明第二种吸附塔的示意图;
图6是本发明第三种吸附塔的示意图。
附图标记:
A、下部的活性炭床层部分,B、上部的活性炭床层部分,C、位于吸附塔中部的过渡区,1、烟气入口,2、烟气出口,3、进料仓,4、多孔隔板,4’、多孔隔板或百叶窗,5、烟气通道,6、辊式给料机,7、旋转阀,8、输送装置,9、无孔的隔板或由无孔板制成的圆筒或锥筒,10、在过渡区(C)中的活性炭通道。
a1、下部的第一活性炭腔室,a2、下部的第二活性炭腔室,a3、下部的第三活性炭腔室,b1、上部的第一活性炭腔室,b2、上部的第二活性炭腔室,b3、上部的第三活性炭腔室。
G1、下部的活性炭床层部分(A)的烟气进入端,G2、下部的活性炭床层部分(A)的烟气流出端,G3、上部的活性炭床层部分(B)的烟气进入端,G4、上部的活性炭床层部分(B)的烟气流出端。
具体实施方式
在实施例中所使用的脱硫、脱硝装置包括活性炭吸附塔和解析塔。活性炭解析塔具有上部的加热区和下部的冷却区以及位于两者之间的中间缓冲区。
实施例中需要处理的烧结烟气是来自钢铁工业的烧结机烟气。
在实施例中,解析塔的尺寸为:塔高20米,主体横截面积为15m2
三种吸附塔的结构参见图4-6。
包括活性炭吸附塔的一种活性炭法烟气净化装置,即,包括活性炭吸附塔和解析塔的一种脱硫、脱硝装置或包括活性炭吸附塔和解析塔的一种活性炭法烟气净化装置,该活性炭吸附塔包括下部的活性炭床层部分A、上部的活性炭床层部分B和位于这两个部分之间的过渡区C或称作中间区C,并且该活性炭吸附塔包括位于吸附塔的上方或顶部的进料仓3、位于吸附塔的下部的烟气入口1和位于吸附塔的上部的烟气出口2,其中下部的活性炭床层部分A的烟气流出端G2与上部的活性炭床层部分B的烟气进入端G3通过烟气通道5相连通,下部的活性炭床层部分A具有被多孔隔板4隔离或隔离而成的2-7个(优选3-5个,例如3,4,5,6或7个)活性 炭腔室(例如当有7个时,依次编号为a1,a2,a3,a4,a5,a6,a7;以此类推)并且沿着烟气的流动方向(按照此顺序)位于下部的这些活性炭腔室的厚度依次变厚或沿着烟气的流动方向在下部的第一个活性炭腔室a1之后的下部任何两个相邻的活性炭腔室(例如a2和a3,或a3和a4)当中后一个活性炭腔室(例如a3或例如a4)的厚度大于或等于前一个活性炭腔室(例如a2或例如a3)的厚度,上部的活性炭床层部分B具有被多孔隔板4隔离或隔离而成的2-7个(优选3-5个,例如3,4,5,6或7个)活性炭腔室(例如当有7个时,依次编号为b1,b2,b3,b4,b5,b6,b7;以此类推)并且沿着烟气的流动方向(按照此顺序)位于上部的这些活性炭腔室的厚度依次变厚或沿着烟气的流动方向在上部的第一个活性炭腔室b1之后的上部任何两个相邻的活性炭腔室(例如b2和b3,或b3和b4)当中后一个活性炭腔室的厚度(例如b3或例如b4)大于或等于前一个活性炭腔室(例如b2或例如b3)的厚度。
优选,位于下部的所述2-7个(例如3个)活性炭腔室当中或位于上部的所述2-7个(例如3个)活性炭腔室当中,按照烟气的流动方向的顺序,第二腔室a2或b2的厚度是第一腔室a1或b1的厚度的1-9倍,例如1.5-7倍,如2、3、4、5或6倍。此外,当有第三腔室a3或b3时,第三腔室a3或b3的厚度是第二腔室a2或b2的厚度的1-2.5倍,优选1.2-2倍,例如1.3倍,1.5倍,或1.8倍。
一般,下部具有3个活性炭腔室,按照烟气的流动方向的顺序,第一腔室a1,即前室的厚度是90-250mm,优选100-230mm,如120、150、200或220mm;第二腔室a2,即中室的厚度是360-1000mm,优选400-950mm,如450、600、700、800或900mm;第三腔室a3,即后室的厚度是432-1200mm,优选450-1150mm,如500、600、700、800、900、1000或1100mm。
一般,上部具有3个活性炭腔室,按照烟气的流动方向的顺序,第一腔室b1,即前室的厚度是90-250mm,优选100-230mm,如120、150、200或220mm;第二腔室b2,即中室的厚度是360-1000mm,优选400-950mm,如450、600、700、800或900mm;第三腔室b3,即后室的厚度是432-1200mm,优选450-1150mm,如500、600、700、800、900、1000或 1100mm。
优选,位于吸附塔的下部的烟气入口1和位于吸附塔的上部的烟气出口2处于吸附塔的同一侧。
优选,在下部的活性炭床层部分A的每一个腔室的底部具有一个辊式给料机6。
优选,在吸附塔的底仓具有一个或多个泄料旋转阀7。
一般,在过渡区C中具有多个,例如2-7个,如3,4,5,6个活性炭通道10。优选的是,这些活性炭通道10由隔板9与吸附塔的塔壁所构成,或由圆形横截面的圆筒9或锥筒9所构成,或由椭圆形横截面的管或筒体9或多边形,例如三角形或矩形或五边形或六边形横截面的管或筒体9所组成。更优选的是,隔板9或圆筒9或锥筒9是无孔的板或是由无孔板制成的圆筒或锥筒。更优选的是,管或筒体9是由无孔板制成的管或筒体。
优选,上部的2-7个,优选3-5个,例如3,4,5,6或7个活性炭腔室经由各自的活性炭通道10连通至下部的相对应的2-7个,优选3-5个,例如3,4,5,6或7个活性炭腔室。
优选,在过渡区C的垂直方向的中部位置,全部活性炭通道10的横截面积之和小于或等于上部的全部活性炭腔室的横截面积之和或下部的全部活性炭腔室的横截面积之和,优选的是,前者是后者的20%-60%,优选20-50%。
吸附塔的过渡区C的高度或吸附塔的过渡区C在垂直方向的长度是1-5m,优选1.2-4m,更优选1.5-3m。
优选,上部的各个活性炭腔室的底部装有辊式给料机6,优选的是,这些辊式给料机6位于吸附塔的过渡区C中并且这些辊式给料机6与下部的各个活性炭腔室的活性炭层之间保持有间隙或垂直距离,即,辊式给料机6的辊子不与下部的各个活性炭腔室的活性炭层接触。
一般,吸附塔的主体结构的高度是6-60m(米),优选8-55m(米),优选10-50m,优选15-45m,18-40m,优选20-35m,优选22-30m。
根据本发明的第二个实施方案,提供一种采用上述装置的烟气净化或烧结烟气脱硫、脱硝方法,该方法包括:
1)(含有污染物的)烟气或烧结烟气(下面,两者都统称烟气)被输送到包括上述活性炭吸附塔和(常规)解析塔的一种脱硫、脱硝装置的活性炭吸附塔中,该烟气依次流过下部的活性炭床层部分A和上部的活性炭床层部分B并且与从吸附塔的顶部输入到这两个部分A和B中的活性炭进行接触,使得包括硫氧化物、氮氧化物和二恶英在内的污染物被活性炭吸附;
2)将在脱硫、脱硝装置的活性炭吸附塔中从烟气或烧结烟气中吸附了污染物的活性炭从吸附塔的底部转移到具有上部的加热区和下部的冷却区的一种活性炭解析塔的加热区中,活性炭与作为加热气体的热风进行间接热交换而被加热或升温至活性炭解析温度Td,例如Td=390-450℃,导致活性炭在该Td温度下进行解析、再生;和
3)在解析塔上部的加热区中已进行解析、再生的活性炭经由一个中间的缓冲区即中间区段进入到解析塔下部的冷却区中,同时由冷却风机将常温空气(作为冷却风或冷却空气)从解析塔冷却区的冷风入口通入到解析塔的冷却区中,与在冷却区中向下移动的活性炭进行间接热交换来冷却活性炭;和
4)将从解析塔底部排出的冷却的活性炭,例如经过筛分除去灰分之后,转移到以上步骤1)的活性炭吸附塔的顶部,例如顶部进料仓中。
一般,活性炭再生温度Td是在390-500℃,优选400-470℃,更优选405-450℃,更优选在410-440℃,更优选410-430℃的范围。
通常,输入解析塔的加热区内的热风具有400-500℃,优选410-480℃,更优选415-470℃,更优选420-460℃,进一步优选420-450℃的温度。
实施例1
吸附塔如图4所示。脱硫、脱硝装置包括活性炭吸附塔(塔高30米,横截面积120m2)和解析塔(塔高20米,横截面积15m2)。
下部的活性炭床层部分A具有三个活性炭腔室a1、a2和a3和上部的活性炭床层部分B具有三个活性炭腔室b1、b2和b3。
沿着气流方向,按活性炭各层接触烟气的前后顺序,定义各层分别为下层前室、中室、后室;上层前室、中室、后室。下层前、中、后室厚度分别为150mm、450mm、900mm,总厚度1500mm;上层前、中、后室厚 度分别为150mm、450mm、900mm,总厚度1500mm;从而可控制上、下层前、中、后室内活性炭停留时间为例如40h、120h、240h。
上下出料可调节。
本实施例的装置将吸附塔分为上下两层,各层活性炭采用多孔隔板分为多室,各室下方采用辊式给料机分别控制各室内活性炭流动速度(或者是停留时间)。
优先与烟气接触的活性炭室a1或b1较薄,采取较快的下料速度,使吸附饱和的活性炭尽快排出;各层中最后与烟气接触的活性炭室较厚,活性炭在室内停留时间较长,可有效降低烟气中粉尘浓度。
在过渡区C的垂直方向的中部位置,全部活性炭通道10的横截面积之和是上部的全部活性炭腔室的横截面积之和或下部的全部活性炭腔室的横截面积之和的55%左右。吸附塔的过渡区C的高度或吸附塔的过渡区C在垂直方向的长度是2m。
上层活性炭经辊式给料机排出后,置于下层活性炭室的顶部临时储存。
辊式给料机的棍子下部不与活性炭接触,防止圆辊与活性炭摩擦产生高温或火花。
实施例2
吸附塔如图5所示。对于污染物成分波动不大的烟气,可免去上层下料的辊式给料机,通过控制上下层各室的宽度实现各层内物料的停留时间。吸附塔的过渡区C的高度或吸附塔的过渡区C在垂直方向的长度是3m。
沿着气流方向,按活性炭各层接触烟气的前后顺序,定义各层分别为下层前室、中室、后室;上层前室、中室、后室。下层前、中、后室厚度分别为150mm、450mm、900mm,总厚度1500mm;上层前、中、后室厚度分别为150mm、450mm、900mm,总厚度1500mm;从而可控制上、下层前、中、后室内活性炭停留时间为例如40h、120h、240h。
实施例3
吸附塔如图6所示。为了减少活性炭初次填装量,降低投资成本,同时减少未与烟气接触的活性炭在塔内的停留时间,可将上下层中间的活性炭通道的长度缩小。
沿着气流方向,按活性炭各层接触烟气的前后顺序,定义各层分别为下层前室、中室、后室;上层前室、中室、后室。下层前、中、后室厚度分别为150mm、450mm、900mm,总厚度1500mm;上层前、中、后室厚度分别为150mm、450mm、900mm,总厚度1500mm;从而可控制上、下层前、中、后室内活性炭停留时间为例如40h、120h、240h。
中间活性炭通道10是无效面积,所以在保证活性炭下料速度(阻力小)的前提下,还要尽量降低其(活性炭通道)的高度或长度和总横截面面积。在过渡区C的垂直方向的中部位置,全部活性炭通道10的横截面积之和是上部的全部活性炭腔室的横截面积之和或下部的全部活性炭腔室的横截面积之和的22%。吸附塔的过渡区C的高度或吸附塔的过渡区C在垂直方向的长度是1.8m。

Claims (10)

  1. 一种包括活性炭吸附塔的活性炭法烟气净化装置,该活性炭吸附塔包括下部的活性炭床层部分(A)、上部的活性炭床层部分(B)和位于这两个部分之间的过渡区(C),并且该活性炭吸附塔包括位于吸附塔的上方或顶部的进料仓(3)、位于吸附塔的下部的烟气入口(1)和位于吸附塔的上部的烟气出口(2),其中下部的活性炭床层部分(A)的烟气流出端(G2)与上部的活性炭床层部分(B)的烟气进入端(G3)通过烟气通道(5)相连通,下部的活性炭床层部分(A)具有被多孔隔板(4)隔离的2-7个(优选3-5个)活性炭腔室,和,上部的活性炭床层部分(B)具有被多孔隔板(4)隔离的2-7个(优选3-5个)活性炭腔室。
  2. 根据权利要求1所述的活性炭法烟气净化装置,其中下部的活性炭床层部分(A)具有被多孔隔板(4)隔离的2-7个(优选3-5个)活性炭腔室并且沿着烟气的流动方向位于下部的这些活性炭腔室的厚度依次变厚或沿着烟气的流动方向在下部的第一个活性炭腔室(a1)之后的下部任何两个相邻的活性炭腔室当中后一个活性炭腔室的厚度大于或等于前一个活性炭腔室的厚度,上部的活性炭床层部分(B)具有被多孔隔板(4)隔离的2-7个(优选3-5个)活性炭腔室并且沿着烟气的流动方向位于上部的这些活性炭腔室的厚度依次变厚或沿着烟气的流动方向在上部的第一个活性炭腔室(b1)之后的上部任何两个相邻的活性炭腔室当中后一个活性炭腔室的厚度大于或等于前一个活性炭腔室的厚度;优选的是,其中位于下部的所述2-7个(例如3个)活性炭腔室当中或位于上部的所述2-7个(例如3个)活性炭腔室当中,按照烟气的流动方向的顺序,第二腔室(a2或b2)的厚度是第一腔室(a1或b1)的厚度的1-9倍(例如1.5-7倍,如2或3倍),并且当有第三腔室(a3或b3)时,第三腔室(a3或b3)的厚度是第二腔室(a2或b2)的厚度的1-2.5倍(优选1.2-2倍,例如1.3倍,1.5倍,或1.8倍)。
  3. 根据权利要求2所述的活性炭法烟气净化装置,其中下部具有3个活性炭腔室,按照烟气的流动方向的顺序,第一腔室(a1)(即前室)、第二腔室(a2)(即中室)和第三腔室(a3)(即后室)的厚度分别是90-250mm(优选100-230mm,如120、150、200或220mm)、360-1000mm(优选400-950mm, 如450、600、700、800或900mm)和432-1200mm(优选450-1150mm,如500、600、700、800、900、1000或1100mm);和/或
    上部具有3个活性炭腔室,按照烟气的流动方向的顺序,第一腔室(b1)(即前室)、第二腔室(b2)(即中室)和第三腔室(b3)(即后室)的厚度分别是90-250mm(优选100-230mm,如120、150、200或220mm)、360-1000mm(优选400-950mm,如450、600、700、800或900mm)和432-1200mm(优选450-1150mm,如500、600、700、800、900、1000或1100mm)。
  4. 根据权利要求1-3中任何一项所述的活性炭法烟气净化装置,其中位于吸附塔的下部的烟气入口(1)和位于吸附塔的上部的烟气出口(2)处于吸附塔的同一侧。
  5. 根据权利要求1-4中任何一项所述的活性炭法烟气净化装置,其中在下部的活性炭床层部分(A)的每一个腔室的底部具有一个辊式给料机(6);和/或
    在吸附塔的底仓具有一个或多个泄料旋转阀(7)。
  6. 根据权利要求1-5中任何一项所述的活性炭法烟气净化装置,其中在过渡区(C)中具有多个活性炭通道(10);优选的是,这些活性炭通道(10)由隔板(9)与吸附塔的塔壁所构成,或由圆形横截面的圆筒(9)或锥筒(9)所构成,或由椭圆形横截面的管或筒体(9)或多边形横截面的管或筒体(9)所组成;更优选的是,隔板(9)或圆筒(9)或锥筒(9)是无孔的板或是由无孔板制成的圆筒或锥筒,管或筒体(9)是由无孔板制成的管或筒体。
  7. 根据权利要求1-6中任何一项所述的活性炭法烟气净化装置,其中上部的2-7个(优选3-5个,例如3,4,5,6或7个)活性炭腔室经由各自的活性炭通道(10)连通至下部的相对应的2-7个(优选3-5个,例如3,4,5,6或7个)活性炭腔室。
  8. 根据权利要求1-7中任何一项所述的活性炭法烟气净化装置,其中在过渡区(C)的垂直方向的中部位置,全部活性炭通道(10)的横截面积之和小于或等于上部的全部活性炭腔室的横截面积之和或下部的全部活性炭腔室的横截面积之和,优选的是,前者是后者的20%-60%。
  9. 根据权利要求1-8中任何一项所述的活性炭法烟气净化装置,其中 上部的各个活性炭腔室的底部装有辊式给料机(6),优选的是,这些辊式给料机(6)位于吸附塔的过渡区(C)中并且这些辊式给料机(6)与下部的各个活性炭腔室的活性炭层之间保持有间隙或垂直距离(即,辊式给料机(6)的辊子不与下部的各个活性炭腔室的活性炭层接触)。
  10. 采用权利要求1-9中任何一项所述的装置的烟气净化方法(或烧结烟气脱硫、脱硝方法),该方法包括:
    1)烟气或烧结烟气(下面,两者都统称烟气)被输送到包括权利要求1-9中任何一项所述活性炭吸附塔和解析塔的一种脱硫、脱硝装置的活性炭吸附塔中,该烟气依次流过下部的活性炭床层部分(A)和上部的活性炭床层部分(B)并且与从吸附塔的顶部输入到这两个部分(A)和(B)中的活性炭进行接触,使得包括硫氧化物、氮氧化物和二恶英在内的污染物被活性炭吸附;
    2)将在脱硫、脱硝装置的活性炭吸附塔中从烟气或烧结烟气中吸附了污染物的活性炭从吸附塔的底部转移到具有上部的加热区和下部的冷却区的一种活性炭解析塔的加热区中,活性炭与作为加热气体的热风进行间接热交换而被加热或升温至活性炭解析温度Td(例如Td=390-450℃),导致活性炭在该Td温度下进行解析、再生;和
    3)在解析塔上部的加热区中已进行解析、再生的活性炭经由一个中间的缓冲区即中间区段进入到解析塔下部的冷却区中,同时由冷却风机将常温空气(作为冷却风或冷却空气)从解析塔冷却区的冷风入口通入到解析塔的冷却区中,与在冷却区中向下移动的活性炭进行间接热交换来冷却活性炭;和
    4)将从解析塔底部排出的冷却的活性炭(例如经过筛分除去灰分之后)转移到以上步骤(1)的活性炭吸附塔的顶部(例如顶部进料仓)中。
PCT/CN2016/105451 2015-11-13 2016-11-11 活性炭法烟气净化装置及烟气净化方法 WO2017080502A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MYPI2018701431A MY192747A (en) 2015-11-13 2016-11-11 Activated carbon flue gas purification device and flue gas purification method
KR1020187013588A KR102053559B1 (ko) 2015-11-13 2016-11-11 활성탄 연도 가스 정화 장치 및 연도 가스 정화 방법
RU2018117492A RU2697688C1 (ru) 2015-11-13 2016-11-11 Устройство для очистки топочных газов активированным углем и способ очистки топочных газов
BR112018009430-7A BR112018009430B1 (pt) 2015-11-13 2016-11-11 Dispositivo de purificação de gás de combustão de carvão ativado e método de purificação de gás de combustão

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510780033.7A CN106693603B (zh) 2015-11-13 2015-11-13 活性炭法烟气净化装置及烟气净化方法
CN201510780033.7 2015-11-13

Publications (1)

Publication Number Publication Date
WO2017080502A1 true WO2017080502A1 (zh) 2017-05-18

Family

ID=58694604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105451 WO2017080502A1 (zh) 2015-11-13 2016-11-11 活性炭法烟气净化装置及烟气净化方法

Country Status (6)

Country Link
KR (1) KR102053559B1 (zh)
CN (1) CN106693603B (zh)
BR (1) BR112018009430B1 (zh)
MY (1) MY192747A (zh)
RU (1) RU2697688C1 (zh)
WO (1) WO2017080502A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108939806A (zh) * 2017-05-24 2018-12-07 山东盛华投资有限责任公司 一种使用散装吸收和/或吸附剂的烟气净化装置
CN110523215A (zh) * 2019-10-14 2019-12-03 中国科学院过程工程研究所 一种活性炭烟气净化再生一体化装置
CN110898607A (zh) * 2018-09-18 2020-03-24 中国石化工程建设有限公司 一种活性焦吸附塔及活性焦吸附净化烟气的方法
CN111530229A (zh) * 2020-05-14 2020-08-14 中钢集团马鞍山矿山研究总院股份有限公司 一种基于硅基介孔材料的烟气脱硫吸附装置及其使用方法
CN112403181A (zh) * 2019-11-05 2021-02-26 中冶长天国际工程有限责任公司 一种烟气脱硫脱硝处理系统及方法
RU2753521C1 (ru) * 2018-05-10 2021-08-17 Чжуне Чантянь Интернешнал Энджиниринг Ко., Лтд Централизованная и автономная система очистки отходящих газов множества рабочих процессов и способ ее управления
RU2762190C1 (ru) * 2018-01-29 2021-12-16 Чжуне Чантянь Интернешнал Энджиниринг Ко., Лтд Многопроцессная система очистки отходящих газов и способ управления указанной системой
RU2762836C1 (ru) * 2018-01-29 2021-12-23 Чжуне Чантянь Интернешнал Энджиниринг Ко., Лтд Многопроцессная система очистки отходящего газа и способ управления
CN115178089A (zh) * 2022-08-11 2022-10-14 国能锅炉压力容器检验有限公司 一种净化和再生一塔化的炭基催化剂烟气处理装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107185404A (zh) * 2017-07-13 2017-09-22 中国科学院过程工程研究所 一种烟气净化用吸收塔及其烟气净化方法和应用
CN109772097B (zh) * 2017-11-10 2020-07-03 中冶长天国际工程有限责任公司 活性炭法烟气净化装置及烟气净化方法
CN108043202A (zh) * 2017-12-18 2018-05-18 北京中大能环工程技术有限公司 用于烟气处理的吸收塔及应用其的烟气处理系统和方法
CN108612577B (zh) * 2018-04-13 2021-12-07 哈尔滨工程大学 一种船舶活性炭法尾气脱硝装置及方法
CN108525466B (zh) * 2018-05-09 2021-01-12 中国科学院过程工程研究所 一种低硫烟气脱硫脱硝装置
CN111298592B (zh) * 2018-12-12 2022-03-29 中国石化工程建设有限公司 一种活性焦吸附塔及活性焦吸附净化烟气的方法
CN117282228B (zh) * 2023-11-23 2024-03-08 中国华能集团清洁能源技术研究院有限公司 具有烟气导流功能的低温烟气吸附塔和低温烟气吸附系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1070588A (zh) * 1991-09-18 1993-04-07 三井矿山株式会社 含有含卤物质的废气的脱硫和脱氮方法
US5527514A (en) * 1993-11-18 1996-06-18 Sumitomo Heavy Industries, Ltd. Desulfurizing and denitrating tower
CN101274193A (zh) * 2008-04-18 2008-10-01 清华大学 一种烟气净化与硫回收系统及工艺
CN102430318A (zh) * 2011-11-11 2012-05-02 上海克硫环保科技股份有限公司 一种活性焦烟气脱硫脱硝系统与工艺方法
CN205760451U (zh) * 2015-11-13 2016-12-07 中冶长天国际工程有限责任公司 活性炭法烟气净化装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU146286A1 (ru) * 1960-06-04 1961-11-30 З.А. Жукова Способ очистки водорода в колонне гиперсорбционного типа
DE3410895A1 (de) * 1984-03-24 1985-10-03 Perfluktiv-Consult AG, Basel Verfahren und anlage zur verminderung des schadstoffgehaltes von rauchgasen
SU1353477A1 (ru) * 1984-12-19 1987-11-23 Московский Институт Химического Машиностроения Способ десорбции растворителей из активированного угл
JP3373467B2 (ja) * 1996-10-30 2003-02-04 住友重機械工業株式会社 排ガス処理装置
CN2449076Y (zh) * 2000-10-08 2001-09-19 煤炭科学研究总院北京煤化学研究所 一种烟气脱硫装置
KR101257047B1 (ko) * 2011-03-31 2013-04-22 현대제철 주식회사 배기가스 처리 장치
CN202654908U (zh) * 2012-07-20 2013-01-09 山西天晋环保工程有限公司 活性炭移动床脱硫塔
CN102908867B (zh) * 2012-10-23 2014-08-13 西安热工研究院有限公司 一种优化气流分布的活性焦烟气净化装置
CN103230723B (zh) * 2013-04-22 2015-01-07 西安西热锅炉环保工程有限公司 一种圆环形分段式错流烟气净化吸附塔
CN103349892B (zh) * 2013-07-16 2015-09-23 上海克硫环保科技股份有限公司 一种错流式双级移动床活性焦废气集成净化塔
CN104190388B (zh) * 2014-08-27 2017-04-19 中冶长天国际工程有限责任公司 包括余热利用的活性炭热解析方法及其装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1070588A (zh) * 1991-09-18 1993-04-07 三井矿山株式会社 含有含卤物质的废气的脱硫和脱氮方法
US5527514A (en) * 1993-11-18 1996-06-18 Sumitomo Heavy Industries, Ltd. Desulfurizing and denitrating tower
CN101274193A (zh) * 2008-04-18 2008-10-01 清华大学 一种烟气净化与硫回收系统及工艺
CN102430318A (zh) * 2011-11-11 2012-05-02 上海克硫环保科技股份有限公司 一种活性焦烟气脱硫脱硝系统与工艺方法
CN205760451U (zh) * 2015-11-13 2016-12-07 中冶长天国际工程有限责任公司 活性炭法烟气净化装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108939806A (zh) * 2017-05-24 2018-12-07 山东盛华投资有限责任公司 一种使用散装吸收和/或吸附剂的烟气净化装置
RU2762190C1 (ru) * 2018-01-29 2021-12-16 Чжуне Чантянь Интернешнал Энджиниринг Ко., Лтд Многопроцессная система очистки отходящих газов и способ управления указанной системой
RU2762836C1 (ru) * 2018-01-29 2021-12-23 Чжуне Чантянь Интернешнал Энджиниринг Ко., Лтд Многопроцессная система очистки отходящего газа и способ управления
RU2753521C1 (ru) * 2018-05-10 2021-08-17 Чжуне Чантянь Интернешнал Энджиниринг Ко., Лтд Централизованная и автономная система очистки отходящих газов множества рабочих процессов и способ ее управления
CN110898607A (zh) * 2018-09-18 2020-03-24 中国石化工程建设有限公司 一种活性焦吸附塔及活性焦吸附净化烟气的方法
CN110523215A (zh) * 2019-10-14 2019-12-03 中国科学院过程工程研究所 一种活性炭烟气净化再生一体化装置
CN112403181A (zh) * 2019-11-05 2021-02-26 中冶长天国际工程有限责任公司 一种烟气脱硫脱硝处理系统及方法
CN112403181B (zh) * 2019-11-05 2023-03-28 中冶长天国际工程有限责任公司 一种烟气脱硫脱硝处理系统及方法
CN111530229A (zh) * 2020-05-14 2020-08-14 中钢集团马鞍山矿山研究总院股份有限公司 一种基于硅基介孔材料的烟气脱硫吸附装置及其使用方法
CN115178089A (zh) * 2022-08-11 2022-10-14 国能锅炉压力容器检验有限公司 一种净化和再生一塔化的炭基催化剂烟气处理装置
CN115178089B (zh) * 2022-08-11 2024-01-23 国能锅炉压力容器检验有限公司 一种净化和再生一塔化的炭基催化剂烟气处理装置

Also Published As

Publication number Publication date
KR20180067644A (ko) 2018-06-20
KR102053559B1 (ko) 2019-12-06
BR112018009430B1 (pt) 2022-11-22
CN106693603A (zh) 2017-05-24
RU2697688C1 (ru) 2019-08-16
BR112018009430A2 (zh) 2018-12-04
MY192747A (en) 2022-09-06
CN106693603B (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2017080502A1 (zh) 活性炭法烟气净化装置及烟气净化方法
WO2018000857A1 (zh) 一种烟气脱硫脱硝方法和装置
WO2018000888A1 (zh) 防止腐蚀的烟气脱硫脱硝方法和装置
CN105618019B (zh) 包括余热利用的活性炭热解析方法及其装置
CN108940241B (zh) 一种活性炭再生塔及再生方法
CN105688873B (zh) 活性炭热解析方法及其装置
CN105817118B (zh) 一种活性焦模块化承载装置、吸收塔及净化烟气的方法
CN108939807B (zh) 一种提高余热利用率及脱硝率的烟气净化装置及其使用方法
CN207667378U (zh) 一种活性炭热解析装置
CN108745331B (zh) 一种新型活性炭解析塔以及活性炭解析工艺
CN104190388A (zh) 包括余热利用的活性炭热解析方法及其装置
CN206240259U (zh) 一种烟气脱硫脱硝装置
CN109806740A (zh) 焦炉烟气脱硫脱硝的方法
CN206240258U (zh) 防止腐蚀的烟气脱硫脱硝装置
CN204503101U (zh) 活性炭热解析装置
CN109806742A (zh) 焦炉烟气的脱硫脱硝方法
CN109499313A (zh) 烧结烟气的低温脱硫脱硝方法
CN115554808A (zh) 工业废气脱碳装置
CN204768127U (zh) 防止解析气体管道堵塞的活性炭热解析装置
CN204193958U (zh) 包括余热利用的活性炭的热解析装置
CN106563351A (zh) 立式模块化烟气脱硫脱硝吸附再生一体化系统
CN106563350A (zh) 卧式模块化烟气脱硫脱硝吸附再生一体化系统
CN206793330U (zh) 一种有机废气处理装置
CN104289103B (zh) 多功能烟气脱硫脱硝系统及脱硫脱硝方法
CN206391865U (zh) 立式模块化烟气脱硫脱硝吸附再生一体化系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863678

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018117492

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 20187013588

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018009430

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018009430

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180509

122 Ep: pct application non-entry in european phase

Ref document number: 16863678

Country of ref document: EP

Kind code of ref document: A1