WO2017080332A1 - 设备间协作方法、波束训练方法及装置 - Google Patents

设备间协作方法、波束训练方法及装置 Download PDF

Info

Publication number
WO2017080332A1
WO2017080332A1 PCT/CN2016/101312 CN2016101312W WO2017080332A1 WO 2017080332 A1 WO2017080332 A1 WO 2017080332A1 CN 2016101312 W CN2016101312 W CN 2016101312W WO 2017080332 A1 WO2017080332 A1 WO 2017080332A1
Authority
WO
WIPO (PCT)
Prior art keywords
target terminal
interference
message
cooperation
module
Prior art date
Application number
PCT/CN2016/101312
Other languages
English (en)
French (fr)
Inventor
黄亚达
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16863509.2A priority Critical patent/EP3364552B1/en
Publication of WO2017080332A1 publication Critical patent/WO2017080332A1/zh
Priority to US15/974,278 priority patent/US10666336B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/043Power distribution using best eigenmode, e.g. beam forming or beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0053Interference mitigation or co-ordination of intercell interference using co-ordinated multipoint transmission/reception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to the field of communications, and in particular, to an inter-device cooperation method, an interference determination method, a beam training method, and an apparatus.
  • the traditional mobile communication band is mainly concentrated in the frequency band below 3 GHz.
  • the spectrum resources are very crowded, while the high frequency bands (such as the millimeter wave and the centimeter wave band) are rich in available spectrum resources, which can effectively alleviate the shortage of spectrum resources and achieve extremely high speed. Distance communication. Therefore, it can be said that the mining application of high-band resources is the development trend of mobile communication in the future.
  • Beam forming (BF, Beam Forming) technology is widely used in high frequency cells to increase coverage.
  • Beamforming technology is a technique based on the principle of adaptive antenna, which uses the antenna array to perform weighting processing on each physical antenna through advanced signal processing algorithms. From the perspective of the receiving end, the entire antenna array is equivalent to a virtual antenna. After the weighting process, the antenna array forms a narrow transmit beam to align with the target terminal, and forms a zero point in the direction of the interference receiving end to reduce interference.
  • Inter-cell interference is an important issue in cellular communication networks.
  • Inter-cell interference coordination (ICIC) technology is generally used in the current technology to solve inter-cell interference.
  • the ICIC technology allocates resources among cells, wherein users in the center of the cell can use resources of all frequency bands, but users at the cell edge in neighboring cells use resources of different frequency bands, so as to avoid interference between adjacent cells. Improve the spectrum efficiency of the cell.
  • the ICIC technology avoids interference between adjacent cells by configuring inter-frequency resources for border users of neighboring cells. But in the beamforming technology, in order to align the target terminal, the day The transmit beam formed by the line array dynamically tracks the location of the target terminal. The transmit beam is likely to track the target terminal from the central location of the cell to the cell boundary location, and even track the target terminal to the neighboring cell. In this way, users at the cell edge in the neighboring cell cannot be guaranteed to use resources of different frequencies. Therefore, in the high-frequency cell using the beamforming technology, ICIC technology has been unable to effectively coordinate inter-cell interference, and there is no method for effectively coordinating high-frequency inter-cell interference in the current technology.
  • Embodiments of the present invention provide an inter-device cooperation method for coordinating interference between high frequency cells. Embodiments of the present invention also provide related beam training methods, related devices, devices, terminals, and systems.
  • the method apparatus, device, terminal and system provided by the present invention are applied to a wireless communication system.
  • the wireless communication system includes a target terminal, a first device that provides a service for the target terminal, and a second device.
  • a first aspect of the present invention provides an inter-device cooperation method. Specifically, a first device sends a first beam to a target terminal, and then receives a notification message sent by the target terminal, where the notification message is used to indicate that the first beam is received. The interference of the second beam sent by the two devices, and the notification message includes the identification information of the second beam. After receiving the notification message, the first device sends a cooperation message to the second device by using an interface between the first device and the second device to perform transmission cooperation to reduce interference of the second beam to the first beam. The collaboration message is used to request transmission cooperation with the second device, where the collaboration message includes the identifier information of the second beam.
  • the present invention enables the first device to determine the interference beam by such a method, thereby enabling cooperation with the second device for the interference beam to reduce interference caused by the interference beam.
  • the method provided by the embodiment of the present invention reduces interference by using the three-party cooperation between the first device-target terminal and the second device, and does not need to statically configure the boundary users of the neighboring cells to use the inter-frequency resources, and thus can be in the high-frequency cell. Interference coordination between devices is implemented.
  • the cooperation message may further include information about resources used by the first beam.
  • the resource used by the first beam can be reduced on the second beam without substantially reducing the power of the second beam, so that the second beam can still serve other terminals normally.
  • a second aspect of the present invention provides an inter-device cooperation method, including: a second device sends a second beam to a target terminal, where the second beam carries identification information of the second beam. Then the second device receives Cooperative information of the first device, the cooperation information is used to request transmission cooperation with the second device, where the identification information of the second beam is included. After receiving the cooperation information, the second device may learn that the second beam causes interference to the target terminal, and then the second device adjusts the second beam according to the cooperation message to perform transmission cooperation with the first device to reduce the second beam to the target terminal. interference.
  • the method of the present invention enables the second device to determine that the interference beam is the second beam, and thus only adjusting the second beam can reduce the interference to the target terminal, without adjusting all the beams, and does not need to statically configure the boundary of the neighboring cell.
  • Users use inter-frequency resources, so interference coordination between devices can be achieved in high-frequency cells.
  • the method for adjusting, by the second device, the second beam according to the cooperation message may be one or more of the following methods: reducing power of the second beam according to the cooperation message; and closing the first according to the cooperation message
  • the second beam; the cooperation message further includes information about resources used by the first beam, and the second device reduces resources used by the first beam on the second beam according to the cooperation message.
  • a third aspect of the present invention provides an inter-device cooperation method, including: receiving, by a target terminal, a first beam sent by a first device and a second beam sent by a second device.
  • the target terminal measures the first beam to obtain a first measurement quantity, and performs measurement on the second beam to obtain a second measurement quantity.
  • the second beam includes representation information of the second beam. If the first measurement quantity and the second measurement quantity satisfy the preset condition, the target terminal determines that the second beam causes interference to the first beam, and then sends a notification message to the first device, where the notification message includes the identification information of the second beam.
  • the first device can be configured to learn that the interference beam is the second beam, and then perform the transmission cooperation only with the second device for the second beam, without interference coordination for all the beams, and without statically configuring the boundary of the neighboring cell.
  • Users use inter-frequency resources, so interference coordination between devices can be achieved in high-frequency cells.
  • the preset condition may include one or more of the following conditions: the first measurement quantity is smaller than the first preset value; the second measurement quantity is greater than the second preset value; the first measurement quantity and the second quantity The difference in the measured amount is less than the third preset value.
  • the first beam may include any one of the following beams: any one of the polling beams sent by the first device received by the target terminal; and the first device received by the target terminal Polling a beam of the best signal in the beam; receiving a designated one of the polling beams transmitted by the first device received by the target terminal; and collecting the plurality of polling beams transmitted by the first device by the target device
  • the first measurement is the average of the measurements of the beams in the first beam.
  • a fourth aspect of the present invention provides a beam training method, including: a second device receives a request for requesting beam training with a second device from a target terminal, and performs beam training with the target terminal after receiving the request message. .
  • the method of the present invention enables the target terminal and the second device to determine the interference beam by beam training, thereby providing conditions for the first device and the second device to perform transmission cooperation only for the interference beam.
  • the second device may determine, according to the training result of the target terminal, identifier information of the interference beam that causes interference to the target terminal, to implement determining the interference beam.
  • the method for determining, by the second device, the information about the interference beam may be one or more of the following methods: determining a transmission angle of the transmitted interference beam; determining a transmission matrix for transmitting the interference beam; and determining a target terminal that receives the interference beam. Identification information.
  • the second device may also receive the identification information of the interference beam directly from the target terminal, where the information may be the first advertisement message from the target terminal, and the first notification message includes the identifier information of the interference beam.
  • the second device may adjust the interference beam according to the identifier information of the interference beam, so as to implement cooperation with the first device for the transmission of the interference beam.
  • the method for adjusting the interference beam by the second device may be one or more of the following methods: reducing the power of the interference beam; turning off the interference beam; the first device communicates with the target terminal through the service beam, and the second device The first device determines information of resources used by the serving beam and reduces resources used by the serving beam on the interference beam.
  • a fifth aspect of the present invention provides a beam training method, including: a target terminal sends a request message for requesting beam training with a second device to a second device, and sends the request message to the second device, and the second device receives the request message. After that, beam training is performed with the second device.
  • the condition that the target terminal triggers sending the request message to the second device may include one or more of the following conditions: the target terminal measures the service beam, and obtains a service measurement quantity, where the service measurement quantity is lower than the first pre- Setting a value; the target terminal measures the received beam transmitted by the second device to obtain an interference measurement quantity, wherein the interference measurement quantity is greater than a second preset value; the target terminal measures the service beam, obtains the service measurement quantity, and receives the received quantity Receiving, by the second device, the beam sent by the second device to obtain the interference measurement quantity, wherein the difference between the service measurement quantity and the interference measurement quantity is less than a third preset value; the target terminal receives the indication message sent by the first device, and the indication message is used by the The target terminal is instructed to perform beam training with the second device.
  • the target terminal may determine, according to a result of performing beam training with the second device, identifier information of the interference beam that causes interference to the target terminal.
  • the method for determining the interference beam by the target may be one or more of the following methods: determining a reception angle at which the target terminal receives the interference beam; determining a precoding matrix indication PMI of the interference beam; and determining identification information of the target terminal. After the interference beam is determined, the identification information of the interference beam can be determined. The target terminal may also directly receive the identification information of the interference beam from the second device.
  • the target terminal may notify the first device to perform transmission cooperation with the second device.
  • the first notification message may be sent to the second device, where the first notification message includes the identifier information of the first device and the identifier information of the interference beam.
  • the target terminal may also send a second advertisement message to the first device, where the second advertisement message includes the representation information of the second device and the identifier information of the interference beam.
  • a sixth aspect of the present invention provides a method for cooperation between devices, including: receiving, by a first device, a first advertisement message sent by a target terminal, where the first notification message includes identifier information of the second device, and causing interference to the target terminal. Identification information of the interference beam.
  • the first device sends, according to the notification message, a cooperation message for requesting transmission cooperation with the second device, where the cooperation message includes identification information of the interference beam.
  • the first device provides a service for the target terminal by using the service beam
  • the cooperation message may further include information about the resource used by the service beam.
  • a seventh aspect of the present invention provides an inter-device cooperation apparatus, which is applied to a first device in a wireless communication system, including: a signal transmitting module, configured to send a first beam to a target terminal; and a signal receiving module, configured to receive the a notification message sent by the target terminal, where the notification message is used to indicate that the first beam is interfered by the second beam sent by the second device, where the notification message includes the identification information of the second beam; And the method is further configured to: send, according to the notification message, a cooperation message for requesting transmission cooperation with the second device to the second device, where the cooperation message includes identification information of the second beam.
  • the inter-device cooperation device provided by the present invention is capable of determining an interference beam, and is capable of cooperating with the second device for the interference beam to reduce the interference caused by the interference beam, and does not need to statically configure the boundary user of the neighboring cell to use the inter-frequency resource, thereby being able to Interference coordination between devices is implemented in a high frequency cell.
  • the cooperation message may further include information about resources used by the first beam.
  • the resources used by the first beam can be reduced on the second beam without substantially reducing the power of the second beam, so that the second beam can still serve other terminals normally.
  • An eighth aspect of the present invention provides an inter-device cooperation apparatus, which is applied to a second device in a wireless communication system, and includes: a transmit signal module, configured to send a second beam to a target terminal, where the second beam carries the The identification information of the second beam, the receiving signal module, configured to receive the cooperation message of the first device, where the cooperation message includes identification information of the second beam, where the cooperation message is used to indicate the first device Requesting to perform transmission cooperation with the second device; and a transmission cooperation module, configured to adjust the second beam according to the cooperation message to perform transmission cooperation with the first device.
  • the inter-device cooperation apparatus provided by the eighth aspect of the present invention is capable of determining that the interference beam is the second beam, and thus only adjusting the second beam can reduce interference to the target terminal, without adjusting all the beams, and does not need to statically configure the boundary of the neighboring cell. Users use inter-frequency resources, so interference coordination between devices can be achieved in high-frequency cells.
  • the transmission cooperation module may specifically adjust the second beam by one or more of the following methods: reducing power of the second beam according to the cooperation message; and closing the second beam according to the cooperation message;
  • the information of the resource used by the first beam is also included, and the second device reduces the resource used by the first beam on the second beam according to the cooperation message.
  • a ninth aspect of the present invention provides an inter-device cooperation apparatus, which is applied to a target terminal in a wireless communication system, and includes: a beam receiving module, configured to receive a first beam sent by the first device; and a beam measurement module, configured to: Performing measurement on the first beam to obtain a first measurement quantity; the beam receiving module is further configured to: receive a second beam sent by the second device, where the second beam carries the second beam The beam measurement module is further configured to: perform measurement on the second beam to obtain a second measurement quantity; and a message sending module, configured to: when the first measurement quantity and the second measurement quantity satisfy a pre- When the condition is set, the notification message is sent to the first device, where the notification message includes identification information of the second beam.
  • the inter-device cooperation device provided by the ninth aspect of the present invention enables the first device to learn that the interference beam is the second beam, and thus only performs communication cooperation with the second device for the second beam, and does not perform interference cooperation for all beams, and does not need to be static.
  • the border users of the neighboring cells are configured to use the inter-frequency resources, so that interference coordination between devices can be implemented in the high-frequency cell.
  • the preset condition may include one or more of the following conditions: the first measurement quantity is smaller than the first a preset value; the second measured quantity is greater than the second preset value; the difference between the first measured quantity and the second measured quantity is less than the third preset value.
  • the first beam may include any one of the following beams: any one of the polling beams sent by the first device received by the target terminal; and the first device received by the target terminal Polling a beam of the best signal in the beam; receiving a designated one of the polling beams transmitted by the first device received by the target terminal; and collecting the plurality of polling beams transmitted by the first device by the target device
  • the first measurement is the average of the measurements of the beams in the first beam.
  • a tenth aspect of the present invention provides a beam training apparatus, which is applied to a second device in a wireless communication system, and includes: a message receiving module, configured to receive a request message sent by a target terminal, where the request message is used to indicate the target And the beam training module is configured to perform beam training with the target terminal after receiving the request message.
  • the beam training device provided by the tenth aspect of the present invention can determine the interference beam by beam training with the second device, thereby providing conditions for the first device and the second device to perform transmission cooperation only for the interference beam.
  • the second device can determine the interference beam by beam training, thereby providing conditions for the first device and the second device to perform transmission cooperation only for the interference beam.
  • the beam training device provided by the tenth aspect of the present invention further includes: an interference determining module, configured to determine, according to a result of beam training with the target terminal, identification information of an interference beam that causes interference to the target terminal.
  • an interference determining module configured to determine, according to a result of beam training with the target terminal, identification information of an interference beam that causes interference to the target terminal.
  • the interference determining module may determine the identification information of the interference beam by: determining a transmission angle of the transmitted interference beam; determining a transmission matrix of the transmitted interference beam; and determining identification information of the target terminal that receives the interference beam.
  • the identification information of the interference beam may be directly received from the target terminal, where the identifier information of the interference beam is included, and the first advertisement message includes the identifier information of the interference beam.
  • the beam training device provided by the tenth aspect of the present invention further includes: a cooperative transmission module, configured to adjust the interference beam according to the determined identification information of the interference beam, to perform transmission cooperation with the first device. .
  • the coordinated transmission module may specifically adjust the interference beam by one or more of the following methods: reducing the power of the interference beam; turning off the interference beam; and the first device passes the service beam and the target terminal.
  • the cooperative transmission module determines information of resources used by the service beam from the first device and reduces resources used by the service beam on the interference beam.
  • An eleventh aspect of the present invention provides a beam training apparatus, which is applied to a target terminal in a wireless communication system, and includes: a message sending module, configured to send a request message to the second device, where the request message is used by And performing beam training on the second device; the training beam module is configured to perform beam training with the second device after sending the request message.
  • the first device communicates with the target terminal by using a service beam
  • the beam training device provided by the eleventh aspect of the present invention further includes: a measurement beam module, configured to measure the service beam, to obtain The service measurement quantity is triggered, if the service measurement quantity is lower than the first preset value, the step of triggering the message sending module to send a request message to the second device.
  • a measurement beam module configured to measure a beam sent by the second device to obtain an interference measurement quantity, and if the interference measurement quantity is greater than a second preset value, triggering the message sending module to execute the The step of sending a request message by the second device.
  • a measurement beam module configured to measure the service beam, to obtain a service measurement quantity
  • the measurement beam module is further configured to measure a beam sent by the second device to obtain an interference measurement quantity, if And the step of triggering the message sending module to send a request message to the second device, where the difference between the service measurement quantity and the interference measurement quantity is less than a third preset value.
  • the device further includes a receiving message module, configured to: when receiving the indication message sent by the first device, trigger the message sending module to perform a step of sending a request message to the second device, where the indication message is And configured to instruct the target terminal to perform beam training with the second device.
  • the beam training apparatus further includes: a determining interference module, configured to determine, according to a result of beam training with the second device, an interference beam that causes interference to the target terminal. Identification information.
  • the determining that the interference module is specifically configured to determine, by one or more of the following methods, identifier information of the interference beam: determining, by the target terminal, a receiving angle of the interference beam, and determining a precoding of the interference beam.
  • the matrix indicates a PMI; determining identification information of the target terminal; and receiving identification information of the interference beam from the second device.
  • the message sending module is further configured to: send, to the second device, a first advertisement message, where the first advertisement message includes identifier information of the first device, and the interference determined by the target terminal Identifying information of the beam; or sending a second notification message to the first device, where the second notification is The information includes the identification information of the second device, and the identification information of the interference beam determined by the target terminal.
  • a twelfth aspect of the present invention provides related apparatus comprising the inter-device cooperation apparatus provided by the seventh aspect of the present invention.
  • a thirteenth aspect of the present invention provides related apparatus comprising the inter-device cooperation apparatus provided by the eighth aspect of the present invention.
  • a fourteenth aspect of the present invention provides a related terminal comprising the inter-device cooperation apparatus provided by the ninth aspect of the present invention.
  • a fifteenth aspect of the present invention provides related apparatus comprising the beam training apparatus of the tenth aspect of the present invention.
  • a sixteenth aspect of the present invention provides a related terminal comprising the beam training apparatus provided by the first aspect of the present invention.
  • a seventeenth aspect of the invention provides a wireless communication system comprising any one of the twelfth to sixteenth aspects of the invention.
  • An embodiment of the present invention provides an inter-device cooperation method, in which a first device sends a first beam to a target terminal, and receives a notification message sent by the target terminal, where the notification message is used to indicate that the first beam is sent by the second device.
  • the second beam interferes with the identifier information of the second beam.
  • the first device performs transmission cooperation according to the notification message and the second device to reduce interference of the second beam with the first beam. In this way, the first device is enabled to determine the interference beam and thus cooperate with the second device to reduce interference caused by the interference beam.
  • the method provided by the embodiment of the present invention reduces interference by cooperation between devices, and does not need to statically configure border users of neighboring cells to use inter-frequency resources, so that interference coordination between devices can be implemented in a high-frequency cell.
  • Figure 1 is a schematic diagram of the ICIC technology
  • FIG. 2 is a schematic diagram of a basic structure of a wireless communication system according to the present invention.
  • FIG. 3 is a flowchart of an embodiment of a method for cooperation between devices according to an embodiment of the present invention
  • FIG. 4(a) is a flowchart of an embodiment of a beam training method according to an embodiment of the present invention.
  • FIG. 4(b) is a flowchart of another embodiment of a beam training method according to an embodiment of the present invention.
  • FIG. 5 is a structural diagram of an embodiment of an inter-device cooperation apparatus according to an embodiment of the present invention.
  • FIG. 6 is a structural diagram of another embodiment of an inter-device cooperation apparatus according to an embodiment of the present invention.
  • FIG. 7 is a structural diagram of another embodiment of an inter-device cooperation apparatus according to an embodiment of the present invention.
  • FIG. 8 is a structural diagram of an embodiment of a beam training apparatus according to an embodiment of the present invention.
  • FIG. 9 is a structural diagram of another embodiment of a beam training apparatus according to an embodiment of the present invention.
  • FIG. 10 is a structural diagram of another embodiment of an inter-device cooperation apparatus according to an embodiment of the present invention.
  • FIG. 11 is a structural diagram of another embodiment of an inter-device cooperation apparatus according to an embodiment of the present invention.
  • FIG. 12 is a structural diagram of another embodiment of an inter-device cooperation apparatus according to an embodiment of the present invention.
  • FIG. 13 is a structural diagram of another embodiment of a beam training apparatus according to an embodiment of the present invention.
  • FIG. 14 is a structural diagram of another embodiment of a beam training apparatus according to an embodiment of the present invention.
  • Embodiments of the present invention provide an inter-device cooperation method for coordinating interference between high frequency cells.
  • the embodiments of the present invention also provide related beam training methods, related devices, devices, terminals, and systems, which will be separately described below.
  • the method, the device, and the system provided by the embodiments of the present invention are mainly applicable to a wireless communication system, and may specifically include a Long Term Evolution (LTE) system (including 2G, 3G, 4G systems, and subsequent 5G systems), and wireless protection.
  • LTE Long Term Evolution
  • WiFi Wireless-Fidelity
  • WIMAX Worldwide Interoperability for Microwave Access
  • the device in the embodiment of the present invention may specifically include a base transceiver station (BTS, Base Transceiver Station) in the 2G system, and a mobile base station (Node B) in the 3G system.
  • BTS Base Transceiver Station
  • Node B mobile base station
  • Pico base station WiFi access point (AP, Access Point) or other device.
  • the terminal involved in the embodiment of the present invention may specifically include: a user terminal (UE, User Equipment) such as a mobile phone, a tablet, a personal PC, a mobile PC, and the like, and also includes a high-speed wireless gateway (CPE, Customer Premise Equipment), and a WiFi site ( STA) or other terminal.
  • UE User Equipment
  • CPE Customer Premise Equipment
  • STA WiFi site
  • ICIC technology is generally used to solve inter-cell interference.
  • ICIC technology can be mainly divided into two coordination modes: FFR, Fractional Frequency Reuse and Soft Frequency Reuse (SFR). ), the basic principle is shown in Figure 1.
  • FFR Fractional Frequency Reuse
  • SFR Soft Frequency Reuse
  • Figure 1 the basic principle is shown in Figure 1.
  • FFR Fractional Frequency Reuse
  • SFR Soft Frequency Reuse
  • Figure 1 the basic principle is shown in Figure 1.
  • FFR technology users in the central area of the cell can use all frequency bands, but users in the cell border area only use part of the frequency band, and the frequency bands used by the border users of different cells are different, so that the border users of different cells are not affected by the neighboring area.
  • Signal interference In the SFR technology, users located at the cell boundary can use all frequency bands, but some of the frequency bands used should reduce power to reduce interference to neighbors.
  • the ICIC technology is a static method for allocating specific resources to users
  • a cell using a high frequency band resource is referred to as a “high frequency cell”. Since the wavelength of the high-band signal is small, the antenna size of the high-frequency signal is also small, and it is suitable for performing BF through a large-scale antenna array.
  • BF technology is a technology based on the principle of adaptive antenna, which uses antenna array to perform weighting processing on each physical antenna through advanced signal processing algorithms. From the perspective of the receiving end, the entire antenna array is equivalent to a virtual antenna.
  • an elongated beam alignment target terminal can be formed, and then communicated with the target terminal through the elongated beam. Because the beam is thin, the coverage angle of the beam is small. In the communication process, the position of the target terminal needs to be continuously tracked to adjust the direction of the beam, so as to maintain good communication quality with the target terminal. It can be understood that if the target terminal moves from the cell center area to the cell boundary location, the beam transmitted by the BF technology also tracks the target terminal to the cell boundary location.
  • the dynamic beam coverage mode makes it impossible for the high frequency cell to allocate specific resources to users in the cell boundary area. Therefore, it is not suitable to use the ICIC technology used in the relatively fixed static coverage of the cell to implement interference coordination.
  • the embodiments of the present invention provide related methods for cooperation between devices. It should be noted that the method provided by the embodiment of the present invention can be used not only for coordinating interference between high frequency cells, but also for low frequency cells such as 2G, 3G, and 4G systems.
  • the device-to-device cooperation method provided by the embodiment of the present invention is applicable to a scenario or other scenario in which a device performs beam polling in a wireless communication system.
  • the wireless communication system includes at least a target terminal, a first device that provides a service for the target terminal, and a second device that interferes with the first device, as shown in FIG. 2.
  • the neighboring cell of the first device and the first device of the second device may not be located in the neighboring cell, which is not limited herein.
  • Data interaction between the first device and the second device can be achieved through a high speed interface, such as an inter-base station interface.
  • FIG. 3 the basic process of the inter-device cooperation method provided by the embodiment of the present invention is as shown in FIG. 3, including:
  • the first device sends a first beam to the target terminal.
  • the first device sends a first beam to the target terminal, and the target terminal receives the first beam.
  • the present embodiment can be applied to a scenario in which the first device communicates with the target terminal.
  • the first beam may be an elongated beam obtained by beamforming.
  • an elongated beam is used in the high frequency cell to communicate with the user. Since the elongated beam coverage angle is small, the first device needs to determine the location of the target terminal before establishing a connection with the target terminal. Generally, the first device determines the location of the target terminal by beam polling (also called beam scanning). Specifically, due to the limitation of the design of the radio frequency, the first device cannot simultaneously transmit multiple beams in multiple directions. Then, the first device sends a polling beam in turn to each direction of the area to be covered without knowing the location of the target terminal, so as to find the approximate location of the target terminal, which is beam polling.
  • beam polling also called beam scanning
  • the polling beam is a broadcast-type beam with a large coverage angle, so that the position of the target terminal can be found with fewer polling beams.
  • This embodiment may also be used in a beam polling scenario, where the first beam may also be a polling beam received by the target terminal.
  • the first beam can also be other types of beams, which is not limited herein.
  • the second device sends a second beam to the target terminal.
  • the second device transmits a beam to each direction of the space, wherein the second beam is transmitted in the direction of the target terminal.
  • the target terminal receives the second beam.
  • the second beam can also be an elongated beam, a polling beam, or other kinds of beams.
  • the second beam that it transmits is an interference signal for the target terminal.
  • the device carries its own identification information in the transmitted beam. Especially because of the first The second device sends a beam to each direction that needs to be covered. To distinguish the beams, the second device sets identifier information for the beams in the embodiment, where each identifier information is used to uniquely identify one beam.
  • the identification information may be an identifier, a sequence of features or other forms, and the second device carries the identification information in a corresponding beam. Therefore, the second beam received by the target terminal carries the identification information of the second beam.
  • the step 302 may be preceded by the step 301, which is not limited in this embodiment.
  • the target terminal performs measurement on the received first beam and the second beam.
  • the target terminal measures the received first beam to obtain a first measurement quantity.
  • the target terminal also measures the received second beam to obtain a second measurement.
  • the measurement of the beam may be a plurality of types of parameters, and may include a reference signal received power (RSRP, Reference Signal Receiving Power), a reference signal reception quality (RSRQ), and a signal-to-noise of the beam. It can be calculated by one or more of the parameters, or by several of them, or other parameters. In this embodiment, the larger the amount of measurement, the better the beam.
  • RSRP Reference Signal received power
  • RSRQ reference signal reception quality
  • the target terminal sends a notification message to the first device.
  • the second beam causes interference to the first beam, and the target terminal sends a notification message to the first device, and the first device receives the notification message.
  • the notification message includes identification information of the second beam.
  • the preset condition may be caused by a plurality of preset conditions, for example, if the first measurement quantity and the second measurement quantity are satisfied: the first measurement quantity is smaller than the first preset value, the second measurement quantity is greater than the second preset value, and the first The difference between the measured quantity and the second measured quantity is less than one or more of the third preset values, and it is determined that the first measured quantity and the second measured quantity satisfy the preset condition.
  • the difference between the first measured quantity and the second measured quantity is obtained by subtracting the second measured quantity from the first measured quantity, wherein the first preset value, the second preset value, and the third preset value may be positive numbers , negative or 0.
  • the first device and the second device perform transmission cooperation.
  • the first device After receiving the notification message, the first device performs transmission cooperation with the second device device to reduce interference of the second beam with the first beam. Specifically, after receiving the notification message, the first device sends a collaboration message to the second device for transmission cooperation by using an interface between the first device and the second device.
  • the collaboration message may include identification information of the second beam.
  • the second device After receiving the cooperation message, the second device can learn that the second beam interferes with the beam sent by the first device. The second device then adjusts the second beam to reduce interference of the second beam with the first beam.
  • the second device can reduce the power of the second beam or directly turn off the second beam, so that the interference of the second beam to the first beam is greatly reduced.
  • the amount of the second device that reduces the power of the second beam may be determined by negotiating with the first device, or may be determined autonomously, and is not limited herein.
  • the cooperation message may further include information of resources (including time-frequency resources and/or code resources) used by the first beam.
  • the frequency domain resource used by the first beam may be represented by a physical resource block (Physical Resource Block) or other information; the time domain resource used by the first beam may be preset by an almost blank subframe (ABS, Almost Blank Subframe).
  • the second device may reduce the resources used by the first beam on the second beam, and may specifically include: reducing the power of the time-frequency resource used by the first beam, and partially reducing the use of the first beam. Time-frequency resources and/or code resources, or non-use of time-frequency resources and/or code resources used by the first beam. In this way, while reducing the interference of the second beam to the first beam, it is not necessary to greatly reduce the power of the second beam, so that the second beam can still serve other terminals normally.
  • the amount of power that is reduced by the second device on the time-frequency resource used by the first beam may be determined by negotiating with the first device, or may be determined autonomously, and is not limited herein.
  • the second device may also adjust the second beam by other methods, which is not limited herein.
  • the communication cooperation between the first device and the second device in the current technology is also performed. For example, if the first device determines that the second device affects the first beam, the second device will notify the second device of the time-frequency resource used by the first device, and the second device will correspond to the cell boundary region. Stop data transmission or reduce power transmission on time-frequency resources.
  • the method means that the second device limits the use of the resource on all beams, which will undoubtedly greatly reduce the spectrum of the system. usage efficiency. In this embodiment, the use of the corresponding resources is limited only on the second beam that causes interference to the first beam, so that the system can maintain a high spectrum utilization efficiency.
  • the method provided in this embodiment enables the first device to determine the interference beam, and thus can cooperate with the second device to reduce the interference caused by the interference beam. And the method provided by the embodiment of the present invention reduces interference by the three-party cooperation between the first device-target terminal and the second device, and does not require static configuration.
  • the border users of the neighboring cells use the inter-frequency resources, so interference coordination between devices can be realized in the high-frequency cell.
  • Steps 303 and 304 are optional steps.
  • the target terminal may determine that the second beam causes interference to the first beam by using other methods, and then sends the carried to the first device.
  • the identification information of the second beam and the notification message of the identification information of the second device may be optional steps.
  • the target terminal may also send the notification message to the second device, where the notification message includes the identifier information of the second beam, and the method for performing the transmission cooperation between the first device and the second device may be specifically performed in step 305.
  • the second device directly reduces the power of the second beam, or turns off the second beam; or the second device determines, by the first device, the resource used by the first beam, and then the second device is not the second beam
  • the resources used by the first beam are used, or the power of the resources used by the first beam is reduced on the second beam.
  • the target terminal may receive the beam transmitted by the first device multiple times at different times.
  • the target terminal may use any one of the received beams of the first device as the first beam, or the best one of the signals in the beam transmitted by the received first device.
  • the first beam, or one of the beams sent by the received first device is used as the first beam.
  • the target terminal may use the received set of multiple beams sent by the first device as the first beam.
  • the target terminal measures the first beam, and refers to measuring each beam in the first beam, and the obtained measurement quantity is an average value of the measurement quantities of each beam in the first beam (may be an arithmetic mean or a weighted average) Value), or the measurement of the beam is averaged by the corresponding beam, that is, there is one measurement for each beam.
  • the target terminal may use any one of the received beams of the second device as the second beam, or the best one of the signals in the beam transmitted by the received second device.
  • the second beam or a designated one of the received beams of the second device is used as the second beam.
  • the target terminal may use the received set of multiple beams sent by the second device as the second beam.
  • the target terminal measures the second beam, and refers to each of the second beams. The beams are measured, and the obtained measurement is the average of the measured quantities of the beams in the second beam (which may be an arithmetic mean or a weighted average).
  • the preset condition in step 304 should be correspondingly changed to: if the first measurement amount is The second measurement quantity is satisfied: the first measurement quantity is greater than the first preset value, the second measurement quantity is less than the second preset value, and the difference between the first measurement quantity and the second measurement quantity is greater than the third preset value, A measured quantity and a second measured quantity satisfy a preset condition.
  • the first device provides a service for the target terminal, and the beam transmitted by the second device is an interference signal for the target terminal.
  • the second device itself also serves the terminal in the cell, and the beam transmitted by the first device is also an interference signal for the terminal in the cell where the second device is located. Therefore, in step 301, the first device may also set identification information for each beam that is transmitted by itself, and carry the identification information in the corresponding beam, so that the terminal in the cell where the second device is located determines the beam that causes interference.
  • the second device autonomously configures the identification information for the transmitted beam, and the second device carries the identification information of the second beam in the second beam to enable the terminal to determine the interference beam.
  • This method can be well applied in scenes with fewer beams, such as beam polling.
  • the device communicates with the terminal, an elongated beam with a small coverage angle is used, and the number of such beams transmitted by the device is extremely large, and allocating identification information for each elongated beam consumes a lot of resources.
  • a serving beam is not a broadcast-type beam, but a beam that the first device specifically uses to communicate with the target terminal.
  • the service beam can be obtained by the beamforming technique of the antenna array, and has a relatively long form and a long coverage distance but a small coverage angle, so it is also called a pencil beam. It can be understood that when the first device communicates with the target terminal by using the service beam, it may still be interfered by the signal of the interfering cell.
  • the embodiment of the present invention provides another method for cooperation between devices, and the basic process includes:
  • the target terminal sends a request message to the second device.
  • the target terminal sends a request message to the second device, where the request message is used to request beam training with the second device.
  • the second device receives the request message.
  • the second device performs beam training with the target terminal.
  • the second device After receiving the request message, the second device determines whether to perform beam training with the target terminal. If the result of the determination is yes, beam training is performed with the target terminal.
  • the second device may send multiple beams to a range of a larger angle, and then determine a smaller range of directions in which the target terminal is located according to the response information of the target terminal, and then send more times in the direction range. Beams to further determine the range of directions of the target terminal. After a number of determinations, the second device can more accurately determine the direction in which the target terminal is located.
  • the target terminal since there is no channel connection between the second device and the target terminal during the communication process, the target terminal does not perform beam training with the second device in the current technology.
  • the direction of the target terminal is determined, and then the interference beam transmitted by the second device in the direction is determined.
  • the operation of determining the interference beam may be performed by the second device or by the target terminal. The description will be separately made below.
  • FIG. 4( a ) is a scenario for determining that the operation of the interference beam is completed by the second device, and the specific processes include:
  • the second device determines identification information of the interference beam.
  • the second device can accurately determine the direction in which the target terminal is located by performing beam training with the target terminal. Then, the beam transmitted by the second device in the direction is the interference beam.
  • the second device may also interfere with the identification information of the beam. Specifically, the second device may determine one or more items of a transmission angle of the interference beam, a transmission matrix that transmits the interference beam, and identifier information of a target terminal that receives the interference beam, or may be other forms of information. There is no limit here.
  • the identification information of the interference beam may also be determined by the target terminal, and then the second device is obtained from the target terminal.
  • the identification information of the interference beam determined by the target terminal may specifically include one or more of a receiving angle of the receiving end of the interference beam, a Precoding Matrix Indicator (PMI) of the interference beam, and identification information of the target terminal. , can also be other forms of information, not limited here.
  • PMI Precoding Matrix Indicator
  • the second device performs transmission cooperation with the first device.
  • the second device adjusts the interference beam according to the identification information of the interference beam to perform transmission cooperation with the first device, so as to reduce interference of the interference beam to the target terminal.
  • the second device may directly reduce the power of the interference beam or turn off the interference beam.
  • the second device may further send a collaboration message to the first device, and cooperate The message includes the identification information of the interference beam determined by the second device in step 403.
  • the first device can learn the interference beam that causes interference to the target terminal, and can cooperate with the second device to reduce the interference of the interference beam to the target terminal.
  • the second device can reduce the power of the interference beam, wherein the amount of reduced power is determined by the second device after negotiating with the first device.
  • the first device can also determine information of resources (including time-frequency resources and/or code resources) used by the service beam and inform the second device.
  • the resources used by the service beam can be reduced on the interference beam, such as reducing the power of the time-frequency resource used by the service beam on the interference beam, and partially reducing the use.
  • the time-frequency resource and/or code resource used by the service beam, or the time-frequency resource and/or code resource used without the service beam are used without the service beam. In this way, while reducing the interference of the interference beam to the service beam, the power of the interference beam does not need to be greatly reduced, so that the interference beam can still serve the terminal of the second device.
  • FIG. 4(a) illustrates a scenario in which the operation of determining the interference beam is performed by the second device.
  • the scenario in which the interference beam is determined by the target terminal is described below with reference to FIG. 4(b), and the specific process includes:
  • the target terminal determines identification information of the interference beam.
  • the second device can accurately determine the direction in which the target terminal is located by performing beam training with the target terminal. Then, the beam transmitted by the second device in the direction is the interference beam.
  • the target terminal determines the identification information of the interference beam. Specifically, the target terminal may determine one or more items of the receiving angle of the receiving interference beam, the PMI of the interference beam, and the identification information of the target terminal, and may also determine other forms of information, which is not limited herein.
  • the identification information of the interference beam may also be determined by the second device, and then the target terminal is obtained from the second device.
  • the identification information of the interference beam that is determined by the second device may specifically include one or a plurality of the transmission angle of the interference beam, the transmission matrix of the interference beam, and the identification information of the target terminal, or other forms. Information is not limited here.
  • the target terminal notifies one of the first device and the second device to perform transmission cooperation with another device.
  • the target terminal After the identification information of the interference beam is determined, the target terminal notifies one of the first device and the second device to perform transmission cooperation with another device to reduce interference of the interference beam to the target terminal.
  • the target terminal may send a first notification message (not shown) to the second device, where the first notification message includes the identifier information of the first device, and the interference wave determined by the target terminal in step 405.
  • the identification information of the bundle may be included in the target terminal.
  • the second device can perform transmission cooperation with the first device to reduce interference of the interference beam to the target terminal.
  • the target terminal may further send a second advertisement message to the first device, where the second notification message includes the identifier information of the second device, and the identifier information of the interference beam determined by the target terminal in step 405.
  • the first device can perform transmission cooperation with the second device to reduce interference of the interference beam to the target terminal.
  • only the target terminal may send the second advertisement message to the first device as an example for description.
  • the first device performs transmission cooperation with the second device.
  • the first device After receiving the second advertisement message sent by the target terminal, the first device performs transmission cooperation with the first device according to the second advertisement message to reduce interference of the interference beam to the target terminal.
  • the first device may send a collaboration message to the second device, where the collaboration message includes the identifier information of the interference beam.
  • the second device may directly close the interference beam, and may also reduce the power of the interference beam, where the amount of reduced power is determined by the second device after negotiating with the first device.
  • the cooperation message may further include resources (including time-frequency resources and/or code resources) used by the service beam, so that the second device may reduce resources used by the service beam on the interference beam, such as reducing service beam usage on the interference beam.
  • the power, partial reduction of the time-frequency resource uses the time-frequency resource and/or code resource used by the service beam, or the time-frequency resource and/or code resource used without the service beam. In this way, while reducing the interference of the interference beam to the service beam, it is not necessary to greatly reduce the power of the interference beam, so that the interference beam can still serve other terminals normally.
  • the target terminal sends the first advertisement message to the second device in step 404
  • the second device performs the transmission and the cooperation with the first device in step 407, and the method is substantially the same as step 404, and details are not described herein.
  • Step 406 and step 407 may refer to step 304 and step 305 of the embodiment shown in FIG. 3, in which the target terminal sends a notification message to the first device, and the related content of the first device and the second device performs transmission cooperation.
  • FIG. 4(a) and FIG. 4(b) is applicable to a scenario in which a device and a terminal perform normal communication, wherein the target terminal and the second device perform beam training, thereby determining identification information of the interference beam, so that the first The device and the second device are capable of cooperating by transmission to reduce interference caused by the interference beam.
  • the method provided by the embodiment of the present invention passes the first device-target terminal-the third device In order to reduce interference, it is not necessary to statically configure border users of neighboring cells to use inter-frequency resources, so interference coordination between devices can be implemented in a high-frequency cell.
  • transmission cooperation is also performed between the first device and the second device. For example, if the first device in the current technology determines that the interference beam affects the service beam, the second device will notify the time-frequency resource used by the service beam, and the second device will respond to the time-frequency resource in the cell boundary region. Stop data transmission or reduce power transmission.
  • the method means that the second device limits the use of the resource on all beams, which will undoubtedly greatly reduce the spectrum of the system. usage efficiency. In this embodiment, the use of the corresponding resources is limited only on the interference beam, so that the system can maintain a high spectrum utilization efficiency.
  • the target terminal should request beam training with the second device when the beam sent by the second device causes interference to the target terminal. Therefore, the target terminal may first determine whether the beam sent by the second device interferes with the target terminal. If the determination result is yes, the operation in step 401 is triggered. There are many specific methods of judgment, such as:
  • Method 1 The target terminal measures the service beam to obtain the service measurement quantity; if the target terminal determines that the service measurement quantity is lower than the first preset value, it indicates that the signal quality of the service beam is not good and is susceptible to interference, and the operation of step 401 is triggered. ;
  • Method 2 The target terminal measures the beam sent by the second device to obtain the interference measurement quantity; if the target terminal determines that the interference measurement quantity is greater than the second preset value, the interference of the beam transmitted by the interference terminal is too large, and the triggering step is performed. 401 operation;
  • Method 3 The target terminal measures the service beam to obtain the service measurement quantity, and measures the beam transmitted by the second device to obtain the interference measurement quantity; if the difference between the service measurement quantity and the interference measurement quantity is less than the third preset The value indicates that the beam sent by the second device generates a large degree of interference to the service beam, triggering the operation of step 401;
  • Method 4 The first device determines whether the target terminal performs beam training with the second device. And if the first device determines that the beam sent by the second device interferes with the service beam, sending an indication message to the target terminal, where the indication message is used to indicate that the target terminal performs beam training with the second device. After receiving the indication message, the target terminal triggers the operation of step 401.
  • the first preset value, the second preset value, and the third preset value may all be positive numbers. Negative numbers or 0 are not limited in the embodiment of the present invention.
  • the operation of the step 401 can also be triggered by other methods, which is not limited in the embodiment of the present invention.
  • the service measurement quantity is used to represent the measurement quantity of the service beam
  • the interference measurement quantity is used to indicate the measurement quantity of the beam transmitted by the second device.
  • the measurement quantity of the beam may be many forms of parameters, including RSRP, RSRQ, signal to noise ratio or other parameters of the beam. In this embodiment, the larger the measurement amount, the better the beam signal.
  • the method 1 becomes adaptable: if the target terminal determines that the service measurement quantity is higher than the first preset value, the operation of step 401 is triggered; Adaptability becomes: if the target terminal determines that the interference measurement quantity is lower than the second preset value, triggering the operation of step 401; the method 3 adaptability becomes: if the difference between the interference measurement quantity and the service measurement quantity is less than the The three preset values trigger the operation of step 401.
  • cell A there are two adjacent cells, cell A and cell B, where the base station A serves the UE in the cell A, and the base station B serves the UE in the cell B.
  • the base station A transmits the polling beam to the six directions in its own direction, where the six beams are respectively represented by the beam 1A, the beam 2A, the beam 3A, the beam 4A, the beam 5A, and the beam 6A.
  • the polling beam is in an angle of 60° for each of the two polling beams, and each of the polling beams carries identification information of the beam itself.
  • the base station B also transmits the polling beam to the six directions in its own direction, where the six polling beams are represented by the beam 1B, the beam 2B, the beam 3B, the beam 4B, the beam 5B, and the beam 6B, respectively.
  • the angle between each of the two polling beams is 60°, and each polling beam carries the identification information of the beam itself.
  • the target UE in cell A is in the coverage of beam 2A and beam 5B, and thus receives beam 2A transmitted by base station A and beam 5B transmitted by base station B. Then, the target terminal separately measures the RSRQ of the beam 2A and the beam 5B, and compares the measured results, and obtains that the difference between the RSRQ of the beam 2A and the RSRQ of the beam 5B is smaller than the first threshold, and the target UE determines that the beam 5B causes a larger beam 2A. Interference. The target UE then sends a first message to the base station A, where the first message includes the identification information of the beam 5B.
  • the base station A After receiving the first message sent by the target UE, the base station A can learn that the beam 5B transmitted by the base station B causes interference to the target UE in the cell A. Then base station A sends a second message to base station B, The second message includes the time-frequency resources used by the beam 2A. After receiving the second message, the base station B does not use the time-frequency resources used by the beam 2A on the beam 5B, thus realizing the transmission cooperation between the base station A and the base station B.
  • base station A determines the approximate location of the target UE, and base station A uses BF technology to use pencil beam A to serve the target UE. At this time, the base station B also uses the pencil beam to serve the base station in the cell B.
  • the target UE When receiving the pencil beam A sent by the base station A, the target UE can also receive the beam transmitted by the base station B, wherein the beam transmitted by the base station B does not carry the flag information of the beam, so the target UE cannot determine that the received base station is the base station. Which beam of B is.
  • the target UE measures the RSRQ of the received pencil beam A and measures the RSRQ of the received beam transmitted by the base station B. After comparing the measured results, the target UE obtains that the difference between the RSRQ of the pencil beam A and the RSRQ of the beam transmitted by the base station B is smaller than the second threshold, and the target UE determines that the beam transmitted by the base station B causes a large interference to the pencil beam A. .
  • the target UE then sends a third message to the base station B, where the third message is used for the target UE to perform beam training with the base station B to determine which beam of the base station B the target UE receives.
  • the base station B After receiving the third message, the base station B performs beam training with the target UE.
  • the target UE determines, by the beam training, that the target UE receives the pencil beam B sent by the base station B.
  • the target UE sends a fourth message to the base station A, where the fourth message includes the identification information of the base station B and the identification information of the pencil beam B.
  • the base station A can confirm that the pencil beam B sent by the base station B causes interference to the target UE, and then the base station A sends a fifth message to the base station B, where the fifth message includes the time-frequency resource used by the pencil beam A. .
  • the base station B After receiving the fifth message, the base station B does not use the time-frequency resource used by the pencil beam A on the pencil beam B. This achieves the transmission cooperation between the base station A and the base station B.
  • the above embodiment describes the inter-device cooperation method and the beam training method provided by the present invention, and related devices will be described below to implement the above method.
  • the inter-device cooperation device provided by the present invention is applicable to devices in a wireless communication system.
  • the wireless communication system includes at least a target terminal, a first device that provides a service to the target terminal, and a second device that generates interference to the first device.
  • the neighboring cell of the first device and the first device of the second device may not be located in the neighboring cell, which is not limited herein.
  • Data interaction is achieved through high-speed interfaces such as inter-base station interfaces.
  • the present invention respectively provides an inter-device cooperation apparatus suitable for a target terminal, a first device, and a second device, which will be separately described below.
  • FIG. 5 For the basic structure of the inter-device cooperation device applicable to the first device provided by the embodiment of the present invention, refer to FIG. 5, including:
  • the signal transmitting module 501 is configured to send the first beam to the target terminal.
  • the first beam may be an elongated beam obtained by beamforming, or may be a polling beam received by the target terminal, or may be other types of beams, which is not limited herein.
  • the signal receiving module 502 is configured to receive a notification message sent by the target terminal. After receiving the first beam sent by the signal transmitting module 501, the target terminal also receives the second beam sent by the second device. When it is determined that the first beam is interfered by the second beam, the notification message is sent to the first device, where the notification message is used to indicate that the second beam causes interference to the first beam, and the notification message includes the identifier of the second beam. information. After receiving the notification message, the signal receiving module 502 can determine that the second beam causes interference to the first beam.
  • the signal transmitting module 501 is further configured to: send, according to the notification message received by the signal receiving module 502, a cooperation message for requesting transmission cooperation with the second device, to perform transmission cooperation with the second device, to implement the second reduction.
  • the cooperation message includes the identification information of the second beam.
  • the cooperation message may further include information about resources used by the first beam.
  • the second device itself also serves the terminal in the cell, and the beam transmitted by the first device is also an interference signal for the terminal in the cell where the second device is located. Therefore, the first beam sent by the signal transmitting module 501 can also carry the identification information of the first beam, so that the terminal in the cell where the second device is located determines the beam that causes interference.
  • the basic structure of the inter-device cooperation device applicable to the second device provided by the embodiment of the present invention is as shown in FIG. 6, and includes:
  • the transmitting signal module 601 is configured to send a second beam to the target terminal.
  • the second beam may be an elongated beam obtained by beamforming, or may be a polling beam received by the target terminal, or may be other types of beams, which is not limited herein.
  • the second beam carries the identification information of the second beam.
  • the second beam sent by the transmit signal module 601 is an interference signal for the target terminal, because the second device does not serve the target terminal.
  • the receiving signal module 602 is configured to receive a cooperation message of the first device.
  • the first device serves the target terminal by using the first beam. If the first device determines that the second beam causes interference to the first beam, the first device sends a cooperation message to the second device, indicating that the first device requests the second device. The device performs transmission collaboration.
  • the cooperation message includes identification information of the second beam. After receiving the cooperation message, the signal receiving module 602 of the second device can determine which beam transmitted by itself interferes with the first beam.
  • the transmission cooperation module 603 is configured to adjust the second beam according to the cooperation message to perform transmission cooperation with the first device, so as to reduce the interference of the second beam to the first beam.
  • the receiving signal module 602 may also receive the notification message sent by the target terminal, where the notification message includes the identifier information of the second beam.
  • the transmission cooperation module 603 can perform transmission cooperation with the first device by directly reducing the power of the second beam or turning off the second beam; or determining, by using the inter-device interface, the resource used by the first beam with the first device, The resource used by the first beam is then not used for the second beam, or the power of the resource used by the first beam is reduced on the second beam.
  • any device in the wireless communication network can provide services for devices in the same cell as the first device, and cause interference to devices in neighboring cells as well as the second device. Therefore, the modules shown in FIG. 5 and FIG. 6 may also be located on the same device in the wireless communication network (for example, the first device may also have various modules of the inter-device cooperation device shown in FIG. 6, and the second device may also Each module shown in FIG. 5 and FIG. 6 can be further split or merged, which is not limited herein.
  • the basic structure of the inter-device cooperation device applicable to the target terminal provided by the embodiment of the present invention is as shown in FIG. 7, and includes:
  • the beam receiving module 701 is configured to receive a first beam sent by the first device.
  • the beam measurement module 702 is configured to measure the first beam to obtain a first measurement quantity.
  • the measurement quantity of the beam may be a plurality of types of parameters, and may specifically include one or more of parameters such as RSRP of the beam, RSRQ of the beam, and signal-to-noise ratio of the beam, or calculated according to several parameters thereof. Can be other parameters. In this embodiment, the larger the amount of measurement, the better the beam.
  • the beam receiving module 701 is further configured to: receive the second beam sent by the second device.
  • the second beam carries the identification information of the second beam.
  • the beam measurement module 702 is further configured to: perform measurement on the second beam to obtain a second measurement quantity
  • the message sending module 703 is configured to: when the first measurement quantity and the second measurement quantity satisfy the preset condition, determine that the second beam causes interference to the first beam, and then send a notification message to the first device, where the notification message includes the second Identification information of the beam.
  • the preset condition may be caused by a plurality of preset conditions, for example, if the first measurement quantity and the second measurement quantity are satisfied: the first measurement quantity is smaller than the first preset value, the second measurement quantity is greater than the second preset value, and the first The difference between the measured quantity and the second measured quantity is less than one or more of the third preset values, and it is determined that the first measured quantity and the second measured quantity satisfy the preset condition.
  • the difference between the first measured quantity and the second measured quantity is obtained by subtracting the second measured quantity from the first measured quantity, wherein the first preset value, the second preset value, and the third preset value may be positive numbers , negative or 0.
  • the message sending module 703 may also send the notification message to the second device, where the notification message includes the identifier information of the second beam.
  • the target terminal may receive the beam transmitted by the first device multiple times at different times.
  • the beam receiving module 701 may use any one of the received beams of the first device as the first beam, or the best one of the signals transmitted by the first device to be received.
  • the beam serves as a first beam, or a designated one of the beams transmitted by the received first device is used as the first beam.
  • the beam receiving module 701 can use the received set of multiple beams sent by the first device as the first beam.
  • the beam measurement module 702 measures the first beam by measuring each beam in the first beam, and the obtained measurement quantity is an average of the measurement quantities of the beams in the first beam ( Can be an arithmetic mean or a weighted average).
  • the beam receiving module 701 can use any one of the received beams transmitted by the second device as the second beam, or the best one of the signals transmitted by the received second device.
  • the beam serves as a second beam, or a designated one of the beams transmitted by the received second device is used as the second beam. More specifically, the beam receiving module 701 can use the received set of multiple beams sent by the second device as the second beam.
  • the target terminal measures the second beam, and refers to the second beam. Each beam is measured and the resulting measurement is the average of the measurements of each beam in the second beam (which can be an arithmetic mean or a weighted average).
  • the message sending module 703 may determine that the first measurement amount and the second measurement quantity satisfy a preset condition when the first measurement quantity and the second measurement quantity satisfy one or more of the following conditions: The measured quantity is greater than the first preset value, the second measured quantity is less than the second preset value, and the difference between the first measured quantity and the second measured quantity is greater than the third preset value.
  • FIG. 5 The interaction between the inter-device cooperation devices provided in FIG. 5, FIG. 6, and FIG. 7 can be referred to the embodiment shown in FIG. 3, and details are not described herein.
  • the inter-device cooperation apparatus provided in FIG. 5, FIG. 6, and FIG. 7, respectively, enables the first device to determine an interference beam, thereby being able to cooperate with the second device to reduce interference caused by the interference beam. And the apparatus provided by the embodiment of the present invention reduces interference by the three-party cooperation between the first device-target terminal and the second device, and does not need to statically configure the boundary users of the neighboring cells to use the inter-frequency resources, and thus can be in the high-frequency cell. Interference coordination between devices is implemented.
  • the embodiment of the present invention further provides a beam training device, which is applicable to a second device.
  • a beam training device which is applicable to a second device.
  • FIG. 8 which includes:
  • the message receiving module 801 is configured to receive a request message sent by the target terminal, where the request message is used to indicate that the target terminal requests beam training with the second device.
  • the beam training module 802 is configured to perform beam training with the target terminal after the message receiving module 801 receives the request message.
  • the beam training device 802 As a result of the beam training performed by the beam training module 802 and the target terminal, the direction of the target terminal is determined, and then the interference beam transmitted by the second device in the direction is determined.
  • the operation of determining the interference beam may be performed by the second device or by the target terminal. If completed by the second device, the beam training device applicable to the second device further includes an optional module:
  • the interference determining module 803 is configured to determine, according to a result of beam training with the target terminal, identification information of the interference beam that causes interference to the target terminal. Specifically, the interference determining module 803 may determine one or more items of a transmission angle of the interference beam, a transmission matrix that transmits the interference beam, and identifier information of a target terminal that receives the interference beam, or may be other forms of information. , here is not limited. Specifically, in this step, the identification information of the interference beam may also be determined by the target terminal, and then the interference determination module 803 obtains from the target terminal.
  • the identification information of the interference beam that is determined by the target terminal may specifically include one or a plurality of the receiving angle of the receiving end of the interference beam, the precoding matrix indication of the interference beam, and the identification information of the target terminal, and may also be other forms. Information, not limited here.
  • the beam training device further includes an optional module:
  • the cooperative transmission module 804 is configured to: after the interference determination module 803 determines the identification information of the interference beam that causes interference to the target terminal, adjust the interference beam according to the determined identification information of the interference beam, to perform transmission cooperation with the first device, to implement The purpose of reducing the interference of the interference beam to the target terminal. Specifically, the cooperative transmission module 804 can directly reduce the power of the interference beam or turn off the interference beam. In addition, if the first device uses the service beam to provide service to the target terminal, the first device may determine information of resources (including time-frequency resources and/or code resources) used by the service beam and notify the second device.
  • resources including time-frequency resources and/or code resources
  • the resources used by the service beam can be reduced on the interference beam, such as reducing the power of the time-frequency resource used by the service beam on the interference beam. Partially reducing the use of time-frequency resources and/or code resources used by the service beam, or using time-frequency resources and/or code resources used by the service beam. In this way, while reducing the interference of the interference beam to the service beam, the power of the interference beam does not need to be greatly reduced, so that the interference beam can still serve the terminal of the second device.
  • the embodiment of the present invention further provides a beam training device suitable for a target terminal.
  • a beam training device suitable for a target terminal.
  • FIG. 9 which includes:
  • the message sending module 901 is configured to send a request message to the second device, where the request message is used to request beam training with the second device.
  • the training beam module 902 is configured to perform beam training with the second device after sending the request message.
  • the target terminal should request beam training with the second device when the beam sent by the second device causes interference to the target terminal. Therefore, the beam training device applicable to the target terminal further includes an optional module measurement beam module 903, specifically for:
  • the service beam is measured to obtain the service measurement of the service beam.
  • the service beam is a beam used by the first device to serve the target terminal. If the service measurement quantity is lower than the first preset value, the trigger message sending module 901 performs a step of sending a request message to the second device.
  • the received beam transmitted by the second device is measured to obtain an interference measurement amount; if the interference measurement amount is greater than the second preset value, the trigger message sending module 901 performs a step of sending a request message to the second device.
  • the trigger message sending module 901 performs the step of transmitting a request message to the second device.
  • the value of the first preset value, the second preset value, and the third preset value may be positive, negative, or zero, which is not limited in the embodiment of the present invention.
  • the step of sending the request message to the second device by the message sending module 901 may be performed by other methods, which is not limited in the embodiment of the present invention.
  • the service measurement quantity is used to represent the measurement quantity of the service beam
  • the interference measurement quantity is used to indicate the measurement quantity of the beam transmitted by the second device.
  • the measurement quantity of the beam may be many forms of parameters, including RSRP, RSRQ, signal to noise ratio or other parameters of the beam.
  • the measurement beam module 903 can be adapted to: if the service measurement quantity is determined to be higher than the first preset value, the trigger message sending module 901 performs Sending a request message to the second device; or, if the target terminal determines that the interference measurement quantity is lower than the second preset value, the trigger message sending module 901 performs a step of sending a request message to the second device; or, if the interference measurement quantity is The difference between the service measurement amount is less than the third preset value, and the trigger message sending module 901 performs the step of sending the request message to the second device.
  • whether the beam sent by the second device interferes with the target terminal may also be determined by the first device, where the beam training device further includes an optional module:
  • the receiving message module 904 is configured to: when receiving the indication message sent by the first device, and the indication message indicates that the target terminal performs beam training with the second device, triggering the message sending module 901 to perform sending a request to the second device The steps of the message.
  • the beam training device applicable to the target terminal further includes an optional module:
  • the determining interference module 905 is configured to determine, according to a result of beam training with the second device, identification information of the interference beam that causes interference to the target terminal.
  • the determining that the interference module is specifically used to determine the receiving angle of the receiving interference beam, the PMI of the interference beam, and the identifier information of the target terminal may also determine other forms of information, which are not limited herein.
  • the identification information of the interference beam can also be determined by the second device, and then the interference module 905 is determined to be obtained from the second device.
  • the identification information of the interference beam that is determined by the second device may specifically include one or a plurality of the transmission angle of the interference beam, the transmission matrix of the interference beam, and the identification information of the target terminal, or other forms. Information is not limited here.
  • the message sending module 901 is also used to:
  • the second device can perform transmission cooperation with the first device to reduce interference of the interference beam to the target terminal.
  • the first device can perform transmission cooperation with the second device to reduce interference of the interference beam to the target terminal.
  • the target terminal and the second device perform beam training to determine the identification information of the interference beam, so that the first device and the second device can cooperate to reduce the interference caused by the interference beam.
  • the apparatus provided by the present invention reduces interference by the three-party cooperation between the first device-target terminal and the second device, it is not required to statically configure the boundary users of the neighboring cells to use the inter-frequency resources, and thus can be implemented in the high-frequency cell. Interference coordination between devices.
  • the inter-device cooperation device in the embodiment of the present invention is described above from the perspective of a unitized functional entity.
  • the inter-device cooperation device in the embodiment of the present invention is described below from the perspective of hardware processing. Referring to FIG. 10, the embodiment of the present invention is described.
  • Another embodiment of the inter-device cooperation device applicable to the first device includes:
  • the input device 1001, the output device 1002, the processor 1003, and the memory 1004 (wherein the number of processors 1003 in the inter-device cooperation device 1000 may be one or more, and one processor 1003 in FIG. 10 is taken as an example).
  • the input device 1001, the output device 1002, the processor 1003, and the memory 1004 may be connected by a bus or other means, wherein the connection through the bus is taken as an example in FIG.
  • the processor 1003 is configured to perform the following steps by calling an operation instruction stored in the memory 1004:
  • the target terminal And receiving, by the target terminal, a notification message, where the notification message is used to indicate that the first beam is interfered by the second beam that is sent by the second device, where the notification message includes the identifier information of the second beam;
  • the cooperation message further includes information of resources used by the first beam.
  • FIG. 11 Another embodiment of the inter-device cooperation device applicable to the second device in the embodiment of the present invention is shown in FIG. 11 and includes:
  • the input device 1101, the output device 1102, the processor 1103, and the memory 1104 (wherein the number of processors 1103 in the inter-device cooperation device 1100 may be one or more, and one processor 1103 is exemplified in FIG. 11).
  • the input device 1101, the output device 1102, the processor 1103, and the memory 1104 may be connected by a bus or other means, wherein the connection through the bus is taken as an example in FIG.
  • the processor 1103 is configured to perform the following steps by calling an operation instruction stored in the memory 1104:
  • the processor 1103 is further configured to perform the following steps:
  • the cooperation message further includes information about resources used by the first beam, and the processor 1103 reduces resources used by the first beam on the second beam according to the cooperation message.
  • FIG. 12 Another embodiment of the inter-device cooperation apparatus applicable to the target terminal in the embodiment of the present invention is shown in FIG. 12, and includes:
  • the input device 1201, the output device 1202, the processor 1203, and the memory 1204 (wherein the number of processors 1203 in the inter-device cooperation device 1200 may be one or more, and one processor 1203 is taken as an example in FIG. 12).
  • the input device 1201, the output device 1202, the processor 1203, and the memory 1204 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • the processor 1203 is configured to perform the following steps by calling an operation instruction stored in the memory 1204:
  • the first measurement quantity and the second measurement quantity satisfying preset conditions include:
  • the first beam includes any one of the following beams: any one of the polling beams transmitted by the first device received by the target terminal, or And a specified one of a polling beam sent by the first device received by the target device, or a designated one of the polling beams sent by the first device received by the target terminal Beam
  • the first beam is specifically: a set of multiple polling beams that are sent by the target device and sent by the first device, where the first measurement quantity is a measurement of each beam in the first beam. The average of the quantities.
  • FIG. 13 Another embodiment of the beam training device applicable to the second device in the embodiment of the present invention is shown in the figure. 13, including:
  • the input device 1301, the output device 1302, the processor 1303, and the memory 1304 (wherein the number of the processors 1303 in the beam training device 1300 may be one or more, and one processor 1303 is taken as an example in FIG. 13).
  • the input device 1301, the output device 1302, the processor 1303, and the memory 1304 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • the processor 1303 is configured to perform the following steps by calling an operation instruction stored in the memory 1304:
  • Beam training is performed with the target terminal after receiving the request message.
  • the processor 1303 is further configured to perform the following steps:
  • the processor 1303 is further configured to perform the following steps:
  • the processor 1303 is further configured to perform the following steps:
  • the processor 1303 is further configured to perform the following steps:
  • the first device communicates with the target terminal by using a service beam
  • the processor 1303 determines information of a resource used by the service beam from the first device, and is on the interference beam. Reduce the resources used by the service beam.
  • FIG. 14 Another embodiment of the beam training device applicable to the target terminal in the embodiment of the present invention is shown in the figure. 14, including:
  • the input device 1401, the output device 1402, the processor 1403, and the memory 1404 (wherein the number of processors 1403 in the beam training device 1400 may be one or more, and one processor 1403 in FIG. 14 is taken as an example).
  • the input device 1401, the output device 1402, the processor 1403, and the memory 1404 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • the processor 1403 is configured to perform the following steps by calling an operation instruction stored in the memory 1404:
  • beam training is performed with the second device.
  • the processor 1403 is further configured to perform the following steps:
  • measuring a beam sent by the second device to obtain an interference measurement quantity; if it is determined that the interference measurement quantity is greater than a second preset value, triggering a step of sending a request message to the second device;
  • the service beam is measured to obtain a service measurement quantity; and the received beam of the second device is measured to obtain an interference measurement quantity; if the difference between the service measurement quantity and the interference measurement quantity is less than
  • the third preset value triggers a step of sending a request message to the second device;
  • the indication message sent by the first device is received, the indication message is used to indicate that the second device performs beam training, and the step of sending a request message to the second device is triggered.
  • the processor 1403 is further configured to perform the following steps:
  • the processor 1403 is further configured to perform the following steps:
  • the processor 1403 is further configured to perform the following steps:
  • the second device Transmitting, by the second device, a first advertisement message, where the first advertisement message includes identifier information of the first device, and identifier information of the interference beam determined by the target terminal;
  • the second advertisement message includes the identifier information of the second device, and the identifier information of the interference beam determined by the target terminal.
  • the present invention also provides related devices, including the inter-device cooperation device shown in FIG. 5, the inter-device cooperation device shown in FIG. 6, the beam training device shown in FIG. 8, and the inter-device cooperation device shown in FIG. One or more of the inter-device cooperation device shown in FIG. 11 and the beam training device shown in FIG.
  • the present invention also provides related terminals, including the inter-device cooperation device shown in FIG. 7, the beam training device shown in FIG. 9, the inter-device cooperation device shown in FIG. 12, and the beam training device shown in FIG. One or more.
  • the present invention also provides a wireless communication system comprising the devices and terminals described in the previous two paragraphs.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit. in.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种设备间协作方法,用于协调高频小区之间的干扰。本发明实施例方法包括:第一设备向目标终端发送第一波束;第二设备向目标终端发送第二波束;目标终端对接收到的第一波束以及第二波束进行测量;若第一测量量与第二测量量满足预置条件,则目标终端向第一设备发送通知消息,指示第一设备与第二设备进行传输协作,使得第二设备调整第二波束以降低第二波束对第一波束的干扰。本发明实施例还提供了相关的波束训练方法、相关装置、设备、终端以及系统。

Description

设备间协作方法、波束训练方法及装置
本申请要求于2015年11月09日提交中国专利局、申请号为201510759382.0、发明名称为“设备间协作方法、波束训练方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,尤其涉及设备间协作方法、干扰确定方法、波束训练方法及装置。
背景技术
传统的移动通信传统工作频段主要集中在3GHz以下的频段,频谱资源十分拥挤,而高频段(如毫米波、厘米波频段)可用频谱资源丰富,能够有效缓解频谱资源紧张的状况,实现极高速短距离通信。因此可以说,高频段资源的挖掘应用是未来移动通信的发展趋势。高频小区广泛采用波束赋形(BF,Beam Forming)技术来增加覆盖。波束赋形技术是基于自适应天线原理,利用天线阵列通过先进的信号处理算法分别对各物理天线进行加权处理的一种技术。在接收端看来,整个天线阵列相当于一根虚拟天线。通过加权处理后,天线阵列形成一个窄发射波束对准目标终端,并在干扰接收端方向形成零点以减小干扰。
小区间干扰是蜂窝通讯网络中的重要问题,现阶段的技术中一般使用小区间干扰协调(ICIC,Inter Cell Interference Coordination)技术来解决小区间的干扰。ICIC技术在小区间进行资源分配,其中,处于小区中心的用户可以使用全部频段的资源,但相邻小区中处于小区边缘的用户使用不同频段的资源,这样就能避免相邻小区间的干扰,提升小区频谱效率。
可以理解的,ICIC技术是通过配置相邻小区的边界用户使用异频资源来避免相邻小区之间的干扰的。但是在波束赋形技术中,为了对准目标终端,天 线阵列形成的发射波束会动态跟踪目标终端的位置,发射波束很可能会从小区的中心位置跟踪目标终端到小区边界位置,甚至跟踪目标终端到相邻小区。这样就无法保证相邻小区中处于小区边缘的用户使用不同频率的资源。因此,在使用波束赋形技术的高频小区中,ICIC技术已经无法有效的协调小区间的干扰,现阶段的技术中也没有能够有效的协调高频小区间干扰的方法。
发明内容
本发明实施例提供了设备间协作方法,用于协调高频小区之间的干扰。本发明实施例还提供了相关的波束训练方法、相关装置、设备、终端以及系统。本发明提供的方法装置、设备、终端以及系统应用于无线通信系统。其中,无线通信系统中包括目标终端、为目标终端提供服务的第一设备、还包括第二设备。
本发明的第一方面提供了一种设备间协作方法,具体的,第一设备向目标终端发送第一波束,然后接收目标终端发送的通知消息,该通知消息用于表示第一波束受到了第二设备发送的第二波束的干扰,且通知消息中包括第二波束的标识信息。第一设备接收到通知消息后,根据该通知消息,通过第一设备与第二设备之间的接口发送协作消息给第二设备,以进行传输协作降低第二波束对第一波束的干扰。其中,协作消息用于请求和第二设备进行传输协作,协作消息中包括第二波束的标识信息。本发明通过这样的方法,使得第一设备能够确定干扰波束,进而能够针对干扰波束与第二设备进行协作以降低干扰波束造成的干扰。且由于本发明实施例所提供的方法通过第一设备-目标终端-第二设备间的三方协作来降低干扰,不需要静态配置相邻小区的边界用户使用异频资源,因此能够在高频小区中实现设备间的干扰协调。
可选的,协作消息中还可以包括第一波束使用的资源的信息。这样第二设备接收到协作消息后,可以在第二波束上减少使用该第一波束使用的资源,而不需要大幅度降低第二波束的功率,使得第二波束仍然能够正常为其它终端服务。
本发明的第二方面提供了一种设备间协作方法,包括:第二设备向目标终端发送第二波束,第二波束中携带有第二波束的标识信息。然后第二设备接收 第一设备的协作信息,该协作信息用于请求与第二设备进行传输协作,其中包括第二波束的标识信息。第二设备接收到协作信息后,就可以获知第二波束对目标终端造成了干扰,于是第二设备根据协作消息调整第二波束,以与第一设备进行传输协作降低第二波束对目标终端的干扰。本发明通过这样的方法,使得第二设备能够确定干扰波束为第二波束,进而仅调整第二波束就能够降低对目标终端的干扰,无需调整所有波束,也不需要静态配置相邻小区的边界用户使用异频资源,因此能够在高频小区中实现设备间的干扰协调。
可选的,第二设备根据协作消息调整第二波束的方法而可以为如下方法中的一项或多项:根据协作消息,降低所述第二波束的功率;根据协作消息,关闭所述第二波束;协作消息中还包括第一波束使用的资源的信息,第二设备根据协作消息,在第二波束上减少使用第一波束使用的资源。
本发明的第三方面提供了一种设备间协作方法,包括:目标终端接收第一设备发送的第一波束以及第二设备发送的第二波束。目标终端对第一波束进行测量,得到第一测量量;并对第二波束进行测量,得到第二测量量。其中,第二波束中包括第二波束的表示信息。若第一测量量与第二测量量满足预置条件,则目标终端确定第二波束对第一波束造成了干扰,于是向第一设备发送通知消息,该通知消息包括第二波束的标识信息。通过这样的方法,使得第一设备能够获知干扰波束为第二波束,进而仅针对第二波束与第二设备进行传输协作,无针对所有波束进行干扰协作,也不需要静态配置相邻小区的边界用户使用异频资源,因此能够在高频小区中实现设备间的干扰协调。
可选的,预置条件可以包括如下条件中的一项或多项:第一测量量小于第一预置数值;第二测量量大于第二预置数值;第一测量量与所述第二测量量的差值小于第三预置数值。
可选的,第一波束可以包括如下所述的波束中的任意一种:目标终端接收到的第一设备所发送的轮询波束中的任意一个波束;目标终端接收到的第一设备发送的轮询波束中信号最好的一个波束;目标终端接收到的第一设备所发送的轮询波束中的指定的一个波束;目标终端接收到的由第一设备发送的多个轮询波束的集合,在这种场景下,第一测量量为第一波束中各波束的测量量的平均值。
本发明第四方面提供了一种波束训练方法,包括:第二设备从目标终端处接收用于请求与第二设备进行波束训练的请求,并在接收到该请求消息后与目标终端进行波束训练。本发明通过这样的方法,使得目标终端与第二设备能够通过波束训练确定干扰波束,进而为第一设备与第二设备仅针对干扰波束进行传输协作提供了条件。
可选的,第二设备可以根据与目标终端的训练结果,确定对目标终端造成干扰的干扰波束的标识信息,以实现确定干扰波束。
可选的,第二设备确定干扰波束的表示信息方法可以为如下方法中的一项或多项:确定发射干扰波束的发射角度;确定发射干扰波束的发射矩阵;确定接收该干扰波束的目标终端的标识信息。第二设备也可以从目标终端处直接接收干扰波束的标识信息,具体可以为从目标终端处第一通告消息,第一通告消息中包括干扰波束的标识信息。
可选的,第二设备在确定了干扰波束的标识信息后,可以根据干扰波束的标识信息,调整干扰波束,以实现和第一设备针对干扰波束的传输协作。
可选的,第二设备调整干扰波束的方法可以为如下方法中的一项或多项:降低干扰波束的功率;关闭干扰波束;第一设备通过服务波束与目标终端进行通信,第二设备从第一设备处确定服务波束使用的资源的信息,并在干扰波束上减少使用服务波束使用的资源。
本发明第五方面提供了一种波束训练方法,包括:目标终端向第二设备发送用于请求与第二设备进行波束训练的请求消息,并在发送给请求消息且第二设备接收该请求消息后,与第二设备进行波束训练。
可选的,目标终端触发向第二设备发送请求消息的条件可以包括如下条件中的一项或多项:目标终端对服务波束进行测量,得到服务测量量,其中服务测量量低于第一预设数值;目标终端对接收到的第二设备发送的波束进行测量,得到干扰测量量,其中干扰测量量大于第二预设数值;目标终端对服务波束进行测量,得到服务测量量,并对接收到的第二设备发送的波束进行测量,得到干扰测量量,其中服务测量量与干扰测量量的差值小于第三预设数值;目标终端接收到第一设备发送的指示消息,该指示消息用于指示目标终端与第二设备进行波束训练。
可选的,目标终端可以根据与第二设备进行波束训练的结果,确定对目标终端造成干扰的干扰波束的标识信息。
可选的,目标确定干扰波束的方法可以为如下方法中的一项或多项:确定目标终端接收该干扰波束的接收角度;确定干扰波束的预编码矩阵指示PMI;确定目标终端的标识信息。在确定了干扰波束后,就能够确定干扰波束的标识信息。目标终端也可以从第二设备处直接接收干扰波束的标识信息。
可选的,目标终端在确定了干扰波束的标识信息后,可以通知第一设备与第二设备进行传输协作。具体的,可以向第二设备发送第一通告消息,该第一通告消息中包括第一设备的标识信息,以及干扰波束的标识信息。或者,目标终端也可以向第一设备发送第二通告消息,该第二通告消息中包括第二设备的表示信息,以及干扰波束的标识信息。
本发明第六方面提供了一种设备间协作方法,包括:第一设备接收目标终端发送的第一通告消息,该第一通告消息中包括第二设备的标识信息,以及对目标终端造成干扰的干扰波束的标识信息。第一设备根据该通知消息,向第二设备发送用于请求与第二设备进行传输协作的协作消息,该协作消息中包括干扰波束的标识信息。
可选的,第一设备通过服务波束为目标终端提供服务,协作消息中还可以包括服务波束使用的资源的信息。
本发明第七方面提供了一种设备间协作装置,应用于无线通信系统中的第一设备,包括:信号发射模块,用于向目标终端发送第一波束;信号接收模块,用于接收所述目标终端发送的通知消息,所述通知消息用于表示所述第一波束受到了第二设备发送的第二波束的干扰,所述通知消息中包括所述第二波束的标识信息;信号发射模块还用于:根据所述通知消息,向所述第二设备发送用于请求和所述第二设备进行传输协作的协作消息,其中,所述协作消息中包括所述第二波束的标识信息。本发明提供的设备间协作装置能够确定干扰波束,进而能够针对干扰波束与第二设备进行协作以降低干扰波束造成的干扰,不需要静态配置相邻小区的边界用户使用异频资源,因此能够在高频小区中实现设备间的干扰协调。
可选的,协作消息中还可以包括第一波束使用的资源的信息。这样第二设 备接收到协作消息后,可以在第二波束上减少使用该第一波束使用的资源,而不需要大幅度降低第二波束的功率,使得第二波束仍然能够正常为其它终端服务。
本发明第八方面提供了一种设备间协作装置,应用于无线通信系统中的第二设备,包括:发射信号模块,用于向目标终端发送第二波束,所述第二波束携带有所述第二波束的标识信息;接收信号模块,用于接收所述第一设备的协作消息,所述协作消息中包括所述第二波束的标识信息,所述协作消息用于表示所述第一设备请求与所述第二设备进行传输协作;传输协作模块,用于根据所述协作消息调整所述第二波束,以与所述第一设备进行传输协作。本发明第八方面提供的设备间协作装置能够确定干扰波束为第二波束,进而仅调整第二波束就能够降低对目标终端的干扰,无需调整所有波束,也不需要静态配置相邻小区的边界用户使用异频资源,因此能够在高频小区中实现设备间的干扰协调。
可选的,传输协作模块具体可以通过如下方法中的一项或多项调整第二波束:根据协作消息,降低所述第二波束的功率;根据协作消息,关闭所述第二波束;协作消息中还包括第一波束使用的资源的信息,第二设备根据协作消息,在第二波束上减少使用第一波束使用的资源。
本发明第九方面提供了一种设备间协作装置,应用于无线通信系统中的目标终端,包括:波束接收模块,用于接收所述第一设备发送的第一波束;波束测量模块,用于对所述第一波束进行测量,得到第一测量量;所述波束接收模块还用于:接收所述第二设备发送的第二波束,其中,所述第二波束携带有所述第二波束的标识信息;所述波束测量模块还用于:对所述第二波束进行测量,得到第二测量量;消息发送模块,用于当所述第一测量量与所述第二测量量满足预置条件时,向所述第一设备发送通知消息,所述通知消息包括所述第二波束的标识信息。本发明第九方面提供的设备间协作装置使得第一设备能够获知干扰波束为第二波束,进而仅针对第二波束与第二设备进行传输协作,无针对所有波束进行干扰协作,也不需要静态配置相邻小区的边界用户使用异频资源,因此能够在高频小区中实现设备间的干扰协调。
可选的,预置条件可以包括如下条件中的一项或多项:第一测量量小于第 一预置数值;第二测量量大于第二预置数值;第一测量量与所述第二测量量的差值小于第三预置数值。
可选的,第一波束可以包括如下所述的波束中的任意一种:目标终端接收到的第一设备所发送的轮询波束中的任意一个波束;目标终端接收到的第一设备发送的轮询波束中信号最好的一个波束;目标终端接收到的第一设备所发送的轮询波束中的指定的一个波束;目标终端接收到的由第一设备发送的多个轮询波束的集合,在这种场景下,第一测量量为第一波束中各波束的测量量的平均值。
本发明第十方面提供了一种波束训练装置,应用于无线通信系统中的第二设备,包括:消息接收模块,用于接收目标终端发送的请求消息,所述请求消息用于表示所述目标终端请求与所述第二设备进行波束训练;波束训练模块,用于在接收到所述请求消息后与所述目标终端进行波束训练。本发明第十方面提供的波束训练装置能够与第二设备通过波束训练确定干扰波束,进而为第一设备与第二设备仅针对干扰波束进行传输协作提供了条件。
与第二设备能够通过波束训练确定干扰波束,进而为第一设备与第二设备仅针对干扰波束进行传输协作提供了条件。
可选的,本发明第十方面提供的波束训练装置还包括:干扰确定模块,用于根据与所述目标终端的波束训练的结果,确定对所述目标终端造成干扰的干扰波束的标识信息。
可选的,干扰确定模块可以通过如下方法确定干扰波束的标识信息:确定发射干扰波束的发射角度;确定发射干扰波束的发射矩阵;确定接收该干扰波束的目标终端的标识信息。也可以从目标终端处直接接收干扰波束的标识信息,具体可以为从目标终端处第一通告消息,第一通告消息中包括干扰波束的标识信息。
可选的,本发明第十方面提供的波束训练装置还包括:协作传输模块,用于根据确定的所述干扰波束的标识信息,调整所述干扰波束,以与所述第一设备进行传输协作。
可选的,协作传输模块具体可以通过如下方法中的一项或多项调整干扰波束:降低干扰波束的功率;关闭干扰波束;第一设备通过服务波束与目标终端 进行通信,协作传输模块从第一设备处确定服务波束使用的资源的信息,并在干扰波束上减少使用服务波束使用的资源。
本发明实施例的第十一方面提供了一种波束训练装置,应用于无线通信系统中的目标终端,包括:消息发送模块,用于向所述第二设备发送请求消息,所述请求消息用于请求与所述第二设备进行波束训练;训练波束模块,用于在发送所述请求消息后,与所述第二设备进行波束训练。
可选的,第一设备通过服务波束与所述目标终端进行通信,本发明实施例的第十一方面提供的波束训练装置还包括:测量波束模块,用于对所述服务波束进行测量,得到服务测量量,若所述服务测量量低于第一预设数值,则触发所述消息发送模块执行向所述第二设备发送请求消息的步骤。或,测量波束模块,用于对接收到所述第二设备发送的波束进行测量,得到干扰测量量,若所述干扰测量量大于第二预设数值,则触发所述消息发送模块执行向所述第二设备发送请求消息的步骤。或,测量波束模块,用于对所述服务波束进行测量,得到服务测量量,所述测量波束模块,还用于对接收到所述第二设备发送的波束进行测量,得到干扰测量量,若所述服务测量量与所述干扰测量量的差值小于第三预设数值,则触发所述消息发送模块执行向所述第二设备发送请求消息的步骤。或,所述装置还包括接收消息模块,用于在接收到所述第一设备发送的指示消息时,触发所述消息发送模块执行向所述第二设备发送请求消息的步骤,所述指示消息用于指示所述目标终端与所述第二设备进行波束训练。
可选的,本发明的第十一方面提供的波束训练装置还包括:确定干扰模块,用于根据与所述第二设备的波束训练的结果,确定对所述目标终端造成干扰的干扰波束的标识信息。
可选的,确定干扰模块具体用于通过如下方法中的一项或多项来确定干扰波束的标识信息:确定所述目标终端接收所述干扰波束的接收角度;确定所述干扰波束的预编码矩阵指示PMI;确定所述目标终端的标识信息;从所述第二设备处接收所述干扰波束的标识信息。
可选的,消息发送模块还用于:向所述第二设备发送第一通告消息,所述第一通告消息中包括所述第一设备的标识信息,和所述目标终端确定的所述干扰波束的标识信息;或,向所述第一设备发送第二通告消息,所述第二通告消 息中包括所述第二设备的标识信息,和所述目标终端确定的所述干扰波束的标识信息。
本发明第十二方面提供了相关的设备,包括本发明第七方面提供的设备间协作装置。
本发明第十三方面提供了相关的设备,包括本发明第八方面提供的设备间协作装置。
本发明第十四方面提供了相关的终端,包括本发明第九方面提供的设备间协作装置。
本发明第十五方面提供了相关的设备,包括本发明第十方面提供的波束训练装置。
本发明第十六方面提供了相关的终端,包括本发明第一方面提供的波束训练装置。
本发明第十七方面提供了一种无线通信系统,包括本发明第十二方面至第十六方面的任一项。
本发明实施例提供了一种设备间协作方法,其中,第一设备向目标终端发送第一波束;接收目标终端发送的通知消息,该通知消息用于表示第一波束受到了第二设备发送的第二波束的干扰,该通知消息中包括第二波束的标识信息;第一设备根据通知消息和第二设备进行传输协作,以降低所述第二波束对所述第一波束的干扰。通过这样的方法,使得第一设备能够确定干扰波束,进而能够与第二设备进行协作以降低干扰波束造成的干扰。且由于本发明实施例所提供的方法通过设备间的协作来降低干扰,不需要静态配置相邻小区的边界用户使用异频资源,因此能够在高频小区中实现设备间的干扰协调。
附图说明
图1为ICIC技术原理图;
图2为本发明无线通信系统基本结构示意图;
图3为本发明实施例中设备间协作方法一个实施例流程图;
图4(a)为本发明实施例中波束训练方法一个实施例流程图;
图4(b)为本发明实施例中波束训练方法另一个实施例流程图;
图5为本发明实施例中设备间协作装置一个实施例结构图;
图6为本发明实施例中设备间协作装置另一个实施例结构图;
图7为本发明实施例中设备间协作装置另一个实施例结构图;
图8为本发明实施例中波束训练装置一个实施例结构图;
图9为本发明实施例中波束训练装置另一个实施例结构图;
图10为本发明实施例中设备间协作装置另一个实施例结构图;
图11为本发明实施例中设备间协作装置另一个实施例结构图;
图12为本发明实施例中设备间协作装置另一个实施例结构图;
图13为本发明实施例中波束训练装置另一个实施例结构图;
图14为本发明实施例中波束训练装置另一个实施例结构图。
具体实施方式
本发明实施例提供了设备间协作方法,用于协调高频小区之间的干扰。本发明实施例还提供了相关的波束训练方法、相关装置、设备、终端以及系统,以下将分别进行描述。
本发明实施例提供的方法、装置以及系统主要适用于无线通信系统,具体可以包括长期演进(LTE,Long Term Evolution)系统(包括2G、3G、4G系统,也包括后续的5G系统)、无线保真(WiFi,Wireless-Fidelity)系统、全球微波互联接入(WIMAX,Worldwide Interoperability for Microwave Access)或其它系统。
本发明实施例所涉及的设备(包括第一设备与第二设备,),具体可以包括2G系统中的基站发信台(BTS,Base Transceiver Station)、3G系统中的移动基站(Node B)、4G系统中的演进型Node B(eNB,evolved Node B)、后续5G系统中的基站、家庭演进基站(HeNB,Home evolved Node B)、中继节点(Relay,Relay Node)、微(Femto)基站、微微(Pico)基站,WiFi接入点(AP,Access Point)或其它设备。
本发明实施例所涉及的终端,具体可以包括:如手机、平板、个人PC、移动PC等的用户终端(UE,User Equipment)、还包括高速无线网关(CPE,Customer Premise Equipment)、WiFi站点(STA)或其它终端。
现阶段的技术中一般使用ICIC技术来解决小区间的干扰,其中ICIC技术主要可以分为两种协调方式:部分频率复用(FFR,Fractional Frequency Reuse)和软频率复用(SFR,Soft Frequency Reuse),其基本原理请参阅图1。在FFR技术中,位于小区中心区域的用户可以使用全部频带,但位于小区边界区域的用户只使用部分频带,且不同小区的边界用户使用的频带不同,使得不同小区的边界用户不会受到邻区信号的干扰。而在SFR技术中,位于小区边界的用户可以使用全部频带,但是使用的部分频带要降低功率,以减小对邻区的干扰。由此可以看出,ICIC技术是一种静态的为小区边界区域内的用户分配特定的资源来实现干扰协调的方法。
传统的移动通信传统工作频段主要集中在3GHz以下的频段,频谱资源十分拥挤。随着科学技术的发展,挖掘高频段资源的需求日益明显。本发明实施例中以“高频小区”来称呼使用高频段资源的小区。由于高频段信号的波长较小,因此高频信号的天线尺寸也较小,适合通过大规模的天线阵列来进行BF。BF技术是基于自适应天线原理,利用天线阵列通过先进的信号处理算法分别对各物理天线进行加权处理的一种技术。在接收端看来,整个天线阵列相当于一根虚拟天线。高频天线阵列通过加权处理后,能够形成一个细长的波束对准目标终端,然后通过该细长的波束和目标终端进行通信。由于该波束较细,因此波束的覆盖角度较小,在通信过程中需要不断的跟踪目标终端的位置来调整波束的方向,以求始终与目标终端保持较好的通信质量。可以理解的,若目标终端由小区中心区域移动到小区边界位置,则BF技术发射的波束也要跟踪该目标终端到小区边界位置。这种动态波束覆盖方式,使得高频小区无法为小区边界区域内的用户分配特定的资源,因此不适宜使用小区相对固定的静态覆盖中使用的ICIC技术来实现干扰协调。
为了解决高频小区间的干扰协调问题,本发明实施例提供了相关的设备间协作方法。值得指出的是,本发明实施例提供的方法不仅能够用于协调高频小区之间的干扰,同样适用于2G、3G、4G系统等低频小区。
本发明实施例所提供的设备间协作方法适用于无线通信系统中设备进行波束轮询的场景或其它场景。其中,无线通信系统至少包括目标终端、为目标终端提供服务的第一设备、以及对该第一设备产生干扰的第二设备,请参阅图2。一般的,第一设备与第二设备第一设备的相邻小区,但也可以不位于相邻小区,此处不做限定。第一设备和第二设备之间可以通过高速接口(如基站间接口)实现数据交互。在图2所示的系统的基础上,本发明实施例提供的设备间协作方法的基本流程请参阅图3,包括:
301、第一设备向目标终端发送第一波束;
第一设备向目标终端发送第一波束,目标终端接收该第一波束。其中,本实施例可以应用于第一设备与目标终端进行通讯的场景,此时第一波束可以为通过波束赋形后得到的细长的波束。
此外,上文的论述中提到,高频小区中使用细长的波束来与用户进行通信。由于细长的波束覆盖角较小,因此第一设备在与目标终端建立连接之前,需要先确定目标终端的位置。一般的,第一设备通过波束轮询(也叫波束扫描)来确定目标终端的位置。具体的,由于受限于射频的设计,第一设备无法同时在多个方向上发射多个波束。于是第一设备在不知道目标终端所处位置的情况下,向需要覆盖的区域的各方向轮流发送轮询波束,以发现目标终端的大概位置,这种方法即为波束轮询。其中,和专门用于与特定用户进行通信的细长的波束不同,轮询波束是一种广播性质的波束,其覆盖角较大,这样能够通过较少的轮询波束发现目标终端的位置。本实施例还可以用于波束轮询场景,其中的第一波束还可以为被目标终端所接收的轮询波束。
本实施例还可以应用于其他场景,第一波束还可以为其它种类的波束,此处不做限定。
302、第二设备向目标终端发送第二波束;
第二设备向空间的各个方向发送波束,其中,向目标终端的方向发送第二波束。目标终端接收该第二波束。与步骤301类似的,第二波束也可以为细长的波束、轮询波束或其它种类的波束。其中,由于第二设备并不服务于目标终端,因此其发送的第二波束对于目标终端来说为干扰信号。
一般的,设备会将自身的标识信息在发送的波束中携带。特别的,由于第 二设备会向需要覆盖的各方向发送波束,为了区别这些波束,本实施例中第二设备会为这些波束设置标识信息,其中每个标识信息用于唯一标志一个波束。标识信息可以为标识、特征序列或其它形式,第二设备将标识信息在对应的波束中携带。因此,目标终端所接收的第二波束中携带有第二波束的标识信息。
其中,步骤302也可以位于步骤301之前,本实施例中不做限定。
303、目标终端对接收到的第一波束以及第二波束进行测量。
目标终端对接收到的第一波束进行测量,得到第一测量量。目标终端还对接收到的第二波束进行测量,得到第二测量量。
其中,波束的测量量可以为很多形式的参数,具体可以包括波束的参考信号接收功率(RSRP,Reference Signal Receiving Power)、波束的参考信号接收质量(RSRQ,Reference Signal Receiving Quality)、波束的信噪比等参数中的一项或几项,或根据其中的几项参数计算得到,也可以为其它参数。本实施例中,测量量越大表示波束越好。
304、若第一测量量与第二测量量满足预置条件,则目标终端向第一设备发送通知消息。
若第一测量量与第二测量量满足预置条件,则说明第二波束对第一波束造成了干扰,目标终端向第一设备发送通知消息,第一设备接收该通知消息。其中,通知消息中包括第二波束的标识信息。
其中,预置条件可以由很多预置条件,例如,若第一测量量与第二测量量满足:第一测量量小于第一预置数值、第二测量量大于第二预置数值、第一测量量与第二测量量的差值小于第三预置数值中的一项或多项,则确定第一测量量与第二测量量满足预置条件。其中,第一测量量与第二测量量的差值由第一测量量减去第二测量量得到,其中,第一预置数值、第二预置数值与第三预置数值可以为正数、负数或0。
305、第一设备与第二设备进行传输协作。
第一设备接收到通知消息后,与第二设备设备进行传输协作,以降低第二波束对第一波束的干扰。具体的,第一设备在接收到通知消息后,通过第一设备与第二设备之间的接口发送协作消息给第二设备以进行传输协作。其中,协作消息中可以包括第二波束的标识信息。
第二设备接收到协作消息后,就可以获知第二波束对第一设备发送的波束造成了干扰。于是第二设备调整第二波束以降低第二波束对第一波束的干扰。
第二设备调整第二波束的方法有很多,例如第二设备可以降低第二波束的功率,或直接关闭第二波束,这样第二波束对第一波束的干扰就会大大降低。其中,第二设备降低第二波束的功率的量可以通过与第一设备协商来确定,也可以自主确定,此处不做限定。此外,协作消息中还可以包括第一波束使用的资源(包括时频资源和/或码资源)的信息。具体的,第一波束使用的频域资源可以由物理资源块(Physical Resource Block)或其它信息来表示;第一波束使用的时域资源可以由几乎空白子帧(ABS,Almost Blank Subframe)预置TDD上行-下行配置(TDD UL-DL Configuration)信息或其它信息来表示。第二设备接收到协作消息后,可以在第二波束上减少使用该第一波束使用的资源,具体可以包括如降低第一波束使用的时频资源的功率、部分的减少使用第一波束使用的时频资源和/或码资源、或不使用该第一波束使用的时频资源和/或码资源等方式。这样在降低第二波束对第一波束的干扰的同时,不需要大幅度降低第二波束的功率,使得第二波束仍然能够正常为其它终端服务。其中,第二设备在第一波束使用的时频资源上降低的功率的量可以通过与第一设备协商来确定,也可以自主确定,此处不做限定。第二设备也可以通过其它方法来调整第二波束,此处不做限定。
值得指出的是,现阶段的技术中第一设备和第二设备之间也会进行传输协作。例如若现阶段的技术中第一设备确定第二设备会对第一波束造成影响,则会告知第二设备该第一设备所使用的时频资源,于是第二设备会在小区边界区域对应的时频资源上停止数据发送或者降低功率发送。但是由于高频小区中不再为小区边界区域与中心区域配置不同的资源,故该方法意味着第二设备要在所有的波束上都限制该资源的使用,这无疑会大幅度降低系统的频谱利用效率。而本实施例中,仅在对第一波束造成干扰的第二波束上限制对应的资源的使用,这样就能使系统保持较高的频谱利用效率。
本实施例提供的方法,使得第一设备能够确定干扰波束,进而能够与第二设备进行协作以降低干扰波束造成的干扰。且由于本发明实施例所提供的方法通过第一设备-目标终端-第二设备间的三方协作来降低干扰,不需要静态配置 相邻小区的边界用户使用异频资源,因此能够在高频小区中实现设备间的干扰协调。
其中,步骤303与304为可选步骤,目标终端在接收到第一波束与第二波束后,也可以通过其他方法确定第二波束会对第一波束造成干扰,然后向第一设备发送携带了第二波束的标识信息以及第二设备的标识信息的通知消息。
特别的,步骤304中,目标终端也可以将通知消息发送给第二设备,通知消息中包括第二波束的标识信息,这样步骤305中,第一设备与第二设备进行传输协作的方法具体可以包括:第二设备直接降低第二波束的功率,或关闭第二波束;或,第二设备通过设备间接口,与第一设备确定第一波束使用的资源,然后第二设备不为第二波束使用该第一波束使用的资源,或在第二波束上降低第一波束使用的资源的功率。
特别的,在无线通信系统运行过程中,目标终端有可能在不同时刻多次接收到第一设备发送的波束。在这种情况下,目标终端可以将接收到的第一设备所发送的波束中的任意一个波束作为第一波束、或将接收到的第一设备所发送的波束中信号最好的一个波束作为第一波束、或将接收到的第一设备所发送的波束中指定的一个波束作为第一波束。更为特别的,目标终端可以将接收到的第一设备所发送的多个波束的集合作为第一波束。目标终端对第一波束进行测量,指的是对第一波束中的每个波束进行测量,得到的测量量是第一波束中各波束的测量量的平均值(可以为算数平均值或加权平均值),或者对波束的测量结果按对应的波束进行平均,即对每个波束都有一个测量量。
与上一段类似的,目标终端可以将接收到的第二设备所发送的波束中的任意一个波束作为第二波束、或将接收到的第二设备所发送的波束中信号最好的一个波束作为第二波束、或将接收到的第二设备所发送的波束中指定的一个波束作为第二波束。更为特别的,目标终端可以将接收到的第二设备所发送的多个波束的集合作为第二波束,此时,目标终端对第二波束进行测量,指的是对第二波束中的每个波束进行测量,得到的测量量是第二波束中各波束的测量量的平均值(可以为算数平均值或加权平均值)。
特别的,在本发明的一些实施例中,也可以是波束的测量量越小表示波束越好。在这种情况下,步骤304中的预置条件应相应的变为:若第一测量量与 第二测量量满足:第一测量量大于第一预置数值、第二测量量小于第二预置数值、第一测量量与第二测量量的差值大于第三预置数值,则确定第一测量量与第二测量量满足预置条件。
本实施例中,第一设备为目标终端提供服务,而第二设备发射的波束对于目标终端而言是干扰信号。可以理解的,第二设备本身也会为本小区内的终端服务,而第一设备发射的波束对于第二设备所在小区内的终端而言也是干扰信号。因此步骤301中,第一设备也可以为自身发射的各波束设置标识信息,并将标识信息在对应的波束中携带,以便第二设备所在的小区内的终端确定对其造成干扰的波束。
图3所示的实施例中,第二设备为发射的波束自主配置标识信息,并通过第二设备在第二波束中携带第二波束的标识信息来使终端能够确定干扰波束。该方法在波束轮询等波束较少的场景中能够得到很好的应用。但是在设备与终端进行通信时,使用的是覆盖角很小的细长波束,且设备所发射的这样的波束数量极多,为每个细长的波束分配标识信息会消耗非常多的资源。
一般的,当第一设备通过波束轮询等方法确定了目标终端的位置后,就会与目标终端进行波束训练,进而确定用于与目标终端进行通信的服务波束。与轮询波束不同,服务波束不是广播性质的波束,而是第一设备专门用于与目标终端进行通信的波束。该服务波束可以由天线阵列经过波束赋形技术得到,其形态较为细长,覆盖距离远但覆盖角较小,故也称为铅笔波束。可以理解的,第一设备在使用服务波束与目标终端进行通信时,仍然可能受到干扰小区的信号的干扰。针对这样的场景,本发明实施例提供了另一种设备间协作方法,基本流程包括:
401、目标终端向第二设备发送请求消息;
目标终端向第二设备发送请求消息,该请求消息用于请求与第二设备进行波束训练。第二设备接收该请求消息。
402、第二设备与目标终端进行波束训练;
第二设备在接收到请求消息后,判断是否与目标终端进行波束训练。若判断结果为是,则与目标终端进行波束训练。
目标终端与第二设备进行波束训练的过程与和第一设备进行波束训练的 方法类似,例如,第二设备可以向较大角度的范围内发送多个波束,然后根据目标终端的响应信息,确定目标终端所处的较小的方向范围,然后在该方向范围内再次发送多个波束,以进一步确定目标终端的方向范围。经过多次的确定后,第二设备就能够较为精确的确定目标终端所在的方向。
值得指出的是,由于在通信过程中第二设备与目标终端之间并不会一直存在信道连接,因此现阶段的技术中目标终端并不会与第二设备进行波束训练。
第二设备与目标终端进行波束训练的结果,是确定目标终端的方向,进而确定第二设备在该方向上发送的干扰波束。其中,确定干扰波束的操作可以由第二设备完成,也可以由目标终端完成。以下将分别进行描述。
请参阅图4(a),图4(a)描述的是确定干扰波束的操作由第二设备完成的场景,具体流程包括:
403、第二设备确定干扰波束的标识信息。
第二设备通过与目标终端进行波束训练,能够较为精确的确定目标终端所在的方向。则第二设备在该方向上发送的波束就是干扰波束。
本实施例中,第二设备还可以干扰波束的标识信息。具体的,第二设备可以确定发射该干扰波束的发射角度、发射该干扰波束的发射矩阵、接收该干扰波束的目标终端的标识信息中的一项或几项,也可以为其它形式的信息,此处不做限定。
特别的,本步骤中,干扰波束的标识信息也可以由目标终端来确定,然后第二设备从目标终端处获得。目标终端所确定的干扰波束的标识信息具体可以包括目标终端接收干扰波束的接收角度、干扰波束的预编码矩阵指示(PMI,Precoding Matrix Indicator)、该目标终端的标识信息中的一项或几项,也可以为其它形式的信息,此处不做限定。
404、第二设备与第一设备进行传输协作。
在确定了干扰波束的标识信息后,第二设备根据该干扰波束的标识信息调整干扰波束以与第一设备进行传输协作,实现降低干扰波束对目标终端的干扰。
为了降低干扰波束对目标终端的干扰,第二设备可以直接降低干扰波束的功率或关闭干扰波束。此外,第二设备还可以向第一设备发送协作消息,协作 消息中包括步骤403中第二设备确定的干扰波束的标识信息。这样,第一设备接收到第二设备发送的协作消息后,就能够获知对目标终端造成干扰的干扰波束,进而能够与第二设备进行协作降低干扰波束对目标终端的干扰。例如,第二设备可以降低干扰波束的功率,其中降低的功率的量由第二设备与第一设备协商后确定。第一设备还可以确定服务波束使用的资源(包括时频资源和/或码资源)的信息并告知第二设备。第二设备从第一设备处确定了服务波束使用的资源后,可以在干扰波束上减少使用服务波束使用的资源,如在干扰波束上降低服务波束使用的时频资源的功率、部分的减少使用服务波束使用的时频资源和/或码资源、或不使用服务波束使用的时频资源和/或码资源等方式。这样在降低干扰波束对服务波束的干扰的同时,不需要大幅度降低干扰波束的功率,使得干扰波束仍然能够正常为第二设备本小区的终端服务。
图4(a)描述的是确定干扰波束的操作由第二设备完成的场景,下面将结合图4(b)描述由目标终端来确定干扰波束的场景,其具体流程包括:
405、目标终端确定干扰波束的标识信息。
第二设备通过与目标终端进行波束训练,能够较为精确的确定目标终端所在的方向。则第二设备在该方向上发送的波束就是干扰波束。
本实施例中,目标终端确定干扰波束的标识信息。具体的,目标终端可以确定接收干扰波束的接收角度、干扰波束的PMI、该目标终端的标识信息中的一项或几项,也可以确定其它形式的信息,此处不做限定。
特别的,本步骤中,干扰波束的标识信息也可以由第二设备来确定,然后目标终端从第二设备处获得。第二设备所确定的干扰波束的标识信息具体可以包括发射该干扰波束的发射角度、发射该干扰波束的发射矩阵、接收该目标终端的标识信息中的一项或几项,也可以为其它形式的信息,此处不做限定。
406、目标终端通知第一设备与第二设备中的一个设备与另一个设备进行传输协作。
在确定了干扰波束的标识信息后,目标终端通知第一设备与第二设备中的一个设备与另一个设备进行传输协作,以降低干扰波束对目标终端的干扰。
具体的,目标终端可以向第二设备发送第一通告消息(图未示),第一通告消息中包括第一设备的标识信息,以及目标终端在步骤405中确定的干扰波 束的标识信息。这样第二设备在接收到第一通告消息后,就能够与第一设备进行传输协作,以降低干扰波束对目标终端的干扰。
目标终端还可以向第一设备发送第二通告消息,第二通告消息中包括第二设备的标识信息,以及目标终端在步骤405中确定的干扰波束的标识信息。这样第一设备在接收到第一通告消息后,就能够与第二设备进行传输协作,以降低干扰波束对目标终端的干扰。图4(b)中仅以目标终端还可以向第一设备发送第二通告消息为例进行说明。
407、第一设备与第二设备进行传输协作。
在接收到目标终端发送的第二通告消息后,第一设备根据该第二通告消息与第一设备进行传输协作,以降低干扰波束对目标终端的干扰。
具体的,第一设备可以向第二设备发送协作消息,协作消息中包括干扰波束的标识信息。第二设备在接收到该协作消息后,可以直接关闭干扰波束,也可以降低干扰波束的功率,其中降低的功率的量由第二设备与第一设备协商后确定。协作消息中还可以进一步包括服务波束使用的资源(包括时频资源和/或码资源),使得第二设备可以在干扰波束上减少使用服务波束使用的资源,如在干扰波束上降低服务波束使用的时频资源的功率、部分的减少使用服务波束使用的时频资源和/或码资源、或不使用服务波束使用的时频资源和/或码资源等方式。这样在降低干扰波束对服务波束的干扰的同时,不需要大幅度降低干扰波束的功率,使得干扰波束仍然能够正常为其它终端服务。
其中,若步骤404中目标终端向第二设备发送了第一通告消息,则步骤407中由第二设备与第一设备进行传输协作,其方法与步骤404基本相同,此处不做赘述。
其中,步骤406与步骤407可以参考图3所示的实施例的步骤304与步骤305中,有关目标终端向第一设备发送通知消息、第一设备与第二设备进行传输协作的相关内容。
图4(a)与图4(b)所示的实施例适用于设备与终端进行正常通信的场景,其中,目标终端与第二设备进行波束训练,进而确定干扰波束的标识信息,使得第一设备与第二设备能够通过传输协作以降低干扰波束造成的干扰。且由于本发明实施例所提供的方法通过第一设备-目标终端-第二设备间的三方协 作来降低干扰,不需要静态配置相邻小区的边界用户使用异频资源,因此能够在高频小区中实现设备间的干扰协调。
值得指出的是,现阶段的技术中,第一设备和第二设备之间也会进行传输协作。例如若现阶段的技术中第一设备确定干扰波束会对服务波束造成影响,则会告知第二设备该服务波束所使用的时频资源,于是第二设备会在小区边界区域对应的时频资源上停止数据发送或者降低功率发送。但是由于高频小区中不再为小区边界区域与中心区域配置不同的资源,故该方法意味着第二设备要在所有的波束上都限制该资源的使用,这无疑会大幅度降低系统的频谱利用效率。而本实施例中,仅在对干扰波束上限制对应的资源的使用,这样就能使系统保持较高的频谱利用效率。
可以理解的,目标终端应在第二设备发送的波束对目标终端造成了干扰时,才请求与第二设备进行波束训练。因此目标终端可以先判断第二设备发送的波束是否对目标终端造成了干扰,若判断结果为是,再触发步骤401中的操作。具体的判断方法有很多,例如:
方法一、目标终端对服务波束进行测量,得到服务测量量;若目标终端确定服务测量量低于第一预设数值,则说明服务波束的信号质量不好,容易受到干扰,触发步骤401的操作;
方法二、目标终端对接收到第二设备发送的波束进行测量,得到干扰测量量;若目标终端确定干扰测量量大于第二预设数值,则说明干扰终端发送的波束的干扰过大,触发步骤401的操作;
方法三、目标终端对服务波束进行测量,得到服务测量量;并对接收到第二设备发送的波束进行测量,得到干扰测量量;若服务测量量与干扰测量量的差值小于第三预设数值,则说明第二设备发送的波束对服务波束产生了较大程度的干扰,触发步骤401的操作;
方法四、由第一设备来确定目标终端是否与第二设备进行波束训练。若第一设备确定第二设备发送的波束对服务波束产生了干扰,则向目标终端发送指示消息,该指示消息用于指示目标终端与第二设备进行波束训练。目标终端接收该指示消息后,触发步骤401的操作。
其中,第一预设数值、第二预设数值与第三预设数值的取值均可以为正数、 负数或0,本发明实施例中不做限定。也可以通过其他方法触发步骤401的操作,本发明实施例中不做限定。
其中,服务测量量用于表示服务波束的测量量,干扰测量量用于表示第二设备发送的波束的测量量。其中,波束的测量量可以为很多形式的参数,包括波束的RSRP、RSRQ、信噪比或其它参数。本实施例中,测量量越大表示波束信号越好。在实际应用场景中,若测量量越小表示波束信号越好,则方法一可适应性的变为:若目标终端确定服务测量量高于第一预设数值,触发步骤401的操作;方法二可适应性的变为:若目标终端确定干扰测量量低于第二预设数值,触发步骤401的操作;方法三可适应性的变为:若干扰测量量与服务测量量的差值小于第三预设数值,触发步骤401的操作。
为了便于理解上述实施例,下面将以上述实施例的一个具体应用场景为例进行描述。
在无线通信系统中有相邻的两个小区cell A和cell B,其中基站A为cell A中的UE服务,基站B为cell B中的UE服务。
在该无线通信系统启动时,基站A以自身为中心轮流向6个方向发送轮询波束,此处分别用波束1A、波束2A、波束3A、波束4A、波束5A、波束6A来表示该6个轮询波束,其中每两个轮询波束的夹角为60°,每个轮询波束中携带有该波束自身的标识信息。同样的,基站B也以自身为中心轮流向6个方向发送轮询波束,此处分别用波束1B、波束2B、波束3B、波束4B、波束5B、波束6B来表示该6个轮询波束、其中每两个轮询波束的夹角为60°,每个轮询波束中携带有该波束自身的标识信息。
cell A中的目标UE处于波束2A和波束5B的覆盖范围中,因此接收到了基站A发送的波束2A以及基站B发送的波束5B。于是目标终端分别测量波束2A和波束5B的RSRQ,并比较测量的结果,得到:波束2A的RSRQ与波束5B的RSRQ的差值小于第一阈值,目标UE确定波束5B对波束2A造成了较大的干扰。于是目标UE向基站A发送第一消息,该第一消息中包括波束5B的标识信息。
基站A接收到目标UE发送的第一消息后,就可以获知基站B发射的波束5B对cell A中的目标UE造成了干扰。于是基站A向基站B发送第二消息, 第二消息中包括波束2A使用的时频资源。基站B接收到第二消息后,不在波束5B上使用波束2A所使用的时频资源,这样就实现了基站A与基站B的传输协作。
在波束轮询过后,基站A就确定了目标UE的大致位置,于是基站A采用BF技术,使用铅笔波束A来为目标UE服务。此时基站B也使用铅笔波束为cell B中的基站服务。
目标UE在接收基站A发送的铅笔波束A时,还能够接收到基站B发送的波束,其中基站B发送的波束中并不携带该波束的标志信息,所以目标UE并不能确定接收到的是基站B的哪一个波束。
目标UE测量接收到的铅笔波束A的RSRQ,并测量接收到的基站B发送的波束的RSRQ。目标UE通过比较测量的结果后,得到:铅笔波束A的RSRQ与基站B发送的波束的RSRQ的差值小于第二阈值,目标UE确定基站B发送的波束对铅笔波束A造成了较大的干扰。于是目标UE向基站B发送第三消息,该第三消息用于目标UE请求与基站B进行波束训练,以确定目标UE接收到的是基站B的哪一个波束。
基站B在接收到第三消息后,与目标UE进行波束训练。目标UE通过波束训练,确定目标UE接收到的是基站B发送的铅笔波束B。于是目标UE向基站A发送第四消息,第四消息中包括基站B的标识信息以及铅笔波束B的标识信息。基站A接收到第四消息后,就可以确认基站B发送的铅笔波束B对目标UE造成了干扰,于是基站A向基站B发送第五消息,第五消息中包括铅笔波束A使用的时频资源。基站B接收到第五消息后,不在铅笔波束B上使用铅笔波束A所使用的时频资源。这样就实现了基站A与基站B的传输协作。
上面的实施例介绍了本发明提供的设备间协作方法以及波束训练方法,下面将介绍相关的装置,以实现上述方法。
本发明所提供的设备间协作装置适用于无线通信系统中的设备。其中,无线通信系统至少包括目标终端、为目标终端提供服务的第一设备、以及对该第一设备产生干扰的第二设备。一般的,第一设备与第二设备第一设备的相邻小区,但也可以不位于相邻小区,此处不做限定。第一设备和第二设备之间可以 通过高速接口(如基站间接口)实现数据交互。本发明分别提供了适用于目标终端、第一设备以及第二设备的设备间协作装置,以下将分别进行描述。
本发明实施例提供的适用于第一设备的设备间协作装置的基本结构请参阅图5,包括:
信号发射模块501,用于向目标终端发送第一波束。其中,第一波束可以为通过波束赋形后得到的细长的波束,还可以为被目标终端所接收的轮询波束,还可以为其它种类的波束,此处不做限定。
信号接收模块502,用于接收目标终端发送的通知消息。其中,目标终端接收了信号发射模块501发送的第一波束后,还会接收第二设备发送的第二波束。在确定第一波束受到了第二波束的干扰时,向第一设备发送通知消息,该通知消息用于表示第二波束对第一波束造成了干扰,且该通知消息中包括第二波束的标识信息。信号接收模块502接收了该通知消息后,就能够确定第二波束对第一波束造成了干扰。
信号发射模块501还用于:根据信号接收模块502接收的通知消息,向第二设备发送用于请求和第二设备进行传输协作的协作消息,以和第二设备进行传输协作,实现降低第二波束对第一波束的干扰的目的。其中,协作消息中包括所述第二波束的标识信息。可选的,协作消息中还可以包括第一波束使用的资源的信息。
可以理解的,第二设备本身也会为本小区内的终端服务,而第一设备发射的波束对于第二设备所在小区内的终端而言也是干扰信号。因此信号发射模块501发送的第一波束中也可以携带第一波束的标识信息,以便第二设备所在的小区内的终端确定对其造成干扰的波束。
相应的,本发明实施例提供的适用于第二设备的设备间协作装置的基本结构请参阅图6,包括:
发射信号模块601,用于向目标终端发送第二波束。其中,第二波束可以为通过波束赋形后得到的细长的波束,还可以为被目标终端所接收的轮询波束,还可以为其它种类的波束,此处不做限定。其中,第二波束携带有该第二波束的标识信息。其中,由于第二设备并不服务于目标终端,因此发射信号模块601发送的第二波束对于目标终端来说为干扰信号。
接收信号模块602,用于接收第一设备的协作消息。其中,第一设备通过第一波束为目标终端进行服务,若第一设备确定第二波束对第一波束造成了干扰,会向第二设备发送协作消息,表示第一设备请求与所述第二设备进行传输协作。该协作消息中包括第二波束的标识信息。第二设备的信号接收模块602接收了该协作消息后,就能够确定自身发送的哪个波束对第一波束造成了干扰。
传输协作模块603,用于根据该协作消息调整第二波束,以与第一设备进行传输协作,实现降低第二波束对第一波束的干扰的目的。
可选的,接收信号模块602也可以接收目标终端发送的通知消息,通知消息中包括第二波束的标识信息。这样传输协作模块603可以通过如下方式与第一设备进行传输协作:直接降低第二波束的功率,或关闭第二波束;或,通过设备间接口,与第一设备确定第一波束使用的资源,然后不为第二波束使用该第一波束使用的资源,或在第二波束上降低第一波束使用的资源的功率。
值得指出的是,无线通信网络中的任何一个设备都可以同第一设备一样为本小区内的设备提供提供服务,并同第二设备一样对相邻小区的设备造成干扰。因此,图5与图6所示的各个模块也可以位于无线通信网络中的同一个设备上(如第一设备也可以具有图6所示的设备间协作装置的各个模块,第二设备也可以具有图5所示的设备间协作装置的各个模块),且图5与图6所示的各个模块可以进行进一步的拆分或合并,此处不做限定。
相应的,本发明实施例提供的适用于目标终端的设备间协作装置的基本结构请参阅图7,包括:
波束接收模块701,用于接收第一设备发送的第一波束。
波束测量模块702,用于对第一波束进行测量,得到第一测量量。其中,波束的测量量可以为很多形式的参数,具体可以包括波束的RSRP、波束的RSRQ、波束的信噪比等参数中的一项或几项,或根据其中的几项参数计算得到,也可以为其它参数。本实施例中,测量量越大表示波束越好。
波束接收模块701还用于:接收第二设备发送的第二波束。其中,第二波束携带有第二波束的标识信息;
波束测量模块702还用于:对第二波束进行测量,得到第二测量量;
消息发送模块703,用于当第一测量量与第二测量量满足预置条件时,确定第二波束对第一波束造成了干扰,于是向第一设备发送通知消息,该通知消息包括第二波束的标识信息。其中,预置条件可以由很多预置条件,例如,若第一测量量与第二测量量满足:第一测量量小于第一预置数值、第二测量量大于第二预置数值、第一测量量与第二测量量的差值小于第三预置数值中的一项或多项,则确定第一测量量与第二测量量满足预置条件。其中,第一测量量与第二测量量的差值由第一测量量减去第二测量量得到,其中,第一预置数值、第二预置数值与第三预置数值可以为正数、负数或0。
可选的,消息发送模块703也可以将通知消息发送给第二设备,通知消息中包括第二波束的标识信息。
特别的,在无线通信系统运行过程中,目标终端有可能在不同时刻多次接收到第一设备发送的波束。在这种情况下,波束接收模块701可以将接收到的第一设备所发送的波束中的任意一个波束作为第一波束、或将接收到的第一设备所发送的波束中信号最好的一个波束作为第一波束、或将接收到的第一设备所发送的波束中指定的一个波束作为第一波束。更为特别的,波束接收模块701可以将接收到的第一设备所发送的多个波束的集合作为第一波束。在这种场景下,波束测量模块702对第一波束进行测量,指的是对第一波束中的每个波束进行测量,得到的测量量是第一波束中各波束的测量量的平均值(可以为算数平均值或加权平均值)。
与上一段类似的,波束接收模块701可以将接收到的第二设备所发送的波束中的任意一个波束作为第二波束、或将接收到的第二设备所发送的波束中信号最好的一个波束作为第二波束、或将接收到的第二设备所发送的波束中指定的一个波束作为第二波束。更为特别的,波束接收模块701可以将接收到的第二设备所发送的多个波束的集合作为第二波束,此时,目标终端对第二波束进行测量,指的是对第二波束中的每个波束进行测量,得到的测量量是第二波束中各波束的测量量的平均值(可以为算数平均值或加权平均值)。
特别的,在本发明的一些实施例中,也可以是波束的测量量越小表示波束越好。在这种情况下,消息发送模块703可以在第一测量量与第二测量量满足如下条件中的一项或多项时确定第一测量量与第二测量量满足预置条件:第一 测量量大于第一预置数值、第二测量量小于第二预置数值、第一测量量与第二测量量的差值大于第三预置数值。
其中,图5、图6、和图7分别提供的设备间协作装置之间的交互可以参阅图3所示的实施例,此处不做赘述。
图5、图6、和图7分别提供的设备间协作装置,使得第一设备能够确定干扰波束,进而能够与第二设备进行协作以降低干扰波束造成的干扰。且由于本发明实施例所提供的装置通过第一设备-目标终端-第二设备间的三方协作来降低干扰,不需要静态配置相邻小区的边界用户使用异频资源,因此能够在高频小区中实现设备间的干扰协调。
本发明实施例还提供了一种波束训练装置,适用于第二设备,其结构请参阅图8,包括:
消息接收模块801,用于接收目标终端发送的请求消息,该请求消息用于表示目标终端请求与第二设备进行波束训练;
波束训练模块802,用于在消息接收模块801接收到请求消息后,与目标终端进行波束训练。
波束训练模块802与目标终端进行波束训练的结果,是确定目标终端的方向,进而确定第二设备在该方向上发送的干扰波束。其中,确定干扰波束的操作可以由第二设备完成,也可以由目标终端完成。若由第二设备完成,则适用于第二设备的波束训练装置还包括可选模块:
干扰确定模块803,用于根据与目标终端的波束训练的结果,确定对目标终端造成干扰的干扰波束的标识信息。具体的,干扰确定模块803可以确定发射该干扰波束的发射角度、发射该干扰波束的发射矩阵、接收该干扰波束的目标终端的标识信息中的一项或几项,也可以为其它形式的信息,此处不做限定。特别的,本步骤中,干扰波束的标识信息也可以由目标终端来确定,然后干扰确定模块803从目标终端处获得。目标终端所确定的干扰波束的标识信息具体可以包括目标终端接收干扰波束的接收角度、干扰波束的预编码矩阵指示、该目标终端的标识信息中的一项或几项,也可以为其它形式的信息,此处不做限定。
可选的,波束训练装置还包括可选模块:
协作传输模块804,用于在干扰确定模块803确定了对目标终端造成干扰的干扰波束的标识信息后,根据确定的干扰波束的标识信息,调整干扰波束,以与第一设备进行传输协作,实现降低干扰波束对目标终端的干扰的目的。具体的,协作传输模块804可以直接降低干扰波束的功率或关闭干扰波束。此外,若第一设备使用服务波束为目标终端提供服务,则第一设备可以确定服务波束使用的资源(包括时频资源和/或码资源)的信息并告知第二设备。第二设备的协作传输模块804从第一设备处确定了服务波束使用的资源后,可以在干扰波束上减少使用服务波束使用的资源,如在干扰波束上降低服务波束使用的时频资源的功率、部分的减少使用服务波束使用的时频资源和/或码资源、或不使用服务波束使用的时频资源和/或码资源等方式。这样在降低干扰波束对服务波束的干扰的同时,不需要大幅度降低干扰波束的功率,使得干扰波束仍然能够正常为第二设备本小区的终端服务。
相应的,本发明实施例还提供了适用于目标终端的波束训练装置,其结构请参阅图9,包括:
消息发送模块901,用于向第二设备发送请求消息,该请求消息用于请求与第二设备进行波束训练。
训练波束模块902,用于在发送请求消息后,与第二设备进行波束训练。
可以理解的,目标终端应在第二设备发送的波束对目标终端造成了干扰时,才请求与第二设备进行波束训练。因此适用于目标终端的波束训练装置还包括可选模块测量波束模块903,具体用于:
对服务波束进行测量,得到服务波束的服务测量量。其中服务波束为第一设备用来为目标终端服务的波束;若服务测量量低于第一预设数值,则触发消息发送模块901执行向第二设备发送请求消息的步骤。
或,对接收到的第二设备发送的波束进行测量,得到干扰测量量;若干扰测量量大于第二预设数值,则触发消息发送模块901执行向第二设备发送请求消息的步骤。
或,对服务波束进行测量得到服务测量量,并对接收到的第二设备发送的波束进行测量,得到干扰测量量;若服务测量量与干扰测量量的差值小于第三预设数值,则触发消息发送模块901执行向第二设备发送请求消息的步骤。
其中,第一预设数值、第二预设数值与第三预设数值的取值均可以为正数、负数或0,本发明实施例中不做限定。也可以通过其他方法触发消息发送模块901执行向第二设备发送请求消息的步骤,本发明实施例中不做限定。
其中,服务测量量用于表示服务波束的测量量,干扰测量量用于表示第二设备发送的波束的测量量。其中,波束的测量量可以为很多形式的参数,包括波束的RSRP、RSRQ、信噪比或其它参数。
图9所示的实施例中,测量量越大表示波束信号越好。在实际应用场景中,若测量量越小表示波束信号越好,则测量波束模块903可适应性的变为用于:若确定服务测量量高于第一预设数值,触发消息发送模块901执行向第二设备发送请求消息的步骤;或,若目标终端确定干扰测量量低于第二预设数值,触发消息发送模块901执行向第二设备发送请求消息的步骤;或,若干扰测量量与服务测量量的差值小于第三预设数值,触发消息发送模块901执行向第二设备发送请求消息的步骤。
可选的,第二设备发送的波束是否对目标终端造成了干扰也可以由第一设备来确定,此时波束训练装置还包括可选模块:
接收消息模块904,用于在接收到第一设备发送的指示消息,且该指示消息指示目标终端与第二设备进行波束训练时,触发所述消息发送模块901执行向所述第二设备发送请求消息的步骤。
其中,若确定干扰波束的操作由目标终端完成,则适用于目标终端的波束训练装置还包括可选模块:
确定干扰模块905,用于根据与第二设备的波束训练的结果,确定对该目标终端造成干扰的干扰波束的标识信息。可选的,确定干扰模块具体用于确定接收干扰波束的接收角度、干扰波束的PMI、该目标终端的标识信息中的一项或几项,也可以确定其它形式的信息,此处不做限定。特别的,干扰波束的标识信息也可以由第二设备来确定,然后确定干扰模块905从第二设备处获得。第二设备所确定的干扰波束的标识信息具体可以包括发射该干扰波束的发射角度、发射该干扰波束的发射矩阵、接收该目标终端的标识信息中的一项或几项,也可以为其它形式的信息,此处不做限定。
可选的,在波束训练装置确定了干扰波束的标识信息后,消息发送模块 901还用于:
向第二设备发送第一通告消息,第一通告消息中包括第一设备的标识信息,以及干扰波束的标识信息。这样第二设备在接收到第一通告消息后,就能够与第一设备进行传输协作,以降低干扰波束对目标终端的干扰。
或,向第一设备发送第二通告消息,第二通告消息中包括第二设备的标识信息,以及干扰波束的标识信息。这样第一设备在接收到第一通告消息后,就能够与第二设备进行传输协作,以降低干扰波束对目标终端的干扰。
其中,第一设备与第二设备进行传输协作可以参考图4(a)、图4(b)中的相关描述,此处不做赘述。
图8、图9分别提供的波束训练装置之间的交互可以参考图4(a)、图4(b)中的相关描述,此处不做赘述。
图8、图9所示的实施例中,目标终端与第二设备进行波束训练,进而确定干扰波束的标识信息,使得第一设备与第二设备能够通过传输协作以降低干扰波束造成的干扰。且由于本发明所提供的装置通过第一设备-目标终端-第二设备间的三方协作来降低干扰,不需要静态配置相邻小区的边界用户使用异频资源,因此能够在高频小区中实现设备间的干扰协调。
图5至图9所示的实施例的应用场景可参阅上文中方法的应用场景,此处不做赘述。
上面从单元化功能实体的角度对本发明实施例中的设备间协作装置进行了描述,下面从硬件处理的角度对本发明实施例中的设备间协作装置进行描述,请参阅图10,本发明实施例中适用于第一设备的设备间协作装置另一实施例包括:
输入装置1001、输出装置1002、处理器1003和存储器1004(其中设备间协作装置1000中的处理器1003的数量可以一个或多个,图10中以一个处理器1003为例)。在本发明的一些实施例中,输入装置1001、输出装置1002、处理器1003和存储器1004可通过总线或其它方式连接,其中,图10中以通过总线连接为例。
其中,通过调用存储器1004存储的操作指令,处理器1003用于执行如下步骤:
向目标终端发送第一波束;
接收所述目标终端发送的通知消息,所述通知消息用于表示所述第一波束受到了第二设备发送的第二波束的干扰,所述通知消息中包括所述第二波束的标识信息;
根据所述通知消息,向所述第二设备发送用于请求和所述第二设备进行传输协作的协作消息,其中,所述协作消息中包括所述第二波束的标识信息。
本发明的一些实施例中,所述协作消息中还包括所述第一波束使用的资源的信息。
本发明实施例中适用于第二设备的设备间协作装置另一实施例请参阅图11,包括:
输入装置1101、输出装置1102、处理器1103和存储器1104(其中设备间协作装置1100中的处理器1103的数量可以一个或多个,图11中以一个处理器1103为例)。在本发明的一些实施例中,输入装置1101、输出装置1102、处理器1103和存储器1104可通过总线或其它方式连接,其中,图11中以通过总线连接为例。
其中,通过调用存储器1104存储的操作指令,处理器1103用于执行如下步骤:
向目标终端发送第二波束,所述第二波束携带有所述第二波束的标识信息;
接收所述第一设备的协作消息,所述协作消息中包括所述第二波束的标识信息,所述协作消息用于表示所述第一设备请求与所述第二设备进行传输协作;
根据所述协作消息调整所述第二波束,以与所述第一设备进行传输协作。
本发明的一些实施例中,处理器1103还用于执行如下步骤:
根据所述协作消息,降低所述第二波束的功率;
或,根据所述协作消息,关闭所述第二波束;
和/或,所述协作消息中还包括所述第一波束使用的资源的信息,处理器1103根据所述协作消息,在所述第二波束上减少使用所述第一波束使用的资源。
本发明实施例中适用于目标终端的设备间协作装置另一实施例请参阅图12,包括:
输入装置1201、输出装置1202、处理器1203和存储器1204(其中设备间协作装置1200中的处理器1203的数量可以一个或多个,图12中以一个处理器1203为例)。在本发明的一些实施例中,输入装置1201、输出装置1202、处理器1203和存储器1204可通过总线或其它方式连接,其中,图12中以通过总线连接为例。
其中,通过调用存储器1204存储的操作指令,处理器1203用于执行如下步骤:
接收所述第一设备发送的第一波束,并对所述第一波束进行测量,得到第一测量量;
接收所述第二设备发送的第二波束,并对所述第二波束进行测量,得到第二测量量,其中,所述第二波束携带有所述第二波束的标识信息;
若所述第一测量量与所述第二测量量满足预置条件,则向所述第一设备发送通知消息,所述通知消息包括所述第二波束的标识信息。
本发明的一些实施例中,所述若所述第一测量量与所述第二测量量满足预置条件包括:
若所述第一测量量小于第一预置数值;
和/或,若所述第二测量量大于第二预置数值;
和/或,若所述第一测量量与所述第二测量量的差值小于第三预置数值。
本发明的一些实施例中,所述第一波束包括如下所述的波束中的任意一种:所述目标终端接收到的所述第一设备所发送的轮询波束中的任意一个波束、或所述目标终端接收到的所述第一设备所发送的轮询波束中信号最好的一个波束、或所述目标终端接收到的所述第一设备所发送的轮询波束中的指定的一个波束;
或,所述第一波束具体为:所述目标终端接收到的由所述第一设备发送的多个轮询波束的集合,所述第一测量量为所述第一波束中各波束的测量量的平均值。
本发明实施例中适用于第二设备的波束训练装置另一实施例请参阅图 13,包括:
输入装置1301、输出装置1302、处理器1303和存储器1304(其中波束训练装置1300中的处理器1303的数量可以一个或多个,图13中以一个处理器1303为例)。在本发明的一些实施例中,输入装置1301、输出装置1302、处理器1303和存储器1304可通过总线或其它方式连接,其中,图13中以通过总线连接为例。
其中,通过调用存储器1304存储的操作指令,处理器1303用于执行如下步骤:
接收目标终端发送的请求消息,所述请求消息用于表示所述目标终端请求与所述第二设备进行波束训练;
在接收到所述请求消息后与所述目标终端进行波束训练。
本发明的一些实施例中,处理器1303还用于执行如下步骤:
根据与所述目标终端的波束训练的结果,确定对所述目标终端造成干扰的干扰波束的标识信息。
本发明的一些实施例中,处理器1303还用于执行如下步骤:
确定所述第二设备发射所述干扰波束的发射角度;
和/或,确定所述第二设备发射所述干扰波束的发射矩阵;
和/或,确定接收所述干扰波束的目标终端的标识信息;
和/或,从所述目标终端处接收所述干扰波束的标识信息。
本发明的一些实施例中,处理器1303还用于执行如下步骤:
根据确定的所述干扰波束的标识信息,调整所述干扰波束,以与所述第一设备进行传输协作。
本发明的一些实施例中,处理器1303还用于执行如下步骤:
降低所述干扰波束的功率;
或,关闭所述干扰波束;
和/或,所述第一设备通过服务波束与所述目标终端进行通信,所述处理器1303从所述第一设备处确定所述服务波束使用的资源的信息,并在所述干扰波束上减少使用所述服务波束使用的资源。
本发明实施例中适用于目标终端的波束训练装置另一实施例请参阅图 14,包括:
输入装置1401、输出装置1402、处理器1403和存储器1404(其中波束训练装置1400中的处理器1403的数量可以一个或多个,图14中以一个处理器1403为例)。在本发明的一些实施例中,输入装置1401、输出装置1402、处理器1403和存储器1404可通过总线或其它方式连接,其中,图14中以通过总线连接为例。
其中,通过调用存储器1404存储的操作指令,处理器1403用于执行如下步骤:
向所述第二设备发送请求消息,所述请求消息用于请求与所述第二设备进行波束训练;
在发送所述请求消息后,与所述第二设备进行波束训练。
本发明的一些实施例中,处理器1403还用于执行如下步骤:
对所述服务波束进行测量,得到服务测量量;若确定所述服务测量量低于第一预设数值,则触发向所述第二设备发送请求消息的步骤;
或,对接收到所述第二设备发送的波束进行测量,得到干扰测量量;若确定所述干扰测量量大于第二预设数值,则触发向所述第二设备发送请求消息的步骤;
或,所述服务波束进行测量,得到服务测量量;对接收到所述第二设备发送的波束进行测量,得到干扰测量量;若所述服务测量量与所述干扰测量量的差值小于第三预设数值,则触发向所述第二设备发送请求消息的步骤;
或,若接收到所述第一设备发送的指示消息,所述指示消息用于指示与所述第二设备进行波束训练,则触发向所述第二设备发送请求消息的步骤。
本发明的一些实施例中,处理器1403还用于执行如下步骤:
根据与所述第二设备的波束训练的结果,确定对所述目标终端造成干扰的干扰波束的标识信息。
本发明的一些实施例中,处理器1403还用于执行如下步骤:
确定所述目标终端接收所述干扰波束的接收角度;
和/或,确定所述干扰波束的预编码矩阵指示PMI;
和/或,确定所述目标终端的标识信息;
和/或,从所述第二设备处接收所述干扰波束的标识信息。
本发明的一些实施例中,处理器1403还用于执行如下步骤:
向所述第二设备发送第一通告消息,所述第一通告消息中包括所述第一设备的标识信息,和所述目标终端确定的所述干扰波束的标识信息;
或,向所述第一设备发送第二通告消息,所述第二通告消息中包括所述第二设备的标识信息,和所述目标终端确定的所述干扰波束的标识信息。
本发明还提供了相关的设备,包括图5所示的设备间协作装置、图6所示的设备间协作装置、图8所示的波束训练装置、图10所示的设备间协作装置、图11所示的设备间协作装置、图13所示的波束训练装置中的一项或多项。
本发明还提供了相关的终端,包括如图7所示的设备间协作装置、图9所示的波束训练装置、图12所示的设备间协作装置、图14所示的波束训练装置中的一项或多项。
本发明还提供了一种无线通信系统,包括前两段所述的设备和终端。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元 中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (34)

  1. 一种设备间协作方法,应用于无线通信系统,所述无线通信系统中包括为目标终端提供服务的第一设备,所述无线通信系统还包括第二设备,其特征在于,所述方法包括:
    所述第一设备向所述目标终端发送第一波束;
    所述第一设备接收所述目标终端发送的通知消息,所述通知消息用于表示所述第一波束受到了第二设备发送的第二波束的干扰,所述通知消息中包括所述第二波束的标识信息;
    所述第一设备根据所述通知消息,向所述第二设备发送用于请求和所述第二设备进行传输协作的协作消息,其中,所述协作消息中包括所述第二波束的标识信息。
  2. 根据权利要求1所述的设备间协作方法,其特征在于,所述协作消息中还包括所述第一波束使用的资源的信息。
  3. 一种设备间协作方法,应用于无线通信系统,所述无线通信系统中包括为目标终端提供服务的第一设备,所述无线通信系统还包括第二设备,其特征在于,所述方法包括:
    所述第二设备向目标终端发送第二波束,所述第二波束携带有所述第二波束的标识信息;
    所述第二设备接收所述第一设备的协作消息,所述协作消息中包括所述第二波束的标识信息,所述协作消息用于表示所述第一设备请求与所述第二设备进行传输协作;
    所述第二设备根据所述协作消息调整所述第二波束,以与所述第一设备进行传输协作。
  4. 根据权利要求3所述的设备间协作方法,其特征在于,所述第二设备根据所述协作消息调整所述第二波束包括:
    所述第二设备根据所述协作消息,降低所述第二波束的功率;
    或,所述第二设备根据所述协作消息,关闭所述第二波束;
    和/或,所述协作消息中还包括所述第一波束使用的资源的信息,所述第二设备根据所述协作消息,在所述第二波束上减少使用所述第一波束使用的资 源。
  5. 一种设备间协作方法,应用于无线通信系统,所述无线通信系统中包括为目标终端提供服务的第一设备,所述无线通信系统还包括第二设备,其特征在于,所述方法包括:
    所述目标终端接收所述第一设备发送的第一波束,并对所述第一波束进行测量,得到第一测量量;
    所述目标终端接收所述第二设备发送的第二波束,并对所述第二波束进行测量,得到第二测量量,其中,所述第二波束携带有所述第二波束的标识信息;
    若所述第一测量量与所述第二测量量满足预置条件,则所述目标终端向所述第一设备发送通知消息,所述通知消息包括所述第二波束的标识信息。
  6. 根据权利要求5所述的设备间协作方法,其特征在于,所述若所述第一测量量与所述第二测量量满足预置条件包括:
    若所述第一测量量小于第一预置数值;
    和/或,若所述第二测量量大于第二预置数值;
    和/或,若所述第一测量量与所述第二测量量的差值小于第三预置数值。
  7. 根据权利要求5或6所述的设备间协作方法,其特征在于,所述第一波束包括如下所述的波束中的任意一种:所述目标终端接收到的所述第一设备所发送的轮询波束中的任意一个波束、或所述目标终端接收到的所述第一设备所发送的轮询波束中信号最好的一个波束、或所述目标终端接收到的所述第一设备所发送的轮询波束中的指定的一个波束;
    或,所述第一波束具体为:所述目标终端接收到的由所述第一设备发送的多个轮询波束的集合,所述第一测量量为所述第一波束中各波束的测量量的平均值。
  8. 一种波束训练方法,应用于无线通信系统,所述无线通信系统中包括为目标终端提供服务的第一设备,所述无线通信系统还包括第二设备,其特征在于,所述方法包括:
    所述第二设备接收目标终端发送的请求消息,所述请求消息用于表示所述目标终端请求与所述第二设备进行波束训练;
    所述第二设备在接收到所述请求消息后与所述目标终端进行波束训练。
  9. 根据权利要求8所述的波束训练方法,其特征在于,所述方法还包括:
    所述第二设备根据与所述目标终端的波束训练的结果,确定对所述目标终端造成干扰的干扰波束的标识信息。
  10. 根据权利要求9所述的波束训练方法,其特征在于,所述确定对所述目标终端造成干扰的干扰波束的标识信息包括:
    确定所述第二设备发射所述干扰波束的发射角度;
    和/或,确定所述第二设备发射所述干扰波束的发射矩阵;
    和/或,确定接收所述干扰波束的目标终端的标识信息;
    和/或,从所述目标终端处接收所述干扰波束的标识信息。
  11. 根据权利要求9或10所述的波束训练方法,其特征在于,所述方法在所述确定对所述目标终端造成干扰的干扰波束的标识信息之后还包括:所述第二设备根据确定的所述干扰波束的标识信息,调整所述干扰波束,以与所述第一设备进行传输协作。
  12. 根据权利要求11所述的波束训练方法,其特征在于,所述第二设备调整所述干扰波束,以与所述第一设备进行传输协作包括:
    所述第二设备降低所述干扰波束的功率;
    或,所述第二设备关闭所述干扰波束;
    和/或,所述第一设备通过服务波束与所述目标终端进行通信,所述第二设备从所述第一设备处确定所述服务波束使用的资源的信息,并在所述干扰波束上减少使用所述服务波束使用的资源。
  13. 一种波束训练方法,应用于无线通信系统,所述无线通信系统中包括为目标终端提供服务的第一设备,所述无线通信系统还包括第二设备,其特征在于,所述方法包括:
    所述目标终端向所述第二设备发送请求消息,所述请求消息用于请求与所述第二设备进行波束训练;
    所述目标终端在发送所述请求消息后,与所述第二设备进行波束训练。
  14. 根据权利要求13所述的波束训练方法,其特征在于,所述第一设备通过服务波束与所述目标终端进行通信,所述目标终端向所述第二设备发送请求消息之前还包括:
    所述目标终端对所述服务波束进行测量,得到服务测量量;
    若所述目标终端确定所述服务测量量低于第一预设数值,则触发所述目标终端向所述第二设备发送请求消息的步骤;
    或,
    所述目标终端对接收到所述第二设备发送的波束进行测量,得到干扰测量量;
    若所述目标终端确定所述干扰测量量大于第二预设数值,则触发所述目标终端向所述第二设备发送请求消息的步骤;
    或,
    所述目标终端对所述服务波束进行测量,得到服务测量量;
    所述目标终端对接收到所述第二设备发送的波束进行测量,得到干扰测量量;
    若所述服务测量量与所述干扰测量量的差值小于第三预设数值,则触发所述目标终端向所述第二设备发送请求消息的步骤;
    或,
    若所述目标终端接收到所述第一设备发送的指示消息,所述指示消息用于指示所述目标终端与所述第二设备进行波束训练,则触发所述目标终端向所述第二设备发送请求消息的步骤。
  15. 根据权利要求13或14所述的波束训练方法,其特征在于,所述方法还包括:
    所述目标终端根据与所述第二设备的波束训练的结果,确定对所述目标终端造成干扰的干扰波束的标识信息。
  16. 根据权利要求15所述的波束训练方法,其特征在于,所述确定对所述目标终端造成干扰的干扰波束的标识信息包括:
    确定所述目标终端接收所述干扰波束的接收角度;
    和/或,确定所述干扰波束的预编码矩阵指示PMI;
    和/或,确定所述目标终端的标识信息;
    和/或,从所述第二设备处接收所述干扰波束的标识信息。
  17. 根据权利要求15或16所述的波束训练方法,其特征在于,所述方法 在所述确定对所述目标终端造成干扰的干扰波束的标识信息之后还包括:
    所述目标终端向所述第二设备发送第一通告消息,所述第一通告消息中包括所述第一设备的标识信息,和所述目标终端确定的所述干扰波束的标识信息;
    或,所述目标终端向所述第一设备发送第二通告消息,所述第二通告消息中包括所述第二设备的标识信息,和所述目标终端确定的所述干扰波束的标识信息。
  18. 一种设备间协作装置,应用于无线通信系统中的第一设备,所述第一设备用于为所述无线通信系统中的目标终端提供服务,所述无线通信系统还包括第二设备,其特征在于,所述装置包括:
    信号发射模块,用于向所述目标终端发送第一波束;
    信号接收模块,用于接收所述目标终端发送的通知消息,所述通知消息用于表示所述第一波束受到了第二设备发送的第二波束的干扰,所述通知消息中包括所述第二波束的标识信息;
    所述信号发射模块还用于:根据所述通知消息,向所述第二设备发送用于请求和所述第二设备进行传输协作的协作消息,其中,所述协作消息中包括所述第二波束的标识信息。
  19. 根据权利要求18所述的设备间协作装置,其特征在于,所述协作消息中还包括所述第一波束使用的资源的信息。
  20. 一种设备间协作装置,应用于无线通信系统中的第二设备,所述无线通信系统中还包括为目标终端提供服务的第一设备,其特征在于,所述装置包括:
    发射信号模块,用于向目标终端发送第二波束,所述第二波束携带有所述第二波束的标识信息;
    接收信号模块,用于接收所述第一设备的协作消息,所述协作消息中包括所述第二波束的标识信息,所述协作消息用于表示所述第一设备请求与所述第二设备进行传输协作;
    传输协作模块,用于根据所述协作消息调整所述第二波束,以与所述第一设备进行传输协作。
  21. 根据权利要求20所述的设备间协作装置,其特征在于,所述传输协作模块具体用于:
    根据所述协作消息,降低所述第二波束的功率;
    或,根据所述协作消息,关闭所述第二波束;
    和/或,所述协作消息中还包括所述第一波束使用的资源的信息,所述传输协作模块还用于根据所述协作消息,在所述第二波束上减少使用所述第一波束使用的资源。
  22. 一种设备间协作装置,应用于无线通信系统中的目标终端,所述无线通信系统还包括为目标终端提供服务的第一设备,所述无线通信系统还包括第二设备,其特征在于,所述装置包括:
    波束接收模块,用于接收所述第一设备发送的第一波束;
    波束测量模块,用于对所述第一波束进行测量,得到第一测量量;
    所述波束接收模块还用于:接收所述第二设备发送的第二波束,其中,所述第二波束携带有所述第二波束的标识信息;
    所述波束测量模块还用于:对所述第二波束进行测量,得到第二测量量;
    消息发送模块,用于当所述第一测量量与所述第二测量量满足预置条件时,向所述第一设备发送通知消息,所述通知消息包括所述第二波束的标识信息。
  23. 根据权利要求22所述的设备间协作装置,其特征在于,所述预置条件包括:
    所述第一测量量小于第一预置数值;
    和/或,所述第二测量量大于第二预置数值;
    和/或,所述第一测量量与所述第二测量量的差值小于第三预置数值。
  24. 根据权利要求22或23所述的设备间协作装置,其特征在于,所述第一波束包括如下所述的波束中的任意一种:所述波束接收模块接收到的所述第一设备所发送的轮询波束中的任意一个波束、或所述波束接收模块接收到的所述第一设备所发送的轮询波束中信号最好的一个波束、或所述波束接收模块接收到的所述第一设备所发送的轮询波束中的指定的一个波束;
    或,所述第一波束具体为:所述波束接收模块接收到的由所述第一设备发 送的多个轮询波束的集合,所述第一测量量为所述第一波束中各波束的测量量的平均值。
  25. 一种波束训练装置,应用于无线通信系统中的第二设备,所述无线通信系统中还包括为目标终端提供服务的第一设备,其特征在于,所述装置包括:
    消息接收模块,用于接收目标终端发送的请求消息,所述请求消息用于表示所述目标终端请求与所述第二设备进行波束训练;
    波束训练模块,用于在接收到所述请求消息后与所述目标终端进行波束训练。
  26. 根据权利要求25所述的波束训练装置,其特征在于,所述装置还包括:
    干扰确定模块,用于根据与所述目标终端的波束训练的结果,确定对所述目标终端造成干扰的干扰波束的标识信息。
  27. 根据权利要求26所述的波束训练装置,其特征在于,所述干扰确定模块具体用于:
    确定所述第二设备发射所述干扰波束的发射角度;
    和/或,确定所述第二设备发射所述干扰波束的发射矩阵;
    和/或,确定接收所述干扰波束的目标终端的标识信息;
    和/或,从所述目标终端处接收所述干扰波束的标识信息。
  28. 根据权利要求26或27所述的波束训练装置,其特征在于,所述装置还包括:
    协作传输模块,用于根据确定的所述干扰波束的标识信息,调整所述干扰波束,以与所述第一设备进行传输协作。
  29. 根据权利要求28所述的波束训练装置,其特征在于,所述协作传输模块具体用于:
    降低所述干扰波束的功率;
    或,关闭所述干扰波束;
    和/或,所述第一设备通过服务波束与所述目标终端进行通信,所述消息接收模块还用于从所述第一设备处接收所述服务波束使用的资源的信息,所述协作传输模块还用于在所述干扰波束上减少使用所述服务波束使用的资源。
  30. 一种波束训练装置,应用于无线通信系统中的目标终端,所述无线通信系统还包括为目标终端提供服务的第一设备,所述无线通信系统还包括第二设备,其特征在于,所述装置包括:
    消息发送模块,用于向所述第二设备发送请求消息,所述请求消息用于请求与所述第二设备进行波束训练;
    训练波束模块,用于在发送所述请求消息后,与所述第二设备进行波束训练。
  31. 根据权利要求30所述的波束训练装置,其特征在于,所述第一设备通过服务波束与所述目标终端进行通信,所述装置还包括:
    测量波束模块,用于对所述服务波束进行测量,得到服务测量量;
    若所述服务测量量低于第一预设数值,则触发所述消息发送模块执行向所述第二设备发送请求消息的步骤;
    或,
    测量波束模块,用于对接收到所述第二设备发送的波束进行测量,得到干扰测量量;
    若所述干扰测量量大于第二预设数值,则触发所述消息发送模块执行向所述第二设备发送请求消息的步骤;
    或,
    测量波束模块,用于对所述服务波束进行测量,得到服务测量量;
    所述测量波束模块,还用于对接收到所述第二设备发送的波束进行测量,得到干扰测量量;
    若所述服务测量量与所述干扰测量量的差值小于第三预设数值,则触发所述消息发送模块执行向所述第二设备发送请求消息的步骤;
    或,
    所述装置还包括接收消息模块,用于在接收到所述第一设备发送的指示消息时,触发所述消息发送模块执行向所述第二设备发送请求消息的步骤,所述指示消息用于指示所述目标终端与所述第二设备进行波束训练。
  32. 根据权利要求30或31所述的波束训练装置,其特征在于,所述装置还包括:
    确定干扰模块,用于根据与所述第二设备的波束训练的结果,确定对所述目标终端造成干扰的干扰波束的标识信息。
  33. 根据权利要求32所述的波束训练装置,其特征在于,所述确定干扰模块具体用于:
    确定所述目标终端接收所述干扰波束的接收角度;
    和/或,确定所述干扰波束的预编码矩阵指示PMI;
    和/或,确定所述目标终端的标识信息;
    和/或,从所述第二设备处接收所述干扰波束的标识信息。
  34. 根据权利要求32或33所述的波束训练装置,其特征在于,所述消息发送模块还用于:
    向所述第二设备发送第一通告消息,所述第一通告消息中包括所述第一设备的标识信息,和所述目标终端确定的所述干扰波束的标识信息;
    或,向所述第一设备发送第二通告消息,所述第二通告消息中包括所述第二设备的标识信息,和所述目标终端确定的所述干扰波束的标识信息。
PCT/CN2016/101312 2015-11-09 2016-09-30 设备间协作方法、波束训练方法及装置 WO2017080332A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16863509.2A EP3364552B1 (en) 2015-11-09 2016-09-30 Inter-device cooperation method, wave beam training method and apparatus
US15/974,278 US10666336B2 (en) 2015-11-09 2018-05-08 Inter-device coordination method, beam training method, and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510759382.0 2015-11-09
CN201510759382.0A CN106685504B (zh) 2015-11-09 2015-11-09 设备间协作方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/974,278 Continuation US10666336B2 (en) 2015-11-09 2018-05-08 Inter-device coordination method, beam training method, and apparatus

Publications (1)

Publication Number Publication Date
WO2017080332A1 true WO2017080332A1 (zh) 2017-05-18

Family

ID=58694710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101312 WO2017080332A1 (zh) 2015-11-09 2016-09-30 设备间协作方法、波束训练方法及装置

Country Status (4)

Country Link
US (1) US10666336B2 (zh)
EP (1) EP3364552B1 (zh)
CN (1) CN106685504B (zh)
WO (1) WO2017080332A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3627875A4 (en) * 2017-06-15 2020-04-22 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3503612A4 (en) * 2016-12-23 2019-08-14 Guangdong OPPO Mobile Telecommunications Corp., Ltd. CONTROL CHANNEL TRANSMISSION METHOD, NETWORK DEVICE, AND TERMINAL DEVICE
CN110463244B (zh) * 2017-02-10 2022-12-20 株式会社Ntt都科摩 终端、无线通信方法以及系统
CN109076358B (zh) * 2017-03-17 2022-04-08 Tcl通讯科技(成都)有限公司 波束调节方法及节点
CN116015388A (zh) * 2017-07-21 2023-04-25 南通朗恒通信技术有限公司 一种被用于波束赋形的用户、基站中的方法和装置
CN109302726B (zh) 2017-07-25 2020-12-15 华为技术有限公司 测量方法、终端设备和接入网设备
CN109391997B (zh) * 2017-08-04 2022-11-04 华为技术有限公司 小区间干扰协调和测量上报的方法、设备及系统
CN109451856B (zh) * 2017-08-30 2023-07-04 北京小米移动软件有限公司 最佳波束上报和确定方法及装置、用户设备、基站
CN109587699B (zh) * 2017-09-29 2021-07-09 华为技术有限公司 传输数据的方法和装置
CN112514439A (zh) * 2018-08-07 2021-03-16 瑞典爱立信有限公司 无线电接入网络中的bs到bs干扰的处置
CN110912592B (zh) * 2018-09-14 2023-02-03 华为技术有限公司 波束训练的方法和装置
US10715238B2 (en) 2018-09-28 2020-07-14 At&T Intellectual Property I, L.P. Outcome based receiver beam tuning
CN111194040B (zh) * 2018-11-15 2023-03-28 成都华为技术有限公司 波束上报的方法与装置
US11206074B2 (en) * 2018-12-06 2021-12-21 Qualcomm Incorporated Determining sub-dominant clusters in a millimeter wave channel
US11695462B2 (en) * 2019-01-29 2023-07-04 Qualcomm Incorporated Techniques for coordinated beamforming in millimeter wave systems
CN112135304A (zh) * 2019-06-25 2020-12-25 中兴通讯股份有限公司 一种基于非独立组网nsa系统的波束管理方法和装置
CN115378472A (zh) * 2021-05-19 2022-11-22 北京小米移动软件有限公司 通信方法、装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2254261A2 (en) * 2009-05-21 2010-11-24 Samsung Electronics Co., Ltd. Apparatus and method for reducing inter-cell interference in wireless communication system
CN103369539A (zh) * 2012-04-06 2013-10-23 华为技术有限公司 干扰协调的方法和装置
CN103688583A (zh) * 2011-07-22 2014-03-26 阿尔卡特朗讯 波束协调方法以及用于该方法的基站和用户终端
CN103931109A (zh) * 2011-09-14 2014-07-16 三星电子株式会社 在无线通信系统中形成虚拟小区的方法和装置
CN104918260A (zh) * 2014-03-10 2015-09-16 北京三星通信技术研究有限公司 小区间的干扰中和方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8867380B2 (en) 2009-02-02 2014-10-21 Qualcomm Incorporated Scheduling algorithms for cooperative beamforming
EP4333319A1 (en) 2009-07-08 2024-03-06 Electronics And Telecommunications Research Institute Method for sending and receiving data on a cooperative communications system
CN102122977B (zh) * 2010-01-11 2013-12-04 电信科学技术研究院 反馈cqi信息及信道质量估计的方法、用户终端及基站
CN101877608B (zh) * 2010-06-30 2015-07-22 中兴通讯股份有限公司 一种针对协作波束赋型的优化加权csi反馈方法和装置
KR101678610B1 (ko) * 2010-07-27 2016-11-23 삼성전자주식회사 롱텀 채널 정보를 기반으로 다중 노드 간 서브밴드 별 협력 통신을 수행하는 방법 및 장치
CN103178886B (zh) * 2011-12-21 2017-12-26 中兴通讯股份有限公司 波束赋形方法、通信站及移动站
WO2015027522A1 (zh) * 2013-09-02 2015-03-05 华为技术有限公司 一种上行协作发射方法及设备
KR101853749B1 (ko) * 2013-09-06 2018-05-02 후아웨이 테크놀러지 컴퍼니 리미티드 무선 통신 시스템에서 무선 자원의 스케줄링 및/또는 뮤팅 방법
EP2863695B1 (en) * 2013-10-16 2016-07-27 Telefonica S.A. A method and a system for beam coordination between base stations in wireless cellular systems and computer program thereof
US20160269087A1 (en) * 2015-03-12 2016-09-15 Qualcomm Incorporated Signaling for millimeter wave interference and scheduling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2254261A2 (en) * 2009-05-21 2010-11-24 Samsung Electronics Co., Ltd. Apparatus and method for reducing inter-cell interference in wireless communication system
CN103688583A (zh) * 2011-07-22 2014-03-26 阿尔卡特朗讯 波束协调方法以及用于该方法的基站和用户终端
CN103931109A (zh) * 2011-09-14 2014-07-16 三星电子株式会社 在无线通信系统中形成虚拟小区的方法和装置
CN103369539A (zh) * 2012-04-06 2013-10-23 华为技术有限公司 干扰协调的方法和装置
CN104918260A (zh) * 2014-03-10 2015-09-16 北京三星通信技术研究有限公司 小区间的干扰中和方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3364552A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3627875A4 (en) * 2017-06-15 2020-04-22 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE

Also Published As

Publication number Publication date
EP3364552A1 (en) 2018-08-22
US10666336B2 (en) 2020-05-26
EP3364552B1 (en) 2020-09-16
CN106685504B (zh) 2020-08-07
CN106685504A (zh) 2017-05-17
EP3364552A4 (en) 2019-02-20
US20180254809A1 (en) 2018-09-06

Similar Documents

Publication Publication Date Title
WO2017080332A1 (zh) 设备间协作方法、波束训练方法及装置
JP6097371B2 (ja) 干渉制御方法および装置
US10117107B2 (en) Method, apparatus, system and computer program
JP2020528685A (ja) Bwp内の参照信号を利用してrsrqを測定する方法及びこれを実行する端末
US11979763B2 (en) Method for channel measurement and device thereof
EP3641202B1 (en) Downlink control information transmission and reception methods and devices
US11489576B2 (en) Resolving ambiguities related to NR cell quality derivation
WO2015043469A1 (zh) 天线系统及处理方法
WO2021027376A1 (zh) 一种共生网络中的资源配置方法及装置
JP6872634B2 (ja) 協調セル決定方法及びネットワークデバイス
US20220272668A1 (en) Wireless communication resource allocation method and apparatus, and communication device
US20230069371A1 (en) Wireless communication method, terminal device, and network device
WO2019238007A1 (zh) 检测波束的方法和装置
EP4008122A1 (en) Positioning-specific beam refinement for neighbor cell positioning reference signal (prs) transmission
JP2024515822A (ja) モビリティ管理方法および通信装置
CN103458458B (zh) 载波测量方法及装置
WO2023236518A1 (zh) 一种通信方法及终端、存储介质
WO2022228171A1 (zh) 调整参考信号发射功率的方法和装置
WO2019033328A1 (en) METHOD, COMPUTER PROGRAM, AND APPARATUS
WO2019029493A1 (zh) 一种降低终端设备干扰的方法及基站
WO2024061012A1 (zh) 一种波束确定的方法和装置
US20230056592A1 (en) User Equipment-Autonomously Triggered-Sounding Reference Signals
WO2022022553A1 (zh) 干扰协调处理方法及相关设备
WO2022233191A1 (zh) 一种用于上报小区或载波信息的方法及装置
US20240237047A1 (en) Scheduling cell edge users to avoid cross link interference

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016863509

Country of ref document: EP