WO2017080277A1 - 一种反向供电线路噪声定位方法和装置 - Google Patents

一种反向供电线路噪声定位方法和装置 Download PDF

Info

Publication number
WO2017080277A1
WO2017080277A1 PCT/CN2016/096054 CN2016096054W WO2017080277A1 WO 2017080277 A1 WO2017080277 A1 WO 2017080277A1 CN 2016096054 W CN2016096054 W CN 2016096054W WO 2017080277 A1 WO2017080277 A1 WO 2017080277A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
noise
line
rpf
communication quality
Prior art date
Application number
PCT/CN2016/096054
Other languages
English (en)
French (fr)
Inventor
卢刘明
袁立权
张伟良
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP16863455.8A priority Critical patent/EP3376241A4/en
Publication of WO2017080277A1 publication Critical patent/WO2017080277A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M19/00Current supply arrangements for telephone systems
    • H04M19/08Current supply arrangements for telephone systems with current supply sources at the substations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements

Definitions

  • the present application relates to, but is not limited to, the field of reverse power supply (RPF) technology, and more particularly to a reverse power supply line noise positioning method and apparatus.
  • RPF reverse power supply
  • Fiber to the Distribution Point is an important application scenario for copper access systems.
  • the Distribution Point Unit DPU
  • the downlink is connected to the Customer Premise Equipment (CPE) through the copper access system.
  • the fiber access system includes a passive optical network (PON) system and a point-to-point (P2P) fiber system;
  • the copper access system includes a fast access user terminal (Fast Access To). Subscriber Terminals, FAST) system, Very High Speed Digital Subscriber Line 2 (VDSL2) system. Due to the limited power supply environment in the FTTdp application scenario, local power supply is very difficult.
  • Reverse Power Feed is a function that the copper access system must support.
  • Power Supply Equipment is used to power the DPU.
  • the PSE is integrated with a client device (CPE) on a device or a standalone device.
  • CPE client device
  • the copper access system supplies power to the central office equipment DPU through the RPF mode, and brings power to the DPU, and also brings an interference source to the user line.
  • Power supply noise is a type of electromagnetic interference with a spectrum of conducted noise ranging from 10 kilohertz (kHz) to 30 megahertz (MHz) up to 150 MHz.
  • Power supply noise, especially transient noise interference has a fast rising speed, short duration, high voltage amplitude, and high randomness, which is likely to cause serious interference to microcomputers and digital circuits.
  • this paper provides a method and device for positioning the noise of the reverse power supply line.
  • a method for positioning noise of a reverse power supply line comprising:
  • Detecting the first noise condition of the subscriber line when the reverse power supply RPF state is not detected detecting the power supply equipment PSE power supply line of the user terminal, and the power supply equipment PE of the distribution point unit DPU and the power supply unit PSU, and the user line when the power supply state is performed a noise condition, and a third noise condition of the subscriber line when detecting that the PSE of the user terminal disconnects from the PE and PSU of the DPU and maintains the state of the PSE power supply;
  • comparing the first noise condition of the user line, the second noise condition of the user line, and/or the third noise condition of the user line, determining whether the RPF power supply has power supply noise affecting the user line includes:
  • the method further includes: determining, when the RPF power supply has power supply noise affecting the user line, determining an orientation and a cause of the noise caused by the RPF power supply.
  • the method further includes: when the RPF power supply has power supply noise affecting the subscriber line, stopping power supply of the corresponding RPF line and/or setting an operating state of the RPF line to a low power consumption state.
  • determining an orientation and cause of the noise caused by the RPF power supply includes determining the DPU The RPF power supply device or the RPF power supply device of the user terminal has a fault that causes the power supply noise to affect the subscriber line.
  • the second noise condition of the subscriber line, and the third noise condition of the subscriber line when detecting that the PSE of the user terminal is disconnected from the PE and the PSU of the DPU and maintaining the state of the PSE power supply includes:
  • the PSE power supply line of the user terminal When detecting the non-reverse power supply RPF state, the PSE power supply line of the user terminal is connected to the power take-off device PE of the DPU and the power supply unit PSU, and the power supply state is connected, and the PSE of the user terminal and the PE of the DPU The communication quality parameter of the subscriber line when disconnected from the PSU and maintaining the state of the PSE power supply.
  • the PSE power supply line of the user terminal when the PSE power supply line of the user terminal is connected to the power receiving device PE of the DPU and the power supply unit PSU, and the power supply state is performed, and the PSE and the user terminal
  • the communication quality parameters of the subscriber line when the PE and the PSU of the DPU are disconnected and maintain the PSE power supply state include:
  • the PSE power supply state is configured to detect a communication quality parameter corresponding to a third noise condition of the user line, and when the communication quality parameter corresponding to the third noise condition of the user line does not exceed the third preset range of the corresponding parameter, the PSE is powered.
  • the line is connected to the PE and the PSU of the DPU, and detects a communication quality parameter corresponding to the second noise condition of the user line;
  • the PSE is disconnected from the PE and the PSU of the DPU, and the communication quality parameter corresponding to the first noise condition of the user line is detected, and the communication quality parameter corresponding to the first noise condition of the user line does not exceed the corresponding
  • the state of the PSE power supply is turned on, and the communication quality parameter corresponding to the third noise condition of the user line is detected.
  • the communication quality parameter includes one or more of the following: a signal to noise ratio SNR, a line attenuation value, a no data signal line noise QLN, and a normal working line noise ALN.
  • comparing the first noise condition of the user line, the second noise condition of the user line, and/or the third noise condition of the user line, determining whether the RPF power supply has power supply noise affecting the user line includes:
  • the RPF power supply has power supply noise affecting the subscriber line
  • the RPF power supply has power supply noise affecting the subscriber line, and determines that the RPF power supply device of the user terminal has a fault and causes power supply noise;
  • the communication quality parameter corresponding to the first noise condition of the user line When the communication quality parameter corresponding to the first noise condition of the user line is detected does not exceed the first preset range of the corresponding parameter, and the communication quality parameter corresponding to the second noise condition of the user line exceeds the second preset range of the corresponding parameter, and the user line
  • the communication quality parameter corresponding to the third noise condition does not exceed the third preset range of the corresponding parameter, determining that the RPF power supply has power supply noise affecting the user line, and determining that the RPF power supply device of the DPU has a fault and causing power supply noise.
  • the method further includes: reporting the orientation and cause of the noise caused by the RPF power supply to the network management system.
  • a reverse power supply line noise locating device comprising:
  • the power supply noise detecting module is configured to: detect the first noise condition of the subscriber line when the reverse power supply RPF state is not detected, and detect the power supply equipment PSE power supply line of the user terminal and the power receiving equipment PE of the distribution point unit DPU and the power supply unit PSU a second noise condition of the subscriber line in the power supply state, and a third noise condition of the subscriber line when detecting that the PSE of the user terminal is disconnected from the PE and the PSU of the DPU and maintaining the state of the PSE power supply;
  • the power supply noise analysis module is configured to: compare the first noise condition of the user line, and the second noise condition of the user line and/or the third noise condition of the user line, and determine whether the power supply noise of the RPF power supply affects the user line.
  • the power supply noise analysis module is configured to:
  • the power supply noise analysis module is further configured to determine an orientation and a cause of noise caused by the RPF power supply when the RPF power supply has power supply noise affecting the user line.
  • the device further includes a power supply noise processing module, configured to: when the RPF power supply has power supply noise affecting the user line, triggering the detection power-off function module to stop power supply of the corresponding RPF line and/or The working state of the RPF line is set to a low power state, or the power control interface module is triggered to control the power control module to stop power supply of the corresponding RPF line and/or set the working state of the RPF line to a low power state, or trigger The switching control module stops powering the corresponding RPF line and/or sets the operating state of the RPF line to a low power state.
  • a power supply noise processing module configured to: when the RPF power supply has power supply noise affecting the user line, triggering the detection power-off function module to stop power supply of the corresponding RPF line and/or The working state of the RPF line is set to a low power state, or the power control interface module is triggered to control the power control module to stop power supply of the corresponding RPF line and/or set the working state of the R
  • the power supply noise analysis module is configured to: determine that the RPF power supply device of the DPU or the RPF power supply device of the user terminal has a fault, and the power supply noise affects the user line.
  • the power noise detection module is configured to:
  • the PSE power supply line of the user terminal When detecting the non-reverse power supply RPF state, the PSE power supply line of the user terminal is connected to the power take-off device PE of the DPU and the power supply unit PSU, and the power supply state is connected, and the PSE of the user terminal and the PE of the DPU The communication quality parameter of the subscriber line when disconnected from the PSU and maintaining the state of the PSE power supply.
  • the device further includes: a detection conversion control module; the power supply noise detection module is configured to: when there is no reverse power supply RPF state, detect a communication quality parameter corresponding to the first noise condition of the user line, the power supply noise
  • the analysis module is configured to: when the communication quality parameter corresponding to the first noise condition of the user line exceeds the first preset range of the corresponding parameter, determine that the user line has no fault when the RPF is powered, and is further configured to: when the user When the communication quality parameter corresponding to the first noise condition of the line does not exceed the first preset range of the corresponding parameter, the detection detection conversion control module is triggered to open the PSE power supply state, so that the PSE is connected to the detection power-on function module, power supply
  • the noise detection module is configured to: detect a communication quality parameter corresponding to a third noise condition of the user line, where the power supply noise analysis module is configured to: when the third noise condition corresponding to the third noise condition of the user line exceeds a corresponding parameter, the third preset When the range is
  • the detection conversion control module is configured to: connect the PSE power supply line to the PE and the PSU of the DPU, and the power supply noise detection module is configured to: detect a communication quality parameter corresponding to a second noise condition of the user line
  • the power supply noise analysis module is further configured to: when the communication quality parameter corresponding to the second noise condition of the user line exceeds the second preset range of the corresponding parameter, triggering the detection power-off function module to stop the power supply of the line or trigger the power control
  • the interface module controls the power control module to stop the power supply of the line, and the power noise detection module is configured to: detect a communication quality parameter corresponding to the first noise condition of the user line, where the power noise analysis module is configured to: when the user line is first When the communication quality parameter corresponding to the noise condition exceeds the first preset range of the corresponding parameter, it is determined that there is a fault when the user line does not have the RPF power supply, and is also set to: when the communication quality parameter corresponding to the first noise condition of the user line does not
  • the PSE power supply state is such that the PSE is connected to the detection power-on function module, and the power supply noise detection module is configured to: detect a communication quality parameter corresponding to a third noise condition of the user line, where the power supply noise analysis module is configured to: When the communication quality parameter corresponding to the third noise condition of the user line exceeds the third preset range of the corresponding parameter, determining that the RPF power supply device of the user terminal has a fault, causing the power supply noise to affect the user line, and When the communication quality parameter corresponding to the third noise condition of the user line does not exceed the third preset range of the corresponding parameter, it is determined that the RPF power supply device of the DPU has a fault, and the power supply noise affects the user line.
  • the power supply noise analysis module is configured to:
  • the RPF power supply has power supply noise affecting the subscriber line
  • the RPF power supply has power supply noise affecting the subscriber line, and determines that the RPF power supply device of the user terminal has a fault and causes power supply noise;
  • the communication quality parameter corresponding to the first noise condition of the user line When the communication quality parameter corresponding to the first noise condition of the user line is detected does not exceed the first preset range of the corresponding parameter, and the communication quality parameter corresponding to the second noise condition of the user line exceeds the second preset range of the corresponding parameter, and the user line
  • the communication quality parameter corresponding to the third noise condition does not exceed the third preset range of the corresponding parameter, determining that the RPF power supply has power supply noise affecting the user line, and determining that the RPF power supply device of the DPU has a fault and causing power supply noise.
  • the power supply noise processing module is further configured to report the orientation and cause of the noise caused by the RPF power supply to the network management system.
  • the power supply noise processing module stops power supply of the line, including:
  • a computer readable storage medium storing computer executable instructions that, when executed by a processor, implement the above method.
  • the method and device for locating the reverse power supply line noise provided by the embodiment of the present invention, and the method and the processing mechanism for the power supply noise in the reverse power supply line are respectively provided, and when the reverse power supply RPF state is detected respectively (ie, the PSE is disconnected from the power supply),
  • the power supply equipment (PSE) power supply line of the user terminal is connected to the power receiving device (PE) and the power supply unit (PSU) corresponding to the DPU of the distribution point unit (that is, the online pair of the PSE) and is powered
  • the PSE of the user terminal It is not connected to the corresponding power take-off device (PE) and power supply unit (PSU) of the distribution point unit but is connected to the power-on function module for detecting to maintain the PSE power supply.
  • the user line noise condition in the state determines whether the RPF causes serious power supply noise, and locates the cause of the RPF communication line failure, including determining the noise of the RPF power supply device on the central office side or the RPF power supply device on the terminal side.
  • the embodiment of the present invention also provides a processing method and mechanism for controlling the PSE power supply state when the terminal RPF device fails.
  • FIG. 1 is a schematic diagram of a related art reverse power supply communication system architecture
  • FIG. 2 is a flowchart of a method for positioning noise of a reverse power supply line according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a reverse power supply line noise locating device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a power control module and a management interface on a terminal side according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a terminal-side powerless control module according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an implementation of a power control module and a management interface on a terminal side according to an embodiment of the present invention
  • FIG. 7 is an implementation framework diagram of a terminal-side powerless control module according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of processing an abnormal situation of a terminal side RPF system according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of power supply noise detection initiated after the user line establishes a link to start communication and turns on reverse power supply according to an embodiment of the present invention.
  • FIG. 10 is a flow chart of power supply noise detection initiated before the reverse power supply is turned on after the subscriber line is started to communicate in the embodiment of the present invention.
  • an embodiment of the present invention provides a reverse power supply line noise positioning method, including:
  • Step 201 Detecting a first noise condition of the subscriber line when the reverse power supply RPF state is not detected, and detecting a user when the power supply device PSE power supply line of the user terminal is connected to the power receiving device PE of the distribution point unit DPU and the power supply unit PSU, and the power supply state is performed. a second noise condition of the line, and a third noise condition of the subscriber line when detecting that the PSE of the user terminal disconnects from the PE and the PSU of the DPU and maintains the state of the PSE power supply;
  • Step 202 Compare the first noise condition of the subscriber line, the second noise condition of the subscriber line, and/or the third noise condition of the subscriber line, and determine whether the power supply noise of the RPF power supply affects the subscriber line.
  • determining whether the RPF power supply has power supply noise affecting the subscriber line includes one of the following:
  • the first noise condition of the subscriber line the second noise condition of the subscriber line, and the third noise condition of the subscriber line, it is determined whether the power supply noise of the RPF power supply affects the subscriber line.
  • Comparing the first noise condition of the subscriber line, the second noise condition of the subscriber line, and/or the third noise condition of the subscriber line, determining whether the RPF power supply has power supply noise affecting the subscriber line includes:
  • the direction and cause of the noise caused by the RPF power supply system can be determined.
  • Determining the orientation and cause of the noise caused by the RPF power supply includes determining that the RPF power supply device of the DPU or the RPF power supply device of the user terminal has a fault and causing the power supply noise to affect the subscriber line.
  • the noise condition, and the third noise condition of the subscriber line when detecting that the PSE of the user terminal is disconnected from the PE and PSU of the DPU and maintaining the state of the PSE power supply includes:
  • the PSE power supply line of the user terminal is connected to the power take-off device PE of the DPU and the power supply unit PSU, and the power supply state is connected, the PSE of the user terminal and the PE of the DPU The PSU disconnects and maintains the communication quality parameters of the subscriber line when the PSE is powered.
  • the PSE power supply line of the user terminal When detecting the non-reverse power supply RPF state, the PSE power supply line of the user terminal is connected to the power take-off device PE of the DPU and the power supply unit PSU, and the power supply state is connected, the PSE of the user terminal and the PE of the DPU.
  • the communication quality parameters of the subscriber line when the PSU is disconnected and maintained in the PSE power supply state include:
  • the PSE power supply state is configured to detect a communication quality parameter corresponding to a third noise condition of the user line, and when the communication quality parameter corresponding to the third noise condition of the user line does not exceed the third preset range of the corresponding parameter, the PSE is powered.
  • the line is connected to the PE and the PSU of the DPU, and detects a communication quality parameter corresponding to the second noise condition of the user line;
  • the PSE is disconnected from the PE and the PSU of the DPU, and the communication quality parameter corresponding to the first noise condition of the user line is detected, and the communication quality parameter corresponding to the first noise condition of the user line does not exceed the corresponding
  • the state of the PSE power supply is turned on, and the communication quality parameter corresponding to the third noise condition of the user line is detected.
  • the communication quality parameter includes one or more of the following: signal to noise ratio SNR, line attenuation value, no data signal line noise QLN (Quiet Line Noise), and normal line noise (ALN).
  • Comparing the first noise condition of the subscriber line, the second noise condition of the subscriber line, and/or the third noise condition of the subscriber line, determining whether the RPF power supply has power supply noise affecting the subscriber line includes:
  • the RPF power supply has power supply noise affecting the subscriber line
  • the RPF power supply has power supply noise affecting the subscriber line, and determines that the RPF power supply device of the user terminal has a fault and causes power supply noise;
  • the communication quality parameter corresponding to the first noise condition of the user line When the communication quality parameter corresponding to the first noise condition of the user line is detected does not exceed the first preset range of the corresponding parameter, and the communication quality parameter corresponding to the second noise condition of the user line exceeds the second preset range of the corresponding parameter, and the user line
  • the communication quality parameter corresponding to the third noise condition does not exceed the third preset range of the corresponding parameter, determining that the RPF power supply has power supply noise affecting the user line, and determining that the RPF power supply device of the DPU has a fault and causing power supply noise.
  • the method may further include: reporting the direction and cause of the noise caused by the RPF power supply to the network management system.
  • an embodiment of the present invention further provides a reverse power supply line noise locating device, including:
  • the power supply noise detecting module 31 is configured to: detect the first noise condition of the subscriber line when the reverse power supply RPF state is not detected, and detect the power supply equipment PSE power supply line of the user terminal and the power receiving device PE of the distribution point unit DPU and the power supply unit PSU a second noise condition of the subscriber line when the power supply state is performed, and a third noise condition of the subscriber line when detecting that the PSE of the user terminal disconnects from the PE and the PSU of the DPU and maintains the state of the PSE power supply;
  • the power supply noise analysis module 32 is configured to: compare the first noise condition of the subscriber line, and the second noise condition of the subscriber line and/or the third noise condition of the subscriber line, and determine whether the power supply noise of the RPF power supply affects the subscriber line.
  • the power supply noise analysis module is configured to:
  • the communication quality parameter of the reverse power supply line exceeds the preset range.
  • the power supply noise analysis module is further configured to determine a direction and cause of noise caused by the RPF power supply when the RPF power supply has power supply noise affecting the user line.
  • the device further includes a power supply noise processing module, configured to: when the RPF power supply has power supply noise affecting the user line, triggering the detection power-off function module to stop power supply of the corresponding RPF line and/or to the RPF line
  • the working state is set to a low power state, or the power control interface module is triggered to control the power control module to stop power supply of the corresponding RPF line and/or set the working state of the RPF line to a low power state, or trigger the switching control module to stop.
  • the power supply of the corresponding RPF line and/or the operating state of the RPF line is set to a low power state.
  • the power supply noise analysis module determines that the orientation and cause of the noise caused by the RPF power supply includes determining that the RPF power supply device of the DPU or the RPF power supply device of the user terminal has a fault, and the power supply noise affects the user line.
  • the power supply noise detecting module 31 is configured to:
  • the PSE power supply line of the user terminal When detecting the non-reverse power supply RPF state, the PSE power supply line of the user terminal is connected to the power take-off device PE of the DPU and the power supply unit PSU, and the power supply state is connected, and the PSE of the user terminal and the PE of the DPU The communication quality parameter of the subscriber line when disconnected from the PSU and maintaining the state of the PSE power supply.
  • the power supply noise detection module is configured to: when there is no reverse power supply RPF state, detect a communication quality parameter corresponding to a first noise condition of the user line, and the power supply noise analysis module is configured to: when the first noise condition of the user line corresponds to When the communication quality parameter exceeds the first preset range of the corresponding parameter, it is determined that the user line has no fault when the RPF is powered, and is also set to: when the user line When the communication quality parameter corresponding to the first noise condition of the road does not exceed the first preset range of the corresponding parameter, the detection detection conversion control module is triggered, and the state of the PSE power supply is turned on, so that the PSE is connected to the detection power-on function module,
  • the power supply noise detection module is configured to: detect a communication quality parameter corresponding to a third noise condition of the user line, where the power supply noise analysis module is configured to: when the third noise condition corresponding to the third noise condition of the user line exceeds a corresponding parameter, a third pre- When the range is set, it
  • the detection detection conversion control module is configured to disconnect the PSE from the detection power-on function module, and connect the PSE power supply line to the PE and the PSU of the DPU
  • the power supply noise detection module is configured to: Detecting a communication quality parameter corresponding to a second noise condition of the user line
  • the power supply noise analysis module is configured to When the second subscriber line noise situation corresponding to a communication quality parameter exceeds a parameter corresponding to a second predetermined range, determining the presence of a fault in the RPF DPU caused by the power supply device of the subscriber line noise;
  • the detection conversion control module is configured to: connect the PSE power supply line to the PE and the PSU of the DPU, and the power supply noise detection module is configured to: detect a communication quality parameter corresponding to a second noise condition of the user line,
  • the power supply noise analysis module is configured to: when the communication quality parameter corresponding to the second noise condition of the user line exceeds the second preset range of the corresponding parameter, the power detection function module for triggering detection stops power supply of the line or triggers the power control interface.
  • the module control power control module stops power supply of the line
  • the power noise detection module is configured to: detect a communication quality parameter corresponding to a first noise condition of the user line, where the power noise analysis module is configured to: when the user circuit is first noise If the communication quality parameter corresponding to the situation exceeds the first preset range of the corresponding parameter, it is determined that the user line has no fault when the RPF is powered, and is further configured to: when the communication quality parameter corresponding to the first noise condition of the user line does not exceed the corresponding When the parameter is in the first preset range, the trigger detection conversion control module is turned on.
  • the power supply noise detector detecting module is configured to: detect a user communication line quality parameters corresponding to the case of the third noise.
  • the power supply noise analysis module is configured to: when the communication quality parameter corresponding to the third noise condition of the user line exceeds a third preset range of the corresponding parameter, determine that the RPF power supply device of the user terminal has a fault and cause the power source
  • the noise affects the user line, and is further configured to: when the communication quality parameter corresponding to the third noise condition of the user line does not exceed the third preset range of the corresponding parameter, determining that the RPF power supply device of the DPU has a fault and causing the power source Noise Affect the subscriber line.
  • the power supply noise analysis module is configured to:
  • the RPF power supply has power supply noise affecting the subscriber line
  • the RPF power supply has power supply noise affecting the subscriber line, and determines that the RPF power supply device of the user terminal has a fault and causes power supply noise;
  • the communication quality parameter corresponding to the first noise condition of the user line When the communication quality parameter corresponding to the first noise condition of the user line is detected does not exceed the first preset range of the corresponding parameter, and the communication quality parameter corresponding to the second noise condition of the user line exceeds the second preset range of the corresponding parameter, and the user line
  • the communication quality parameter corresponding to the third noise condition does not exceed the third preset range of the corresponding parameter, determining that the RPF power supply has power supply noise affecting the user line, and determining that the RPF power supply device of the DPU has a fault and causing power supply noise.
  • the power supply noise processing module is further configured to report the orientation and cause of the noise caused by the RPF power supply to the network management system.
  • the terminal side provides the power supply noise positioning system framework of the power control module and the management interface to the central office side: the central office side can control the power state through the power control management interface provided by the terminal side during the power supply noise localization process, such as turning off the power supply Or turn on the power, as shown in Figure 4:
  • the central office side includes: a detection conversion control module 41, a detection power-on function module 42, a power supply noise detection module 31, a power supply noise analysis module 32, and a power supply noise processing module 33;
  • the terminal side includes a power control module 43 and a power control interface module 44.
  • the power supply noise analysis module 32 can be connected according to the detected state of no RPF power supply, the PSE power supply line of the terminal, and the PSU of the central office, and the power supply state, the PSE of the terminal, and the power supply function module of the central office are connected and powered.
  • the user line noise situation under the state (that is, detecting the power noise on the terminal side) is comprehensively compared and analyzed to see if the RPF causes serious power supply noise and locates the cause of the RPF communication line failure, including the judgment of the central office side.
  • the RPF power supply device is also a noise caused by the RPF power supply device on the terminal side.
  • the power supply noise processing module 33 receives the analysis result of the central office side power supply noise analysis module, and performs corresponding actions according to the policy, such as stopping power supply of the line, starting terminal side power supply noise detection, and setting the working state of the line to low power consumption ( Low-power status, etc.; and report the cause of the fault to the upper-level network management system.
  • the power supply noise detecting module 31 detects the state of no RPF power supply, the state in which the PSE power supply line of the terminal is connected to the PSU of the central office, and the power supply state, the PSE of the terminal, and the detection of the central office are connected and powered by the power supply function module (ie, The user line noise condition under the detection of the terminal side power supply noise; and, depending on the reverse power supply status of the user line RPF to be detected, determine whether to detect the first noise condition of the user line or the second noise condition of the user line, or The third noise condition of the subscriber line is detected, and the state of the detection conversion control module, the line switching control module, and the power control module is controlled by a management entity (Manage Entity).
  • a management entity Manage Entity
  • the detection conversion control module 41 controls the connection state of the PS and the PSU or the power-on function module for detection on the central office side according to whether the power supply noise on the terminal side is detected; by default, the central office side PS and the PSU Connected to the detection power-on function module to ensure normal operation of the RPF; when receiving the detection control command, the PS is switched to a state connected to the detection power-on function module and disconnected from the PSU;
  • the detecting power-on function module 42 detects the power supply noise on the terminal side, satisfies the circuit requirement that the terminal-side PSE can perform the RPF power supply, and maintains the power supply state of the RPF, thereby facilitating detection of the communication line noise in the power supply state; It is a logical function module that can exist as a separate entity or integrated into other devices.
  • the power control interface module 44 receives the power control command of the central office, and controls the state of the power control module;
  • the power control module 43 controls the terminal side of the PS and the PSE to be in a connected or disconnected state, By default, the PS and the PSE are connected.
  • the power supply noise positioning system framework for providing the power control module and the management interface to the central office side is shown in FIG. 5. It only provides the relevant module for power supply noise localization on the central office side, including: detection conversion control module 41, and detection The electric function module 42, the power supply noise detecting module 31, the power supply noise analyzing module 32, the power supply noise processing module 33, and the detecting de-energizing function module 51; and the power supply state of the terminal side are controlled by the detecting de-energizing function module.
  • the detection de-energized function module 51 provides a circuit function that cannot power on the PSE, and realizes the function of remotely stopping the PSE power-on of the terminal side. When the power supply control module does not exist on the terminal side, another method for stopping the PSE power-on is provided. .
  • the module is a logical function module that can exist as a separate entity or integrated into other devices.
  • the power supply noise localization system can realize the transmission of control information and detection information through a management entity (ME).
  • ME management entity
  • the implementation framework under the power control module and the management interface on the terminal side is shown in Figure 6.
  • the control information of the RPF power supply on the terminal side to the terminal side can be transmitted through the communication channel of the subscriber line (such as G.fast or VDSL2 channel).
  • the implementation framework under the no-power control module and management interface on the terminal side is shown in Figure 7.
  • the abnormality processing mechanism of the RPF system on the terminal side is as shown in FIG. 8.
  • a line switching control module 81 is added to the central office side, and its function is to control the physical connection or physical disconnection status between the user line and the DPU device. By default, the connection is in a connected state.
  • the central office side can physically cut off the subscriber line by switching the control module. Can be managed through the actual implementation process
  • the management channel provided by the entity (ME) controls the line switching control module.
  • the power supply noise detection can be performed when the subscriber line initiates communication or initiates reverse power supply, and performs a power supply noise detection process according to the communication state of the line and the reverse power supply condition.
  • the power supply noise detection process started after the user line establishes the link to start communication and turns on the reverse power supply is shown in FIG. 9.
  • Step 901 the subscriber line establishes a link and starts communication, and turns on reverse power supply;
  • step 902 the detection is started, and the detection process is as follows:
  • Step 903 the power supply noise detecting module connects the PSE power supply line to the PE and the PSU of the DPU, and the power supply noise detecting module detects a communication quality parameter corresponding to the second noise condition of the user line;
  • Step 904 Determine whether the communication quality parameter corresponding to the second noise condition of the user line exceeds the second preset range of the corresponding parameter, and if yes, perform the next step, if no, execute step 915 to end the process;
  • Step 905 the power supply noise analysis module triggers the detection of the power-off function module to stop the power supply of the line or triggers the power control interface module to control the power control module to stop the power supply of the line;
  • Step 906 the power supply noise detecting module detects a communication quality parameter corresponding to a first noise condition of the user line
  • Step 907 it is determined whether the communication quality parameter corresponding to the first noise condition of the subscriber line exceeds the first preset range of the corresponding parameter, and if yes, the next step is performed, if not, step 909 is performed;
  • Step 908 the power supply noise analysis module determines that there is a fault when the subscriber line does not have an RPF power supply
  • Step 909 the communication quality parameter corresponding to the first noise condition of the subscriber line does not exceed the first preset range of the corresponding parameter, and the power supply noise analysis module triggers the detection switch control module to turn on the state of the PSE power supply so that the PSE and the PSE The detection is connected by a power-on function module;
  • Step 910 The power noise detecting module detects a communication quality parameter corresponding to a third noise condition of the user line. Determining whether the communication quality parameter corresponding to the third noise condition of the subscriber line exceeds Corresponding parameter third preset range, if yes, perform the next step, if not, execute step 912;
  • Step 911 the power supply noise analysis module determines that there is a fault in the RPF power supply device of the user terminal, causing the power supply noise to affect the user line; performing step 913;
  • Step 912 The communication quality parameter corresponding to the third noise condition of the user line does not exceed the third preset range of the corresponding parameter, and the power supply noise analysis module determines that the RPF power supply device of the DPU has a fault and causes the power supply noise to be affected.
  • Step 913 the power supply noise processing module, when the RPF power supply has power supply noise affecting the user line, triggering the detection power-off function module to stop the power supply of the line, or triggering the power control interface module to control the power control module to stop the power supply of the line.
  • Step 914 adjusting the communication state of the line or disconnecting. This step is an optional step.
  • step 915 the detection process ends.
  • the power supply noise detection can be started in real time during the communication and reverse power supply of the subscriber line, and the power supply noise detection process is performed according to the communication state of the line and the reverse power supply situation.
  • the power supply noise detection process initiated before the reverse power supply is turned on after the user line construction chain starts communication is shown in FIG.
  • Step 101 the subscriber line establishes a link and starts communication, and the reverse power supply is not turned on;
  • step 102 the detection is started, and the detection process is as follows:
  • Step 102 When there is no reverse power supply RPF state, the power supply noise detecting module detects a communication quality parameter corresponding to the first noise condition of the user line;
  • Step 104 it is determined whether the communication quality parameter corresponding to the first noise condition of the subscriber line exceeds the first preset range of the corresponding parameter, and if yes, step 105 is performed, and if not, step 106 is performed;
  • Step 105 The power supply noise analysis module determines that there is a fault when the user line does not have an RPF power supply; and step 113 is performed to end the process;
  • Step 106 The communication quality parameter corresponding to the first noise condition of the user line does not exceed the first preset range of the corresponding parameter, and the power supply noise analysis module triggers the detection and conversion control module to enable the PSE to supply the state such that the PSE Connected to the power-on function module for detection;
  • Step 107 The power supply noise detecting module detects a communication quality parameter corresponding to a third noise condition of the user line;
  • Step 108 it is determined whether the communication quality parameter corresponding to the third noise condition of the subscriber line exceeds the third preset range of the corresponding parameter, and if yes, step 109 is performed, and if not, step 110 is performed;
  • Step 109 The power supply noise analysis module determines that there is a fault in the RPF power supply device of the user terminal, causing the power supply noise to affect the user line; and performing step 113, ending the process;
  • Step 110 The communication quality parameter corresponding to the third noise condition of the subscriber line does not exceed the third preset range of the corresponding parameter, and the power supply noise analysis module triggers the detection and conversion control module to use the PSE and the detection power-on function module. Disconnecting, connecting the PSE power supply line to the PE and PSU of the DPU;
  • Step 111 The power supply noise detecting module detects a communication quality parameter corresponding to a second noise condition of the user line, and determines whether a communication quality parameter corresponding to the second noise condition of the user line exceeds a second preset range of the corresponding parameter, and if yes, Go to step 112, if no, go to step 113 to end the process;
  • Step 112 the power supply noise analysis module determines that there is a fault in the RPF power supply device of the DPU, and the power supply noise affects the user line;
  • step 113 the detection process ends.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions, which are implemented by the processor to implement the reverse power supply line noise localization method.
  • the method and device for locating the reverse power supply line noise provided by the embodiment of the present invention, and the method and the processing mechanism for the power supply noise in the reverse power supply line are respectively provided, and when the reverse power supply RPF state is detected respectively (ie, the PSE is disconnected from the power supply),
  • the power supply equipment (PSE) power supply line of the user terminal is connected to the power receiving device (PE) and the power supply unit (PSU) corresponding to the DPU of the distribution point unit (that is, the online pair of the PSE) and is powered
  • the PSE of the user terminal Whether the RPF is determined by comprehensive comparative analysis by comparing with the corresponding power take-off device (PE) and power supply unit (PSU) of the distribution point unit but connected to the power-on function module for detecting to maintain the PSE power supply state.
  • causes serious power supply noise and locates the cause of the RPF communication line failure including judging the noise caused by the RPF power supply device on the central office side or the RPF power supply device on the terminal side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Telephonic Communication Services (AREA)
  • Monitoring And Testing Of Exchanges (AREA)

Abstract

一种反向供电线路噪声定位方法和装置,所述方法包括:检测无反向供电RPF状态时的用户线路第一噪声情况、检测用户终端的供电设备PSE供电线路与分配点单元DPU的取电设备PE和供电单元PSU相连且进行供电状态时的用户线路第二噪声情况、检测用户终端的PSE与所述DPU的PE和PSU断开并保持所述PSE供电的状态时的用户线路第三噪声情况(201);对比所述用户线路第一噪声情况、以及用户线路第二噪声情况和/或用户线路第三噪声情况,确定所述RPF供电是否存在电源噪声影响用户线路(202)。

Description

一种反向供电线路噪声定位方法和装置 技术领域
本申请涉及但不限于反向供电(RPF,Reverse Power Feed)技术领域,尤指一种反向供电线路噪声定位方法和装置。
背景技术
光纤到分配点(Fiber to the Distribution Point,简称为FTTdp)是铜缆接入系统的一个重要应用场景。如图1所示,分配点单元(Distribution Point Unit,简称为DPU)上联接入光纤接入系统,下联通过铜缆接入系统与用户前端设备(Customer Premise Equipment,CPE)相连。其中,光纤接入系统包括无源光网络(Passive Optical Network,简称为PON)系统、点对点(Point to Point,简称为P2P)光纤系统;铜缆接入系统包括快速接入用户终端(Fast Access To Subscriber Terminals,FAST)系统、超高速数字用户线路2(Very High Speed Digital Subscriber Line 2,简称为VDSL2)系统。由于在FTTdp应用场景中供电环境受限,本地供电十分困难,反向供电(Reverse Power Feed,简称为RPF)是铜缆接入系统必须支持的一项功能。用户端的供电设备(Power Supply Equipment,简称为PSE)就是用于对DPU进行供电,其中,PSE或者与客户端设备(简称为CPE)集成在一个设备上,或者是独立的设备。分配点单元下联可能存在多个用户线路,需要通过一条或多条用户线路对DPU进行反向供电。
铜缆接入系统通过RPF方式对局端设备DPU进行供电,在给DPU带来电能的同时,也给用户线路带来了一个干扰源。电源噪声是电磁干扰的一种,其传导噪声的频谱大致为10千赫兹(kHz)~30兆赫兹(MHz),最高可达150MHz。电源噪声,特别是瞬态噪声干扰,其上升速度快、持续时间短、电压振幅度高、随机性强,对微机和数字电路易产生严重干扰。
在研究过程中发现,RPF系统中虽然有功率分离器(Power Splitter,简称为PS)用于对电源的高频信号进行过滤,但是存在PSE、PS器件故障的可能。而且,在G.fast系统中采用线路之间的矢量化(vectoring)技术,某线路 电源噪声的引入也会影响其他线路的正常工作。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
为了分析反向供电线路的噪声情况并定位RPF供电系统造成噪声的方位与原因,本文提供一种反向供电线路噪声定位方法和装置。
一种反向供电线路噪声定位方法,包括:
检测无反向供电RPF状态时的用户线路第一噪声情况、检测用户终端的供电设备PSE供电线路与分配点单元DPU的取电设备PE和供电单元PSU相连且进行供电状态时的用户线路第二噪声情况、以及检测用户终端的PSE与所述DPU的PE和PSU断开并保持所述PSE供电的状态时的用户线路第三噪声情况;
对比所述用户线路第一噪声情况、以及用户线路第二噪声情况和/或用户线路第三噪声情况,确定所述RPF供电是否存在电源噪声影响用户线路。
可选地,对比所述用户线路第一噪声情况、以及用户线路第二噪声情况和/或用户线路第三噪声情况,确定所述RPF供电是否存在电源噪声影响用户线路包括:
比较所述用户线路第一噪声情况对应的通信质量参数、以及用户线路第二噪声情况对应的通信质量参数、和/或用户线路第三噪声情况对应的通信质量参数,分析由RPF供电而产生的电源噪声是否导致反向供电线路的所述通信质量参数超出所述预设范围。
可选地,所述方法还包括:当所述RPF供电存在电源噪声影响用户线路时,确定所述RPF供电造成噪声的方位和原因。
可选地,所述方法还包括:当所述RPF供电存在电源噪声影响用户线路时,停止相应的RPF线路的供电和/或将所述RPF线路的工作状态设置为低功耗状态。
可选地,确定所述RPF供电造成噪声的方位和原因包括确定所述的DPU 的RPF供电器件或者所述用户终端的RPF供电器件存在故障而造成所述电源噪声影响用户线路。
可选地,检测无反向供电RPF状态时的用户线路第一噪声情况、检测用户终端的供电设备PSE供电线路与分配点单元DPU的取电设备PE和供电单元PSU相连且进行供电状态时的用户线路第二噪声情况、以及检测用户终端的PSE与所述DPU的PE和PSU断开并保持所述PSE供电的状态时的用户线路第三噪声情况包括:
分别检测无反向供电RPF状态时、用户终端的供电设备PSE供电线路与分配点单元DPU的取电设备PE和供电单元PSU相连且进行供电状态时、以及用户终端的PSE与所述DPU的PE和PSU断开并保持所述PSE供电的状态时用户线路的通信质量参数。
可选地,分别检测无反向供电RPF状态时、用户终端的供电设备PSE供电线路与分配点单元DPU的取电设备PE和供电单元PSU相连且进行供电状态时、以及用户终端的PSE与所述DPU的PE和PSU断开并保持PSE供电的状态时用户线路的通信质量参数包括:
当无反向供电RPF状态时,检测用户线路第一噪声情况对应的通信质量参数,当所述用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围时,开启所述PSE供电的状态,检测用户线路第三噪声情况对应的通信质量参数,当所述用户线路第三噪声情况对应的通信质量参数没有超出对应的参数第三预设范围时,将所述PSE供电线路与所述DPU的PE和PSU相连,检测用户线路第二噪声情况对应的通信质量参数;
或者,将所述PSE供电线路与所述DPU的PE和PSU相连,检测用户线路第二噪声情况对应的通信质量参数,当所述用户线路第二噪声情况对应的通信质量参数超出对应的参数第二预设范围时,将PSE与所述DPU的PE和PSU断开,检测用户线路第一噪声情况对应的通信质量参数,当所述用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围时,开启所述PSE供电的状态,检测用户线路第三噪声情况对应的通信质量参数。
可选地,所述通信质量参数包括以下的一项或者多项:信噪比SNR、线路衰减值、无数据信号线路噪声QLN、正常工作线路噪声ALN。
可选地,对比所述用户线路第一噪声情况、以及用户线路第二噪声情况和/或用户线路第三噪声情况,确定所述RPF供电是否存在电源噪声影响用户线路包括:
当检测到用户线路第一噪声情况对应的通信质量参数超出对应的参数第一预设范围时,确定所述用户线路没有RPF供电时存在故障;
当检测到用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围,且用户线路第二噪声情况对应的通信质量参数超出对应的参数第二预设范围时,确定所述RPF供电存在电源噪声影响用户线路;
当检测到用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围,且用户线路第三噪声情况对应的通信质量参数超出对应的参数第三预设范围时,确定所述RPF供电存在电源噪声影响用户线路,并确定由所述用户终端的RPF供电器件存在故障而造成电源噪声;
当检测到用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围,且用户线路第二噪声情况对应的通信质量参数超出对应的参数第二预设范围,且用户线路第三噪声情况对应的通信质量参数没有超出对应的参数第三预设范围时,确定所述RPF供电存在电源噪声影响用户线路,并确定由所述DPU的RPF供电器件存在故障而造成电源噪声。
可选地,所述的方法还包括:把RPF供电造成噪声的方位和原因上报给网络管理系统。
一种反向供电线路噪声定位装置,包括:
电源噪声检测模块,设置为:检测无反向供电RPF状态时的用户线路第一噪声情况、检测用户终端的供电设备PSE供电线路与分配点单元DPU的取电设备PE和供电单元PSU相连且进行供电状态时的用户线路第二噪声情况、以及检测用户终端的PSE与所述DPU的PE和PSU断开并保持所述PSE供电的状态时的用户线路第三噪声情况;
电源噪声分析模块,设置为:对比所述用户线路第一噪声情况、以及用户线路第二噪声情况和/或用户线路第三噪声情况,确定所述RPF供电是否存在电源噪声影响用户线路。
可选地,所述电源噪声分析模块设置为:
比较所述用户线路第一噪声情况对应的通信质量参数、以及用户线路第二噪声情况对应的通信质量参数、和/或用户线路第三噪声情况对应的通信质量参数,分析由RPF供电而产生的电源噪声是否导致反向供电线路的所述通信质量参数超出所述预设范围。
可选地,所述电源噪声分析模块还设置为:当所述RPF供电存在电源噪声影响用户线路时,确定所述RPF供电造成噪声的方位和原因。
可选地,所述的装置还包括电源噪声处理模块,设置为:当所述RPF供电存在电源噪声影响用户线路时,触发检测用去电功能模块停止相应的RPF线路的供电和/或将所述RPF线路的工作状态设置为低功耗状态,或者触发电源控制接口模块控制电源控制模块停止相应的RPF线路的供电和/或将所述RPF线路的工作状态设置为低功耗状态,或者触发切换控制模块停止相应的RPF线路的供电和/或将所述RPF线路的工作状态设置为低功耗状态。
可选地,所述电源噪声分析模块设置为:确定所述的DPU的RPF供电器件或者所述用户终端的RPF供电器件存在故障而造成所述电源噪声影响用户线路。
可选地,所述电源噪声检测模块设置为:
分别检测无反向供电RPF状态时、用户终端的供电设备PSE供电线路与分配点单元DPU的取电设备PE和供电单元PSU相连且进行供电状态时、以及用户终端的PSE与所述DPU的PE和PSU断开并保持所述PSE供电的状态时用户线路的通信质量参数。
可选地,所述装置还包括:检测转换控制模块;所述电源噪声检测模块设置为:当无反向供电RPF状态时,检测用户线路第一噪声情况对应的通信质量参数,所述电源噪声分析模块设置为:当所述用户线路第一噪声情况对应的通信质量参数超出对应的参数第一预设范围时,确定所述用户线路没有RPF供电时存在故障,还设置为:当所述用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围时,触发检测转换控制模块,开启所述PSE供电的状态使得所述PSE与检测用上电功能模块相连,所述电源 噪声检测模块设置为:检测用户线路第三噪声情况对应的通信质量参数,所述电源噪声分析模块设置为:当所述用户线路第三噪声情况对应的通信质量参数超出对应的参数第三预设范围时,确定所述用户终端的RPF供电器件存在故障而造成所述电源噪声影响用户线路,还设置为:当所述用户线路第三噪声情况对应的通信质量参数没有超出对应的参数第三预设范围时,触发检测转换控制模块,将所述PSE与检测用上电功能模块断开,将所述PSE供电线路与所述DPU的PE和PSU相连,所述电源噪声检测模块设置为:检测用户线路第二噪声情况对应的通信质量参数;所述电源噪声分析模块设置为:当所述用户线路第二噪声情况对应的通信质量参数超出对应的参数第二预设范围时,确定所述DPU的RPF供电器件存在故障而造成所述电源噪声影响用户线路;
或者,所述检测转换控制模块设置为:将所述PSE供电线路与所述DPU的PE和PSU相连,所述电源噪声检测模块设置为:检测用户线路第二噪声情况对应的通信质量参数,所述电源噪声分析模块还设置为:当所述用户线路第二噪声情况对应的通信质量参数超出对应的参数第二预设范围时,触发检测用去电功能模块停止该线路的供电或者触发电源控制接口模块控制电源控制模块停止该线路的供电,所述电源噪声检测模块设置为:检测用户线路第一噪声情况对应的通信质量参数,所述电源噪声分析模块设置为:当所述用户线路第一噪声情况对应的通信质量参数超出对应的参数第一预设范围时,确定所述用户线路没有RPF供电时存在故障,还设置为:当所述用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围时,触发检测转换控制模块开启所述PSE供电的状态使得所述PSE与检测用上电功能模块相连,所述电源噪声检测模块设置为:检测用户线路第三噪声情况对应的通信质量参数,所述电源噪声分析模块设置为:当所述用户线路第三噪声情况对应的通信质量参数超出对应的参数第三预设范围时,确定所述用户终端的RPF供电器件存在故障而造成所述电源噪声影响用户线路,以及,当所述用户线路第三噪声情况对应的通信质量参数没有超出对应的参数第三预设范围时,确定所述DPU的RPF供电器件存在故障而造成所述电源噪声影响用户线路。
可选地,所述电源噪声分析模块设置为:
当检测到用户线路第一噪声情况对应的通信质量参数超出对应的参数第一预设范围时,确定所述用户线路没有RPF供电时存在故障;
当检测到用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围,且用户线路第二噪声情况对应的通信质量参数超出对应的参数第二预设范围时,确定所述RPF供电存在电源噪声影响用户线路;
当检测到用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围,且用户线路第三噪声情况对应的通信质量参数超出对应的参数第三预设范围时,确定所述RPF供电存在电源噪声影响用户线路,并确定由所述用户终端的RPF供电器件存在故障而造成电源噪声;
当检测到用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围,且用户线路第二噪声情况对应的通信质量参数超出对应的参数第二预设范围,且用户线路第三噪声情况对应的通信质量参数没有超出对应的参数第三预设范围时,确定所述RPF供电存在电源噪声影响用户线路,并确定由所述DPU的RPF供电器件存在故障而造成电源噪声。
可选地,所述电源噪声处理模块:还设置为把RPF供电造成噪声的方位和原因上报给网络管理系统。
可选地,所述电源噪声处理模块停止该线路的供电包括:
停止所述RPF线路的供电和/或将所述RPF线路的工作状态设置为低功耗状态
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述方法。
本发明实施例提供的反向供电线路噪声定位方法和装置,给出反向供电线路中电源噪声的定位方法与处理机制,通过分别检测无反向供电RPF状态(即PSE断开电源)时、用户终端的供电设备(PSE)供电线路与分配点单元DPU的相应(即该PSE所在线对对应的)取电设备(PE)和供电单元(PSU)相连且进行供电状态时、用户终端的PSE与分配点单元的相应取电设备(PE)和供电单元(PSU)不相连但与检测用上电功能模块相连以保持PSE供电的 状态时的用户线路噪声情况,通过综合比较分析,确定RPF是否造成严重的电源噪声,并定位造成RPF通信线路故障的原因,包括判断局端侧的RPF供电器件或者终端侧的RPF供电器件造成噪声。同时,本发明实施例也提供了当终端RPF器件发生故障无法对其PSE供电状态进行控制的处理方法与机制。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是相关技术反向供电通信系统架构示意图;
图2是本发明实施例的一种反向供电线路噪声定位方法的流程图;
图3是本发明实施例的一种反向供电线路噪声定位装置的结构示意图;
图4是本发明实施例的终端侧有电源控制模块与管理接口的结构示意图;
图5是本发明实施例的终端侧无电源控制模块的结构示意图;
图6是本发明实施例终端侧有电源控制模块与管理接口的实现框架图;
图7是本发明实施例终端侧无电源控制模块的实现框架图;
图8是本发明实施例终端侧RPF系统异常情况处理示意图;
图9是本发明实施例用户线路建链开始通信并开启反向供电后启动的电源噪声检测流程图;
图10是本发明实施例用户线路建链开始通信后在开启反向供电前启动的电源噪声检测流程图。
本发明的实施方式
下面结合附图对本发明的实施例进行说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以相互任意组合。
如图2所示,本发明实施例提供一种反向供电线路噪声定位方法,包括:
步骤201,检测无反向供电RPF状态时的用户线路第一噪声情况、检测用户终端的供电设备PSE供电线路与分配点单元DPU的取电设备PE和供电单元PSU相连且进行供电状态时的用户线路第二噪声情况、以及检测用户终端的PSE与所述DPU的PE和PSU断开并保持所述PSE供电的状态时的用户线路第三噪声情况;
步骤202,对比所述用户线路第一噪声情况、以及用户线路第二噪声情况和/或用户线路第三噪声情况,确定所述RPF供电是否存在电源噪声影响用户线路。
对比所述用户线路第一噪声情况、以及用户线路第二噪声情况和/或用户线路第三噪声情况,确定所述RPF供电是否存在电源噪声影响用户线路包括以下之一:
根据用户线路第一噪声情况和用户线路第二噪声情况,确定所述RPF供电是否存在电源噪声影响用户线路;
根据用户线路第一噪声情况和用户线路第三噪声情况,确定所述RPF供电是否存在电源噪声影响用户线路;
根据用户线路第一噪声情况、用户线路第二噪声情况和用户线路第三噪声情况,确定所述RPF供电是否存在电源噪声影响用户线路。
对比所述用户线路第一噪声情况、以及用户线路第二噪声情况和/或用户线路第三噪声情况,确定所述RPF供电是否存在电源噪声影响用户线路包括:
比较所述用户线路第一噪声情况对应的通信质量参数、以及用户线路第二噪声情况对应的通信质量参数、和/或用户线路第三噪声情况对应的通信质量参数,分析由RPF供电而产生的电源噪声是否导致所述反向供电线路的所述通信质量参数超出所述预设范围。
当所述RPF供电存在电源噪声影响用户线路时,确定所述RPF供电造成噪声的方位和原因。
当电源噪声严重到影响用户线路时,可确定RPF供电系统造成噪声的方位与原因。
当所述RPF供电存在电源噪声影响用户线路时,停止相应的RPF线路的 供电和/或将所述RPF线路的工作状态设置为低功耗状态。
确定所述RPF供电造成噪声的方位和原因包括确定所述的DPU的RPF供电器件或者所述用户终端的RPF供电器件存在故障而造成所述电源噪声影响用户线路。
检测无反向供电RPF状态时的用户线路第一噪声情况、检测用户终端的供电设备PSE供电线路与分配点单元DPU的取电设备PE和供电单元PSU相连且进行供电状态时的用户线路第二噪声情况、以及检测用户终端的PSE与所述DPU的PE和PSU断开并保持所述PSE供电的状态时的用户线路第三噪声情况包括:
分别检测无反向供电RPF状态时、用户终端的供电设备PSE供电线路与分配点单元DPU的取电设备PE和供电单元PSU相连且进行供电状态时、用户终端的PSE与所述DPU的PE和PSU断开并保持所述PSE供电的状态时用户线路的通信质量参数。
分别检测无反向供电RPF状态时、用户终端的供电设备PSE供电线路与分配点单元DPU的取电设备PE和供电单元PSU相连且进行供电状态时、用户终端的PSE与所述DPU的PE和PSU断开并保持PSE供电的状态时用户线路的通信质量参数包括:
当无反向供电RPF状态时,检测用户线路第一噪声情况对应的通信质量参数,当所述用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围时,开启所述PSE供电的状态,检测用户线路第三噪声情况对应的通信质量参数,当所述用户线路第三噪声情况对应的通信质量参数没有超出对应的参数第三预设范围时,将所述PSE供电线路与所述DPU的PE和PSU相连,检测用户线路第二噪声情况对应的通信质量参数;
或者,将所述PSE供电线路与所述DPU的PE和PSU相连,检测用户线路第二噪声情况对应的通信质量参数,当所述用户线路第二噪声情况对应的通信质量参数超出对应的参数第二预设范围时,将PSE与所述DPU的PE和PSU断开,检测用户线路第一噪声情况对应的通信质量参数,当所述用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围时,开启所述PSE供电的状态,检测用户线路第三噪声情况对应的通信质量参数。
所述通信质量参数包括以下的一项或者多项:信噪比SNR、线路衰减值、无数据信号线路噪声QLN(Quiet Line Noise)、正常工作线路噪声ALN(Active line noise)。
对比所述用户线路第一噪声情况、以及用户线路第二噪声情况和/或用户线路第三噪声情况,确定所述RPF供电是否存在电源噪声影响用户线路包括:
当检测到用户线路第一噪声情况对应的通信质量参数超出对应的参数第一预设范围时,确定所述用户线路没有RPF供电时存在故障;
当检测到用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围,且用户线路第二噪声情况对应的通信质量参数超出对应的参数第二预设范围时,确定所述RPF供电存在电源噪声影响用户线路;
当检测到用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围,且用户线路第三噪声情况对应的通信质量参数超出对应的参数第三预设范围时,确定所述RPF供电存在电源噪声影响用户线路,并确定由所述用户终端的RPF供电器件存在故障而造成电源噪声;
当检测到用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围,且用户线路第二噪声情况对应的通信质量参数超出对应的参数第二预设范围,且用户线路第三噪声情况对应的通信质量参数没有超出对应的参数第三预设范围时,确定所述RPF供电存在电源噪声影响用户线路,并确定由所述DPU的RPF供电器件存在故障而造成电源噪声。
所述的方法,还可包括:把RPF供电造成噪声的方位和原因上报给网络管理系统。
如图3所示,本发明实施例还提供一种反向供电线路噪声定位装置,包括:
电源噪声检测模块31,设置为:检测无反向供电RPF状态时的用户线路第一噪声情况、检测用户终端的供电设备PSE供电线路与分配点单元DPU的取电设备PE和供电单元PSU相连且进行供电状态时的用户线路第二噪声情况、以及检测用户终端的PSE与所述DPU的PE和PSU断开并保持所述PSE供电的状态时的用户线路第三噪声情况;
电源噪声分析模块32,设置为:对比所述用户线路第一噪声情况、以及用户线路第二噪声情况和/或用户线路第三噪声情况,确定所述RPF供电是否存在电源噪声影响用户线路。
所述电源噪声分析模块设置为:
比较所述用户线路第一噪声情况对应的通信质量参数、用户线路第二噪声情况对应的通信质量参数、用户线路第三噪声情况对应的通信质量参数,分析由RPF供电而产生的电源噪声是否导致所述反向供电线路的所述通信质量参数超出所述预设范围。
所述电源噪声分析模块还设置为:当所述RPF供电存在电源噪声影响用户线路时,确定所述RPF供电造成噪声的方位和原因。
所述的装置还包括电源噪声处理模块,设置为:当所述RPF供电存在电源噪声影响用户线路时,触发检测用去电功能模块停止相应的RPF线路的供电和/或将所述RPF线路的工作状态设置为低功耗状态,或者触发电源控制接口模块控制电源控制模块停止相应的RPF线路的供电和/或将所述RPF线路的工作状态设置为低功耗状态,或者触发切换控制模块停止相应的RPF线路的供电和/或将所述RPF线路的工作状态设置为低功耗状态。
所述电源噪声分析模块确定所述RPF供电造成噪声的方位和原因包括确定所述的DPU的RPF供电器件或者所述用户终端的RPF供电器件存在故障而造成所述电源噪声影响用户线路。
所述电源噪声检测模块31设置为:
分别检测无反向供电RPF状态时、用户终端的供电设备PSE供电线路与分配点单元DPU的取电设备PE和供电单元PSU相连且进行供电状态时、以及用户终端的PSE与所述DPU的PE和PSU断开并保持所述PSE供电的状态时用户线路的通信质量参数。
所述电源噪声检测模块设置为:当无反向供电RPF状态时,检测用户线路第一噪声情况对应的通信质量参数,所述电源噪声分析模块设置为:当所述用户线路第一噪声情况对应的通信质量参数超出对应的参数第一预设范围时,确定所述用户线路没有RPF供电时存在故障,还设置为:当所述用户线 路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围时,触发检测转换控制模块,开启所述PSE供电的状态使得所述PSE与检测用上电功能模块相连,所述电源噪声检测模块设置为:检测用户线路第三噪声情况对应的通信质量参数,所述电源噪声分析模块设置为:当所述用户线路第三噪声情况对应的通信质量参数超出对应的参数第三预设范围时,确定所述用户终端的RPF供电器件存在故障而造成所述电源噪声影响用户线路,还设置为:当所述用户线路第三噪声情况对应的通信质量参数没有超出对应的参数第三预设范围时,触发检测转换控制模块,将所述PSE与检测用上电功能模块断开,将所述PSE供电线路与所述DPU的PE和PSU相连,所述电源噪声检测模块设置为:检测用户线路第二噪声情况对应的通信质量参数;所述电源噪声分析模块设置为:当所述用户线路第二噪声情况对应的通信质量参数超出对应的参数第二预设范围时,确定所述DPU的RPF供电器件存在故障而造成所述电源噪声影响用户线路;
或者,所述检测转换控制模块设置为:将所述PSE供电线路与所述DPU的PE和PSU相连,所述电源噪声检测模块设置为:检测用户线路第二噪声情况对应的通信质量参数,所述电源噪声分析模块设置为:当所述用户线路第二噪声情况对应的通信质量参数超出对应的参数第二预设范围时,触发检测用去电功能模块停止该线路的供电或者触发电源控制接口模块控制电源控制模块停止该线路的供电,所述电源噪声检测模块设置为:检测用户线路第一噪声情况对应的通信质量参数,所述电源噪声分析模块设置为:当所述用户线路第一噪声情况对应的通信质量参数超出对应的参数第一预设范围时,确定所述用户线路没有RPF供电时存在故障,还设置为:当所述用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围时,触发检测转换控制模块开启所述PSE供电的状态使得所述PSE与检测用上电功能模块相连,所述检电源噪声检测模块设置为:检测用户线路第三噪声情况对应的通信质量参数。所述电源噪声分析模块设置为:当所述用户线路第三噪声情况对应的通信质量参数超出对应的参数第三预设范围时,确定所述用户终端的RPF供电器件存在故障而造成所述电源噪声影响用户线路,还设置为:当所述用户线路第三噪声情况对应的通信质量参数没有超出对应的参数第三预设范围时,确定所述DPU的RPF供电器件存在故障而造成所述电源噪声 影响用户线路。
所述电源噪声分析模块设置为:
当检测到用户线路第一噪声情况对应的通信质量参数超出对应的参数第一预设范围时,确定所述用户线路没有RPF供电时存在故障;
当检测到用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围,且用户线路第二噪声情况对应的通信质量参数超出对应的参数第二预设范围时,确定所述RPF供电存在电源噪声影响用户线路;
当检测到用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围,且用户线路第三噪声情况对应的通信质量参数超出对应的参数第三预设范围时,确定所述RPF供电存在电源噪声影响用户线路,并确定由所述用户终端的RPF供电器件存在故障而造成电源噪声;
当检测到用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围,且用户线路第二噪声情况对应的通信质量参数超出对应的参数第二预设范围,且用户线路第三噪声情况对应的通信质量参数没有超出对应的参数第三预设范围时,确定所述RPF供电存在电源噪声影响用户线路,并确定由所述DPU的RPF供电器件存在故障而造成电源噪声。
所述电源噪声处理模块:还设置为把RPF供电造成噪声的方位和原因上报给网络管理系统。
实施例1
可根据终端侧是否向局端提供电源控制模块与管理接口,采用不同的系统实现机制与架构:
终端侧向局端侧提供电源控制模块与管理接口的电源噪声定位系统框架:局端侧可在电源噪声定位过程中,通过终端侧提供的电源控制管理接口对电源状态进行控制,如关断电源或开启电源,如图4所示:
局端侧包括:检测转换控制模块41、检测用上电功能模块42、电源噪声检测模块31、电源噪声分析模块32、电源噪声处理模块33;
终端侧包括:电源控制模块43与电源控制接口模块44。
电源噪声分析模块32:可根据检测到的无RPF供电的状态、终端的PSE供电线路与局端的PSU相连且进行供电的状态、终端的PSE与局端的检测用上电功能模块相连并进行供电的状态(即对终端侧电源噪声进行检测)下的用户线路噪声情况,通过综合比较分析,看看RPF是否造成严重的电源噪声,并定位造成RPF通信线路故障的原因,包括判断是局端侧的RPF供电器件还是终端侧的RPF供电器件造成噪声。
电源噪声处理模块33:接收局端侧电源噪声分析模块的分析结果,根据策略执行相应动作,比如停止该线路的供电、启动终端侧电源噪声检测、把该线路的工作状态设置为低功耗(low-power)状态等;并向上级网管系统汇报故障发生的原因。
电源噪声检测模块31:检测无RPF供电的状态、终端的PSE供电线路与局端的PSU相连且进行供电的状态、终端的PSE与局端的检测用上电功能模块相连并进行供电的状态(即对终端侧电源噪声进行检测)下的用户线路噪声情况;并且,根据所需检测的用户线路RPF反向供电状态情况,判断是检测用户线路第一噪声情况、还是检测用户线路第二噪声情况、还是检测用户线路第三噪声情况,通过管理实体(Manage Entity)对检测转换控制模块、线路切换控制模块、电源控制模块的状态进行控制。
检测转换控制模块41:根据是否对终端侧的电源噪声进行检测的需求,对局端侧的PS与PSU或检测用上电功能模块的连接状态进行控制;缺省情况下局端侧PS与PSU相连而与检测用上电功能模块断开以保证RPF的正常工作;当收到检测控制指令时,把PS切换到与检测用上电功能模块相连而与PSU断开的状态;
检测用上电功能模块42:对终端侧的电源噪声进行检测,满足终端侧PSE可进行RPF供电的电路要求,保持RPF的供电状态,从而便于对处于供电状态的通信线路噪声进行检测;该模块是一个逻辑功能模块,可以以独立实体存在,也可以集成在其他器件中。
电源控制接口模块44:接收局端的电源控制指令,对电源控制模块的状态进行控制;
电源控制模块43:控制终端侧的PS与PSE之间处于连接或断开状态, 缺省情况下PS与PSE处于连接状态。
实例2
终端侧不向局端侧提供电源控制模块与管理接口的电源噪声定位系统框架如图5所示,它仅局端侧提供电源噪声定位的相关模块,包括:检测转换控制模块41、检测用上电功能模块42、电源噪声检测模块31、电源噪声分析模块32、电源噪声处理模块33、检测用去电功能模块51;通过检测用去电功能模块,对终端侧的电源状态进行控制。
电源噪声定位系统涉及的功能模块功能与实施例1一致,其中:
检测用去电功能模块51:提供无法让PSE上电的电路功能,实现远程停止终端侧PSE上电的功能,当终端侧不存在电源控制模块时,提供了另外一种停止PSE上电的方法。该模块是一个逻辑功能模块,可以以独立实体存在,也可以集成在其他器件中。
实施例3
电源噪声定位系统在实现过程中,可通过管理实体(ME),实现控制信息以及检测信息的传输。终端侧有电源控制模块与管理接口下的实现框架如图6所示,局端侧对终端侧RPF电源的控制信息可通过用户线路的通信通道(如G.fast或VDSL2通道)进行传输。终端侧无电源控制模块与管理接口下的实现框架如图7所示。
实施例4
当终端侧RPF器件发生故障且无法对其PSE供电状态进行控制时,通过在局端侧对它的用户线路进行物理隔断的方法。终端侧RPF系统异常情况处理机制如图8所示,在局端侧增加一个线路切换控制模块81,其功能是控制用户线路与DPU设备的物理连接或物理断开状态,缺省情况下处于连接状态;当终端侧RPF系统发生异常情况,无法进行控制停止PSE供电时,局端侧可通过切换控制模块,物理上切断用户线路。实际实现过程中可通过管理 实体(ME)提供的管理通道对线路切换控制模块进行控制。
实施例5
电源噪声检测可以在用户线路启动通信或启动反向供电时进行,根据线路的通信状态与反向供电情况,进行电源噪声检测流程。用户线路建链开始通信并开启反向供电后启动的电源噪声检测流程如图9所示。
步骤901,用户线路建链并开始通信,并且开启反向供电;
步骤902,开始检测,检测流程如下:
步骤903,所述电源噪声检测模块将所述PSE供电线路与所述DPU的PE和PSU相连,所述电源噪声检测模块检测用户线路第二噪声情况对应的通信质量参数;
步骤904,判断所述用户线路第二噪声情况对应的通信质量参数是否超出对应的参数第二预设范围,若是,则执行下一步,若否,则执行执行步骤915,结束流程;
步骤905,所述电源噪声分析模块触发检测用去电功能模块停止该线路的供电或者触发电源控制接口模块控制电源控制模块停止该线路的供电;
步骤906,所述电源噪声检测模块检测用户线路第一噪声情况对应的通信质量参数;
步骤907,判断所述用户线路第一噪声情况对应的通信质量参数是否超出对应的参数第一预设范围,若是,则执行下一步,若否,则执行步骤909;
步骤908,所述电源噪声分析模块确定所述用户线路没有RPF供电时存在故障;
步骤909,所述用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围,所述电源噪声分析模块触发检测转换控制模块开启所述PSE供电的状态使得所述PSE与检测用上电功能模块相连;
步骤910,所述电源噪声检测模块检测用户线路第三噪声情况对应的通信质量参数。判断所述用户线路第三噪声情况对应的通信质量参数是否超出 对应的参数第三预设范围,若是,则执行下一步,若否,则执行步骤912;
步骤911,所述电源噪声分析模块确定所述用户终端的RPF供电器件存在故障而造成所述电源噪声影响用户线路;执行步骤913;
步骤912,所述用户线路第三噪声情况对应的通信质量参数没有超出对应的参数第三预设范围,所述电源噪声分析模块确定所述DPU的RPF供电器件存在故障而造成所述电源噪声影响用户线路;
步骤913,电源噪声处理模块,当所述RPF供电存在电源噪声影响用户线路时,触发检测用去电功能模块停止该线路的供电,或者触发电源控制接口模块控制电源控制模块停止该线路的供电。
步骤914,调整该线路的通信状态或断开连接。本步骤为可选步骤。
步骤915,结束检测流程。
实施例6
电源噪声检测可以在用户线路进行通信与反向供电过程中实时启动,根据线路的通信状态与反向供电情况,进行电源噪声检测流程。用户线路建链开始通信后在开启反向供电前启动的电源噪声检测流程如图10所示。
步骤101,用户线路建链并开始通信,未开启反向供电;
步骤102,开始检测,检测流程如下:
步骤102,当无反向供电RPF状态时,所述电源噪声检测模块检测用户线路第一噪声情况对应的通信质量参数;
步骤104,判断所述用户线路第一噪声情况对应的通信质量参数是否超出对应的参数第一预设范围,若是,则执行步骤105,若否,则执行步骤106;
步骤105,所述电源噪声分析模块确定所述用户线路没有RPF供电时存在故障;执行步骤113,结束流程;
步骤106,所述用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围,所述电源噪声分析模块触发检测转换控制模块,开启所述PSE供电的状态使得所述PSE与检测用上电功能模块相连;
步骤107,所述电源噪声检测模块检测用户线路第三噪声情况对应的通信质量参数;
步骤108,判断所述用户线路第三噪声情况对应的通信质量参数是否超出对应的参数第三预设范围,若是,则执行步骤109,若否,则执行步骤110;
步骤109,所述电源噪声分析模块确定所述用户终端的RPF供电器件存在故障而造成所述电源噪声影响用户线路;执行步骤113,结束流程;
步骤110,所述用户线路第三噪声情况对应的通信质量参数没有超出对应的参数第三预设范围,所述电源噪声分析模块触发检测转换控制模块,将所述PSE与检测用上电功能模块断开,将所述PSE供电线路与所述DPU的PE和PSU相连;
步骤111,所述电源噪声检测模块检测用户线路第二噪声情况对应的通信质量参数;判断所述用户线路第二噪声情况对应的通信质量参数是否超出对应的参数第二预设范围,若是,则执行步骤112,若否,执行步骤113,结束流程;
步骤112,所述电源噪声分析模块确定所述DPU的RPF供电器件存在故障而造成所述电源噪声影响用户线路;
步骤113,结束检测流程。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述反向供电线路噪声定位方法。
虽然本申请所揭示的实施方式如上,但其内容只是为了便于理解本申请的技术方案而采用的实施方式,并非用于限定本申请。任何本申请所属技术领域内的技术人员,在不脱离本申请所揭示的核心技术方案的前提下,可以在实施的形式和细节上做任何修改与变化,但本申请所限定的保护范围,仍须以所附的权利要求书限定的范围为准。
工业实用性
本发明实施例提供的反向供电线路噪声定位方法和装置,给出反向供电线路中电源噪声的定位方法与处理机制,通过分别检测无反向供电RPF状态(即PSE断开电源)时、用户终端的供电设备(PSE)供电线路与分配点单元DPU的相应(即该PSE所在线对对应的)取电设备(PE)和供电单元(PSU)相连且进行供电状态时、用户终端的PSE与分配点单元的相应取电设备(PE)和供电单元(PSU)不相连但与检测用上电功能模块相连以保持PSE供电的状态时的用户线路噪声情况,通过综合比较分析,确定RPF是否造成严重的电源噪声,并定位造成RPF通信线路故障的原因,包括判断局端侧的RPF供电器件或者终端侧的RPF供电器件造成噪声。

Claims (19)

  1. 一种反向供电线路噪声定位方法,包括:
    检测无反向供电RPF状态时的用户线路第一噪声情况、检测用户终端的供电设备PSE供电线路与分配点单元DPU的取电设备PE和供电单元PSU相连且进行供电状态时的用户线路第二噪声情况、以及检测用户终端的PSE与所述DPU的PE和PSU断开并保持所述PSE供电的状态时的用户线路第三噪声情况;
    对比所述用户线路第一噪声情况、以及用户线路第二噪声情况和/或用户线路第三噪声情况,确定所述RPF供电是否存在电源噪声影响用户线路。
  2. 如权利要求1所述的方法,其中:对比所述用户线路第一噪声情况、以及用户线路第二噪声情况和/或用户线路第三噪声情况,确定所述RPF供电是否存在电源噪声影响用户线路包括:
    比较所述用户线路第一噪声情况对应的通信质量参数、以及用户线路第二噪声情况对应的通信质量参数、和/或用户线路第三噪声情况对应的通信质量参数,分析由RPF供电而产生的电源噪声是否导致反向供电线路的所述通信质量参数超出所述预设范围。
  3. 如权利要求1或2所述的方法,还包括:当所述RPF供电存在电源噪声影响用户线路时,确定所述RPF供电造成噪声的方位和原因。
  4. 如权利要求1所述的方法,还包括:当所述RPF供电存在电源噪声影响用户线路时,停止相应的RPF线路的供电和/或将所述RPF线路的工作状态设置为低功耗状态。
  5. 如权利要求3所述的方法,其中,确定所述RPF供电造成噪声的方位和原因包括确定所述的DPU的RPF供电器件或者所述用户终端的RPF供电器件存在故障而造成所述电源噪声影响用户线路。
  6. 如权利要求1或2所述的方法,其中:检测无反向供电RPF状态时的用户线路第一噪声情况、检测用户终端的供电设备PSE供电线路与分配点单元DPU的取电设备PE和供电单元PSU相连且进行供电状态时的用户线路第二噪声情况、以及检测用户终端的PSE与所述DPU的PE和PSU断开并保 持所述PSE供电的状态时的用户线路第三噪声情况包括:
    分别检测无反向供电RPF状态时、用户终端的供电设备PSE供电线路与分配点单元DPU的取电设备PE和供电单元PSU相连且进行供电状态时、以及用户终端的PSE与所述DPU的PE和PSU断开并保持所述PSE供电的状态时用户线路的通信质量参数。
  7. 如权利要求6所述的方法,其中:分别检测无反向供电RPF状态时、用户终端的供电设备PSE供电线路与分配点单元DPU的取电设备PE和供电单元PSU相连且进行供电状态时、以及用户终端的PSE与所述DPU的PE和PSU断开并保持PSE供电的状态时用户线路的通信质量参数包括:
    当无反向供电RPF状态时,检测用户线路第一噪声情况对应的通信质量参数,当所述用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围时,开启所述PSE供电的状态,检测用户线路第三噪声情况对应的通信质量参数,当所述用户线路第三噪声情况对应的通信质量参数没有超出对应的参数第三预设范围时,将所述PSE供电线路与所述DPU的PE和PSU相连,检测用户线路第二噪声情况对应的通信质量参数;
    或者,将所述PSE供电线路与所述DPU的PE和PSU相连,检测用户线路第二噪声情况对应的通信质量参数,当所述用户线路第二噪声情况对应的通信质量参数超出对应的参数第二预设范围时,将PSE与所述DPU的PE和PSU断开,检测用户线路第一噪声情况对应的通信质量参数,当所述用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围时,开启所述PSE供电的状态,检测用户线路第三噪声情况对应的通信质量参数。
  8. 如权利要求2或6所述的方法,其中:所述通信质量参数包括以下的一项或者多项:信噪比SNR、线路衰减值、无数据信号线路噪声QLN、正常工作线路噪声ALN。
  9. 如权利要求3所述的方法,其中:对比所述用户线路第一噪声情况、以及用户线路第二噪声情况和/或用户线路第三噪声情况,确定所述RPF供电是否存在电源噪声影响用户线路包括:
    当检测到用户线路第一噪声情况对应的通信质量参数超出对应的参数第一预设范围时,确定所述用户线路没有RPF供电时存在故障;
    当检测到用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围,且用户线路第二噪声情况对应的通信质量参数超出对应的参数第二预设范围时,确定所述RPF供电存在电源噪声影响用户线路;
    当检测到用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围,且用户线路第三噪声情况对应的通信质量参数超出对应的参数第三预设范围时,确定所述RPF供电存在电源噪声影响用户线路,并确定由所述用户终端的RPF供电器件存在故障而造成电源噪声;
    当检测到用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围,且用户线路第二噪声情况对应的通信质量参数超出对应的参数第二预设范围,且用户线路第三噪声情况对应的通信质量参数没有超出对应的参数第三预设范围时,确定所述RPF供电存在电源噪声影响用户线路,并确定由所述DPU的RPF供电器件存在故障而造成电源噪声。
  10. 如权利要求3所述的方法,还包括:把RPF供电造成噪声的方位和原因上报给网络管理系统。
  11. 一种反向供电线路噪声定位装置,包括:
    电源噪声检测模块,设置为:检测无反向供电RPF状态时的用户线路第一噪声情况、检测用户终端的供电设备PSE供电线路与分配点单元DPU的取电设备PE和供电单元PSU相连且进行供电状态时的用户线路第二噪声情况、以及检测用户终端的PSE与所述DPU的PE和PSU断开并保持所述PSE供电的状态时的用户线路第三噪声情况;
    电源噪声分析模块,设置为:对比所述用户线路第一噪声情况、以及用户线路第二噪声情况和/或用户线路第三噪声情况,确定所述RPF供电是否存在电源噪声影响用户线路。
  12. 如权利要求11所述的装置,其中:所述电源噪声分析模块设置为:
    比较所述用户线路第一噪声情况对应的通信质量参数、以及用户线路第二噪声情况对应的通信质量参数、和/或用户线路第三噪声情况对应的通信 质量参数,分析由RPF供电而产生的电源噪声是否导致反向供电线路的所述通信质量参数超出所述预设范围。
  13. 如权利要求11或12所述的装置,其中:所述电源噪声分析模块还设置为:当所述RPF供电存在电源噪声影响用户线路时,确定所述RPF供电造成噪声的方位和原因。
  14. 如权利要求11所述的装置,还包括电源噪声处理模块,设置为:当所述RPF供电存在电源噪声影响用户线路时,触发检测用去电功能模块停止相应的RPF线路的供电和/或将所述RPF线路的工作状态设置为低功耗状态,或者触发电源控制接口模块控制电源控制模块停止相应的RPF线路的供电和/或将所述RPF线路的工作状态设置为低功耗状态,或者触发切换控制模块停止相应的RPF线路的供电和/或将所述RPF线路的工作状态设置为低功耗状态。
  15. 如权利要求13所述的装置,其中,所述电源噪声分析模块设置为:确定所述的DPU的RPF供电器件或者所述用户终端的RPF供电器件存在故障而造成所述电源噪声影响用户线路。
  16. 如权利要求11或12所述的装置,其中:所述电源噪声检测模块设置为:
    分别检测无反向供电RPF状态时、用户终端的供电设备PSE供电线路与分配点单元DPU的取电设备PE和供电单元PSU相连且进行供电状态时、以及用户终端的PSE与所述DPU的PE和PSU断开并保持所述PSE供电的状态时用户线路的通信质量参数。
  17. 如权利要求13所述的装置,还包括:检测转换控制模块;
    所述电源噪声检测模块设置为:当无反向供电RPF状态时,检测用户线路第一噪声情况对应的通信质量参数,所述电源噪声分析模块设置为:当所述用户线路第一噪声情况对应的通信质量参数超出对应的参数第一预设范围时,确定所述用户线路没有RPF供电时存在故障,还设置为:当所述用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围时,触发检测转换控制模块,开启所述PSE供电的状态使得所述PSE与检测用上 电功能模块相连,所述电源噪声检测模块设置为:检测用户线路第三噪声情况对应的通信质量参数,所述电源噪声分析模块设置为:当所述用户线路第三噪声情况对应的通信质量参数超出对应的参数第三预设范围时,确定所述用户终端的RPF供电器件存在故障而造成所述电源噪声影响用户线路,还设置为:当所述用户线路第三噪声情况对应的通信质量参数没有超出对应的参数第三预设范围时,触发检测转换控制模块,将所述PSE与检测用上电功能模块断开,将所述PSE供电线路与所述DPU的PE和PSU相连,所述电源噪声检测模块设置为:检测用户线路第二噪声情况对应的通信质量参数;所述电源噪声分析模块设置为:当所述用户线路第二噪声情况对应的通信质量参数超出对应的参数第二预设范围时,确定所述DPU的RPF供电器件存在故障而造成所述电源噪声影响用户线路;
    或者,所述检测转换控制模块设置为:将所述PSE供电线路与所述DPU的PE和PSU相连,所述电源噪声检测模块设置为:检测用户线路第二噪声情况对应的通信质量参数,所述电源噪声分析模块还设置为:当所述用户线路第二噪声情况对应的通信质量参数超出对应的参数第二预设范围时,触发检测用去电功能模块停止该线路的供电或者触发电源控制接口模块控制电源控制模块停止该线路的供电,所述电源噪声检测模块设置为:检测用户线路第一噪声情况对应的通信质量参数,所述电源噪声分析模块设置为:当所述用户线路第一噪声情况对应的通信质量参数超出对应的参数第一预设范围时,确定所述用户线路没有RPF供电时存在故障,还设置为:当所述用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围时,触发检测转换控制模块开启所述PSE供电的状态使得所述PSE与检测用上电功能模块相连,所述电源噪声检测模块设置为:检测用户线路第三噪声情况对应的通信质量参数,所述电源噪声分析模块设置为:当所述用户线路第三噪声情况对应的通信质量参数超出对应的参数第三预设范围时,确定所述用户终端的RPF供电器件存在故障而造成所述电源噪声影响用户线路,以及,当所述用户线路第三噪声情况对应的通信质量参数没有超出对应的参数第三预设范围时,确定所述DPU的RPF供电器件存在故障而造成所述电源噪声影响用户线路。
  18. 如权利要求13所述的装置,其中:所述电源噪声分析模块设置为:
    当检测到用户线路第一噪声情况对应的通信质量参数超出对应的参数第一预设范围时,确定所述用户线路没有RPF供电时存在故障;
    当检测到用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围,且用户线路第二噪声情况对应的通信质量参数超出对应的参数第二预设范围时,确定所述RPF供电存在电源噪声影响用户线路;
    当检测到用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围,且用户线路第三噪声情况对应的通信质量参数超出对应的参数第三预设范围时,确定所述RPF供电存在电源噪声影响用户线路,并确定由所述用户终端的RPF供电器件存在故障而造成电源噪声;
    当检测到用户线路第一噪声情况对应的通信质量参数没有超出对应的参数第一预设范围,且用户线路第二噪声情况对应的通信质量参数超出对应的参数第二预设范围,且用户线路第三噪声情况对应的通信质量参数没有超出对应的参数第三预设范围时,确定所述RPF供电存在电源噪声影响用户线路,并确定由所述DPU的RPF供电器件存在故障而造成电源噪声。
  19. 如权利要求13所述的装置,其中,所述电源噪声处理模块:还设置为把RPF供电造成噪声的方位和原因上报给网络管理系统。
PCT/CN2016/096054 2015-11-13 2016-08-19 一种反向供电线路噪声定位方法和装置 WO2017080277A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16863455.8A EP3376241A4 (en) 2015-11-13 2016-08-19 METHOD AND DEVICE FOR LOCATING NOISE FOR REVERSE POWER SUPPLY LINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510779696.7A CN106707045A (zh) 2015-11-13 2015-11-13 一种反向供电线路噪声定位方法和装置
CN201510779696.7 2015-11-13

Publications (1)

Publication Number Publication Date
WO2017080277A1 true WO2017080277A1 (zh) 2017-05-18

Family

ID=58694498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096054 WO2017080277A1 (zh) 2015-11-13 2016-08-19 一种反向供电线路噪声定位方法和装置

Country Status (3)

Country Link
EP (1) EP3376241A4 (zh)
CN (1) CN106707045A (zh)
WO (1) WO2017080277A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10951056B2 (en) 2018-03-07 2021-03-16 At&T Intellectual Property I, L.P. Systems and methods for intelligent power distribution

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116520957B (zh) * 2023-06-28 2023-10-03 新华三信息技术有限公司 一种主板、主板供电控制方法及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080252307A1 (en) 2007-04-11 2008-10-16 Cisco Technology, Inc. Techniques for measuring network channel resistive loss between a power-sourcing apparatus and a powered device
US20110029790A1 (en) * 2009-07-31 2011-02-03 Broadcom Corporation System and Method for Policing Bad Powered Devices in Power Over Ethernet
CN102232192A (zh) * 2008-12-05 2011-11-02 Nxp股份有限公司 用于电阻压降和电源噪声测量的简单而稳定的参考
CN103403563A (zh) * 2013-01-30 2013-11-20 华为技术有限公司 反向供电线路测试系统及设备
CN103973508A (zh) * 2013-02-01 2014-08-06 中兴通讯股份有限公司 一种节点设备进入及退出节能模式的方法及节点设备
US8930729B1 (en) * 2007-12-28 2015-01-06 Aerohive Networks, Inc. Enhanced utilization of power over ethernet

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100842938B1 (ko) * 2006-12-11 2008-07-02 주식회사 화인텍센추리 3상 입력 전원의 역상 감지 장치
US9569037B2 (en) * 2008-05-19 2017-02-14 Atmel Corporation Capacitive sensing with low-frequency noise reduction
JP6039327B2 (ja) * 2012-09-14 2016-12-07 リコー電子デバイス株式会社 スイッチング電源装置
CN103051462A (zh) * 2013-01-07 2013-04-17 中兴通讯股份有限公司 接入设备的供电方法及装置
EP2835934B1 (en) * 2013-08-07 2021-04-07 Alcatel Lucent Reverse powered remote node and method for reverse powering a remote node
EP3029881B1 (en) * 2013-09-05 2018-03-07 Huawei Technologies Co., Ltd. Reverse power supply method, reverse power supply device and system
US9876422B2 (en) * 2014-02-17 2018-01-23 Trw Automotive U.S. Llc RF noise reduction in switching mode power supplies

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080252307A1 (en) 2007-04-11 2008-10-16 Cisco Technology, Inc. Techniques for measuring network channel resistive loss between a power-sourcing apparatus and a powered device
US8930729B1 (en) * 2007-12-28 2015-01-06 Aerohive Networks, Inc. Enhanced utilization of power over ethernet
CN102232192A (zh) * 2008-12-05 2011-11-02 Nxp股份有限公司 用于电阻压降和电源噪声测量的简单而稳定的参考
US20110029790A1 (en) * 2009-07-31 2011-02-03 Broadcom Corporation System and Method for Policing Bad Powered Devices in Power Over Ethernet
CN103403563A (zh) * 2013-01-30 2013-11-20 华为技术有限公司 反向供电线路测试系统及设备
CN103973508A (zh) * 2013-02-01 2014-08-06 中兴通讯股份有限公司 一种节点设备进入及退出节能模式的方法及节点设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3376241A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10951056B2 (en) 2018-03-07 2021-03-16 At&T Intellectual Property I, L.P. Systems and methods for intelligent power distribution
US11462935B2 (en) 2018-03-07 2022-10-04 At&T Intellectual Property I, L.P. Systems and methods for intelligent power distribution

Also Published As

Publication number Publication date
EP3376241A4 (en) 2019-06-19
CN106707045A (zh) 2017-05-24
EP3376241A1 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
JP5910811B2 (ja) スイッチ装置の制御システム、その構成制御装置および構成制御方法
CN104429020B (zh) 基于以太网的供电的监控的方法与装置
US9647879B2 (en) Network backup device and network system
CN103339580B (zh) 具有智能电力控制系统的数字机架接口插槽(drip)和方法
CN102123034B (zh) 利用poe系统进行高低压选择供电的方法及装置
CN103812675A (zh) 一种实现业务交付平台异地容灾切换的方法和系统
CN105323080B (zh) 一种链路备份、电源备份方法、装置及系统
WO2017080277A1 (zh) 一种反向供电线路噪声定位方法和装置
EP2911339A1 (en) Method and device for processing line detection
CN110098965A (zh) 一种服务器管理系统及方法
CN116054972A (zh) 电子设备、测试方法、装置和可读存储介质
WO2016197819A1 (zh) 反向供电线路检测处理方法及装置
CN103001822B (zh) 网络异常的处理方法及装置
US10503242B2 (en) Power supply method, apparatus, and system
CN102412997B (zh) 主备环境下传递链路通断状态的方法及系统
WO2017215672A1 (zh) Poe系统中的供电方法和供电设备
US10637672B2 (en) Apparatus and methods of power over ethernet
WO2016145858A1 (zh) 以太网供电控制方法及装置
US10379921B1 (en) Fault detection and power recovery and redundancy in a power over ethernet system
CN110417559B (zh) 以太网供电设备及检测方法
CN101741571A (zh) 一种以太网多路分路器及其实现方法
CN110677264B (zh) 一种供电故障处理的方法及装置
CN210222738U (zh) 中断重连快速响应装置和通信设备
CN205961187U (zh) 具有距离监测装置的云存储系统
US20160191718A1 (en) Reverse-powered transmission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016863455

Country of ref document: EP